WorldWideScience

Sample records for corticotropin-releasing factor-1 receptor

  1. Pharmacophore Modelling and 3D-QSAR Studies on N(3)-Phenylpyrazinones as Corticotropin-Releasing Factor 1 Receptor Antagonists.

    Science.gov (United States)

    Kaur, Paramjit; Sharma, Vikas; Kumar, Vipin

    2012-01-01

    Pharmacophore modelling-based virtual screening of compound is a ligand-based approach and is useful when the 3D structure of target is not available but a few known active compounds are known. Pharmacophore mapping studies were undertaken for a set of 50 N(3)-phenylpyrazinones possessing Corticotropin-releasing Factor 1 (CRF 1) antagonistic activity. Six point pharmacophores with two hydrogen bond acceptors, one hydrogen bond donor, two hydrophobic regions, and one aromatic ring as pharmacophoric features were developed. Amongst them the pharmacophore hypothesis AADHHR.47 yielded a statistically significant 3D-QSAR model with 0.803 as R (2) value and was considered to be the best pharmacophore hypothesis. The developed pharmacophore model was externally validated by predicting the activity of test set molecules. The squared predictive correlation coefficient of 0.91 was observed between experimental and predicted activity values of test set molecules. The geometry and features of pharmacophore were expected to be useful for the design of selective CRF 1 receptor antagonists.

  2. Traumatic Stress Promotes Hyperalgesia via Corticotropin-Releasing Factor-1 Receptor (CRFR1) Signaling in Central Amygdala.

    Science.gov (United States)

    Itoga, Christy A; Roltsch Hellard, Emily A; Whitaker, Annie M; Lu, Yi-Ling; Schreiber, Allyson L; Baynes, Brittni B; Baiamonte, Brandon A; Richardson, Heather N; Gilpin, Nicholas W

    2016-09-01

    Hyperalgesia is an exaggerated response to noxious stimuli produced by peripheral or central plasticity. Stress modifies nociception, and humans with post-traumatic stress disorder (PTSD) exhibit co-morbid chronic pain and amygdala dysregulation. Predator odor stress produces hyperalgesia in rodents. Systemic blockade of corticotropin-releasing factor (CRF) type 1 receptors (CRFR1s) reduces stress-induced thermal hyperalgesia. We hypothesized that CRF-CRFR1 signaling in central amygdala (CeA) mediates stress-induced hyperalgesia in rats with high stress reactivity. Adult male Wistar rats were exposed to predator odor stress in a conditioned place avoidance paradigm and indexed for high (Avoiders) and low (Non-Avoiders) avoidance of predator odor-paired context, or were unstressed Controls. Rats were tested for the latency to withdraw hindpaws from thermal stimuli (Hargreaves test). We used pharmacological, molecular, and immunohistochemical techniques to assess the role of CRF-CRFR1 signaling in CeA in stress-induced hyperalgesia. Avoiders exhibited higher CRF peptide levels in CeA that did not appear to be locally synthesized. Intra-CeA CRF infusion mimicked stress-induced hyperalgesia. Avoiders exhibited thermal hyperalgesia that was reversed by systemic or intra-CeA injection of a CRFR1 antagonist. Finally, intra-CeA infusion of tetrodotoxin produced thermal hyperalgesia in unstressed rats and blocked the anti-hyperalgesic effect of systemic CRFR1 antagonist in stressed rats. These data suggest that rats with high stress reactivity exhibit hyperalgesia that is mediated by CRF-CRFR1 signaling in CeA.

  3. Localization and functional roles of corticotropin-releasing factor receptor type 2 in the cerebellum

    NARCIS (Netherlands)

    Gounko, Natalia V.; Gramsbergen, Albert; van der Want, Johannes J. L.

    The corticotropin-releasing factor (CRF) type 2 receptor has three splice variants alpha, beta, and gamma. In the rodent brain only CRF-R2 alpha is present. In the cerebellum, CRF-R2 alpha has two different isoforms: a full-length form (fl) and truncated (tr). Both forms CRF-R2 have a unique

  4. Restraint stress increases serotonin release in the central nucleus of the amygdala via activation of corticotropin-releasing factor receptors.

    Science.gov (United States)

    Mo, Bing; Feng, Na; Renner, Kenneth; Forster, Gina

    2008-07-30

    Decreases in serotonergic activity in the central nucleus of the amygdala reduce responses to stressors, suggesting an important role for serotonin in this region of the amygdala in stress reactivity. However, it is not known whether exposure to stressors actually increases serotonin release in the central nucleus of the amygdala. The current experiment tested the hypothesis that restraint stress increases extracellular serotonin within the central nucleus of the amygdala and adjacent medial amygdala using in vivo microdialysis in awake male rats during the dark phase of the light-dark cycle. Serotonin release in the central nucleus increased immediately in response to restraint stress. In contrast, there was no change in serotonin release within the adjacent medial amygdala during or following restraint. Since corticotropin-releasing factor is an important mediator of both responses to stressors and serotonergic activity, subsequent experiments tested the hypothesis that central nucleus serotonergic response to restraint stress is mediated by central corticotropin-releasing factor receptors. Administration of the corticotropin-releasing factor type 1 and 2 receptor antagonist d-Phe-CRF (icv, 10 microg/5 microl) prior to restraint stress suppressed restraint-induced serotonin release in the central nucleus. The results suggest that restraint stress rapidly and selectively increases serotonin release in the central nucleus of the amygdala by the activation of central corticotropin-releasing factor receptors. Furthermore, the results imply that corticotropin-releasing factor mediated serotonergic activity in central nucleus of the amygdala may be an important component of a stress response.

  5. Expression and Regulation of Corticotropin-Releasing Factor Receptor Type 2 beta in Developing and Mature Mouse Skeletal Muscle

    NARCIS (Netherlands)

    Kuperman, Yael; Issler, Orna; Vaughan, Joan; Bilezikjian, Louise; Vale, Wylie; Chen, Alon

    Corticotropin-releasing factor receptor type 2 (CRFR2) is highly expressed in skeletal muscle (SM) tissue where it is suggested to inhibit interactions between insulin signaling pathway components affecting whole-body glucose homeostasis. However, little is known about factors regulating SM CRFR2

  6. Expression of urocortin and corticotropin-releasing hormone receptors in the horse thyroid gland.

    Science.gov (United States)

    Squillacioti, Caterina; De Luca, Adriana; Alì, Sabrina; Paino, Salvatore; Liguori, Giovanna; Mirabella, Nicola

    2012-10-01

    Urocortin (UCN) is a 40-amino-acid peptide and a member of the corticotropin-releasing hormone (CRH) family, which includes CRH, urotensin I, sauvagine, UCN2 and UCN3. The biological actions of CRH family peptides are mediated via two types of G-protein-coupled receptors, namely CRH type 1 receptor (CRHR1) and CRH type 2 receptor (CRHR2). The biological effects of these peptides are mediated and modulated not only by CRH receptors but also via a highly conserved CRH-binding protein (CRHBP). Our aim was to investigate the expression of UCN, CRHR1, CRHR2 and CRHBP by immunohistochemistry, Western blot and reverse transcription with the polymerase chain reaction (RT-PCR) in the horse thyroid gland. The results showed that UCN, CRHR1 and CRHR2 were expressed in the thyroid gland, whereas CRHBP was not expressed. Specifically, UCN immunoreactivity (-IR) was found in the thyroid follicular cells, CRHR2-IR in the C-cells and CRHR1-IR in blood vessels. Western blot analysis and RT-PCR experiments confirmed the immunohistochemical data. These results suggest that a regulatory system exists in the mammalian thyroid gland based on UCN, CRHR1 and CRHR2 and that UCN plays a role in the regulation of thyroid physiological functions through a paracrine mechanism.

  7. Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly; Xu, H. Eric (Van Andel)

    2009-01-15

    The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.

  8. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    Directory of Open Access Journals (Sweden)

    N. C. Vamvakopoulos

    1996-01-01

    Full Text Available We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline. A weak suppression of corticotropin releasing hormone mRNA level was observed during dexamethasone treatment. The cell line expressed ten-fold excess of receptor to ligand mRNA under basal conditions. The findings predict the presence of functional phorbol ester, cyclic AMP and glucocorticoid response elements in the promoter region of corticotropin releasing hormone receptor type 1 gene and support a potential role for its product during chronic stress and immune/inflammatory reaction.

  9. Region-specific alterations in the corticotropin-releasing factor and glucocorticoid receptors in the postmortem brain of suicide victims

    OpenAIRE

    Ghanshyam N. Pandey

    2012-01-01

    Rationale : Abnormalities of hypothalamic–pituitary–adrenal (HPA) axis in depression and suicide are among the most consistent findings in biological psychiatry. However, the specific molecular mechanism associated with HPA axis abnormality in the brain of depressed or suicidal subjects is not clear. It is believed that abnormal HPA axis is caused by increased levels of corticotropin-releasing factor (CRF) and decreased levels of glucocorticoid receptor (GR) in the brain of depr...

  10. Interaction of early life stress and corticotropin-releasing hormone receptor gene: effects on working memory.

    Science.gov (United States)

    Fuge, Philipp; Aust, Sabine; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Bajbouj, Malek; Grimm, Simone

    2014-12-01

    Early life stress (ELS) experience is associated with persisting working memory (WM) deficits; changes to the corticotropin-releasing hormone (CRH) system; and structural, functional, and epigenetic changes in the hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS experience to predict depression as well as neuroendocrine and neuronal reactivity. Although these findings indicate that vulnerable genotypes might also show impaired WM performance after ELS experience, no previous study investigated whether there is an interaction effect of CRHR1 polymorphisms and ELS experience on WM performance. Subjects (N = 451) were genotyped for rs110402 and rs242924 within the CRHR1 gene. We used an n-back task to investigate the hypothesis that WM performance in healthy subjects may be subtly influenced by functional differences in CRHR1 and represents an early marker of increased vulnerability after exposure to ELS. Exposure to ELS had a particularly strong impact on WM performance in subjects with the common homozygous GG GG genotype, whereas only severe exposure to ELS interfered with WM accuracy in AT carriers. Our data indicate that specific CRHR1 polymorphisms moderate the effect of ELS experience on WM performance. Exposure to ELS in combination with a vulnerable genotype results in subtle memory deficits in adulthood, which might develop before psychopathological symptoms. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Corticotropin-releasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria.

    Science.gov (United States)

    Papadopoulou, Nikoletta; Kalogeromitros, Demetrios; Staurianeas, Nikolaos G; Tiblalexi, Despina; Theoharides, Theoharis C

    2005-11-01

    Certain skin disorders, such as contact dermatitis and chronic urticaria, are characterized by inflammation involving mast cells and worsen by stress. The underlying mechanism of this effect, however, is not known. The skin appears to have the equivalent of a hypothalamic-pituitary-adrenal (HPA) axis, including local expression of corticotropin-releasing hormone (CRH) and its receptors (CRH-R). We have reported that acute stress and intradermal administration of CRH stimulate skin mast cells and increase vascular permeability through CRH-R1 activation. In this study, we investigated the expression of CRH-R1, the main CRH-R subtype in human skin, and the mast cell related gene histidine decarboxylase (HDC), which regulates the production of histamine, in normal and pathological skin biopsies. Quantitative real time PCR revealed that chronic urticaria expresses high levels of CRH-R1 and HDC as compared to normal foreskin, breast skin and cultured human keratinocytes. The lichen simplex samples had high expression of CRH-R1, but low HDC. These results implicate CRH-R in chronic urticaria, which is often exacerbated by stress.

  12. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    Science.gov (United States)

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Anorectic actions of prolactin-releasing peptide are mediated by corticotropin-releasing hormone receptors.

    Science.gov (United States)

    Lawrence, Catherine B; Liu, Yong-Ling; Stock, Michael J; Luckman, Simon M

    2004-01-01

    Prolactin-releasing peptide (PrRP) reduces food intake and body weight and modifies body temperature when administered centrally in rats, suggesting a role in energy homeostasis. However, the mediators of PrRP's actions are unknown. The present study, therefore, first examined the possible involvement of the anorectic neuropeptides corticotropin-releasing hormone (CRH) and the melanocortins (e.g., alpha-melanocyte-stimulating hormone) in PrRP's effects on food intake and core body temperature and, second, determined if PrRP affects energy expenditure by measuring oxygen consumption (Vo2). Intracerebroventricular injection of PrRP (4 nmol) to 24-h-fasted male Sprague-Dawley rats decreased food intake and modified body temperature. Blockade of central CRH receptors by intracerebroventricular coadministration of the CRH receptor antagonist astressin (20 microg) reversed the PrRP-induced reduction in feeding. However, astressin's effect on PrRP-induced changes in body temperature was complicated because the antagonist itself caused a slight rise in body temperature. In contrast, intracerebroventricular coadministration of the melanocortin receptor-3/4 antagonist SHU-9119 (0.1 nmol) had no effect on any of PrRP's actions. Finally, intracerebroventricular injection of PrRP (4 nmol) caused a significantly greater Vo2 over a 3-h test period compared with vehicle-treated rats. These results show that the anorectic actions of PrRP are mediated by central CRH receptors but not by melanocortin receptors-3/4 and that PrRP can modify Vo2.

  14. Role of Corticotropin Releasing Factor 1 Signaling in Cocaine Seeking during Early Extinction in Female and Male Rats.

    Science.gov (United States)

    Cason, Angie M; Kohtz, Amy; Aston-Jones, Gary

    2016-01-01

    Locus coeruleus norepinephrine (LC-NE) and corticotropin releasing factor (CRF) neurons are involved in stress responses, including stress's ability to drive drug relapse. Previous animal studies indicate that female rats exhibit greater drug seeking than male rats during initial drug abstinence. Moreover, females are more sensitive to the effect of stress to drive drug seeking than males. Finally, LC-NE neurons are more sensitive to CRF in females compared to males. We hypothesized that increased drug seeking in females on extinction day one (ED1) is due to increased response to the stress of early withdrawal and is dependent upon the increased response of LC in females to CRF. We predicted that LC-NE neurons would exhibit Fos activation on ED1, and that blocking CRF1 signaling would decrease drug seeking on ED1 measured by responding on an active lever previously associated with cocaine self- administration. After chronic cocaine self-administration, female and male rats underwent a test for initial extinction responding by measuring lever pressing in the absence of cocaine. Prior to this Extinction Day 1 (ED1) session, rats were injected with vehicle or the selective CRF1 antagonist (CP) to measure effects of CRF antagonism on drug seeking during early abstinence. ED1 increased corticosterone in female rats, in proportion to lever responding in male and female, indicating that ED1 was stressful. Pretreatment with CP decreased cocaine seeking on ED1 more effectively in female compared to male rats. This increase in responding was associated with an increase in activation of LC NE neurons. Together, these findings indicate that stress, and signaling at CRF receptors in LC, may be involved in the increased drug seeking during initial abstinence.

  15. Role of Corticotropin Releasing Factor 1 Signaling in Cocaine Seeking during Early Extinction in Female and Male Rats.

    Directory of Open Access Journals (Sweden)

    Angie M Cason

    Full Text Available Locus coeruleus norepinephrine (LC-NE and corticotropin releasing factor (CRF neurons are involved in stress responses, including stress's ability to drive drug relapse. Previous animal studies indicate that female rats exhibit greater drug seeking than male rats during initial drug abstinence. Moreover, females are more sensitive to the effect of stress to drive drug seeking than males. Finally, LC-NE neurons are more sensitive to CRF in females compared to males. We hypothesized that increased drug seeking in females on extinction day one (ED1 is due to increased response to the stress of early withdrawal and is dependent upon the increased response of LC in females to CRF. We predicted that LC-NE neurons would exhibit Fos activation on ED1, and that blocking CRF1 signaling would decrease drug seeking on ED1 measured by responding on an active lever previously associated with cocaine self- administration. After chronic cocaine self-administration, female and male rats underwent a test for initial extinction responding by measuring lever pressing in the absence of cocaine. Prior to this Extinction Day 1 (ED1 session, rats were injected with vehicle or the selective CRF1 antagonist (CP to measure effects of CRF antagonism on drug seeking during early abstinence. ED1 increased corticosterone in female rats, in proportion to lever responding in male and female, indicating that ED1 was stressful. Pretreatment with CP decreased cocaine seeking on ED1 more effectively in female compared to male rats. This increase in responding was associated with an increase in activation of LC NE neurons. Together, these findings indicate that stress, and signaling at CRF receptors in LC, may be involved in the increased drug seeking during initial abstinence.

  16. Corticotropin-releasing hormone receptor 1 gene variants in irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Naoko Sato

    Full Text Available BACKGROUND: Corticotropin-releasing hormone (CRH acts mainly via the CRH receptor 1 (CRH-R1 and plays a crucial role in the stress-induced pathophysiology of irritable bowel syndrome (IBS. Several studies have demonstrated that variants of the CRH-R1 gene carry a potential risk for depression, but evidence for an association between CRH-R1 genotypes and IBS is lacking. We tested the hypothesis that genetic polymorphisms and haplotypes of CRH-R1 moderate the IBS phenotype and negative emotion in IBS patients. METHODS: A total of 103 patients with IBS and 142 healthy controls participated in the study. Three single-nucleotide polymorphisms of the CRH-R1 gene (rs7209436, rs242924, and rs110402 were genotyped. Subjects' emotional states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-rating Depression Scale. RESULTS: The TT genotype of rs7209436 (P = 0.01 and rs242924 (P = 0.02 was significantly more common in patients with IBS than in controls. Total sample analysis showed significant association between bowel pattern (normal, diarrhea, constipation, or mixed symptoms and the T allele of rs7209436 (P = 0.008, T allele of rs242924 (P = 0.019, A allele of rs110402 (P = 0.047, and TAT haplocopies (P = 0.048. Negative emotion was not associated with the examined CRH-R1 SNPs. CONCLUSION: These findings suggest that genetic polymorphisms and the CRH-R1 haplotypes moderate IBS and related bowel patterns. There was no clear association between CRH-R1 genotypes and negative emotion accompanying IBS. Further studies on the CRH system are therefore warranted.

  17. Corticotropin-Releasing Hormone Receptor 2 Gene Variants in Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Hazuki Komuro

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in the pathophysiology of irritable bowel syndrome (IBS and regulates the stress response through two CRH receptors (R1 and R2. Previously, we reported that a CRHR1 gene polymorphism (rs110402, rs242924, and rs7209436 and haplotypes were associated with IBS. However, the association between the CRHR2 gene and IBS was not investigated. We tested the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are associated with IBS pathophysiology and negative emotion in IBS patients.A total of 142 IBS patients and 142 healthy controls participated in this study. Seven single nucleotide polymorphisms (SNPs of the CRHR2 gene (rs4722999, rs3779250, rs2240403, rs2267710, rs2190242, rs2284217, and rs2284220 were genotyped. Subjects' psychological states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-Rating Depression Scale.We found that rs4722999 and rs3779250, located in intronic region, were associated with IBS in terms of genotype frequency (rs4722999: P = 0.037; rs3779250: P = 0.017 and that the distribution of the major allele was significantly different between patients and controls. There was a significant group effect (controls vs. IBS, and a CRHR2 genotype effect was observed for three psychological scores, but the interaction was not significant. We found a haplotype of four SNPs (rs4722999, rs3779250, rs2240403, and rs2267710 and two SNPs (rs2284217 and rs2284220 in strong linkage disequilibrium (D' > 0.90. We also found that haplotypes of the CRHR2 gene were significantly different between IBS patients and controls and that they were associated with negative emotion.Our findings support the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are related to IBS. In addition, we found associations between CRHR2 genotypes and haplotypes and negative emotion in IBS patients and controls. Further studies on IBS and the CRH

  18. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    Science.gov (United States)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  19. The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study.

    Science.gov (United States)

    Kwako, Laura E; Spagnolo, Primavera A; Schwandt, Melanie L; Thorsell, Annika; George, David T; Momenan, Reza; Rio, Daniel E; Huestis, Marilyn; Anizan, Sebastien; Concheiro, Marta; Sinha, Rajita; Heilig, Markus

    2015-03-13

    Extensive preclinical data implicate corticotropin-releasing hormone (CRH), acting through its CRH1 receptor, in stress- and dependence-induced alcohol seeking. We evaluated pexacerfont, an orally available, brain penetrant CRH1 antagonist for its ability to suppress stress-induced alcohol craving and brain responses in treatment seeking alcohol-dependent patients in early abstinence. Fifty-four anxious alcohol-dependent participants were admitted to an inpatient unit at the NIH Clinical Center, completed withdrawal treatment, and were enrolled in a double-blind, randomized, placebo-controlled study with pexacerfont (300 mg/day for 7 days, followed by 100 mg/day for 23 days). After reaching steady state, participants were assessed for alcohol craving in response to stressful or alcohol-related cues, neuroendocrine responses to these stimuli, and functional magnetic resonance imaging (fMRI) responses to alcohol-related stimuli or stimuli with positive or negative emotional valence. A separate group of 10 patients received open-label pexacerfont following the same dosing regimen and had cerebrospinal fluid sampled to estimate central nervous system exposure. Pexacerfont treatment had no effect on alcohol craving, emotional responses, or anxiety. There was no effect of pexacerfont on neural responses to alcohol-related or affective stimuli. These results were obtained despite drug levels in cerebrospinal fluid (CSF) that predict close to 90% central CRH1 receptor occupancy. CRH1 antagonists have been grouped based on their receptor dissociation kinetics, with pexacerfont falling in a category characterized by fast dissociation. Our results may indicate that antagonists with slow offset are required for therapeutic efficacy. Alternatively, the extensive preclinical data on CRH1 antagonism as a mechanism to suppress alcohol seeking may not translate to humans.

