WorldWideScience

Sample records for corynebacterium glutamicum mutational

  1. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum.

    Science.gov (United States)

    Huang, Yuanyuan; Zhang, Hao; Tian, Hongming; Li, Cheng; Han, Shuangyan; Lin, Ying; Zheng, Suiping

    2015-09-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine that is inhibited by its end product L-arginine in Corynebacterium glutamicum (C. glutamicum). In this study, the potential binding sites of arginine and the residues essential for its inhibition were identified by homology modeling, inhibitor docking, and site-directed mutagenesis. The allosteric inhibition of NAGK was successfully alleviated by a mutation, as determined through analysis of mutant enzymes, which were overexpressed in vivo in C. glutamicum ATCC14067. Analysis of the mutant enzymes and docking analysis demonstrated that residue W23 positions an arginine molecule, and the interaction between arginine and residues L282, L283, and T284 may play an important role in the remote inhibitory process. Based on the results of the docking analysis of the effective mutants, we propose a linkage mechanism for the remote allosteric regulation of NAGK activity, in which residue R209 may play an essential role. In this study, the structure of the arginine-binding site of C. glutamicum NAGK (CgNAGK) was successfully predicted and the roles of the relevant residues were identified, providing new insight into the allosteric regulation of CgNAGK activity and a solid platform for the future construction of an optimized L-arginine producing strain.

  2. A Novel Corynebacterium glutamicum l-Glutamate Exporter.

    Science.gov (United States)

    Wang, Yu; Cao, Guoqiang; Xu, Deyu; Fan, Liwen; Wu, Xinyang; Ni, Xiaomeng; Zhao, Shuxin; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2018-03-15

    Besides metabolic pathways and regulatory networks, transport systems are also pivotal for cellular metabolism and hyperproduction of biochemicals using microbial cell factories. The identification and characterization of transporters are therefore of great significance for the understanding and engineering of transport reactions. Herein, a novel l-glutamate exporter, MscCG2, which exists extensively in Corynebacterium glutamicum strains but is distinct from the only known l-glutamate exporter, MscCG, was discovered in an industrial l-glutamate-producing C. glutamicum strain. MscCG2 was predicted to possess three transmembrane helices in the N-terminal region and located in the cytoplasmic membrane, which are typical structural characteristics of the mechanosensitive channel of small conductance. MscCG2 has a low amino acid sequence identity (23%) to MscCG and evolved separately from MscCG with four transmembrane helices. Despite the considerable differences between MscCG2 and MscCG in sequence and structure, gene deletion and complementation confirmed that MscCG2 also functioned as an l-glutamate exporter and an osmotic safety valve in C. glutamicum Besides, transcriptional analysis showed that MscCG2 and MscCG genes were transcribed in similar patterns and not induced by l-glutamate-producing conditions. It was also demonstrated that MscCG2-mediated l-glutamate excretion was activated by biotin limitation or penicillin treatment and that constitutive l-glutamate excretion was triggered by a gain-of-function mutation of MscCG2 (A151V). Discovery of MscCG2 will enrich the understanding of bacterial amino acid transport and provide additional targets for exporter engineering. IMPORTANCE The exchange of matter, energy, and information with surroundings is fundamental for cellular metabolism. Therefore, studying transport systems that are essential for these processes is of great significance. Besides, transport systems of bacterial cells are usually related to

  3. Synthetic promoter libraries for Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang; Helmark, Søren; Chen, Jun

    2014-01-01

    The ability to modulate gene expression is an important genetic tool in systems biology and biotechnology. Here, we demonstrate that a previously published easy and fast PCR-based method for modulating gene expression in lactic acid bacteria is also applicable to Corynebacterium glutamicum. We co...... promoter library (SPL) technology is convenient for modulating gene expression in C. glutamicum and should have many future applications, within basic research as well as for optimizing industrial production organisms....... constructed constitutive promoter libraries based on various combinations of a previously reported C. glutamicum -10 consensus sequence (gngnTA(c/t)aaTgg) and the Escherichia coli -35 consensus, either with or without an AT-rich region upstream. A promoter library based on consensus sequences frequently found...... in low-GC Gram-positive microorganisms was also included. The strongest promoters were found in the library with a -35 region and a C. glutamicum -10 consensus, and this library also represents the largest activity span. Using the alternative -10 consensus TATAAT, which can be found in many other...

  4. Sigma factors and promoters in Corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Pátek, Miroslav; Nešvera, Jan

    2011-01-01

    Roč. 154, 2-3 (2011), s. 101-113 ISSN 0168-1656 R&D Projects: GA ČR GC204/09/J015 Institutional research plan: CEZ:AV0Z50200510 Keywords : Corynebacterium glutamicum * Sigma factors * Promoters Subject RIV: EE - Microbiology, Virology Impact factor: 3.045, year: 2011

  5. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    International Nuclear Information System (INIS)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.; Yankovskii, N.K.; Debabov, V.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector λpSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB + clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA + transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB + and lysA + . The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes

  6. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    ,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH......Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1...... the project intends to eliminate. PGI catalyzes the conversion of alpha-D-glucose-6-phosphate to fructose-6-phosphate just downstream of the branch in the glycolysis, but it also catalyzes the reverse reaction. It is unknown whether up- or down-regulation of the pgi is required to increase the flux through...

  7. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.

    Science.gov (United States)

    Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F

    2015-03-01

    Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH

  8. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Bo; Hu, Qitiao; Zhang, Yu; Shi, Ruilin; Chai, Xin; Liu, Zhe; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-04-23

    Extensive modification of genome is an efficient manner to regulate the metabolic network for producing target metabolites or non-native products using Corynebacterium glutamicum as a cell factory. Genome editing approaches by means of homologous recombination and counter-selection markers are laborious and time consuming due to multiple round manipulations and low editing efficiencies. The current two-plasmid-based CRISPR-Cas9 editing methods generate false positives due to the potential instability of Cas9 on the plasmid, and require a high transformation efficiency for co-occurrence of two plasmids transformation. Here, we developed a RecET-assisted CRISPR-Cas9 genome editing method using a chromosome-borne Cas9-RecET and a single plasmid harboring sgRNA and repair templates. The inducible expression of chromosomal RecET promoted the frequencies of homologous recombination, and increased the efficiency for gene deletion. Due to the high transformation efficiency of a single plasmid, this method enabled 10- and 20-kb region deletion, 2.5-, 5.7- and 7.5-kb expression cassette insertion and precise site-specific mutation, suggesting a versatility of this method. Deletion of argR and farR regulators as well as site-directed mutation of argB and pgi genes generated the mutant capable of accumulating L-arginine, indicating the stability of chromosome-borne Cas9 for iterative genome editing. Using this method, the model-predicted target genes were modified to redirect metabolic flux towards 1,2-propanediol biosynthetic pathway. The final engineered strain produced 6.75 ± 0.46 g/L of 1,2-propanediol that is the highest titer reported in C. glutamicum. Furthermore, this method is available for Corynebacterium pekinense 1.563, suggesting its universal applicability in other Corynebacterium species. The RecET-assisted CRISPR-Cas9 genome editing method will facilitate engineering of metabolic networks for the synthesis of interested bio-based products from renewable

  9. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.

    Science.gov (United States)

    Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2017-11-16

    Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.

  10. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum

    Science.gov (United States)

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-01

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30C, and interestingly, it could utilize NAD+ and NADP+ as coenzymes with similar efficiency and showed no obvious difference toward NAD+ and NADP+. In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum. PMID:25622822

  11. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

    Science.gov (United States)

    2014-01-01

    Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213

  12. Physiological roles of sigma factor SigD in Corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Taniguchi, H.; Busche, T.; Patschkowski, T.; Niehaus, K.; Pátek, Miroslav; Kalinowski, J.; Wendisch, V.F.

    2017-01-01

    Roč. 17, č. 158 (2017), s. 158 ISSN 1471-2180 R&D Projects: GA ČR(CZ) GA17-06991S Institutional support: RVO:61388971 Keywords : Corynebacterium glutamicum * Sigma factor * SigD Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.644, year: 2016

  13. Tools for genetic manipulations in Corynebacterium glutamicum and their applications

    Czech Academy of Sciences Publication Activity Database

    Nešvera, Jan; Pátek, Miroslav

    2011-01-01

    Roč. 90, č. 5 (2011), s. 1641-1654 ISSN 0175-7598 R&D Projects: GA ČR GC204/09/J015 Institutional research plan: CEZ:AV0Z50200510 Keywords : Corynebacterium glutamicum * Plasmid vectors * Promoters Subject RIV: EE - Microbiology, Virology Impact factor: 3.425, year: 2011

  14. Production of L-valine from metabolically engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J

    2018-05-01

    L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

  15. Mutations of the Corynebacterium glutamicum NCgl1221 Gene, Encoding a Mechanosensitive Channel Homolog, Induce l-Glutamic Acid Production▿

    OpenAIRE

    Nakamura, Jun; Hirano, Seiko; Ito, Hisao; Wachi, Masaaki

    2007-01-01

    Corynebacterium glutamicum is a biotin auxotroph that secretes l-glutamic acid in response to biotin limitation; this process is employed in industrial l-glutamic acid production. Fatty acid ester surfactants and penicillin also induce l-glutamic acid secretion, even in the presence of biotin. However, the mechanism of l-glutamic acid secretion remains unclear. It was recently reported that disruption of odhA, encoding a subunit of the 2-oxoglutarate dehydrogenase complex, resulted in l-gluta...

  16. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    Science.gov (United States)

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  17. Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Nadja A. Henke

    2018-04-01

    Full Text Available Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii prevention of carotenoid-like byproduct formation; (iii overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP-pathway to increase precursor supply; and (iv heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.

  18. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Hana; Holátko, Jiří; Busche, T.; Rucká, Lenka; Rapoport, Andrey; Halada, Petr; Nešvera, Jan; Kalinowski, J.; Pátek, Miroslav

    2017-01-01

    Roč. 7, JUN 23 (2017), s. 1-13, č. článku 133. ISSN 2191-0855 R&D Projects: GA ČR(CZ) GA17-06991S Institutional support: RVO:61388971 Keywords : Corynebacterium glutamicum * Promoter * Sigma factor Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.825, year: 2016

  19. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.

    Science.gov (United States)

    Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup

    2017-07-01

    Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  1. Function of Corynebacterium glutamicum promoters in Eschrichia coli, Streptomyces lividans, and Baccillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Pátek, Miroslav; Muth, G.; Wohlleben, W.

    2003-01-01

    Roč. 104, - (2003), s. 325-334 ISSN 0168-1656 R&D Projects: GA AV ČR IPP1050128; GA ČR GA525/01/0916 Institutional research plan: CEZ:AV0Z5020903 Keywords : corynebacterium glutamicum * escherichia coli * promoters Subject RIV: EE - Microbiology, Virology Impact factor: 2.543, year: 2003

  2. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2018-05-03

    L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.

  3. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-10-01

    Full Text Available Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6, metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production.

  4. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Science.gov (United States)

    Li, Zhen; Liu, Jian-Zhong

    2017-01-01

    Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6), metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production. PMID:29089930

  5. Global Transcriptomic Analysis of the Response of Corynebacterium glutamicum to Vanillin.

    Science.gov (United States)

    Chen, Can; Pan, Junfeng; Yang, Xiaobing; Guo, Chenghao; Ding, Wei; Si, Meiru; Zhang, Yi; Shen, Xihui; Wang, Yao

    2016-01-01

    Lignocellulosic biomass is an abundant and renewable resource for biofuels and bio-based chemicals. Vanillin is one of the major phenolic inhibitors in biomass production using lignocellulose. To assess the response of Corynebacterium glutamicum to vanillin stress, we performed a global transcriptional response analysis. The transcriptional data showed that the vanillin stress not only affected the genes involved in degradation of vanillin, but also differentially regulated several genes related to the stress response, ribosome/translation, protein secretion, and the cell envelope. Moreover, deletion of the sigH or msrA gene in C. glutamicum resulted in a decrease in cell viability under vanillin stress. These insights will promote further engineering of model industrial strains, with enhanced tolerance or degradation ability to vanillin to enable suitable production of biofuels and bio-based chemicals from lignocellulosic biomass.

  6. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027 is essential for growth of Corynebacterium glutamicum on D-lactate

    Directory of Open Access Journals (Sweden)

    Oikawa Tadao

    2010-12-01

    Full Text Available Abstract Background Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.

  7. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    Directory of Open Access Journals (Sweden)

    Volker Fritz Wendisch

    2012-10-01

    Full Text Available Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources, and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols.

  8. Global Transcriptomic Analysis of the Response of Corynebacterium glutamicum to Vanillin.

    Directory of Open Access Journals (Sweden)

    Can Chen

    Full Text Available Lignocellulosic biomass is an abundant and renewable resource for biofuels and bio-based chemicals. Vanillin is one of the major phenolic inhibitors in biomass production using lignocellulose. To assess the response of Corynebacterium glutamicum to vanillin stress, we performed a global transcriptional response analysis. The transcriptional data showed that the vanillin stress not only affected the genes involved in degradation of vanillin, but also differentially regulated several genes related to the stress response, ribosome/translation, protein secretion, and the cell envelope. Moreover, deletion of the sigH or msrA gene in C. glutamicum resulted in a decrease in cell viability under vanillin stress. These insights will promote further engineering of model industrial strains, with enhanced tolerance or degradation ability to vanillin to enable suitable production of biofuels and bio-based chemicals from lignocellulosic biomass.

  9. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation

    Czech Academy of Sciences Publication Activity Database

    Holátko, Jiří; Elišáková, Veronika; Prouza, Marek; Sobotka, Miroslav; Nešvera, Jan; Pátek, Miroslav

    2009-01-01

    Roč. 139, č. 3 (2009), s. 203-210 ISSN 0168-1656 R&D Projects: GA ČR GA204/06/0330 Institutional research plan: CEZ:AV0Z50200510 Keywords : corynebacterium glutamicum * valine production * promoters Subject RIV: EE - Microbiology, Virology Impact factor: 2.881, year: 2009

  10. Expression, crystallization and preliminary crystallographic study of GluB from Corynebacterium glutamicum

    International Nuclear Information System (INIS)

    Liu, Qingbo; Li, Defeng; Hu, Yonglin; Wang, Da-Cheng

    2013-01-01

    GluB, a substrate-binding protein from C. glutamicum, was expressed, purified and crystallized, followed by X-ray diffraction data collection and preliminary crystallographic analysis. GluB is a substrate-binding protein (SBP) which participates in the uptake of glutamic acid in Corynebacterium glutamicum, a Gram-positive bacterium. It is part of an ATP-binding cassette (ABC) transporter system. Together with the transmembrane proteins GluC and GluD and the cytoplasmic protein GluA, which couples the hydrolysis of ATP to the translocation of glutamate, they form a highly active glutamate-uptake system. As part of efforts to study the amino-acid metabolism, especially the metabolism of glutamic acid by C. glutamicum, a bacterium that is widely used in the industrial production of glutamic acid, the GluB protein was expressed, purified and crystallized, an X-ray diffraction data set was collected to a resolution of 1.9 Å and preliminary crystallographic analysis was performed. The crystal belonged to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 82.50, c = 72.69 Å

  11. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum.

    Science.gov (United States)

    Tsuge, Yota; Kudou, Motonori; Kawaguchi, Hideo; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-03-01

    Lignocellulosic hydrolysates contain compounds that inhibit microbial growth and fermentation, thereby decreasing the productivity of biofuel and biochemical production. In particular, the heterocyclic aldehyde furfural is one of the most toxic compounds found in these hydrolysates. We previously demonstrated that Corynebacterium glutamicum converts furfural into the less toxic compounds furfuryl alcohol and 2-furoic acid. To date, however, the genes involved in these oxidation and reduction reactions have not been identified in the C. glutamicum genome. Here, we show that Cgl0331 (designated FudC) is mainly responsible for the reduction of furfural into furfuryl alcohol in C. glutamicum. Deletion of the gene encoding FudC markedly diminished the in vivo reduction of furfural to furfuryl alcohol. Purified His-tagged FudC protein from Escherichia coli was also shown to convert furfural into furfuryl alcohol in an in vitro reaction utilizing NADPH, but not NADH, as a cofactor. Kinetic measurements demonstrated that FudC has a high affinity for furfural but has a narrow substrate range for other aldehydes compared to the protein responsible for furfural reduction in E. coli.

  12. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.

    Science.gov (United States)

    Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F

    2014-12-20

    The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    Science.gov (United States)

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production.

    Science.gov (United States)

    Li, Zhen; Shen, Yu-Ping; Jiang, Xuan-Long; Feng, Li-Shen; Liu, Jian-Zhong

    2018-02-01

    Putrescine is widely used in the industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Because the highest titer of putrescine is much lower than that of its precursor L-ornithine reported in microorganisms to date, further work is needed to increase putrescine production in Corynebacterium glutamicum. We first compared 7 ornithine decarboxylase genes and found that the Enterobacter cloacae ornithine decarboxylase gene speC1 was most suitable for putrescine production in C. glutamicum. Increasing NADPH availability and blocking putrescine oxidation and acetylation were chosen as targets for metabolic engineering. The putrescine producer C. glutamicum PUT4 was first constructed by deleting puo, butA and snaA genes, and replacing the fabG gene with E. cloacae speC1. After adaptive evolution with C. glutamicum PUT4, the evolved strain C. glutamicum PUT-ALE, which produced an 96% higher amount of putrescine compared to the parent strain, was obtained. The whole genome resequencing indicates that the SNPs located in the odhA coding region may be associated with putrescine production. The comparative proteomic analysis reveals that the pentose phosphate and anaplerotic pathway, the glyoxylate cycle, and the ornithine biosynthetic pathway were upregulated in the evolved strain C. glutamicum PUT-ALE. The aspartate family, aromatic, and branched chain amino acid and fatty acid biosynthetic pathways were also observed to be downregulated in C. glutamicum PUT-ALE. Reducing OdhA activity by replacing the odhA native start codon GTG with TTG and overexpression of cgmA or pyc458 further improved putrescine production. Repressing the carB, ilvH, ilvB and aroE expression via CRISPRi also increased putrescine production by 5, 9, 16 and 19%, respectively.

  15. Immobilazation of aerobic microorganisms on glassy sintered material, illustrated by the example of the production of L leucine using Corynebacterium glutamicum. Immobilisierung von aeroben Mikroorganismen an Glassintermaterial am Beispiel der L-Leucin-Produktion mit Corynebacterium glutamicum

    Energy Technology Data Exchange (ETDEWEB)

    Buechs, J.

    1988-12-01

    The aim of this study was to develop the carrier fixation of aerobic microorganisms on open-pore sintered glass material. The fermentative production of L-leucine from {alpha} cetonic isocaproic acid with Corynebacterium glutamicum was chosen as an example of a microbial process with a high demand of oxygen. (orig.).

  16. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model...... was extensively validated against published flux data, and flux distribution values were found to correlate well between simulations and experiments. The split pathway of the lysine synthesis pathway of C. glutamicum was investigated, and it was found that the direct dehydrogenase variant gave a higher lysine...... yield than the alternative succinyl pathway at high lysine production rates. The NADPH demand of the network was not found to be critical for lysine production until lysine yields exceeded 55% (mmol lysine (mmol glucose)(-1)). The model was validated during growth on the organic acids acetate...

  17. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    OpenAIRE

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.

  18. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  19. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    Science.gov (United States)

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  20. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Petra Peters-Wendisch

    2017-04-01

    Full Text Available Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.

  1. Rational Design of a Corynebacterium glutamicum Pantothenate Production Strain and Ins Characterization by Metabolic Flux Analysis and Genome-Wide Transcriptional Profiling

    Czech Academy of Sciences Publication Activity Database

    Hüser, A.T.; Chassagnole, Ch.; Lindley, N.D.; Merkamm, M.; Guyonvarch, A.; Elišáková, Veronika; Pátek, Miroslav; Kalinowski, J.; Brune, I.; Pühler, A.; Tauch, A.

    2005-01-01

    Roč. 71, č. 6 (2005), s. 3255-3268 ISSN 0099-2240 Institutional research plan: CEZ:AV0Z50200510 Keywords : corynebacterium glutamicum * metabolic flux Subject RIV: EE - Microbiology, Virology Impact factor: 3.818, year: 2005

  2. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    Science.gov (United States)

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  3. Different modes of diaminopimelate synthesis and their role in cell wall integrity: a study with Corynebacterium glutamicum.

    Science.gov (United States)

    Wehrmann, A; Phillipp, B; Sahm, H; Eggeling, L

    1998-06-01

    In eubacteria, there are three slightly different pathways for the synthesis of m-diaminopimelate (m-DAP), which is one of the key linking units of peptidoglycan. Surprisingly, for unknown reasons, some bacteria use two of these pathways together. An example is Corynebacterium glutamicum, which uses both the succinylase and dehydrogenase pathways for m-DAP synthesis. In this study, we clone dapD and prove by enzyme experiments that this gene encodes the succinylase (M(r) = 24082), initiating the succinylase pathway of m-DAP synthesis. By using gene-directed mutation, dapD, as well as dapE encoding the desuccinylase, was inactivated, thereby forcing C. glutamicum to use only the dehydrogenase pathway of m-DAP synthesis. The mutants are unable to grow on organic nitrogen sources. When supplied with low ammonium concentrations but excess carbon, their morphology is radically altered and they are less resistant to mechanical stress than the wild type. Since the succinylase has a high affinity toward its substrate and uses glutamate as the nitrogen donor, while the dehydrogenase has a low affinity and incorporates ammonium directly, the m-DAP synthesis is another example of twin activities present in bacteria for access to important metabolites such as the well-known twin activities for the synthesis of glutamate or for the uptake of potassium.

  4. Development of Biotin-Prototrophic and -Hyperauxotrophic Corynebacterium glutamicum Strains

    Science.gov (United States)

    Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-01-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally

  5. Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum strains.

    Science.gov (United States)

    Ikeda, Masato; Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-08-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally

  6. Pyruvate:Quinone Oxidoreductase in Corynebacterium glutamicum: Molecular Analysis of the pqo Gene, Significance of the Enzyme, and Phylogenetic Aspects

    Czech Academy of Sciences Publication Activity Database

    Schreiner, M. E.; Riedel, Ch.; Holátko, Jiří; Pátek, Miroslav; Eikmanns, B. J.

    2006-01-01

    Roč. 188, č. 4 (2006), s. 1341-1350 ISSN 0021-9193 R&D Projects: GA ČR GA525/04/0548 Institutional research plan: CEZ:AV0Z50200510 Keywords : corynebacterium glutamicum * pqo * molecular analysis Subject RIV: EE - Microbiology, Virology Impact factor: 3.993, year: 2006

  7. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Jungwirth, Britta; Sala, Claudia; Kohl, Thomas A

    2013-01-01

    of the 6C non-coding RNA gene and to non-canonical DNA binding sites within protein-coding regions. The present study underlines the dynamics within the GlxR regulon by identifying in vivo targets during growth on glucose and contributes to the expansion of knowledge of this important transcriptional......The transcriptional regulator GlxR has been characterized as a global hub within the gene-regulatory network of Corynebacterium glutamicum. Chromatin immunoprecipitation with a specific anti-GlxR antibody and subsequent high-throughput sequencing (ChIP-seq) was applied to C. glutamicum to get new...... mapping of these data on the genome sequence of C. glutamicum, 107 enriched DNA fragments were detected from cells grown with glucose as carbon source. GlxR binding sites were identified in the sequence of 79 enriched DNA fragments, of which 21 sites were not previously reported. Electrophoretic mobility...

  8. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    Science.gov (United States)

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  9. Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.

    Science.gov (United States)

    Holátko, Jiří; Silar, Radoslav; Rabatinová, Alžbeta; Sanderová, Hana; Halada, Petr; Nešvera, Jan; Krásný, Libor; Pátek, Miroslav

    2012-10-01

    To facilitate transcription studies in Corynebacterium glutamicum, we have developed an in vitro transcription system for this bacterium used as an industrial producer of amino acids and a model organism for actinobacteria. This system consists of C. glutamicum RNA polymerase (RNAP) core (α2, β, β'), a sigma factor and a promoter-carrying DNA template, that is specifically recognized by the RNAP holoenzyme formed. The RNAP core was purified from the C. glutamicum strain with the modified rpoC gene, which produced His-tagged β' subunit. The C. glutamicum sigA and sigH genes were cloned and overexpressed using the Escherichia coli plasmid vector, and the sigma subunits σ(A) and σ(H) were purified by affinity chromatography. Using the reconstituted C. glutamicum holo-RNAPs, recognition of the σ(A)- and σ(H)-dependent promoters and synthesis of the specific transcripts was demonstrated. The developed in vitro transcription system is a novel tool that can be used to directly prove the specific recognition of a promoter by the particular σ factor(s) and to analyze transcriptional control by various regulatory proteins in C. glutamicum.

  10. BIOCHEMICAL AND PHYLOGENETIC STUDIES OF CreD OF Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Muhammad Tausif Chaudhry

    2015-06-01

    Full Text Available CreD characterized as Mg2+-dependent phosphohydrolase with conserved HD domain was involved in 4-cresol metabolism in Corynebacterium glutamicum. Native molecular mass of 54 kDa suggested that the biological unit is a dimer. No deoxynucleotide triphosphate triphosphohydrolase (dNTPase activity was detected for CreD. The apparent Km and Vmax values for 4-nitrophenyl phosphate were 0.35 mM and 16.23 M min-1 mg-1, respectively, while calculated values for kcat and kcat/Km were 0.4 s-1 and 1.14103 M-1 s-1, respectively. Among thiol group inhibitors, iodoacetic acid significantly inhibited phosphohydrolase activity. Sequence identity and phylogenetic analysis suggested universal existence of CreD homologues. Involvement of HD-domain hydrolase in aromatic degradation has not been reported before.

  11. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.

    Science.gov (United States)

    Tsuge, Yota; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce L- and D-lactate, and succinate from renewable resources.

  12. Transcriptome and Multivariable Data Analysis of Corynebacterium glutamicum under Different Dissolved Oxygen Conditions in Bioreactors

    Science.gov (United States)

    Sun, Yang; Guo, Wenwen; Wang, Fen; Peng, Feng; Yang, Yankun; Dai, Xiaofeng; Liu, Xiuxia; Bai, Zhonghu

    2016-01-01

    Dissolved oxygen (DO) is an important factor in the fermentation process of Corynebacterium glutamicum, which is a widely used aerobic microbe in bio-industry. Herein, we described RNA-seq for C. glutamicum under different DO levels (50%, 30% and 0%) in 5 L bioreactors. Multivariate data analysis (MVDA) models were used to analyze the RNA-seq and metabolism data to investigate the global effect of DO on the transcriptional distinction of the substance and energy metabolism of C. glutamicum. The results showed that there were 39 and 236 differentially expressed genes (DEGs) under the 50% and 0% DO conditions, respectively, compared to the 30% DO condition. Key genes and pathways affected by DO were analyzed, and the result of the MVDA and RNA-seq revealed that different DO levels in the fermenter had large effects on the substance and energy metabolism and cellular redox balance of C. glutamicum. At low DO, the glycolysis pathway was up-regulated, and TCA was shunted by the up-regulation of the glyoxylate pathway and over-production of amino acids, including valine, cysteine and arginine. Due to the lack of electron-acceptor oxygen, 7 genes related to the electron transfer chain were changed, causing changes in the intracellular ATP content at 0% and 30% DO. The metabolic flux was changed to rebalance the cellular redox. This study applied deep sequencing to identify a wealth of genes and pathways that changed under different DO conditions and provided an overall comprehensive view of the metabolism of C. glutamicum. The results provide potential ways to improve the oxygen tolerance of C. glutamicum and to modify the metabolic flux for amino acid production and heterologous protein expression. PMID:27907077

  13. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    Science.gov (United States)

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C

  14. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.

    Science.gov (United States)

    Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel

    2014-01-01

    The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.

  15. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Ozcan, Nuran; Ejsing, Christer S.; Shevchenko, Andrej

    2007-01-01

    The gram-positive soil bacterium Corynebacterium glutamicum, a major amino acid-producing microorganism in biotechnology, is equipped with several osmoregulated uptake systems for compatible solutes, which is relevant for the physiological response to osmotic stress. The most significant carrier......P activity. We further correlated the change in BetP regulation properties in cells grown at different temperatures to changes in the lipid composition of the plasma membrane. For this purpose, the glycerophospholipidome of C. glutamicum grown at different temperatures was analyzed by mass spectrometry using...... quantitative multiple precursor ion scanning. The molecular composition of glycerophospholipids was strongly affected by the growth temperature. The modulating influence of membrane lipid composition on BetP function was further corroborated by studying the influence of artificial modulation of membrane...

  16. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum

    International Nuclear Information System (INIS)

    Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne; Peters-Wendisch, Petra; Wendisch, Volker F.

    2014-01-01

    The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.

  17. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  18. Characterization and chromosomal organization of the murD-murC-ftsQ region of Corynebacterium glutamicum ATCC 13869.

    Science.gov (United States)

    Ramos, Angelina; Honrubia, Maria P; Vega, Daniel; Ayala, Juan A; Bouhss, Ahmed; Mengin-Lecreulx, Dominique; Gil, José A

    2004-04-01

    The sequence of a 4.6-kb region of DNA from Corynebacterium glutamicum ATCC 13869 lying upstream from the ftsQ-ftsZ region has been determined. The region contains four genes with high similarity to the murD, ftsW, murG, and murC genes from different microorganisms. The products of these mur genes probably catalyse several steps in the formation of the precursors for peptidoglycan synthesis in C. glutamicum, whereas ftsW might play also a role in the stabilisation of the FtsZ ring during cell division. The murC gene product was purified to near homogeneity and its UDP-N-acetylmuramate: L-alanine adding activity was demonstrated. Northern analysis indicated that ftsW, murG and ftsQ are poorly expressed in C. glutamicum whereas murC and ftsZ are expressed at higher levels at the beginning of the exponential phase. Dicistronic (ftsQ-ftsZ) and monocistronic (murC and ftsZ) transcripts can be detected using specific probes and are in agreement with the lack of transcriptional terminators in the partially analysed dcw cluster. Disruption experiments performed in C. glutamicum using internal fragments of the ftsW, murG and murC genes allowed us to conclude that FtsW, MurG, and MurC are essential gene products in C. glutamicum.

  19. APLICACION DE TECNICAS DE INGENIERIA METABOLICA AL MEJORAMIENTO DE LA PRODUCCION DE TREHALOSA POR CORYNEBACTERIUM GLUTAMICUM.

    OpenAIRE

    PADILLA IGLESIAS, LEANDRO MAURICIO

    2004-01-01

    La Trehalosa es un disacárido con tremendas aplicaciones en la industria biotecnológica y alimenticia. Este compuesto se encuentra en muchos organismos, a causa de su capacidad de proteger las células contra el calor y la deshidratación. Un ejemplo, es la bacteria Gram-positiva Corynebacterium glutamicum, la cual sintetiza trehalosa a través de dos rutas principales, TreYZ y OtsBA, usando ADP-glucosa (especulativamente) y UDP-glucosa, respectivamente, como dadores de unidades de ...

  20. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.

    Science.gov (United States)

    Becker, Judith; Schäfer, Rudolf; Kohlstedt, Michael; Harder, Björn J; Borchert, Nicole S; Stöveken, Nadine; Bremer, Erhard; Wittmann, Christoph

    2013-11-15

    The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L(-1) day(-1) under growth conditions that did not rely on the use of high-salinity media. The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the industrial workhorse C

  1. Transcriptional Analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: Characterization of Heat Shock-Induced Promoters

    Czech Academy of Sciences Publication Activity Database

    Barreiro, C.; González-Lavado, E.; Pátek, Miroslav; Martin, J. F.

    2004-01-01

    Roč. 186, č. 14 (2004), s. 4813-4817 ISSN 0021-9193 R&D Projects: GA AV ČR KSK5052113 Keywords : corynebacterium glutamicum * mrna Subject RIV: EE - Microbiology, Virology Impact factor: 4.146, year: 2004

  2. Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum.

    Science.gov (United States)

    Baumgart, Meike; Huber, Isabel; Abdollahzadeh, Iman; Gensch, Thomas; Frunzke, Julia

    2017-09-20

    Compartmentalization represents a ubiquitous principle used by living organisms to optimize metabolic flux and to avoid detrimental interactions within the cytoplasm. Proteinaceous bacterial microcompartments (BMCs) have therefore created strong interest for the encapsulation of heterologous pathways in microbial model organisms. However, attempts were so far mostly restricted to Escherichia coli. Here, we introduced the carboxysomal gene cluster of Halothiobacillus neapolitanus into the biotechnological platform species Corynebacterium gluta-micum. Transmission electron microscopy, fluorescence microscopy and single molecule localization microscopy suggested the formation of BMC-like structures in cells expressing the complete carboxysome operon or only the shell proteins. Purified carboxysomes consisted of the expected protein components as verified by mass spectrometry. Enzymatic assays revealed the functional production of RuBisCO in C. glutamicum both in the presence and absence of carboxysomal shell proteins. Furthermore, we could show that eYFP is targeted to the carboxysomes by fusion to the large RuBisCO subunit. Overall, this study represents the first transfer of an α-carboxysomal gene cluster into a Gram-positive model species supporting the modularity and orthogonality of these microcompartments, but also identified important challenges which need to be addressed on the way towards biotechnological application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.

    Science.gov (United States)

    Radek, Andreas; Müller, Moritz-Fabian; Gätgens, Jochem; Eggeling, Lothar; Krumbach, Karin; Marienhagen, Jan; Noack, Stephan

    2016-08-10

    Wild-type Corynebacterium glutamicum has no endogenous metabolic activity for utilizing the lignocellulosic pentose d-xylose for cell growth. Therefore, two different engineering approaches have been pursued resulting in platform strains harbouring a functional version of either the Isomerase (ISO) or the Weimberg (WMB) pathway for d-xylose assimilation. In a previous study we found for C. glutamicum WMB by-product formation of xylitol during growth on d-xylose and speculated that the observed lower growth rates are due to the growth inhibiting effect of this compound. Based on a detailed phenotyping of the ISO, WMB and the wild-type strain of C. glutamicum, we here show that this organism has a natural capability to synthesize xylitol from d-xylose under aerobic cultivation conditions. We furthermore observed the intracellular accumulation of xylitol-5-phosphate as a result of the intracellular phosphorylation of xylitol, which was particularly pronounced in the C. glutamicum ISO strain. Interestingly, low amounts of supplemented xylitol strongly inhibit growth of this strain on d-xylose, d-glucose and d-arabitol. These findings demonstrate that xylitol is a suitable substrate of the endogenous xylulokinase (XK, encoded by xylB) and its overexpression in the ISO strain leads to a significant phosphorylation of xylitol in C. glutamicum. Therefore, in order to circumvent cytotoxicity by xylitol-5-phosphate, the WMB pathway represents an interesting alternative route for engineering C. glutamicum towards efficient d-xylose utilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bioconversion of sugar cane molasses into glutamic acid by gamma irradiated corynebacterium glutamicum

    International Nuclear Information System (INIS)

    El-Batal, A.I.

    1996-01-01

    Corynebacterium glutamicum (ATCC 13058) was used for glutamic acid production from sugar cane molasses which contain sufficient. The addition of 5 units ml 4 of penicillin G was superior in glutamic acid production (11.5 g L 4 ). Tweens and their saturated fatty acids were effective on the accumulation of glutamic acid in the culture medium and the maximum yield (16.6 g L 4 ) was the addition of 5 mg ml 4 Tween 40. Gamma irradiation prior to Tween-40 treatment of bacterial cells resulted in an obvious increase in glutamic acid production and it was maximum (23.72 g L 4 ) at 0.1 k Gy exposure dose of inocula. 5 tabs

  5. Flux through the tetrahydrodipicolinate succinylase pathway is dispensable for L-lysine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Shaw-Reid, C A; McCormick, M M; Sinskey, A J; Stephanopoulos, G

    1999-03-01

    The N-succinyl-LL-diaminopimelate desuccinylase gene (dapE) in the four-step succinylase branch of the L-lysine biosynthetic pathway of Corynebacterium glutamicum was disrupted via marker-exchange mutagenesis to create a mutant strain that uses only the one-step meso-diaminopimelate dehydrogenase branch to overproduce lysine. This mutant strain grew and utilized glucose from minimal medium at the same rate as the parental strain. In addition, the dapE- strain produced lysine at the same rate as its parent strain. Transformation of the parental and dapE- strains with the amplified meso-diaminopimelate dehydrogenase gene (ddh) on a plasmid did not affect lysine production in either strain, despite an eightfold amplification of the activity of the enzyme. These results indicate that the four-step succinylase pathway is dispensable for lysine overproduction in shake-flask culture. In addition, the one-step meso-diaminopimelate dehydrogenase pathway does not limit lysine flux in Corynebacterium under these conditions.

  6. A thioredoxin-dependent peroxiredoxin Q from Corynebacterium glutamicum plays an important role in defense against oxidative stress.

    Directory of Open Access Journals (Sweden)

    Tao Su

    Full Text Available Peroxiredoxin Q (PrxQ that belonged to the cysteine-based peroxidases has long been identified in numerous bacteria, but the information on the physiological and biochemical functions of PrxQ remain largely lacking in Corynebacterium glutamicum. To better systematically understand PrxQ, we reported that PrxQ from model and important industrial organism C. glutamicum, encoded by the gene ncgl2403 annotated as a putative PrxQ, played important roles in adverse stress resistance. The lack of C. glutamicum prxQ gene resulted in enhanced cell sensitivity, increased ROS accumulation, and elevated protein carbonylation levels under adverse stress conditions. Accordingly, PrxQ-mediated resistance to adverse stresses mainly relied on the degradation of ROS. The physiological roles of PrxQ in resistance to adverse stresses were corroborated by its induced expression under adverse stresses, regulated directly by the stress-responsive ECF-sigma factor SigH. Through catalytical kinetic activity, heterodimer formation, and bacterial two-hybrid analysis, we proved that C. glutamicum PrxQ catalytically eliminated peroxides by exclusively receiving electrons from thioredoxin (Trx/thioredoxin reductase (TrxR system and had a broad range of oxidizing substrates, but a better efficiency for peroxynitrite and cumene hydroperoxide (CHP. Site-directed mutagenesis confirmed that the conserved Cys49 and Cys54 are the peroxide oxidation site and the resolving Cys residue, respectively. It was also discovered that C. glutamicum PrxQ mainly existed in monomer whether under its native state or functional state. Based on these results, a catalytic model of PrxQ is being proposed. Moreover, our result that C. glutamicum PrxQ can prevent the damaging effects of adverse stresses by acting as thioredoxin-dependent monomeric peroxidase could be further applied to improve the survival ability and robustness of the important bacterium during fermentation process.

  7. Dual production of poly(3-hydroxybutyrate) and glutamate using variable biotin concentrations in Corynebacterium glutamicum.

    Science.gov (United States)

    Jo, Sung-Jin; Leong, Chean Ring; Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2009-04-01

    We previously synthesized poly(3-hydroxybutyrate) [P(3HB)] in recombinant Corynebacterium glutamicum, a prominent producer of amino acids. In this study, a two-step cultivation was established for the dual production of glutamate and P(3HB) due to the differences in the optimal concentration of biotin. Glutamate was extracellularly produced first under the biotin-limited condition of 0.3 microg/L. Production was then shifted to P(3HB) by addition of biotin to a total concentration of 9 microg/L. The final products obtained were 18 g/L glutamate and 36 wt% of P(3HB).

  8. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    Science.gov (United States)

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  9. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.

    Science.gov (United States)

    Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho

    2013-06-01

    Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.

  10. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum.

    Science.gov (United States)

    Wei, Liang; Xu, Ning; Wang, Yiran; Zhou, Wei; Han, Guoqiang; Ma, Yanhe; Liu, Jun

    2018-05-01

    Due to the lack of efficient control elements and tools, the fine-tuning of gene expression in the multi-gene metabolic pathways is still a great challenge for engineering microbial cell factories, especially for the important industrial microorganism Corynebacterium glutamicum. In this study, the promoter library-based module combination (PLMC) technology was developed to efficiently optimize the expression of genes in C. glutamicum. A random promoter library was designed to contain the putative - 10 (NNTANANT) and - 35 (NNGNCN) consensus motifs, and refined through a three-step screening procedure to achieve numerous genetic control elements with different strength levels, including fluorescence-activated cell sorting (FACS) screening, agar plate screening, and 96-well plate screening. Multiple conventional strategies were employed for further precise characterizations of the promoter library, such as real-time quantitative PCR, sodium dodecyl sulfate polyacrylamide gel electrophoresis, FACS analysis, and the lacZ reporter system. These results suggested that the established promoter elements effectively regulated gene expression and showed varying strengths over a wide range. Subsequently, a multi-module combination technology was created based on the efficient promoter elements for combination and optimization of modules in the multi-gene pathways. Using this technology, the threonine biosynthesis pathway was reconstructed and optimized by predictable tuning expression of five modules in C. glutamicum. The threonine titer of the optimized strain was significantly improved to 12.8 g/L, an approximate 6.1-fold higher than that of the control strain. Overall, the PLMC technology presented in this study provides a rapid and effective method for combination and optimization of multi-gene pathways in C. glutamicum.

  11. Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability.

    Science.gov (United States)

    Shyamkumar, Rajaram; Moorthy, Innasi Muthu Ganesh; Ponmurugan, Karuppiah; Baskar, Rajoo

    2014-07-01

    L-glutamic acid is one of the major amino acids that is present in a wide variety of foods. It is mainly used as a food additive and flavor enhancer in the form of sodium salt. Corynebacterium glutamicum (C. glutamicum) is one of the major organisms widely used for glutamic acid production. The study was dealing with immobilization of C. glutamicum and mixed culture of C. glutamicum and Pseudomonas reptilivora (P. reptilivora) for L-glutamic acid production using submerged fermentation. 2, 3 and 5% sodium alginate concentrations were used for production and reusability of immobilized cells for 5 more trials. The results revealed that 2% sodium alginate concentration produced the highest yield (13.026±0.247 g/l by C. glutamicum and 16.026±0.475 g/l by mixed immobilized culture). Moreover, reusability of immobilized cells was evaluated in 2% concentration with 5 more trials. However, when the number of cycles increased, the production of L-glutamic acid decreased. Production of glutamic acid using optimized medium minimizes the time needed for designing the medium composition. It also minimizes external contamination. Glutamic acid production gradually decreased due to multiple uses of beads and consequently it reduces the shelf life.

  12. Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production.

    Science.gov (United States)

    Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi

    2018-05-01

    Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The role of lipids and salts in two-dimensional crystallization of the glycine-betaine transporter BetP from Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Tsai, Ching-Ju; Ejsing, Christer S.; Shevchenko, Andrej

    2007-01-01

    The osmoregulated and chill-sensitive glycine-betaine transporter (BetP) from Corynebacterium glutamicum was reconstituted into lipids to form two-dimensional (2D) crystals. The sensitivity of BetP partly bases on its interaction with lipids. Here we demonstrate that lipids and salts influence...... crystal morphology and crystallinity of a C-terminally truncated BetP. The salt type and concentration during crystallization determined whether crystals grew in the form of planar-tubes, sheets or vesicles, while the lipid type influenced crystal packing and order. Three different lipid preparations...... for 2D crystallization were compared. Only the use of lipids extracted from C. glutamicum cells led to the formation of large, well-ordered crystalline areas. To understand the lipid-derived influence on crystallinity, lipid extracts from different stages of the crystallization process were analyzed...

  14. Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter.

    Science.gov (United States)

    Wehrmann, A; Morakkabati, S; Krämer, R; Sahm, H; Eggeling, L

    1995-10-01

    An initially nonclonable DNA locus close to a gene of L-lysine biosynthesis in Corynebacterium glutamicum was analyzed in detail. Its stepwise cloning and its functional identification by monitoring the amino acid uptakes of defined mutants, together with mechanistic studies, identified the corresponding structure as aroP, the general aromatic amino acid uptake system.

  15. Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli.

    Science.gov (United States)

    Wehrmann, A; Eggeling, L; Sahm, H

    1994-12-01

    In Corynebacterium glutamicum L-lysine is synthesized simultaneously via the succinylase and dehydrogenase variant of the diaminopimelate pathway. Starting from a strain with a disrupted dehydrogenase gene, three different-sized DNA fragments were isolated which complemented defective Escherichia coli mutants in the succinylase pathway. Enzyme studies revealed that in one case the dehydrogenase gene had apparently been reconstituted in the heterologous host. The two other fragments resulted in desuccinylase activity; one of them additionally in succinylase activity. However, the physical analysis showed that structural changes had taken place in all fragments. Using a probe derived from one of the fragments we isolated a 3.4 kb BamHI DNA fragment without selective pressure (by colony hybridization). This was structurally intact and proved functionally to result in tenfold desuccinylase overexpression. The nucleotide sequence of a 1966 bp fragment revealed the presence of one truncated open reading frame of unknown function and that of dapE encoding N-succinyl diaminopimelate desuccinylase (EC 3.5.1.18). The deduced amino acid sequence of the dapE gene product shares 23% identical residues with that from E. coli. The C. glutamicum gene now available is the first gene from the succinylase branch of lysine synthesis of this biotechnologically important organism.

  16. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress

    OpenAIRE

    Schelder, S.; Zaade, D.; Litsanov, B.; Bott, M.; Brocker, M.

    2011-01-01

    Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu(2+) was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidas...

  17. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  18. Metabolic Design of Corynebacterium glutamicum for Production of l-Cysteine with Consideration of Sulfur-Supplemented Animal Feed.

    Science.gov (United States)

    Joo, Young-Chul; Hyeon, Jeong Eun; Han, Sung Ok

    2017-06-14

    l-Cysteine is a valuable sulfur-containing amino acid widely used as a nutrition supplement in industrial food production, agriculture, and animal feed. However, this amino acid is mostly produced by acid hydrolysis and extraction from human or animal hairs. In this study, we constructed recombinant Corynebacterium glutamicum strains that overexpress combinatorial genes for l-cysteine production. The aims of this work were to investigate the effect of the combined overexpression of serine acetyltransferase (CysE), O-acetylserine sulfhydrylase (CysK), and the transcriptional regulator CysR on l-cysteine production. The CysR-overexpressing strain accumulated approximately 2.7-fold more intracellular sulfide than the control strain (empty pMT-tac vector). Moreover, in the resulting CysEKR recombinant strain, combinatorial overexpression of genes involved in l-cysteine production successfully enhanced its production by approximately 3.0-fold relative to that in the control strain. This study demonstrates a biotechnological model for the production of animal feed supplements such as l-cysteine using metabolically engineered C. glutamicum.

  19. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Reprinted from Biotechnology and Bioengineering, Vol. 41, Pp 633-646 (1993).

    Science.gov (United States)

    Vallino, J J; Stephanopoulos, G

    2000-03-20

    The two main contributions of this article are the solidification of Corynebacterium glutamicum biochemistry guided by bioreaction network analysis, and the determination of basal metabolic flux distributions during growth and lysine synthesis. Employed methodology makes use of stoichiometrically based mass balances to determine flux distributions in the C. glutamicum metabolic network. Presented are a brief description of the methodology, a thorough literature review of glutamic acid bacteria biochemistry, and specific results obtained through a combination of fermentation studies and analysis-directed intracellular assays. The latter include the findings of the lack of activity of glyoxylate shunt, and that phosphoenolpyruvate carboxylase (PPC) is the only anaplerotic reaction expressed in C. glutamicum cultivated on glucose minimal media. Network simplifications afforded by the above findings facilitated the determination of metabolic flux distributions under a variety of culture conditions and led to the following conclusions. Both the pentose phosphate pathway and PPC support significant fluxes during growth and lysine overproduction, and that flux partitioning at the glucosa-6-phosphate branch point does not appear to limit lysine synthesis. Copyright 1993 John Wiley & Sons, Inc.

  20. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond.

    Science.gov (United States)

    Kulis-Horn, Robert Kasimir; Rückert, Christian; Kalinowski, Jörn; Persicke, Marcus

    2017-07-18

    The eighth step of L-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in L-histidine biosynthesis. Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete L-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two

  1. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  2. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.; Yun, Yeoung-Sang

    2007-01-01

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H 2 SO 4 , HNO 3 , NaOH, Na 2 CO 3 , CaCl 2 and NaCl. Among these reagents, 0.1 M HNO 3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o , were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined

  3. C1 Metabolism in Corynebacterium glutamicum: an Endogenous Pathway for Oxidation of Methanol to Carbon Dioxide

    Science.gov (United States)

    Witthoff, Sabrina; Mühlroth, Alice

    2013-01-01

    Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532

  4. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Busche, T.; Šilar, Radoslav; Pičmanová, Martina; Pátek, Miroslav; Kalinowski, J.

    2012-01-01

    Roč. 13, č. 445 (2012), s. 445-464 ISSN 1471-2164 R&D Projects: GA ČR GC204/09/J015 Institutional research plan: CEZ:AV0Z50200510 Keywords : Corynebacterium glutamicum * ECF sigma factor * Anti-sigma factor Subject RIV: EE - Microbiology, Virology Impact factor: 4.397, year: 2012

  5. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.

    Science.gov (United States)

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki

    2017-03-01

    Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in Δ rneG Δ pnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ pnp , Δ rneG , and Δ ybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in

  6. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  7. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway

    Directory of Open Access Journals (Sweden)

    Gaigalat Lars

    2006-08-01

    Full Text Available Abstract Background Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. Results A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4-monophosphatases (EC 3.1.3.25. Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown

  8. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum.

    Science.gov (United States)

    Wen, Jingbai; Xiao, Yanqiu; Liu, Ting; Gao, Qiuqiang; Bao, Jie

    2018-01-01

    Lignocellulose is one of the most promising alternative feedstocks for glutamic acid production as commodity building block chemical, but the efforts by the dominant industrial fermentation strain Corynebacterium glutamicum failed for accumulating glutamic acid using lignocellulose feedstock. We identified the existence of surprisingly high biotin concentration in corn stover hydrolysate as the determining factor for the failure of glutamic acid accumulation by Corynebacterium glutamicum . Under excessive biotin content, induction by penicillin resulted in 41.7 ± 0.1 g/L of glutamic acid with the yield of 0.50 g glutamic acid/g glucose. Our further investigation revealed that corn stover contained 353 ± 16 μg of biotin per kg dry solids, approximately one order of magnitude greater than the biotin in corn grain. Most of the biotin remained stable during the biorefining chain and the rich biotin content in corn stover hydrolysate almost completely blocked the glutamic acid accumulation. This rich biotin existence was found to be a common phenomenon in the wide range of lignocellulose biomass and this may be the key reason why the previous studies failed in cellulosic glutamic acid fermentation from lignocellulose biomass. The extended recording of the complete members of all eight vitamin B compounds in lignocellulose biomass further reveals that the major vitamin B members were also under the high concentration levels even after harsh pretreatment. The high content of biotin in wide range of lignocellulose biomass feedstocks and the corresponding hydrolysates was discovered and it was found to be the key factor in determining the cellulosic glutamic acid accumulation. The highly reserved biotin and the high content of their other vitamin B compounds in biorefining process might act as the potential nutrients to biorefining fermentations. This study creates a new insight that lignocellulose biorefining not only generates inhibitors, but also keeps nutrients

  9. Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production.

    Science.gov (United States)

    Xu, Jian-Zhong; Yang, Han-Kun; Liu, Li-Ming; Wang, Ying-Yu; Zhang, Wei-Guo

    2018-03-25

    l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L -1 ), carbon yield (from 0.35 to 0.44 g [g glucose] -1 ) and productivity (from 2.07 to 2.93 g L -1  hr -1 ) of l-lysine in JL-6 ΔdapB::Ec-dapB C115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapB C115G,G116C , followed by JL-6 Cg-dapB C37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapB C46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity. © 2018 Wiley Periodicals, Inc.

  10. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum

    Science.gov (United States)

    2012-01-01

    Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation. PMID:22243621

  11. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.

    Science.gov (United States)

    Schneider, Jens; Peters-Wendisch, Petra; Stansen, K Corinna; Götker, Susanne; Maximow, Stanislav; Krämer, Reinhard; Wendisch, Volker F

    2012-01-13

    The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.

  12. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Wang, Zhihao; Liu, Jianming; Chen, Lin

    2018-01-01

    confirmed that the two mutations lead to alteration rather than elimination of function, and their introduction in the wild-type background resulted in a specific growth rate of 0.62h-1. The glycolytic and pentose phosphate pathway fluxes had both increased significantly, and a transcriptomic analyses......% improvement is the highest reported for C. glutamicum to date. By genome resequencing and inverse metabolic engineering, we were able to pinpoint two mutations contributing to most of the growth improvement, and these resided in the transcriptional regulators GntR1 (gntR1-E70K) and RamA (ramA-A52V). We...... was already fast. We also found that the mutations could improve the performance of resting cells, under oxygen-deprived conditions, where an increase in sugar consumption rate of around 30% could be achieved. In conclusion, we have demonstrated that it is feasible to reprogram C. glutamicum into growing...

  13. Increased Production of Food-Grade d-Tagatose from d-Galactose by Permeabilized and Immobilized Cells of Corynebacterium glutamicum, a GRAS Host, Expressing d-Galactose Isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun

    2016-11-02

    The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.

  14. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.

    Science.gov (United States)

    Sato, Hiroki; Orishimo, Keita; Shirai, Tomokazu; Hirasawa, Takashi; Nagahisa, Keisuke; Shimizu, Hiroshi; Wachi, Masaaki

    2008-07-01

    Corynebacterium glutamicum is a biotin auxotrophic bacterium in which glutamate production is induced under biotin-limited conditions. During glutamate production, anaplerotic reactions catalyzed by phosphoenolpyruvate carboxylase (PEPC) and a biotin-containing enzyme pyruvate carboxylase (PC) are believed to play an important role in supplying oxaloacetate in the tricarboxylic acid cycle. To understand the distinct roles of PEPC and PC on glutamate production by C. glutamicum, we observed glutamate production induced under biotin-limited conditions in the disruptants of the genes encoding PEPC (ppc) and PC (pyc), respectively. The pyc disruptant retained the ability to produce high amounts of glutamate, and lactate was simultaneously produced probably due to the increased intracellular pyruvate levels. On the other hand, the ppc knockout mutant could not produce glutamate. Additionally, glutamate production in the pyc disruptant was enhanced by overexpression of ppc rather than disruption of the lactate dehydrogenase gene (ldh), which is involved in lactate production. Metabolic flux analysis based on the 13C-labeling experiment and measurement of 13C-enrichment in glutamate using nuclear magnetic resonance spectroscopy revealed that the flux for anaplerotic reactions in the pyc disruptant was lower than that in the wild type, concomitantly increasing the flux for lactate formation. Moreover, overexpression of ppc increased this flux in both the pyc disruptant and the wild type. Our results suggest that the PEPC-catalyzed anaplerotic reaction is necessary for glutamate production induced under biotin-limited conditions, because PC is not active during glutamate production, and overexpression of ppc effectively enhances glutamate production under biotin-limited conditions.

  15. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Science.gov (United States)

    Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich

    2014-01-01

    The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339

  16. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    Science.gov (United States)

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.

  17. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  19. Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage.

    Science.gov (United States)

    Freyre-González, Julio A; Tauch, Andreas

    2017-09-10

    Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.

    Science.gov (United States)

    Feng, Jun; Quan, Yufen; Gu, Yanyan; Liu, Fenghong; Huang, Xiaozhong; Shen, Haosheng; Dang, Yulei; Cao, Mingfeng; Gao, Weixia; Lu, Xiaoyun; Wang, Yi; Song, Cunjiang; Wang, Shufang

    2017-05-22

    Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher

  1. Efficient production of α-ketoglutarate in the gdh deleted Corynebacterium glutamicum by novel double-phase pH and biotin control strategy.

    Science.gov (United States)

    Li, Yanjun; Sun, Lanchao; Feng, Jia; Wu, Ruifang; Xu, Qingyang; Zhang, Chenglin; Chen, Ning; Xie, Xixian

    2016-06-01

    Production of L-glutamate using a biotin-deficient strain of Corynebacterium glutamicum has a long history. The process is achieved by controlling biotin at suboptimal dose in the initial fermentation medium, meanwhile feeding NH4OH to adjust pH so that α-ketoglutarate (α-KG) can be converted to L-glutamate. In this study, we deleted glutamate dehydrogenase (gdh1 and gdh2) of C. glutamicum GKG-047, an L-glutamate overproducing strain, to produce α-KG that is the direct precursor of L-glutamate. Based on the method of L-glutamate fermentation, we developed a novel double-phase pH and biotin control strategy for α-KG production. Specifically, NH4OH was added to adjust the pH at the bacterial growth stage and NaOH was used when the cells began to produce acid; besides adding an appropriate amount of biotin in the initial medium, certain amount of additional biotin was supplemented at the middle stage of fermentation to maintain a high cell viability and promote the carbon fixation to the flux of α-KG production. Under this control strategy, 45.6 g/L α-KG accumulated after 30-h fermentation in a 7.5-L fermentor and the productivity and yield achieved were 1.52 g/L/h and 0.42 g/g, respectively.

  2. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    Science.gov (United States)

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase

  3. The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum.

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A

    2008-12-26

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (L-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis.

  4. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum.

    Science.gov (United States)

    Chung, Soon-Chun; Park, Joon-Song; Yun, Jiae; Park, Jin Hwan

    2017-03-01

    Succinate is a renewable-based platform chemical that may be used to produce a wide range of chemicals including 1,4-butanediol, tetrahydrofurane, and γ-butyrolactone. However, industrial fermentation of organic acids is often subject to end-product inhibition, which significantly retards cell growth and limits metabolic activities and final productivity. In this study, we report the development of metabolically engineered Corynebacterium glutamicum for high production of succinate by release of end-product inhibition coupled with an increase of key metabolic flux. It was found that the rates of glucose consumption and succinate production were significantly reduced by extracellular succinate in an engineered strain, S003. To understand the mechanism underlying the inhibition by succinate, comparative transcriptome analysis was performed. Among the downregulated genes, overexpression of the NCgl0275 gene was found to suppress the inhibition of glucose consumption and succinate production, resulting in a 37.7% increase in succinate production up to 55.4g/L in fed-batch fermentation. Further improvement was achieved by increasing the metabolic flux from PEP to OAA. The final engineered strain was able to produce 152.2g/L succinate, the highest production reported to date, with a yield of 1.1g/g glucose under anaerobic condition. These results suggest that the release of end-product inhibition coupled with an increase in key metabolic flux is a promising strategy for enhancing production of succinate. Copyright © 2017. Published by Elsevier Inc.

  5. Physico-chemical parameter for production of lactic acid or ethanol of (corynebacterium glutamicum) bacteria

    International Nuclear Information System (INIS)

    Castellanos, Angelica; Garcia, Lina Marcela; Astudillo, Myriam; Lopez Galan, Jorge Enrique; Florez Pardo, Luz Marina.

    2011-01-01

    The interest to obtain products for the bio-fuel industry from renewable resources has directed research to find resistant and costs-effective biotechnological systems. Corynebacterium glutamicum, is a microorganism used to produce amino acids, that grows in wide variety of substrates and its resistance during fermentation to pH, temperature, osmotic pressure variations and alcohol aggregate, renders this organism a suitable candidate to improve by genetic modifications lactic acid and ethanol synthesis. However, some aspects of its physiology remain unknown, such us increase lactic acid and ethanol production from C5 and C6 sugars. For this reason, the main aim in our work was to identify the most important variables with impact on culture and the best culture conditions to produce lactic acid or ethanol in batch culture. To achieve this objective, eight variables were tested in culture using a statistical model. The best culture conditions were obtained and tested in a bacth bioreactor system. Temperature, biotin and glucose concentration were the variables with most impact (p - 1 , 16 g/l of lactic acid was obtained after 15 h of culture with an efficiency of 32%. High glucose consumption was observed during bacterial growth, which leads to low concentration of substrate for the production process; this suggests a culture feeding at the end of exponential growth phase, which can increase the production yield.

  6. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Philip D Townsend

    Full Text Available The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.

  7. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    Science.gov (United States)

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  8. A role of the transcriptional regulator LldR (NCgl2814) in glutamate metabolism under biotin-limited conditions in Corynebacterium glutamicum.

    Science.gov (United States)

    Supkulsutra, Tanyanut; Maeda, Tomoya; Kumagai, Kosuke; Wachi, Masaaki

    2013-01-01

    Corynebacterium glutamicum is a Gram-positive, rod-shaped, aerobic bacterium used for the fermentative production of L-glutamate. LldR (NCgl2814) is known as a repressor for ldhA and lldD encoding lactate dehydrogenases. LdhA is responsible for production of L-lactate, while LldD is for its assimilation. Since L-lactate production was observed as a by-product of glutamate production under biotin-limited conditions, LldR might play a regulatory role in the glutamate metabolism. Here for the first time, we investigated effects of overproduction or deletion of LldR on the glutamate metabolism under biotin-limited conditions in C. glutamicum. It was found that glutamate production under biotin-limited conditions was decreased by overproduction of LldR. In the wild-type cells, L-lactate was produced in the first 24 h and it was re-consumed thereafter. On the other hand, in the overproduced cells, L-lactate was produced like the wild type, but it was not re-consumed. This means that L-lactate assimilation, which is catalyzed by LldD, was suppressed by the overproduction of LldR, but L-lactate production, which is catalyzed by LdhA, was not affected, indicating that LldR mainly controls the expression of lldD but not of ldhA under biotin-limited conditions. This was confirmed by quantitative real-time RT-PCR. From these results, it is suggested that L-lactate metabolism, which is controlled by LldR, has a buffering function of the pyruvate pool for glutamate production.

  9. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    Science.gov (United States)

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recently emerged as a major physiological mechanism of regulation in prokaryotes. Herein, the hypothesis of a phosphorylation-dependent mechanism of regulation of the MurC activity was investigated in Corynebacterium glutamicum. We showed that MurC was phosphorylated in vitro by the PknA protein kinase. An analysis of the phosphoamino acid content indicated that phosphorylation exclusively occurred on threonine residues. Six phosphoacceptor residues were identified by mass spectrometry analysis, and we confirmed that mutagenesis to alanine residues totally abolished PknA-dependent phosphorylation of MurC. In vitro and in vivo ligase activity assays showed that the catalytic activity of MurC was impaired following mutation of these threonine residues. Further in vitro assays revealed that the activity of the MurC-phosphorylated isoform was severely decreased compared with the non-phosphorylated protein. To our knowledge, this is the first demonstration of a MurC ligase phosphorylation in vitro. The finding that phosphorylation is correlated with a decrease in MurC enzymatic activity could have significant consequences in the regulation of peptidoglycan biosynthesis. PMID:18974047

  10. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. PcaO Positively Regulates pcaHG of the β-Ketoadipate Pathway in Corynebacterium glutamicum▿

    OpenAIRE

    Zhao, Ke-Xin; Huang, Yan; Chen, Xi; Wang, Nan-Xi; Liu, Shuang-Jiang

    2010-01-01

    We identified a new regulator, PcaO, which is involved in regulation of the protocatechuate (PCA) branch of the β-ketoadipate pathway in Corynebacterium glutamicum. PcaO is an atypical large ATP-binding LuxR family (LAL)-type regulator and does not have a Walker A motif. A mutant of C. glutamicum in which pcaO was disrupted (RES167ΔpcaO) was unable to grow on PCA, and growth on PCA was restored by complementation with pcaO. Both an enzymatic assay of PCA 3,4-dioxygenase activity (encoded by p...

  12. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  13. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong

    2015-02-01

    The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.

  14. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Sabine A.E. Heider

    2014-08-01

    Full Text Available The biotechnologically relevant bacterium C. glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP and its isomer dimethylallyl pyrophosphate (DMAPP, are synthesized in this organism via the methylerythritol phosphate (MEP or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various nonnative C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encoding the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP astaxanthin could be produced in the mg per g cell dry weight range when the endogenous genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4 oxygenase from Brevundimonas aurantiaca.

  15. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Yang, Jiangang; Zhu, Yueming; Li, Jitao; Men, Yan; Sun, Yuanxia; Ma, Yanhe

    2015-01-01

    Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars. © 2014 Wiley Periodicals, Inc.

  16. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Busche Tobias

    2012-09-01

    Full Text Available Abstract Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly

  17. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum.

    Science.gov (United States)

    Busche, Tobias; Silar, Radoslav; Pičmanová, Martina; Pátek, Miroslav; Kalinowski, Jörn

    2012-09-03

    The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have

  18. Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.

    Science.gov (United States)

    Unthan, Simon; Baumgart, Meike; Radek, Andreas; Herbst, Marius; Siebert, Daniel; Brühl, Natalie; Bartsch, Anna; Bott, Michael; Wiechert, Wolfgang; Marin, Kay; Hans, Stephan; Krämer, Reinhard; Seibold, Gerd; Frunzke, Julia; Kalinowski, Jörn; Rückert, Christian; Wendisch, Volker F; Noack, Stephan

    2015-02-01

    For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.

  19. Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum.

    Science.gov (United States)

    Brunger, Axel T; Das, Debanu; Deacon, Ashley M; Grant, Joanna; Terwilliger, Thomas C; Read, Randy J; Adams, Paul D; Levitt, Michael; Schröder, Gunnar F

    2012-04-01

    Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence.

  20. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  1. Plasmid Vectors for Testing In Vivo Promoter Activities in Corynebacterium glutamicum and Rhodococcus erythropolis

    Czech Academy of Sciences Publication Activity Database

    Knoppová, Monika; Phensaijai, M.; Veselý, Martin; Zemanová, Martina; Nešvera, Jan; Pátek, Miroslav

    2007-01-01

    Roč. 55, - (2007), s. 234-239 ISSN 0343-8651 R&D Projects: GA ČR GA526/04/0542; GA ČR GA204/06/0330 Institutional research plan: CEZ:AV0Z50200510 Keywords : corynebacterium * rhodoccoccus * promoter-probe vectors Subject RIV: EE - Microbiology , Virology Impact factor: 1.167, year: 2007

  2. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.

    Science.gov (United States)

    Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2018-05-17

    L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis

  3. Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 composite: A novel biosorbent for removal of As(III) and As(V) ions.

    Science.gov (United States)

    Podder, M S; Majumder, C B

    2016-11-05

    The optimization of biosorption/bioaccumulation process of both As(III) and As(V) has been investigated by using the biosorbent; biofilm of Corynebacterium glutamicum MTCC 2745 supported on granular activated carbon/MnFe2O4 composite (MGAC). The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ions was proved by FT-IR. To determine the most appropriate correlation for the equilibrium curves employing the procedure of the non-linear regression for curve fitting analysis, isotherm studies were performed for As(III) and As(V) using 30 isotherm models. The pattern of biosorption/bioaccumulation fitted well with Vieth-Sladek isotherm model for As(III) and Brouers-Sotolongo and Fritz-Schlunder-V isotherm models for As(V). The maximum biosorption/bioaccumulation capacity estimated using Langmuir model were 2584.668mg/g for As(III) and 2651.675mg/g for As(V) at 30°C temperature and 220min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0. D-R isotherm studies specified that ion exchange might play a prominent role. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Zhihao; Chan, Siu Hung Joshua; Sudarsan, Suresh; Blank, Lars M; Jensen, Peter Ruhdal; Solem, Christian

    2016-11-01

    The performance of Corynebacterium glutamicum cell factories producing compounds which rely heavily on NADPH has been reported to depend on the sugar being metabolized. While some aspects of this phenomenon have been elucidated, there are still many unresolved questions as to how sugar metabolism is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed us to propose a simple model explaining the correlation between sugar phosphate concentration, gene expression and ultimately the observed phenotype. To guide us in our analysis and help us identify bottlenecks in metabolism we debugged an existing genome-scale model onto which we overlaid the transcriptome data. Based on the results obtained we managed to enhance the NADPH supply and transform the wild-type strain into delivering the highest yield of lysine ever obtained on sucrose and fructose, thus providing a good example of how regulatory mechanisms can be harnessed for bioproduction. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  6. ORF Sequence: NC_003450 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available lase [Corynebacterium glutamicum ATCC 13032] MTVRPIVIHGDPVLHNPTQLVTEDVSELQELIADMYETMDVANGVGLAANQIGVSKRIFVYDCPDDEGVMHKGCFINPVLETSEIPET...MPADDGSDEEGCLSVPGEGFPTGRAHWAKVTGLNEKGEEVSVEAEGFLARCFQHEVGHLDGFLYTDVLIGRWKRMAKKAIKANGWTEPGLTWMPGEDEDPFGHDA

  7. Corynebacterium jeikeium jk0268 constitutes for the 40 amino acid long PorACj, which forms a homooligomeric and anion-selective cell wall channel.

    Directory of Open Access Journals (Sweden)

    Narges Abdali

    Full Text Available Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.

  8. Corynebacterium pilbarense sp. nov., a non-lipophilic corynebacterium isolated from a human ankle aspirate.

    Science.gov (United States)

    Aravena-Roman, M; Spröer, C; Sträubler, B; Inglis, T; Yassin, A F

    2010-07-01

    A non-lipophilic coryneform bacterium isolated from an anaerobic Bactec bottle inoculated with an ankle aspirate from a male patient was characterized by phenotypic and molecular taxonomic methods. Chemotaxonomic investigations revealed the presence of short-chain mycolic acids in the cell wall of the bacterium, a feature consistent with members of the genus Corynebacterium. Comparative 16S rRNA gene sequence analysis demonstrated that the isolate displayed 92.0-99.0 % gene sequence similarity with members of the genus Corynebacterium, with Corynebacterium ureicelerivorans as the most closely related phylogenetic species (99.0 % gene sequence similarity). However, the isolate could be genomically separated from C. ureicelerivorans on the basis of DNA-DNA hybridization studies (39.5 % relatedness). Furthermore, the isolate could also be differentiated from C. ureicelerivorans and other species of the genus Corynebacterium on the basis of biochemical properties. Based on both phenotypic and phylogenetic evidence, it is proposed that this isolate be classified as representing a novel species, Corynebacterium pilbarense sp. nov. (type strain IMMIB WACC 658(T)=DSM 45350(T)=CCUG 57942(T)).

  9. The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources.

    Science.gov (United States)

    Wendisch, Volker F; Brito, Luciana Fernandes; Gil Lopez, Marina; Hennig, Guido; Pfeifenschneider, Johannes; Sgobba, Elvira; Veldmann, Kareen H

    2016-09-20

    Most biotechnological processes are based on glucose that is either present in molasses or generated from starch by enzymatic hydrolysis. At the very high, million-ton scale production volumes, for instance for fermentative production of the biofuel ethanol or of commodity chemicals such as organic acids and amino acids, competing uses of carbon sources e.g. in human and animal nutrition have to be taken into account. Thus, the biotechnological production hosts E. coli, C. glutamicum, pseudomonads, bacilli and Baker's yeast used in these large scale processes have been engineered for efficient utilization of alternative carbon sources. This flexible feedstock concept is central to the use of non-glucose second and third generation feedstocks in the emerging bioeconomy. The metabolic engineering efforts to broaden the substrate scope of E. coli, C. glutamicum, pseudomonads, B. subtilis and yeasts to include non-native carbon sources will be reviewed. Strategies to enable simultaneous consumption of mixtures of native and non-native carbon sources present in biomass hydrolysates will be summarized and a perspective on how to further increase feedstock flexibility for the realization of biorefinery processes will be given. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Corynebacterium species isolated from patients with mastitis.

    Science.gov (United States)

    Paviour, Sue; Musaad, Sahar; Roberts, Sally; Taylor, Graeme; Taylor, Susan; Shore, Keith; Lang, Selwyn; Holland, David

    2002-12-01

    Corynebacteria were isolated from breast tissue, pus, or deep wound swabs of 24 women; the most common species isolated was the newly described Corynebacterium kroppenstedtii, followed by Corynebacterium amycolatum and Corynebacterium tuberculostearicum. Gram-positive bacilli were seen in samples sent for culture or in histological specimens for 12 women, and 9 of the 12 women from whom adequate histological specimens were obtained had conditions that met the criteria for granulomatous lobular mastitis, a chronic inflammatory disease of unknown etiology.

  11. Corynebacterium tapiri sp. nov. and Corynebacterium nasicanis sp. nov., isolated from a tapir and a dog, respectively.

    Science.gov (United States)

    Baumgardt, Sandra; Loncaric, Igor; Kämpfer, Peter; Busse, Hans-Jürgen

    2015-11-01

    Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3% similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7% 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA-DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18:1ω9c and C16:0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type

  12. Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion

    DEFF Research Database (Denmark)

    Rodriguez, Alberto; Salvachúa, Davinia; Katahira, Rui

    2017-01-01

    hydroxycinnamic acids. BCD liquors were tested for microbial growth using seven aromatic-catabolizing bacteria and two yeasts. Three organisms (Pseudomonas putida KT2440, Rhodotorula mucilaginosa, and Corynebacterium glutamicum) tolerate high BCD liquor concentrations (up to 90% v/v) and rapidly consume the main...

  13. Corynebacterium propinquum associated with acute, nongonococcal urethritis.

    Science.gov (United States)

    Abdolrasouli, Alireza; Roushan, Azita

    2013-10-01

    Corynebacterium propinquum is usually considered part of the normal human oropharyngeal flora and is rarely responsible for clinical infection. We report here what seems to be the first case of acute purulent urethral discharge in a young Iranian man with urethritis acquired after orogenital contact. Attention should be devoted to less common nondiphtheriae Corynebacterium species for differential diagnosis.

  14. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

    Science.gov (United States)

    2012-01-01

    Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized

  15. Cystic neutrophilic granulomatous mastitis associated with Corynebacterium including Corynebacterium kroppenstedtii.

    Science.gov (United States)

    Johnstone, Kate J; Robson, Jennifer; Cherian, Sarah G; Wan Sai Cheong, Jenny; Kerr, Kris; Bligh, Judith F

    2017-06-01

    Granulomatous (lobular) mastitis is a rare inflammatory breast disease affecting parous reproductive-aged women. Once considered idiopathic, there is growing evidence of an association with corynebacteria infection, especially in the setting of a distinct histological pattern termed cystic neutrophilic granulomatous mastitis (CNGM). We describe 15 cases with histological features either confirming (n = 12) or suggesting (n = 3) CNGM, and concurrent microbiological evidence of Corynebacterium species. The organism was detected by culture or 16S rRNA gene sequencing of specimens obtained at surgery or fine needle aspiration. In seven cases, Gram-positive organisms were seen within vacuolated spaces. Speciation was performed in nine cases, with Corynebacterium kroppenstedtii subsequently identified. These cases provide further evidence in support of this association and in doing so highlight the importance of recognising these histological clues as well as the limitations of Gram stain and microbiological culture in detecting this previously under-recognised disease process. Copyright © 2017 Royal College of Pathologists of Australasia. All rights reserved.

  16. Draft Genome Sequence of Corynebacterium kefirresidentii SB, Isolated from Kefir.

    Science.gov (United States)

    Blasche, Sonja; Kim, Yongkyu; Patil, Kiran R

    2017-09-14

    The genus Corynebacterium includes Gram-positive species with a high G+C content. We report here a novel species, Corynebacterium kefirresidentii SB, isolated from kefir grains collected in Germany. Its draft genome sequence was remarkably dissimilar (average nucleotide identity, 76.54%) to those of other Corynebacterium spp., confirming that this is a unique novel species. Copyright © 2017 Blasche et al.

  17. Corynebacterium minutissimum vascular graft infection: case report and review of 281 cases of prosthetic device-related Corynebacterium infection.

    Science.gov (United States)

    Reece, Rebecca M; Cunha, Cheston B; Rich, Josiah D

    2014-09-01

    Corynebacterium spp. have proven their pathogenic potential in causing infections, particularly in the setting of immunosuppression and prosthetic devices. We conducted a PubMed literature review of all cases of Corynebacterium prosthetic device infections published in the English language through December 2013. The majority of cases involved peritoneal dialysis and central venous catheters, but prosthetic joints and central nervous system shunts/drains were also involved. The management of these cases in terms of retention or removal of the device was not uniform; however, the overall mortality remained the same among both groups. All of these prosthetic device infections pose potential problems in management when the device cannot be removed safely for the patient, especially with the lack of data on the pathogenicity of Corynebacterium species. However with better identification of species and sensitivities, successful treatment is possible even with retention of the device.

  18. Identification and characterization of smallest pore-forming protein in the cell wall of pathogenic Corynebacterium urealyticum DSM 7109.

    Science.gov (United States)

    Abdali, Narges; Younas, Farhan; Mafakheri, Samaneh; Pothula, Karunakar R; Kleinekathöfer, Ulrich; Tauch, Andreas; Benz, Roland

    2018-05-09

    Corynebacterium urealyticum, a pathogenic, multidrug resistant member of the mycolata, is known as causative agent of urinary tract infections although it is a bacterium of the skin flora. This pathogenic bacterium shares with the mycolata the property of having an unusual cell envelope composition and architecture, typical for the genus Corynebacterium. The cell wall of members of the mycolata contains channel-forming proteins for the uptake of solutes. In this study, we provide novel information on the identification and characterization of a pore-forming protein in the cell wall of C. urealyticum DSM 7109. Detergent extracts of whole C. urealyticum cultures formed in lipid bilayer membranes slightly cation-selective pores with a single-channel conductance of 1.75 nS in 1 M KCl. Experiments with different salts and non-electrolytes suggested that the cell wall pore of C. urealyticum is wide and water-filled and has a diameter of about 1.8 nm. Molecular modelling and dynamics has been performed to obtain a model of the pore. For the search of the gene coding for the cell wall pore of C. urealyticum we looked in the known genome of C. urealyticum for a similar chromosomal localization of the porin gene to known porH and porA genes of other Corynebacterium strains. Three genes are located between the genes coding for GroEL2 and polyphosphate kinase (PKK2). Two of the genes (cur_1714 and cur_1715) were expressed in different constructs in C. glutamicum ΔporAΔporH and in porin-deficient BL21 DE3 Omp8 E. coli strains. The results suggested that the gene cur_1714 codes alone for the cell wall channel. The cell wall porin of C. urealyticum termed PorACur was purified to homogeneity using different biochemical methods and had an apparent molecular mass of about 4 kDa on tricine-containing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Biophysical characterization of the purified protein (PorACur) suggested indeed that cur_1714 is the gene

  19. Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species

    Directory of Open Access Journals (Sweden)

    Matthew M Ramsey

    2016-08-01

    Full Text Available Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence towards a commensal state when exposed to commensal Corynebacterium species.

  20. Corynebacterium glutamicum promoters: a practical approach

    Czech Academy of Sciences Publication Activity Database

    Pátek, Miroslav; Holátko, Jiří; Busche, T.; Kalinowski, J.; Nešvera, Jan

    2013-01-01

    Roč. 6, č. 2 (2013), s. 103-117 ISSN 1751-7907 R&D Projects: GA ČR GPP302/12/P633 Institutional support: RVO:61388971 Key words : VITRO TRANSCRIPTION SYSTEM * L-LYSINE PRODUCTION * SIGMA -FACTOR SIGB Subject RIV: EE - Microbiology, Virology Impact factor: 3.023, year: 2013

  1. Application of granular activated carbon/MnFe2O4 composite immobilized on C. glutamicum MTCC 2745 to remove As(III) and As(V): Kinetic, mechanistic and thermodynamic studies

    Science.gov (United States)

    Podder, M. S.; Majumder, C. B.

    2016-01-01

    The main objective of the present study was to investigate the efficiency of Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 (GAC/MnFe2O4) composite to treat high concentration of arsenic bearing wastewater. Non-linear regression analysis was done for determining the best-fit kinetic model on the basis of three correlation coefficients and three error functions and also for predicting the parameters involved in kinetic models. The results showed that Fractal-like mixed 1,2 order model for As(III) and Brouser-Weron-Sototlongo as well as Fractal-like pseudo second order models for As(V) were proficient to provide realistic description of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the current study exhibited that the rate governing step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The evaluated thermodynamic parameters ΔG0, ΔH0 and ΔS0 revealed that biosorption/bioaccumulation of both As(III) and As(V) was feasible, spontaneous and exothermic under studied conditions.

  2. [Skin and Soft Tissue Infections Due to Corynebacterium ulcerans - Case Reports].

    Science.gov (United States)

    Jenssen, Christian; Schwede, Ilona; Neumann, Volker; Pietsch, Cristine; Handrick, Werner

    2017-10-01

    History and clinical findings  We report on three patients suffering from skin and soft tissue infections of the legs due to toxigenic Corynebacterium ulcerans strains. In all three patients, there was a predisposition due to chronic diseases. Three patients had domestic animals (cat, dog) in their households. Investigations and diagnosis  A mixed bacterial flora including Corynebacterium ulcerans was found in wound swab samples. Diphtheric toxin was produced by the Corynebacterium ulcerans strains in all three cases. Treatment and course  In all three patients, successful handling of the skin and soft tissue infections was possible by combining local treatment with antibiotics. Diphtheria antitoxin was not administered in any case. Conclusion  Based on a review of the recent literature pathogenesis, clinical symptoms and signs, diagnostics and therapy of skin and soft tissue infections due to Corynebacterium ulcerans are discussed. Corynebacterium ulcerans should be considered as a potential cause of severe skin and soft tissue infections. Occupational or domestic animal contacts should be evaluated. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    glutamicum SYPS-062 cultivation process for efficient production of L-serine on a large scale. ... central intermediate for a number of cellular .... impeller, oxygen and pH electrodes, under the ... equation. The yield of L-serine was regressed with respect to the medium ..... is not essential for activity but is required for inhibition.