  20. Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning.

    Science.gov (United States)

    Bogdan, Ryan; Santesso, Diane L; Fagerness, Jesen; Perlis, Roy H; Pizzagalli, Diego A

    2011-09-14

    Stress is a general risk factor for psychopathology, but the mechanisms underlying this relationship remain largely unknown. Animal studies and limited human research suggest that stress can induce anhedonic behavior. Moreover, emerging data indicate that genetic variation within the corticotropin-releasing hormone type 1 receptor gene (CRHR1) at rs12938031 may promote psychopathology, particularly in the context of stress. Using an intermediate phenotypic neurogenetics approach, we assessed how stress and CRHR1 genetic variation (rs12938031) influence reward learning, an important component of anhedonia. Psychiatrically healthy female participants (n = 75) completed a probabilistic reward learning task during stress and no-stress conditions while 128-channel event-related potentials were recorded. Fifty-six participants were also genotyped across CRHR1. Response bias, an individual's ability to modulate behavior as a function of reward, was the primary behavioral variable of interest. The feedback-related positivity (FRP) in response to reward feedback was used as a neural index of reward learning. Relative to the no-stress condition, acute stress was associated with blunted response bias as well as a smaller and delayed FRP (indicative of disrupted reward learning) and reduced anterior cingulate and orbitofrontal cortex activation to reward. Critically, rs12938031 interacted with stress to influence reward learning: both behaviorally and neurally, A homozygotes showed stress-induced reward learning abnormalities. These findings indicate that acute, uncontrollable stressors reduce participants' ability to modulate behavior as a function of reward, and that such effects are modulated by CRHR1 genotype. Homozygosity for the A allele at rs12938031 may increase risk for psychopathology via stress-induced reward learning deficits.

  1. Association of corticotropin releasing hormone receptor 2 (CRHR2) genetic variants with acute bronchodilator response in asthma

    Science.gov (United States)

    Poon, Audrey H.; Tantisira, Kelan G.; Litonjua, Augusto A.; Lazarus, Ross; Xu, Jingsong; Lasky-Su, Jessica; Lima, John J.; Irvin, Charles G.; Hanrahan, John P.; Lange, Christoph; Weiss, Scott T.

    2011-01-01

    Objective Corticotropin - releasing hormone receptor 2 (CRHR2) participates in smooth muscle relaxation response and may influence acute airway bronchodilator response to short – acting β2 agonist treatment of asthma. We aim to assess associations between genetic variants of CRHR2 and acute bronchodilator response in asthma. Methods We investigated 28 single nucleotide polymorphisms in CRHR2 for associations with acute bronchodilator response to albuterol in 607 Caucasian asthmatic subjects recruited as part of the Childhood Asthma Management Program (CAMP). Replication was conducted in two Caucasian adult asthma cohorts – a cohort of 427 subjects enrolled in a completed clinical trial conducted by Sepracor Inc. (MA, USA) and a cohort of 152 subjects enrolled in the Clinical Trial of Low-Dose Theopylline and Montelukast (LODO) conducted by the American Lung Association Asthma Clinical Research Centers. Results Five variants were significantly associated with acute bronchodilator response in at least one cohort (p-value ≤ 0.05). Variant rs7793837 was associated in CAMP and LODO (p-value = 0.05 and 0.03, respectively) and haplotype blocks residing at the 5’ end of CRHR2 were associated with response in all three cohorts. Conclusion We report for the first time, at the gene level, replicated associations between CRHR2 and acute bronchodilator response. While no single variant was significantly associated in all three cohorts, the findings that variants at the 5’ end of CRHR2 are associated in each of three cohorts strongly suggest that the causative variants reside in this region and its genetic effect, although present, is likely to be weak. PMID:18408560

  2. Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases.

    Science.gov (United States)

    Latek, Dorota

    2017-08-03

    Membrane proteins are difficult targets for structure prediction due to the limited structural data deposited in Protein Data Bank. Most computational methods for membrane protein structure prediction are based on the comparative modeling. There are only few de novo methods targeting that distinct protein family. In this work an example of such de novo method was used to structurally and functionally characterize two representatives of distinct membrane proteins families of solute carrier transporters and G protein-coupled receptors. The well-known Rosetta program and one of its protocols named Broker was used in two test cases. The first case was de novo structure prediction of three N-terminal transmembrane helices of the human concentrative nucleoside transporter 3 (hCNT3) homotrimer belonging to the solute carrier 28 family of transporters (SLC28). The second case concerned the large scale refinement of transmembrane helices of a homology model of the corticotropin-releasing factor receptor 1 (CRFR1) belonging to the G protein-coupled receptors family. The inward-facing model of the hCNT3 homotrimer was used to propose the functional impact of its single nucleotide polymorphisms. Additionally, the 100 ns molecular dynamics simulation of the unliganded hCNT3 model confirmed its validity and revealed mobility of the selected binding site and homotrimer interface residues. The large scale refinement of transmembrane helices of the CRFR1 homology model resulted in the significant improvement of its accuracy with respect to the crystal structure of CRFR1, especially in the binding site area. Consequently, the antagonist CP-376395 could be docked with Autodock VINA to the CRFR1 model without any steric clashes. The presented work demonstrated that Rosetta Broker can be a versatile tool for solving various issues referring to protein biology. Two distinct examples of de novo membrane protein structure prediction presented here provided important insights into three

  3. Dissociable Role of Corticotropin Releasing Hormone Receptor Subtype 1 on Dopaminergic and D1 Dopaminoceptive Neurons in Cocaine Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Rick E. Bernardi

    2017-11-01

    Full Text Available The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1 in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT-containing neurons (DAT-Crhr1 or dopamine receptor 1 (D1-containing neurons (D1-Crhr1. For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP. For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.

  4. Dissociable Role of Corticotropin Releasing Hormone Receptor Subtype 1 on Dopaminergic and D1 Dopaminoceptive Neurons in Cocaine Seeking Behavior.

    Science.gov (United States)

    Bernardi, Rick E; Broccoli, Laura; Hirth, Natalie; Justice, Nicholas J; Deussing, Jan M; Hansson, Anita C; Spanagel, Rainer

    2017-01-01

    The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.

  5. Corticotropin-Releasing Factor and Toll-Like Receptor Gene Expression Is Associated with Low-Grade Inflammation in Irritable Bowel Syndrome Patients with Depression

    Directory of Open Access Journals (Sweden)

    Song Jizhong

    2016-01-01

    Full Text Available The mechanism of low-grade inflammation in irritable bowel syndrome (IBS is unclear; our research concentrates on the involvement of the corticotropin-releasing factor (CRF and Toll-like receptor (TLR gene expression in the process of low-grade inflammation in IBS patients with depression. This study suggests more IBS patients are presenting with the states of depression and anxiety. IBS patients with depression have shown a lower grade inflammatory response and an imbalance of the inflammatory response. CRF1, CRF2, TLR2, and TLR4 in IBS patients with depression are significantly higher than those without depression and controls. Thus, activation of the CRF-TLR associated pathways produces an inflammatory reaction, which can concurrently affect the digestive tract and the CNS and induce the corresponding digestive and psychiatric symptoms.

  6. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormonesecreting adrenal phaeochromocytoma: review of the literature and report of a case

    Directory of Open Access Journals (Sweden)

    F Trimarchi

    2009-03-01

    Full Text Available Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffinembedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.

  7. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormonesecreting adrenal phaeochromocytoma: review of the literature and report of a case

    Directory of Open Access Journals (Sweden)

    RM Ruggeri

    2009-08-01

    Full Text Available Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffinembedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.

  8. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone.

    Science.gov (United States)

    Wu, Ying-Hui; Zhou, Jiang-Ning; Balesar, Rawien; Unmehopa, Unga; Bao, Aimin; Jockers, Ralf; Van Heerikhuize, Joop; Swaab, Dick F

    2006-12-20

    Melatonin is implicated in numerous physiological processes, including circadian rhythms, stress, and reproduction, many of which are mediated by the hypothalamus and pituitary. The physiological actions of melatonin are mainly mediated by melatonin receptors. We here describe the distribution of the melatonin receptor MT1 in the human hypothalamus and pituitary by immunocytochemistry. MT1 immunoreactivity showed a widespread pattern in the hypothalamus. In addition to the area of the suprachiasmatic nucleus (SCN), a number of novel sites, including the paraventricular nucleus (PVN), periventricular nucleus, supraoptic nucleus (SON), sexually dimorphic nucleus, the diagonal band of Broca, the nucleus basalis of Meynert, infundibular nucleus, ventromedial and dorsomedial nucleus, tuberomamillary nucleus, mamillary body, and paraventricular thalamic nucleus were observed to have neuronal MT1 receptor expression. No staining was observed in the nucleus tuberalis lateralis and bed nucleus of the stria terminalis. The MT1 receptor was colocalized with some vasopressin (AVP) neurons in the SCN, colocalized with some parvocellular and magnocellular AVP and oxytocine (OXT) neurons in the PVN and SON, and colocalized with some parvocellular corticotropin-releasing hormone (CRH) neurons in the PVN. In the pituitary, strong MT1 expression was observed in the pars tuberalis, while a weak staining was found in the posterior and anterior pituitary. These findings provide a neurobiological basis for the participation of melatonin in the regulation of various hypothalamic and pituitary functions. The colocalization of MT1 and CRH suggests that melatonin might directly modulate the hypothalamus-pituitary-adrenal axis in the PVN, which may have implications for stress conditions such as depression.

  9. Cardiac adverse effects of naloxone-precipitated morphine withdrawal on right ventricle: Role of corticotropin-releasing factor (CRF) 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Zaragoza, J.; Martínez-Laorden, E.; Mora, L.; Hidalgo, J.; Milanés, M.V.; Laorden, M.L., E-mail: laorden@um.es

    2014-02-15

    Opioid addiction is associated with cardiovascular disease. However, mechanisms linking opioid addiction and cardiovascular disease remain unclear. This study investigated the role of corticotropin-releasing factor (CRF) 1 receptor in mediating somatic signs and the behavioural states produced during withdrawal from morphine dependence. Furthermore, it studied the efficacy of CRF1 receptor antagonist, CP-154,526 to prevent the cardiac sympathetic activity induced by morphine withdrawal. In addition, tyrosine hydroxylase (TH) phosphorylation pathways were evaluated. Like stress, morphine withdrawal induced an increase in the hypothalamic–pituitary–adrenal (HPA) axis activity and an enhancement of noradrenaline (NA) turnover. Pre-treatment with CRF1 receptor antagonist significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropic hormone (ACTH) levels, NA turnover and TH phosphorylation at Ser31 in the right ventricle. In addition, CP-154,526 reduced the phosphorylation of extracellular signal-regulated kinase (ERK) after naloxone-precipitated morphine withdrawal. In addition, CP-154,526 attenuated the increases in body weight loss during morphine treatment and suppressed some of morphine withdrawal signs. Altogether, these results support the idea that cardiac sympathetic pathways are activated in response to naloxone-precipitated morphine withdrawal suggesting that treatment with a CRF1 receptor antagonist before morphine withdrawal would prevent the development of stress-induced behavioural and autonomic dysfunction in opioid addicts. - Highlights: • Morphine withdrawal caused an increase in myocardial sympathetic activity. • ERK regulates TH phosphorylation after naloxone-induced morphine withdrawal. • CRF1R is involved in cardiac adaptive changes during morphine dependence.

  10. Chronic psychosocial stress induces reversible mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in the rat intestine and IBS-like gut dysfunction.

    Science.gov (United States)

    Vicario, María; Alonso, Carmen; Guilarte, Mar; Serra, Jordi; Martínez, Cristina; González-Castro, Ana M; Lobo, Beatriz; Antolín, María; Andreu, Antoni L; García-Arumí, Elena; Casellas, Montserrat; Saperas, Esteban; Malagelada, Juan Ramón; Azpiroz, Fernando; Santos, Javier

    2012-01-01

    The association between psychological and environmental stress with functional gastrointestinal disorders, especially irritable bowel syndrome (IBS), is well established. However, the underlying pathogenic mechanisms remain unknown. We aimed to probe chronic psychosocial stress as a primary inducer of intestinal dysfunction and investigate corticotropin-releasing factor (CRF) signaling and mitochondrial damage as key contributors to the stress-mediated effects. Wistar-Kyoto rats were submitted to crowding stress (CS; 8 rats/cage) or sham-crowding stress (SC; 2 rats/cage) for up to 15 consecutive days. Hypothalamic-pituitary-adrenal (HPA) axis activity was evaluated. Intestinal tissues were obtained 1h, 1, 7, or 30 days after stress exposure, to assess neutrophil infiltration, epithelial ion transport, mitochondrial function, and CRF receptors expression. Colonic response to CRF (10 μg/kg i.p.) and hyperalgesia were evaluated after ending stress exposure. Chronic psychosocial stress activated HPA axis and induced reversible intestinal mucosal inflammation. Epithelial permeability and conductance were increased in CS rats, effect that lasted for up to 7 days after stress cessation. Visceral hypersensitivity persisted for up to 30 days post stress. Abnormal colonic response to exogenous CRF lasted for up to 7 days after stress. Mitochondrial activity was disturbed throughout the intestine, although mitochondrial response to CRF was preserved. Colonic expression of CRF receptor type-1 was increased in CS rats, and negatively correlated with body weight gain. In conclusion, chronic psychosocial stress triggers reversible inflammation, persistent epithelial dysfunction, and colonic hyperalgesia. These findings support crowding stress as a suitable animal model to unravel the complex pathophysiology underlying to common human intestinal stress-related disorders, such as IBS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. ACTH response to desmopressin in a patient with acromegaly; expression of corticotropin-releasing factor, urocortins and vasopressin V1b receptor in GH-producing pituitary adenoma.

    Science.gov (United States)

    Arihara, Zenei; Sakurai, Kanako; Osaki, Yoshinori; Fukazawa, Hiroshi; Yamada, Shozo; Inoshita, Naoko; Murakami, Osamu; Ohba, Koji; Takahashi, Kazuhiro

    2011-01-01

    GH-producing pituitary adenomas frequently co-produce other certain anterior pituitary hormones, such as prolactin (PRL). In contrast, GH-producing adenomas which express all of corticotropin-releasing factor (CRF), urocorin1 (Ucn1) and urocortin3 (Ucn3) have not been reported. A 39-year-old woman was admitted for evaluation of the pituitary tumor. The diagnosis of acromegaly was confirmed by elevated serum GH and IGF-I levels, and the absence of GH suppression by oral glucose tolerance test. ACTH response to desmopressin (DDAVP) was observed (plasma ACTH levels increased from 13.9 to 50.4 pg/ml at 90 min). Although it is known that ACTH response to DDAVP is considerably useful for the diagnosis of ACTH-dependent Cushing's syndrome, the diagnosis of Cushing's disease was not supported by the criteria. The patient underwent transsphenoidal resection of the pituitary tumor. Immunohistological examination confirmed a GH- and PRL-producing adenoma, whereas ACTH was negative. ACTH response to DDAVP disappeared after tumor removal. To determine the cause of preoperative ACTH response to DDAVP, we examined expression of CRF family peptides and vasopressin V1b receptor in the pituitary adenoma by immunohistochemistry. Immunohistochemistry revealed positive immunostaining for CRF, Ucn1, Ucn3 and vasopressin V1b receptor in the adenoma. These observations raised the possibility that DDAVP caused an ACTH response, perhaps via the paracrine effects of tumor-derived CRF and Ucn1. When ACTH response to DDAVP is observed in patients with pituitary tumor, not only the direct effect of DDAVP on ACTH secretion, but also a possible involvement of CRF and/or urocortins expressed in the pituitary adenoma, should be considered.

  12. Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats.

    Science.gov (United States)

    Li, Chuting; Liu, Yuan; Yin, Shiping; Lu, Cuiyan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2015-07-15

    Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experiences. Studies have found that exposure to early stressful events is a risk factor for developing PTSD. However, a limited number of studies have explored the effects of traumatic stress in early adolescence on behavior, hypothalamic-pituitary-adrenal (HPA) axis function, central corticotropin releasing factor receptor 1 (CRFR1) expression and the relative vulnerability of PTSD in adulthood. The current study aims to explore these issues using inescapable electric foot shock to induce a PTSD model in early adolescent rats. Meanwhile, running on a treadmill for six weeks and administration of the antagonist with 3.2mg/kg/day of CP-154, 526 for 14 consecutive days were used as therapeutic measures. Presently, the stress (S) group showed more anxiety and depression in the open field (OF) test and elevated plus maze (EPM) test, memory damage in the Y maze test, decreased basal CORT level, increased DEX negative feedback inhibition and exacerbated and longer-lasting reaction to CRH challenge in the DEX/CRH test compared with the control group. Central CRFR1 expression was also changed in the S group, as evidenced by the increased CRFR1 expression in the hypothalamus, amygdala and the prefrontal cortex (PFC). However, treadmill exercise alleviated early adolescent stress-induced behavior abnormalities and improved the functional state of the HPA axis, performing a more powerful effect than the CRFR1 antagonist CP-154, 526. Additionally, this study revealed that the alteration of central CRFR1 expression might play an important role in etiology of PTSD in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    Science.gov (United States)

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  14. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    Directory of Open Access Journals (Sweden)

    Evren Eraslan

    2015-01-01

    Full Text Available Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON, acute noise exposure (ANE, and chronic noise exposure (CNE. The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR. The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  15. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health

    Directory of Open Access Journals (Sweden)

    Donny eJanssen

    2013-03-01

    Full Text Available Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal (HPA- axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing hormone (CRF and CRF related neuropeptides, including urocortins (Ucn 1, 2 and 3. They mediate their actions by binding to CRF receptors (CRFR 1 and 2, which are located in several stress related brain regions. The prevailing theory has been that the initiation of and the recovery from an elicited stress response is coordinated by two elements, viz. the (mainly opposing, but well balanced actions of CRFR1 and CRFR2. Such a dualistic view suggests that CRF/CRFR1 controls the initiation of, and urocortins/CRFR2 mediate the recovery from stress to maintain body and mental health. Consequently, failed adaptation to stress can lead to neuropathology, including anxiety and depression. Recent literature, however, challenges such dualistic and complementary actions of CRFR1 and CRFR2, and suggests that stress recruits CRF system components in a brain area and neuron specific manner to promote adaptation as conditions dictate.

  16. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    OpenAIRE

    Eraslan, Evren; Akyazi, Ibrahim; Erg?l-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chro...

  17. Corticotropin-Releasing Factor in the Basolateral Amygdala Enhances Memory Consolidation via an Interaction with the β-Adrenoceptor-cAMP Pathway: Dependence on Glucocorticoid Receptor Activation

    Science.gov (United States)

    Roozendaal, Benno; Schelling, Gustav; McGaugh, James L.

    2008-01-01

    Extensive evidence indicates that stress hormone effects on the consolidation of emotionally influenced memory involve noradrenergic activation of the basolateral complex of the amygdala (BLA). The present experiments examined whether corticotropin-releasing factor (CRF) modulates memory consolidation via an interaction with the β-adrenoceptor-adenosine 3′,5′-cyclic monophosphate (cAMP) system in the BLA. In a first experiment, male Sprague-Dawley rats received bilateral infusions of the CRF-binding protein ligand inhibitor CRF6-33 into the BLA either alone or together with the CRF receptor antagonist α-helical CRF9-41 immediately after inhibitory avoidance training. CRF6-33 induced dose-dependent enhancement of 48-h retention latencies, which was blocked by co-administration of α-helical CRF9-41, suggesting that CRF6-33 enhances memory consolidation by displacing CRF from its binding protein, thereby increasing ‘free’ endogenous CRF concentrations. In a second experiment, intra-BLA infusions of atenolol (β-adrenoceptor antagonist) and Rp-cAMPS (cAMP inhibitor), but not prazosin (α1-adrenoceptor antagonist), blocked CRF6-33-induced retention enhancement. In a third experiment, the CRF receptor antagonist α-helical CRF9-41 administered into the BLA immediately after training attenuated the dose-response effects of concurrent intra-BLA infusions of clenbuterol (β-adrenoceptor agonist). In contrast, α-helical CRF9-41 did not alter retention enhancement induced by posttraining intra-BLA infusions of either cirazoline (α1-adrenoceptor agonist) or 8-br-cAMP (cAMP analog). These findings suggest that CRF facilitates the memory-modulatory effects of noradrenergic stimulation in the BLA via an interaction with the β-adrenoceptor-cAMP cascade, at a locus between the membrane-bound β-adrenoceptor and the intracellular cAMP formation site. Moreover, consistent with evidence that glucocorticoids enhance memory consolidation via a similar interaction with the

  18. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models.