  4. Postgenomic approaches to using corynebacteria as biocatalysts.

    Science.gov (United States)

    Vertès, Alain A; Inui, Masayuki; Yukawa, Hideaki

    2012-01-01

    Corynebacterium glutamicum exhibits numerous ideal intrinsic attributes as a factory of primary and secondary metabolites. The versatile capabilities of this organism have long been implemented at the industrial scale to produce an array of amino acids at high yields and conversion rates, thereby enabling the development of an entire industry. The postgenomic era provides a new technological platform not only to further optimize the intrinsic attributes of C. glutamicum whole cells as biocatalysts, but also to dramatically expand the product portfolio that can be manufactured by this organism, from amino acids to commodity chemicals. This review addresses the methods and strain optimization strategies enabled by genomic information and associated techniques. Their implementation has provided important additional incremental improvements to the economics of industry-scale manufacturing in which C. glutamicum and its episomal elements are used as a performing host-vector system.

  5. Characterization and sequence analysis of the F2 promoter from corynephage BFK20

    International Nuclear Information System (INIS)

    Koptides, M.; Ugorcakova, J.; Baloghova, E.; Bukovska, G.; Timko, J.

    1994-01-01

    F2 promoter from corynephage BFK20 was isolated and characterized. It was functional in Escherichia coli and Corynebacterium glutamicum. Cloning of the F2 promoter into the pJUP05 promoter probe vector caused an increase of the neomycin phosphotransferase II specific activity. According to the Northern blot hybridization the nptII gene was expressed from the cloned F2 promoter. The apparent transcription start point in E. coli and C. glutamicum was determined. The-35 region of F2 promoter showed high similarity to that of E. coli promoter consensus sequence, but its - 10 region was G+C rich and had no significant homology to that. (author)

  6. Lysine: Participation in life, production and biosynthesis

    International Nuclear Information System (INIS)

    Shah, A.H.; Hameed, A.

    2002-01-01

    Lysine plays a vital role in life. Its demands increase worldwide. It is in the interest of students to advertise the supreme importance of its productions. In this report, the mechanism and the biosynthetic pathway of lysine in corynebacterium glutamicum is illustrated, in a simple and ready understandable way. These will pave the way of lysine production. (author)

  7. J-GLOBAL MeSH Dictionary: Corynebacterium pseudotuberculosis [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term Corynebacterium pseudotuberculosis... 名詞 一般 * * * * Corynebacterium pseudotuberculosis ... MeSH D016925 200906025325177003 C LS07 UNKNOWN_2 Corynebacterium pseudotuberculosis

  8. Study of molasses / vinasse waste ratio for single cell protein and total microorganisms

    Directory of Open Access Journals (Sweden)

    Marcia Luciana Cazetta

    2006-02-01

    Full Text Available Different molasses/ vinasse ratio were used as substrate to investigate single cell protein and total lipids production by five microorganisms: four yeasts strains: Candida lipolytica, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, a yeast isolated from vinasse lake (denominated LLV98 and a bacterium strain, Corynebacterium glutamicum. The media utilized were: a 50% molasses and 50% vinasse; b 25% molasses and 75% vinasse and c 75% molasses and 25% vinasse. The objective of this work was to study the growth of microorganisms and also evaluate protein and lipids content in the biomass obtained from these by-products. The highest single cell protein production was obtained by S. cerevisiae, 50.35%, followed by R. mucilaginosa, 41.96%. The lowest productions were obtained by C. glutamicum. The higher total lipids productions, more than 26%, were founded in molasses plus vinasse at 50%/50% by S. cerevisiae and C. glutamicum.

  9. Engineered coryneform bacteria as a bio-tool for arsenic remediation.

    Science.gov (United States)

    Villadangos, Almudena F; Ordóñez, Efrén; Pedre, Brandán; Messens, Joris; Gil, Jose A; Mateos, Luis M

    2014-12-01

    Despite current remediation efforts, arsenic contamination in water sources is still a major health problem, highlighting the need for new approaches. In this work, strains of the nonpathogenic and highly arsenic-resistant bacterium Corynebacterium glutamicum were used as inexpensive tools to accumulate inorganic arsenic, either as arsenate (As(V)) or arsenite (As(III)) species. The assays made use of "resting cells" from these strains, which were assessed under well-established conditions and compared with C. glutamicum background controls. The two mutant As(V)-accumulating strains were those used in a previously published study: (i) ArsC1/C2, in which the gene/s encoding the mycothiol-dependent arsenate reductases is/are disrupted, and (ii) MshA/C mutants unable to produce mycothiol, the low molecular weight thiol essential for arsenate reduction. The As(III)-accumulating strains were either those lacking the arsenite permease activities (Acr3-1 and Acr3-2) needed in As(III) release or recombinant strains overexpressing the aquaglyceroporin genes (glpF) from Corynebacterium diphtheriae or Streptomyces coelicolor, to improve As(III) uptake. Both genetically modified strains accumulated 30-fold more As(V) and 15-fold more As(III) than the controls. The arsenic resistance of the modified strains was inversely proportional to their metal accumulation ability. Our results provide the basis for investigations into the use of these modified C. glutamicum strains as a new bio-tool in arsenic remediation efforts.

  10. Use of sugar cane molasses and vinasse for proteic and lipidic biomass production by yeast and bacteria

    Directory of Open Access Journals (Sweden)

    Marcia Luciana Cazetta

    2005-02-01

    Full Text Available This work evaluated the lipid and protein growth and synthesis capacity by Saccharomyces cerevisiae, Rhodotoruda mucilaginosa, Candida lipolytica, a yeast isolated from vinasse lakes and Corynebacterium glutamicum in 10% molasses and sugar cane crude vinasse. All microorganisms grew both in molasses and vinasse. The highest growth in crude vinasse was performed by R. mucilaginosa (7.05 g/L, and in 10% molasses, by C. lipolytica, yielding 6,09 g/L. In vinasse, the highest protein content in the biomass was produced by S. cerevisiae (50.35% and in 10% molasses, by C. glutamicum (46,16%. C. lipolytica and R. mucilaginosa showed the best lipid production, above 20% and 18%, respectively, both in vinasse and in molasses.

  11. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.

    Science.gov (United States)

    Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R

    2017-01-01

    This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.

  12. SIALIDASE (NEURAMINIDASE) OF CORYNEBACTERIUM DIPHTHERIAE.

    Science.gov (United States)

    WARREN, L; SPEARING, C W

    1963-11-01

    Warren, Leonard (National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.) and C. W. Spearing. Sialidase (neuraminidase) of Corynebacterium diphtheriae. J. Bacteriol. 86:950-955. 1963.-The characteristics of a sialidase produced by Corynebacterium diphtheriae were studied. The enzyme was partially purified from preparations of diphtheria toxin on a column of Sephadex G-75. By this means the lethal factor of diphtheria toxin was separated, in part, from the sialidase activity. There appeared to be a close immunological relationship between the sialidases of C. diphtheriae and clostridia, since a preparation of diphtheria antitoxin was as effective an inhibitor of diphtheria sialidase as of the sialidase of three species of clostridia. Conversely, antitoxin to clostridia inhibited diphtheria sialidase. Diphtheria antitoxin was essentially inactive toward influenza virus sialidase, and was completely inactive against purified sialidase of Vibrio cholerae. Removal of sialic acid from the proteins in a preparation of diphtheria antitoxin did not alter the inhibitory activity of the antitoxin against diphtheria sialidase. The enzyme operated optimally at pH 5.5 and did not require calcium ions for activity. The substrate specificity of diphtheria sialidase appears to be the same as that of other previously described sialidases.

  13. Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities.

    Science.gov (United States)

    Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab

    2018-02-01

    The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.

  14. A Spontaneous Joint Infection with Corynebacterium striatum▿

    OpenAIRE

    Scholle, David

    2006-01-01

    Corynebacterium striatum is a ubiquitous saprophyte with the potential to cause bacteremia in immunocompromised patients. Until now, spontaneous infection of a natural joint has not been reported. When phenotyping failed, gene sequencing was used to identify the species. The isolate demonstrated high-level resistance to most antibiotics.

  15. Use of ionizing radiation in the regulation of amino acid synthesis of micro organisms. Part of a coordinated programme on radiation microbiology

    International Nuclear Information System (INIS)

    Hall, A.N.

    1976-05-01

    The effects of ionizing radiations on the production of glutamic acid (from glucose) by Corynebacterium glutamicum was investigated. Experiments were carried out with resting cell systems and with growing cultures of C. glutamicum. The growing cultures produced optimum yields of glutamic acid (25-30% of theoretical) in culture medium containing 1,0μg/l of biotin. The yield was virtually zero when 25μg/l of biotin was supplied. Resting cells from a medium containing growth-limiting concentrations of biotin (1μg/l) gave good yield of glutamic acid (approximately 27%), while cells harvested from a biotin-rich medium produced only traces of glutamate. Pre-irradiated cells of C. glutamicum produced less glutamic acid than unirradiated cells, and continuously irradiated (3,03 and 4,76 rad/h resting cells accumulated less glutamic acid than the corresponding unirradiated controls. Considerable increase in the glutamate produced by C. glutamicum during growth in the presence of 25μg/l of biotin was induced by continuously irradiating the cultures from the time of inoculation. The increases in the actual concentration of glutamate and in the precentage yield vary from approximately 2-fold to 4-fold. A dose rate of 4.0 krad/h was the most effective of the ones tested

  16. CMRegNet-An interspecies reference database for corynebacterial and mycobacterial regulatory networks

    DEFF Research Database (Denmark)

    Abreu, Vinicius A C; Almeida, Sintia; Tiwari, Sandeep

    2015-01-01

    gene regulatory network can lead to various practical applications, creating a greater understanding of how organisms control their cellular behavior. DESCRIPTION: In this work, we present a new database, CMRegNet for the gene regulatory networks of Corynebacterium glutamicum ATCC 13032......Net to date the most comprehensive database of regulatory interactions of CMNR bacteria. The content of CMRegNet is publicly available online via a web interface found at http://lgcm.icb.ufmg.br/cmregnet ....

  17. Screening for Corynebacterium diphtheriae and Corynebacterium ulcerans in patients with upper respiratory tract infections 2007-2008: a multicentre European study.

    LENUS (Irish Health Repository)

    Wagner, K S

    2011-04-01

    Diphtheria is now rare in most European countries but, when cases do arise, the case fatality rate is high (5-10%). Because few countries continue to routinely screen for the causative organisms of diphtheria, the extent to which they are circulating amongst different European populations is largely unknown. During 2007-2008, ten European countries each screened between 968 and 8551 throat swabs from patients with upper respiratory tract infections. Six toxigenic strains of Corynebacterium diphtheriae were identified: two from symptomatic patients in Latvia (the country with the highest reported incidence of diphtheria in the European Union) and four from Lithuania (two cases, two carriers); the last reported case of diphtheria in Lithuania was in 2002. Carriage rates of non-toxigenic organisms ranged from 0 (Bulgaria, Finland, Greece, Ireland, Italy) to 4.0 per 1000 (95% CI 2.0-7.1) in Turkey. A total of 28 non-toxigenic strains were identified during the study (26 C. diphtheriae, one Corynebacterium ulcerans, one Corynebacterium pseudotuberculosis). The non-toxigenic C. ulcerans strain was isolated from the UK, the country with the highest reported incidence of cases due to C. ulcerans. Of the eleven ribotypes detected, Cluj was seen most frequently in the non-toxigenic isolates and, amongst toxigenic isolates, the major epidemic clone, Sankt-Petersburg, is still in circulation. Isolation of toxigenic C. diphtheriae and non-toxigenic C. diphtheriae and C. ulcerans in highly-vaccinated populations highlights the need to maintain microbiological surveillance, laboratory expertise and an awareness of these organisms amongst public health specialists, microbiologists and clinicians.

  18. Corynebacterium macginleyi isolated from a corneal ulcer

    Directory of Open Access Journals (Sweden)

    Kathryn Ruoff

    2010-02-01

    Full Text Available We report the isolation of Corynebacterium macginleyi from the corneal ulcer culture of a patient, later enrolled in the Steroids for Corneal Ulcer Trial (SCUT. To our knowledge this is the first published report from North America of the recovery of C. macginleyi from a serious ocular infection.

  19. Comparison of antimicrobial susceptibilities of Corynebacterium species by broth microdilution and disk diffusion methods.

    Science.gov (United States)

    Weiss, K; Laverdière, M; Rivest, R

    1996-01-01

    Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity. PMID:8849254

  20. Interdigital foot infections: Corynebacterium minutissimum and agents of superficial mycoses

    Directory of Open Access Journals (Sweden)

    Fatma Mutlu Sariguzel

    2014-09-01

    Full Text Available Interdigital foot infections are mostly caused initially by dermatophytes, yeasts and less frequently by bacteria. Erythrasma caused by Corynebacterium minutissimum can be confused with superficial mycoses. The aim of the study was to determine the prevalence of the etiologic agents of superficial mycoses and the frequency of Corynebacterium minutissimum in interdigital foot infections. All the samples obtained from the 121 patients with interdigital foot infections were examined directly with the use of 20% potassium hydroxide mounts and Gram stain under the microscope and cultured on Sabouraud's dextrose agar plates. In identification of superficial mycoses, the rate was found to be 14% with the cultural method and 14% with direct microscopic examination. Using a combination of direct microscopic examination and culture, a 33.8% ratio was achieved. In the culture of these samples, the most isolated factor was Trichophyton rubrum (33.7%. In 24 of the patients (19.8% Corynebacterium minutissimum was detected by Gram staining, in 6 of these patients Trichophyton rubrum was found, Trichophyton mentagrophytes was found in 2 and Trichosporon spp. was found in 1. The examination of interdigital foot lesions in the laboratory, the coexistence of erythrasma with dermatophytes and yeast should be considered.

  1. Corynebacterium species causing breast abscesses among patients attending a tertiary care hospital in Chennai, South India.

    Science.gov (United States)

    Poojary, Indira; Kurian, Ann; V A, Jayalekshmi; Devapriya J, Debora; M A, Thirunarayan

    2017-07-01

    Corynebacterium species other than Corynebacterium diphtheriae were mostly considered contaminants in the past, but there are reports of their association with wide variety of human infections lately. In this study, we look into Corynebacterium species isolated from breast abscess patients and assess their antimicrobial susceptibility pattern and treatment outcomes. Pus samples from suspected breast abscess cases were examined from October 2014 to September 2015. Growth of Gram-positive bacilli morphologically resembling Corynebacterium species were identified by matrix-assisted laser desorption/ionization- time of flight mass spectrometry identifications generated by the Vitek MS system (bioMérieux, France) (MALDI-TOF Vitek MS system) and antimicrobial susceptibility was done. Corynebacterium species were isolated from 10 female breast abscess patients with median age of 36 years (range 25-59 years). Out of the 10 isolates four isolates were identified as C. kroppenstedtii; one isolate as C. striatum and five isolates were identified as C. amycolatum/C.xerosis. Out of four isolates of C .kroppenstedtii, two isolates were resistant to cotrimoxazole and one C. striatum isolate was resistant to penicillin, ampicillin, cotrimoxazole and clindamycin. Of the five isolates identified as C amycolatum/C xerosis, all were sensitive to vancomycin and linezolid but resistant to clindamycin. All the patients were treated with incision, drainage and antibiotics based on the sensitivity pattern; eight were cured and two patients did not come for follow-up. Corynebacterium species should be considered one of the causative agents of breast abscess and a varied susceptibility profile amongst the different species makes susceptibility testing important. Identification by MALDI-TOF Vitek MS system may not differentiate between C. amycolatum and C. xerosis.

  2. Native valve endocarditis due to Corynebacterium group JK.

    Science.gov (United States)

    Moffie, B G; Veenendaal, R A; Thompson, J

    1990-12-01

    We report a case of a 32-yr-old woman on chronic intermittent haemodialysis, who developed endocarditis due to a Corynebacterium group JK, involving both the native aortic and mitral valves. Despite a four-week treatment with vancomycin, an aortic root abscess developed. The diagnosis was confirmed on autopsy.

  3. Corynebacterium species: an uncommon agent of peritoneal dialysis-related peritonitis and a challenging treatment

    OpenAIRE

    Ferreira, Joel; Teixeira e Costa, Fernando; Ramos, Aura

    2015-01-01

    Introduction: Corynebacterium is a component of normal skin flora and it is responsible for an increasing incidence of nosocomial infections in the last decades. Peritonitis and exit-site infections caused by this microorganism are uncommon but have a significant clinical impact due to their high relapsing rate. The ideal therapeutic approach in these situations is not yet clearly defined. Methods: Retrospective analysis of Corynebacterium spp peritonitis in a peritoneal dialysis unit between...

  4. Fatal case of bacteremia caused by an atypical strain of Corynebacterium mucifaciens

    Directory of Open Access Journals (Sweden)

    Vlademir Vicente Cantarelli

    Full Text Available Corynebacterium species have often been considered normal skin flora or contaminants; however, in recent years they have been increasingly implicated in serious infections. Moreover, many new species have been discovered and old species renamed, especially after molecular biology techniques were introduced. Corynebacterium mucifaciens is mainly isolated from blood and from other normally-sterile body fluids; it forms slightly yellow, mucoid colonies on blood agar. We report a fatal case of bacteremia due to an atypical strain of C. mucifaciens. This strain had atypical colony morphology; analysis of the 16S rRNA gene was used to define the species.

  5. Isolamento de Corynebacterium aquaticum em leite bubalino

    Directory of Open Access Journals (Sweden)

    Andréa Alice da Fonseca Oliveira

    2005-08-01

    Full Text Available Estudou-se 548 quartos mamários de búfalas, realizando-se exame clínico, CMT para detecção de mastite e coleta de amostras para isolamento bacteriano. Houve crescimento em duas amostras de Corynebacterium aquaticum caracterizadas bioquimicamente. Relata-se a participação do agente como colonizador do úbere e possível causador de mastites em bubalinos.

  6. A microbiological and clinical review on Corynebacterium kroppenstedtii

    Directory of Open Access Journals (Sweden)

    Andreas Tauch

    2016-07-01

    Full Text Available The genus Corynebacterium represents a taxon of Gram-positive bacteria with a high G + C content in the genomic DNA. Corynebacterium kroppenstedtii is an unusual member of this taxon as it lacks the characteristic mycolic acids in the cell envelope. Genome sequence analysis of the C. kroppenstedtii type strain has revealed a lipophilic (lipid-requiring lifestyle and a remarkable repertoire of carbohydrate uptake and utilization systems. Clinical isolates of C. kroppenstedtii have been obtained almost exclusively from female patients and mainly from breast abscesses and cases of granulomatous mastitis. However, the role of C. kroppenstedtii in breast pathologies remains unclear. This review provides a comprehensive overview of the taxonomy, microbiology, and microbiological identification of C. kroppenstedtii, including polyphasic phenotypic approaches, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and the use of 16S rRNA gene sequencing. A clinical review presents reported cases, various antimicrobial treatments, antibiotic susceptibility assays, and antibiotic resistance genes detected during genome sequencing. C. kroppenstedtii must be considered a potential opportunistic human pathogen and should be identified accurately in clinical laboratories.

  7. An unusual case of chronic nonhealing periorbital ulceration due to a new species of Corynebacterium sp. strain UCL557

    Directory of Open Access Journals (Sweden)

    Bipasa Chakraborty

    2016-01-01

    Full Text Available Nondiphtherial Corynebacterium (diphtheroids has been related to blood and wound infections but are an uncommon cause for soft tissue infection. We report a case of periorbital soft tissue infection with ulceration caused by multidrug-resistant Corynebacterium spp. in a 9-year-old girl who is apparently immunocompetant. Computed tomography scan showed soft tissue involvement of right periorbital region with no bony destructions or focal calcifications. Vision remained unaffected. Patient was treated by debridement and skin grafting, but condition did not improve. Pus collected from the periorbital ulcerated area was cultured in blood agar and Corynebacterium spp. was isolated from the pure culture, which was identified as a new species Corynebacterium sp. strain UCL557 using 16S rDNA- based molecular technique based on nucleotide homology and phylogenetic analysis. Antibiogram showed multiresistance pattern with sensitivity to ceftriaxone-sulbactum vancomycin and linezolid. After initiation of treatment with vancomycin infusion and oral linezolid, the patient responded well and lesion started to heal. To the best of our knowledge, this is the first ever case report of periorbital ulceration by new species of Corynebacterium sp. strain UCL557.

  8. POTENSI GEN dtx DAN dtxR SEBAGAI MARKER UNTUK DETEKSI DAN PEMERIKSAAN TOKSIGENISITAS Corynebacterium diphtheriae

    Directory of Open Access Journals (Sweden)

    Sunarno Sunarno

    2013-05-01

    Full Text Available Abstract.   Corynebacterium diphtheriae is the causative agent of diphtheria. The main virulence determinant of the bacteria is diphtheria toxin, the cause of the systemic complication seen with diphtheria. Production of diphtheria toxin by toxigenic strain encoded by dtx/tox gene and repressed by dtxR gene. Gold standard for bacterial toxigenicity test carried out by conventional methods (Elek test, Guinea pig and vero cell cytotoxicity. However, Elek test have variety result, time consume and problem of the reagent availability. On the other hand, the animal (Guinea pig testing was opposed by many animal lovers and the vero cell cytotoxicity test require high cost. The study purposed to evaluate the using of dtx and dtxR genes as a detection marker of C.diphtheriae and bacterial toxigenicity test simultaneusly by Multiplex PCR. The study examined 44 bacterial and fungal isolates, included 22 C.diphtheriae (4 reference strains and 18 clinical isolates, 5 other specieses of Corynebacterium  (reference strains and 17 non-Corynebacterium (10 reference strains and 7 stock cultures . All of sample were examined by Multiplex PCR for 2 primer pairs targeted dtx and dtxR genes. The study showed that the Multiplex PCR for dtx and dtxR as target genes able to detect all of sample correctly thus concluded that dtx and dtxR genes could be used as a marker for alternative detection and toxigenicity test of C.diphtheriae by Multiplex PCR rapidly and accuratelly. Key words: Corynebacterium diphtheriae, dtx, dan dtxR Abstrak. Corynebacterium diphtheriae merupakan agen penyebab penyakit difteri.. Faktor virulensi utama  C. diphtheriae adalah toksigenisitas (kemampuan memproduksi toksin bakteri toxin. Produksi toksin diatur seperangkat gen yang disebut gen tox/dtx dan diregulasi oleh gen dtxR. Gold standard untuk pemeriksaan toksigenisitas C.diphtheriae adalah dengan metode konvensional (Elek test, Guinea pig dan vero cell cytotoxigenicity,namun  Elek test

  9. Early prosthetic valve endocarditis caused by Corynebacterium kroppenstedtii.

    Science.gov (United States)

    Hagemann, Jürgen Benjamin; Essig, Andreas; Herrmann, Manuel; Liebold, Andreas; Quader, Mohamed Abo

    2015-12-01

    Corynebacterium (C.) kroppenstedtii is a rarely detected agent of bacterial infections in humans. Here, we describe the first case of prosthetic valve endocarditis caused by C. kroppenstedtii. Application of molecular methods using surgically excised valve tissue was a cornerstone for the establishment of the microbiological diagnosis, which is crucial for targeted antimicrobial treatment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Urethritis due to corynebacterium striatum: An emerging germ.

    Science.gov (United States)

    Frikh, Mohammed; El Yaagoubi, Imad; Lemnouer, Abdelhay; Elouennass, Mostafa

    2015-01-01

    Corynedbacterium striatum (CS) is a Gram-positive coryneform bacillus that is part of mucous and skin flora. It has been considered as a causative agent of many infections in intensive care, neurology, traumatology and urology, but was never implicated in non-gonococcal urethritis. We report the case of a nosocomial urethritis due to Corynebacterium striatum following resection of an intrameatus condyloma.

  11. Experimental transmission of Corynebacterium pseudotuberculosis in horses by house flies

    Science.gov (United States)

    The route of infection of pigeon fever remains undetermined. The purpose of this study was to investigate house flies (Musca domestica L.) as vectors of Corynebacterium pseudotuberculosis in horses. Eight ponies were used in a randomized, controlled, blinded experimental study. Ten wounds were creat...

  12. Over-expression of NAD kinase in Corynebacterium crenatum and ...

    African Journals Online (AJOL)

    in Corynebacterium crenatum SYPA5-5 and to study its impact in presence of high (HOS) ... Results: In HOS condition, NAD+ kinase activity increased by 116 %, while ... (NADPH), an important co-enzyme during ... Polymerase, TaKaRa) using C. crenatum .... were washed with cold 100 mM PBS (pH 7.5) ..... Catalase and.

  13. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    Science.gov (United States)

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  14. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    Science.gov (United States)

    Becker, Judith; Wittmann, Christoph

    2015-03-09

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tips and tricks for the assembly of a Corynebacterium pseudotuberculosis genome using a semiconductor sequencer

    DEFF Research Database (Denmark)

    Ramos, Rommel Thiago Jucá; Carneiro, Adriana Ribeiro; Soares, Siomar de Castro

    2013-01-01

    that enable reference-based assembly, such as the one used in the present study, Corynebacterium pseudotuberculosis biovar equi, which causes high economic losses in the US equine industry. The quality treatment strategy incorporated into the assembly pipeline enabled a 16-fold greater use of the sequencing...... was validated by comparative genomics with other species of the genus Corynebacterium. The present study presents a modus operandi that enables a greater and better use of data obtained from semiconductor sequencing for obtaining the complete genome from a prokaryotic microorganism, C. pseudotuberculosis, which...

  16. Experimental transmission of Corynebacterium pseudotuberculosis biovar equi in horses by house flies

    Science.gov (United States)

    The route of Corynebacterium pseudotuberculosis infection in horses remains undetermined, but transmission by insects is suspected. Scientists from CMAVE and Auburn University investigated house flies (Musca domestica L.) as possible vectors. Three ponies were directly inoculated with C. pseudotuber...

  17. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    International Nuclear Information System (INIS)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro

    1984-01-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both [1- 14 C]-acetate and [2 14 C] malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases. (author)

  18. Selective inhibition of type 2 fatty acid synthetase by the antibiotic thiolactomycin

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Ikuo; Kawaguchi, Akihiko; Yamada, Mitsuhiro (Tokyo Univ. (Japan). Faculty of Science)

    1984-03-01

    The antibiotic thiolactomycin inhibits the fatty acid synthesis from both (1-/sup 14/C)-acetate and (2/sup 14/C) malonyl-CoA of spinach leaves, developing castor bean endosperms and avocado mesocarp. On the other hand, fatty acid synthetases of Brevibacterium ammoniagenes and Corynebacterium glutamicum are much less sensitive to this antibiotic. As Hayashi et al. have indicated in their paper that thiolactomycin inhibits fatty acid synthetase of Escherichia coli but has little effect on the synthetases of yeast and rat liver, thiolactomycin is suggested to be a selective inhibitor of type 2 fatty acid synthetases.

  19. Corynebacterium striatum infecting a malignant cutaneous lesion: the emergence of an opportunistic pathogen Corynebacterium striatum infectando lesão cutânea maligna: a emergência de um patógeno oportunista

    Directory of Open Access Journals (Sweden)

    Silvana Vargas Superti

    2009-04-01

    Full Text Available We described a case of a 27-year old male patient with skin and soft tissue infection of a neoplastic lesion caused by Corynebacterium striatum, an organism which has been rarely described as a human pathogen. Identification was confirmed by DNA sequencing. Successful treatment with penicillin was achieved. The role of the C. striatum as an emerging opportunistic pathogen is discussed.Descrevemos infecção de lesão neoplásica em paciente masculino de 27 anos, envolvendo pele e partes moles, causada por Corynebacterium striatum, um microrganismo raramente descrito como patógeno humano. A identificação foi confirmada por seqüenciamento de DNA. O paciente foi tratado com penicilina, com sucesso. O papel do C. striatum como patógeno oportunista é discutido.

  20. Complete genome sequence of Corynebacterium pseudotuberculosis Cp31, isolated from an Egyptian buffalo

    DEFF Research Database (Denmark)

    Silva, Artur; Ramos, Rommel Thiago Jucá; Ribeiro Carneiro, Adriana

    2012-01-01

    Corynebacterium pseudotuberculosis is of major veterinary importance because it affects many animal species, causing economically significant livestock diseases and losses. Therefore, the genomic sequencing of various lines of this organism, isolated from different hosts, will aid in the developm...

  1. An unusual etiological agent of implantable cardioverter device endocarditis: Corynebacterium mucifaciens

    Directory of Open Access Journals (Sweden)

    Adnan Kaya

    2016-03-01

    Full Text Available Cardiac pacing devices and implantable cardioverter defibrillator (ICD are becoming the mainstay of therapy in cardiology and infective endocarditis (IE and pocket infection; however, these devices require careful monitoring. Here, we describe a case of a 68-year-old female with an ICD presenting with a previously unknown etiological agent of IE, Corynebacterium mucifaciens.

  2. Corynebacterium ulcerans cutaneous diphtheria.

    Science.gov (United States)

    Moore, Luke S P; Leslie, Asuka; Meltzer, Margie; Sandison, Ann; Efstratiou, Androulla; Sriskandan, Shiranee

    2015-09-01

    We describe the case of a patient with cutaneous diphtheria caused by toxigenic Corynebacterium ulcerans who developed a right hand flexor sheath infection and symptoms of sepsis such as fever, tachycardia, and elevated C-reactive protein, after contact with domestic cats and dogs, and a fox. We summarise the epidemiology, clinical presentation, microbiology, diagnosis, therapy, and public health aspects of this disease, with emphasis on improving recognition. In many European countries, C ulcerans has become the organism commonly associated with cutaneous diphtheria, usually seen as an imported tropical disease or resulting from contact with domestic and agricultural animals. Diagnosis relies on bacterial culture and confirmation of toxin production, with management requiring appropriate antimicrobial therapy and prompt administration of antitoxin, if necessary. Early diagnosis is essential for implementation of control measures and clear guidelines are needed to assist clinicians in managing clinical diphtheria. This case was a catalyst to the redrafting of the 2014 national UK interim guidelines for the public health management of diphtheria, released as final guidelines in March, 2015. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.

    Science.gov (United States)

    Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung

    2018-05-01

    The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide

  4. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.

    Science.gov (United States)

    Grünberger, Alexander; Paczia, Nicole; Probst, Christopher; Schendzielorz, Georg; Eggeling, Lothar; Noack, Stephan; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2012-05-08

    In the continuously growing field of industrial biotechnology the scale-up from lab to industrial scale is still a major hurdle to develop competitive bioprocesses. During scale-up the productivity of single cells might be affected by bioreactor inhomogeneity and population heterogeneity. Currently, these complex interactions are difficult to investigate. In this report, design, fabrication and operation of a disposable picolitre cultivation system is described, in which environmental conditions can be well controlled on a short time scale and bacterial microcolony growth experiments can be observed by time-lapse microscopy. Three exemplary investigations will be discussed emphasizing the applicability and versatility of the device. Growth and analysis of industrially relevant bacteria with single cell resolution (in particular Escherichia coli and Corynebacterium glutamicum) starting from one single mother cell to densely packed cultures is demonstrated. Applying the picolitre bioreactor, 1.5-fold increased growth rates of C. glutamicum wild type cells were observed compared to typical 1 litre lab-scale batch cultivation. Moreover, the device was used to analyse and quantify the morphological changes of an industrially relevant l-lysine producer C. glutamicum after artificially inducing starvation conditions. Instead of a one week lab-scale experiment, only 1 h was sufficient to reveal the same information. Furthermore, time lapse microscopy during 24 h picolitre cultivation of an arginine producing strain containing a genetically encoded fluorescence sensor disclosed time dependent single cell productivity and growth, which was not possible with conventional methods.

  5. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    Science.gov (United States)

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  6. Characterization of Staphylococcus and Corynebacterium clusters in the human axillary region.

    Directory of Open Access Journals (Sweden)

    Chris Callewaert

    Full Text Available The skin microbial community is regarded as essential for human health and well-being, but likewise plays an important role in the formation of body odor in, for instance, the axillae. Few molecular-based research was done on the axillary microbiome. This study typified the axillary microbiome of a group of 53 healthy subjects. A profound view was obtained of the interpersonal, intrapersonal and temporal diversity of the human axillary microbiota. Denaturing gradient gel electrophoresis (DGGE and next generation sequencing on 16S rRNA gene region were combined and used as extent to each other. Two important clusters were characterized, where Staphylococcus and Corynebacterium species were the abundant species. Females predominantly clustered within the Staphylococcus cluster (87%, n = 17, whereas males clustered more in the Corynebacterium cluster (39%, n = 36. The axillary microbiota was unique to each individual. Left-right asymmetry occurred in about half of the human population. For the first time, an elaborate study was performed on the dynamics of the axillary microbiome. A relatively stable axillary microbiome was noticed, although a few subjects evolved towards another stable community. The deodorant usage had a proportional linear influence on the species diversity of the axillary microbiome.

  7. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    Science.gov (United States)

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Carrier state of Haemophilus influenzae type b (Hib, Streptococcus pneumoniae, Streptococcus pyogenes, Neisseria meningitidis and Corynebacterium diphtheriae among school children in Pokhara, Nepal

    Directory of Open Access Journals (Sweden)

    Dharm Raj Bhatta

    2014-02-01

    Full Text Available Objective: To determine the incidence of carrier state of Haemophilus influenzae type b, Streptococcus pneumoniae (S. pneumoniae, Streptococcus pyogenes, Neisseria meningitidis and Corynebacterium diphtheriae among school children. Methods: Specimen from posterior pharyngeal wall and tonsils were collected on calcium alginate coated swabs from 1 02 participants. Processing of specimen and antimicrobial susceptibility testing was done by standard procedures. Results: Potential pathogens isolated in our study were S. pneumoniae (14.7%, Staphylococcus aureus (12.7%, Corynebacterium diphtheriae (3.9%, Streptococcus pyogenes (3.9% and Haemophilus influenzae (1.9%. Important findings in antibiogram include high resistance of S. pneumoniae to penicillin (73% and resistance of Staphylococcus aureus to oxacillin (23%. Conclusions: Pharyngeal colonization by S. pneumoniae among school children was found high and there is need of introduction of pneumococcal vaccines among children. Despite expected universal vaccination, pharyngeal colonization by Corynebacterium diphtheriae is possible and there is possibility of transmission.

  9. Corynebacterium renale as a cause of reactions to the complement fixation test for Johne's disease

    NARCIS (Netherlands)

    Gilmour, N.J.L.; Goudswaard, J.

    Complement fixation (C.F.) tests and fluorescent antibody (F.A.) tests were carried out on sera from rabbits inoculated with Corynebacterium renale and Mycobacterium johnei, and on sera from cattle with C. renale pyelonephritis and with Johne's disease. Cross-reactions were a feature of the C.F.

  10. Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway.

    Science.gov (United States)

    Shu, Qunfeng; Xu, Meijuan; Li, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong; Rao, Zhiming

    2018-05-04

    L-Ornithine is a non-protein amino acid with extensive applications in the food and pharmaceutical industries. In this study, we performed metabolic pathway engineering of an L-arginine hyper-producing strain of Corynebacterium crenatum for L-ornithine production. First, we amplified the L-ornithine biosynthetic pathway flux by blocking the competing branch of the pathway. To enhance L-ornithine synthesis, we performed site-directed mutagenesis of the ornithine-binding sites to solve the problem of L-ornithine feedback inhibition for ornithine acetyltransferase. Alternatively, the genes argA from Escherichia coli and argE from Serratia marcescens, encoding the enzymes N-acetyl glutamate synthase and N-acetyl-L-ornithine deacetylase, respectively, were introduced into Corynebacterium crenatum to mimic the linear pathway of L-ornithine biosynthesis. Fermentation of the resulting strain in a 5-L bioreactor allowed a dramatically increased production of L-ornithine, 40.4 g/L, with an overall productivity of 0.673 g/L/h over 60 h. This demonstrates that an increased level of transacetylation is beneficial for L-ornithine biosynthesis.

  11. Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections

    Directory of Open Access Journals (Sweden)

    Luciene de Fátima Costa Torres

    2013-05-01

    Full Text Available Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp, 16S rRNA (C. ulcerans and C. pseudotuberculosis, pld (C. pseudotuberculosis, dtxR (C. diphtheriae and tox [diphtheria toxin (DT ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.

  12. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Amino acids production focusing on fermentation technologies – A review

    DEFF Research Database (Denmark)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    2018-01-01

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives...... an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium...... glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although...

  14. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    Science.gov (United States)

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  15. Microbe Profile: Corynebacterium diphtheriae - an old foe always ready to seize opportunity.

    Science.gov (United States)

    Hoskisson, Paul A

    2018-02-21

    Corynebacterium diphtheriae is a globally important Gram-positive aerobic Actinobacterium capable of causing the toxin-mediated disease, diphtheria. Diphtheria was a major cause of childhood mortality prior to the introduction of the toxoid vaccine, yet it is capable of rapid resurgence following the breakdown of healthcare provision, vaccination or displacement of people. The mechanism and treatment of toxin-mediated disease is well understood, however there are key gaps in our knowledge on the basic biology of C. diphtheriae particularly relating to host colonisation, the nature of asymptomatic carriage, population genomics and host adaptation.

  16. Corynebacterium fournierii,’ a new bacterial species isolated from the vaginal sample of a patient with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    K. Diop

    2017-07-01

    Full Text Available Here we describe briefly ‘Corynebacterium fournierii’ strain Marseille P2948 (= CSUR P2948 = DSM103271, a new bacterium that was isolated from the vaginal sample of a 21-year-old woman with bacterial vaginosis.

  17. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1

    International Nuclear Information System (INIS)

    Omori, Toshio; Monna, L.; Saiki, Yuko; Kodama, Tohru

    1992-01-01

    Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS 2 , FeS 2 , and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed

  18. Genome sequence of Corynebacterium pseudotuberculosis biovar equi strain 258 and prediction of antigenic targets to improve biotechnological vaccine production

    DEFF Research Database (Denmark)

    Soares, Siomar C; Trost, Eva; Ramos, Rommel T J

    2013-01-01

    Corynebacterium pseudotuberculosis is the causative agent of several veterinary diseases in a broad range of economically important hosts, which can vary from caseous lymphadenitis in sheep and goats (biovar ovis) to ulcerative lymphangitis in cattle and horses (biovar equi). Existing vaccines ag...

  19. Cystic Neutrophilic Granulomatous Mastitis: Further Characterization of a Distinctive Histopathologic Entity Not Always Demonstrably Attributable to Corynebacterium Infection.

    Science.gov (United States)

    D'Alfonso, Timothy M; Moo, Tracy-Ann; Arleo, Elizabeth K; Cheng, Esther; Antonio, Lilian B; Hoda, Syed A

    2015-10-01

    Granulomatous lobular mastitis (GLM) is an uncommon condition that typically occurs in parous, reproductive-aged women and can simulate malignancy on the basis of clinical and imaging features. A distinctive histologic pattern termed cystic neutrophilic granulomatous mastitis (CNGM) is seen in some cases of GLM and has been associated with Corynebacterium infection. We sought to further characterize the clinical, imaging, and histopathologic features of CNGM by studying 12 cases and attempted to establish the relationship of this disease with Corynebacterium infection. Patients were women ranging in age from 25 to 49 years (median: 34 y), and all presented with a palpable mass that was painful in half of the cases. In 2 of 9 cases, imaging was highly suspicious for malignancy (BI-RADS 5). CNGM was characterized by lobulocentric granulomas with mixed inflammation and clear vacuoles lined by neutrophils within granulomas. Gram-positive bacilli were identified in 5/12 cases. In 4 patients, the disease process worsened after the diagnostic core biopsy, with the development of a draining sinus in 2 cases. No growth of bacteria was seen in any microbial cultures. No bacterial DNA was identified by 16S rDNA polymerase chain reaction for 1 case that showed gram-positive bacilli on histology. Patients were treated with variable combinations of surgery, antibiotics, and steroids. The time to significant resolution of symptoms ranged from 2 weeks to 6 months. Similar to other forms of GLM, CNGM can mimic malignancy clinically and on imaging. When encountered in a needle core biopsy sample, recognition of the characteristic histologic pattern and its possible association with Corynebacterium infection can help guide treatment.

  20. First report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus).

    Science.gov (United States)

    Oliveira, Manuela; Barroco, Cynthia; Mottola, Carla; Santos, Raquel; Lemsaddek, Abdelhak; Tavares, Luis; Semedo-Lemsaddek, Teresa

    2014-09-21

    Corynebacterium pseudotuberculosis is the etiologic agent of caseous lymphadenitis, a common disease in small ruminant populations throughout the world and responsible for a significant economic impact for producers. To our knowledge, this is the first characterization of C. pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus). In this study, phenotypic and genotypic identification methods allocated the swine isolates in C. pseudotuberculosis biovar ovis. The vast majority of the isolates were able to produce phospholipase D and were susceptible to most of the antimicrobial compounds tested. Macrorestriction patterns obtained by Pulsed Field Gel Electrophoresis (PFGE) grouped the C. pseudotuberculosis in two clusters with a high similarity index, which reveals their clonal relatedness. Furthermore, swine isolates were compared with C. pseudotuberculosis from caprines and PFGE patterns also showed high similarity, suggesting the prevalence of dominant clones and a potential cross-dissemination between these two animal hosts. This work represents the first report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig and alerts for the importance of the establishment of suitable control and sanitary management practices to control the infection and avoid further dissemination of this important pathogen to other animal hosts.

  1. Peptidoglycan from Fermentation By-Product Triggers Defense Responses in Grapevine

    Science.gov (United States)

    Chen, Yang; Takeda, Taito; Aoki, Yoshinao; Fujita, Keiko; Suzuki, Shunji; Igarashi, Daisuke

    2014-01-01

    Plants are constantly under attack from a variety of microorganisms, and rely on a series of complex detection and response systems to protect themselves from infection. Here, we found that a by-product of glutamate fermentation triggered defense responses in grapevine, increasing the expression of defense response genes in cultured cells, foliar chitinase activity, and resistance to infection by downy mildew in leaf explants. To identify the molecule that triggered this innate immunity, we fractionated and purified candidates extracted from Corynebacterium glutamicum, a bacterium used in the production of amino acids by fermentation. Using hydrolysis by lysozyme, a silkworm larva plasma detection system, and gel filtration analysis, we identified peptidoglycan as inducing the defense responses. Peptidoglycans of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus also generated similar defensive responses. PMID:25427192

  2. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.

    Science.gov (United States)

    Wittmann, Christoph; Heinzle, Elmar

    2002-12-01

    A comprehensive approach of metabolite balancing, (13)C tracer studies, gas chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and isotopomer modeling was applied for comparative metabolic network analysis of a genealogy of five successive generations of lysine-producing Corynebacterium glutamicum. The five strains examined (C. glutamicum ATCC 13032, 13287, 21253, 21526, and 21543) were previously obtained by random mutagenesis and selection. Throughout the genealogy, the lysine yield in batch cultures increased markedly from 1.2 to 24.9% relative to the glucose uptake flux. Strain optimization was accompanied by significant changes in intracellular flux distributions. The relative pentose phosphate pathway (PPP) flux successively increased, clearly corresponding to the product yield. Moreover, the anaplerotic net flux increased almost twofold as a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes to cover the increased demand for lysine formation; thus, the overall increase was a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes. The relative flux through isocitrate dehydrogenase dropped from 82.7% in the wild type to 59.9% in the lysine-producing mutants. In contrast to the NADPH demand, which increased from 109 to 172% due to the increasing lysine yield, the overall NADPH supply remained constant between 185 and 196%, resulting in a decrease in the apparent NADPH excess through strain optimization. Extrapolated to industrial lysine producers, the NADPH supply might become a limiting factor. The relative contributions of PPP and the tricarboxylic acid cycle to NADPH generation changed markedly, indicating that C. glutamicum is able to maintain a constant supply of NADPH under completely different flux conditions. Statistical analysis by a Monte Carlo approach revealed high precision for the estimated fluxes, underlining the

  3. The obligate respiratory supercomplex from Actinobacteria.

    Science.gov (United States)

    Kao, Wei-Chun; Kleinschroth, Thomas; Nitschke, Wolfgang; Baymann, Frauke; Neehaul, Yashvin; Hellwig, Petra; Richers, Sebastian; Vonck, Janet; Bott, Michael; Hunte, Carola

    2016-10-01

    Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains

    DEFF Research Database (Denmark)

    Soares, Siomar C; Silva, Artur; Trost, Eva

    2013-01-01

    , Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic...

  5. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Directory of Open Access Journals (Sweden)

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  6. Toxigenic Corynebacterium ulcerans isolated from a free-roaming red fox (Vulpes vulpes).

    Science.gov (United States)

    Sting, Reinhard; Ketterer-Pintur, Sandra; Contzen, Matthias; Mauder, Norman; Süss-Dombrowski, Christine

    2015-01-01

    Corynebacterium (C.) ulcerans could be isolated from the spleen of a red fox (Vulpes vulpes) that had been found dead in the state of Baden-Württemberg, Germany. Pathohistological examination suggested that the fox had died of distemper, as was confirmed by PCR. The isolate was identified biochemically, by MALDI-TOF MS, FT-IR and by partial 16S rRNA, rpoB and tox gene sequencing. Using the Elek test the C. ulcerans isolate demonstrated diphtheria toxin production. FT-IR and sequencing data obtained from the C. ulcerans isolate from the red fox showed higher similarity to isolates from humans than to those from wild game.

  7. Pathogenicity and genetic variation of 3 strains of Corynebacterium bovis in immunodeficient mice.

    Science.gov (United States)

    Dole, Vandana S; Henderson, Kenneth S; Fister, Richard D; Pietrowski, Michael T; Maldonado, Geomaris; Clifford, Charles B

    2013-07-01

    Corynebacterium bovis has been associated with hyperkeratotic dermatitis and acanthosis in mice. We studied 3 different strains of C. bovis: one previously described to cause hyperkeratotic dermatitis (HAC), one that infected athymic nude mice without leading to the classic clinical signs, and one of bovine origin (ATCC 7715). The 3 strains showed a few biochemical and genetic differences. Immunodeficient nude mice were housed in 3 independent isolators and inoculated with pure cultures of the 3 strains. We studied the transmission of these C. bovis studies to isolator-bedding and contact sentinels housed for 5 to 12 wk in filter-top or wire-top cages in the respective isolators. Using a 16S rRNA-based qPCR assay, we did not find consistent differences in growth and transmission among the 3 C. bovis strains, and neither the incidence nor severity of hyperkeratosis or acanthosis differed between strains. Housing in filter-top compared with wire-top cages did not alter the morbidity associated with any of the strains. Our findings confirmed the variability in the gross and histologic changes associated with C. bovis infection of mice. Although bacteriology was a sensitive method for the detection of Corynebacterium spp., standard algorithms occasionally misidentified C. bovis and several related species. Our study demonstrates that PCR of skin swabs or feces is a sensitive and specific method for the detection of C. bovis infection in mice. An rpoB-based screen of samples from North American vivaria revealed that HAC is the predominant C. bovis strain in laboratory mice.

  8. Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.

    Science.gov (United States)

    Czajka, Jeffrey; Wang, Qinhong; Wang, Yechun; Tang, Yinjie J

    2017-10-01

    Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis. Second, synthetic circuits and introduced heterologous pathways are not yet as "robust and reliable" as native pathways due to hosts' innate regulations, especially under suboptimal fermentation conditions. Third, engineered enzymes may lack channeling capabilities for cascade-like transport of metabolites to overcome diffusion barriers or to avoid intermediate toxicity in the cytoplasmic environment. Fourth, moving engineered hosts from laboratory to industry is unreliable because genetic mutations and non-genetic cell-to-cell variations impair the large-scale fermentation outcomes. Therefore, synthetic biology strains often have unsatisfactory industrial performance (titer/yield/productivity). To overcome these problems, many different species are being explored for their metabolic strengths that can be leveraged to synthesize specific compounds. Here, we provide examples of non-conventional and genetically amenable species for industrial manufacturing, including the following: Corynebacterium glutamicum for its TCA cycle-derived biosynthesis, Yarrowia lipolytica for its biosynthesis of fatty acids and carotenoids, cyanobacteria for photosynthetic production from its sugar phosphate pathways, and Rhodococcus for its ability to biotransform recalcitrant feedstock. Finally, we discuss emerging technologies (e.g., genome-to-phenome mapping, single cell methods, and knowledge engineering) that may facilitate the development of novel cell factories.

  9. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    Science.gov (United States)

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  10. Recurrent Breast Abscesses due to Corynebacterium kroppenstedtii, a Human Pathogen Uncommon in Caucasian Women

    Directory of Open Access Journals (Sweden)

    Anne Le Flèche-Matéos

    2012-01-01

    Full Text Available Background. Corynebacterium kroppenstedtii (Ck was first described in 1998 from human sputum. Contrary to what is observed in ethnic groups such as Maori, Ck is rarely isolated from breast abscesses and granulomatous mastitis in Caucasian women. Case Presentation. We herein report a case of recurrent breast abscesses in a 46-year-old Caucasian woman. Conclusion. In the case of recurrent breast abscesses, even in Caucasian women, the possible involvement of Ck should be investigated. The current lack of such investigations, probably due to the difficulty to detect Ck, may cause the underestimation of such an aetiology.

  11. Determination of the Presence of crpgenes in Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus delbrueckii and Corynebacterium veraSuş

    OpenAIRE

    BELDÜZ, Ali Osman; DEMİRBAĞ, Zihni; DÜLGER, Sabriye

    2014-01-01

    Polymerase chain reaction (PCR) was employed to detect the presence of cyclic AMP receptor protein (CPR) in a number of diverse organisms. In PCR, two primers specific to the crp gene of Escherichia coli were used. Staphylococcus aureus, Staphylococcus epidermidis, Lactobacillus delbrueckii and Corynebacterium veraSuş all showed the same size of PCR frağments (708 bp) and same restriction frağment length polymorphizm (RFLP).

  12. Prediction of DtxR regulon: Identification of binding sites and operons controlled by Diphtheria toxin repressor in Corynebacterium diphtheriae

    Directory of Open Access Journals (Sweden)

    Hasnain Seyed

    2004-09-01

    Full Text Available Abstract Background The diphtheria toxin repressor, DtxR, of Corynebacterium diphtheriae has been shown to be an iron-activated transcription regulator that controls not only the expression of diphtheria toxin but also of iron uptake genes. This study aims to identify putative binding sites and operons controlled by DtxR to understand the role of DtxR in patho-physiology of Corynebacterium diphtheriae. Result Positional Shannon relative entropy method was used to build the DtxR-binding site recognition profile and the later was used to identify putative regulatory sites of DtxR within C. diphtheriae genome. In addition, DtxR-regulated operons were also identified taking into account the predicted DtxR regulatory sites and genome annotation. Few of the predicted motifs were experimentally validated by electrophoretic mobility shift assay. The analysis identifies motifs upstream to the novel iron-regulated genes that code for Formamidopyrimidine-DNA glycosylase (FpG, an enzyme involved in DNA-repair and starvation inducible DNA-binding protein (Dps which is involved in iron storage and oxidative stress defense. In addition, we have found the DtxR motifs upstream to the genes that code for sortase which catalyzes anchoring of host-interacting proteins to the cell wall of pathogenic bacteria and the proteins of secretory system which could be involved in translocation of various iron-regulated virulence factors including diphtheria toxin. Conclusions We have used an in silico approach to identify the putative binding sites and genes controlled by DtxR in Corynebacterium diphtheriae. Our analysis shows that DtxR could provide a molecular link between Fe+2-induced Fenton's reaction and protection of DNA from oxidative damage. DtxR-regulated Dps prevents lethal combination of Fe+2 and H2O2 and also protects DNA by nonspecific DNA-binding. In addition DtxR could play an important role in host interaction and virulence by regulating the levels of sortase

  13. The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response

    Czech Academy of Sciences Publication Activity Database

    Pahlke, J.; Dostálová, Hana; Holátko, Jiří; Degner, U.; Bott, M.; Pátek, Miroslav; Polen, T.

    2016-01-01

    Roč. 13, č. 9 (2016), s. 848-860 ISSN 1547-6286 Institutional support: RVO:61388971 Keywords : Actinobacteria * branched morphology * cell division Subject RIV: EE - Microbiology, Virology Impact factor: 3.900, year: 2016

  14. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.

    Science.gov (United States)

    Yang, Jiangang; Zhu, Yueming; Men, Yan; Sun, Shangshang; Zeng, Yan; Zhang, Ying; Sun, Yuanxia; Ma, Yanhe

    2016-12-21

    Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.

  15. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    Science.gov (United States)

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Biotin-independent strains of Escherichia coli for enhanced streptavidin production.

    Science.gov (United States)

    Jeschek, Markus; Bahls, Maximilian O; Schneider, Veronika; Marlière, Philippe; Ward, Thomas R; Panke, Sven

    2017-03-01

    Biotin is an archetypal vitamin used as cofactor for carboxylation reactions found in all forms of life. However, biotin biosynthesis is an elaborate multi-enzymatic process and metabolically costly. Moreover, many industrially relevant organisms are incapable of biotin synthesis resulting in the requirement to supplement defined media. Here we describe the creation of biotin-independent strains of Escherichia coli and Corynebacterium glutamicum through installation of an optimized malonyl-CoA bypass, which re-routes natural fatty acid synthesis, rendering the previously essential vitamin completely obsolete. We utilize biotin-independent E. coli for the production of the high-value protein streptavidin which was hitherto restricted because of toxic effects due to biotin depletion. The engineered strain revealed significantly improved streptavidin production resulting in the highest titers and productivities reported for this protein to date. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. AVALIAÇÃO DE FONTES DE CARBONO PARA A PRODUÇÃO DE INIBIDOR DE CRESCIMENTO DE Aspergillus fumigatus USP2 por Corynebacterium sp.

    Directory of Open Access Journals (Sweden)

    Gabrielle Fernanda Zimmer

    2013-07-01

    Full Text Available O aumento significativo na incidência de infecções fúngicas invasivas e a resistência natural de agentes etiológicos a antifúngicos existentes têm motivado a constante pesquisa por novos agentes antifúngicos nos ultimos anos. Neste sentido, foi selcionada uma cepa de Corynebacterium sp. com potencial antagonista frente à Aspergilus fumigatus USP2. A cepa foi cultivada em fase submersa e em fase sólida, avaliando-se a variação das fontes de glicose, sacarose e glicerol em presença de peptona, bem como o meio sintético Czapek. Os caldos de cultivo submerso foram utilizados para o ensaio de antagonismo microbiano com o fungo Aspergillus fumigatus USP2. Os resultados apontam que o cultivo em fase sólida utilizando glicose como fonte de carbono apresenta maior potencial inibitório da cepa de Corynebacterium sp. sobre o fungo Aspergillus fumigatus USP2.

  19. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein

    DEFF Research Database (Denmark)

    Folador, Edson Luiz; de Carvalho, Paulo Vinícius Sanches Daltro; Silva, Wanderson Marques

    2016-01-01

    BACKGROUND: Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation...... of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were...... not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. CONCLUSIONS: The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing...

  20. Influence of Corynebacterium parvum on the phagocytosis of 198Au colloids in rats

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S.

    1982-01-01

    The kinetics of the phagocytosis of gelatin-protected 198 Au colloids in Wistar rats treated with Corynebacterium Parvum (CBP), was studied in order to explain its mechanism of immunomodulation. A previously developed extracorporeal blood circulation technique was used. The changes in the rate of phagocytosis, v, after the administration of CBP, for a dose of the 198 Au colloid smaller or higher than the substratum constant, were studied. In the first case, no significant changes of v were observed; in the second case, significant increases of v were determined, which reached a maximum 6 days after the CBP administration. The kinetic analysis of the obtained data indicates that the action of CBP is exerted on the stage of the entrance of the colloidal particle into the reticuloendothelial cell. (author) [es

  1. Structure, function, and regulation of enzymes involved in amino acid metabolism of bacteria and archaea.

    Science.gov (United States)

    Tomita, Takeo

    2017-11-01

    Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of "umami" taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.

  2. Discovery and History of Amino Acid Fermentation.

    Science.gov (United States)

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  3. Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration.

    Science.gov (United States)

    Won, Sung Wook; Lim, Areum; Yun, Yeoung-Sang

    2013-06-01

    This work reports a direct way to recover metallic palladium with high purity from Pd(II)-sorbed polyethylenimine-modified Corynebacterium glutamicum biosorbent using a combined method of biosorption and incineration. This study is focused on the incineration part which affects the purity of recovered Pd. The incineration temperature and the amount of Pd loaded on the biosorbent were considered as major factors in the incineration process, and their effects were examined. The results showed that both factors significantly affected the enhancement of the recovery efficiency and purity of the recovered Pd. SEM-EDX and XRD analyses were used to confirm that Pd phase existed in the ash. As a result, the recovered Pd was changed from PdO to zero-valent Pd as the incineration temperature was increased from 600 to 900°C. Almost 100% pure metallic Pd was recovered with recovery efficiency above 99.0% under the conditions of 900°C and 136.9 mg/g. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.

    Science.gov (United States)

    Cheng, Zhuan; Jiang, Jiaqi; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    In this study, production of 3-HP via malonyl-CoA was investigated by using metabolically engineered Escherichia coli carrying heterogeneous acetyl-CoA carboxylase (Acc) from Corynebacterium glutamicum and codon-optimized malonyl-CoA reductase (MCR) from Chloroflexus aurantiacus. Three engineered E. coli strains with different host-vector systems were constructed and investigated. The results indicated that the combination of E. coli BL21(DE3) and pET28a was the most efficient host-vector system for 3-HP production, and the highest concentration of 3-HP attained in shake flask cultivation reached 1.80g/L by the strain BE-MDA with induction at 0.25mM IPTG and 25°C, and supplementation of NaHCO3 and biotin. In fed-batch fermentation performed in a 5-L reactor, the concentration of 3-HP achieved 10.08g/L in 36h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of Corynebacterium parvum on the phagocytosis of /sup 198/Au colloids in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S. (Buenos Aires Univ. Nacional (Argentina). Facultad de Farmacia y Bioquimica)

    1982-07-01

    The kinetics of the phagocytosis of gelatin-protected /sup 198/Au colloids in Wistar rats treated with Corynebacterium Parvum (CBP), was studied in order to explain its mechanism of immunomodulation. A previously developed extracorporeal blood circulation technique was used. The changes in the rate of phagocytosis, v, after the administration of CBP, for a dose of the /sup 198/Au colloid smaller or higher than the substratum constant, were studied. In the first case, no significant changes of v were observed; in the second case, significant increases of v were determined, which reached a maximum 6 days after the CBP administration. The kinetic analysis of the obtained data indicates that the action of CBP is exerted on the stage of the entrance of the colloidal particle into the reticuloendothelial cell.

  6. Brain and lung cryptococcoma and concurrent corynebacterium pseudotuberculosis infection in a goat: a case report

    Directory of Open Access Journals (Sweden)

    MCR Luvizotto

    2009-01-01

    Full Text Available A four-year-old male goat with a history of neurological disorder was euthanized. It presented uncommon nodules in the brain and lungs associated with multiple abscesses, predominantly in the spleen and liver. Histological examination of brain and lung sections revealed yeast forms confirmed to be Cryptococcus gattii after a combination of isolation and polymerase chain reaction (PCR procedures. Moreover, Corynebacterium pseudotuberculosis infection was diagnosed by PCR of samples from the lung, spleen and liver. The present report highlights the rare concurrent infection of C. gatti and C. pseudotuberculosis in an adult goat from São Paulo state, Brazil, and indicates the necessity of surveillance in the treatment of goats with atypical pulmonary infections associated with neurological disorders.

  7. Crystallization and preliminary X-ray diffraction studies of FAD synthetase from Corynebacterium ammoniagenes

    International Nuclear Information System (INIS)

    Herguedas, Beatriz; Martínez-Júlvez, Marta; Frago, Susana; Medina, Milagros; Hermoso, Juan A.

    2009-01-01

    Native and selenomethionine-labelled FAD synthetase from C. ammoniagenes have been crystallized by the hanging-drop vapour-diffusion method. A MAD data set for SeMet-labelled FAD synthetase was collected to 2.42 Å resolution, while data sets were collected to 1.95 Å resolution for the native crystals. FAD synthetase from Corynebacterium ammoniagenes (CaFADS), a prokaryotic bifunctional enzyme that catalyses the phosphorylation of riboflavin as well as the adenylylation of FMN, has been crystallized using the hanging-drop vapour-diffusion method at 277 K. Diffraction-quality cubic crystals of native and selenomethionine-labelled (SeMet-CaFADS) protein belonged to the cubic space group P2 1 3, with unit-cell parameters a = b = c = 133.47 Å and a = b = c = 133.40 Å, respectively. Data sets for native and SeMet-containing crystals were collected to 1.95 and 2.42 Å resolution, respectively

  8. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis

    Directory of Open Access Journals (Sweden)

    I. Fernández-Natal

    2016-11-01

    Full Text Available Human infections associated with Corynebacterium kroppenstedtii are rarely reported, and this organism is usually described as antibiotic sensitive. Almost all published cases of C. kroppenstedtii infections have been associated with breast pathology in women and have been described in New Zealand, France, Canada, India and Japan. Here we describe the microbiologic characteristics of two strains isolated from two women diagnosed of granulomatous mastitis in Spain. One C. kroppenstedtii isolate was antibiotic sensitive while the other was multidrug resistant. Biochemical identification was possible using a wide battery of methods including API Coryne V2.0, API Strep, API NH, API NE, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene amplification and sequencing. Antimicrobial susceptibility to 28 antibiotics as determined by Etest showed one isolate being sensitive to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, vancomycin, clindamycin, tetracycline, linezolid and rifampin. The second isolate showed resistance to ciprofloxacin, moxifloxacin, clindamycin, tetracycline and rifampin. The multidrug-resistant isolate contained the erm(X, tet(W, cmx, aphA1-IAB, strAB and sul1 resistance genes known from the R plasmid pJA144188 of Corynebacterium resistens. These genes were absent in the genome of the antibiotic-sensitive isolate. This report confirms the tropism of this microorganism for women's breasts and presents the first description of a multidrug-resistant C. kroppenstedtii strain.

  9. An in silico platform for the design of heterologous pathways in nonnative metabolite production

    Directory of Open Access Journals (Sweden)

    Chatsurachai Sunisa

    2012-05-01

    Full Text Available Abstract Background Microorganisms are used as cell factories to produce valuable compounds in pharmaceuticals, biofuels, and other industrial processes. Incorporating heterologous metabolic pathways into well-characterized hosts is a major strategy for obtaining these target metabolites and improving productivity. However, selecting appropriate heterologous metabolic pathways for a host microorganism remains difficult owing to the complexity of metabolic networks. Hence, metabolic network design could benefit greatly from the availability of an in silico platform for heterologous pathway searching. Results We developed an algorithm for finding feasible heterologous pathways by which nonnative target metabolites are produced by host microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae as templates. Using this algorithm, we screened heterologous pathways for the production of all possible nonnative target metabolites contained within databases. We then assessed the feasibility of the target productions using flux balance analysis, by which we could identify target metabolites associated with maximum cellular growth rate. Conclusions This in silico platform, designed for targeted searching of heterologous metabolic reactions, provides essential information for cell factory improvement.

  10. Comparison of two biochemical methods for identifying Corynebacterium pseudotuberculosis isolated from sheep and goats.

    Science.gov (United States)

    Huerta, Belén; Gómez-Gascón, Lidia; Vela, Ana I; Fernández-Garayzábal, José F; Casamayor, Almudena; Tarradas, Carmen; Maldonado, Alfonso

    2013-06-01

    The biochemical pattern of Cowan and Steel (BPCS) was compared with a commercial biochemical strip for the identification of Corynebacterium pseudotuberculosis isolated from small ruminants. On 16S rRNA gene sequencing, 40/78 coryneform isolates from the lymph nodes of sheep and goats with lesions resembling caseous lymphadenitis were identified as C. pseudotuberculosis. The sensitivities of the BPCS and the commercial biochemical strip relative to 16S rRNA sequencing were 80% and 85%, and their specificities were 92.1% and 94.7%, respectively; the level of agreement between the BPCS and the commercial biochemical strip was high (κ=0.82). Likelihood ratios for positive and negative results were 10.0 and 0.22 for the BPCS, and 16.0 and 0.16 for the commercial biochemical strip, respectively. These results indicate that the BPCS and the commercial biochemical strip are both useful for identifying C. pseudotuberculosis in veterinary microbiology laboratories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Difteria pelo Corynebacterium ulcerans: uma zoonose emergente no Brasil e no mundo

    Directory of Open Access Journals (Sweden)

    Alexandre Alves de Souza de Oliveira Dias

    2011-12-01

    Full Text Available O artigo revisa a literatura sobre a emergência de infecções humanas causadas por Corynebacterium ulcerans em diversos países, incluindo o Brasil. Foi realizada análise de artigos publicados entre 1926 e 2011 nas bases Medline/PubMed e SciELO, bem como artigos e informes do Ministério da Saúde. Apresenta-se um esquema de triagem, rápido, econômico e de fácil execução, capaz de permitir a realização do diagnóstico presuntivo de C. ulcerans e C. diphtheriae na maioria dos laboratórios brasileiros públicos e privados. A circulação de C. ulcerans em vários países, aliada aos recentes casos de isolamento do patógeno no Rio de Janeiro, é um alerta a clínicos, veterinários e microbiologistas sobre a ocorrência de difteria zoonótica e a circulação do C. ulcerans em regiões urbanas e rurais do território nacional e/ou da América Latina.

  12. Mural endocarditis caused by Corynebacterium mustelae in a dog with a VSD.

    Science.gov (United States)

    Winter, Randolph L; Gordon, Sonya G; Zhang, Shuping; Hariu, Crystal D; Miller, Matthew W

    2014-01-01

    A 6 yr old female spayed large Munsterlander was evaluated following a 3 wk history of lethargy, inappetence, intermittent fever, and a recent change to the timing of her previously diagnosed heart murmur. Physical examination revealed marked dehydration, lethargy, and a grade 5/6 to-and-fro heart murmur that was auscultated best at the right sternal border. The dog was febrile, and echocardiography revealed a large, mobile, vegetative lesion in the right ventricular outflow tract associated with a ventricular septal defect (VSD). Mild aortic insufficiency was present. Corynebacterium mustelae (C. mustelae) was isolated from a pooled blood culture. Treatment of infective endocarditis (IE) was initiated along with supportive care, and the patient was discharged 9 days later. The dog remained without clinical signs 132 days after discharge. VSD is rarely mentioned as a predisposing factor for development of IE in veterinary literature; however, this report highlights that dogs with a VSD may be at risk for IE. To the authors' knowledge, this is the first documented case of a canine infection with C. mustelae. Infection with C. mustelae in this case represents a novel agent for IE in the dog.

  13. Activity of disinfectants and biofilm production of Corynebacterium pseudotuberculosis

    Directory of Open Access Journals (Sweden)

    Maria da C.A. Sá

    2013-11-01

    Full Text Available To verify the occurrence of caseous lymphadenitis in sheep and goats on farms of Pernambuco, Brazil, and in animals slaughtered in two Brazilian cities (Petrolina/PE and Juazeiro/BA, and to characterize the susceptibility profile of Corynebacterium pseudotuberculosis to disinfectants and antimicrobials, and its relationship with biofilm production were the objectives of this study. 398 samples were tested for sensitivity to antimicrobial drugs, disinfectants, and biofilm production. Among the 108 samples collected on the properties, 75% were positive for C. pseudotuberculosis. Slaughterhouse samples indicated an occurrence of caseous lymphadenitis in 15.66% and 6.31% for animals slaughtered in Petrolina and Juazeiro respectively. With respect to antimicrobials, the sensitivity obtained was 100% for florfenicol and tetracycline; 99.25% for enrofloxacin, ciprofloxacin and lincomycin; 98.99% for cephalothin; 98.74% for norfloxacin and sulfazotrim; 97.74% for gentamicin; 94.22% for ampicillin; 91.71% for amoxicillin; 91.21% for penicillin G; 89.19% for neomycin and 0% for novobiocin. In analyzes with disinfectants, the efficiency for chlorhexidine was 100%, 97.20% for quaternary ammonium, 87.40% for chlorine and 84.40% for iodine. 75% of the isolates were weak or non-biofilm producers. For the consolidated biofilm, found that iodine decreased biofilm formation in 13 isolates and quaternary ammonia in 11 isolates. The reduction of the biofilm formation was observed for iodine and quaternary ammonium in consolidated biofilm formation in 33% and 28% of the isolates, respectively. The results of this study highlight the importance of establishing measures to prevent and control the disease.

  14. A 2-step cooking method of searing and hot water pasteurization to maximize the safety of refrigerated, vacuum packaged, chicken breast meat.

    Science.gov (United States)

    Enns, D K; Crandall, P G; O'Bryan, C A; Griffis, C L; Martin, E M

    2007-05-01

    Americans consume almost 40 kg per capita of chicken each year. Increasing consumption of chicken surpassed pork in 1982 and beef in 1992. The objectives of this study were to examine the effectiveness of a novel, 2-step cooking method of grilling, slicing, vacuum packaging, and hot water pasteurization to inhibit the growth of Listeria monocytogenes in chicken breast meat. Because this study required the use of pilot plant scale pasteurization equipment, Listeria innocua M1, a nonpathogen with slightly greater heat resistance than L. monocytogenes, was used as a surrogate. We first examined the lethal effects of grilling on a boneless skinless chicken breast to mimic cross-contaminated, surface-inoculated Listeria. Searing produced a mean reduction of 2.5 log CFU/g of Listeria and a moisture loss of only 7% (w/w). A 2nd experiment studied the lethal effect of pasteurization of the sliced seared chicken breast. L. innocua M1 inoculated between the slices mimicked contamination in deep muscle. Pasteurization in a 71 degrees C bath (final internal temperature of 66 degrees C) gave an additional 2.3 log CFU/g reduction. L. innocua M1 did not show significant regrowth during a wk of refrigerated storage. The combined 2-step cooking method of searing and pasteurization gave a combined 4.8 log reduction in LI M1. In parallel tests a non-Listeria indicator, Corynebacterium glutamicum, inoculated between sliced, seared chicken, showed a 3 log reduction after pasteurization for 10 min in a 71 degrees C bath compared to 2.3 log reduction of Listeria. Corynebacterium regrowth occurred much faster than did L. innocua M1.

  15. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  16. Comparative analysis of the expression level of recombinant ginsenoside-transforming β-glucosidase in GRAS hosts and mass production of the ginsenoside Rh2-Mix

    Science.gov (United States)

    Siddiqi, Muhammad Zubair; Cui, Chang-Hao; Park, Seul-Ki; Han, Nam Soo; Kim, Sun-Chang

    2017-01-01

    The ginsenoside Rh2, a pharmaceutically active component of ginseng, is known to have anticancer and antitumor effects. However, white ginseng and red ginseng have extremely low concentrations of Rh2 or Rh2-Mix [20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3]. To enhance the production of food-grade ginsenoside Rh2, an edible enzymatic bioconversion technique was developed adopting GRAS host strains. A β-glucosidase (BglPm), which has ginsenoside conversion ability, was expressed in three GRAS host strains (Corynebacterium glutamicum, Saccharomyces cerevisiae and Lactococus lactis) by using a different vector system. Enzyme activity in these three GRAS hosts were 75.4%, 11.5%, and 9.3%, respectively, compared to that in the E. coli pGEX 4T-1 expression system. The highly expressed BglPm_C in C. glutamicum can effectively transform the ginsenoside Rg3-Mix [20(S)-Rg3, 20(R)-Rg3, Rk1, Rg5] to Rh2-Mix [20(S)-Rh2, 20(R)-Rh2, Rk2, Rh3] using a scaled-up biotransformation reaction, which was performed in a 10-L jar fermenter at pH 6.5/7.0 and 37°C for 24 h. To our knowledge, this is the first report in which 50 g of PPD-Mix (Rb1, Rb2, Rb3, Rc, and Rd) as a starting substrate was converted to ginsenoside Rg3-Mix by acid heat treatment and then 24.5-g Rh2-Mix was obtained by enzymatic transformation of Rg3-Mix through by BglPm_C. Utilization of this enzymatic method adopting a GRAS host could be usefully exploited in the preparation of ginsenoside Rh2-Mix in cosmetics, functional food, and pharmaceutical industries, thereby replacing the E. coli expression system. PMID:28423055

  17. Gram-positive bacterial lipoglycans based on a glycosylated diacylglycerol lipid anchor are microbe-associated molecular patterns recognized by TLR2.

    Directory of Open Access Journals (Sweden)

    Landry Blanc

    Full Text Available Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs, of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.

  18. Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors

    Czech Academy of Sciences Publication Activity Database

    Šilar, Radoslav; Holátko, Jiří; Rucká, Lenka; Rapoport, Andrey; Dostálová, Hana; Kadeřábková, Pavla; Nešvera, Jan; Pátek, Miroslav

    2016-01-01

    Roč. 73, č. 3 (2016), s. 401-408 ISSN 0343-8651 Institutional support: RVO:61388971 Keywords : GENE-EXPRESSION * REGULATORY NETWORK * BACILLUS-SUBTILIS Subject RIV: EE - Microbiology , Virology Impact factor: 1.322, year: 2016

  19. A comparative study on phyllosphere nitrogen fixation by newly isolated Corynebacterium sp. & Flavobacterium sp. and their potentialities as biofertilizer.

    Science.gov (United States)

    Giri, S; Pati, B R

    2004-01-01

    A number of nitrogen fixing bacteria has been isolated from forest phyllosphere on the basis of nitrogenase activity. Among them two best isolates are selected and identified as Corynebacterium sp. AN1 & Flavobacterium sp. TK2 able to reduce 88 and 132 n mol of acetylene (10(8)cells(-1)h(-1)) respectively. They were grown in large amount and sprayed on the phyllosphere of maize plants as a substitute for nitrogenous fertilizer. Marked improvements in growth and total nitrogen content of the plant have been observed by the application of these nitrogen-fixing bacteria. An average 30-37% increase in yield was obtained, which is nearer to chemical fertilizer treatment. Comparatively better effect was obtained by application of Flavobacterium sp.

  20. Rapid detection of Corynebacterium pseudotuberculosis in clinical samples from sheep.

    Science.gov (United States)

    Kumar, Jyoti; Tripathi, Bhupendra Nath; Kumar, Rajiv; Sonawane, Ganesh Gangaram; Dixit, Shivendra Kumar

    2013-08-01

    Corynebacterium pseudotuberculosis, a Gram-positive bacterium is the causative agent of caseous lymphadenitis (CLA), a chronic disease of sheep, goats and other warm blooded animals. In the present study, a total of 1,080 sheep reared under semi-intensive system on organized farms situated in the semi arid tropical region of Rajasthan, India, was clinically examined. Pus samples from superficial lymph nodes of 25 (2.31%) adult sheep showing clinical lesions similar to CLA were collected for laboratory analyses. On the basis of morphological, cultural and biochemical characteristics 12 (48%) bacterial isolates from pus identified it as C. pseudotuberculosis. A polymerase chain reaction (PCR) assay targeting Putative oligopeptide/dipeptide ABC transporter, nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase coenzyme F420-dependent and proline iminopeptidase (PIP) genes of C. pseudotuberculosis was developed that showed 14 pus samples as positive. All C. pseudotuberculosis isolates were also found positive for these genes in the PCR. The specificity of the PCR products was confirmed by sequencing of the amplified products that showed 98-100% homology with published sequences available in the NCBI database. The present study shows the incidence of CLA as 2.31%, 1.1% and 1.29% based on clinical, bacterial culture and direct pus PCR assay, respectively. The PCR assay was rapid, specific and as significant as bacterial culture in detecting bacteria directly in the clinical pus samples. The PCR assay developed in the study can be applied for the diagnosis and control of CLA. Furthermore, the assay can also be applied to detect C. pseudotuberculosis in various clinical samples.

  1. Molecular epidemiology of Corynebacterium pseudotuberculosis isolated from horses in California.

    Science.gov (United States)

    Haas, Dionei J; Dorneles, Elaine M S; Spier, Sharon J; Carroll, Scott P; Edman, Judy; Azevedo, Vasco A; Heinemann, Marcos B; Lage, Andrey P

    2017-04-01

    Corynebacterium pseudotuberculosis biovar Equi is an important pathogen of horses. It is increasing in frequency in the United States, and is responsible for various clinical forms of infection, including external abscesses, internal abscesses of the abdominal or thoracic cavities, and ulcerative lymphangitis. The host/pathogen factors dictating the form or severity of infection are currently unknown. Our recent investigations have shown that genotyping C. pseudotuberculosis isolates using enterobacterial repetitive intergenic consensus (ERIC)-PCR is useful for understanding the evolutionary genetics of the species as well for molecular epidemiology studies. The aims of the present study were to assess (i) the genetic diversity of C. pseudotuberculosis strains isolated from horses in California, United States and (ii) the epidemiologic relationships among isolates. One hundred and seven C. pseudotuberculosis biovar Equi isolates from ninety-five horses, and two C. pseudotuberculosis biovar Ovis strains, C. pseudotuberculosis ATCC 19410 T type strain and C. pseudotuberculosis 1002 vaccine strain, were fingerprinted using the ERIC 1+2-PCR. C. pseudotuberculosis isolated from horses showed a high genetic diversity, clustering in twenty-seven genotypes with a diversity index of 0.91. Minimal spanning tree showed four major clonal complexes with a pattern of temporal clustering. Strains isolated from the same horse showed identical ERIC 1+2-PCR genotype, with the exception of two strains isolated from the same animal that showed distinct genotypes, suggesting a co-infection. We found no strong genetic signals related to clinical form (including internal versus external infections). However, temporal clustering of genotypes was observed. Copyright © 2016. Published by Elsevier B.V.

  2. Evaluation of three methods for DNA fingerprinting of Corynebacterium pseudotuberculosis strains isolated from goats in Poland.

    Science.gov (United States)

    Stefańska, Ilona; Rzewuska, Magdalena; Binek, Marian

    2008-01-01

    Phenotypic approaches based on metabolic and biological characteristics of Corynebacterium pseudotuberculosis have been limited due to insufficient discrimination between closely related isolates. In this paper we present performance and convenience of three molecular typing methods: BOX-PCR, random amplification of polymorphic DNA (RAPD) and amplification of DNA fragments surrounding rare restriction site (ADSRRS-fingerprinting) in genome analysis of these bacteria. Among examined 61 strains there were distinguished four, eight and 10 different genotypes by BOX-PCR, RAPD and ADSRRS-fingerprinting, respectively. The value of discrimination index was the lowest for BOX-PCR (D = 0.265), much bigger for RAPD (D = 0.539) and the highest for ADSRRS-fingerprinting (D = 0.604). The good discriminatory ability and reproducibility of RAPD and ADSRRS-fingerprinting indicates that those techniques may be particularly applied for epidemiological studies of C. pseudotuberculosis isolates. We found that ADSRRS-fingerprinting is a rapid method offering good discrimination power, excellent reproducibility and may be applied for epidemiological studies of intraspecific genetic relatedness of C. pseudotuberculosis strains.

  3. Amino acids production focusing on fermentation technologies - A review.

    Science.gov (United States)

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Surgical Site Infection by Corynebacterium macginleyi in a Patient with Neurofibromatosis Type 1

    Directory of Open Access Journals (Sweden)

    Bruno Cacopardo

    2013-01-01

    Full Text Available Corynebacterium (C. macginleyi is a gram positive, lipophilic rod, usually considered a colonizer of skin and mucosal surfaces. Several reports have associated C. macginleyi with ocular infections, such as conjunctivitis and endophthalmitis. However, even if rare, extraocular infections from C. macginleyi may occur, especially among immunocompromised patients and patients with indwelling medical devices. We report herein the first case of surgical site infection by C. macginleyi after orthopaedic surgery for the correction of kyphoscoliosis in a patient with neurofibromatosis type 1. Our patient developed a nodular granulomatous lesion of about two centimetres along the surgical scar, at the level of C4-C5, with purulent discharge and formation of a fistulous tract. Cervical magnetic resonance imaging showed the presence of a two-centimetre fluid pocket in the subcutaneous tissue. Several swabs were collected from the borders of the lesion as well as from the exudate, with isolation of C. macginleyi. The isolate was susceptible to beta-lactams, cotrimoxazole, linezolid, and glycopeptides but resistant to quinolones, third-generation cephalosporins, and erythromycin. Two 30-day courses of antibiotic therapy with amoxicillin/clavulanate (1 g three times/day and cotrimoxazole (800/160 mg twice a day were administered, obtaining a complete healing of the lesion.

  5. [Expression optimization and characterization of Tenebrio molitor antimicrobiol peptides TmAMP1m in Escherichia coli].

    Science.gov (United States)

    Alimu, Reyihanguli; Mao, Xinfang; Liu, Zhongyuan

    2013-06-01

    To improve the expression level of tmAMP1m gene from Tenebrio molitor in Escherichia coli, we studied the effects of expression level and activity of the fusion protein HIS-TmAMP1m by conditions, such as culture temperature, inducing time and the final concentration of inductor Isopropyl beta-D-thiogalactopyranoside (IPTG). We analyzed the optimum expression conditions by Tricine-SDS-PAGE electrophoresis, meanwhile, detected its antibacterial activity by using agarose cavity diffusion method. The results suggest that when inducing the recombinant plasmid with a final IPTG concentration of 0.1 mmol/L at 37 degrees C for 4 h, there was the highest expression level of fusion protein HIS-TmAMP1m in Escherichia coli. Under these conditions, the expression of fusion protein accounted for 40% of the total cell lysate with the best antibacterial activity. We purified the fusion protein HIS-TmAMPlm with nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography matrices. Western blotting analysis indicates that the His monoclonal antibody could be specifically bound to fusion protein HIS-TmAMPlm. After expression by inducing, the fusion protein could inhibit the growth of host cell transformed by pET30a-tmAMP1m. The fusion protein HIS-TmAMP1m had better stability and remained higher antibacterial activities when incubated at 100 degrees C for 10 h, repeated freeze thawing at -20 degrees C, dissolved in strong acid and alkali, or treated by organic solvents and protease. Moreover, the minimum inhibitory concentration results demonstrated that the fusion protein HIS-TmAMP1m has a good antibacterial activity against Staphylococcus aureus, Staphylococcus sp., Corynebacterium glutamicum, Bacillus thuringiensis, Corynebacterium sp. This study laid the foundation to promote the application of insect antimicrobial peptides and further research.