    Science.gov (United States)

    Trümbach, Dietrich; Graf, Cornelia; Pütz, Benno; Kühne, Claudia; Panhuysen, Marcus; Weber, Peter; Holsboer, Florian; Wurst, Wolfgang; Welzl, Gerhard; Deussing, Jan M

    2010-11-19

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD) discriminant function within GALGO, an R package based on a genetic algorithm (GA), was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size) in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic algorithm. With two unsupervised algorithms

  19. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models

    Directory of Open Access Journals (Sweden)

    Holsboer Florian

    2010-11-01

    Full Text Available Abstract Background Dysregulation of the hypothalamic-pituitary-adrenal (HPA axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH and its receptor type 1 (CRHR1 are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms. Results We present an efficient variable selection strategy by consecutively applying univariate as well as multivariate methods followed by graphical models. First, feature preselection was used to exclude genes not differentially regulated over time from the dataset. For multivariate variable selection a maximum likelihood (MLHD discriminant function within GALGO, an R package based on a genetic algorithm (GA, was chosen. The topmost genes representing major nodes in the expression network were ranked to find highly separating candidate genes. By using groups of five genes (chromosome size in the discriminant function and repeating the genetic algorithm separately four times we found eleven genes occurring at least in three of the top ranked result lists of the four repetitions. In addition, we compared the results of GA/MLHD with the alternative optimization algorithms greedy selection and simulated annealing as well as with the state-of-the-art method random forest. In every case we obtained a clear overlap of the selected genes independently confirming the results of MLHD in combination with a genetic

  20. Central corticotropin releasing factor and social stress.

    Science.gov (United States)

    Backström, Tobias; Winberg, Svante

    2013-01-01

    Social interactions are a main source of stress in vertebrates. Social stressors, as well as other stressors, activate the hypothalamic-pituitary-adrenal (HPA) axis resulting in glucocorticoid release. One of the main components of the HPA axis is corticotropin releasing factor (CRF). The neuropeptide CRF is part of a peptide family including CRF, urocortin 1-3, urotensin 1-3, and sauvagine. The actions of the CRF family are mediated by at least two different receptors with different anatomical distribution and affinities for the peptides. The CRF peptides affect several behavioral and physiological responses to stress including aggression, feeding, and locomotor activity. This review will summarize recent research in vertebrates concerning how social stress interacts with components of the CRF system. Consideration will be taken to the different models used for social stress ranging from social isolation, dyadic interactions, to group dominance hierarchies. Further, the temporal effect of social stressor from acute, intermittent, to chronic will be considered. Finally, strains selected for specific behavior or physiology linked to social stress will also be discussed.

  1. Central corticotropin releasing factor and social stress

    Directory of Open Access Journals (Sweden)

    Tobias eBackström

    2013-07-01

    Full Text Available Social interactions are a main source of stress in vertebrates. Social stressors, as well as other stressors, activate the hypothalamic-pituitary-adrenal (HPA axis resulting in glucocorticoid release. One of the main components of the HPA axis is corticotropin releasing factor (CRF. The neuropeptide CRF is part of a peptide family including CRF, urocortin 1-3, urotensin 1-3 and sauvagine. The actions of the CRF family are mediated by at least two different receptors with different anatomical distribution and affinities for the peptides. The CRF peptides affect several behavioral and physiological responses to stress including aggression, feeding and locomotor activity. This review will summarize recent research in vertebrates concerning how social stress interacts with components of the CRF system. Consideration will be taken to the different models used for social stress ranging from social isolation, dyadic interactions, to group dominance hierarchies. Further, the temporal effect of social stressor from acute, intermittent, to chronic will be considered. Finally, strains selected for specific behavior or physiology linked to social stress will also be discussed.

  2. The three-dimensional structure of the N-terminal domain of corticotropin-releasing factor receptors: sushi domains and the B1 family of G protein-coupled receptors.

    Science.gov (United States)

    Perrin, Marilyn H; Grace, Christy R R; Riek, Roland; Vale, Wylie W

    2006-07-01

    The corticotropin-releasing factor (CRF) receptors, CRF-R1 and CRF-R2, belong to the B1 subfamily of G protein-coupled Receptors (GPCRs), including receptors for secretin, growth hormone-releasing hormone (GHRH), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), calcitonin, parathyroid hormone (PTH), glucagon, and glucagon-like peptide-1 (GLP-1). The peptide ligand family comprises CRF, Ucn 1, 2, and 3. CRF plays the major role in integrating the response to stress. Additionally, the ligands exhibit many effects on muscle, pancreas, heart, and the GI, reproductive, and immune systems. CRF-R1 has higher affinity for CRF than does CRF-R2 while both receptors bind Ucn 1 equally. CRF-R2 shows specificity for Ucns 2 and 3. A major binding domain of the CRFRs is the N terminus/first extracellular domain (ECD1). Soluble proteins corresponding to the ECD1s of each receptor bind CRF ligands with nanomolar affinities. Our three-dimensional (3D) nuclear magnetic resonance (NMR) structure of a soluble protein corresponding to the ECD1 of CRF-R2beta (1) identified its structural fold as a Sushi domain/short consensus repeat (SCR), stabilized by three disulfide bridges, two tryptophan residues, and an internal salt bridge (Asp65-Arg101). Disruption of the bridge by D65A mutation abrogates ligand recognition and results in loss of the well-defined disulfide pattern and Sushi domain structure. NMR analysis of the ECD1 in complex with astressin identified key amino acids involved in ligand recognition. Mutation of some of these residues in the full-length receptor reduces its affinity for CRF ligands. A structure-based sequence comparison shows conservation of key amino acids in all the B1 subfamily receptors, suggesting a corresponding conservation of a Sushi domain structural fold of their ECD1s.

  3. Effects of naltrexone, duloxetine, and a corticotropin-releasing factor type 1 receptor antagonist on binge-like alcohol drinking in rats.

    Science.gov (United States)

    Ji, Dong; Gilpin, Nicholas W; Richardson, Heather N; Rivier, Catherine L; Koob, George F

    2008-02-01

    A 'binge' is defined by National Institute on Alcohol Abuse and Alcoholism as an excessive pattern of alcohol drinking that produces blood-alcohol levels (BALs) greater than 0.08 g% within a 2-h period and may or may not be associated with dependence. The purpose of this investigation was to explore the effects of several neuropharmacological agents in an animal model in which outbred rats voluntarily and orally self-administer pharmacologically meaningful alcohol doses that produce BALs >or=0.08 g% in daily limited access two-bottle choice and operant drinking sessions. Rats were trained to self-administer either 10% (w/v) alcohol solution sweetened with 'supersac' (3% glucose+0.125% saccharin) or supersac alone versus water in a two-bottle choice or operant situation during 30-min daily sessions. Rats were then injected systemically with multiple doses of duloxetine, naltrexone, and the corticotropin-releasing factor antagonist, MPZP, in Latin-square designs. Alcohol binge drinkers reliably consumed amounts of alcohol sufficient to produce BALs >or=0.08 g%. Duloxetine dose-dependently suppressed two-bottle choice alcohol binge drinking and operant alcohol responding as well as operant supersac responding, but did not affect two-bottle choice supersac drinking. Naltrexone-suppressed alcohol binge drinking at very low doses and suppressed supersac drinking at moderate-to-high doses. MPZP did not affect alcohol or supersac consumption. Different profiles for drugs that suppress binge-like alcohol drinking compared with dependence-induced drinking provide a heuristic foundation for future medications development.

  4. Solubilization of high affinity corticotropin-releasing factor receptors from rat brain: Characterization of an active digitonin-solubilized receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriadis, D.E.; Zaczek, R.; Pearsall, D.M.; De Souza, E.B. (National Institute on Drug Abuse, Baltimore, MD (USA))

    1989-12-01

    The binding characteristics of CRF receptors in rat frontal cerebral cortex membranes solubilized in 1% digitonin were determined. The binding of (125I)Tyro-ovine CRF ((125I)oCRF) to solubilized membrane proteins was dependent on incubation time, temperature, and protein concentration, was saturable and of high affinity, and was absent in boiled tissue. The solubilized receptors retained their high affinity for (125I) oCRF in the solubilized state, exhibiting a dissociation constant (KD) of approximately 200 pM, as determined by direct binding saturation isotherms. Solubilized CRF receptors maintained the rank order of potencies for various related and unrelated CRF peptides characteristic of the membrane CRF receptor: rat/human CRF congruent to ovine CRF congruent to Nle21,38-rat CRF greater than alpha-helical oCRF-(9-41) greater than oCRF-(7-41) much greater than vasoactive intestinal peptide, arginine vasopressin, or the substance-P antagonist. Furthermore, the absolute potencies (Ki values) for the various CRF-related peptides in solubilized receptors were almost identical to those observed in the membrane preparations, indicating that the CRF receptor retained its high affinity binding capacity in the digitonin-solubilized state. Chemical affinity cross-linking of digitonin-solubilized rat cortical membrane proteins revealed a specifically labeled protein with an apparent mol wt of 58,000 which was similar to the labeled protein in native membrane homogenates. Although solubilized CRF receptors retained their high affinity for agonists, their sensitivity for guanine nucleotide was lost. Size exclusion chromatography substantiated these results, demonstrating that in the presence or absence of guanine nucleotides, (125I)oCRF labeled the same size receptor complex.

  5. Cloning and characterization of corticotropin-releasing factor and urocortin in Syrian hamster (Mesocricetus auratus).

    Science.gov (United States)

    Robinson, B M; Tellam, D J; Smart, D; Mohammad, Y N; Brennand, J; Rivier, J E; Lovejoy, D A

    1999-01-01

    Corticotropin-releasing factor and urocortin belong to a superfamily of neuropeptides that includes the urotensins-I in fishes and the insect diuretic peptides. Sequence analysis suggests that urocortin is the mammalian ortholog of urotensin-I, although the physiological role for this peptide in mammals is not known. Within the Rodentia, hamsters belong to a phylogenetically older lineage than that of mice and rats and possess significant differences in hypothalamic organization. We have, therefore, cloned the coding region of the Syrian hamster (Mesocricetus auratus) corticotropin-releasing factor and urocortin mature peptide by polymerase chain reaction. Hamster urocortin was prepared by solid-phase synthesis, and its pharmacological actions on human corticotropin-releasing factor R1 and R2 receptors were investigated. The deduced hamster corticotropin-releasing factor amino acid sequence and cleavage site is identical to that in rat, whereas the urocortin sequence is unique among the urocortin/urotensin-I/sauvagine family in possessing asparagine and alanine in positions 38 and 39, respectively. The hamster urocortin carboxy terminus sequence bears greater structural similarity to the insect diuretic peptide family, suggesting either retrogressive mutational changes within the mature peptide or convergent sequence evolution. Despite these changes, human and hamster urocortin are generally equipotent at cAMP activation, neuronal acidification rate, and R1/R2 receptor affinities.

  6. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions.

    Science.gov (United States)

    Aguilar-Valles, Argel; Sánchez, Edith; de Gortari, Patricia; Balderas, Israela; Ramírez-Amaya, Víctor; Bermúdez-Rattoni, Federico; Joseph-Bravo, Patricia

    2005-01-01

    Glucocorticoids and corticotropin-releasing hormone (CRH) are key regulators of stress responses. Different types of stress activate the CRH system; in hypothalamus, CRH expression and release are increased by physical or psychological stressors while in amygdala, preferentially by psychological stress. Learning and memory processes are modulated by glucocorticoids and stress at different levels. To characterize the kind of stress provoked by a hippocampal-dependent task such as spatial learning, we compared the expression profile of glucocorticoid receptor (GR), pro-CRH and CRH-R1 mRNAs (analyzed by RT-PCR), in amygdala, hippocampus and hypothalamus and quantified serum corticosterone levels by radioimmunoassay at different stages of training. mRNA levels of brain-derived neurotrophic factor (BDNF) were also quantified due to its prominent role in learning and memory processes. Male Wistar rats trained for 1, 3 or 5 days in the Morris water-maze (10 trials/day) were sacrificed 5-60 min the after last trial. A strong stress response occurred at day one in both yoked and trained animals (increased corticosterone and hypothalamic pro-CRH and CRH-R1 mRNA levels); changes gradually diminished as the test progressed. In amygdala, pro-CRH mRNA levels decreased while those of BDNF augmented when stress was highest, in yoked and trained animals. Hippocampi, of both yoked and trained groups, had decreased levels of GR mRNA on days 1 and 3, normalizing by day 5, while those of pro-CRH and CRH-R1 increased after the 3rd day. Increased gene expression, specifically due to spatial learning, occurred only for hippocampal BDNF since day 3. These results show that the Morris water-maze paradigm induces a strong stress response that is gradually attenuated. Inhibition of CRH expression in amygdala suggests that the stress inflicted is of physical but not of psychological nature and could lead to reduced fear or anxiety.

  7. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone.

    NARCIS (Netherlands)

    Wu, Y.-H.; Zhou, J.-N.; Balesar, R.; Unmehopa, U.; Bao, A.; Jockers, R.; Heerikhuize, J.; Swaab, D.F.

    2006-01-01

    Melatonin is implicated in numerous physiological processes, including circadian rhythms, stress, and reproduction, many of which are mediated by the hypothalamus and pituitary. The physiological actions of melatonin are mainly mediated by melatonin receptors. We here describe the distribution of

  8. [High-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of corticotropin-releasing factor and its type-1 receptors].

    Science.gov (United States)

    Chen, Xue-Qun; Kong, Fan-Ping; Zhao, Yang; Du, Ji-Zeng

    2012-11-01

    High-altitude hypoxia can induce physiological dysfunction and mountain sickness, but the underlying mechanism is not fully understood. Corticotrophin-releasing factor (CRF) and CRF type-i receptors (CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal (HPA) axis and modulators of endocrine and behavioral activity in response to various stressors. We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time- and dose-dependent manner, impaired or improved learning and memory, and anxiety-like behavioral change. Meanwhile, hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems, including suppression of growth and development, as well as inhibition of reproductive, metabolic and immune functions. In contrast, the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitude-hypoxia challenge, suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interactions between the genes and environment. All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction. This review extends these findings.

  9. Regulation of gonadotropins by corticotropin-releasing factor and urocortin

    Directory of Open Access Journals (Sweden)

    Kazunori eKageyama

    2013-02-01

    Full Text Available While stress activates the hypothalamic-pituitary-adrenal (HPA axis, it suppresses the hypothalamic-pituitary-gonadal (HPG axis. Corticotropin-releasing factor (CRF is a major regulatory peptide in the HPA axis during stress. Urocortin1 (Ucn1, a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G protein-coupled seven transmembrane receptors. Ucn2 and Ucn3, which belong to a separate paralogous lineage from CRF, are highly selective for the CRF type 2 receptor (CRF2 receptor. The HPA and HPG axes interact with each other, and gonadal function and reproduction are suppressed in response to various stressors. In this review, we focus on the regulation of gonadotropins by CRF and Ucn2 in pituitary gonadotrophs and of gonadotropin-releasing hormone (GnRH via CRF receptors in the hypothalamus. In corticotrophs, stress-induced increases in CRF stimulate Ucn2 production, which leads to the inhibition of gonadotropin secretion via the CRF2 receptor in the pituitary. GnRH in the hypothalamus is regulated by a variety of stress conditions. CRF is also involved in the suppression of the HPG axis, especially the GnRH pulse generator, via CRF receptors in the hypothalamus. Thus, complicated regulation of GnRH in the hypothalamus and gonadotropins in the pituitary via CRF receptors contributes to stress responses and adaptation of gonadal functions.

  10. Regulation of gonadotropins by corticotropin-releasing factor and urocortin.

    Science.gov (United States)

    Kageyama, Kazunori

    2013-01-01

    While stress activates the hypothalamic-pituitary-adrenal (HPA) axis, it suppresses the hypothalamic-pituitary-gonadal (HPG) axis. Corticotropin-releasing factor (CRF) is a major regulatory peptide in the HPA axis during stress. Urocortin 1 (Ucn1), a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G protein-coupled seven transmembrane receptors. Ucn2 and Ucn3, which belong to a separate paralogous lineage from CRF, are highly selective for the CRF type 2 receptor (CRF(2) receptor). The HPA and HPG axes interact with each other, and gonadal function and reproduction are suppressed in response to various stressors. In this review, we focus on the regulation of gonadotropins by CRF and Ucn2 in pituitary gonadotrophs and of gonadotropin-releasing hormone (GnRH) via CRF receptors in the hypothalamus. In corticotrophs, stress-induced increases in CRF stimulate Ucn2 production, which leads to the inhibition of gonadotropin secretion via the CRF(2) receptor in the pituitary. GnRH in the hypothalamus is regulated by a variety of stress conditions. CRF is also involved in the suppression of the HPG axis, especially the GnRH pulse generator, via CRF receptors in the hypothalamus. Thus, complicated regulation of GnRH in the hypothalamus and gonadotropins in the pituitary via CRF receptors contributes to stress responses and adaptation of gonadal functions.

  11. Diminished Expression of Corticotropin-Releasing Hormone Receptor 2 in Human Colon Cancer Promotes Tumor Growth and Epithelial-to-Mesenchymal Transition via Persistent Interleukin-6/Stat3 SignalingSummary

    Directory of Open Access Journals (Sweden)

    Jorge A. Rodriguez

    2015-11-01

    Full Text Available Background & Aims: Chronic inflammation promotes development and progression of colorectal cancer (CRC. We explored the distribution of the corticotropin-releasing-hormone (CRH family of receptors and ligands in CRC and their contribution in tumor growth and oncogenic epithelial-to-mesenchymal transition (EMT. Methods: The mRNA expression of CRH-family members was analyzed in CRC (n = 56 and control (n = 46 samples, seven CRC cell lines, and normal NCM460 cells. Immunohistochemical detection of CRHR2 was performed in 20 CRC and five normal tissues. Cell proliferation, migration, and invasion were compared between urocortin-2 (Ucn2-stimulated parental and CRHR2-overexpressing (CRHR2+ cells in the absence or presence of interleukin-6 (IL-6. CRHR2/Ucn2-targeted effects on tumor growth and EMT were validated in SW620-xenograft mouse models. Results: CRC tissues and cell lines showed decreased mRNA and protein CRHR2 expression compared with controls and NCM460 cells, respectively. The opposite trend was shown for Ucn2. CRHR2/Ucn2 signaling inhibited cell proliferation, migration, invasion, and colony formation in CRC-CRHR2+ cells. In vivo, SW620-CRHR2+ xenografts showed decreased growth, reduced expression of EMT-inducers, and elevated levels of EMT-suppressors. IL-1b, IL-6, and IL-6R mRNAs were diminished in CRC-CRHR2+ cells, while CRHR2/Ucn2 signaling inhibited IL-6-mediated Stat3 activation, invasion, migration, and expression of downstream targets acting as cell cycle– and EMT-inducers. Expression of cell cycle– and EMT-suppressors was augmented in IL-6/Ucn2-stimulated CRHR2+ cells. In patients, CRHR2 mRNA expression was inversely correlated with IL-6R and vimentin levels and metastasis occurrence, while positively associated with E-cadherin expression and overall survival. Conclusions: CRHR2 down-regulation in CRC supports tumor expansion and spread through maintaining persistent inflammation and constitutive Stat3 activation

  12. Corticotropin-releasing hormone and dopamine release in healthy individuals.

    Science.gov (United States)

    Payer, Doris; Williams, Belinda; Mansouri, Esmaeil; Stevanovski, Suzanna; Nakajima, Shinichiro; Le Foll, Bernard; Kish, Stephen; Houle, Sylvain; Mizrahi, Romina; George, Susan R; George, Tony P; Boileau, Isabelle

    2017-02-01

    Corticotropin-releasing hormone (CRH) is a key component of the neuroendocrine response to stress. In animal models, CRH has been shown to modulate dopamine release, and this interaction is believed to contribute to stress-induced relapse in neuropsychiatric disorders. Here we investigated whether CRH administration induces dopamine release in humans, using positron emission tomography (PET). Eight healthy volunteers (5 female, 22-48 years old) completed two PET scans with the dopamine D2/3 receptor radioligand [11C]-(+)-PHNO: once after saline injection, and once after injection of corticorelin (synthetic human CRH). We also assessed subjective reports and measured plasma levels of endocrine hormones (adrenocorticotropic hormone and cortisol). Relative to saline, corticorelin administration decreased binding of the D2/3 PET probe [11C]-(+)-PHNO, suggesting dopamine release. Endocrine stress markers were also elevated, in line with activation of the hypothalamic-pituitary-adrenal axis, but we detected no changes in subjective ratings. Preliminary results from this proof-of-concept study suggests that CRH challenge in combination with [11C]-(+)-PHNO PET may serve as an assay of dopamine release, presenting a potential platform for evaluating CRH/dopamine interactions in neuropsychiatric disorders and CRH antagonists as potential treatment avenues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin-releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33. Methods: Psoriasis and normal skin biopsy samples were obtained from three ...

  14. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Sent for review: 28 July 2017. Revised accepted: 27 October 2017. Abstract. Purpose: To determine the expression of corticotropin releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33.

  15. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33. Methods: Psoriasis and normal skin biopsy samples were obtained from three ...

  16. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2014-11-01

    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  17. Role of corticotropin-releasing factor in the median raphe nucleus in yohimbine-induced reinstatement of alcohol seeking in rats

    OpenAIRE

    Lê, A.D.; Funk, Douglas; Coen, Kathleen; Li, Zhaoxia; Shaham, Yavin

    2011-01-01

    The pharmacological stressor yohimbine increases ongoing alcohol self-administration and reinstates alcohol seeking in rats. This effect is attenuated by systemic injections of a corticotropin-releasing factor (CRF) antagonist. The brain sites involved in CRF's role in yohimbine-induced alcohol taking and seeking are unknown. We report that injections of the CRF receptor antagonist d-Phe CRF into the median raphe nucleus (MRN) attenuated yohimbine-induced reinstatement of alcohol seeking but ...

  18. Plasma corticotropin releasing hormone during the feeling of induced emotions.

    Science.gov (United States)

    Martin Martins, Joao; Vale, Sónia do; Ferreira, Florbela; Fagundes, Maria Joao; Carmo, Isabel do; Saldanha, Carlota; Martins E Silva, J

    2010-01-01

    Central neuropeptides modulate behaviour. Plasma levels of neuropeptides may reflect central levels due to specific brain-to-blood transport systems. We purposed to show the modulation of plasma corticotropin releasing hormone (CRH) levels in relation to induced emotions. Three groups were defined. For experimental groups A and B, an emotionally significant movie fragment was projected for 20 min, while no film projection occurred in group C. Peripheral venous blood samples were collected before, 10 and 60 min after the film or at 0 and 30 min for group C. Total CRH was measured in plasma. Personality was evaluated by the Minnesota Multiphasic Personality Inventory (MMPI). Plasma CRH levels did not change in the condition with no movie projection - group C - 346 + or - 198 vs. 327 + or - 143 pg/mL. Plasma CRH levels dramatically increased with the projection of a dramatic movie - group A - 394 + or - 147 vs. 791 + or - 636 vs. 803 + or - 771 pg/mL, p<0.05. Plasma CRH increased less markedly in the condition with the projection of a comic movie - group B - 364 + or - 138 vs. 486 + or - 260 vs. 483 + or - 228 pg/mL, p<0.05 for differences between samples 1 and 3. Baseline plasma CRH was significantly and independently related to the neurotic triad and psychotic dyad - partial r=0.328 and 0.267, respectively, p<0.05. We conclude that plasma CRH levels increase with experimental emotion induction and that baseline levels are significantly related to behavioural traits. Plasma levels of neuropeptides may reflect central levels and may be useful in clinical medicine and in the study of behavioural disorders.

  19. Corticotropin-releasing factor in the dorsal raphe nucleus: Linking stress coping and addiction.

    Science.gov (United States)

    Valentino, Rita J; Lucki, Irwin; Van Bockstaele, Elisabeth

    2010-02-16

    Addiction and stress are linked at multiple levels. Drug abuse is often initiated as a maladaptive mechanism for coping with stress. It is maintained in part by negative reinforcement to prevent the aversive consequences of stress associated with abstinence. Finally, stress is a major factor leading to relapse in subjects in which drug seeking behavior has extinguished. These associations imply overlapping or converging neural circuits and substrates that underlie the processes of addiction and the expression of the stress response. Here we discuss the major brain serotonin (5-HT) system, the dorsal raphe nucleus (DRN)-5-HT system as a point of convergence that links these processes and how the stress-related neuropeptide, corticotropin-releasing factor (CRF) directs this by a bimodal regulation of DRN neuronal activity. The review begins by describing a structural basis for CRF regulation of the DRN-5-HT system. This is followed by a review of the effects of CRF and stress on DRN function based on electrophysiological and microdialysis studies. The concept that multiple CRF receptor subtypes in the DRN facilitate distinct coping behaviors is reviewed with recent evidence for a unique cellular mechanism by which stress history can determine the type of coping behavior. Finally, work on CRF regulation of the DRN-5-HT system is integrated with literature on the role of 5-HT-dopamine interactions in addiction. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    2010-01-01

    Full Text Available Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH9−41, a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.

  1. Inhibitory effect of ramosetron on corticotropin releasing factor- and soybean oil-induced delays in gastric emptying in rats.

    Science.gov (United States)

    Hirata, Takuya; Keto, Yoshihiro; Yamano, Mayumi; Yokoyama, Toshihide; Sengoku, Takanori; Seki, Nobuo

    2012-09-01

    Symptoms of functional dyspepsia (FD) are highly prevalent in patients with irritable bowel syndrome (IBS). However, the effects of therapeutic agents for IBS on the pathophysiology of FD are unclear. In this study, therefore, we examined the effects of ramosetron, a serotonin 5-HT(3) receptor antagonist, on corticotropin releasing factor (CRF)- and soybean oil-induced delays in gastric emptying of rats, in comparison with anti-diarrheal agent and spasmolytics. The involvement of 5-HT and the 5-HT(3) receptor in delayed gastric emptying was also evaluated. Corticotropin releasing factor was administered intravenously to rats 10min before oral administration of 0.05% phenol red solution, and the amount remaining in the stomach was measured after 30min. Soybean oil was administered orally with glass beads, and the number of residual beads in the stomach was counted 1h later. Both CRF and soybean oil inhibited gastric emptying dose-dependently. Ramosetron and itopride, a gastro-prokinetic agent, significantly reduced both CRF- and soybean oil-induced delays in gastric emptying, while an anti-diarrheal agent and spasmolytics aggravated them. Pretreatment with p-chlorophenylalanine for 2days to reduced the synthesis of endogenous 5-HT diminished the effects of both CRF and soybean oil on gastric emptying. A 5-HT(3) receptor agonist m-chlorophenylbiguanide suppressed gastric emptying of both phenol red and glass beads, and those effects were reversed by ramosetron. These results suggest that CRF and soybean oil suppress gastric emptying in rats by activating 5-HT(3) receptors, and that by antagonizing these receptors, ramosetron may ameliorate symptoms of FD in clinical settings. © 2012 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  2. DIFFERENTIAL ACTIVATION OF NEURONAL CELL TYPES IN THE BASOLATERAL AMYGDALA BY CORTICOTROPIN RELEASING FACTOR

    Science.gov (United States)

    Rostkowski, Amanda B.; Leitermann, Randy J.; Urban, Janice H.

    2013-01-01

    Enhanced CRF release in the BLA is strongly associated with the generation of behavioral stress responses through activation of the CRF-R1 receptor subtype. Stress and anxiety-like behavior are modulated in part by the balance of peptide actions such as excitatory corticotropin releasing factor (CRF) and inhibitory neuropeptide Y (NPY) receptor activation in the basolateral nucleus of the amygdala (BLA). While the actions of CRF are clear, little is known about the cell type influenced by CRF receptor stimulation. These studies were designed to identify the cell types within the BLA activated by intra-BLA administration of CRF using multi-label immunohistochemistry for cFos and markers for pyramidal (CaMKII-immunopositive) and interneuronal [glutamic acid decarboxylase (GAD65)] cell populations. Administration of CRF into the BLA produced a dose-dependent increase in the expression of cFos-ir. Intra-BLA injection of CRF induced significant increases in cFos-ir in the CaMKII-ir population. Although increases in cFos-ir in GAD65-ir cells were observed, this did not reach statistical significance perhaps in part due to the decreased numbers of GAD65-ir cells within the BLA after CRF treatment. These findings demonstrate that CRF, when released into the BLA, activates projection neurons and that the activity of GABAergic interneurons is also altered by CRF treatment. Decreases in the number of GAD65-ir neurons could reflect either increased or decreased activity of these cells and future studies will more directly address these possibilities. The expression of increased of cFos is associated with longer term regulation of gene expression which may be involved in the profound long term effects of neuropeptides, such as CRF, on the activity and plasticity of BLA pyramidal neurons. PMID:23688647

  3. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  4. Mid-pregnancy corticotropin-releasing hormone levels in association with postpartum depressive symptoms

    NARCIS (Netherlands)

    Iliadis, Stavros I; Sylvén, Sara; Hellgren, Charlotte; Olivier, Jocelien D.; Schijven, Dick; Comasco, Erika; Chrousos, George P; Sundström Poromaa, Inger; Skalkidou, Alkistis

    2016-01-01

    BACKGROUND: Peripartum depression is a common cause of pregnancy- and postpartum-related morbidity. The production of corticotropin-releasing hormone (CRH) from the placenta alters the profile of hypothalamus-pituitary-adrenal axis hormones and may be associated with postpartum depression. The

  5. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Directory of Open Access Journals (Sweden)

    Michelle H Le

    Full Text Available Stress exposure or increased levels of corticotropin-releasing factor (CRF induce hippocampal tau phosphorylation (tau-P in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1. Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD, the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr and chronic (2hr CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF, this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  6. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport.

    Science.gov (United States)

    Le, Michelle H; Weissmiller, April M; Monte, Louise; Lin, Po Han; Hexom, Tia C; Natera, Orlangie; Wu, Chengbiao; Rissman, Robert A

    2016-01-01

    Stress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer's disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr) and chronic (2hr) CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF), this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD.

  7. Corticotropin?releasing hormone improves survival in pneumococcal pneumonia by reducing pulmonary inflammation

    OpenAIRE

    Burnley, Brittney; P. Jones, Harlan

    2017-01-01

    Abstract The use of glucocorticoids to reduce inflammatory responses is largely based on the knowledge of the physiological action of the endogenous glucocorticoid, cortisol. Corticotropin?releasing hormone (CRH) is a neuropeptide released from the hypothalamic?pituitary?adrenal axis of the central nervous system. This hormone serves as an important mediator of adaptive physiological responses to stress. In addition to its role in inducing downstream cortisol release that in turn regulates im...

  8. Interleukin 1 beta and corticotropin-releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissue.

    Science.gov (United States)

    Schäfer, M; Carter, L; Stein, C

    1994-01-01

    Local analgesic effects of exogenous opioid agonists are particularly prominent in painful inflammatory conditions and are mediated by opioid receptors on peripheral sensory nerves. The endogenous ligands of these receptors, opioid peptides, have been demonstrated in resident immune cells within inflamed tissue of animals and humans. Here we examine in vivo and in vitro whether interleukin 1 beta (IL-1) or corticotropin-releasing factor (CRF) is capable of releasing these endogenous opioids and inhibiting pain. When injected into inflamed rat paws (but not intravenously), IL-1 and CRF produce antinociception, which is reversible by IL-1 receptor antagonist and alpha-helical CRF, respectively, and by the immunosuppressant cyclosporine A. In vivo administration of antibodies against opioid peptides indicates that the effects of IL-1 and CRF are mediated by beta-endorphin and, in addition, by dynorphin A and [Met]enkephalin, respectively. Correspondingly, IL-1 effects are inhibited by mu-, delta-, and kappa-opioid antagonists, whereas CRF effects are attenuated by all except a kappa-antagonist. Finally, IL-1 and CRF produce acute release of immunoreactive beta-endorphin in cell suspensions freshly prepared from inflamed lymph nodes. This effect is reversible by IL-1 receptor antagonist and alpha-helical CRF, respectively. These findings suggest that IL-1 and CRF activate their receptors on immune cells to release opioids that subsequently occupy multiple opioid receptors on sensory nerves and result in antinociception. beta-Endorphin, mu- and delta-opioid receptors play a major role, but IL-1 and CRF appear to differentially release additional opioid peptides. PMID:7910403

  9. Identification and characterization of a pituitary corticotropin-releasing factor binding protein by chemical cross-linking

    DEFF Research Database (Denmark)

    Nishimura, E; Billestrup, Nils; Perrin, M

    1987-01-01

    A corticotropin-releasing factor (CRF) binding protein has been identified based on the chemical cross-linking of ovine [Nle21,m-125I-Tyr32]CRF (125I-oCRF) to bovine anterior pituitary membranes using disuccinimidyl suberate (DSS). The apparent molecular weight of the cross-linked complex...... appeared to have a molecular weight of approximately 70,000. The cross-linking was specific since an excess (1 microM) of an unrelated peptide (insulin) did not affect the appearance of the Mr 75,000 band. The concentration of CRF required to inhibit cross-linking by 50% was found to be similar...... to that determined for bovine pituitary CRF receptors by radioreceptor assay. The nonhydrolyzable GTP analogue 5'-guanylylimidodiphosphate dose dependently inhibited the cross-linking of 125I-oCRF to the Mr 70,000 protein. 50 nM of the inactive CRF analogue, [Ala14]oCRF, had no effect on the cross-linking...

  10. Role of corticotropin-releasing factor in the median raphe nucleus in yohimbine-induced reinstatement of alcohol seeking in rats.

    Science.gov (United States)

    Lê, A D; Funk, Douglas; Coen, Kathleen; Li, Zhaoxia; Shaham, Yavin

    2013-05-01

    The pharmacological stressor yohimbine increases ongoing alcohol self-administration and reinstates alcohol seeking in rats. This effect is attenuated by systemic injections of a corticotropin-releasing factor (CRF) antagonist. The brain sites involved in CRF's role in yohimbine-induced alcohol taking and seeking are unknown. We report that injections of the CRF receptor antagonist d-Phe CRF into the median raphe nucleus (MRN) attenuated yohimbine-induced reinstatement of alcohol seeking but had no effect on yohimbine-induced increases in alcohol intake during ongoing self-administration. Results indicate an important role of MRN CRF receptors in yohimbine-induced reinstatement of alcohol seeking but not yohimbine-induced increases in alcohol intake. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  11. Mapping the human corticotropin releasing hormone binding protein gene (CRHBP) to the long arm of chromosome 5 (5q11.2-q13.3)

    Energy Technology Data Exchange (ETDEWEB)

    Vamvakopoulos, N.C. [Univ. of Thessaly School of Medicine, Larisa (Greece); Sioutopoulou, T.O. [Univ. of Athens Medical School (Greece); Durkin, S.A. [American Type Culture Collection, Rockville, MD (United States)

    1995-01-01

    Unexpected stimulation or stress activates the heat shock protein (hsp) system at the cellular level and the hypothalamic-pituitary-adrenal (HPA) axis at the level of the whole organism. At the molecular level, these two systems communicate through the functional interaction between hsp90 and glucocorticoid receptor (GR). The corticotropin releasing hormone (CRH) system regulates the mammalian stress response by coordinating the activity of the HPA axis. It consists of the 41-amino-acid-long principal hypothalamic secretagogue for pituitary adrenocorticotropic hormone (ACTH), CRH, its receptor (CRHR), and its binding protein (CRHBP). Because of its central role in the coordination of stress response and whole body homeostasis, the CRH system has been implicated in the pathogenesis of neuroendocrine and psychiatric disease. 19 refs., 1 fig.

  12. Impact of sex and gender on corticotropin releasing factor and noradrenergic sensitivity in cocaine use disorder

    Science.gov (United States)

    McRae-Clark, Aimee L.; Cason, Angie M.; Kohtz, Amy S.; Maria, Megan Moran-Santa; Aston-Jones, Gary; Brady, Kathleen T.

    2016-01-01

    Responses to stress may be important in understanding sex and gender differences in substance use disorders and may also be a target for development of treatment interventions. A growing body of both preclinical and clinical research supports important underlying sex and gender differences in the corticotropin releasing factor (CRF) and noradrenergic systems, which may contribute to drug use. Preclinical models have demonstrated increased sensitivity of females as compared to males to CRF and noradrenergic-induced drug reinstatement, and, consistent with these findings, human laboratory studies have demonstrated greater sensitivity to corticotropin releasing hormone (CRH) and noradrenergic stimulation in cocaine-dependent women as compared to men. Further, neuroimaging studies have demonstrated increased neural response to stressful stimuli in cocaine-dependent women as compared to men, as well as shown significant sex differences in the sensitivity of brain regions responsible for regulating response to CRH. Development of interventions targeting the noradrenergic system and stress response in drug-dependent individuals could have important clinical implications for both women and men. PMID:27870396

  13. Impact of gender on corticotropin-releasing factor and noradrenergic sensitivity in cocaine use disorder.

    Science.gov (United States)

    McRae-Clark, Aimee L; Cason, Angie M; Kohtz, Amy S; Moran Santa-Maria, Megan; Aston-Jones, Gary; Brady, Kathleen T

    2017-01-02

    Responses to stress may be important in understanding gender differences in substance use disorders and may also be a target for development of treatment interventions. A growing body of both preclinical and clinical research supports important underlying gender differences in the corticotropin-releasing factor (CRF) and noradrenergic systems, which may contribute to drug use. Preclinical models have demonstrated increased sensitivity of females to CRF and noradrenergic-induced drug reinstatement compared with males, and, consistent with these findings, human laboratory studies have demonstrated greater sensitivity to corticotropin-releasing hormone (CRH) and noradrenergic stimulation in cocaine-dependent women compared with men. Furthermore, neuroimaging studies have demonstrated increased neural response to stressful stimuli in cocaine-dependent women compared with men as well as showing significant sex differences in the sensitivity of brain regions responsible for regulating the response to CRH. Development of interventions targeting the noradrenergic system and stress response in drug-dependent individuals could have important clinical implications for both women and men. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Acute central effects of corticotropin-releasing factor (CRF) on energy balance: Effects of age and gender.

    Science.gov (United States)

    Tenk, Judit; Rostás, Ildikó; Füredi, Nóra; Mikó, Alexandra; Soós, Szilvia; Solymár, Margit; Gaszner, Balázs; Székely, Miklós; Pétervári, Erika; Balaskó, Márta

    2016-11-01

    Previously demonstrated age-related changes in the catabolic melanocortin system that may contribute to middle-aged obesity and aging anorexia, raise the question of the potential involvement of corticotropin-releasing factor (CRF) in these phenomena, as this catabolic hypothalamic mediator acts downstream to melanocortins. Catabolic effects of CRF were shown to be mediated by both CRF1 (hypermetabolism) and CRF2 (anorexia) receptors. To test the potential role of CRF in age-related obesity and aging anorexia, we investigated acute central effects of the peptide on energy balance in male and female rats during the course of aging. Effects of an intracerebroventricular CRF injection on food intake (FI), oxygen-consumption (VO2), core- and tail skin temperatures (Tc and Ts) were studied in male and female Wistar rats of five different age-groups (from 3- to 24-month). Anorexigenic responsiveness was tested during 180-min re-feeding (FeedScale) following 24-h fasting. Thermoregulatory analysis was performed by indirect calorimetry (Oxymax) complemented by thermocouples recording Tc and Ts (indicating heat loss). CRF suppressed FI in 3-month male and female animals. In males, CRF-induced anorexia declined with aging, whereas in females it was maintained in all groups. The peptide increased VO2 and Tc in all male age-groups, while the weaker hypermetabolic response characterizing 3-month females declined rapidly with aging. Thus, age-related alterations in acute central anorexigenic and hypermetabolic effects of CRF show different non-parallel patterns in males and females. Our findings underline the importance of gender differences. They also call the attention to the differential age-related changes in the CRF1 and CRF2 receptor systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Repeated water avoidance stress induces visceral hypersensitivity: Role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor.

    Science.gov (United States)

    Nozu, Tsukasa; Miyagishi, Saori; Nozu, Rintaro; Takakusaki, Kaoru; Okumura, Toshikatsu

    2017-12-01

    Repeated water avoidance stress (WAS) induces visceral hypersensitivity. Additionally, it is also known to activate corticotropin-releasing factor (CRF), mast cells, and pro-inflammatory cytokines systems, but their precise roles on visceral sensation have not been determined definitely. The aim of the study was to explore this issue. Abdominal muscle contractions induced by colonic balloon distention, that is, visceromotor response (VMR) was detected electrophysiologically in conscious rats. WAS or sham stress as control for 1 h daily was loaded, and the threshold of VMR was determined before and at 24 h after the stress. Repeated WAS for three consecutive days reduced the threshold of VMR, but sham stress did not induce any change. Astressin, a CRF receptor antagonist (50 μg/kg) intraperitoneally (ip) at 10 min before each WAS session, prevented the visceral allodynia, but the antagonist (200 μg/kg) ip at 30 min and 15 h before measurement of the threshold after completing 3-day stress session did not modify the response. Ketotifen, a mast cell stabilizer (3 mg/kg), anakinra, an interleukin (IL)-1 receptor antagonist (20 mg/kg) or IL-6 antibody (16.6 μg/kg) ip for two times before the measurement abolished the response. Repeated WAS for three consecutive days induced visceral allodynia, which was mediated through mast cells, IL-1, and IL-6 pathways. Inhibition of peripheral CRF signaling prevented but did not reverse this response, suggesting that peripheral CRF may be an essential trigger but may not contribute to the maintenance of repeated WAS-induced visceral allodynia. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  16. Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring.

    Science.gov (United States)

    Zaidan, Hiba; Leshem, Micah; Gaisler-Salomon, Inna

    2013-11-01

    Human and animal studies indicate that vulnerability to stress may be heritable and that changes in germline may mediate some transgenerational effects. Corticotropin releasing factor type 1 (CRF1) is a key component in the stress response. We investigated changes in CRF1 expression in brain and ova of stressed female rats and in the brain of their neonate and adult offspring. Behavioral changes in adulthood were also assessed. Adult female rats underwent chronic unpredictable stress. We extracted mature oocytes and brain regions from a subset of rats and mated the rest 2 weeks following the stress procedure. CRF1 expression was assessed using quantitative reverse-transcription polymerase chain reaction. Tests of anxiety and aversive learning were used to examine behavior of offspring in adulthood. We show that chronic unpredictable stress leads to an increase in CRF1 messenger RNA expression in frontal cortex and mature oocytes. Neonatal offspring of stressed female rats show an increase in brain CRF1 expression. In adulthood, offspring of stressed female rats show sex differences in both CRF1 messenger RNA expression and behavior. Moreover, CRF1 expression patterns in frontal cortex of female offspring depend upon both maternal and individual adverse experience. Our findings demonstrate that stress affects CRF1 expression in brain but also in ova, pointing to a possible mechanism of transgenerational transmission. In offspring, stress-induced changes are evident at birth and are thus unlikely to result from altered maternal nurturance. Finally, brain CRF1 expression in offspring depends upon gender and upon maternal and individual exposure to adverse environment. © 2013 Society of Biological Psychiatry.

  17. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  18. Injection of corticotropin-releasing hormone into the amygdala aggravates visceral nociception and induces noradrenaline release in rats.