  6. Phenotypic, molecular characterization, antimicrobial susceptibility and draft genome sequence of Corynebacterium argentoratense strains isolated from clinical samples

    Directory of Open Access Journals (Sweden)

    I. Fernández-Natal

    2016-03-01

    Full Text Available During a 12-year period we isolated five Corynebacterium argentoratense strains identified by phenotypic methods, including the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF and 16S rRNA gene sequencing. In addition, antimicrobial susceptibility was determined, and genome sequencing for the detection of antibiotic resistance genes was performed. The organisms were isolated from blood and throat cultures and could be identified by all methods used. All strains were resistant to cotrimoxazole, and resistance to β-lactams was partly present. Two strains were resistant to erythromycin and clindamycin. The draft genome sequences of theses isolates revealed the presence of the erm(X resistance gene that is embedded in the genetic structure of the transposable element Tn5423. Although rarely reported as a human pathogen, C. argentoratense can be involved in bacteraemia and probably in other infections. Our results also show that horizontal transfer of genes responsible for antibiotic resistance is occurring in this species.

  7. [Corynebacterium imitans isolated from blood culture in a patient with suspected bacteremia - the first isolation from human clinical material in the Czech Republic].

    Science.gov (United States)

    JeŽek, Petr; Zavadilová, Jana; Kolínská, Renáta; Švec, Pavel; Guttwirth, Jiří; Petráš, Petr

    2014-09-01

    The current view of the clinical importance of nondiphtherial corynebacteria recovered from human clinical material has changed considerably in recent decades; in many cases, a direct etiological role is assumed or has already been demonstrated. Presented is a case of suspected bacteremia in a hospitalized elderly woman with isolation of the very rare species Corynebacterium imitans from blood culture. However, the etiological significance of the isolated microorganism remains unclear. The aim was not to demonstrate the etiological significance of the isolated C. imitans strain but to report the occurrence of this very rare species which is considered to be the first isolation from humans in the Czech Republic.

  8. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.

    Science.gov (United States)

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-05-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Aggregative adherent strains of Corynebacterium pseudodiphtheriticum enter and survive within HEp-2 epithelial cells

    Directory of Open Access Journals (Sweden)

    Monica Cristina de Souza

    2012-06-01

    Full Text Available Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2 cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.

  10. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  11. Technetium-99m labeling and fibronectin binding ability of Corynebacterium diphtheriae

    International Nuclear Information System (INIS)

    Souza, S.M.S.; Nagao, P.E.; Bernardo-Filho, M.; Pereira, G.A.; Napoleao, F.; Andrade, A.F.B.; Hirata Junior, R.; Mattos-Guaraldi, A.L.

    2004-01-01

    The use of radionuclides has permitted advances in areas of clinical and scientific knowledge. Several molecules and cells have been labelled with Technetium-99m ( 99m Tc). The stannous chloride (SnCl 2 ) has a significant influence on the labeling and stability of 99m Tc radiotracers. The frequent risk of diphtheria epidemics has intensified interest in the virulence factors of Corynebacterium diphtheriae. Although studies have looked at potential adhesins including haemagglutinins and exposed sugar residues, the molecular basis of mechanisms of adherence remains unclear. Adherence of pathogens to mammalian tissues may be mediated by fibronectin (FN) found in body fluids, matrix of connective tissues, and cell surfaces. In the present study we evaluated the binding ability to human plasma FN by 99m Tc labeled-C.diphtheriae. Due to adverse effects of stannous ions, microorganisms were submitted to survival and filamentation induction assays. Data showed a dose dependent susceptibility to SnCl 2 bactericidal effects. Cell filamentation was observed for concentrations of SnCl 2 > 110 μg/ml. Adherence levels of 99m Tc labelled 241strain to coverslips coated with 20 μg/ml FN were higher (P = 0.0037) than coated with bovine serum albumin. FN binding by the sucrose fermenting 241 C. diphtheriae strain (8.9% + 2.6) was significantly lower (P=0.0139) than Staphylococcus aureus Cowan I strain (34.1% ± 1.2). Therefore, bacterial 99m Tc labeling represents an additional tool that may contribute to the comprehension of C. diphtheriae interactions with host receptors such as FN that act as biological organizers by holding bacterial cells in position and guiding their migration. (author)

  12. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    Science.gov (United States)

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  13. Corynebacterium diphtheriae in a free-roaming red fox: case report and historical review on diphtheria in animals.

    Science.gov (United States)

    Sing, Andreas; Konrad, Regina; Meinel, Dominik M; Mauder, Norman; Schwabe, Ingo; Sting, Reinhard

    2016-08-01

    Corynebacterium diphtheriae, the classical causative agent of diphtheria, is considered to be nearly restricted to humans. Here we report the first finding of a non-toxigenic C. diphtheriae biovar belfanti strain in a free-roaming wild animal. The strain obtained from the subcutis and mammary gland of a dead red fox (Vulpes vulpes) was characterized by biochemical and molecular methods including MALDI-TOF and Multi Locus Sequence Typing. Since C. diphtheriae infections of animals, usually with close contact to humans, are reported only very rarely, an intense review comprising also scientific literature from the beginning of the 20th century was performed. Besides the present case, only 11 previously reported C. diphtheriae animal infections could be verified using current scientific criteria. Our report is the first on the isolation of C. diphtheriae from a wildlife animal without any previous human contact. In contrast, the very few unambiguous publications on C. diphtheriae in animals referred to livestock or pet animals with close human contact. C. diphtheriae carriage in animals has to be considered as an exceptionally rare event.

  14. The CDC Hemophilia B mutation project mutation list: a new online resource.

    Science.gov (United States)

    Li, Tengguo; Miller, Connie H; Payne, Amanda B; Craig Hooper, W

    2013-11-01

    Hemophilia B (HB) is caused by mutations in the human gene F9. The mutation type plays a pivotal role in genetic counseling and prediction of inhibitor development. To help the HB community understand the molecular etiology of HB, we have developed a listing of all F9 mutations that are reported to cause HB based on the literature and existing databases. The Centers for Disease Control and Prevention (CDC) Hemophilia B Mutation Project (CHBMP) mutation list is compiled in an easily accessible format of Microsoft Excel and contains 1083 unique mutations that are reported to cause HB. Each mutation is identified using Human Genome Variation Society (HGVS) nomenclature standards. The mutation types and the predicted changes in amino acids, if applicable, are also provided. Related information including the location of mutation, severity of HB, the presence of inhibitor, and original publication reference are listed as well. Therefore, our mutation list provides an easily accessible resource for genetic counselors and HB researchers to predict inhibitors. The CHBMP mutation list is freely accessible at http://www.cdc.gov/hemophiliamutations.

  15. Expression, purification, crystallization and preliminary crystallographic analysis of SpaA, a major pilin from Corynebacterium diphtheriae

    International Nuclear Information System (INIS)

    Kang, Hae Joo; Paterson, Neil G.; Baker, Edward N.

    2009-01-01

    SpaA, one of the major pilins of C. diphtheriae, has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.6 Å resolution. Bacterial pili are cell-surface organelles that are critically involved in adhesion to host cells, leading to the colonization of host tissues and the establishment of infections. Whereas the pili of Gram-negative bacteria have been extensively studied, those of Gram-positive bacteria came to light only recently after the discovery and characterization of Corynebacterium diphtheriae pili. These newly discovered pili are formed by the covalent polymerization of pilin subunits catalyzed by sortase enzymes, making them fundamentally different from the noncovalent pilin assemblies of Gram-negative bacteria. Here, the expression, crystallization and preliminary crystallographic analysis of SpaA, which forms the shaft of one of the three types of pili expressed by C. diphtheriae, are reported. SpaA 53–486 crystals diffracted to 1.6 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 34.9, b = 64.1, c = 198.7 Å, α = β = γ = 90°

  16. Isolation of Corynebacterium Xerosis from Jordanian Soil and a Study on its Antimicrobial Activity against a Range of Bacteria and Fungi

    International Nuclear Information System (INIS)

    El-Banna, Nasser

    2004-01-01

    A bacterial strain which has been identified as Corneybacterium Xerosis NB-2 was isolated from a soil sample from Jerash Private University, Jerash, Jordan. This isolate was found to produce an antimicrobial substance active only against filamentous fungi and yeasts (Aspergillus niger SQ 40, Fusarium oxysporium SQ11, Verticillium dahliae SQ 42, Saccharomyces SQ 46 and Candida albicans SQ 47). However, all tested gram-positive bacteria and gram negative bacteria (Bacillus megaterium SQ5, Bacillus cereus SQ6, Staphylococcus aureus SQ9, Streptococcus pyogens SQ10, Eschericshia coli SQ 22, Klepsiella spp SQ33 and SQ33 and Pseudonomas mallei SQ 34) were found to be resistant. In batch culture, the isolated NB-2 produced the antimicrobial substance late in the growth phase and antimicrobial activity of Corynebacterium Xerosis against filamentous fungi and yeasts which was not previously described. (author)

  17. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    Science.gov (United States)

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  18. An Inert Continuous Microreactor for the Isolation and Analysis of a Single Microbial Cell

    Directory of Open Access Journals (Sweden)

    Katrin Rosenthal

    2015-11-01

    Full Text Available Studying biological phenomena of individual cells is enabled by matching the scales of microbes and cultivation devices. We present a versatile, chemically inert microfluidic lab-on-a-chip (LOC device for biological and chemical analyses of isolated microorganisms. It is based on the Envirostat concept and guarantees constant environmental conditions. A new manufacturing process for direct fusion bonding chips with functional microelectrodes for selective and gentle cell manipulation via negative dielectrophoresis (nDEP was generated. The resulting LOC system offered a defined surface chemistry and exceptional operational stability, maintaining its structural integrity even after harsh chemical treatment. The microelectrode structures remained fully functional after thermal bonding and were proven to be efficient for single-cell trapping via nDEP. The microfluidic network consisted solely of glass, which led to enhanced chip reusability and minimized interaction of the material with chemical and biological compounds. We validated the LOC for single-cell studies with the amino acid secreting bacterium Corynebacterium glutamicum. Intracellular l-lysine production dynamics of individual bacteria were monitored based on a genetically encoded fluorescent nanosensor. The results demonstrate the applicability of the presented LOC for pioneering chemical and biological studies, where robustness and chemically inert surfaces are crucial parameters for approaching fundamental biological questions at a single-cell level.

  19. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    Directory of Open Access Journals (Sweden)

    Xiaoxue Zhou

    2016-08-01

    Full Text Available Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond daughter cell separation (DCS driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives, observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae.

  20. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    , and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...... dismutase (sod) promoter, to see whether growth could be restored. Neither pycA nor birA overexpression, whether alone or in combination, had an effect on specific growth rate, but they did have a positive effect on lysine yield, which increased by 55% in the strain overexpressing both enzymes....

  1. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations.

    Science.gov (United States)

    Setia, Nitika; Saxena, Renu; Arora, Anjali; Verma, Ishwar C

    2016-12-01

    Homozygous familial hypercholesterolemia (FH) is a rare but serious, inherited disorder of lipid metabolism characterized by very high total and LDL cholesterol levels from birth. It presents as cutaneous and tendon xanthomas since childhood, with or without cardiac involvement. FH is commonly caused by mutations in three genes, i.e. LDL receptor (LDLR), apolipoprotein B (ApoB) and PCSK9. We aimed to determine the spectrum of mutations in cases of homozygous FH in Asian Indians and evaluate if there was any similarity to the mutations observed in Caucasians. Sixteen homozygous FH subjects from eleven families were analyzed for mutations by Sanger sequencing. Large rearrangements in LDLR gene were evaluated by multiplex ligation probe dependent amplification (MLPA) technique. Ten mutations were observed in LDLR gene, of which four mutations were novel. No mutation was detected in ApoB gene and common PCSK9 mutation (p.D374Y). Fourteen cases had homozygous mutations; one had compound heterozygous mutation, while no mutation was detected in one clinically homozygous case. We report an interesting "Triple hit" case with features of homozygous FH. The spectrum of mutations in the Asian Indian population is quite heterogeneous. Of the mutations identified, 40% were novel. No mutation was observed in exons 3, 9 and 14 of LDLR gene, which are considered to be hot spots in studies done on Asian Indians in South Africa. Early detection followed by aggressive therapy, and cascade screening of extended families has been initiated to reduce the morbidity and mortality in these patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Comprehensive update of dalbavancin activity when tested against uncommonly isolated streptococci, Corynebacterium spp., Listeria monocytogenes, and Micrococcus spp. (1357 strains).

    Science.gov (United States)

    Jones, Ronald N; Stilwell, Matthew G

    2013-06-01

    Dalbavancin is an investigational lipoglycopeptide having an extended serum elimination half-life allowing once-weekly dosing. Data from testing 1357 strains of uncommonly isolated species expand the dalbavancin spectrum details as follows (MIC50/90): β-haemolytic streptococcal serogroups C, F, and G (≤0.03/≤0.03 μg/mL), 7 viridans group of streptococci (≤0.03/≤0.03-0.06 μg/mL), 5 Corynebacterium spp. (0.06/0.12 μg/mL), Listeria monocytogenes (0.06/0.12 μg/mL), and Micrococcus spp. (≤0.03/≤0.03 μg/mL). Among all reported isolates, 99.8% of tested strains were inhibited at dalbavancin MIC values at ≤0.12 μg/mL. Dalbavancin remains very potent against rarer Gram-positive pathogens, using in vitro test experience with organisms cultured through 2011. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum.

    Science.gov (United States)

    Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto

    2018-01-25

    Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.

  4. Mastitis in dairy cattle caused by Corynebacterium pseudotuberculosis and the feasibility of transmission by houseflies. I.

    Science.gov (United States)

    Yeruham, I; Braverman, Y; Shpigel, N Y; Chizov-Ginzburg, A; Saran, A; Winkler, M

    1996-09-01

    Morbidity due to Corynebacterium pseudotuberculosis infection occurred in 29 dairy herds. The disease appeared basically in three clinical forms: cutaneous, mastitic, and visceral. The appearance of the disease showed a marked seasonality: in 23 herds it occurred during the spring and summer months (dry season) (March-October). The mastitic form occurred in only 10 herds and the causative bacterium was isolated from 33 cows (5.8%). All the strains of C. pseudotuberculosis isolated from the milk samples were found not to be nitrate reducers. The bacterium was excreted in the milk of six cows from herd B during a period of 11 months. In the mastitic cows, a decrease in milk production and considerable increases in the somatic cell count were noted. C. pseudotuberculosis was isolated from houseflies collected over a cow lesion. Laboratory-reared houseflies were successfully infected with C. pseudotuberculosis-contaminated milk, broth and sugar cubes. Flies infected with the bacterium from contaminated milk excreted the bacterium in their droppings for up to 4 h and from their saliva for up to 3 h post infection. The bacterium survived on the external organs of houseflies for no longer than 10 min post infection, after the flies had been dipped in contaminated broth.

  5. Characterization of a mutation commonly associated with persistent stuttering: evidence for a founder mutation

    Science.gov (United States)

    Fedyna, Alison; Drayna, Dennis; Kang, Changsoo

    2010-01-01

    Stuttering is a disorder which affects the fluency of speech. It has been shown to have high heritability, and has recently been linked to mutations in the GNPTAB gene. One such mutation, Glu1200Lys, has been repeatedly observed in unrelated families and individual cases. Eight unrelated individuals carrying this mutation were analyzed in an effort to distinguish whether these arise from repeated mutation at the same site, or whether they represent a founder mutation with a single origin. Results show that all 12 chromosomes carrying this mutation share a common haplotype in this region, indicating it is a founder mutation. Further analysis estimated the age of this allele to be ~572 generations. Construction of a cladogram tracing the mutation through our study sample also supports the founder mutation hypothesis. PMID:20944643

  6. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80

    Directory of Open Access Journals (Sweden)

    Cindy Wang

    2011-01-01

    Full Text Available The addition of polyoxyethylene sorbitan monooleate (Tween 80 to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.

  7. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  8. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  9. Diphtheria in the Republic of Georgia: Use of Molecular Typing Techniques for Characterization of Corynebacterium diphtheriae Strains

    Science.gov (United States)

    Sulakvelidze, Alexander; Kekelidze, Merab; Gomelauri, Tsaro; Deng, Yingkang; Khetsuriani, Nino; Kobaidze, Ketino; De Zoysa, Aruni; Efstratiou, Androulla; Morris, J. Glenn; Imnadze, Paata

    1999-01-01

    Sixty-six Corynebacterium diphtheriae strains (62 of the gravis biotype and 4 of the mitis biotype) isolated during the Georgian diphtheria epidemic of 1993 to 1998 and 13 non-Georgian C. diphtheriae strains (10 Russian and 3 reference isolates) were characterized by (i) biotyping, (ii) toxigenicity testing with the Elek assay and PCR, (iii) the randomly amplified polymorphic DNA (RAPD) technique, and (iv) pulsed-field gel electrophoresis (PFGE). Fifteen selected strains were ribotyped. Six RAPD types and 15 PFGE patterns were identified among all strains examined, and 12 ribotypes were found among the 15 strains that were ribotyped. The Georgian epidemic apparently was caused by one major clonal group of C. diphtheriae (PFGE type A, ribotype R1), which was identical to the predominant epidemic strain(s) isolated during the concurrent diphtheria epidemic in Russia. A dendrogram based on the PFGE patterns revealed profound differences between the minor (nonpredominant) epidemic strains found in Georgia and Russia. The methodologies for RAPD typing, ribotyping, and PFGE typing of C. diphtheriae strains were improved to enable rapid and convenient molecular typing of the strains. The RAPD technique was adequate for biotype differentiation; however, PFGE and ribotyping were better (and equal to each other) at discriminating between epidemiologically related and unrelated isolates. PMID:10488190

  10. Technetium-99m labeling and fibronectin binding ability of Corynebacterium diphtheriae; Marcacao de Corynebacterium diphtheriae com Tecnecio-99m e avaliacao da capacidade de ligacao a fibronectina de plasma humano

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.M.S.; Nagao, P.E.; Bernardo-Filho, M. [Universidade do Estado do Rio de Janeiro, RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes; Pereira, G.A.; Napoleao, F.; Andrade, A.F.B.; Hirata Junior, R.; Mattos-Guaraldi, A.L. [Universidade do Estado do Rio de Janeiro, RJ (Brazil). Faculdade de Ciencias Medicas

    2004-04-15

    The use of radionuclides has permitted advances in areas of clinical and scientific knowledge. Several molecules and cells have been labelled with Technetium-99m ({sup 99m}Tc). The stannous chloride (SnCl{sub 2}) has a significant influence on the labeling and stability of {sup 99m}Tc radiotracers. The frequent risk of diphtheria epidemics has intensified interest in the virulence factors of Corynebacterium diphtheriae. Although studies have looked at potential adhesins including haemagglutinins and exposed sugar residues, the molecular basis of mechanisms of adherence remains unclear. Adherence of pathogens to mammalian tissues may be mediated by fibronectin (FN) found in body fluids, matrix of connective tissues, and cell surfaces. In the present study we evaluated the binding ability to human plasma FN by {sup 99m}Tc labeled-C.diphtheriae. Due to adverse effects of stannous ions, microorganisms were submitted to survival and filamentation induction assays. Data showed a dose dependent susceptibility to SnCl{sub 2} bactericidal effects. Cell filamentation was observed for concentrations of SnCl{sub 2} > 110 {mu}g/ml. Adherence levels of {sup 99m}Tc labelled 241strain to coverslips coated with 20 {mu}g/ml FN were higher (P = 0.0037) than coated with bovine serum albumin. FN binding by the sucrose fermenting 241 C. diphtheriae strain (8.9% + 2.6) was significantly lower (P=0.0139) than Staphylococcus aureus Cowan I strain (34.1% {+-} 1.2). Therefore, bacterial {sup 99m}Tc labeling represents an additional tool that may contribute to the comprehension of C. diphtheriae interactions with host receptors such as FN that act as biological organizers by holding bacterial cells in position and guiding their migration. (author)

  11. Repair-resistant mutation in Neurospora

    International Nuclear Information System (INIS)

    Stadler, D.; Macleod, H.; Loo, M.

    1987-01-01

    Chronic UV treatment produces severalfold fewer mutations in Neurospora conidia than does the same total dose of acute UV. Experiments were designed to determine the conditions required for chronic UV mutagenesis. Measurement of the coincidence frequency for two independent mutations revealed the existence of a subset of cells which are mutable by chronic UV. Analysis of forward mutation at the mtr locus showed that the genetic alterations produced by chronic UV were virtually all point mutants, even though the assay system could detect alterations or deletions extending into neighboring genes. A significant fraction of the mutants produced by acute UV were multigenic deletions. The size of the dose-rate effect (acute UV mutation frequency divided by chronic UV mutation frequency) was compared for several different mutation assay systems. Forward mutations (recessive lethals and mtr) gave values ranging from four to nine. For events which were restricted to specific molecular sites (specific reversions and nonsense suppressor mutations), there was a wider range of dose-rate ratios. This suggests that chronic UV mutation may be restricted to certain molecular sequences or configurations

  12. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    Science.gov (United States)

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  13. The Oenothera plastome mutator: effect of UV irradiation and nitroso-methyl urea on mutation frequencies

    International Nuclear Information System (INIS)

    Sears, B.B.; Sokalski, M.B.

    1991-01-01

    Oenothera plants homozygous for a recessive plastome mutator allele (pm) showed spontaneous mutation frequencies for plastome genes that are 200-fold higher than spontaneous levels. Mutations occurred at high frequencies in plants grown in the field, in a glasshouse, or as leaf tip cultures under fluorescent light, indicating that the plastome mutator activity is UV-independent. However, the chlorotic sectors became visible at an earlier stage of development when seedlings were irradiated, compared to seedlings that were not exposed to UV. These results imply that the rate of sorting-out was increased by the irradiation treatment, possibly due to a decrease in the effective number of multiplication-competent plastids, or a reduction in the extent of cytoplasmic mixing. Nitroso-methyl urea treatment of seeds had a dramatic effect on mutation frequency in both wild-type and plastome mutator samples. When the background mutation rates were low, the combination of the plastome mutator nucleus and the chemical mutagenesis treatment resulted in a synergistic effect, suggesting that the plastome mutator may involve a cpDNA repair pathway. (author)

  14. Mutations causative of familial hypercholesterolaemia

    DEFF Research Database (Denmark)

    Benn, Marianne; Watts, Gerald F; Tybjærg-Hansen, Anne

    2016-01-01

    causing mutations in 98 098 participants from the general population, the Copenhagen General Population Study. METHODS AND RESULTS: We genotyped for LDLR[W23X;W66G;W556S] and APOB[R3500Q] accounting for 38.7% of pathogenic FH mutations in Copenhagen. Clinical FH assessment excluded mutation information......-cholesterol concentration to discriminate between mutation carriers and non-carriers was 4.4 mmol/L. CONCLUSION: Familial hypercholesterolaemia-causing mutations are estimated to occur in 1:217 in the general population and are best identified by a definite or probable phenotypic diagnosis of FH based on the DLCN criteria....... The prevalence of the four FH mutations was 0.18% (1:565), suggesting a total prevalence of FH mutations of 0.46% (1:217). Using the Dutch Lipid Clinic Network (DLCN) criteria, odds ratios for an FH mutation were 439 (95% CI: 170-1 138) for definite FH, 90 (53-152) for probable FH, and 18 (13-25) for possible FH...

  15. Protein cleavage strategies for an improved analysis of the membrane proteome

    Directory of Open Access Journals (Sweden)

    Poetsch Ansgar

    2006-03-01

    Full Text Available Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms.

  16. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Directory of Open Access Journals (Sweden)

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  17. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.

    Science.gov (United States)

    Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2016-09-01

    Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.

  18. Mutator activity in Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Shneyour, Y.; Koltin, Y. (Tel Aviv Univ. (Israel). Dept. of Microbiology)

    1983-01-01

    A strain with an elevated level of spontaneous mutations and an especially high rate of reversion at a specific locus (pab/sup -/) was identified. The mutator trait is recessive. UV sensitivity and the absence of a UV-specific endonucleolytic activity were associated with the enhancement of the mutation rate in mutator strains. The endonuclease associated with the regulation of the mutation rate also acted on single-stranded DNA. The molecular weight of this enzyme is about 38,000 daltons.

  19. Mutation and premating isolation

    Science.gov (United States)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  20. Mutation profiles of phenylketonuria in Quebec populations: Evidence of stratification and novel mutations

    Energy Technology Data Exchange (ETDEWEB)

    Rozen, R.; Mascisch, A.; Scriver, C.R. (McGill Univ., Montreal (Canada)); Lambert, M. (Hopital Ste-Justine, Montreal (Canada)); Laframboise, R. (Centre Hospitalier Universite Laval, Quebec (Canada))

    1994-08-01

    Independent phenylketonuria (PKU) chromosomes (n=109) representing 80% of a proband cohort in Quebec province carry 18 different identified mutations in 20 different mutation/haplotype combinations. The study reported here, the third in a series on Quebec populations, was done in the Montreal region and predominantly on French Canadians. It has identified three novel mutations (A309D, D338Y, and 1054/1055delG [352fs]) and one unusual mutation/RFLP haplotype combination (E280K on Hp 2). The relative frequencies and distribution of PKU mutations were then compared in three regions and population subsets (eastern Quebec, French Canadian; western Quebec, French Canadian; and Montreal, non-French Canadian). The distributions of the prevalent and rare mutations are nonrandom and provide evidence for genetic stratification. The latter and the presence of eight unusual mutation/haplotype combinations in Quebec families with European ancestries (the aforementioned four and M1V, 165T, S349P, and R408W on Hp 1) corroborate demographic and anthropologic evidence, from elsewhere, for different origins of French Canadians in eastern and western Quebec. 29 refs., 1 fig., 1 tab.

  1. Better plants through mutations

    International Nuclear Information System (INIS)

    1988-01-01

    This is a public relations film describing problems associated with the genetic improvement of crop plants through induced mutations. Mutations are the ultimate source of genetic variation in plants. Mutation induction is now established as a practical tool in plant breeding. The Joint FAO/IAEA Division and the IAEA's laboratory at Seibersdorf have supported research and practical implementation of mutation breeding of both seed propagated and vegetatively propagated plants. Plant biotechnology based on in vitro culture and recombinant DNA technology will make a further significant contribution to plant breeding

  2. Predictable Phenotypes of Antibiotic Resistance Mutations.

    Science.gov (United States)

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain

  3. Revertant mutation releases confined lethal mutation, opening Pandora's box: a novel genetic pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yasushi Ogawa

    2014-05-01

    Full Text Available When two mutations, one dominant pathogenic and the other "confining" nonsense, coexist in the same allele, theoretically, reversion of the latter may elicit a disease, like the opening of Pandora's box. However, cases of this hypothetical pathogenic mechanism have never been reported. We describe a lethal form of keratitis-ichthyosis-deafness (KID syndrome caused by the reversion of the GJB2 nonsense mutation p.Tyr136X that would otherwise have confined the effect of another dominant lethal mutation, p.Gly45Glu, in the same allele. The patient's mother had the identical misssense mutation which was confined by the nonsense mutation. The biological relationship between the parents and the child was confirmed by genotyping of 15 short tandem repeat loci. Haplotype analysis using 40 SNPs spanning the >39 kbp region surrounding the GJB2 gene and an extended SNP microarray analysis spanning 83,483 SNPs throughout chromosome 13 in the family showed that an allelic recombination event involving the maternal allele carrying the mutations generated the pathogenic allele unique to the patient, although the possibility of coincidental accumulation of spontaneous point mutations cannot be completely excluded. Previous reports and our mutation screening support that p.Gly45Glu is in complete linkage disequilibrium with p.Tyr136X in the Japanese population. Estimated from statisitics in the literature, there may be approximately 11,000 p.Gly45Glu carriers in the Japanese population who have this second-site confining mutation, which acts as natural genetic protection from the lethal disease. The reversion-triggered onset of the disesase shown in this study is a previously unreported genetic pathogenesis based on Mendelian inheritance.

  4. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds.

    Science.gov (United States)

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks' air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection.

  5. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    Science.gov (United States)

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  6. An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae.

    Directory of Open Access Journals (Sweden)

    Syed Babar Jamal

    Full Text Available Corynebacterium diphtheriae (Cd is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983 were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives. The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.

  7. Implantation of Corynebacterium pseudodiphtheriticum for elimination of Staphylococcus aureus from the nasal cavity in volunteers

    Science.gov (United States)

    Viacheslav, Ilyin; Kiryukhina, Nataliya

    Nasal carriage of Staphylococcus aureus is a well-documented risk factor of infection and inflammation of the skin, soft tissues and bacteremia. It is also known that most often etiology of these disorders is associated with autoinfection. The present-day methods of opportunistic pathogens eradication from the nasal cavity are based principally on the use of antiseptic and antibacterial agents. For instance, a local antibiotic mupirocin in the form of nasal ointment is considered to be the gold standard for the treatment of S. aureus carriage. The literature describes investigations showing how mupirocin can strengthen antibiotic resistance in S. aureus strains, including those with methicillin resistance (MRSA). It is also common knowledge that recolonization of the nasal mucous membrane takes place within several months after mupirocin treatment. This circumstance dictates the necessity to look for alternative ways of preventing the S. aureus carriage and methods of elimination. One of the methods of nasal S. aureus elimination is implantation of nonpathogenic microorganisms which will extrude opportunistic pathogens without impinging the symbiotic microbiota. Effectiveness of saline suspension of Corynebacterium pseudodiphtheriticum containing spray was assessed in a several chamber experiments with simulation of some spaceflight factors (dry immersion, isolation). Various schemes of application of preparations were applied. In all cases of corynebacteria application the strong inhibiting effect against S. aureus was detected. This fact opens a prospect of using nonpathogenic corynebacteria as a nasal probiotic. Administration of the nasal corynebacteria spray possibly prevented cross-infection by MRSA and appearance of staphylococcal infection. Further pre-clinical and clinical study of this bacterial therapy method is under development.

  8. Exploring the common molecular basis for the universal DNA mutation bias: Revival of Loewdin mutation model

    International Nuclear Information System (INIS)

    Fu, Liang-Yu; Wang, Guang-Zhong; Ma, Bin-Guang; Zhang, Hong-Yu

    2011-01-01

    Highlights: → There exists a universal G:C → A:T mutation bias in three domains of life. → This universal mutation bias has not been sufficiently explained. → A DNA mutation model proposed by Loewdin 40 years ago offers a common explanation. -- Abstract: Recently, numerous genome analyses revealed the existence of a universal G:C → A:T mutation bias in bacteria, fungi, plants and animals. To explore the molecular basis for this mutation bias, we examined the three well-known DNA mutation models, i.e., oxidative damage model, UV-radiation damage model and CpG hypermutation model. It was revealed that these models cannot provide a sufficient explanation to the universal mutation bias. Therefore, we resorted to a DNA mutation model proposed by Loewdin 40 years ago, which was based on inter-base double proton transfers (DPT). Since DPT is a fundamental and spontaneous chemical process and occurs much more frequently within GC pairs than AT pairs, Loewdin model offers a common explanation for the observed universal mutation bias and thus has broad biological implications.

  9. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  10. Mutations induced by ultraviolet light

    International Nuclear Information System (INIS)

    Pfeifer, Gerd P.; You, Young-Hyun; Besaratinia, Ahmad

    2005-01-01

    The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA

  11. Mutation direction by irradiation in rice

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Jin Wei; Lu Yimei

    2001-01-01

    The mutation directions of rice were studied. The results indicated that the mutation directions of rice induced by 14 C were invert correlation to their genetic backgrounds of tested rice varieties, i.e. early mature and short stem varieties produced later mature and higher stem mutation; late mature and high stem varieties produced earlier mature and shorter stem mutation; the varieties of middle maturity and height produced both direction mutations of earlier and later maturity or shorter and higher stem. The mutation directions induced by 14 C were also related to treated doses and stages. Frequency of earlier maturity mutation by protons treatment were higher than those induced by other mutagens. Frequency of later maturity by γ-rays were higher than those induced by other mutagens. Frequency of short stem mutation by synchronous irradiation (soft X-rays) were higher than those induced by other mutagens. Frequency of beneficial mutation induced by proton treatment were higher than those induced by γ-rays

  12. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Directory of Open Access Journals (Sweden)

    Filip Janku

    Full Text Available Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing.PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001.PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  13. The uptake, distribution and translocation of 86Rb in alfalfa plants susceptible and resistant to the bacterial wilt and the effect of Corynebacterium insidiosum upon these processes

    International Nuclear Information System (INIS)

    Hanker, I.; Kudelova, A.

    1981-01-01

    Alfalfa (Medicago sativa L.) plants susceptible (S) and resistant (R) to bacterial wilt were fed via roots with a nutrient solution labelled with 86 Rb + , at different times after inoculation with Corynebacterium insidiosum (McCull.) H.L. Jens. The infection did not affect 86 Rb + uptake per plant in the course of a 14-day-period following inoculation; however, it affected its distribution differently in the S- and the R-plants. 86 Rb + uptake significantly decreased due to the infection in the S-plants on the day 49 after inoculation (a 4-h-exposure to 86 Rb + ), with the ions more slowly translocated to the shoots in diseased S-plants than in diseased R-plants. Likely factors causing these effects and their relationship to alfalfa resistance to bacterial wilt are discussed. (author)

  14. Impact of Fluoroquinolone Resistance Mutations on Gonococcal Fitness and In Vivo Selection for Compensatory Mutations

    Science.gov (United States)

    Kunz, Anjali N.; Begum, Afrin A.; Wu, Hong; D'Ambrozio, Jonathan A.; Robinson, James M.; Shafer, William M.; Bash, Margaret C.; Jerse, Ann E.

    2012-01-01

    Background. Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA91/95 and parC86 mutations on gonococcal fitness. Methods. Mutant gyrA91/95 and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR−79 mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. Results. In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA91/95 mutation conferred an in vivo fitness benefit to wild-type and mtrR−79 mutant gonococci. The gyrA91/95, parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA91/95, parC86, mtrR−79 mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (CipR) mutant was selected during infection with the gyrA91/95, parC86, mtrR−79 mutant in which the mtrR−79 mutation was repaired and the gyrA91 mutation was altered. This in vivo–selected mutant grew as well as the wild-type strain in vitro. Conclusions. gyrA91/95 mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain CipR. PMID:22492860

  15. Oncogene mutational profile in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang ZC

    2014-03-01

    Full Text Available Zi-Chen Zhang,1,* Sha Fu,1,* Fang Wang,1 Hai-Yun Wang,1 Yi-Xin Zeng,2 Jian-Yong Shao11Department of Molecular Diagnostics, 2Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China *These authors contributed equally to this work Abstract: Nasopharyngeal carcinoma (NPC is a common tumor in Southern China, but the oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The relationships between mutational status and clinical data were assessed with a χ2 or Fisher's exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank test. In 123 patients, 21 (17.1% NPC tumors were positive for mutations in eight oncogenes: six patients had PIK3CA mutations (4.9%, five NRAS mutations (4.1%, four KIT mutations (3.3%, two PDGFRA mutations (1.6%, two ABL mutations (1.6%, and one with simultaneous mutations in HRAS, EGFR, and BRAF (1%. Patients with mutations were more likely to relapse or develop metastasis than those with wild-type alleles (P=0.019. No differences or correlations were found in other clinical characteristics or in patient survival. No mutations were detected in oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, PDGFRA, and ABL, which are associated with patient relapse and metastasis. Keywords: NPC, oncogene, mutation

  16. Mutation Breeding Newsletter. No. 39

    International Nuclear Information System (INIS)

    1992-01-01

    This newsletter contains brief articles on the use of radiation to induce mutations in plants; radiation-induced mutants in Chrysanthemum; disrupting the association between oil and protein content in soybean seeds; mutation studies on bougainvillea; a new pepper cultivar; and the use of mutation induction to improve the quality of yam beans. A short review of the seminar on the use of mutation and related biotechnology for crop improvement in the Middle East and Mediterranean regions, and a description of a Co-ordinated Research Programme on the application of DNA-based marker mutations for the improvement of cereals and other sexually reproduced crop species are also included. Two tables are given: these are based on the ''FAO/IAEA Mutant Varieties Database'' and show the number of mutated varieties and the number of officially released mutant varieties in particular crops/species. Refs and tabs

  17. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    Science.gov (United States)

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  18. Radiation in relation to mutation rate, mutational damage and human ill-health

    International Nuclear Information System (INIS)

    Roberts, P.B.

    1976-09-01

    The effect of radiation in increasing the frequency of gene mutations is now reasonably understood. We discuss first how an increase in the mutation rate is reflected in the mutational damage expressed in populations. It is shown that the mutational damage, assessed by the loss of fitness in a population or the number of eventual gene extinctions, is equal to the number of new mutations arising per generation or the mutation rate. In a population of stable size, a dose of 1 rem given to 10 6 people leads to roughly 600 gene extinctions when summed over all ensuing generations if the dose is applied to only one generation; this number of extinctions will occur in each succeeding generation if the dose is given to every generation. However, the concept of genetic extinction, although quantifiable, is of limited value in assessing radiation risks since its impact on human ill-health is very speculative. In particular, no estimate can be made of the total cost of effects which are minor in each individual in which they arise, but which, because they are so minor, persist in the population for many generations. The best current estimate is for 14-140 obvious defects in the first few generations following exposure of 10 6 people to a dose of 1 rem. (auth.)

  19. Radiation-induced mutation at minisatellite loci

    International Nuclear Information System (INIS)

    Dubrova, Y.E.; Nesterov, V.N.; Krouchinsky, N.G.

    1997-01-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of γ-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure 137 Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed

  20. Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Wang, Zhihao; Chan, Siu Hung Joshua; Sudarsan, Suresh

    2016-01-01

    is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose...... uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate...... kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed...

  1. The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum*

    OpenAIRE

    Fiuza, Maria; Canova, Marc J.; Patin, Delphine; Letek, Michal; Zanella-Cléon, Isabelle; Becchi, Michel; Mateos, Luís M.; Mengin-Lecreulx, Dominique; Molle, Virginie; Gil, José A.

    2008-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial cell-wall peptidoglycan and thus represent attractive targets for the design of novel antibacterials. These enzymes catalyze the stepwise formation of the peptide moiety of the peptidoglycan disaccharide peptide monomer unit. MurC is responsible of the addition of the first residue (l-alanine) onto the nucleotide precursor UDP-MurNAc. Phosphorylation of proteins by Ser/Thr protein kinases has recen...

  2. A novel genetic tool for metabolic optimization of Corynebacterium glutamicum: efficient and repetitive chromosomal integration of synthetic promoter-driven expression libraries

    DEFF Research Database (Denmark)

    Shen, Jing; Chen, Jun; Jensen, Peter Ruhdal

    2017-01-01

    readily could integrate into the attB site in this strain providing expression of the corresponding integrase. Subsequent expression of the Cre recombinase promoted recombination between the modified loxP sites, resulting in a strain only retaining the target insertions and an attB site. To simplify...... the procedure, non-replicating circular expression units for the phage integrase and the Cre recombinase were used. As a showcase, we used the tool to construct a battery of strains simultaneously expressing the two reporter genes, lacZ (encoding β-galactosidase) and gusA (encoding β...

  3. AIP mutations and gigantism.

    Science.gov (United States)

    Rostomyan, Liliya; Potorac, Iulia; Beckers, Pablo; Daly, Adrian F; Beckers, Albert

    2017-06-01

    AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Mutational specificity of γ-rays

    International Nuclear Information System (INIS)

    Hoebee, Barbara.