    Science.gov (United States)

    Su, J; Tanaka, Y; Muratsubaki, T; Kano, M; Kanazawa, M; Fukudo, S

    2015-01-01

    Corticotropin-releasing hormone (CRH) and its receptor 1 (CRH-R1) play an important role in the colonic response to stress. The central nucleus of the amygdala (CeA) is a major extrahypothalamic site that contains a large number of neurons expressing both CRH and CRH-R1. Here, we verified the hypothesis that CRH in the CeA sensitizes visceral nociception via CRH-R1 with release of noradrenaline, dopamine, and serotonin (5-HT) in the CeA. In male Wistar rats, visceral sensitivity was quantified by recording the visceromotor response to colorectal distension (CRD) with administration of vehicle, CRH, or the CRH-R1 antagonist CP-154526+ CRH or CRH-R1 antagonist CP-154526 alone into the CeA. Simultaneously, extracellular levels of noradrenaline, dopamine, and 5-HT were measured in the CeA using microdialysis. All data were obtained under restraint conditions. Administration of CRH into the CeA significantly increased the number of abdominal muscle contractions in response to CRD. CP-154526 significantly blocked the number of abdominal muscle contractions in response to CRD with the administration of CRH into the CeA. Noradrenaline in the CeA was increased by CRD, further increased by CRH, and inhibited by CRH-R1 antagonist. Dopamine in the CeA was also exaggerated by CRH but was not inhibited by CRH-R1 antagonist. 5-HT in the CeA was unchanged. These results suggest that CRH in the CeA sensitizes visceral nociception via CRH-R1 with release of noradrenaline. © 2014 John Wiley & Sons Ltd.

  19. Tolerability of the dexamethasone-corticotropin releasing hormone test in major depressive disorder.

    Science.gov (United States)

    Dunlop, Boadie W; Betancourt, Yara; Binder, Elisabeth B; Heim, Christine; Holsboer, Florian; Ising, Marcus; McKenzie, Melissa; Mletzko, Tanja; Pfister, Hildegard; Nemeroff, Charles B; Craighead, W Edward; Mayberg, Helen S

    2011-01-01

    The dexamethasone-corticotropin releasing hormone (Dex-CRH) test may differentially predict which depressed patients will respond to antidepressant medication. However, a comprehensive analysis of the safety of this test in psychiatric patients has not previously been performed. We conducted a pooled analysis of depressed patients in four clinical studies. Observed and subjectively reported side-effects in 454 patients were collected for 90 minutes following CRH administration. Pre-test electrocardiograms were available in 250 patients to assess cardiac safety. Descriptive statistics were performed to evaluate these safety data. Eight-six (18.9%) subjects experienced no side-effects from the procedure. The mean number of side-effects per subject was 1.4±1.0. The most frequent adverse events were: flushing (n=216, 47.6%), feeling of warmth (144, 31.7%), hyperpnea/tachypnea (108, 23.8%), palpitations (37, 8.1%), and tachycardia (28, 6.2%). Side-effects were consistently mild and brief in duration. There were no serious adverse events. The Dex-CRH test produces a mild, predictable side-effect profile, characterized by flushing, feelings of warmth, hyperpnea/tachypnea, palpitations, and tachycardia. These results provide reassurance that the Dex-CRH test is well tolerated in psychiatric patients. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Characterization of a novel subtype of hippocampal interneurons that express corticotropin-releasing hormone.

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    A subset of corticotropin-releasing hormone (CRH) neurons was previously identified in the hippocampus with unknown function. Here we demonstrate that hippocampal CRH neurons represent a novel subtype of interneurons in the hippocampus, exhibiting unique morphology, electrophysiological properties, molecular markers, and connectivity. This subset of hippocampal CRH neurons in the mouse reside in the CA1 pyramidal cell layer and tract tracing studies using AAV-Flex-ChR2-tdTomato reveal dense back-projections of these neurons onto principal neurons in the CA3 region of the hippocampus. These hippocampal CRH neurons express both GABA and GAD67 and using in vitro optogenetic techniques, we demonstrate that these neurons make functional connections and release GABA onto CA3 principal neurons. The location, morphology, and importantly the functional connectivity of these neurons demonstrate that hippocampal CRH neurons represent a unique subtype of hippocampal interneurons. The connectivity of these neurons has significant implications for hippocampal function. © 2015 Wiley Periodicals, Inc.

  1. Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men.

    Science.gov (United States)

    Austin, M C; Janosky, J E; Murphy, H A

    2003-03-01

    A number of clinical investigations and postmortem brain studies have provided evidence that excessive corticotropin-releasing hormone (CRH) secretion and neurotransmission is involved in the pathophysiology of depressive illness, and several studies have suggested that the hyperactivity in CRH neurotransmission extends beyond the hypothalamus involving several extra-hypothalamic brain regions. The present study was designed to test the hypothesis that CRH levels are increased in specific brainstem regions of suicide victims with a diagnosis of major depression. Frozen tissue sections of the pons containing the locus coeruleus and caudal raphe nuclei from 11 matched pairs of depressed suicide and control male subjects were processed for radioimmunocytochemistry using a primary antiserum to CRH and a ([125])I-IgG secondary antibody. The optical density corresponding to the level of CRH-immunoreactivity (IR) was quantified in specific pontine regions from the film autoradiographic images. The level of CRH-IR was increased by 30% in the locus coeruleus, 39% in the median raphe and 45% in the caudal dorsal raphe in the depressed suicide subjects compared to controls. No difference in CRH-IR was found in the dorsal tegmentum or medial parabrachial nucleus between the subject groups. These findings reveal that CRH-IR levels are specifically increased in norepinephrine- and serotonin-containing pontine nuclei of depressed suicide men, and thus they are consistent with the hypothesis that CRH neurotransmission is elevated in extra-hypothalamic brain regions of depressed subjects.

  2. Corticotropin-releasing hormone improves survival in pneumococcal pneumonia by reducing pulmonary inflammation.

    Science.gov (United States)

    Burnley, Brittney; P Jones, Harlan

    2017-01-01

    The use of glucocorticoids to reduce inflammatory responses is largely based on the knowledge of the physiological action of the endogenous glucocorticoid, cortisol. Corticotropin-releasing hormone (CRH) is a neuropeptide released from the hypothalamic-pituitary-adrenal axis of the central nervous system. This hormone serves as an important mediator of adaptive physiological responses to stress. In addition to its role in inducing downstream cortisol release that in turn regulates immune suppression, CRH has also been found to mediate inflammatory responses in peripheral tissues. Streptococcus pneumoniae is a microorganism commonly present among the commensal microflora along the upper respiratory tract. Transmission of disease stems from the resident asymptomatic pneumococcus along the nasal passages. Glucocorticoids are central mediators of immune suppression and are the primary adjuvant pharmacological treatment used to reduce inflammatory responses in patients with severe bacterial pneumonia. However, controversy exists in the effectiveness of glucocorticoid treatment in reducing mortality rates during S. pneumoniae infection. In this study, we compared the effect of the currently utilized pharmacologic glucocorticoid dexamethasone with CRH. Our results demonstrated that intranasal administration of CRH increases survival associated with a decrease in inflammatory cellular immune responses compared to dexamethasone independent of neutrophils. Thus, providing evidence of its use in the management of immune and inflammatory responses brought on by severe pneumococcal infection that could reduce mortality risks. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Episodic Social Stress-Escalated Cocaine Self-Administration: Role of Phasic and Tonic Corticotropin Releasing Factor in the Anterior and Posterior Ventral Tegmental Area

    Science.gov (United States)

    Boyson, Christopher O.; Montagud-Romero, Sandra; Stein, Dirson J.; Gobrogge, Kyle L.; DeBold, Joseph F.; Miczek, Klaus A.

    2016-01-01

    Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats. In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h “binge.” VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF-R1 and aVTA CRF-R2. SIGNIFICANCE STATEMENT Corticotropin releasing factor (CRF) within the ventral tegmental area (VTA) has emerged as a likely candidate molecule underlying the fundamental link between stress history and escalated drug self-administration. However, the nature of CRF

  4. Cell Type-Specific Expression of Corticotropin-Releasing Hormone-Binding Protein in GABAergic Interneurons in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Kyle D. Ketchesin

    2017-10-01

    Full Text Available Corticotropin-releasing hormone-binding protein (CRH-BP is a secreted glycoprotein that binds CRH with very high affinity to modulate CRH receptor activity. CRH-BP is widely expressed throughout the brain, with particularly high expression in regions such as the amygdala, hippocampus, ventral tegmental area and prefrontal cortex (PFC. Recent studies suggest a role for CRH-BP in stress-related psychiatric disorders and addiction, with the PFC being a potential site of interest. However, the molecular phenotype of CRH-BP-expressing cells in this region has not been well-characterized. In the current study, we sought to determine the cell type-specific expression of CRH-BP in the PFC to begin to define the neural circuits in which this key regulator is acting. To characterize the expression of CRH-BP in excitatory and/or inhibitory neurons, we utilized dual in situ hybridization to examine the cellular colocalization of CRH-BP mRNA with vesicular glutamate transporter (VGLUT or glutamic acid decarboxylase (GAD mRNA in different subregions of the PFC. We show that CRH-BP is expressed predominantly in GABAergic interneurons of the PFC, as revealed by the high degree of colocalization (>85% between CRH-BP and GAD. To further characterize the expression of CRH-BP in this heterogenous group of inhibitory neurons, we examined the colocalization of CRH-BP with various molecular markers of GABAergic interneurons, including parvalbumin (PV, somatostatin (SST, vasoactive intestinal peptide (VIP and cholecystokinin (CCK. We demonstrate that CRH-BP is colocalized predominantly with SST in the PFC, with lower levels of colocalization in PV- and CCK-expressing neurons. Our results provide a more comprehensive characterization of the cell type-specific expression of CRH-BP and begin to define its potential role within circuits of the PFC. These results will serve as the basis for future in vivo studies to manipulate CRH-BP in a cell type-specific manner to better

  5. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons.

    Science.gov (United States)

    Katsurada, Kenichi; Maejima, Yuko; Nakata, Masanori; Kodaira, Misato; Suyama, Shigetomo; Iwasaki, Yusaku; Kario, Kazuomi; Yada, Toshihiko

    2014-08-22

    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. ACTIVATION OF BASOLATERAL AMYGDALA CRF1 RECEPTORS MODULATES THE CONSOLIDATION OF CONTEXTUAL FEAR

    OpenAIRE

    Hubbard, D. T.; Nakashima, B. R.; Lee, I. van der; Takahashi, L. K.

    2007-01-01

    The basolateral amygdala complex (BLA) and central amygdala nucleus (CeA) are involved in fear and anxiety. In addition, the BLA contains a high density of corticotropin-releasing factor 1 (CRF1) receptors in comparison to the CeA. However, the role of BLA CRF1 receptors in contextual fear conditioning is poorly understood. In the present study, we first demonstrated that oral administration of DMP696, the selective CRF1 receptor antagonist, had no significant effects on the acquisition of co...

  7. Serotonin modifies corticotropin-releasing factor-induced behaviors of chicks.

    Science.gov (United States)

    Zhang, Rong; Tachibana, Tetsuya; Takagi, Tomo; Koutoku, Tomoyuki; Denbow, D Michael; Furuse, Mitsuhiro

    2004-05-05

    Glucagon-like peptide-1 (GLP-1) decreased corticotropin-releasing factor (CRF)-induced behaviors in neonatal chicks, and serotonin is one of the possible mechanisms through which GLP-1 affects CRF-induced behaviors. The present experiments were conducted to confirm the effect of serotonin on CRF-induced behaviors. In Experiment 1, chicks were intracerebroventricularly injected with either saline, 0.1 microg of CRF, 5.0 microg of serotonin, or 0.1 microg of CRF plus 5.0 microg of serotonin. Injection of CRF caused excitation as evidenced by increased spontaneous activities and distress vocalizations (DVs) compared to the control group. The effect of CRF was attenuated by serotonin since chicks became quiet after given CRF with serotonin. Sleep-like behaviors were observed in the serotonin group. The number of defecations was increased by CRF and decreased by serotonin. Both CRF and serotonin increased plasma corticosterone, and the effect was synergistic. Serotonin dose-dependently decreased locomotor activities of chicks after central administration of 0.1 microg of CRF, 0.1 microg of CRF plus 2.5, 5.0, or 10.0 microg of serotonin in Experiment 2. CRF-induced DVs were modified by serotonin. Instead of DVs, tender and low-pitched vocalizations were observed in chicks treated with CRF plus serotonin, the voice frequencies of which were less than 10 kHz. In conclusion, serotonin attenuated the CRF-induced behaviors while stimulating corticosterone release. These results indicate that the role of serotonin is dependent on the behaviors being measured. Copyright 2003 Elsevier B.V.

  8. The dexamethasone/corticotropin-releasing factor test in men with major depression: role of childhood trauma.

    Science.gov (United States)

    Heim, Christine; Mletzko, Tanja; Purselle, David; Musselman, Dominique L; Nemeroff, Charles B

    2008-02-15

    The dexamethasone/corticotropin-releasing factor (CRF) test is considered to be the most sensitive measure of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and has been demonstrated to be altered in patients with major depression (MDD). Although childhood trauma is a demonstrated risk factor for MDD and patients with a history of childhood abuse and MDD demonstrate HPA axis hyperactivity, the dexamethasone/CRF test remains unstudied in this population. We determined the impact of childhood trauma on dexamethasone/CRF test results in patients with MDD. Forty-nine healthy men, ages 18-60 years, without mania or psychosis, active substance abuse, or eating disorder and medication-free were recruited into four study groups, including: 1) normal subjects with no childhood abuse history or psychiatric disorder (n = 14); 2) men with childhood abuse histories without current MDD (n = 14); 3) men with childhood abuse histories with current MDD (n = 15); and 4) men with current MDD and no childhood abuse history (n = 6). Plasma adrenocorticotropin (ACTH) and cortisol concentrations were measured in response to dexamethasone/CRF administration. Men with childhood trauma histories exhibited increases in ACTH and cortisol responses to dexamethasone/CRF compared with non-abused men. In particular, abused men with current MDD showed increased responsiveness compared with control subjects and depressed men without childhood abuse experience. Increased response was associated with the severity, duration, and earlier onset of the abuse. The effects were not explained by concurrent posttraumatic stress disorder. Childhood trauma increases HPA axis activity as measured with the dexamethasone/CRF test in adult men with MDD, potentially reflecting environmental risk for developing depression.

  9. Corticotropin releasing hormone can selectively stimulate glucose uptake in corticotropinoma via glucose transporter 1.

    Science.gov (United States)

    Lu, Jie; Montgomery, Blake K; Chatain, Grégoire P; Bugarini, Alejandro; Zhang, Qi; Wang, Xiang; Edwards, Nancy A; Ray-Chaudhury, Abhik; Merrill, Marsha J; Lonser, Russell R; Chittiboina, Prashant

    2017-10-03

    Pre-operative detection of corticotropin (ACTH) secreting microadenomas causing Cushing's disease (CD) improves surgical outcomes. Current best magnetic resonance imaging fails to detect up to 40% of these microadenomas. 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET) is specific, but not sensitive in detecting corticotropinomas. Theoretically, secretagogue stimulation with corticotropin releasing hormone (CRH) could improve detection of adenomas with 18 F-FDG PET. Previous attempts with simultaneous CRH stimulation have failed to demonstrate increased 18 F-FDG uptake in corticotropinomas. We hypothesized that CRH stimulation leads to a delayed elevation in glucose uptake in corticotropinomas. Clinical data was analyzed for efficacy of CRH in improving 18 FDG-PET detection of corticotropinomas in CD. Glucose transporter 1 (GLUT1) immunoreactivity was performed on surgical specimens. Ex-vivo, viable cells from these tumors were tested for secretagogue effects (colorimetric glucose uptake), and for fate of intracellular glucose (glycolysis stress analysis). Validation of ex-vivo findings was performed with AtT-20 cells. CRH increased glucose uptake in human-derived corticotroph tumor cells and AtT-20, but not in normal murine or human corticotrophs (p fasentin suppressed baseline (p < 0.0001) and CRH-mediated glucose uptake. Expectedly, intra-operatively collected corticotropinomas demonstrated GLUT1 overexpression. Lastly, human derived corticotroph tumor cells demonstrated increased glycolysis and low glucose oxidation. Increased and delayed CRH-mediated glucose uptake differentially occurs in adenomatous corticotrophs. Delayed secretagogue-stimulated 18 F-FDG PET could improve microadenoma detection. Copyright © 2017. Published by Elsevier B.V.

  10. Hypothalamic corticotropin-releasing factor is centrally involved in learning under moderate stress.

    Science.gov (United States)

    Lucas, Morgan; Chen, Alon; Richter-Levin, Gal

    2013-08-01

    The corticotropin-releasing factor (CRF) neuropeptide is found to have a pivotal role in the regulation of the behavioral and neuroendocrine responses to stressful challenges. Here, we studied the involvement of the hypothalamic CRF in learning under stressful conditions. We have used a site-specific viral approach to knockdown (KD) CRF expression in the paraventricular nucleus of the hypothalamus (PVN). The two-way shuttle avoidance (TWSA) task was chosen to assess learning and memory under stressful conditions. Control animals learned to shuttle from one side to the other to avoid electrical foot shock by responding to a tone. Novel object and social recognition tasks were used to assess memory under less stressful conditions. KD of PVN-CRF expression decreased the number of avoidance responses in a TWSA session under moderate (0.8 mA), but not strong (1.5 mA), stimulus intensity compared to control rats. On the other hand, KD of PVN-CRF had no effect on memory performance in the less stressful novel object or social recognition tasks. Interestingly, basal or stress-induced corticosterone levels in CRF KD rats were not significantly different from controls. Taken together, the data suggest that the observed impairment was not a result of alteration in HPA axis activity, but rather due to reduced PVN-CRF activity on other brain areas. We propose that hypothalamic CRF is centrally involved in learning under moderate stressful challenge. Under 'basal' (less stressful) conditions or when the intensity of the stress is more demanding, central CRF ceases to be the determinant factor, as was indicated by performances in the TWSA with higher stimulus intensity or in the less stressful tasks of object and social recognition.

  11. Regulation of hypothalamic corticotropin-releasing hormone neurone excitability by oxytocin.

    Science.gov (United States)

    Jamieson, B B; Nair, B B; Iremonger, K J

    2017-11-01

    Oxytocin (OT) is a neuropeptide that exerts multiple actions throughout the brain and periphery. Within the brain, OT regulates diverse neural populations, including neural networks controlling responses to stress. Local release of OT within the paraventricular nucleus (PVN) of the hypothalamus has been suggested to regulate stress responses by modulating the excitability of neighbouring corticotropin-releasing hormone (CRH) neurones. However, the mechanisms by which OT regulates CRH neurone excitability are unclear. In the present study, we investigated the morphological relationship between OT and CRH neurones and determined the effects of OT on CRH neurone excitability. Morphological analysis revealed that the processes of OT and CRH neurones were highly intermingled within the PVN, possibly allowing for local cell-to-cell cross-talk. Whole-cell patch-clamp recordings from CRH neurones were used to study the impact of OT on postsynaptic excitability and synaptic innervation. Bath-applied OT did not alter CRH neurone holding current, spiking output or any action potential parameters. Recordings of evoked excitatory and inhibitory postsynaptic currents (EPSCs/IPSCs) revealed no net effect of OT on current amplitude; however, subgroups of CRH neurones appeared to respond differentially to OT. Analysis of spontaneous EPSC events uncovered a significant reduction in spontaneous EPSC frequency but no change in spontaneous EPSC amplitude in response to OT. Together, these data demonstrate that OT exerts a subtle modulation of synaptic transmission onto CRH neurones providing one potential mechanism by which OT could suppress CRH neurone excitability and stress axis activity. © 2017 British Society for Neuroendocrinology.

  12. Divergent evolution of two corticotropin-releasing hormone (CRH) genes in teleost fishes.

    Science.gov (United States)

    Grone, Brian P; Maruska, Karen P

    2015-01-01

    Genome duplication, thought to have happened twice early in vertebrate evolution and a third time in teleost fishes, gives rise to gene paralogs that can evolve subfunctions or neofunctions via sequence and regulatory changes. To explore the evolution and functions of corticotropin-releasing hormone (CRH), we searched sequenced teleost genomes for CRH paralogs. Our phylogenetic and synteny analyses indicate that two CRH genes, crha and crhb, evolved via duplication of crh1 early in the teleost lineage. We examined the expression of crha and crhb in two teleost species from different orders: an African cichlid, Burton's mouthbrooder, (Astatotilapia burtoni; Order Perciformes) and zebrafish (Danio rerio; Order Cypriniformes). Furthermore, we compared expression of the teleost crha and crhb genes with the crh1 gene of an outgroup to the teleost clade: the spotted gar (Lepisosteus oculatus). In situ hybridization for crha and crhb mRNA in brains and eyes revealed distinct expression patterns for crha in different teleost species. In the cichlid, crha mRNA was found in the retina but not in the brain. In zebrafish, however, crha mRNA was not found in the retina, but was detected in the brain, restricted to the ventral hypothalamus. Spotted gar crh1 was found in the retina as well as the brain, suggesting that the ancestor of teleost fishes likely had a crh1 gene expressed in both retina and brain. Thus, genome duplication may have freed crha from constraints, allowing it to evolve distinct sequences, expression patterns, and likely unique functions in different lineages.