    1990-01-01

    The aim of the study described in this thesis was to get more information on the mutagenic properties of radiation-induced DNA modifications and the possible mechanisms involved in radiation-induced mutagenesis, principally by investigating the kinds of mutations by DNA sequence analysis. The mutations were analyzed after γ-irradiation of recombinant bacteriophage M13 and plasmide pUC DNA in diluted aqueous solutions, followed by transfection or transformation to E. coli cells, in which the damaged DNA molecules are repaired and replicated. Error-prone repair, misrepair or bypass of lesions during replication may lead to the introduction of mutations. Both the M13 and the plasmid DNA used in our mutation studies contain a mutation target sequence, which makes an easy selection and sequence analysis of mutant DNA molecules possible. Under the radiation conditions used, e.g. irradiation of diluted aqueous DNA solutions, only DNA damage occurs introduced by the water derived OH* and H* radicals and the hydrated electrons. By using different gas conditions during irradiation the relative yields of these reaction species can be manipulated, which opens up the opportunity to determine their effects separately. The mutation spectrum obtained in double-stranded (ds) M13DNA after irradiation under oxic conditions and the mutation spectrum obtained under the same conditions and in the same mutation target but cloned in plasmid DNA, are described. The mutation specificity under anoxic conditions in ds M13DNA is given. Results obtained after irradiation of ds M13DNA under N 2 conditions are discussed together with experiments with single-stranded DNA. Similarities and differences between radiation-induced mutation spectra obtained by other groups and those presented in this thesis are discussed. (author). 155 refs.; 134 figs.; 16 tabs

  5. Calreticulin Mutations in Bulgarian MPN Patients.

    Science.gov (United States)

    Pavlov, Ivan; Hadjiev, Evgueniy; Alaikov, Tzvetan; Spassova, Sylva; Stoimenov, Angel; Naumova, Elissaveta; Shivarov, Velizar; Ivanova, Milena

    2018-01-01

    Somatic mutations in JAK2, MPL and CALR are recurrently identified in most of the cases with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). We applied four molecular genetic methods for identification of CALR exon 9 mutations, including high resolution melt (HRM) analysis, Sanger sequencing, semiconductor target genes sequencing and whole exome sequencing. A total of 78 patients with myeloid malignancies were included in the study. We identified 14 CALR exon 9 mutated cases out of 78 studied patients with myeloid malignancies. All mutated patients were diagnosed with MPN being either PMF (n = 7) or ET (n = 7). Nine cases had type 1 mutations and 5 cases had type 2 mutations. CALR exon 9, MPL exon 10 and JAK2 p. V617F were mutually exclusive. There were no statistically significant differences in the hematological parameters between the cases with CALR and JAK2 or MPL mutations. Notably, all four techniques were fully concordant in the detection of CALR mutations. This is one of the few reports on the CALR mutations frequency in South-eastern populations. Our study shows that the frequency and patterns of these mutations is identical to those in the patients' cohorts from Western countries. Besides we demonstrated the utility of four different methods for their detection.

  6. Complete genome sequence and lifestyle of black-pigmented Corynebacterium aurimucosum ATCC 700975 (formerly C. nigricans CN-1 isolated from a vaginal swab of a woman with spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Gartemann Karl-Heinz

    2010-02-01

    Full Text Available Abstract Background Corynebacterium aurimucosum is a slightly yellowish, non-lipophilic, facultative anaerobic member of the genus Corynebacterium and predominantly isolated from human clinical specimens. Unusual black-pigmented variants of C. aurimucosum (originally named as C. nigricans continue to be recovered from the female urogenital tract and they are associated with complications during pregnancy. C. aurimucosum ATCC 700975 (C. nigricans CN-1 was originally isolated from a vaginal swab of a 34-year-old woman who experienced a spontaneous abortion during month six of pregnancy. For a better understanding of the physiology and lifestyle of this potential urogenital pathogen, the complete genome sequence of C. aurimucosum ATCC 700975 was determined. Results Sequencing and assembly of the C. aurimucosum ATCC 700975 genome yielded a circular chromosome of 2,790,189 bp in size and the 29,037-bp plasmid pET44827. Specific gene sets associated with the central metabolism of C. aurimucosum apparently provide enhanced metabolic flexibility and adaptability in aerobic, anaerobic and low-pH environments, including gene clusters for the uptake and degradation of aromatic amines, L-histidine and L-tartrate as well as a gene region for the formation of selenocysteine and its incorporation into formate dehydrogenase. Plasmid pET44827 codes for a non-ribosomal peptide synthetase that plays the pivotal role in the synthesis of the characteristic black pigment of C. aurimucosum ATCC 700975. Conclusions The data obtained by the genome project suggest that C. aurimucosum could be both a resident of the human gut and possibly a pathogen in the female genital tract causing complications during pregnancy. Since hitherto all black-pigmented C. aurimucosum strains have been recovered from female genital source, biosynthesis of the pigment is apparently required for colonization by protecting the bacterial cells against the high hydrogen peroxide concentration in

  7. Manual on mutation breeding. 2. ed.

    International Nuclear Information System (INIS)

    1977-01-01

    The manual is a compilation of work done on the use of induced mutations in plant breeding, and presents general methods and techniques in this field. The use of chemical mutagens and ionizing radiations (X-rays, gamma rays, α- and β-particles, protons, neutrons) are described as well as the effects of these mutagens. The different types of mutations achieved can be divided into genome mutations, chromosome mutations and extra nuclear mutations. Separate chapters deal with mutation techniques in breeding seed-propagated species and asexually propagated plants (examples of development of cultivars given). Plant characters which can be improved by mutation breeding include yield, ripening time, growth habit, disease resistance and tolerance to environmental factors (temperature, salinity etc.). The use of mutagens for some specific plant breeding problems is discussed and attention is also paid to somatic cell genetics in connection with induced mutations. The manual contains a comprehensive bibliography (60 p. references) and a subject index

  8. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  9. PHKA2 mutation spectrum in Korean patients with glycogen storage disease type IX: prevalence of deletion mutations.

    Science.gov (United States)

    Choi, Rihwa; Park, Hyung-Doo; Kang, Ben; Choi, So Yoon; Ki, Chang-Seok; Lee, Soo-Youn; Kim, Jong-Won; Song, Junghan; Choe, Yon Ho

    2016-04-21

    Molecular diagnosis of glycogen storage diseases (GSDs) is important to enable accurate diagnoses and make appropriate therapeutic plans. The aim of this study was to evaluate the PHKA2 mutation spectrum in Korean patients with GSD type IX. Thirteen Korean patients were tested for PHKA2 mutations using direct sequencing and a multiplex polymerase chain reaction method. A comprehensive review of the literature on previously reported PHKA2 mutations in other ethnic populations was conducted for comparison. Among 13 patients tested, six unrelated male patients with GSD IX aged 2 to 6 years at the first diagnostic work-up for hepatomegaly with elevated aspartate transaminase (AST) and alanine transaminase (ALT) were found to have PHKA2 mutations. These patients had different PHKA2 mutations: five were known mutations (c.537 + 5G > A, c.884G > A [p.Arg295His], c.3210_3212delGAG [p.Arg1072del], exon 8 deletion, and exons 27-33 deletion) and one was a novel mutation (exons 18-33 deletion). Notably, the most common type of mutation was gross deletion, in contrast to other ethnic populations in which the most common mutation type was sequence variant. This study expands our knowledge of the PHKA2 mutation spectrum of GSD IX. Considering the PHKA2 mutation spectrum in Korean patients with GSD IX, molecular diagnostic methods for deletions should be conducted in conjunction with direct sequence analysis to enable accurate molecular diagnosis of this disease in the Korean population.

  10. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  11. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations.

    Science.gov (United States)

    Rebbeck, Timothy R; Friebel, Tara M; Friedman, Eitan; Hamann, Ute; Huo, Dezheng; Kwong, Ava; Olah, Edith; Olopade, Olufunmilayo I; Solano, Angela R; Teo, Soo-Hwang; Thomassen, Mads; Weitzel, Jeffrey N; Chan, T L; Couch, Fergus J; Goldgar, David E; Kruse, Torben A; Palmero, Edenir Inêz; Park, Sue Kyung; Torres, Diana; van Rensburg, Elizabeth J; McGuffog, Lesley; Parsons, Michael T; Leslie, Goska; Aalfs, Cora M; Abugattas, Julio; Adlard, Julian; Agata, Simona; Aittomäki, Kristiina; Andrews, Lesley; Andrulis, Irene L; Arason, Adalgeir; Arnold, Norbert; Arun, Banu K; Asseryanis, Ella; Auerbach, Leo; Azzollini, Jacopo; Balmaña, Judith; Barile, Monica; Barkardottir, Rosa B; Barrowdale, Daniel; Benitez, Javier; Berger, Andreas; Berger, Raanan; Blanco, Amie M; Blazer, Kathleen R; Blok, Marinus J; Bonadona, Valérie; Bonanni, Bernardo; Bradbury, Angela R; Brewer, Carole; Buecher, Bruno; Buys, Saundra S; Caldes, Trinidad; Caliebe, Almuth; Caligo, Maria A; Campbell, Ian; Caputo, Sandrine M; Chiquette, Jocelyne; Chung, Wendy K; Claes, Kathleen B M; Collée, J Margriet; Cook, Jackie; Davidson, Rosemarie; de la Hoya, Miguel; De Leeneer, Kim; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Domchek, Susan M; Dorfling, Cecilia M; Velazquez, Carolina; Dworniczak, Bernd; Eason, Jacqueline; Easton, Douglas F; Eeles, Ros; Ehrencrona, Hans; Ejlertsen, Bent; Engel, Christoph; Engert, Stefanie; Evans, D Gareth; Faivre, Laurence; Feliubadaló, Lidia; Ferrer, Sandra Fert; Foretova, Lenka; Fowler, Jeffrey; Frost, Debra; Galvão, Henrique C R; Ganz, Patricia A; Garber, Judy; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Gesta, Paul; Giannini, Giuseppe; Giraud, Sophie; Glendon, Gord; Godwin, Andrew K; Greene, Mark H; Gronwald, Jacek; Gutierrez-Barrera, Angelica; Hahnen, Eric; Hauke, Jan; Henderson, Alex; Hentschel, Julia; Hogervorst, Frans B L; Honisch, Ellen; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Kaczmarek, Katarzyna; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Kim, Sung-Won; Konstantopoulou, Irene; Korach, Jacob; Laitman, Yael; Lasa, Adriana; Lasset, Christine; Lázaro, Conxi; Lee, Annette; Lee, Min Hyuk; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lindor, Noralane M; Longy, Michel; Loud, Jennifer T; Lu, Karen H; Lubinski, Jan; Machackova, Eva; Manoukian, Siranoush; Mari, Véronique; Martínez-Bouzas, Cristina; Matrai, Zoltan; Mebirouk, Noura; Meijers-Heijboer, Hanne E J; Meindl, Alfons; Mensenkamp, Arjen R; Mickys, Ugnius; Miller, Austin; Montagna, Marco; Moysich, Kirsten B; Mulligan, Anna Marie; Musinsky, Jacob; Neuhausen, Susan L; Nevanlinna, Heli; Ngeow, Joanne; Nguyen, Huu Phuc; Niederacher, Dieter; Nielsen, Henriette Roed; Nielsen, Finn Cilius; Nussbaum, Robert L; Offit, Kenneth; Öfverholm, Anna; Ong, Kai-Ren; Osorio, Ana; Papi, Laura; Papp, Janos; Pasini, Barbara; Pedersen, Inge Sokilde; Peixoto, Ana; Peruga, Nina; Peterlongo, Paolo; Pohl, Esther; Pradhan, Nisha; Prajzendanc, Karolina; Prieur, Fabienne; Pujol, Pascal; Radice, Paolo; Ramus, Susan J; Rantala, Johanna; Rashid, Muhammad Usman; Rhiem, Kerstin; Robson, Mark; Rodriguez, Gustavo C; Rogers, Mark T; Rudaitis, Vilius; Schmidt, Ane Y; Schmutzler, Rita Katharina; Senter, Leigha; Shah, Payal D; Sharma, Priyanka; Side, Lucy E; Simard, Jacques; Singer, Christian F; Skytte, Anne-Bine; Slavin, Thomas P; Snape, Katie; Sobol, Hagay; Southey, Melissa; Steele, Linda; Steinemann, Doris; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tan, Yen Y; Teixeira, Manuel R; Terry, Mary Beth; Teulé, Alex; Thomas, Abigail; Thull, Darcy L; Tischkowitz, Marc; Tognazzo, Silvia; Toland, Amanda Ewart; Topka, Sabine; Trainer, Alison H; Tung, Nadine; van Asperen, Christi J; van der Hout, Annemieke H; van der Kolk, Lizet E; van der Luijt, Rob B; Van Heetvelde, Mattias; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Villarreal-Garza, Cynthia; von Wachenfeldt, Anna; Walker, Lisa; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weber, Bernhard H F; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Zanzottera, Cristina; Zidan, Jamal; Zorn, Kristin K; Hutten Selkirk, Christina G; Hulick, Peter J; Chenevix-Trench, Georgia; Spurdle, Amanda B; Antoniou, Antonis C; Nathanson, Katherine L

    2018-05-01

    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations. © 2018 Wiley Periodicals, Inc.

  12. Radiation induced chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Bari, G.; Mustafa, G.; Soomro, A.M.; Baloch, A.W.

    1985-01-01

    Air dried grains of four local varieties of rice were treated with gamma-rays and fast neutrons for determining their mutagenic effectiveness through the occurence of chlorophyll mutations. Fast neutrons were more effective in inducing chlorophyll mutations and the rice variety Basmati 370 produced maximum number of mutations followed by varieties Sonahri Sugdasi, Jajai 77 and Sada Gulab. The highest frequency of chlorophyll mutations was that of albina types followed by striata types. The xantha, viridis and tigrina types of mutations were less frequent. (authors)

  13. In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp.

    Science.gov (United States)

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Warren, Yumi A; Tyrrell, Kerin L; Fernandez, Helen T

    2004-06-01

    Telavancin is a new semisynthetic glycopeptide anti-infective with multiple mechanisms of action, including inhibition of bacterial membrane phospholipid synthesis and inhibition of bacterial cell wall synthesis. We determined the in vitro activities of telavancin, vancomycin, daptomycin, linezolid, quinupristin-dalfopristin, imipenem, piperacillin-tazobactam, and ampicillin against 268 clinical isolates of anaerobic gram-positive organisms and 31 Corynebacterium strains using agar dilution methods according to National Committee for Clinical Laboratory Standards procedures. Plates with daptomycin were supplemented with Ca(2+) to 50 mg/liter. The MICs at which 90% of isolates tested were inhibited (MIC(90)s) for telavancin and vancomycin were as follows: Actinomyces spp. (n = 45), 0.25 and 1 microg/ml, respectively; Clostridium difficile (n = 14), 0.25 and 1 microg/ml, respectively; Clostridium ramosum (n = 16), 1 and 4 microg/ml, respectively; Clostridium innocuum (n = 15), 4 and 16 microg/ml, respectively; Clostridium clostridioforme (n = 15), 8 and 1 microg/ml, respectively; Eubacterium group (n = 33), 0.25 and 2 microg/ml, respectively; Lactobacillus spp. (n = 26), 0.5 and 4 microg/ml, respectively; Propionibacterium spp. (n = 34), 0.125 and 0.5 microg/ml, respectively; Peptostreptococcus spp. (n = 52), 0.125 and 0.5 microg/ml, respectively; and Corynebacterium spp. (n = 31), 0.03 and 0.5 microg/ml, respectively. The activity of TD-6424 was similar to that of quinupristin-dalfopristin for most strains except C. clostridioforme and Lactobacillus casei, where quinupristin-dalfopristin was three- to fivefold more active. Daptomycin had decreased activity (MIC > 4 microg/ml) against 14 strains of Actinomyces spp. and all C. ramosum, Eubacterium lentum, and Lactobacillus plantarum strains. Linezolid showed decreased activity (MIC > 4 microg/ml) against C. ramosum, two strains of C. difficile, and 15 strains of Lactobacillus spp. Imipenem and piperacillin

  14. Induced mutations in chickpea (Cicer arietinum L.) II. frequency and spectrum of chlorophyll mutations

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    1998-01-01

    A comparative study of frequency and spectrum of chlorophyll mutations induced by two physical (gamma rays, fast neutrons) and two chemical mutagens (NMU, EMS) in relation to the effects in M1 plants and induction of mutations in M2 was made in four chickpea (Cicer arietinum L.) varieties, two desi (G 130 & H 214) one Kabuli (C 104) and one green seeded (L 345). The treatments included three doses each of gamma rays (400, 500 & 600 Gy) and fast neutrons (5, 10 & 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU [0.01% (20h), & 0.02% (8h)] and EMS [0.1% (20h) & 0.2% (8h)]. The frequencies and spectrum of three different kinds of induced chlorophyll mutations in the order albina (43.5%), chlorina (27.3%) and xantha (24.2%) were recorded. Chemical mutagens were found to be efficient in inducing chlorophyll mutations in chickpea. Highest frequency of mutations was observed in green seeded var. L 345 (83% of M1 families and 19.9/1000 M2 plants). Kabuli var. C 104 was least responsive for chlorophyll mutations

  15. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations.

    Science.gov (United States)

    Szpurka, Hadrian; Jankowska, Anna M; Makishima, Hideki; Bodo, Juraj; Bejanyan, Nelli; Hsi, Eric D; Sekeres, Mikkael A; Maciejewski, Jaroslaw P

    2010-08-01

    While a majority of patients with refractory anemia with ring sideroblasts and thrombocytosis harbor JAK2V617F and rarely MPLW515L, JAK2/MPL-negative cases constitute a diagnostic problem. 23 RARS-T cases were investigated applying immunohistochemical phospho-STAT5, sequencing and SNP-A-based karyotyping. Based on the association of TET2/ASXL1 mutations with MDS/MPN we studied molecular pattern of these genes. Two patients harbored ASXL1 and another 2 TET2 mutations. Phospho-STAT5 activation was present in one mutated TET2 and ASXL1 case. JAK2V617F/MPLW515L mutations were absent in TET2/ASXL1 mutants, indicating that similar clinical phenotype can be produced by various MPN-associated mutations and that additional unifying lesions may be present in RARS-T. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Rare beneficial mutations can halt Muller's ratchet

    Science.gov (United States)

    Balick, Daniel; Goyal, Sidhartha; Jerison, Elizabeth; Neher, Richard; Shraiman, Boris; Desai, Michael

    2012-02-01

    In viral, bacterial, and other asexual populations, the vast majority of non-neutral mutations are deleterious. This motivates the application of models without beneficial mutations. Here we show that the presence of surprisingly few compensatory mutations halts fitness decay in these models. Production of deleterious mutations is balanced by purifying selection, stabilizing the fitness distribution. However, stochastic vanishing of fitness classes can lead to slow fitness decay (i.e. Muller's ratchet). For weakly deleterious mutations, production overwhelms purification, rapidly decreasing population fitness. We show that when beneficial mutations are introduced, a stable steady state emerges in the form of a dynamic mutation-selection balance. We argue this state is generic for all mutation rates and population sizes, and is reached as an end state as genomes become saturated by either beneficial or deleterious mutations. Assuming all mutations have the same magnitude selective effect, we calculate the fraction of beneficial mutations necessary to maintain the dynamic balance. This may explain the unexpected maintenance of asexual genomes, as in mitochondria, in the presence of selection. This will affect in the statistics of genetic diversity in these populations.

  17. Development of an indirect ELISA to detect Corynebacterium pseudotuberculosis specific antibodies in sheep employing T1 strain culture supernatant as antigen

    Directory of Open Access Journals (Sweden)

    Miriam F. Rebouças

    2013-11-01

    Full Text Available Corynebacterium pseudotuberculosis is the etiologic agent of caseous lymphadenitis (CLA, a chronic disease that affects goats and sheep, characterized by granuloma formation in subcutaneous and internal lymph nodes. CLA causes significant economic losses to commercial goat herds. In this study, we aimed to test secreted antigens secreted from T1 strain bacteria grown in brain heart infusion (BHI broth in an indirect ELISA system to determine the presence of specific immunoglobulins against C. pseudotuberculosis. We analyzed the BHI antigen electrophoretic profile and the recognition pattern by infected sheep sera samples. The ELISA results were compared with multiplex PCR assay and IFN-gamma production. The ELISA was able to discriminate between negative and positive animals, with a sensitivity of 89% and a specificity of 99%, using microbiological isolation as gold standard. When this assay was compared with multiplex PCR and specific IFN-gamma quantification, six discrepant results were found among thirty-two samples. We concluded that the ELISA using antigens secreted from C. pseudotuberculosis T1 strain growth in BHI broth culture can be used for the serodiagnosis of CLA in sheep.

  18. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Viteri Santiago

    2010-12-01

    Full Text Available Abstract Background Immunohistochemistry (IHC with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93% patients with exon 21 EGFR mutations (all with L858R but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients.

  19. Estudo da difteria na cidade do Recife. I. Nota sôbre levantamento de portadores de Corynebacterium diphtheriae no bairro dos Coelhos Survey on diphtheriae carriers in "Bairro dos Coelhos" Recife, Brazil

    Directory of Open Access Journals (Sweden)

    Dalva A. Mello

    1969-06-01

    Full Text Available De uma amostra probabilística do bairro dos Coelhos da cidade do Recife, 410 indivíduos foram examinados para verificação de portadores de difteria. Sòmente duas amostras de C. diphtheriae foram isoladas de duas crianças de 8 a 9 anos, as quais não apresentaram sintomatologia compatível com o quadro diftérico.From a limited population living around the University Hospital in Recife, Brazil a randomic sample was examined in order to identify diphtheria carriers. Swabs were made from 410 persons in a house-to-house survey. Two strains of Corynebacterium diphtheriae were isolated from healthy 8 and 9-year old children.

  20. Epilepsy caused by CDKL5 mutations.

    Science.gov (United States)

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  2. Volatility of Mutator Phenotypes at Single Cell Resolution.

    Directory of Open Access Journals (Sweden)

    Scott R Kennedy

    2015-04-01

    Full Text Available Mutator phenotypes accelerate the evolutionary process of neoplastic transformation. Historically, the measurement of mutation rates has relied on scoring the occurrence of rare mutations in target genes in large populations of cells. Averaging mutation rates over large cell populations assumes that new mutations arise at a constant rate during each cell division. If the mutation rate is not constant, an expanding mutator population may contain subclones with widely divergent rates of evolution. Here, we report mutation rate measurements of individual cell divisions of mutator yeast deficient in DNA polymerase ε proofreading and base-base mismatch repair. Our data are best fit by a model in which cells can assume one of two distinct mutator states, with mutation rates that differ by an order of magnitude. In error-prone cell divisions, mutations occurred on the same chromosome more frequently than expected by chance, often in DNA with similar predicted replication timing, consistent with a spatiotemporal dimension to the hypermutator state. Mapping of mutations onto predicted replicons revealed that mutations were enriched in the first half of the replicon as well as near termination zones. Taken together, our findings show that individual genome replication events exhibit an unexpected volatility that may deepen our understanding of the evolution of mutator-driven malignancies.

  3. Mutation breeding in malting barley

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Makoto; Sanada, Matsuyoshi

    1984-03-01

    The released varieties of malting barley through mutation breeding is more than ten in number, including foreign varieties. In Japan four varieties has been released so far. We started mutation breeding in 1956 together with cross breeding that we employed before. Until now, Gamma 4, Amagi Nijo 1 and Fuji Nijo 2 have been produced from the direct use of induced mutations and Nirasaki Nijo 8 from the indirect use of them. Mutation breeding has been used mainly in the partial improvement of agronomic characteristics since the selection for malting quality was very complicated. As the variety bred by induced mutation is usually equivalent to the original variety in malting quality, both this new variety and the original one could be cultivated in the same area without any problem on later malt production. Particularly when one farmer cultivates barley in an extensive acreage, he can harvest at the best time according to the different maturing time of each variety. From these points of view, mutation breeding is an efficient tool in malting barley breeding. Mutagens we have used so far are X-rays, ..gamma..-rays, neutron and chemicals such as dES. From our experience in selection, the low dose of radiation and chemical mutagens are more effective in selection of point mutation than the high dose of radiation which tends to produce many abnormal but few practical mutants. (author).

  4. Studies on mutation techniques in rice breeding

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Jin Wei

    2001-01-01

    Synthetical techniques for improving rice mutation breeding efficiency were studied. The techniques consist of corresponding relationship between radiosensitivity and mutation frequency, choosing appropriate materials, combination of physical and chemical mutagens, mutagenic effects of the new mutagenic agents as proton, ions, synchronous irradiation and space mutation. These techniques and methods for inducing mutations are very valuable to increase inducing mutation efficiency and breeding level

  5. Mutation, Witten index, and quiver invariant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeyeon [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada); Lee, Seung-Joo [Department of Physics, Robeson Hall, Virginia Tech,Blacksburg, VA 24061 (United States); Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of)

    2015-07-20

    We explore Seiberg-like dualities, or mutations, for N=4 quiver quantum mechanics in the context of wall-crossing. In contrast to higher dimensions, the 1d Seiberg-duality must be performed with much care. With fixed Fayet-Iliopoulos constants, at most two nodes can be mutated, one left and the other right, mapping a chamber of a quiver into a chamber of a mutated quiver. We delineate this complex pattern for triangle quivers and show how the Witten indices are preserved under such finely chosen mutations. On the other hand, the quiver invariants, or wall-crossing-safe part of supersymmetric spectra, mutate more straightforwardly, whereby a quiver is mapped to a quiver. The mutation rule that preserves the quiver invariant is different from the usual one, however, which we explore and confirm numerically.

  6. Mutation, Witten index, and quiver invariant

    International Nuclear Information System (INIS)

    Kim, Heeyeon; Lee, Seung-Joo; Yi, Piljin

    2015-01-01

    We explore Seiberg-like dualities, or mutations, for N=4 quiver quantum mechanics in the context of wall-crossing. In contrast to higher dimensions, the 1d Seiberg-duality must be performed with much care. With fixed Fayet-Iliopoulos constants, at most two nodes can be mutated, one left and the other right, mapping a chamber of a quiver into a chamber of a mutated quiver. We delineate this complex pattern for triangle quivers and show how the Witten indices are preserved under such finely chosen mutations. On the other hand, the quiver invariants, or wall-crossing-safe part of supersymmetric spectra, mutate more straightforwardly, whereby a quiver is mapped to a quiver. The mutation rule that preserves the quiver invariant is different from the usual one, however, which we explore and confirm numerically.

  7. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling.

    Directory of Open Access Journals (Sweden)

    Swati Tomar

    Full Text Available Retinoblastoma (RB is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59 while only 42.4% (25/59 of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9% of tumors screened. There were 3 cases (5.1% in which no mutations could be detected and germline mutations were detected in 19.5% (8/41 of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59 of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and

  8. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations.

    Directory of Open Access Journals (Sweden)

    Bruno Francou

    Full Text Available CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%. We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001 higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.

  9. Rare and unexpected beta thalassemic mutations in Qazvin ...

    African Journals Online (AJOL)

    About 13 beta-globin mutations encompass 70 - 90% of mutation spectrum in Iran. These mutations are called common beta-globin mutations. The rest are rare or unknown mutations. The objective of this study was to identify and describe rare or unknown beta-globin mutations in Qazvin province. EDTAcontaining venous ...

  10. Rare and unexpected beta thalassemic mutations in Qazvin ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... About 13 beta-globin mutations encompass 70 - 90% of mutation spectrum in Iran. These mutations are called common beta-globin mutations. The rest are rare or unknown mutations. The objective of this study was to identify and describe rare or unknown beta-globin mutations in Qazvin province. EDTA-.

  11. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  12. Asymptotics of steady states of a selection–mutation equation for small mutation rate

    KAUST Repository

    Calsina, Àngel

    2013-12-01

    We consider a selection-mutation equation for the density of individuals with respect to a continuous phenotypic evolutionary trait. We assume that the competition term for an individual with a given trait depends on the traits of all the other individuals, therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by means of an integral operator. We prove existence of steady states and show that, when the mutation rate goes to zero, the asymptotic profile of the population is a Cauchy distribution. © Royal Society of Edinburgh 2013.

  13. Asymptotics of steady states of a selection–mutation equation for small mutation rate

    KAUST Repository

    Calsina, À ngel; Cuadrado, Sí lvia; Desvillettes, Laurent; Raoul, Gaë l

    2013-01-01

    We consider a selection-mutation equation for the density of individuals with respect to a continuous phenotypic evolutionary trait. We assume that the competition term for an individual with a given trait depends on the traits of all the other individuals, therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by means of an integral operator. We prove existence of steady states and show that, when the mutation rate goes to zero, the asymptotic profile of the population is a Cauchy distribution. © Royal Society of Edinburgh 2013.

  14. Mutation breeding in ornamental plants

    International Nuclear Information System (INIS)

    Datta, S.K.

    1990-01-01

    Full text: Mutation induction produced a large number of new promising varieties in ornamental species. 37 new mutants of Chrysanthemum and 14 of rose have been developed by mutations and released for commercialisation. The mutations in flower colour/shape were detected as chimeras in M 1 V 1 , M 1 V 2 , M 1 V 3 generations. The mutation frequency varied with the cultivar and exposure to gamma rays. Comparative analysis of original cultivars and their respective induced mutants on cytomorphological, anatomical and biochemical characters are being carried out for better understanding of the mechanism involved in the origin and evolution of somatic flower colour/shape mutations. Cytological analysis with reference to chromosomal aberrations, chromosome number, ICV, INV and DNA content gave no differences between the original and mutant cultivars. Analysis of florets/petal pigments by TLC and spectrophotometric methods indicated both qualitative and quantitative changes. (author)

  15. BRAF mutations in conjunctival melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Dahl, Christina; Dahmcke, Christina M.

    2016-01-01

    with atypia. BRAF mutations were identified in 39 of 111 (35%) cases. The rate ratio of BRAF-mutated versus BRAF-wild-type melanoma did not change over time. BRAF mutations were associated with T1 stage (p = 0.007), young age (p = 0.001), male gender (p = 0.02), sun-exposed location (p = 0.01), mixed....../non-pigmented tumour colour (p = 0.02) and nevus origin (p = 0.005), but did not associate with prognosis. BRAF status in conjunctival melanoma and paired premalignant lesions corresponded in 19 of 20 cases. Immunohistochemistry detected BRAF V600E mutations with a sensitivity of 0.94 and a specificity of 1...

  16. Mutational meltdown in laboratory yeast populations

    NARCIS (Netherlands)

    Zeyl, C.; Mizesko, M.; Visser, de J.A.G.M.

    2001-01-01

    In small or repeatedly bottlenecked populations, mutations are expected to accumulate by genetic drift, causing fitness declines. In mutational meltdown models, such fitness declines further reduce population size, thus accelerating additional mutation accumulation and leading to extinction. Because

  17. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  18. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies

    Directory of Open Access Journals (Sweden)

    Oldiges Marco

    2009-01-01

    Full Text Available Abstract Background To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1 experimental measurement of participating molecules, (2 assignment of rate laws to each reaction, and (3 parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem. Results We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1 coarse-grained comparison of the algorithms on all models and (2 fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis. Conclusion A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics

  19. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    Science.gov (United States)

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  20. Adaptive mutation: has the unicorn landed?

    Science.gov (United States)

    Foster, P L

    1998-04-01

    Reversion of an episomal Lac- allele during lactose selection has been studied as a model for adaptive mutation. Although recent results show that the mutations that arise during selection are not "adaptive" in the original sense, the mutagenic mechanism that produces these mutations may nonetheless be of evolutionary significance. In addition, a transient mutational state induced in a subpopulation of starving cells could provide a species with a mechanism for adaptive evolution.

  1. Adaptive mutation: has the unicorn landed?

    Science.gov (United States)

    Foster, P L

    1998-01-01

    Reversion of an episomal Lac- allele during lactose selection has been studied as a model for adaptive mutation. Although recent results show that the mutations that arise during selection are not "adaptive" in the original sense, the mutagenic mechanism that produces these mutations may nonetheless be of evolutionary significance. In addition, a transient mutational state induced in a subpopulation of starving cells could provide a species with a mechanism for adaptive evolution. PMID:9560365

  2. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  3. Diversity of ARSACS mutations in French-Canadians.

    Science.gov (United States)

    Thiffault, I; Dicaire, M J; Tetreault, M; Huang, K N; Demers-Lamarche, J; Bernard, G; Duquette, A; Larivière, R; Gehring, K; Montpetit, A; McPherson, P S; Richter, A; Montermini, L; Mercier, J; Mitchell, G A; Dupré, N; Prévost, C; Bouchard, J P; Mathieu, J; Brais, B

    2013-01-01

    The growing number of spastic ataxia of Charlevoix-Saguenay (SACS) gene mutations reported worldwide has broadened the clinical phenotype of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The identification of Quebec ARSACS cases without two known SACS mutation led to the development of a multi-modal genomic strategy to uncover mutations in this large gene and explore phenotype variability. Search for SACS mutations by combining various methods on 20 cases with a classical French-Canadian ARSACS phenotype without two mutations and a group of 104 sporadic or recessive spastic ataxia cases of unknown cause. Western blot on lymphoblast protein from cases with different genotypes was probed to establish if they still expressed sacsin. A total of 12 mutations, including 7 novels, were uncovered in Quebec ARSACS cases. The screening of 104 spastic ataxia cases of unknown cause for 98 SACS mutations did not uncover carriers of two mutations. Compounds heterozygotes for one missense SACS mutation were found to minimally express sacsin. The large number of SACS mutations present even in Quebec suggests that the size of the gene alone may explain the great genotypic diversity. This study does not support an expanding ARSACS phenotype in the French-Canadian population. Most mutations lead to loss of function, though phenotypic variability in other populations may reflect partial loss of function with preservation of some sacsin expression. Our results also highlight the challenge of SACS mutation screening and the necessity to develop new generation sequencing methods to ensure low cost complete gene sequencing.

  4. Chloroplast mutations induced by 9-aminoacridine hydrochloride are independent of the plastome mutator in Oenothera.

    Science.gov (United States)

    GuhaMajumdar, M; Baldwin, S; Sears, B B

    2004-02-01

    Oenothera plants homozygous for the recessive plastome mutator allele ( pm) show chloroplast DNA (cpDNA) mutation frequencies that are about 1,000-fold higher than spontaneous levels. The pm-encoded gene product has been hypothesized to have a function in cpDNA replication, repair and/or mutation avoidance. Previous chemical mutagenesis experiments with the alkylating agent nitroso-methyl urea (NMU) showed a synergistic effect of NMU on the induction of mutations in the pm line, suggesting an interaction between the pm-encoded gene product and one of the repair systems that corrects alkylation damage. The goal of the experiments described here was to examine whether the pm activity extends to the repair of damage caused by non-alkylating mutagens. To this end, the intercalating mutagen, 9-aminoacridine hydrochloride (9AA) was tested for synergism with the plastome mutator. A statistical analysis of the data reported here indicates that the pm-encoded gene product is not involved in the repair of the 9AA-induced mutations. However, the recovery of chlorotic sectors in plants derived from the mutagenized seeds shows that 9AA can act as a mutagen of the chloroplast genome.

  5. Signatures of mutational processes in human cancer

    NARCIS (Netherlands)

    Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjord, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinsk, M.; Jager, N.; Jones, D.T.; Knappskog, S.; Kool, M.; Lakhani, S.R.; Lopez-Otin, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.; Valdes-Mas, R.; Buuren, M.M. van; Veer, L. van 't; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Futreal, P.A.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R.; Schlooz-Vries, M.S.; Tol, J.J. van; Laarhoven, H.W. van; Sweep, F.C.; Bult, P.; et al.,

    2013-01-01

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362

  6. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  7. Sequence analysis of the aminoacylase-1 family. A new proposed signature for metalloexopeptidases.

    Science.gov (United States)

    Biagini, A; Puigserver, A

    2001-03-01

    The amino acid sequence analysis of the human and porcine aminoacylases-1, the carboxypeptidase S precursor from Saccharomyces cerevisiae, the succinyl-diaminopimelate desuccinylase from Escherichia coli, Haemophilus influenzae and Corynebacterium glutamicum, the acetylornithine deacetylase from Escherichia coli and Dictyostelium discoideum and the carboxypeptidase G(2) precursor from Pseudomonas strain, using the Basic Local Alignment Search Tool (BLAST) and the Position-Specific Iterated BLAST (PSI-BLAST), allowed us to suggest that all these enzymes, which share common functional and biochemical features, belong to the same structural family. The three amino acid blocks which were found to be highly conserved, using the CLUSTAL W program, could be assigned to the catalytic active site, based on the general three-dimensional structure of the carboxypeptidase G(2) from the Pseudomonas strain precursor. Six additional proteins with the same signature have been retrieved after performing two successive PSI-BLAST iterations using the sequence of the conserved motif, namely Lactobacillus delbrueckii aminoacyl-histidine dipeptidase, Streptomyces griseus aminopeptidase, Saccharomyces cerevisiae aminopeptidase Y precursor, two Bacillus stearothermophilus N-carbamyl-L-amino acid amidohydrolases and Pseudomonas sp. hydantoin utilization protein C. The three conserved amino acid motifs corresponded to the following blocks: (i) [S, G, A]-H-x-D-x-V; (ii) G-x-x-D; and (iii) x-E-E. This new sequence signature is clearly different from that commonly reported in the literature for proteins belonging to the ArgE/DapE/CPG2/YscS family.

  8. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    Directory of Open Access Journals (Sweden)

    Haußmann Ute

    2011-06-01

    Full Text Available Abstract Background Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1 which proteins are differentially regulated regarding the selected experimental conditions, and 2 are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis 12 and Corynebacterium glutamicum 3. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE 4. Results can be found at http://qupe.cebitec.uni-bielefeld.de.

  9. The Druggable Pocketome of Corynebacterium diphtheriae: A New Approach for in silico Putative Druggable Targets

    Science.gov (United States)

    Hassan, Syed S.; Jamal, Syed B.; Radusky, Leandro G.; Tiwari, Sandeep; Ullah, Asad; Ali, Javed; Behramand; de Carvalho, Paulo V. S. D.; Shams, Rida; Khan, Sabir; Figueiredo, Henrique C. P.; Barh, Debmalya; Ghosh, Preetam; Silva, Artur; Baumbach, Jan; Röttger, Richard; Turjanski, Adrián G.; Azevedo, Vasco A. C.

    2018-01-01

    Diphtheria is an acute and highly infectious disease, previously regarded as endemic in nature but vaccine-preventable, is caused by Corynebacterium diphtheriae (Cd). In this work, we used an in silico approach along the 13 complete genome sequences of C. diphtheriae followed by a computational assessment of structural information of the binding sites to characterize the “pocketome druggability.” To this end, we first computed the “modelome” (3D structures of a complete genome) of a randomly selected reference strain Cd NCTC13129; that had 13,763 open reading frames (ORFs) and resulted in 1,253 (∼9%) structure models. The amino acid sequences of these modeled structures were compared with the remaining 12 genomes and consequently, 438 conserved protein sequences were obtained. The RCSB-PDB database was consulted to check the template structures for these conserved proteins and as a result, 401 adequate 3D models were obtained. We subsequently predicted the protein pockets for the obtained set of models and kept only the conserved pockets that had highly druggable (HD) values (137 across all strains). Later, an off-target host homology analyses was performed considering the human proteome using NCBI database. Furthermore, the gene essentiality analysis was carried out that gave a final set of 10-conserved targets possessing highly druggable protein pockets. To check the target identification robustness of the pipeline used in this work, we crosschecked the final target list with another in-house target identification approach for C. diphtheriae thereby obtaining three common targets, these were; hisE-phosphoribosyl-ATP pyrophosphatase, glpX-fructose 1,6-bisphosphatase II, and rpsH-30S ribosomal protein S8. Our predicted results suggest that the in silico approach used could potentially aid in experimental polypharmacological target determination in C. diphtheriae and other pathogens, thereby, might complement the existing and new drug-discovery pipelines

  10. MPL mutations in myeloproliferative disorders

    DEFF Research Database (Denmark)

    Beer, Philip A.; Campbell, Peter J.; Scott, Linda M.

    2008-01-01

    Activating mutations of MPL exon 10 have been described in a minority of patients with idiopathic myelofibrosis (IMF) or essential thrombocythemia (ET), but their prevalence and clinical significance are unclear. Here we demonstrate that MPL mutations outside exon 10 are uncommon in platelet c......DNA and identify 4 different exon 10 mutations in granulocyte DNA from a retrospective cohort of 200 patients with ET or IMF. Allele-specific polymerase chain reaction was then used to genotype 776 samples from patients with ET entered into the PT-1 studies. MPL mutations were identified in 8.5% of JAK2 V617F......(-) patients and a single V617F(+) patient. Patients carrying the W515K allele had a significantly higher allele burden than did those with the W515L allele, suggesting a functional difference between the 2 variants. Compared with V617F(+) ET patients, those with MPL mutations displayed lower hemoglobin...

  11. Effects of the umuC36 mutation on ultraviolet-radiation-induced base-change and frameshift mutations in Escherichia coli

    International Nuclear Information System (INIS)

    Kato, T.; Nakano, E.

    1981-01-01

    The effects of the umuC36 mutation on the induction of base-change and frameshift mutations were studied. An active umuC gene was necessary in either the uvr + or uvr - strains of Escherichia coli K12 for UV- and X-ray-induced mutations to His + , ColE and Spc, which are presumably base-change mutations, but it was not essential for ethyl methanesulphonate or N-methyl-N'-nitro-N-nitrosoguanidine-induced His + mutations. In contrast, only 1 out of 13 trp - frameshift mutations examined was UV reversible, and the process of mutagenesis was umuC + -dependent, whereas a potent frameshift mutagen, ICR191, effectively induced Trp + mutations in most of the strains regardless of the umu + or umuC genetic background. These results suggest that base substitutions are a major mutational type derived from the umuC + -dependent pathway of error-prone repair. (orig.)

  12. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  13. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  14. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    Science.gov (United States)

    Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun

    2016-03-10

    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  16. TOX3 mutations in breast cancer.

    Directory of Open Access Journals (Sweden)

    James Owain Jones

    Full Text Available TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe was identified in one tumour (genomic DNA and cDNA. Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.