  13. Altered Responses to Cold Environment in Urocortin 1 and Corticotropin-Releasing Factor Deficient Mice

    Directory of Open Access Journals (Sweden)

    Bayan Chaker

    2013-01-01

    Full Text Available We examined core body temperature (CBT of urocortin 1 (UCN1 and corticotropin releasing factor (CRF knockout (KO mice exposed to 4°C for 2 h. UCN1KO mice showed higher average CBT during cold exposure as compared to WT. The CBT of male and female WT mice dropped significantly to 34.1 ± 2.4 and 34.9 ± 3.1 C at 4°C, respectively. In contrast, the CBT of male and female UCN1KO mice dropped only slightly after 2 h at 4°C to 36.8 ± 0.7 and 38.1 ± 0.5 C, respectively. WT female and male UCN1KO mice showed significant acclimatization to cold; however, female UCN1KO mice did not show such a significant acclimatization. CRFKO mice showed a dramatic decline in CBT from 38.2 ±  0.4 at 22°C to 26.1 ± 9.8 at 4°C for 2 h. The CRF/UCN1 double KO (dKO mice dropped their CBT to 32.5 ± 4.0 after 2 h exposure to 4°C. Dexamethasone treatment prevented the decline in CBT of the CRFKO and the dKO mice. Taken together, the data suggest a novel role for UCN1 in thermoregulation. The role of CRF is likely secondary to adrenal glucocorticoids, which have an important regulatory role on carbohydrate, fat, and protein metabolism.

  14. Corticotropin-releasing hormone and the hypothalamic-pituitary-adrenal axis in psychiatric disease.

    Science.gov (United States)

    Naughton, Marie; Dinan, Timothy G; Scott, Lucinda V

    2014-01-01

    Since the 1960s, both corticotropin-releasing hormone (CRH) and the hypothalamic-pituitary-adrenal (HPA) axis have been studied in detail across a range of psychiatric illnesses, leading to important contributions to our knowledge in this area. This research arose from the conceptualization of depression, in particular, as a stress-related disorder. However, stress is now regarded as an integral component of psychiatric illnesses in general, whether as an environmental trigger or in the initial pathogenesis, and there is evidence of altered HPA axis function across a range of mental disorders. The chapter will cover the extensive literature on HPA axis abnormalities in these disorders with a particular emphasis on the CRH system as it is very evident that this 41-amino acid-containing peptide is not only a major physiologic regulator of HPA axis activity but also important in the pathogenesis of mental disorders. In particular, we discuss the abundant reports pertaining to major depressive disorder, where hyperactivity of the HPA axis, of mild to moderate severity, has been demonstrated in 30-50% of cases. Also under consideration is the less extensively studied, but equally intriguing question of HPA axis integrity in bipolar affective disorder. In addition there will be a concise summary of recent findings in schizophrenia and anxiety disorders, with an emphasis on post-traumatic stress disorder (PTSD) in the latter case. Interestingly, in diametric opposition to the theory of HPA hyperactivity in depression, PTSD has features consistent with hypofunctioning of this system. Advances in animal and human studies have made it possible to synthesize these findings, and while much still remains unknown, we are gradually building up a clearer picture of this very important axis in health, at times of stress, and in chronic enduring mental illness. © 2014 Elsevier B.V. All rights reserved.

  15. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions.

    Science.gov (United States)

    Demers, Catherine H; Drabant Conley, Emily; Bogdan, Ryan; Hariri, Ahmad R

    2016-09-01

    Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice.

    Science.gov (United States)

    Kolber, Benedict J; Boyle, Maureen P; Wieczorek, Lindsay; Kelley, Crystal L; Onwuzurike, Chiamaka C; Nettles, Sabin A; Vogt, Sherri K; Muglia, Louis J

    2010-02-17

    During development, early-life stress, such as abuse or trauma, induces long-lasting changes that are linked to adult anxiety and depressive behavior. It has been postulated that altered expression of corticotropin-releasing hormone (CRH) can at least partially account for the various effects of stress on behavior. In accord with this hypothesis, evidence from pharmacological and genetic studies has indicated the capacity of differing levels of CRH activity in different brain areas to produce behavioral changes. Furthermore, stress during early life or adulthood causes an increase in CRH release in a variety of neural sites. To evaluate the temporal and spatial specificity of the effect of early-life CRH exposure on adult behavior, the tetracycline-off system was used to produce mice with forebrain-restricted inducible expression of CRH. After transient elevation of CRH during development only, behavioral testing in adult mice revealed a persistent anxiogenic and despair-like phenotype. These behavioral changes were not associated with alterations in adult circadian or stress-induced corticosterone release but were associated with changes in CRH receptor type 1 expression. Furthermore, the despair-like changes were normalized with antidepressant treatment. Overall, these studies suggest that forebrain-restricted CRH signaling during development can permanently alter stress adaptation leading to increases in maladaptive behavior in adulthood.

  17. Assessment of serum level of corticotropin-releasing factor in primary nocturnal enuresis.

    Science.gov (United States)

    Motawie, Ayat A; Abd Al-Aziz, Amany M; Hamed, Hanan M; Fatouh, Amany A A; Awad, Mona A M; El-Ghany, Amany Abd

    2017-02-01

    Primary nocturnal enuresis is one of the sleep related phenomena characterized by disruption in the relationship between arousal and urination. Corticotropin-releasing factor (CRF) is a neurohormone released from the paraventricular nucleus of the hypothalamus into the median eminence to elicit release of adrenocorticotrophin from the anterior pituitary. It may act to modulate autonomic function and behavior in concert with the endocrine effects. Conflicting animal studies about the role of CRF in micturition, either facilitating or inhibiting, have been raised. It was suggested to be a novel target for treatment of urinary disorders based on the finding that manipulation of CRF in the pontine micturition circuit could affect urodynamic function. The aim was to throw light on the possible role of CRF in primary monosymptomatic nocturnal enuresis by assessing its serum level. Twenty-nine children aged 8-14 years complaining of primary monosymptomatic nocturnal enuresis and 16 age- and sex-matched healthy children with good toilet control day and night were recruited to the study. History taking, clinical examination, and assessment of serum CRF levels in the morning and evening (9 a.m. and 9 p.m.) were carried out for all patients and controls. A positive family history of enuresis was detected in 82.8% of enuretic patients. Serum levels of CRF (both morning and evening) were significantly lower in patients than in controls. Several animal studies suggested that CRF in descending projections from Barrington's nucleus to the lumbosacral parasympathetic neurons is inhibitory to micturition, which supports our results and the assumption that reduction of the evening serum CRF level could have a role in the occurrence of primary monosymptomatic nocturnal enuresis. No significant difference was found between morning and evening CRF serum levels in either cases or controls, which negates our assumption of having a rhythmic pattern of release (figure). No correlations with

  18. Effects on Chronic Stress on Anterior Pituitary and Brain Corticotropin- Releasing Factor Receptors,

    Science.gov (United States)

    1993-01-01

    immunoreactive CRH in anorexia nervosa pa- with dexamethasone. Life Sci. 39" 1281-1286; 1986. tients. J. Clin. Endocrinol. Metab. 62:319-324; 1986. 8...exposurt. to pro- lesions abolish the stress-induced rise in pituitary cyclic adenosine longed stress: A pituitary-mediated mechanism. Endocrinology

  19. Contrasting effects of nitric oxide and corticotropin-releasing factor within the dorsal periaqueductal gray on defensive behavior and nociception in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, T.T. [Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos and Universidade Estadual Paulista, Araraquara, SP (Brazil); Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Gomes, K.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Nunes-de-Souza, R.L. [Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos and Universidade Estadual Paulista, Araraquara, SP (Brazil); Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil)

    2012-03-30

    The anxiogenic and antinociceptive effects produced by glutamate N-methyl-D-aspartate receptor activation within the dorsal periaqueductal gray (dPAG) matter have been related to nitric oxide (NO) production, since injection of NO synthase (NOS) inhibitors reverses these effects. dPAG corticotropin-releasing factor receptor (CRFr) activation also induces anxiety-like behavior and antinociception, which, in turn, are selectively blocked by local infusion of the CRF type 1 receptor (CRFr1) antagonist, NBI 27914 [5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6- (2,4,6-trichlorophenyl)aminopyridine]. Here, we determined whether i) the blockade of the dPAG by CRFr1 attenuates the anxiogenic/antinociceptive effects induced by local infusion of the NO donor, NOC-9 [6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine], and ii) the anxiogenic/antinociceptive effects induced by intra-dPAG CRF are prevented by local infusion of N{sup ω}-propyl-L-arginine (NPLA), a neuronal NOS inhibitor, in mice. Male Swiss mice (12 weeks old, 25-35 g, N = 8-14/group) were stereotaxically implanted with a 7-mm cannula aimed at the dPAG. Intra-dPAG NOC-9 (75 nmol) produced defensive-like behavior (jumping and running) and antinociception (assessed by the formalin test). Both effects were reversed by prior local infusion of NBI 27914 (2 nmol). Conversely, intra-dPAG NPLA (0.4 nmol) did not modify the anxiogenic/antinociceptive effects of CRF (150 pmol). These results suggest that CRFr1 plays an important role in the defensive behavior and antinociception produced by NO within the dPAG. In contrast, the anxiogenic and antinociceptive effects produced by intra-dPAG CRF are not related to NO synthesis in this limbic midbrain structure.

  20. Epigenetic regulation of nociceptin/orphanin FQ and corticotropin-releasing factor system genes in frustration stress-induced binge-like palatable food consumption.

    Science.gov (United States)

    Pucci, Mariangela; Micioni Di Bonaventura, Maria Vittoria; Giusepponi, Maria Elena; Romano, Adele; Filaferro, Monica; Maccarrone, Mauro; Ciccocioppo, Roberto; Cifani, Carlo; D'Addario, Claudio

    2016-11-01

    Evidence suggests that binge eating may be caused by a unique interaction between dieting and stress. We developed a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after a 15-minute exposure to the sight of the palatable food (frustration stress). The aim of the present study was to investigate the regulation of the stress neurohormone corticotropin-releasing factor (CRF) system and of the nociceptin/orphanin FQ (N/OFQ) system genes in selective rat brain regions, using our animal model. Food restriction by itself seems to be responsible in the hypothalamus for the downregulation on messenger RNA levels of CRF-1 receptor, N/OFQ and its receptor (NOP). For the latter, this alteration might be due to selective histone modification changes. Instead, CRF gene appears to be upregulated in the hypothalamus as well as in the ventral tegmental area only when rats are food restricted and exposed to frustration stress, and, of relevance, these changes appear to be due to a reduction in DNA methylation at gene promoters. Moreover, also CRF-1 receptor gene resulted to be differentially regulated in these two brain regions. Epigenetic changes may be viewed as adaptive mechanisms to environmental perturbations concurring to facilitate food consumption in adverse conditions, that is, in this study, under food restriction and stressful conditions. Our data on N/OFQ and CRF signaling provide insight on the use of this binge-eating model for the study of epigenetic modifications in controlled genetic and environmental backgrounds. © 2015 Society for the Study of Addiction.

  1. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Van A. Ortega

    2013-10-01

    Full Text Available Corticotropin-releasing factor (CRF, urotensin I (UI and serotonin (5-HT are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to 1 assess the individual effects of synthesized rainbow trout CRF (rtCRF, rtUI as well as 5-HT on food intake in rainbow trout, and 2 determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI (ED50 = 17.4 ng/g body weight [BW] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW. Co-injection of either rtCRF or rtUI with the CRF receptor antagonist a-hCRF(9-41 blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by a-hCRF(9-41 co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.

  2. Corticotropin-releasing hormone neurons in the paraventricular nucleus of the human hypothalamus in subjects with normal and abnormal sex hormone status

    NARCIS (Netherlands)

    Bao, A.-M.; Swaab, D.F.

    2007-01-01

    In order to determine the role of peripheral sex hormone levels in the expression of corticotropin-releasing hormone (CRH) neurons, we investigated by means of immunocytochemistry the number of CRH neurons in the hypothalamic paraventricular nucleus (PVN) in postmortem material of young and old

  3. Posttraumatic stress disorder-like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses.

    Science.gov (United States)

    Justice, Nicholas J; Huang, Longwen; Tian, Jin-Bin; Cole, Allysa; Pruski, Melissa; Hunt, Albert J; Flores, Rene; Zhu, Michael X; Arenkiel, Benjamin R; Zheng, Hui

    2015-02-11

    Recent studies have found that those who suffer from posttraumatic stress disorder (PTSD) are more likely to experience dementia as they age, most often Alzheimer's disease (AD). These findings suggest that the symptoms of PTSD might have an exacerbating effect on AD progression. AD and PTSD might also share common susceptibility factors such that those who experience trauma-induced disease were already more likely to succumb to dementia with age. Here, we explored these two hypotheses using a mouse model of PTSD in wild-type and AD model animals. We found that expression of human familial AD mutations in amyloid precursor protein and presenilin 1 leads to sensitivity to trauma-induced PTSD-like changes in behavioral and endocrine stress responses. PTSD-like induction, in turn, chronically elevates levels of CSF β-amyloid (Aβ), exacerbating ongoing AD pathogenesis. We show that PTSD-like induction and Aβ elevation are dependent on corticotropin-releasing factor (CRF) receptor 1 signaling and an intact hypothalamic-pituitary-adrenal axis. Furthermore, we show that Aβ species can hyperexcite CRF neurons, providing a mechanism by which Aβ influences stress-related symptoms and PTSD-like phenotypes. Consistent with Aβ causing excitability of the stress circuitry, we attenuate PTSD-like phenotypes in vivo by lowering Aβ levels during PTSD-like trauma exposure. Together, these data demonstrate that exposure to PTSD-like trauma can drive AD pathogenesis, which directly perturbs CRF signaling, thereby enhancing chronic PTSD symptoms while increasing risk for AD-related dementia. Copyright © 2015 the authors 0270-6474/15/352612-12$15.00/0.

  4. Escitalopram alters gene expression and HPA axis reactivity in rats following chronic overexpression of corticotropin-releasing factor from the central amygdala

    Science.gov (United States)

    Flandreau, Elizabeth I.; Bourke, Chase H.; Ressler, Kerry J.; Vale, Wylie W.; Nemeroff, Charles B.; Owens, Michael J.

    2013-01-01

    Summary We have previously demonstrated that viral-mediated overexpression of corticotropin-releasing factor (CRF) within the central nucleus of the amygdala (CeA) reproduces many of the behavioral and endocrine consequences of chronic stress. The present experiment sought to determine whether administration of the selective serotonin reuptake inhibitor (SSRI) escitalopram reverses the adverse effects of CeA CRF overexpression. In a 2 × 2 design, adult male rats received bilateral infusions of a control lentivirus or a lentivirus in which a portion of the CRF promoter is used to drive increased expression of CRF peptide. Four weeks later, rats were then implanted with an Alzet minipump to deliver vehicle or 10 mg/kg/day escitalopram for a 4-week period of time. The defensive withdrawal (DW) test of anxiety and the sucrose-preference test (SPT) of anhedonia were performed both before and after pump implantation. Additional post-implant behavioral tests included the elevated plus maze (EPM) and social interaction (SI) test. Following completion of behavioral testing, the dexamethasone/CRF test was performed to assess HPA axis reactivity. Brains were collected and expression of HPA axis-relevant transcripts were measured using in situ hybridization. Amygdalar CRF overexpression increased anxiety-like behavior in the DW test at week eight, which was only partially prevented by escitalopram. In both CRF-overexpressing and control groups, escitalopram decreased hippocampal CRF expression while increasing hypothalamic and hippocampal expression of the glucocorticoid receptor (GR). These gene expression changes were associated with a significant decrease in HPA axis reactivity in rats treated with escitalopram. Interestingly, escitalopram increased the rate of weight gain only in rats overexpressing CRF. Overall these data support our hypothesis that amygdalar CRF is critical in anxiety-like behavior; because the antidepressant was unable to reverse behavioral

  5. Corticotropin-releasing factor within the central nucleus of the amygdala and the nucleus accumbens shell mediates the negative affective state of nicotine withdrawal in rats

    OpenAIRE

    Marcinkiewcz, Catherine A.; Prado, Melissa M.; Isaac, Shani K.; Marshall, Alex.; Rylkova, Daria; Bruijnzeel, Adrie W.

    2009-01-01

    Tobacco addiction is a chronic disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that an increased central release of corticotropin-releasing factor (CRF) at least partly mediates the deficit in brain reward function associated with nicotine withdrawal in rats. The aim of these studies was to investigate the role of CRF in the central nucleus of the amygdala (CeA), the lateral bed nucleus of...

  6. Alpha-melanocyte-stimulating hormone attenuates behavioral effects of corticotropin-releasing factor in isolated guinea pig pups.

    Science.gov (United States)

    Schiml-Webb, Patricia A; Miller, Emily; Deak, Terrence; Hennessy, Michael B

    2009-07-01

    During a 3-hr period of social isolation in a novel environment, guinea pig pups exhibit an initial active phase of behavioral responsiveness, characterized primarily by vocalizing, which is then followed by a stage of passive responsiveness in which pups display a distinctive crouch, eye-closing, and extensive piloerection. Prior treatment of pups with alpha-melanocyte-stimulating hormone (alpha-MSH) reduces each of the passive behaviors. The onset of passive responding during separation can be accelerated with peripheral injection of corticotropin-releasing factor (CRF). To examine whether CRF produces its effects through a mechanism similar to that of prolonged separation, we examined the effect of administering alpha-MSH to pups injected with CRF. As expected, CRF markedly enhanced passive responding during a 60-min period of separation. alpha-MSH delivered by either intracerebroventricular infusion or intraperitoneal injection significantly reduced each of the passive behavioral responses without significantly affecting active behavior. These findings, together with previous results indicating that it is the anti-inflammatory property of alpha-MSH that is responsible for its behavioral effects during prolonged separation, suggest that peripheral CRF speeds the induction of passive responding through a mechanism involving enhanced proinflammatory activity.

  7. Corticotropin-releasing hormone expression in patients with intrahepatic cholestasis of pregnancy after ursodeoxycholic acid treatment: an initial experience.

    Science.gov (United States)

    Zhou, Fan; Zhang, Li; He, Mao Mao; Liu, Zheng Fei; Gao, Bing Xin; Wang, Xiao Dong

    2014-08-01

    Corticotropin-releasing hormone (CRH) is one of the most potent vasodilatory factors in the human feto-placental circulation. The expression of CRH was significantly down-regulated in patients with intrahepatic cholestasis of pregnancy (ICP). One hundred pregnant women diagnosed with ICP at 34-34(+6) weeks of gestation agreed to participate in this prospective nested case-control study. Thirty ICP patients were finally recruited in this study, with 16 cases in the ursodeoxycholic acid (UDCA) group (UDCA 750 mg/d) and 14 cases in the control group (Transmetil 1000 mg/d or Essentiale 1368 mg/d). Maternal serum samples were obtained in diagnosis and at 37-37(+6) weeks of gestation. Placental tissues were obtained from participants after delivery. ELISA, enzymatic colorimetric and Western blotting were used to evaluate the concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and CRH in maternal serum and expression of CRH in placenta tissues. The UDCA group had greater reduction in maternal serum ALT, AST and TBA levels in ICP patients (all p cholestasis (TBA ≥ 40 µmol/L). Further studies are warranted in different gestational weeks and TBA levels to provide more evidence for the correlation between UDCA treatment and CRH expression in ICP patients.

  8. Corticotropin Releasing Factor in the Bed Nucleus of the Stria Terminalis in Socially Defeated and Non-stressed Mice with a History of Chronic Alcohol Intake

    Directory of Open Access Journals (Sweden)

    Lucas Albrechet-Souza

    2017-10-01

    Full Text Available Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated use to the development of alcohol dependence. Preclinical studies have shown that dysregulation of the corticotropin releasing factor (CRF neurotransmission has been implicated in stress-related psychopathologies such as depression and anxiety, and may affect alcohol consumption. The bed nucleus of the stria terminalis (BNST contains CRF-producing neurons which seem to be sensitive to stress. In this study, adult male C57BL/6 mice previously defeated in resident-intruder confrontations were evaluated in the elevated plus-maze and tail suspension test. Mice were also tested for sweet solution intake before and after social stress. After having had continuous access to ethanol (20% weight/volume for 4 weeks, control and stressed mice had CRF type 1 (CRFR1 or type 2 (CRFR2 receptor antagonists infused into the BNST and then had access to ethanol for 24 h. In separate cohorts of control and stressed mice, we assessed mRNA levels of BNST CRF, CRFR1 and CRFR2. Stressed mice increased their intake of sweet solution after ten sessions of social defeat and showed reduced activity in the open arms of the elevated plus-maze. When tested for ethanol consumption, stressed mice persistently drank significantly more than controls during the 4 weeks of access. Also, social stress induced higher BNST CRF mRNA levels. The selective blockade of BNST CRFR1 with CP376,395 effectively reduced alcohol drinking in non-stressed mice, whereas the selective CRFR2 antagonist astressin2B produced a dose-dependent increase in ethanol consumption in both non-stressed controls and stressed mice. The 10-day episodic defeat stress used here elicited anxiety- but not depressive-like behaviors, and promoted an increase in ethanol drinking. CRF-CRFR1 signaling in the BNST seems to underlie ethanol intake in non-stressed mice, whereas CRFR2 modulates

  9. Stress differentially regulates brain expression of corticotropin-releasing factor in binge-like eating prone and resistant female rats.

    Science.gov (United States)

    Calvez, Juliane; de Ávila, Camila; Guèvremont, Geneviève; Timofeeva, Elena

    2016-12-01

    The expression of corticotropin-releasing factor (CRF), a neuropeptide that regulates endocrine and behavioral responses to stress, was assessed in the brain in rats prone or resistant to stress-induced binge-like eating of sucrose. Female Sprague-Dawley rats were subjected to unpredictable intermittent 1-h access to sucrose in non-stressful conditions or after exposure to three foot shock stress sessions. Experimental sessions were performed at metestrus, diestrus, and proestrus. The rats were assigned to the binge-like eating prone (BEP) or the binge-like eating resistant (BER) phenotypes according to the rats' persistently high or low sucrose intake following three stress sessions. The BEP rats displayed elevated consumption of sucrose in non-stressful conditions and an additional significant increase in sucrose intake in response to stress. Conversely, the BER rats showed lower sucrose intake in non-stressful conditions, and stress did not increase sucrose intake in this phenotype. The brain expression of CRF mRNA and plasma corticosterone levels were assessed 30 min after the last stress session at the diestrous phase of the estrous cycle. Stress triggered a significant increase in plasma corticosterone levels and strongly increased CRF mRNA expression in the paraventricular hypothalamic nucleus in the BER but not in the BEP rats. However, the BEP but not the BER rats demonstrated a significant increase in CRF mRNA expression in the bed nucleus of the stria terminalis (BNST) after stress. Hyporeactivity of the hypothalamic-pituitary-adrenal axis and the higher CRF expression in the BNST in BEP rats may contribute to stress-induced binge-like sucrose eating in the BEP phenotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fetal Exposure to Placental Corticotropin-Releasing Hormone is Associated with Child Self-Reported Internalizing Symptoms

    Science.gov (United States)

    Howland, Mariann A.; Sandman, Curt A.; Glynn, Laura M.; Crippen, Cheryl; Davis, Elysia Poggi

    2016-01-01

    Objective Fetal exposure to maternal prenatal stress hormones such as cortisol exerts influences on the developing nervous system that persist and include risk for internalizing symptoms later in life. Placental corticotropin-releasing hormone (pCRH) is a feto-placental stress signal that also shapes fetal neurodevelopment and may be a more direct indicator of the fetal experience than maternal stress hormones. The programming effects of pCRH on child development are unknown. The current investigation examined associations between prenatal maternal and placental stress hormone exposures (maternal cortisol and pCRH) and child self-reported internalizing symptoms at age 5. Method Maternal plasma cortisol and pCRH levels were measured at 15, 19, 25, 31, and 36 weeks’ gestation in a sample of 83 women and their 91 children (8 sibling pairs from separate pregnancies), who were born full-term. Child self-reported internalizing symptoms at age 5 were obtained using scales of the Berkeley Puppet Interview. Results Placental CRH profiles (including elevations in mid-gestation) were associated with higher levels of internalizing symptoms at age 5. This effect was not explained by critical prenatal or postnatal influences, including obstetric risk, concurrent maternal psychological state, and family socio-economic status. Prenatal maternal cortisol was not significantly associated with child self-reported internalizing symptoms. Conclusions Findings suggest that elevated exposures to the feto-placental stress signal pCRH exert programming effects on the developing fetal central nervous system, with lasting consequences for child mental health. PMID:26855003

  11. Fetal exposure to placental corticotropin-releasing hormone is associated with child self-reported internalizing symptoms.

    Science.gov (United States)

    Howland, Mariann A; Sandman, Curt A; Glynn, Laura M; Crippen, Cheryl; Davis, Elysia Poggi

    2016-05-01

    Fetal exposure to maternal prenatal stress hormones such as cortisol exerts influences on the developing nervous system that persist and include risk for internalizing symptoms later in life. Placental corticotropin-releasing hormone (pCRH) is a feto-placental stress signal that also shapes fetal neurodevelopment and may be a more direct indicator of the fetal experience than maternal stress hormones. The programming effects of pCRH on child development are unknown. The current investigation examined associations between prenatal maternal and placental stress hormone exposures (maternal cortisol and pCRH) and child self-reported internalizing symptoms at age 5. Maternal plasma cortisol and pCRH levels were measured at 15, 19, 25, 31, and 36 weeks' gestation in a sample of 83 women and their 91 children (8 sibling pairs from separate pregnancies), who were born full-term. Child self-reported internalizing symptoms at age 5 were obtained using scales of the Berkeley Puppet Interview. Placental CRH profiles (including elevations in mid-gestation) were associated with higher levels of internalizing symptoms at age 5. This effect was not explained by critical prenatal or postnatal influences, including obstetric risk, concurrent maternal psychological state, and family socio-economic status. Prenatal maternal cortisol was not significantly associated with child self-reported internalizing symptoms. Findings suggest that elevated exposures to the feto-placental stress signal pCRH exert programming effects on the developing fetal central nervous system, with lasting consequences for child mental health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain.

    Science.gov (United States)

    Albeck, D S; McKittrick, C R; Blanchard, D C; Blanchard, R J; Nikulina, J; McEwen, B S; Sakai, R R

    1997-06-15

    In the visible burrow system model of chronic social stress, male rats housed in mixed-sex groups quickly form a dominance hierarchy in which the subordinates appear to be severely stressed. A subgroup of subordinates have an impaired corticosterone response after presentation of a novel restraint stressor, leading to their designation as nonresponsive subordinates. To examine the mechanism underlying the blunted corticosterone response in these animals, in situ hybridization histochemistry was used to quantify corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) mRNA expression in the brain. In two separate visible burrow system experiments, the nonresponsive subordinates expressed a significantly lower average number of CRF mRNA grains per cell in the paraventricular hypothalamic nucleus compared with stress-responsive subordinates, dominants (DOM), or cage-housed control (CON) rats. The number of CRF mRNA labeled cells was also significantly lower in nonresponders than in responsive subordinates or DOM. In the central amygdala, CRF mRNA levels were increased in both groups of subordinates compared with CON rats, whereas responsive subordinates exhibited higher levels than the DOM rats as well. AVP mRNA levels did not vary with behavioral rank in any subdivision of the paraventricular hypothalamic nucleus. In the medial amygdala, the number of cells expressing AVP mRNA was significantly greater in CON rats compared with both groups of subordinates, although the average number of AVP mRNA grains per cell did not vary with rank. In addition, the number of AVP-positive cells significantly correlated with plasma testosterone level.

  13. Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis.

    Science.gov (United States)

    Purba, J S; Raadsheer, F C; Hofman, M A; Ravid, R; Polman, C H; Kamphorst, W; Swaab, D F

    1995-07-01

    Observations in experimental allergic encephalomyelitis (EAE), a model for multiple sclerosis (MS), have indicated that a low activity of the hypothalamo-pituitary-adrenal (HPA) system is accompanied by a high susceptibility for EAE in rat strains and that elevated corticosteroid levels are necessary for spontaneous recovery from EAE. The HPA axis activity is regulated by both corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP). Both types of neurons are localized in the paraventricular nucleus (PVN) of the hypothalamus. We determined the number of immunocytochemically identified CRH-immunoreactive (CRH-IR) and AVP-immunoreactive (AVP-IR) neurons in the PVN of the human hypothalamus of 8 MS patients, aged 34-63 years, and 8 age-matched control subjects without any primary neurological or psychiatric disorders, aged 30-59 years. In addition, the number of oxytocin (OXT) immunoreactive (OXT-IR) neurons was determined, since these neurons innervate brain stem nuclei and might thus be related to autonomic disturbances in MS. In MS the staining intensity for AVP was clearly lower and for OXT slightly lower. For CRH, the staining intensity was similar in both groups, and, moreover, in MS patients the number of CRH-IR cells in the PVN was found to be about 2.4 times higher than that in the control group. The number of OXT-IR or AVP-IR cells in the PVN of MS patients was not significantly different from that of the control group. Our results point to an activation of the neuroendocrine HPA axis which may be compatible with the idea that the HPA axis is involved in recovery from MS.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Associations between Single-Nucleotide Polymorphisms in Corticotropin-Releasing Hormone-Related Genes and Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Ayaka Sasaki

    Full Text Available Irritable bowel syndrome (IBS is a common functional disorder with distinct features of stress-related pathophysiology. A key mediator of the stress response is corticotropin-releasing hormone (CRH. Although some candidate genes have been identified in stress-related disorders, few studies have examined CRH-related gene polymorphisms. Therefore, we tested our hypothesis that single-nucleotide polymorphisms (SNPs in CRH-related genes influence the features of IBS.In total, 253 individuals (123 men and 130 women participated in this study. They comprised 111 IBS individuals and 142 healthy controls. The SNP genotypes in CRH (rs28364015 and rs6472258 and CRH-binding protein (CRH-BP (rs10474485 were determined by direct sequencing and real-time polymerase chain reaction. The emotional states of the subjects were evaluated using the State-Trait Anxiety Inventory, Perceived Stress Scale, and the Self-rating Depression Scale.Direct sequencing of the rs28364015 SNP of CRH revealed no genetic variation among the study subjects. There was no difference in the genotype distributions and allele frequencies of rs6472258 and rs10474485 between IBS individuals and controls. However, IBS subjects with diarrhea symptoms without the rs10474485 A allele showed a significantly higher emotional state score than carriers.These results suggest that the CRH and CRH-BP genes have no direct effect on IBS status. However, the CRH-BP SNP rs10474485 has some effect on IBS-related emotional abnormalities and resistance to psychosocial stress.

  15. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons.

    Science.gov (United States)

    Chen, Yuncai; Molet, Jenny; Gunn, Benjamin G; Ressler, Kerry; Baram, Tallie Z

    2015-12-01

    Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools.

  16. Amygdaloid corticotropin-releasing factor is involved in the anxiolytic effect of acupuncture during ethanol withdrawal in rats.

    Science.gov (United States)

    Zhao, ZhengLin; Jin, XiuDong; Wu, YiYan; Yang, XudXuDongong; Xu, YanJi; Jiang, James ZhongJian; Kim, Sang Chan; Lee, Bong Hyo; Yang, Chae Ha; Zhao, RongJie

    2013-10-01

    In a previous study, acupuncture at acupoint HT7 attenuated ethanol withdrawal-induced anxiety-like behavior in rats by normalizing amygdaloid catecholamines. In the present study, the involvement of amygdaloid corticotropin-releasing factor (CRF) in the anxiolytic effect of acupuncture was investigated during ethanol withdrawal. Rats were intraperitoneally treated with 3 g /kg/day of ethanol for 28 days, and the CRF mRNA levels in the central nucleus of the amygdala (CEA) were measured by using a RT-PCR analysis 72 hours after the last dose of ethanol. During ethanol withdrawal, the rats were bilaterally treated with acupuncture at acupoints HT7, PC6 or at a non-acupoint (Tail) for one min/day for three days. Also, rats were bilaterally injected with CRF into the CEA five minutes after the third acupuncture treatment, after which followed by the elevated-plus maze (EPM) test and the plasma corticosterone radioimmunoassay (RIA) were administered. The RT-PCR analysis showed a significant increase in the amygdaloid CRF mRNA levels in the ethanol-withdrawn rats compared with both the saline-treated rats and the rats treated with acupuncture at HT7, but neither acupuncture at PC6 nor acupuncture at a non-acupoint significantly inhibited the increased mRNA expression. The EPM test and the RIA also showed that the post-acupuncture infusion of CRF greatly reduced the anxiolytic effect of acupuncture at HT7. These results suggest that during ethanol withdrawal, the anxiolytic effect of acupuncture may be mediated through the modulation of amydaloid CRF during ethanol withdrawal. Copyright © 2013. Published by Elsevier B.V.

  17. Evidence for the role of corticotropin-releasing factor in major depressive disorder.

    Science.gov (United States)

    Waters, R Parrish; Rivalan, Marion; Bangasser, D A; Deussing, J M; Ising, M; Wood, S K; Holsboer, F; Summers, Cliff H

    2015-11-01

    Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individual's risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organism's immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The insulin-like growth factor 1 receptor in cancer : Old focus, new future

    NARCIS (Netherlands)

    Hartog, Hermien; Wesseling, Jelle; Boezen, H. Marike; van der Graaf, Winette T. A.

    The importance of insulin-like growth factor 1 receptor (IGF-1R) signalling in malignant behaviour of tumour cells is well established. Currently, development of drugs targeting the IGF-1R as anticancer treatment is emerging. Several IGF-1R targeting strategies are being investigated in phases I and

  19. Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress?

    Directory of Open Access Journals (Sweden)

    Schulkin Jay

    2006-04-01

    Full Text Available Abstract Background Corticotropin-releasing factor (CRF is typically considered to mediate aversive aspects of stress, fear and anxiety. However, CRF release in the brain is also elicited by natural rewards and incentive cues, raising the possibility that some CRF systems in the brain mediate an independent function of positive incentive motivation, such as amplifying incentive salience. Here we asked whether activation of a limbic CRF subsystem magnifies the increase in positive motivation for reward elicited by incentive cues previously associated with that reward, in a way that might exacerbate cue-triggered binge pursuit of food or other incentives? We assessed the impact of CRF microinjections into the medial shell of nucleus accumbens using a pure incentive version of Pavlovian-Instrumental transfer, a measure specifically sensitive to the incentive salience of reward cues (which it separates from influences of aversive stress, stress reduction, frustration and other traditional explanations for stress-increased behavior. Rats were first trained to press one of two levers to obtain sucrose pellets, and then separately conditioned to associate a Pavlovian cue with free sucrose pellets. On test days, rats received microinjections of vehicle, CRF (250 or 500 ng/0.2 μl or amphetamine (20 μg/0.2 μl. Lever pressing was assessed in the presence or absence of the Pavlovian cues during a half-hour test. Results Microinjections of the highest dose of CRF (500 ng or amphetamine (20 μg selectively enhanced the ability of Pavlovian reward cues to trigger phasic peaks of increased instrumental performance for a sucrose reward, each peak lasting a minute or so before decaying after the cue. Lever pressing was not enhanced by CRF microinjections in the baseline absence of the Pavlovian cue or during the presentation without a cue, showing that the CRF enhancement could not be explained as a result of generalized motor arousal, frustration or stress

  20. Effects of Corticotropin Releasing Factor (CRF on Sleep and Temperature Following Predictable Controllable and Uncontrollable Stress in Mice

    Directory of Open Access Journals (Sweden)

    Laurie eWellman

    2015-07-01

    Full Text Available Corticotropin releasing factor (CRF is a major mediator of central nervous system responses to stressors, including alterations in wakefulness and sleep. However, its role in mediating stress-induced alterations in sleep has not been fully delineated. In this study, we assessed the role of CRF and the non-specific CRF antagonist, astressin (AST, in regulating changes in sleep produced by signaled, escapable shock (SES and signaled inescapable shock (SIS, two stressors that can increase or decrease sleep, respectively. Male BALB/cJ mice were surgically implanted with transmitters (DataSciences ETA10-F20 for recording EEG, activity and core body temperature by telemetry and a cannula for intracerebroventricular microinjections. After baseline (Base sleep recording, mice were presented tones (90 dB, 2 kHz that started 5.0 sec prior to and co-terminated with footshock (0.5 mA; 5.0 sec maximum duration. SES mice (n=9 always received shock but could terminate it by moving to the non-occupied chamber in a shuttlebox. Yoked SIS mice (n=9 were treated identically, but could not alter shock duration. Training with SES or SIS was conducted over two days to stabilize responses. Afterwards, the mice received saline, CRF (0.4 µg (0.42 mM or AST (1.0 µg (1.4 mM prior to SES or SIS. Sleep was analyzed over 20 h post-stress recordings. After administration of saline, REM was significantly greater in SES mice than in SIS mice whereas after CRF or AST, REM was similar in both groups. Total 20 h NREM did not vary across condition or group. However, after administration of saline and CRF, NREM episode duration was significantly decreased, and NREM episode number significantly increased, in SIS mice compared to SES animals. SES and SIS mice showed similar stress induced hyperthermia (SIH across all conditions. These data demonstrate that CRF can mediate stress-induced changes in sleep independently of SIH, an index of hypothalamic-pituitary-adrenal axis activation.

  1. Corticotropin-releasing factor in ventromedial prefrontal cortex mediates avoidance of a traumatic stress-paired context.

    Science.gov (United States)

    Schreiber, Allyson L; Lu, Yi-Ling; Baynes, Brittni B; Richardson, Heather N; Gilpin, Nicholas W

    2017-02-01

    Post-traumatic stress disorder (PTSD) affects 7.7 million Americans. One diagnostic criterion for PTSD is avoidance of stimuli that are related to the traumatic stress. Using a predator odor stress conditioned place aversion (CPA) model, rats can be divided into groups based on stress reactivity, as measured by avoidance of the odor-paired context. Avoider rats, which show high stress reactivity, exhibit persistent avoidance of stress-paired context and escalated alcohol drinking. Here, we examined the potential role of corticotropin-releasing factor (CRF), a neuropeptide that promotes anxiety-like behavior in mediating avoidance and escalated alcohol drinking after stress. CRF is expressed in the medial prefrontal cortex (mPFC). The dorsal and ventral sub-regions of the mPFC (dmPFC and vmPFC) have opposing roles in stress reactivity and alcohol drinking. We hypothesized that vmPFC CRF-CRFR1 signaling contributes functionally to stress-induced avoidance and escalated alcohol self-administration. In Experiment 1, adult male Wistar rats were exposed to predator odor stress in a CPA paradigm, indexed for avoidance of odor-paired context, and brains processed for CRF-immunoreactive cell density in vmPFC and dmPFC. Post-stress, Avoiders exhibited higher CRF cell density in vmPFC, but not the dmPFC. In Experiment 2, rats were tested for avoidance of a context repeatedly paired with intra-vmPFC CRF infusions. In Experiment 3, rats were stressed and indexed, then tested for the effects of intra-vmPFC CRFR1 antagonism on avoidance and alcohol self-administration. Intra-vmPFC CRF infusion produced avoidance of a paired context, and intra-vmPFC CRFR1 antagonism reversed avoidance of a stress-paired context, but did not alter post-stress alcohol self-administration. These findings suggest that vmPFC CRF-CRFR1 signaling mediates avoidance of stimuli paired with traumatic stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of corticotropin-releasing hormone on proopiomelanocortin derivatives and monocytic HLA-DR expression in patients with septic shock.

    Science.gov (United States)

    Matejec, Reginald; Kayser, Friederike; Schmal, Frauke; Uhle, Florian; Bödeker, Rolf-Hasso; Maxeiner, Hagen; Kolbe, Julia Anna

    2013-09-01

    Little is known about interactions between immune and neuro-endocrine systems in patients with septic shock. We therefore evaluated whether the corticotropin-releasing hormone (CRH) and/or proopiomelanocortin (POMC) derivatives [ACTH, β-endorphin (β-END), β-lipotropin (β-LPH), α-melanocyte stimulating hormone (α-MSH) or N-acetyl-β-END (Nac-β-END)] have any influences on monocyte deactivation as a major factor of immunosuppression under septic shock conditions. Sixteen patients with septic shock were enrolled in a double-blind, cross-over and placebo controlled clinical study; 0.5μg/(kgbodyweighth) CRH (or placebo) were intravenously administered for 24h. Using flow cytometry we investigated the immunosuppression in patients as far as related to the loss of leukocyte surface antigen-DR expression on circulating monocytes (mHLA-DR). ACTH, β-END immunoreacive material (IRM), β-LPH IRM, α-MSH and Nac-β-END IRM as well as TNF-α and mHLA-DR expression were determined before, during and after treatment with CRH (or placebo). A significant correlation between plasma concentration of α-MSH and mHLA-DR expression and an inverse correlation between mHLA-DR expression and TNF-α plasma level were found. Additionally, a significant increase of mHLA-DR expression was observed 16h after starting the CRH infusion; 8h later, the mHLA-DR expression had decreased again. Our results indicate that the up-regulation of mHLA-DR expression after CRH infusion is not dependent on the release of POMC derivatives. From the correlation between plasma concentration of α-MSH and mHLA-DR expression, we conclude that in patients with septic shock the down-regulation of mHAL-DR expression is accompanied by the loss of monocytic release of α-MSH into the cardiovascular compartment. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health

    NARCIS (Netherlands)

    Janssen, D.; Kozicz, T.L.

    2013-01-01

    Physiological responses to stress coordinated by the hypothalamo-pituitary-adrenal axis are concerned with maintaining homeostasis in the presence of real or perceived challenges. Regulators of this axis are corticotrophin releasing factor (CRF) and CRF related neuropeptides, including urocortins 1,

  4. Serum blood metabolite response and evaluation of select organ weight, histology and cardiac morphology of beef heifers exposed to a dual corticotropin-releasing hormone and vasopressin challenge following supplementation of

    Science.gov (United States)

    The objective of this study was to: 1) determine if supplementation of Zilpaterol Hydrochloride (ZH) altered select organ weights, histology and cardiac anatomical features at harvest and 2) determine if administration of a corticotropin-releasing hormone (CRH) and vasopressin (VP) challenge followi...

  5. Electro-acupuncture relieves visceral sensitivity and decreases hypothalamic corticotropin-releasing hormone levels in a rat model of irritable bowel syndrome.