  17. Conservación por congelación de Bordetella pertussis y Corynebacterium diphtheriae, empleados en la producción de vacunas para uso humano

    Directory of Open Access Journals (Sweden)

    Yilian Plasencia,

    2000-11-01

    Full Text Available En el presente estudio se evaluó el método de congelación a –70ºC para la preservación de Bordetella pertussis y Corynebacterium diphtheriae. Para verificar el sustento de los cultivos se realizó un adecuado control de calidad, que incluyó comprobación de pureza, viabilidad y estabilidad de las propiedades de interés. En este trabajo se probaron diferentes formulaciones. Se seleccionó la que arrojó los mejores resultados y se realizó un estudio de mantenimiento de las características evaluadas durante el tiempo. Para medir determinados parámetros se realizaron procesos a escala industrial, empleándose para esto un biorreactor Chemap de 35 L. Se tomaron como referencia los valores obtenidos por las cepas conservadas por liofilización. De esta forma se buscaron alternativas y soluciones a problemas presentados en su conservación. Los resultados obtenidos sugieren la posible inclusión en el Programa de Mantenimiento establecido.

  18. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States)); Cohen, M.P. (Vanderbilt Univ., Nashville, TN (United States)); Sexauer, C.L. (Children' s Hospital, Oklahoma City, OK (United States))

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  19. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  20. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  1. Whole genome sequencing of mutation accumulation lines reveals a low mutation rate in the social amoeba Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Gerda Saxer

    Full Text Available Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10(-9, with a Poisson confidence interval of 4.1×10(-9 - 9.5×10(-9, per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10(-11, with a Poisson confidence interval ranging from 7.4×10(-13 to 1.6×10(-10, is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.

  2. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.)

    Science.gov (United States)

    Guo, Lei; Liang, Pei; Zhou, Xuguo; Gao, Xiwu

    2014-01-01

    A previous study documented a glycine to glutamic acid mutation (G4946E) in ryanodine receptor (RyR) was highly correlated to diamide insecticide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae). In this study, a field population collected in Yunnan province, China, exhibited a 2128-fold resistance to chlorantraniliprole. Sequence comparison between resistant and susceptible P. xylostella revealed three novel mutations including a glutamic acid to valine substitution (E1338D), a glutamine to leucine substitution (Q4594L) and an isoleucine to methionine substitution (I4790M) in highly conserved regions of RyR. Frequency analysis of all four mutations in this field population showed that the three new mutations showed a high frequency of 100%, while the G4946E had a frequency of 20%. Furthermore, the florescent ligand binding assay revealed that the RyR containing multiple mutations displayed a significantly lower affinity to the chlorantraniliprole. The combined results suggested that the co-existence of different combinations of the four mutations was involved in the chlorantraniliprole resistance. An allele-specific PCR based method was developed for the diagnosis of the four mutations in the field populations of P. xylostella. PMID:25377064

  3. The Mutational Robustness of Influenza A Virus.

    Directory of Open Access Journals (Sweden)

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  4. MT-CYB mutations in hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2013-01-01

    Mitochondrial dysfunction is a characteristic of heart failure. Mutations in mitochondrial DNA, particularly in MT-CYB coding for cytochrome B in complex III (CIII), have been associated with isolated hypertrophic cardiomyopathy (HCM). We hypothesized that MT-CYB mutations might play an important...... and m.15482T>C; p.S246P were identified. Modeling showed that the p.C93Y mutation leads to disruption of the tertiary structure of Cytb by helix displacement, interfering with protein-heme interaction. The p.S246P mutation induces a diproline structure, which alters local secondary structure and induces...... of HCM patients. We propose that further patients with HCM should be examined for mutations in MT-CYB in order to clarify the role of these variants....

  5. Survival of mutations arising during invasions.

    Science.gov (United States)

    Miller, Judith R

    2010-03-01

    When a neutral mutation arises in an invading population, it quickly either dies out or 'surfs', i.e. it comes to occupy almost all the habitat available at its time of origin. Beneficial mutations can also surf, as can deleterious mutations over finite time spans. We develop descriptive statistical models that quantify the relationship between the probability that a mutation will surf and demographic parameters for a cellular automaton model of surfing. We also provide a simple analytic model that performs well at predicting the probability of surfing for neutral and beneficial mutations in one dimension. The results suggest that factors - possibly including even abiotic factors - that promote invasion success may also increase the probability of surfing and associated adaptive genetic change, conditioned on such success.

  6. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Radiation-induced mutations in mammals

    International Nuclear Information System (INIS)

    Ehling, U.H.

    1993-01-01

    The aims of the proposed project are to provide a better basis for extrapolation of animal data to man. Genetic endpoint, strain and species comparisons are made, which will provide critical experimental data regarding strategies in extrapolating laboratory animal data to man. Experiments were conducted to systematically compare the spontaneous and radiation-induced mutation rates for recessive specific-locus, dominant cataract and enzyme activity alleles in the mouse as well as a comparison of the mutation rate in the mouse and hamster for dominant cataract and enzyme activity alleles. The comparison of the radiation-dose response for recessive specific-locus and dominant cataract mutations are extended. Selected mutations are characterized at the genetic, biochemical and molecular levels. (R.P.) 5 refs., 3 tabs

  8. Common Β- Thalassaemia Mutations in

    Directory of Open Access Journals (Sweden)

    P Azarfam

    2005-01-01

    Full Text Available Introduction: β –Thalassaemia was first explained by Thomas Cooly as Cooly’s anaemia in 1925. The β- thalassaemias are hereditary autosomal disorders with decreased or absent β-globin chain synthesis. The most common genetic defects in β-thalassaemias are caused by point mutations, micro deletions or insertions within the β-globin gene. Material and Methods: In this research , 142 blood samples (64 from childrens hospital of Tabriz , 15 samples from Shahid Gazi hospital of Tabriz , 18 from Urumia and 45 samples from Aliasghar hospital of Ardebil were taken from thalassaemic patients (who were previously diagnosed .Then 117 non-familial samples were selected . The DNA of the lymphocytes of blood samples was extracted by boiling and Proteinase K- SDS procedure, and mutations were detected by ARMS-PCR methods. Results: From the results obtained, eleven most common mutations,most of which were Mediterranean mutations were detected as follows; IVS-I-110(G-A, IVS-I-1(G-A ،IVS-I-5(G-C ,Frameshift Codon 44 (-C,( codon5(-CT,IVS-1-6(T-C, IVS-I-25(-25bp del ,Frameshift 8.9 (+G ,IVS-II-1(G-A ,Codon 39(C-T, Codon 30(G-C the mutations of the samples were defined. The results showed that Frameshift 8.9 (+G, IVS-I-110 (G-A ,IVS-II-I(G-A, IVS-I-5(G-C, IVS-I-1(G-A , Frameshift Codon 44(-C , codon5(-CT , IVS-1-6(T-C , IVS-I-25(-25bp del with a frequency of 29.9%, 25.47%,17.83%, 7.00%, 6.36% , 6.63% , 3.8% , 2.5% , 0.63% represented the most common mutations in North - west Iran. No mutations in Codon 39(C-T and Codon 30(G-C were detected. Cunclusion: The frequency of the same mutations in patients from North - West of Iran seems to be different as compared to other regions like Turkey, Pakistan, Lebanon and Fars province of Iran. The pattern of mutations in this region is more or less the same as in the Mediterranean region, but different from South west Asia and East Asia.

  9. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency.

    Directory of Open Access Journals (Sweden)

    Steven Marston

    Full Text Available Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes.We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level.Obscurin levels in DCM controls, donor heart and myectomy samples were the same.OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations.

  10. Molecular mechanisms of induced-mutations

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1985-01-01

    The outcome of recent studies on mechanisms of induced-mutations is outlined with particular emphasis on the dependence of recA gene function in Escherichia coli. Genes involved in spontaneous mutation and x-ray- and chemical-induced mutation and genes involved in adaptive response are presented. As for SOS mutagenesis, SOS-induced regulation mechanisms and mutagenic routes are described. Furthermore, specificity of mutagens themselves are discussed in relation to mechanisms of base substitution, frameshift, and deletion mutagenesis. (Namekawa, K.)

  11. Mutation breeding newsletter. No. 33

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects.

  12. Mutation breeding newsletter. No. 33

    International Nuclear Information System (INIS)

    1989-01-01

    This issue of the newsletter reports a number of research news and research abstracts on application of radiation induced mutation techniques to increase mutagenesis and mutation frequency in plant breeding projects

  13. Screening of three Mediterranean phenylketonuria mutations in ...

    Indian Academy of Sciences (India)

    as the most frequent mutation (Dahri et al. 2010). The. E280K mutation was also reported in Mediterranean popu- lations (Guldberg et al. 1993). Since Tunisia is a Mediter- ranean country, patients with PKU are presumed to have these mutations. The aim of this study was to assess prevalence of the three above mutations ...

  14. Mutations in galactosemia

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J.K.V. [Univ. of Southern California School of Medicine, Los Angeles, CA (United States)

    1995-10-01

    This Letter raises four issues concerning two papers on galactosemia published in the March 1995 of the Journal. First, table 2 in the paper by Elsas et al. incorrectly attributes seven galactose-l-phosphate uridyl transferase (GALT) mutations (S135L, L195P, K285N, N314D, R333W, R333G, and K334R). The table also fails to mention that others have reported the same two findings attributed to {open_quotes}Leslie et al.; Elsas et al. and in press{close_quotes} and {open_quotes}Leslie et al.; Elsas et al.{close_quotes} The first finding on the prevalence of the Q188R galactosemia mutation in the G/G Caucasian population has also been described by Ng et al., and the second finding on the correlation of the N314D GALT mutation with the Duarte variant was reported by Lin et al. Second, Elsas et al. suggest that the E203K and N314D mutations may {open_quotes}produce intra-allelic complementation when in cis{close_quotes}. This speculation is supported by the activity data of individual III-2 but is inconsistent with the activities of three other individuals I-1, II-1, and III-1 of the same pedigree. The GALT activity measured in these three individuals suggests a dominant negative effect of E203K in E203K-N314D chromosomes, since they all have less than normal activity. Thus, the preponderance of the data in this paper is at odds with the authors speculation. It is worth recalling that Lin et al. also identified four N314D GALT mutations on 95 galactosemic chromosomes examined. A similar situation also appears to be the case in proband III-1 (with genotype E203K-N314D/IVSC) in the Elsas et al. paper. 9 refs.

  15. SQSTM1 Mutations and Glaucoma.

    Directory of Open Access Journals (Sweden)

    Todd E Scheetz

    Full Text Available Glaucoma is the most common cause of irreversible blindness worldwide. One subset of glaucoma, normal tension glaucoma (NTG occurs in the absence of high intraocular pressure. Mutations in two genes, optineurin (OPTN and TANK binding kinase 1 (TBK1, cause familial NTG and have known roles in the catabolic cellular process autophagy. TKB1 encodes a kinase that phosphorylates OPTN, an autophagy receptor, which ultimately activates autophagy. The sequestosome (SQSTM1 gene also encodes an autophagy receptor and also is a target of TBK1 phosphorylation. Consequently, we hypothesized that mutations in SQSTM1 may also cause NTG. We tested this hypothesis by searching for glaucoma-causing mutations in a cohort of NTG patients (n = 308 and matched controls (n = 157 using Sanger sequencing. An additional 1098 population control samples were also analyzed using whole exome sequencing. A total of 17 non-synonymous mutations were detected which were not significantly skewed between cases and controls when analyzed separately, or as a group (p > 0.05. These data suggest that SQSTM1 mutations are not a common cause of NTG.

  16. Sexual selection, germline mutation rate and sperm competition

    Directory of Open Access Journals (Sweden)

    Møller AP

    2003-04-01

    Full Text Available Abstract Background An important component of sexual selection arises because females obtain viability benefits for their offspring from their mate choice. Females choosing extra-pair fertilization generally favor males with exaggerated secondary sexual characters, and extra-pair paternity increases the variance in male reproductive success. Furthermore, females are assumed to benefit from 'good genes' from extra-pair sires. How additive genetic variance in such viability genes is maintained despite strong directional selection remains an evolutionary enigma. We propose that sexual selection is associated with elevated mutation rates, changing the balance between mutation and selection, thereby increasing variance in fitness and hence the benefits to be obtained from good genes sexual selection. Two hypotheses may account for such elevated mutation: (1 Increased sperm production associated with sperm competition may increase mutation rate. (2 Mutator alleles increase mutation rates that are revealed by the expression of condition-dependent secondary sexual characters used by choosy females during their mate choice. M Petrie has independently developed the idea that mutator alleles may account for the maintenance of genetic variation in viability despite strong directional selection. Results A comparative study of birds revealed a positive correlation between mutation rate at minisatellite loci and extra-pair paternity, but not between mutation rate and relative testes mass which is a measure of relative sperm production. Minisatellite mutation rates were not related to longevity, suggesting a meiotic rather than a mitotic origin of mutations. Conclusion We found evidence of increased mutation rate in species with more intense sexual selection. Increased mutation was not associated with increased sperm production, and we suggest that species with intense sexual selection may maintain elevated mutation rates because sexual selection continuously

  17. p53 gene mutation hotspots in skin cancer and ultraviolet induced mutation

    International Nuclear Information System (INIS)

    Ikehata, Hironobu

    1998-01-01

    Presence of certain hotspots is known in the mutation of p53 gene in skin cancer, which are codons 177, 196, 245, 248, 278 and 282 located in the exon 5-8. In these regions, mutations like C to T and CC to TT are frequent and thereby suggest that they are resulted from pyrimidine-dimers produced by ultraviolet light (UV). In cyclobutane pyrimidine dimerization (CPD), conversion of cytosine to thymine by deamination is suggested to be the primary reaction. Although studies using UVC (254 nm) suggesting that the mutation hotspots are low repair efficiency regions could not completely explain the all hotspots, those using UVB and sunlight (UVB and UVA) revealed that CPD was efficiently produced even in such regions as not explained by studies with UVC alone. Therefore, the latter studies are conceivably reasonable since the skin cancer is induced by natural sunlight. Exon 5-8 DNA is completely methylated and the absorption coefficient of 5-methylcytosine is 5-6 times as large as that of cytosine at wavelength around 290 nm. These indicate the importance of UVB in mutation of mammalian cells possessing the ability to methylate DNA. (K.H.)

  18. A NEW MUTATION OPERATOR IN GENETIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Anuradha Purohit

    2013-01-01

    Full Text Available This paper proposes a new type of mutation operator, FEDS (Fitness, Elitism, Depth, and Size mutation in genetic programming. The concept behind the new mutation operator is inspired from already introduced FEDS crossover operator to handle the problem of code bloating. FEDS mutation operates by using local elitism replacement in combination with depth limit and size of the trees to reduce bloat with a subsequent improvement in the performance of trees (program structures. We have designed a multiclass classifier for some benchmark datasets to test the performance of proposed mutation. The results show that when the initial run uses FEDS crossover and the concluding run uses FEDS mutation, then not only is the final result significantly improved but there is reduction in bloat also.

  19. Preleukemic and second-hit mutational events in an acute myeloid leukemia patient with a novel germline RUNX1 mutation.

    Science.gov (United States)

    Ng, Isaac Ks; Lee, Joanne; Ng, Christopher; Kosmo, Bustamin; Chiu, Lily; Seah, Elaine; Mok, Michelle Meng Huang; Tan, Karen; Osato, Motomi; Chng, Wee-Joo; Yan, Benedict; Tan, Lip Kun

    2018-01-01

    Germline mutations in the RUNX1 transcription factor give rise to a rare autosomal dominant genetic condition classified under the entity: Familial Platelet Disorders with predisposition to Acute Myeloid Leukaemia (FPD/AML). While several studies have identified a myriad of germline RUNX1 mutations implicated in this disorder, second-hit mutational events are necessary for patients with hereditary thrombocytopenia to develop full-blown AML. The molecular picture behind this process remains unclear. We describe a patient of Malay descent with an unreported 7-bp germline RUNX1 frameshift deletion, who developed second-hit mutations that could have brought about the leukaemic transformation from a pre-leukaemic state. These mutations were charted through the course of the treatment and stem cell transplant, showing a clear correlation between her clinical presentation and the mutations present. The patient was a 27-year-old Malay woman who presented with AML on the background of hereditary thrombocytopenia affecting her father and 3 brothers. Initial molecular testing revealed the same novel RUNX1 mutation in all 5 individuals. The patient received standard induction, consolidation chemotherapy, and a haploidentical stem cell transplant from her mother with normal RUNX1 profile. Comprehensive genomic analyses were performed at diagnosis, post-chemotherapy and post-transplant. A total of 8 mutations ( RUNX1 , GATA2 , DNMT3A , BCORL1 , BCOR , 2 PHF6 and CDKN2A ) were identified in the pre-induction sample, of which 5 remained ( RUNX1 , DNMT3A , BCORL1 , BCOR and 1 out of 2 PHF6 ) in the post-treatment sample and none were present post-transplant. In brief, the 3 mutations which were lost along with the leukemic cells at complete morphological remission were most likely acquired leukemic driver mutations that were responsible for the AML transformation from a pre-leukemic germline RUNX1 -mutated state. On the contrary, the 5 mutations that persisted post

  20. The Mutations Associated with Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ruti Parvari

    2012-01-01

    Full Text Available Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM. The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.

  1. [Study of gene mutation in 62 hemophilia A children].

    Science.gov (United States)

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense

  2. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    Science.gov (United States)

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  3. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer.

    Science.gov (United States)

    Talseth-Palmer, Bente A; McPhillips, Mary; Groombridge, Claire; Spigelman, Allan; Scott, Rodney J

    2010-05-21

    Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  4. The functional importance of disease-associated mutation

    Directory of Open Access Journals (Sweden)

    Klein Teri E

    2002-09-01

    Full Text Available Abstract Background For many years, scientists believed that point mutations in genes are the genetic switches for somatic and inherited diseases such as cystic fibrosis, phenylketonuria and cancer. Some of these mutations likely alter a protein's function in a manner that is deleterious, and they should occur in functionally important regions of the protein products of genes. Here we show that disease-associated mutations occur in regions of genes that are conserved, and can identify likely disease-causing mutations. Results To show this, we have determined conservation patterns for 6185 non-synonymous and heritable disease-associated mutations in 231 genes. We define a parameter, the conservation ratio, as the ratio of average negative entropy of analyzable positions with reported mutations to that of every analyzable position in the gene sequence. We found that 84.0% of the 231 genes have conservation ratios less than one. 139 genes had eleven or more analyzable mutations and 88.0% of those had conservation ratios less than one. Conclusions These results indicate that phylogenetic information is a powerful tool for the study of disease-associated mutations. Our alignments and analysis has been made available as part of the database at http://cancer.stanford.edu/mut-paper/. Within this dataset, each position is annotated with the analysis, so the most likely disease-causing mutations can be identified.

  5. POLE somatic mutations in advanced colorectal cancer.

    Science.gov (United States)

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Haploid rice plants in mutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S [Institute of Radiation Breeding, Ministry of Agriculture and Forestry, Ohmiya, Ibaraki-ken (Japan)

    1970-03-01

    Studies were made on chlorophyll-deficient sectors and diploid-like sectors in haploid rice plants exposed to chronic gamma irradiation, and on germinal mutations in diploid strains derived from the haploid plants. The induction and elimination of somatic mutations in haploid plants and the occurrence of drastic germinal mutations in diploid strains from haploid plants are discussed. (author)

  7. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  8. Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans.

    Science.gov (United States)

    Lesage, Suzanne; Patin, Etienne; Condroyer, Christel; Leutenegger, Anne-Louise; Lohmann, Ebba; Giladi, Nir; Bar-Shira, Anat; Belarbi, Soraya; Hecham, Nassima; Pollak, Pierre; Ouvrard-Hernandez, Anne-Marie; Bardien, Soraya; Carr, Jonathan; Benhassine, Traki; Tomiyama, Hiroyuki; Pirkevi, Caroline; Hamadouche, Tarik; Cazeneuve, Cécile; Basak, A Nazli; Hattori, Nobutaka; Dürr, Alexandra; Tazir, Meriem; Orr-Urtreger, Avi; Quintana-Murci, Lluis; Brice, Alexis

    2010-05-15

    Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been identified in families with autosomal dominant Parkinson's disease (PD) and in sporadic cases; the G2019S mutation is the single most frequent. Intriguingly, the frequency of this mutation in PD patients varies greatly among ethnic groups and geographic origins: it is present at <0.1% in East Asia, approximately 2% in European-descent patients and can reach frequencies of up to 15-40% in PD Ashkenazi Jews and North African Arabs. To ascertain the evolutionary dynamics of the G2019S mutation in different populations, we genotyped 74 markers spanning a 16 Mb genomic region around G2019S, in 191 individuals carrying the mutation from 126 families of different origins. Sixty-seven families were of North-African Arab origin, 18 were of North/Western European descent, 37 were of Jewish origin, mostly from Eastern Europe, one was from Japan, one from Turkey and two were of mixed origins. We found the G2019S mutation on three different haplotypes. Network analyses of the three carrier haplotypes showed that G2019S arose independently at least twice in humans. In addition, the population distribution of the intra-allelic diversity of the most widespread carrier haplotype, together with estimations of the age of G2019S determined by two different methods, suggests that one of the founding G2019S mutational events occurred in the Near East at least 4000 years ago.

  9. Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    International Nuclear Information System (INIS)

    Misra, Anjan; Chattopadhyay, Parthaprasad; Chosdol, Kunzang; Sarkar, Chitra; Mahapatra, Ashok K; Sinha, Subrata

    2007-01-01

    A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations). In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells. Random Amplified Polymorphic DNA (RAPD) analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA) and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM). The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s) scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation. The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods. This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb

  10. MEN1 redefined, a clinical comparison of mutation-positive and mutation-negative patients

    NARCIS (Netherlands)

    de Laat, Joanne M; van der Luijt, Rob B; Pieterman, Carolina R C; Oostveen, Maria P; Hermus, Ad R; Dekkers, Olaf M; de Herder, Wouter W; van der Horst-Schrivers, Anouk N; Drent, Madeleine L; Bisschop, Peter H; Havekes, Bas; Vriens, Menno R; Valk, Gerlof D

    2016-01-01

    BACKGROUND: Multiple Endocrine Neoplasia type 1 (MEN1) is diagnosed when two out of the three primary MEN1-associated endocrine tumors occur in a patient. Up to 10-30 % of those patients have no mutation in the MEN1 gene. It is unclear if the phenotype and course of the disease of mutation-negative

  11. MEN1 redefined, a clinical comparison of mutation-positive and mutation-negative patients

    NARCIS (Netherlands)

    de Laat, Joanne M.; van der Luijt, Rob B.; Pieterman, Carolina R. C.; Oostveen, Maria P.; Hermus, Ad R.; Dekkers, Olaf M.; de Herder, Wouter W.; van der Horst-Schrivers, Anouk N.; Drent, Madeleine L.; Bisschop, Peter H.; Havekes, Bas; Vriens, Menno R.; Valk, Gerlof D.

    2016-01-01

    Background: Multiple Endocrine Neoplasia type 1 (MEN1) is diagnosed when two out of the three primary MEN1-associated endocrine tumors occur in a patient. Up to 10-30 % of those patients have no mutation in the MEN1 gene. It is unclear if the phenotype and course of the disease of mutation-negative

  12. Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in Caenorhabditis elegans Spontaneous Mutation Accumulation Lines of Differing Population Size.

    Science.gov (United States)

    Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali

    2017-06-01

    Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Mitochondrial DNA mutation load in a family with the m.8344A>G point mutation and lipomas

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Al-Hashimi, Noor; Duno, Morten

    2017-01-01

    Studies have shown that difference in mtDNA mutation load among tissues is a result of postnatal modification. We present five family members with the m.8344A>G with variable phenotypes but uniform intrapersonal distribution of mutation load, indicating that there is no postnatal modification of mt......DNA mutation load in this genotype....

  14. The directed mutation controversy and neo-Darwinism.

    Science.gov (United States)

    Lenski, R E; Mittler, J E

    1993-01-08

    According to neo-Darwinian theory, random mutation produces genetic differences among organisms whereas natural selection tends to increase the frequency of advantageous alleles. However, several recent papers claim that certain mutations in bacteria and yeast occur at much higher rates specifically when the mutant phenotypes are advantageous. Various molecular models have been proposed that might explain these directed mutations, but the models have not been confirmed. Critics contend that studies purporting to demonstrate directed mutation lack certain controls and fail to account adequately for population dynamics. Further experiments that address these criticisms do not support the existence of directed mutations.

  15. Recurrent and founder mutations in the PMS2 gene.

    Science.gov (United States)

    Tomsic, J; Senter, L; Liyanarachchi, S; Clendenning, M; Vaughn, C P; Jenkins, M A; Hopper, J L; Young, J; Samowitz, W; de la Chapelle, A

    2013-03-01

    Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2. © 2012 John Wiley & Sons A/S.

  16. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  17. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    Science.gov (United States)

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  18. Benchmarking infrastructure for mutation text mining.

    Science.gov (United States)

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  19. Benchmarking infrastructure for mutation text mining

    Science.gov (United States)

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  20. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  1. MEN1 redefined, a clinical comparison of mutation-positive and mutation-negative patients

    NARCIS (Netherlands)

    de Laat, Joanne M.; van der Luijt, Rob B.; Pieterman, Carolina R. C.; Oostveen, Maria P.; Hermus, Ad R.; Dekkers, Olaf M.; de Herder, Wouter W.; van der Horst-Schrivers, Anouk N.; Drent, Madeleine L.; Bisschop, Peter H.; Havekes, Bas; Vriens, Menno R.; Valk, Gerlof D.

    2016-01-01

    Multiple Endocrine Neoplasia type 1 (MEN1) is diagnosed when two out of the three primary MEN1-associated endocrine tumors occur in a patient. Up to 10-30 % of those patients have no mutation in the MEN1 gene. It is unclear if the phenotype and course of the disease of mutation-negative patients is

  2. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    Science.gov (United States)

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mutation breeding in Philippine fruits

    International Nuclear Information System (INIS)

    Espino, R.R.C.

    1987-09-01

    Studies were made to establish standard conditions for mutation induction by gamma-irradiation to be performed in combination with in-vitro culture for banana and citrus spp. Besides this, radio-sensitivity of seeds and/or plantlets of mango, sugar apple, soursop, lanzones and Jack fruit was investigated and primary observation on the occurrence of mutation was made. For the mutagenesis of banana shoot tip cultures, radio-sensitivity of plantlets derived from the culture as well as fresh-cultured shoots was examined and phenotypes indicative of mutation, such as chlorophyl streaking, slow growth, pigmentation and varied bunch orientation were recorded. Isozyme analysis for mutated protein structure was not conclusive. In the in-vitro culture of Citrus spp., seeds placed on fresh media as well as germinating seeds and two-leaf stage seedlings in test tubes were examined for their radio-sensitivity. Irradiated materials were propagated for further observation. In these two crops, basic methodology for mutation induction with combined use of in-vitro culture and gamma-irradiation was established. In mango, sugar apple, soursop, lanzones and Jack fruit, basic data on radiosensitivity were obtained. In mango, leaf abnormalities were observed after the treatment of scions

  4. Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population.

    Science.gov (United States)

    Tüysüz, Beyhan; Bayrakli, Fatih; DiLuna, Michael L; Bilguvar, Kaya; Bayri, Yasar; Yalcinkaya, Cengiz; Bursali, Aysegul; Ozdamar, Elif; Korkmaz, Baris; Mason, Christopher E; Ozturk, Ali K; Lifton, Richard P; State, Matthew W; Gunel, Murat

    2008-05-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV), or congenital insensitivity to pain with anhidrosis, is an autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis from deinnervated sweat glands, and delayed mental and motor development. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1), a receptor in the neurotrophin signaling pathway phosphorylated in response to nerve growth factor, are associated with this disorder. We identified six families from Northern Central Turkey with HSAN IV. We screened the NTRK1 gene for mutations in these families. Microsatellite and single nucleotide polymorphism (SNP) markers on the Affymetrix 250K chip platform were used to determine the haplotypes for three families harboring the same mutation. Screening for mutations in the NTRK1 gene demonstrated one novel frameshift mutation, two novel nonsense mutations, and three unrelated kindreds with the same splice-site mutation. Genotyping of the three families with the identical splice-site mutation revealed that they share the same haplotype. This report broadens the spectrum of mutations in NTRK1 that cause HSAN IV and demonstrates a founder mutation in the Turkish population.

  5. Mutation breeding newsletter. No. 45

    International Nuclear Information System (INIS)

    2001-07-01

    This issue of the Mutation Breeding newsletter contains 39 articles dealing with radiation induced mutations and chemical mutagenesis techniques in plant breeding programs with the aims of improving crop productivity and disease resistance as well as exploring genetic variabilities

  6. Molecular methods for the detection of mutations.

    Science.gov (United States)

    Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A

    2000-01-01

    We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.

  7. Sequential acquisition of mutations in myelodysplastic syndromes.

    Science.gov (United States)

    Makishima, Hideki

    2017-01-01

    Recent progress in next-generation sequencing technologies allows us to discover frequent mutations throughout the coding regions of myelodysplastic syndromes (MDS), potentially providing us with virtually a complete spectrum of driver mutations in this disease. As shown by many study groups these days, such driver mutations are acquired in a gene-specific fashion. For instance, DDX41 mutations are observed in germline cells long before MDS presentation. In blood samples from healthy elderly individuals, somatic DNMT3A and TET2 mutations are detected as age-related clonal hematopoiesis and are believed to be a risk factor for hematological neoplasms. In MDS, mutations of genes such as NRAS and FLT3, designated as Type-1 genes, may be significantly associated with leukemic evolution. Another type (Type-2) of genes, including RUNX1 and GATA2, are related to progression from low-risk to high-risk MDS. Overall, various driver mutations are sequentially acquired in MDS, at a specific time, in either germline cells, normal hematopoietic cells, or clonal MDS cells.

  8. The use of optical markers for mutation breeding

    International Nuclear Information System (INIS)

    Makino, Takahiro

    2003-01-01

    The use of radiation for mutation breeding has produced many kinds of practical varieties in crops and ornamental plants over the last several decades. Cold-tolerant rice and disease-resistant apple and pears are well-known varieties resulting from radiation breeding in Japan, and X-ray mutations were used routinely for the expansion of petal color in the chrysanthemum. Recently, the use of ion-beams for mutation induction was investigated as an effective source for producing varieties in cereal crops and flowers in Japan and China (Harten, 1998). Although we have not produced many varieties through radiation breeding, the success rate could increase with the addition of more resources. The success of mutation breeding greatly depends on the rate of mutation, the number of screened plants, and the mutation efficiency. The mutation rate is mainly a function of the total dose of the mutagen employed, although it can be modified by physical and biological factors. A large number of reports have been produced and effective methods of mutation treatments, such as gamma rays, established. Using higher doses inevitably brings about mortality, high pollen and seed sterility, and deleterious mutations. A practical useful dosage is usually found in the range much less than the maximum dose that can be applied. To increase the efficiency of mutation breeding, improvement of screening methods is more important than trials used for raising mutation probabilities. For this reason, we began studies to develop non-destructive and non-invasive optical high-throughput screening systems to increase the efficiency of mutation breeding. (author)

  9. EGFR mutation frequency and effectiveness of erlotinib

    DEFF Research Database (Denmark)

    Weber, Britta; Hager, Henrik; Sorensen, Boe S

    2014-01-01

    mutation (S768I), and two complex mutations. Seven percent of the patients were never smokers. The differences in median progression-free survival and overall survival between the mutated group and the wild-type group were 8.0 vs. 2.5 months, p...-1 vs. 2-3) and line of treatment (1st vs. 2nd and 3rd) had no influence on outcome in EGFR-mutated patients. CONCLUSION: We found a higher frequency of EGFR mutations than expected in a cohort with less than 10% never smokers. The outcome after treatment with erlotinib was much better in patients......OBJECTIVES: In 2008, we initiated a prospective study to explore the frequency and predictive value of epidermal growth factor receptor (EGFR) mutations in an unselected population of Danish patients with non-small cell lung cancer offered treatment with erlotinib, mainly in second-line. MATERIALS...

  10. Precise estimates of mutation rate and spectrum in yeast

    Science.gov (United States)

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ∼311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  11. MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Talseth-Palmer Bente A

    2010-05-01

    Full Text Available Abstract Background Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods A total of 78 participants (from 29 families with a mutation in MSH6 and 7 participants (from 6 families with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.

  12. Mutation update for the PORCN gene

    DEFF Research Database (Denmark)

    Lombardi, Maria Paola; Bulk, Saskia; Celli, Jacopo

    2011-01-01

    Mutations in the PORCN gene were first identified in Goltz-Gorlin syndrome patients in 2007. Since then, several reports have been published describing a large variety of genetic defects resulting in the Goltz-Gorlin syndrome, and mutations or deletions were also reported in angioma serpiginosum......, the pentalogy of Cantrell and Limb-Body Wall Complex. Here we present a review of the published mutations in the PORCN gene to date and report on seven new mutations together with the corresponding clinical data. Based on the review we have created a Web-based locus-specific database that lists all identified...... variants and allows the inclusion of future reports. The database is based on the Leiden Open (source) Variation Database (LOVD) software, and is accessible online at http://www.lovd.nl/porcn. At present, the database contains 106 variants, representing 68 different mutations, scattered along the whole...

  13. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  14. Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    Directory of Open Access Journals (Sweden)

    Sarkar Chitra

    2007-10-01

    Full Text Available Abstract Background A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations. In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells. Methods Random Amplified Polymorphic DNA (RAPD analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM. The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation. Results The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods. Conclusion This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb.

  15. EGFR Mutation Status in Uighur Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Li SHAN

    2013-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR, a transmembrane protein, is a member of the tyrosine kinase family. Gefitinib, an EGFR tyrosine-kinase inhibitors, has shown a high response rate in the treatment of lung cancer in patients with EGFR mutation. However, significant differences in EGFR mutations exist among different ethnic groups. The aim of this study is to investigate the prevalence of EGFR mutations in Uighur lung adenocarcinoma patients by using a rapid and sensitive detection method and to analyze EGFR mutation differences compared with Han lung adenocarcinoma patients. Methods We examined lung adenocarcinoma tissues from 138 patients, including 68 Uighur lung adenocarcinoma patients and 70 Han lung adenocarcinoma patients, for EGFR mutations in exons 18, 19, 20, and 21 by using the amplification refractory mutation system (ARMS PCR method. The mutation differences between Uighur and Han lung adenocarcinoma were compared by using the chi-square test method. Results EGFR mutations were detected in 43 (31.2% of the 138 lung adenocarcinoma patients. EGFR mutations were detected in 11 (16.2% of the 68 Uighur lung adenocarcinoma patients and in 32 (45.7% of the 70 Han lung adenocarcinoma patients. Significant differences were observed in the EGFR mutations between Uighur lung adenocarcinoma patients and Han lung adenocarcinoma patients (P<0.001. Conclusion Our results indicate that the EGFR mutation in Uighur lung adenocarcinoma patients (16.2% is significantly lower than that in Han lung adenocarcinoma patients (45.7%.

  16. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  17. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    Science.gov (United States)

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  18. The SHOX region and its mutations.

    Science.gov (United States)

    Capone, L; Iughetti, L; Sabatini, S; Bacciaglia, A; Forabosco, A

    2010-06-01

    The short stature homeobox-containing (SHOX) gene lies in the pseudoautosomal region 1 (PAR1) that comprises 2.6 Mb of the short-arm tips of both the X and Y chromosomes. It is known that its heterozygous mutations cause Leri-Weill dyschondrosteosis (LWD) (OMIM #127300), while its homozygous mutations cause a severe form of dwarfism known as Langer mesomelic dysplasia (LMD) (OMIM #249700). The analysis of 238 LWD patients between 1998 and 2007 by multiple authors shows a prevalence of deletions (46.4%) compared to point mutations (21.2%). On the whole, deletions and point mutations account for about 67% of LWD patients. SHOX is located within a 1000 kb desert region without genes. The comparative genomic analysis of this region between genomes of different vertebrates has led to the identification of evolutionarily conserved non-coding DNA elements (CNE). Further functional studies have shown that one of these CNE downstream of the SHOX gene is necessary for the expression of SHOX; this is considered to be typical "enhancer" activity. Including the enhancer, the overall mutation of the SHOX region in LWD patients does not hold in 100% of cases. Various authors have demonstrated the existence of other CNE both downstream and upstream of SHOX regions. The resulting conclusion is that it is necessary to reanalyze all LWD/LMD patients without SHOX mutations for the presence of mutations in the 5'- and 3'-flanking SHOX regions.

  19. Urinary Tract Effects of HPSE2 Mutations

    OpenAIRE

    Stuart, H; Roberts, N; Hilton, E; McKenzie, E; Daly, S; Hadfield, K; Rahal, J; Gardiner, N; Tanley, S; Lewis, M; Sites, E; Angle, B; Alves, C; Lourenço, T; Rodrigues, M

    2015-01-01

    Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurog...

  20. Mutation spectrum of Chinese patients with Bartter syndrome.

    Science.gov (United States)

    Han, Yue; Lin, Yi; Sun, Qing; Wang, Shujuan; Gao, Yanxia; Shao, Leping

    2017-11-24

    Bartter syndrome (BS) has been rarely reported in Chinese population except for a few case reports. This investigation was aimed to analyze the mutations of the causal genes in sixteen Chinese patients with BS, and review their followup and treatment. Identify mutations by the next generation sequencing and the multiplex ligation-dependent probe amplification (MLPA). Clinical characteristics and biochemical findings at the first presentation as well as follow-up were reviewed. 15 different CLCNKB gene mutations were identified in fourteen patients with BS, including 11 novel ones. A novel missense mutation and a novel small deletion were found from SLC12A1 gene. A novel gross deletion was found in CLCNKA gene. A recurrent missense mutation was identified from BSND gene. We found that the whole gene deletion mutation of CLCNKB gene was the most frequent mutation (32%), and the rate of gross deletion was up to 50 percent in this group of Chinese patients. The present study has found 19 mutations, including 14 novel ones, which would enrich the human gene mutation database (HGMD) and provide valuable references to the genetic counseling and diagnosis of the Chinese population.

  1. IDH Mutations: Genotype-Phenotype Correlation and Prognostic Impact

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Wang

    2014-01-01

    Full Text Available IDH1/2 mutation is the most frequent genomic alteration found in gliomas, affecting 40% of these tumors and is one of the earliest alterations occurring in gliomagenesis. We investigated a series of 1305 gliomas and showed that IDH mutation is almost constant in 1p19q codeleted tumors. We found that the distribution of IDH1R132H, IDH1nonR132H, and IDH2 mutations differed between astrocytic, mixed, and oligodendroglial tumors, with an overrepresentation of IDH2 mutations in oligodendroglial phenotype and an overrepresentation of IDH1nonR132H in astrocytic tumors. We stratified grade II and grade III gliomas according to the codeletion of 1p19q and IDH mutation to define three distinct prognostic subgroups: 1p19q and IDH mutated, IDH mutated—which contains mostly TP53 mutated tumors, and none of these alterations. We confirmed that IDH mutation with a hazard ratio = 0.358 is an independent prognostic factor of good outcome. These data refine current knowledge on IDH mutation prognostic impact and genotype-phenotype associations.

  2. Emergence of MPLW515 mutation in a patient with CALR deletion: Evidence of secondary acquisition of MPL mutation in the CALR clone.

    Science.gov (United States)

    Partouche, Nicolas; Conejero, Carole; Barathon, Quentin; Moroch, Julien; Tulliez, Michel; Cordonnier, Catherine; Giraudier, Stephane

    2018-02-01

    Myeloproliferative neoplasms are characterized by transduction pathway recognized as mutually exclusive molecular abnormalities such as BCR-ABL translocation, JAK2V617F or JAK2 exon 12 mutations, MPL w515, and CALR mutations. However, in some rare cases, associations of such mutations are found in 1 patient. This can be related to 2 pathologies (at least 2 different clones harboring 2 mutations) or associated mutations in 1 clone. We describe here such an association of CALR and MPL mutations in a patient harboring the second mutation in a subclone during the phenotypic evolution of the myeloproliferative neoplasms. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Identifying pathways affected by cancer mutations.

    Science.gov (United States)

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Identification of seven novel mutations including the first two genomic rearrangements in SLC26A3 mutated in congenital chloride diarrhea.

    Science.gov (United States)

    Höglund, P; Sormaala, M; Haila, S; Socha, J; Rajaram, U; Scheurlen, W; Sinaasappel, M; de Jonge, H; Holmberg, C; Yoshikawa, H; Kere, J

    2001-09-01

    Congenital chloride diarrhea (CLD) is an autosomal recessive disorder characterized by defective intestinal electrolyte absorption, resulting in voluminous osmotic diarrhea with high chloride content. A variety of mutations in the solute carrier family 26, member 3 gene (SLC26A3, previously known as CLD or DRA) are responsible for the disease. Since the identification of the SLC26A3 gene and the determination of its genomic structure, altogether three founder and 17 private mutations have been characterized within miscellaneous ethnic groups. We screened for mutations in seven unrelated families with CLD. The diagnoses were confirmed by fecal chloride measurements. The combined PCR-SSCP and sequencing analyses revealed altogether seven novel mutations including two missense mutations (S206P, D468V), two splicing defects (IVS12-1G>C, IVS13-2delA), one nonsense mutation (Q436X), one insertion/deletion mutation (2104-2105delGGins29-bp), and an intragenic deletion of SLC26A3 exons 7 and 8. Two previously identified mutations were also found. This is the first report of rearrangement mutations in SLC26A3. Molecular features predisposing SLC26A3 for the two rearrangements may include repetitive elements and palindromic-like sequences. The increasingly wide diversity of SLC26A3 mutations suggests that mutations in the SLC26A3 gene may not be rare events. Copyright 2001 Wiley-Liss, Inc.

  5. TFAP2B mutation and dental anomalies.

    Science.gov (United States)

    Tanasubsinn, Natchaya; Sittiwangkul, Rekwan; Pongprot, Yupada; Kawasaki, Katsushige; Ohazama, Atsushi; Sastraruji, Thanapat; Kaewgahya, Massupa; Kantaputra, Piranit Nik

    2017-08-01

    Mutations inTFAP2B has been reported in patients with isolated patent ductus arteriosus (PDA) and Char syndrome. We performed mutation analysis of TFAP2B in 43 patients with isolated PDA, 7 patients with PDA with other congenital heart defects and 286 patients with isolated tooth agenesis with or without other dental anomalies. The heterozygous c.1006G>A mutation was identified in 20 individuals. Those mutation carriers consisted of 1 patient with term PDA (1/43), 16 patients with isolated tooth agenesis with or without other dental anomalies (16/286; 5.6%), 1 patient with PDA and severe valvular aortic stenosis and tooth agenesis (1/4) and 2 normal controls (2/100; 1%). The mutation is predicted to cause an amino-acid substitution p.Val336Ile in the TFAP2B protein. Tfap2b expression during early mouse tooth development supports the association of TFAP2B mutation and dental anomalies. It is hypothesized that this incidence might have been the result of founder effect. Here we report for the first time that TFAP2B mutation is associated with tooth agenesis, microdontia, supernumerary tooth and root maldevelopment. In addition, we also found that TFAP2B mutations, the common causes of PDA in Caucasian, are not the common cause of PDA in Thai population.

  6. EGFR and KRAS mutation coexistence in lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Vitor Manuel Leitão de Sousa

    2015-04-01

    Full Text Available Lung cancer is one of the most common causes of cancer deaths. The development of EGFR targeted therapies, including monoclonal antibodies and tyrosine kinase inhibitors have generated an interest in the molecular characterization of these tumours. KRAS mutations are associated with resistance to EGFR TKIs. EGFR and KRAS mutations have been considered as mutually exclusive. This paper presents three bronchial-pulmonary carcinomas, two adenocarcinomas and one pleomorphic sarcomatoid carcinoma, harboring EGFR and KRAS mutations. Case 1 corresponded to an adenocarcinoma with EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; case 2, a  mucinous adenocarcinoma expressed coexistence of EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; and case 3 a sarcomatoid carcinoma with EGFR exon 19 deletion – del 9bp and KRAS codon 12 point mutation (G12C - cysteine. Based on our experience and on the literature, we conclude that EGFR and KRAS mutations can indeed coexist in the same bronchial-pulmonary carcinoma, either in the same histological type or in different patterns. The biological implications of this coexistence are still poorly understood mainly because these cases are not frequent or currently searched. It is therefore necessary to study larger series of cases with the two mutations to better understand the biological, clinical and therapeutic implications.

  7. Avoiding dangerous missense: thermophiles display especially low mutation rates.

    Directory of Open Access Journals (Sweden)

    John W Drake

    2009-06-01

    Full Text Available Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003-0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 10(4-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate.

  8. Mutation induction by and mutational interaction between monochromatic wavelength radiations in the near-ultraviolet and visible ranges

    International Nuclear Information System (INIS)

    Tyrrell, R.M.

    1980-01-01

    The induction of mutations (reversion to tryptophan independence) by various UV (254, 313, 334 and 365 nm) and visible (405 and 434 nm) wavelengths was measured in exponential phase populations of Escherichia coli B/r thy trp and B/r thy trp uvr A by assay of irradiated populations on semi-enriched media. No mutations were induced in the repair proficient strain at wavelengths longer than 313 nm. Mutations were induced to the excisionless strain at wavelengths as long as 405 nm but less than expected from the known amount of DNA damage induced. Irradiation at the long wavelenths (434, 405, 365 and 334 nm) suppressed the appearance of 254- or 313 nm-induced mutations in the repair competent strain but not in the excision deficient strain. The relative dose-requirement for mutation suppression was related to the relative efficiency of these wavelengths in inducing growth delay. These results suggest that the growth delay induced by near-UV and visible wavelenghts allows more time for the 'error-free' excision repair process to act on the potentially mutagenic lesions induced by 254- and 313-nm radiations, thereby reducing the mutation frequency observed in the repair-proficient strain. The level of near-UV mutation induced in the excision deficient strain is lower than expected from the DNA damage known to be induced. It is possible that near-UV radiation induces a class of lethal lesions that are not susceptible to error-prone repair. (author)

  9. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Splice Site Mutations in the ATP7A Gene

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation...... to in vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  11. Mandibulofacial Dysostosis with Microcephaly: Mutation and Database Update

    DEFF Research Database (Denmark)

    Gregersen, Pernille Axel

    2016-01-01

    , we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds. Pathogenic EFTUD2 variants comprise 76 distinct mutations and 7 microdeletions. Among point...... mutations, missense substitutions are infrequent (14/76; 18%) relative to stopgain (29/76; 38%), and splicing (33/76; 43%) mutations. Where known, mutation origin was de novo in 48/64 individuals (75%), dominantly-inherited in 12/64 (19%), and due to proven germline mosaicism in 4/64 (6%). Highly penetrant......-reported anomalies, include vestibular and ossicular malformations, reduced mouth opening, atrophy of cerebral white matter, structural brain malformations, and epibulbar dermoid. All reported EFTUD2 mutations can be found in the EFTUD2 mutation database (http://databases.lovd.nl/shared/genes/EFTUD2). This article...

  12. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Energy Technology Data Exchange (ETDEWEB)

    Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Thopan, P.; Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  13. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    International Nuclear Information System (INIS)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation

  14. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  15. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

    Science.gov (United States)

    Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi

    2015-07-02

    In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).

  16. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    Science.gov (United States)

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  19. The spectrum of mutation produced by low dose radiation

    International Nuclear Information System (INIS)

    Morley, Alexander A.; Turner, David R.

    2004-01-01

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  20. Distinct pattern of p53 mutations in bladder cancer

    DEFF Research Database (Denmark)

    Spruck, C H; Rideout, W M; Olumi, A F

    1993-01-01

    A distinct mutational spectrum for the p53 tumor suppressor gene in bladder carcinomas was established in patients with known exposures to cigarette smoke. Single-strand conformational polymorphism analysis of exons 5 through 8 of the p53 gene showed inactivating mutations in 16 of 40 (40%) bladder...... tumors from smokers and 13 of 40 (33%) tumors from lifetime nonsmokers. Overall, 13 of the 50 (26%) total point mutations discovered in this and previous work were G:C-->C:G transversions, a relatively rare mutational type in human tumors. In six tumors, identical AGA (Arg)-->ACA (Thr) point mutations...... double mutations, four of which were tandem mutations on the same allele. No double mutations were found in tumors from nonsmoking patients. None of the mutations in smokers were G:C-->T:A transversions, which would be anticipated for exposure to the suspected cigarette smoke carcinogen 4-aminobiphenyl...

  1. Recurrent LDL-receptor mutation causes familial ...

    African Journals Online (AJOL)

    1995-05-05

    May 5, 1995 ... 3. eaudet . New. Recurrent LDL-receptor mutation causes familial hypercholesterolaemia in ... amplification refractory mutation system (ARMS)" and single- strand conformation .... Location. Afrikaner. Mixed race. ApaLl.

  2. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Diaz-Llopis Manuel

    2011-10-01

    Full Text Available Abstract Background Usher Syndrome type II (USH2 is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP. Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin.

  3. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  4. Mutation directional selection sheds light on prion pathogenesis

    International Nuclear Information System (INIS)

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    Highlights: → Most pathogenic mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. → Mutation-induced changes may strengthen the interactions between PrP and facilitating factors. → The findings also have significant implications for exploring potential regions involved in the conformational transition from PrP C to PrP Sc . -- Abstract: As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP C ) to abnormal scrapie isoform (PrP Sc ). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP C conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.

  5. Mutation directional selection sheds light on prion pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Liang [Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049 (China); Ji, Hong-Fang, E-mail: jhf@sdut.edu.cn [Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049 (China)

    2011-07-01

    Highlights: {yields} Most pathogenic mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. {yields} Mutation-induced changes may strengthen the interactions between PrP and facilitating factors. {yields} The findings also have significant implications for exploring potential regions involved in the conformational transition from PrP{sup C} to PrP{sup Sc}. -- Abstract: As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP{sup C}) to abnormal scrapie isoform (PrP{sup Sc}). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP{sup C} conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.

  6. Gene mutations in children with chronic pancreatitis.

    Science.gov (United States)

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  7. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  8. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1984-01-01

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references

  9. Prospects for cellular mutational assays in human populations

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  10. Characteristics and mutation analysis of Ph-positive leukemia patients with T315I mutation receiving tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Xu PP

    2017-09-01

    Full Text Available Peipei Xu,1 Dan Guo,2 Xiaoyan Shao,1 Miaoxin Peng,1 Bing Chen2 1Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, 2Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China Background: TKIs are the first-line treatment for patients with Ph-positive (Ph+ leukemia. However, drug resistance is frequently observed, mainly due to mutations within the breakpoint cluster region-Abelson leukemia virus (BCR-ABL kinase domain. The T315I substitution confers complete resistance to TKIs. The aim of this study was to analyze the clinical characteristics of 17 patients with T315I mutation after TKI treatment and provide a basis for prognosis.Patients and methods: The clinical data of 17 TKI-resistant Ph+ leukemia patients who were found to have a ABL kinase domain mutation from September 2008 to January 2017 were collected. Karyotypes and BCR-ABL fusion gene were analyzed by R-banding and fluorescence in situ hybridization, respectively. Total RNA was extracted by TRIzol reagent, and the ABL kinase domain mutation was detected by direct sequencing.Results: A total of 17 patients reached effective remission including major molecular response and complete cytogenetic response. However, all the patients subsequently developed a T315I mutation after treatment with TKIs. The rate of the BCR-ABL fusion gene in most of the patients who developed the T315I mutation was significantly higher than that before the mutation. At initial diagnosis, patients average platelet count was 149.7×109/L, whereas the average platelet count was only 53.88×109/L after the T315I mutation (P<0.01. The results also showed that the survival time of patients with a high proportion of blast cells or a high number of white blood cells was obviously shortened.Conclusion: Patients platelet count decreased when detected with the T315I mutation compared with the initial

  11. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Daoud, H; Valdmanis, P N; Kabashi, E; Dion, P; Dupré, N; Camu, W; Meininger, V; Rouleau, G A

    2009-02-01

    Mutations in the TARDBP gene, which encodes the TAR DNA binding protein (TDP-43), have been described in individuals with familial and sporadic amyotrophic lateral sclerosis (ALS). We screened the TARDBP gene in 285 French sporadic ALS patients to assess the frequency of TARDBP mutations in ALS. Six individuals had potentially deleterious mutations of which three were novel including a Y374X truncating mutation and P363A and A382P missense mutations. This suggests that TARDBP mutations may predispose to ALS in approximately 2% of the individuals followed in this study. Our findings, combined with those from other collections, brings the total number of mutations in unrelated ALS patients to 17, further suggesting that mutations in the TARDBP gene have an important role in the pathogenesis of ALS.

  12. Mutation dynamics and fitness effects followed in single cells.

    Science.gov (United States)

    Robert, Lydia; Ollion, Jean; Robert, Jerome; Song, Xiaohu; Matic, Ivan; Elez, Marina

    2018-03-16

    Mutations have been investigated for more than a century but remain difficult to observe directly in single cells, which limits the characterization of their dynamics and fitness effects. By combining microfluidics, time-lapse imaging, and a fluorescent tag of the mismatch repair system in Escherichia coli , we visualized the emergence of mutations in single cells, revealing Poissonian dynamics. Concomitantly, we tracked the growth and life span of single cells, accumulating ~20,000 mutations genome-wide over hundreds of generations. This analysis revealed that 1% of mutations were lethal; nonlethal mutations displayed a heavy-tailed distribution of fitness effects and were dominated by quasi-neutral mutations with an average cost of 0.3%. Our approach has enabled the investigation of single-cell individuality in mutation rate, mutation fitness costs, and mutation interactions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. New mutations affecting induced mutagenesis in yeast.

    Science.gov (United States)

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  14. A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence.

    Science.gov (United States)

    Reardon-Robinson, Melissa E; Osipiuk, Jerzy; Jooya, Neda; Chang, Chungyu; Joachimiak, Andrzej; Das, Asis; Ton-That, Hung

    2015-12-01

    The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae. © 2015 John Wiley & Sons Ltd.

  15. BRAF mutation in hairy cell leukemia

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadzadeh

    2014-09-01

    Full Text Available BRAF is a serine/threonine kinase with a regulatory role in the mitogen-activated protein kinase (MAPK signaling pathway. A mutation in the RAF gene, especially in BRAF protein, leads to an increased stimulation of this cascade, causing uncontrolled cell division and development of malignancy. Several mutations have been observed in the gene coding for this protein in a variety of human malignancies, including hairy cell leukemia (HCL. BRAF V600E is the most common mutation reported in exon15 of BRAF, which is observed in almost all cases of classic HCL, but it is negative in other B-cell malignancies, including the HCL variant. Therefore it can be used as a marker to differentiate between these B-cell disorders. We also discuss the interaction between miRNAs and signaling pathways, including MAPK, in HCL. When this mutation is present, the use of BRAF protein inhibitors may represent an effective treatment. In this review we have evaluated the role of the mutation of the BRAF gene in the pathogenesis and progression of HCL.

  16. Mechanisms of mutations in myeloproliferative neoplasms.

    Science.gov (United States)

    Levine, Ross L

    2009-12-01

    In recent years, a series of studies have provided genetic insight into the pathogenesis of myeloproliferative neoplasms (MPNs). It is now known that JAK2V617F mutations are present in 90% of patients with polycythaemia vera (PV), 60% of patients with essential thrombocytosis (ET) and 50% of patients with myelofibrosis (MF). Despite the high prevalence of JAK2V617F mutations in these three myeloid malignancies, several questions remain. For example, how does one mutation contribute to the pathogenesis of three clinically distinct diseases, and how do some patients develop these diseases in the absence of a JAK2V617F mutation? Single nucleotide polymorphisms at various loci and somatic mutations, such as those in MPLW515L/K, TET2 and in exon 12 of JAK2, may also contribute to the pathogenesis of these MPNs. There are likely additional germline and somatic genetic factors important to the MPN phenotype. Additional studies of large MPN and control cohorts with new techniques will help identify these factors.

  17. IDH Mutation Analysis in Ewing Sarcoma Family Tumors

    Directory of Open Access Journals (Sweden)

    Ki Yong Na

    2015-05-01

    Full Text Available Background: Isocitrate dehydrogenase (IDH catalyzes the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG with production of reduced nicotinamide adenine dinucleotide (NADH. Dysfunctional IDH leads to reduced production of α-KG and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. This results in increased oxidative damage and stabilization of hypoxia-inducible factor α, causing cells to be prone to tumorigenesis. Methods: This study investigated IDH mutations in 61 Ewing sarcoma family tumors (ESFTs, using a pentose nucleic acid clamping method and direct sequencing. Results: We identified four cases of ESFTs harboring IDH mutations. The number of IDH1 and IDH2 mutations was equal and the subtype of IDH mutations was variable. Clinicopathologic analysis according to IDH mutation status did not reveal significant results. Conclusions: This study is the first to report IDH mutations in ESFTs. The results indicate that ESFTs can harbor IDH mutations in previously known hot-spot regions, although their incidence is rare. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH mutations in ESFTs.

  18. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    Science.gov (United States)

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. JAK and MPL mutations in myeloid malignancies.

    Science.gov (United States)

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  20. Studies of human mutation rates: Progress report

    International Nuclear Information System (INIS)

    Neel, J.V.

    1988-01-01

    Progress was recorded between January 1 and July 1, 1987 on a project entitled ''Studies of Human Mutation Rates''. Studies underway include methodology for studying mutation at the DNA level, algorithms for automated analyses of two-dimensional polyacrylamide DNA gels, theoretical and applied population genetics, and studies of mutation frequency in A-bomb survivors

  1. Spectrum of small mutations in the dystrophin coding region

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Bartolo, C.; Pearl, D.K. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  2. Study on space mutation breeding of rice

    International Nuclear Information System (INIS)

    Xu Jianlong; Lin Yizi; Xi Yongan; Jiang Xingcun; Li Jinguo

    1997-01-01

    Air-dried seeds of rice variety ZR9 were carried by high altitude balloon (HAB) and recoverable satellite (RS) for space mutation. Mutagentic effects of high altitude environment (HAE) of 30∼38 km and outer space environment (OSE) of 218∼326 km above sea level on rice plant were studied. The results indicated that the germination percentage (GP) of seeds was obviously lower than that of the controls. the mutation in plant height (PH) and growth period duration (GPD) of SP 1 carried by HAB were induced. However, the GP of seeds and characters of SP 1 carried by RS had no evident change. More stronger segregation of major characters such as PH, GPD and length of panicle, appeared in the two SP 2 generations resulting from HAB and RS. And their mutation frequency were 4.31% and 4.10% respectively. Mutation lines selected from the two mutation progenies improved significantly in PH, GPD, disease resistance and yield. Therefore, space mutation could be considered as a new breeding method

  3. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  4. Factor V Leiden Mutation and PT 20210 Mutation Test

    Science.gov (United States)

    ... Disorders Fibromyalgia Food and Waterborne Illness Fungal Infections Gout Graves Disease Guillain-Barré Syndrome Hashimoto Thyroiditis Heart ... Tested? To determine whether you have an inherited gene mutation that increases your risk of developing a ...

  5. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  6. Experiences from treatment-predictive KRAS testing; high mutation frequency in rectal cancers from females and concurrent mutations in the same tumor

    DEFF Research Database (Denmark)

    Jönsson, Mats; Ekstrand, Anna; Edekling, Thomas

    2009-01-01

    . METHODS: We used a real-time PCR based method to determine KRAS mutations in 136 colorectal cancers with mutations identified in 53 (39%) tumors. RESULTS: KRAS mutations were significantly more often found in rectal cancer (21/38, 55%) than in colon cancer (32/98, 33%) (P = 0.02). This finding...... was explained by marked differences mutation rates in female patients who showed mutations in 33% of the colon cancers and in 67% of the rectal cancers (P = 0.01). Concurrent KRAS mutations were identified in three tumors; two colorectal cancers harbored Gly12Asp/Gly13Asp and Gly12Cys/Gly13Asp and a third tumor...... carried Gly12Cys/Gly12Asp in an adenomatous component and additionally acquired Gly12Val in the invasive component. CONCLUSION: The demonstration of a particularly high KRAS mutation frequency among female rectal cancer patients suggests that this subset is the least likely to respond to anti...

  7. Performance of mitochondrial DNA mutations detecting early stage cancer

    International Nuclear Information System (INIS)

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  8. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    Science.gov (United States)

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  9. Mutation studies on garden roses: a review

    International Nuclear Information System (INIS)

    Datta, S.K.

    1997-01-01

    Most of the modern roses are the result of hybridization, selection and spontaneous mutation. For floriculture trade, there is always demand and necessity for new varieties due to change in taste and fashion. Mutation breeding is an established method for crop improvement. Induced somatic mutation breeding holds promise for effective improvement and have high potential for bringing about genetic improvement and it has led to a great burst of flower colour, form, pattern and other variations in rose by using ionizing radiations. The details of prospects and utilization of induced mutation breeding technique for developing new rose varieties have been compiled. (author)

  10. Induced mutation of Dendrobium orchid

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Mohd Nazir Basiran

    2000-01-01

    Dendrobiiim orchids serve as the main orchid cut flower export of Malaysia. The wide range of colour and forms presently available in the market are obtained through hybridisation. Induced mutation breeding program was initiated on a commercial variety Dendrobium 'Sonia Kai' to explore the possibilities of obtaining new colour and forms. Matured seeds from self pollination were cultured and irradiated at 35 Gy at the protocorm-like bodies (PLBS) stage. Selection of induced mutations was done after the first flowering of the plants regenerated from the irradiated protocorms. Results showed changes in flower colour, shape and size. Most of these chances are expressed in different combinations in the petals, sepals and lip of the flowers. Thus, resulting. in a very wide spectrum of mutations. Some of these chances are not stable. To date, mutants that showed stable characteristics changes are grouped into 11 categories based on flower colour and form. These results show that the combination of its vitro technique and induced mutation can be applied in orchid breeding to produce new interesting and attractive variety for the market

  11. Assessment of heavy metal tolerance and hexavalent chromium reducing potential of Corynebacterium paurometabolum SKPD 1204 isolated from chromite mine seepage

    Directory of Open Access Journals (Sweden)

    Amal Kanti Paul

    2016-07-01

    Full Text Available Corynebacterium paurometabolum SKPD 1204 (MTCC 8730, a heavy metal tolerant and chromate reducing bacterium isolated from chromite mine seepage of Odisha, India has been evaluated for chromate reduction under batch culture. The isolate was found to tolerate metals like Co(II, Cu(II, Ni(II, Mn(II, Zn(II, Fe(III and Hg(II along with Cr(VI and was resistant to different antibiotics as evaluated by disc-diffusion method. The isolate, SKPD 1204 was found to reduce 62.5% of 2 mM Cr(VI in Vogel Bonner broth within 8 days of incubation. Chromate reduction capability of SKPD 1204 decreased with increase in Cr(VI concentration, but increased with increase in cell density and attained its maximum at 1010 cells/mL. Chromate reducing efficiency of SKPD 1204 was promoted in the presence of glycerol and glucose, while the highest reduction was recorded at pH 7.0 and 35 °C. The reduction process was inhibited by divalent cations Zn(II, Cd(II, Cu(II, and Ni(II, but not by Mn(II. Anions like nitrate, phosphate, sulphate and sulphite was found to be inhibitory to the process of Cr(VI reduction. Similarly, sodium fluoride, carbonyl cyanide m-chlorophenylhydrazone, sodium azide and N, N,-Di cyclohexyl carboiimide were inhibitory to chromate reduction, while 2,4-dinitrophenol appeared to be neither promotive nor inhibitory to the process.

  12. Clinical metagenomic analysis of bacterial communities in breast abscesses of granulomatous mastitis.

    Science.gov (United States)

    Yu, Hai-Jing; Deng, Hua; Ma, Jian; Huang, Shu-Jun; Yang, Jian-Min; Huang, Yan-Fen; Mu, Xiao-Ping; Zhang, Liang; Wang, Qi

    2016-12-01

    Granulomatous mastitis (GM) is a chronic inflammatory breast lesion. Its etiology remains incompletely defined. Although mounting evidence suggests the involvement of Corynebacterium in GM, there has been no systematic study of GM bacteriology using -omics technology. The bacterial diversity and relative abundances in breast abscesses from 19 women with GM were investigated using 16S rDNA metagenomic sequencing and Sanger sequencing. A quantitative PCR (qPCR) assay was also developed to identify Corynebacterium kroppenstedtii. A bioinformatic analysis revealed that Corynebacterium was present in the 19 GM patients, with abundances ranging from 1.1% to 58.9%. Of note, Corynebacterium was the most abundant taxon in seven patients (more than a third of the subjects). The predominance of Corynebacterium kroppenstedtii infection (11 of 19 patients, 57.9%) was confirmed with Sanger sequencing and the qPCR assay. This study profiled the microbiota of patients with GM and indicated an important role for Corynebacterium, and in particular C. kroppenstedtii, in the pathogenesis of this disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. New mutations in APOB100 involved in familial hypobetalipoproteinemia

    DEFF Research Database (Denmark)

    Brusgaard, Klaus; Kjaersgaard, Lars; Hansen, Anne-Birthe Bo

    2011-01-01

    Familial hypolipoproteinemia (FHBL) is characterized by an inherited low plasma level of apolipoprotein B containing lipoproteins. FHBL may be caused by mutations of APOB. Individuals with FHBL typically have intestinal malabsorption and frequently suffer from a deficiency of fat-soluble vitamins....... Most mutations that cause FHBL are APOB truncating mutations. Here we describe a patient with FHBL caused by a novel truncating mutation together with a novel missense mutation....

  14. Radiation-induced dominant skeletal mutations in mice

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    Skeletons were chosen for the attempt to determine the overall damage by radiation to one body system largely bacause they can be prepared readily for detailed study. Dominant mutations were of special interest because they are the type of mutations that would account for almost all damage induced in the early generations. The male offsprings derived from spermatogonial irradiation were used in the mutation-rate experiment, and the mutation frequency of 1.4% per gamete was found. The general dominant skeletal mutations are 1) the fusions of bones or other changes in individual bones, 2) the gross changes in bone shapes, usually caused by incomplete or too extensive bone growth, or 3) the shifts in the relative positions of bones. The recessive lethality in the period between implantation and birth can be recognized by the expected high death rate of implants in approximately 1/4 of the crosses that are between heterozygotes for a given mutation. The recessive lethal mutations may account for an important fraction of human genetic disorders owing to their dominant deleterious effects which represent only a small fraction, but because of their easy detection, they have been studied more than other dominants. At least 45, or 27%, of 164 dominant visibles in mice, ignoring those concerned with enzyme polymorphisms and immunological traits, appear to be recessive lethals. (Yamashita, S.)

  15. Mutated genes as research tool

    International Nuclear Information System (INIS)

    1981-01-01

    Green plants are the ultimate source of all resources required for man's life, his food, his clothes, and almost all his energy requirements. Primitive prehistoric man could live from the abundance of nature surrounding him. Man today, dominating nature in terms of numbers and exploiting its limited resources, cannot exist without employing his intelligence to direct natural evolution. Plant sciences, therefore, are not a matter of curiosity but an essential requirement. From such considerations, the IAEA and FAO jointly organized a symposium to assess the value of mutation research for various kinds of plant science, which directly or indirectly might contribute to sustaining and improving crop production. The benefit through developing better cultivars that plant breeders can derive from using the additional genetic resources resulting from mutation induction has been assessed before at other FAO/IAEA meetings (Rome 1964, Pullman 1969, Ban 1974, Ibadan 1978) and is also monitored in the Mutation Breeding Newsletter, published by IAEA twice a year. Several hundred plant cultivars which carry economically important characters because their genes have been altered by ionizing radiation or other mutagens, are grown by farmers and horticulturists in many parts of the world. But the benefit derived from such mutant varieties is without any doubt surpassed by the contribution which mutation research has made towards the advancement of genetics. For this reason, a major part of the papers and discussions at the symposium dealt with the role induced-mutation research played in providing insight into gene action and gene interaction, the organization of genes in plant chromosomes in view of homology and homoeology, the evolutionary role of gene duplication and polyploidy, the relevance of gene blocks, the possibilities for chromosome engineering, the functioning of cytroplasmic inheritance and the genetic dynamics of populations. In discussing the evolutionary role of

  16. Hyperthermia-induced alteration of yeast susceptibility to mutation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1985-01-01

    Diploid yeast (s. cerevisiae) were examined for alterations in susceptibility to induced mutation following hyperthermia treatment. In cells grown at 23 0 C, a non-lethal heat exposure (38 0 C, 30 min) markedly suppressed mutation induced by a subsequent non-killing dose of MNNG of MNU. Mutation by ENU, 8-MOP + UVA, or γ-rays was not affected. An intermediate level of mutation suppression was observed for mutation by 254nm UV or MMS. Mutation by MNNG was not suppressed by the same heat treatment delivered after the mutagen exposure. In a split dose experiment (two MNNG treatments separated by a heat exposure) no suppression of mutation was observed. Treatment with cycloheximide mimicked the effect of heat treatment. These data suggest that mutation induction by MNNG or MNU is protein synthesis dependent, i.e. an error-prone repair system is induced by exposure to MNNG or MNU but not by ENU, 8-MOP+UVA or γ-irradiation. We propose that hyperthermia treatment, by inducing stress protein synthesis at the expense of normal protein synthesis, precludes induction of this error-prone system. Therefore, in heat treated cells, DNA lesions produced by MNNG or MNU exposure must be resolved by an essentially constitutive system which is less error-prone than the inducible one

  17. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  18. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    Science.gov (United States)

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  19. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    International Nuclear Information System (INIS)

    Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.; Yu, Minmin; Hung, Li-Wei; Cieslik, Marcin; Derewenda, Urszula; Lesley, Scott A.; Wilson, Ian A.; Giedroc, David P.; Derewenda, Zygmunt S.

    2009-01-01

    Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni 2+ ions but that it is able to bind Zn 2+ with K d < 70 nM. It is concluded that Zn 2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors

  20. Telomerase reverse transcriptase promoter mutations in bladder cancer

    DEFF Research Database (Denmark)

    Allory, Yves; Beukers, Willemien; Sagrera, Ana

    2014-01-01

    for detection of recurrences in urine in patients with urothelial bladder cancer (UBC). DESIGN, SETTING, AND PARTICIPANTS: A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription...... surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease...... frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC...

  1. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  2. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  3. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  4. Mitochondrial mutations in adenoid cystic carcinoma of the salivary glands.

    Directory of Open Access Journals (Sweden)

    Suhail K Mithani

    Full Text Available BACKGROUND: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. METHODOLOGY: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. PRINCIPAL FINDINGS: Seventeen of 22 ACCs (77% carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6% carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9% with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH complex. CONCLUSIONS/SIGNIFICANCE: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance, but may be associated with alterations in transcription or replication.

  5. Novel FANCI mutations in Fanconi anemia with VACTERL association.

    Science.gov (United States)

    Savage, Sharon A; Ballew, Bari J; Giri, Neelam; Chandrasekharappa, Settara C; Ameziane, Najim; de Winter, Johan; Alter, Blanche P

    2016-02-01

    Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized. © 2015 Wiley Periodicals, Inc.

  6. Minisatellite germline mutation rate in the Techa River population

    Energy Technology Data Exchange (ETDEWEB)

    Dubrova, Yuri E. [Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)]. E-mail: yed2@le.ac.uk; Ploshchanskaya, Olga G. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation); Kozionova, Olga S. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation); Akleyev, Alexander V. [Urals Research Centre for Radiation Medicine, Medgorodok, Chelyabinsk 454076 (Russian Federation); Department of Radiobiology, Chelyabinsk State University, Chelyabinsk 454021 (Russian Federation)

    2006-12-01

    Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable.

  7. Minisatellite germline mutation rate in the Techa River population

    International Nuclear Information System (INIS)

    Dubrova, Yuri E.; Ploshchanskaya, Olga G.; Kozionova, Olga S.; Akleyev, Alexander V.

    2006-01-01

    Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable

  8. Apparent directional selection by biased pleiotropic mutation.

    Science.gov (United States)

    Tanaka, Yoshinari

    2010-07-01

    Pleiotropic effects of deleterious mutations are considered to be among the factors responsible for genetic constraints on evolution by long-term directional selection acting on a quantitative trait. If pleiotropic phenotypic effects are biased in a particular direction, mutations generate apparent directional selection, which refers to the covariance between fitness and the trait owing to a linear association between the number of mutations possessed by individuals and the genotypic values of the trait. The present analysis has shown how the equilibrium mean value of the trait is determined by a balance between directional selection and biased pleiotropic mutations. Assuming that genes act additively both on the trait and on fitness, the total variance-standardized directional selection gradient was decomposed into apparent and true components. Experimental data on mutation bias from the bristle traits of Drosophila and life history traits of Daphnia suggest that apparent selection explains a small but significant fraction of directional selection pressure that is observed in nature; the data suggest that changes induced in a trait by biased pleiotropic mutation (i.e., by apparent directional selection) are easily compensated for by (true) directional selection.

  9. Gradual Loss of ACTH Due to a Novel Mutation in LHX4: Comprehensive Mutation Screening in Japanese Patients with Congenital Hypopituitarism

    Science.gov (United States)

    Takagi, Masaki; Ishii, Tomohiro; Inokuchi, Mikako; Amano, Naoko; Narumi, Satoshi; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2012-01-01

    Mutations in transcription factors genes, which are well regulated spatially and temporally in the pituitary gland, result in congenital hypopituitarism (CH) in humans. The prevalence of CH attributable to transcription factor mutations appears to be rare and varies among populations. This study aimed to define the prevalence of CH in terms of nine CH-associated genes among Japanese patients. We enrolled 91 Japanese CH patients for DNA sequencing of POU1F1, PROP1, HESX1, LHX3, LHX4, SOX2, SOX3, OTX2, and GLI2. Additionally, gene copy numbers for POU1F1, PROP1, HESX1, LHX3, and LHX4 were examined by multiplex ligation-dependent probe amplification. The gene regulatory properties of mutant LHX4 proteins were characterized in vitro. We identified two novel heterozygous LHX4 mutations, namely c.249-1G>A, p.V75I, and one common POU1F1 mutation, p.R271W. The patient harboring the c.249-1G>A mutation exhibited isolated growth hormone deficiency at diagnosis and a gradual loss of ACTH, whereas the patient with the p.V75I mutation exhibited multiple pituitary hormone deficiency. In vitro experiments showed that both LHX4 mutations were associated with an impairment of the transactivation capacities of POU1F1 andαGSU, without any dominant-negative effects. The total mutation prevalence in Japanese CH patients was 3.3%. This study is the first to describe, a gradual loss of ACTH in a patient carrying an LHX4 mutation. Careful monitoring of hypothalamic–pituitary -adrenal function is recommended for CH patients with LHX4 mutations. PMID:23029363

  10. Experimental evolution and the dynamics of genomic mutation rate modifiers.

    Science.gov (United States)

    Raynes, Y; Sniegowski, P D

    2014-11-01

    Because genes that affect mutation rates are themselves subject to mutation, mutation rates can be influenced by natural selection and other evolutionary forces. The population genetics of mutation rate modifier alleles has been a subject of theoretical interest for many decades. Here, we review experimental contributions to our understanding of mutation rate modifier dynamics. Numerous evolution experiments have shown that mutator alleles (modifiers that elevate the genomic mutation rate) can readily rise to high frequencies via genetic hitchhiking in non-recombining microbial populations. Whereas these results certainly provide an explanatory framework for observations of sporadically high mutation rates in pathogenic microbes and in cancer lineages, it is nonetheless true that most natural populations have very low mutation rates. This raises the interesting question of how mutator hitchhiking is suppressed or its phenotypic effect reversed in natural populations. Very little experimental work has addressed this question; with this in mind, we identify some promising areas for future experimental investigation.

  11. [Observation and analysis on mutation of routine STR locus].

    Science.gov (United States)

    Li, Qiu-yang; Feng, Wei-jun; Yang, Qin-gen

    2005-05-01

    To observe and analyze the characteristic of mutation at STR locus. 27 mutant genes observed in 1211 paternity testing cases were checked by PAGE-silver stained and PowerPlex 16 System Kit and validated by sequencing. Mutant genes locate on 15 loci. The pattern of mutation was accord with stepwise mutation model. The mutation ratio of male-to-female was 8:1 and correlated to the age of father. Mutation rate is correlated to the geometric mean of the number of homogeneous repeats of locus. The higher the mean, the higher the mutation rate. These loci are not so appropriate for use in paternity testing.

  12. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tianhong Su

    2018-03-01

    Full Text Available Mitochondrial DNA (mtDNA mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.

  13. Teaching the fluctuation test in silico by using mutate: a program to distinguish between the adaptive and spontaneous mutation hypotheses.

    Science.gov (United States)

    Carvajal-Rodríguez, Antonio

    2012-07-01

    Mutate is a program developed for teaching purposes to impart a virtual laboratory class for undergraduate students of Genetics in Biology. The program emulates the so-called fluctuation test whose aim is to distinguish between spontaneous and adaptive mutation hypotheses in bacteria. The plan is to train students in certain key multidisciplinary aspects of current genetics such as sequence databases, DNA mutations, and hypothesis testing, while introducing the fluctuation test. This seminal experiment was originally performed studying Escherichia coli resistance to the infection by bacteriophage T1. The fluctuation test initiated the modern bacterial genetics that 25 years later ushered in the era of the recombinant DNA. Nowadays we know that some deletions in fhuA, the gene responsible for E. coli membrane receptor of T1, could cause the E. coli resistance to this phage. For the sake of simplicity, we will introduce the assumption that a single mutation generates the resistance to T1. During the practical, the students use the program to download some fhuA gene sequences, manually introduce some stop codon mutations, and design a fluctuation test to obtain data for distinguishing between preadaptative (spontaneous) and induced (adaptive) mutation hypotheses. The program can be launched from a browser or, if preferred, its executable file can be downloaded from http://webs.uvigo.es/acraaj/MutateWeb/Mutate.html. It requires the Java 5.0 (or higher) Runtime Environment (freely available at http://www.java.com). Copyright © 2012 Wiley Periodicals, Inc.

  14. Evolutionary invasion and escape in the presence of deleterious mutations.

    Directory of Open Access Journals (Sweden)

    Claude Loverdo

    Full Text Available Replicators such as parasites invading a new host species, species invading a new ecological niche, or cancer cells invading a new tissue often must mutate to adapt to a new environment. It is often argued that a higher mutation rate will favor evolutionary invasion and escape from extinction. However, most mutations are deleterious, and even lethal. We study the probability that the lineage will survive and invade successfully as a function of the mutation rate when both the initial strain and an adaptive mutant strain are threatened by lethal mutations. We show that mutations are beneficial, i.e. a non-zero mutation rate increases survival compared to the limit of no mutations, if in the no-mutation limit the survival probability of the initial strain is smaller than the average survival probability of the strains which are one mutation away. The mutation rate that maximizes survival depends on the characteristics of both the initial strain and the adaptive mutant, but if one strain is closer to the threshold governing survival then its properties will have greater influence. These conclusions are robust for more realistic or mechanistic depictions of the fitness landscapes such as a more detailed viral life history, or non-lethal deleterious mutations.

  15. Skin pH, Atopic Dermatitis, and Filaggrin Mutations

    DEFF Research Database (Denmark)

    Bandier, Josefine; Johansen, Jeanne Duus; Petersen, Lars Jelstrup

    2014-01-01

    mutations may influence skin pH. OBJECTIVE: We aimed to determine the epidermal pH in different groups stratified by filaggrin mutations and atopic dermatitis. Further, we investigated the changes in pH according to severity of mutational status among patients with dermatitis, irrespective of skin condition....... METHODS: pH was measured with a multiprobe system pH probe (PH 905), and the study population was composed of 67 individuals, who had all been genotyped for 3 filaggrin mutations (R501X, 2282del4, R2447X). RESULTS: We found no clear pattern in relation to filaggrin mutation carrier status. Individuals...... with wild-type filaggrin displayed both the most acidic and most alkaline values independent of concomitant skin disease; however, no statistical differences between the groups were found. CONCLUSIONS: The lack of significant diversity in skin pH in relation to filaggrin mutation carrier status suggests...

  16. Founder Mutations in Xeroderma Pigmentosum

    Science.gov (United States)

    Tamura, Deborah; DiGiovanna, John J.; Kraemer, Kenneth H.

    2012-01-01

    In this issue, Soufir et al. report a founder mutation in the XPC DNA repair gene in 74% of families with xeroderma pigmentosum (XP) in the Maghreb region (Algeria, Morocco, and Tunisia) of northern Africa. These patients have a high frequency of skin cancer. The presence of this founder mutation provides an opportunity for genetic counseling and early diagnosis of XP. PMID:20463673

  17. Elevated mutation rate during meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rattray, Alison; Santoyo, Gustavo; Shafer, Brenda; Strathern, Jeffrey N

    2015-01-01

    Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.

  18. Hereditary cancer genes are highly susceptible to splicing mutations

    Science.gov (United States)

    Soemedi, Rachel; Maguire, Samantha; Murray, Michael F.; Monaghan, Sean F.

    2018-01-01

    Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5′ and 3′ splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing. PMID:29505604

  19. Hereditary cancer genes are highly susceptible to splicing mutations.

    Directory of Open Access Journals (Sweden)

    Christy L Rhine

    2018-03-01

    Full Text Available Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77% of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36% of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.

  20. Inference of directional selection and mutation parameters assuming equilibrium.

    Science.gov (United States)

    Vogl, Claus; Bergman, Juraj

    2015-12-01

    In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the influence of mutation, directional selection and drift. He derived the equilibrium distribution of the allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of directional selection. The equilibrium distribution can be used for inference of these parameters with genome-wide datasets of "site frequency spectra" (SFS). Assuming that the scaled mutation rate is low, Wright's model can be approximated by a boundary-mutation model, where mutations are introduced into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the polymorphic region is determined by random drift and directional selection, but not by the mutation parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic and monomorphic preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans. Copyright © 2015 Elsevier Inc. All rights reserved.