    Science.gov (United States)

    Wu, Huan-gan; Liu, Hui-rong; Zhang, Zeng-an; Zhou, En-hua; Wang, Xiao-mei; Jiang, Bin; Shi, Zheng; Zhou, Ci-li; Qi, Li; Ma, Xiao-peng

    2009-11-20

    Previous studies into electro-acupuncture (EA) treatment of irritable bowel syndrome (IBS) have principally focused on the peripheral effects of EA in a rat model of IBS. It is not known whether EA exerts central effects in this rat model. We have examined the effects of EA on hypothalamic corticotropin-releasing hormone (CRH) levels in a rat model of IBS provoked by colorectal distension (CRD) and forelimb immobilization. EA was administered once daily to IBS model rats over a period of 7 d; untreated IBS rats and controls were also studied. The behavioral response to distension was rated according to the abdominal withdrawal reflex (AWR) score; hypothalamic CRH levels were measured by radioimmunoassay. We report that EA treatment significantly decreased visceral sensitivity to CRD in this rat model. In treated animals, EA also decreased hypothalamic CRH to control levels. Reduced hypothalamic CRH levels may mediate the beneficial effects of EA in this rat IBS model.

  6. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    Science.gov (United States)

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  7. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  8. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  9. Thyroid Transcription Factor-1 in Orbital Adipose Tissues: Potential Role in Orbital Thyrotropin Receptor Expression

    Science.gov (United States)

    Bhattacharyya, Kalyan K.; Coenen, Michael J.; Bahn, Rebecca S.

    2005-01-01

    Thyroid transcription factor-1 (TTF-1) is required for maximal expression of thyrotropin receptor (TSHR) in the thyroid. Extrathyroidal TSHR expression is detectable in normal orbital adipose tissues, with increased levels found in orbital tissues from patients with Graves’ ophthalmopathy (GO), and in orbital preadipocyte cultures following differentiation. In order to determine whether TTF-1 might be involved in orbital TSHR expression, we used quantitative real-time polymerase chain reaction (PCR) to assess relative expression of this and other thyroid-associated transcription factors (TTF-2 and Pax-8) in GO orbital tissue specimens (n = 28) and cultures (n = 3), and in normal orbital tissues (n = 19) and cultures (n = 3). We detected TTF-1 and TTF-2 mRNA in GO and normal orbital tissue samples, with no difference in levels noted between the tissues. In the GO orbital cultures, TTF-1 mRNA was higher in differentiated than in control (undifferentiated) cultures (p < 0.05), while TTF-2 was unchanged. In the normal cultures, neither TTF-1 nor TTF-2 mRNA levels increased in differentiated cultures. Pax8 was undetectable in all orbital tissues and cell cultures. The presence of mRNA encoding TTF-1 in orbital tissues and cultures suggest that this transcription factor may play an important role in extrathyroidal, as it does in thyroidal, TSHR expression. PMID:15929662

  10. Colony stimulating factor-1 receptor as a treatment for cognitive deficits postfractionated whole-brain irradiation

    Directory of Open Access Journals (Sweden)

    Susanna Rosi

    2017-01-01

    Full Text Available Whole-brain irradiation (WBI is commonly used to treat primary tumors of the central nervous systems tumors as well as brain metastases. While this technique has increased survival among brain tumor patients, the side effects of including a decline in cognitive abilities that are generally progressive. In an effort to combat WBI side effects, researchers explored the treatment of colony stimulating factor-1 receptor (CSF-1R inhibitor. Data show that when a CSF-1R inhibitor is administered with fractionated WBI treatment, there is a decline in the number of resident and peripheral mononuclear phagocytes, a decrease in dendritic spine loss and a reduction in functional and memory deficits. CSFR-1R inhibitors have displayed promising results as an effective counter-treatment for WBI-induced deficits. Further research is required to optimize treatment strategies, establish a treatment timeline and gain a better understanding of the long-term side effects of targeting CSF-1R as a treatment strategy for WBI symptoms. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  11. A stress-induced anxious state in male rats: corticotropin-releasing hormone induces persistent changes in associative learning and startle reactivity.

    Science.gov (United States)

    Servatius, Richard J; Beck, Kevin D; Moldow, Roberta L; Salameh, Gabriel; Tumminello, Tara P; Short, Kenneth R

    2005-04-15

    Exposure to intense inescapable stressors induces a persistent anxious state in rats. The anxious state is evident as increased sensory reactivity and enhanced associative learning. We examine whether similar neurobehavioral changes are observed after intracerebroventricular (ICV) administration of corticotropin releasing hormone (CRH). Two behaviors were observed: acoustic startle responses (ASRs) and acquisition of the classically conditioned eyeblink response. Male Sprague-Dawley rats were administered ICV CRH either in a single dose (1.0 microg/rat) or in three doses each separated by 30 min. Exaggerated ASRs were evident 2 hours after either CRH treatment; however, only the rats given three injections exhibited a persistently exaggerated ASR apparent 24 hours after CRH treatment. Rats administered three injections of CRH also exhibited faster acquisition of the eyeblink conditioned response beginning 24 hours after treatment. Yet, we did not find evidence for a persistent activation of the HPA-axis response; three CRH injections did not lead to elevated basal plasma corticosterone levels the following morning. Repeated treatment with CRH over a 1.5-hour period models some of the behavioral changes observed after exposure to intense inescapable stressors.

  12. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones.

    Science.gov (United States)

    Wang, Lixin; Goebel-Stengel, Miriam; Yuan, Pu-Qing; Stengel, Andreas; Taché, Yvette

    2017-01-01

    Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting

  13. Nicotine self-administration differentially regulates hypothalamic corticotropin-releasing factor and arginine vasopressin mRNAs and facilitates stress-induced neuronal activation.

    Science.gov (United States)

    Yu, Guoliang; Chen, Hao; Zhao, Wenyuan; Matta, Shannon G; Sharp, Burt M

    2008-03-12

    Acute nicotine is a potent stimulus for activation of the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis, while chronic nicotine self-administration (SA) desensitizes the ACTH response to self-administered nicotine but cross-sensitizes to mild footshock stress (mFSS). To identify underlying mechanisms, we investigated (1) the effects of chronic nicotine SA on the coexpression of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) mRNAs, the primary hypothalamic neuropeptides regulating ACTH release, in the parvocellular division of paraventricular nucleus (pcPVN), and (2) mFSS-induced activation of these neurons during nicotine SA. Adult male Sprague Dawley rats were given 23 h/d unlimited access to self-administer nicotine (0.03 mg/kg per injection, i.v.) for 19 d. Brains were double labeled with fluorescence in situ hybridization of CRF and AVP mRNAs and triple labeled after mFSS exposure for CRF and AVP mRNAs and c-Fos protein. Chronic nicotine SA significantly increased AVP mRNA signal and the number of pcPVN AVP-positive (AVP(+)) neurons (twofold to threefold), reduced the number of CRF-positive (CRF(+)) neurons by approximately 60%, but increased pcPVN CRF(+)/AVP(+) neuronal number fivefold. Significantly, although chronic nicotine SA did not affect total c-Fos expression induced by mFSS in pcPVN CRF(+) neurons, the majority of the new CRF(+)/AVP(+) population was activated by this heterotypic stressor. These phenotypic neuronal alterations may provide the pivotal mechanism underlying the capacity of chronically self-administered nicotine to cross-sensitize the HPA response to specific stressors, suggesting that nicotine may augment HPA responsiveness to specific stressors in human smokers.

  14. Differential Activation in Amygdala and Plasma Noradrenaline during Colorectal Distention by Administration of Corticotropin-Releasing Hormone between Healthy Individuals and Patients with Irritable Bowel Syndrome.

    Science.gov (United States)

    Tanaka, Yukari; Kanazawa, Motoyori; Kano, Michiko; Morishita, Joe; Hamaguchi, Toyohiro; Van Oudenhove, Lukas; Ly, Huynh Giao; Dupont, Patrick; Tack, Jan; Yamaguchi, Takuhiro; Yanai, Kazuhiko; Tashiro, Manabu; Fukudo, Shin

    2016-01-01

    Irritable bowel syndrome (IBS) often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET) was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg) or saline (1:1) was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH), serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline) and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls) by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals.

  15. Effects of acute treadmill running at different intensities on activities of serotonin and corticotropin-releasing factor neurons, and anxiety- and depressive-like behaviors in rats.

    Science.gov (United States)

    Otsuka, Tomomi; Nishii, Ayu; Amemiya, Seiichiro; Kubota, Natsuko; Nishijima, Takeshi; Kita, Ichiro

    2016-02-01

    Accumulating evidence suggests that physical exercise can reduce and prevent the incidence of stress-related psychiatric disorders, including depression and anxiety. Activation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is implicated in antidepressant/anxiolytic properties. In addition, the incidence and symptoms of these disorders may involve dysregulation of the hypothalamic-pituitary-adrenal axis that is initiated by corticotropin-releasing factor (CRF) neurons in the hypothalamic paraventricular nucleus (PVN). Thus, it is possible that physical exercise produces its antidepressant/anxiolytic effects by affecting these neuronal activities. However, the effects of acute physical exercise at different intensities on these neuronal activation and behavioral changes are still unclear. Here, we examined the activities of 5-HT neurons in the DRN and CRF neurons in the PVN during 30 min of treadmill running at different speeds (high speed, 25 m/min; low speed, 15m/min; control, only sitting on the treadmill) in male Wistar rats, using c-Fos/5-HT or CRF immunohistochemistry. We also performed the elevated plus maze test and the forced swim test to assess anxiety- and depressive-like behaviors, respectively. Acute treadmill running at low speed, but not high speed, significantly increased c-Fos expression in 5-HT neurons in the DRN compared to the control, whereas high-speed running significantly enhanced c-Fos expression in CRF neurons in the PVN compared with the control and low-speed running. Furthermore, low-speed running resulted in decreased anxiety- and depressive-like behaviors compared with high-speed running. These results suggest that acute physical exercise with mild and low stress can efficiently induce optimal neuronal activation that is involved in the antidepressant/anxiolytic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses

    Directory of Open Access Journals (Sweden)

    Leah B. Callahan

    2013-10-01

    Full Text Available Corticotropin releasing factor (CRF is a primary mediator of endocrine, autonomic and behavioral stress responses. Studies in both humans and animal models have implicated CRF in a wide-variety of psychiatric conditions including anxiety disorders such as post-traumatic stress disorder (PTSD, depression, sleep disorders and addiction among others. The central nucleus of the amygdala (CeA, a key limbic structure with one of the highest concentrations of CRF-producing cells outside of the hypothalamus, has been implicated in anxiety-like behavior and a number of stress-induced disorders. This study investigated the specific role of CRF in the CeA on both endocrine and behavioral responses to stress. We used RNA Interference (RNAi techniques to locally and specifically knockdown CRF expression in CeA. Behavior was assessed using the elevated plus maze (EPM and open field test (OF. Knocking down CRF expression in the CeA had no significant effect on measures of anxiety-like behavior in these tests. However, it did have an effect on grooming behavior, a CRF-induced behavior. Prior exposure to a stressor sensitized an amygdalar CRF effect on stress-induced HPA activation. In these stress-challenged animals silencing CRF in the CeA significantly attenuated corticosterone responses to a subsequent behavioral stressor. Thus, it appears that while CRF projecting from the CeA does not play a significant role in the expression stress-induced anxiety-like behaviors on the EPM and OF it does play a critical role in stress-induced HPA activation.

  17. Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting.

    Science.gov (United States)

    Stengel, Andreas; Goebel, Miriam; Million, Mulugeta; Stenzel-Poore, Mary P; Kobelt, Peter; Mönnikes, Hubert; Taché, Yvette; Wang, Lixin

    2009-01-01

    Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of gut hormones regulating food intake were compared in CRF-OE and wild type (WT) littermate mice along with brain Fos expression, circulating ghrelin levels, and gastric emptying of a nonnutrient meal. CRF-OE mice injected ip with saline showed a 47 and 44% reduction of 30-min and 4-h cumulative food intake response to an overnight fast, respectively, compared with WT. However, the 30-min food intake decrease induced by ip cholecystokinin (3 microg/kg) and increase by ghrelin (300 microg/kg) were similar in CRF-OE and WT mice. Overnight fasting increased the plasma total ghrelin to similar levels in CRF-OE and WT mice, although CRF-OE mice had a 2-fold reduction of nonfasting ghrelin levels. The number of Fos-immunoreactive cells induced by fasting in the arcuate nucleus was reduced by 5.9-fold in CRF-OE compared with WT mice whereas no significant changes were observed in other hypothalamic nuclei. In contrast, fasted CRF-OE mice displayed a 5.6-fold increase in Fos-immunoreactive cell number in the dorsal motor nucleus of the vagus nerve and a 34% increase in 20-min gastric emptying. These findings indicate that sustained overproduction of hypothalamic CRF in mice interferes with fasting-induced activation of arcuate nucleus neurons and the related hyperphagic response.

  18. Expression patterns of corticotropin-releasing factor, arginine vasopressin, histidine decarboxylase, melanin-concentrating hormone, and orexin genes in the human hypothalamus.

    Science.gov (United States)

    Krolewski, David M; Medina, Adriana; Kerman, Ilan A; Bernard, Rene; Burke, Sharon; Thompson, Robert C; Bunney, William E; Schatzberg, Alan F; Myers, Richard M; Akil, Huda; Jones, Edward G; Watson, Stanley J

    2010-11-15

    The hypothalamus regulates numerous autonomic responses and behaviors. The neuroactive substances corticotropin-releasing factor (CRF), arginine-vasopressin (AVP), histidine decarboxylase (HDC), melanin-concentrating hormone (MCH), and orexin/hypocretins (ORX) produced in the hypothalamus mediate a subset of these processes. Although the expression patterns of these genes have been well studied in rodents, less is known about them in humans. We combined classical histological techniques with in situ hybridization histochemistry to produce both 2D and 3D images and to visually align and quantify expression of the genes for these substances in nuclei of the human hypothalamus. The hypothalamus was arbitrarily divided into rostral, intermediate, and caudal regions. The rostral region, containing the paraventricular nucleus (PVN), was defined by discrete localization of CRF- and AVP-expressing neurons, whereas distinct relationships between HDC, MCH, and ORX mRNA-expressing neurons delineated specific levels within the intermediate and caudal regions. Quantitative mRNA signal intensity measurements revealed no significant differences in overall CRF or AVP expression at any rostrocaudal level of the PVN. HDC mRNA expression was highest at the level of the premammillary area, which included the dorsomedial and tuberomammillary nuclei as well as the dorsolateral hypothalamic area. In addition, the overall intensity of hybridization signal exhibited by both MCH and ORX mRNA-expressing neurons peaked in distinct intermediate and caudal hypothalamic regions. These results suggest that human hypothalamic neurons involved in the regulation of the HPA axis display distinct neurochemical patterns that may encompass multiple local nuclei. Copyright © 2010 Wiley-Liss, Inc.

  19. Plasma adiponectin levels are increased despite insulin resistance in corticotropin-releasing hormone transgenic mice, an animal model of Cushing syndrome.

    Science.gov (United States)

    Shinahara, Masayuki; Nishiyama, Mitsuru; Iwasaki, Yasumasa; Nakayama, Shuichi; Noguchi, Toru; Kambayashi, Machiko; Okada, Yasushi; Tsuda, Masayuki; Stenzel-Poore, Mary P; Hashimoto, Kozo; Terada, Yoshio

    2009-01-01

    Adiponectin (AdN), an adipokine derived from the adipose tissue, has an insulin-sensitizing effect, and plasma AdN is shown to be decreased in obesity and/or insulin resistant state. To clarify whether changes in AdN are also responsible for the development of glucocorticoid-induced insulin resistance, we examined AdN concentration in plasma and AdN expression in the adipose tissue, using corticotropin-releasing hormone (CRH) transgenic mouse (CRH-Tg), an animal model of Cushing syndrome. We found, unexpectedly, that plasma AdN levels in CRHTg were significantly higher than those in wild-type littermates (wild-type: 19.7+/-2.5, CRH-Tg: 32.4+/-3.1 microg/mL, pAdN mRNA and protein levels were significantly decreased in the adipose tissue of CRH-Tg. Bilateral adrenalectomy in CRH-Tg eliminated both their Cushing's phenotype and their increase in plasma AdN levels (wild-type/sham: 9.4+/-0.5, CRH-Tg/sham: 15.7+/-2.0, CRH-Tg/ADX: 8.5+/-0.4 microg/mL). These results strongly suggest that AdN is not a major factor responsible for the development of insulin resistance in Cushing syndrome. Our data also suggest that glucocorticoid increases plasma AdN levels but decreases AdN expression in adipocytes, the latter being explained possibly by the decrease in AdN metabolism in the Cushing state.

  20. Adolescent binge drinking leads to changes in alcohol drinking, anxiety, and amygdalar corticotropin releasing factor cells in adulthood in male rats.

    Directory of Open Access Journals (Sweden)

    Nicholas W Gilpin

    Full Text Available Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (~postnatal days 28-42 in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF cell in the lateral portion of the central amygdala (CeA, a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity, an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects

  1. β-Endorphin Neuronal Cell Transplant Reduces Corticotropin Releasing Hormone Hyperresponse to Lipopolysaccharide and Eliminates Natural Killer Cell Functional Deficiencies in Fetal Alcohol Exposed Rats

    Science.gov (United States)

    Boyadjieva, Nadka I.; Ortigüela, María; Arjona, Alvaro; Cheng, Xiaodong; Sarkar, Dipak K.

    2010-01-01

    Background Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of β-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-γ (IFN-γ) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-γ in control and fetal alcohol exposed rats. Conclusions These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyper-response and immune deficiency in fetal alcohol exposed subjects. PMID:19320628

  2. Adolescent Binge Drinking Leads to Changes in Alcohol Drinking, Anxiety, and Amygdalar Corticotropin Releasing Factor Cells in Adulthood in Male Rats

    Science.gov (United States)

    Gilpin, Nicholas W.; Karanikas, Chrisanthi A.; Richardson, Heather N.

    2012-01-01

    Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (∼postnatal days 28–42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with

  3. Targeting corticotropin-releasing factor (CRF) projections from the oval nucleus of the BNST using cell-type specific neuronal tracing studies in mouse and rat brain

    Science.gov (United States)

    Dabrowska, Joanna; Martinon, Daisy; Moaddab, Mahsa; Rainnie, Donald G.

    2016-01-01

    The bed nucleus of the stria terminalis (BNST) is known to play a critical role in mediating the behavioral and autonomic responses to stressors. The oval nucleus of the BNST (BNSTov) contains cell bodies that synthesize the stress hormone, corticotropin releasing factor (CRF). Although afferent fibers originating from the BNSTov have been shown to innervate several key structures of the neuroendocrine and central autonomic system, the question remains as to whether, some of these fibers are CRF-positive. To directly address this question, we injected a “floxed” anterograde tracer (rAAV5/EF1a-DIO-mCherry) into the BNSTov of CRFp3.0CreGFP transgenic mice, which express a green fluorescent protein (GFP) under the control of the CRF promoter. Serial sections were then analyzed for the presence of double-labeled fibers in potential projection sites. To determine whether CRF neurons in the rat BNSTov send comparable projections, we infused rat BNSTov with an AAV in which the human synapsin promoter drives enhanced GFP expression. We then used CRF immunoreactivity to examine double-labeled fluorescent fibers and axon terminals in projection sites from brain sections of the AAV-infused rats. We have observed several terminal fields in the mouse and rat brain with double-labeled fibers in the Dorsal raphe nucleus (DRD), the Paraventricular nucleus of the hypothalamus, and to a lesser extent in the Ventral tegmental area. We found double-labeled terminal boutons in the nucleus accumbens shell, prelimbic cortex, and posterior basolateral nucleus of the amygdala. The most intense double-labeling was found in midbrain, including substantia nigra pars compacta, red nucleus, periaqueductal gray, pontine nuclei, as well as DRD. The results of our study indicate that CRF neurons are the output neurons of the BNSTov and they send projections to the centers of neuroendocrine and autonomic regulation, but also regions modulating reward and motivation, vigilance, motor function

  4. Corticotropin-Releasing Hormone As the Homeostatic Rheostat of Feto-Maternal Symbiosis and Developmental Programming In Utero and Neonatal Life

    Directory of Open Access Journals (Sweden)

    Viridiana Alcántara-Alonso

    2017-07-01

    Full Text Available A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment and sometimes delayed (e.g., enhanced susceptibility to disease that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.

  5. Differential Activation in Amygdala and Plasma Noradrenaline during Colorectal Distention by Administration of Corticotropin-Releasing Hormone between Healthy Individuals and Patients with Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Yukari Tanaka

    Full Text Available Irritable bowel syndrome (IBS often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg or saline (1:1 was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH, serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals.

  6. Adolescent binge drinking leads to changes in alcohol drinking, anxiety, and amygdalar corticotropin releasing factor cells in adulthood in male rats.

    Science.gov (United States)

    Gilpin, Nicholas W; Karanikas, Chrisanthi A; Richardson, Heather N

    2012-01-01

    Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (~postnatal days 28-42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with implications

  7. Modified dexamethasone suppression-corticotropin-releasing hormone stimulation test: A pilot study of young healthy volunteers and implications for alcoholism research in adolescents and young adults.

    Science.gov (United States)

    Sher, Leo; Cooper, Thomas B; Mann, J John; Oquendo, Maria A

    2006-01-01

    The key neuroendocrine component of a response to stress is the hypothalamic-pituitary-adrenocortical (HPA) system. Abnormalities in the HPA system have been implicated in the pathophysiology of psychiatric disorders such as depression, post-traumatic stress disorder, alcoholism and suicide. The dexamethasone suppression test (DST) is the most frequently used test to assess HPA-system function in psychiatric disorders. This neuroendocrine test consists of the administration of a low dose of dexamethasone at 11 pm and the measurement of cortisol levels at one or more time points on the following day. After corticotropin-releasing hormone (CRH) became available for clinical studies, the DST was combined with CRH administration. In this test, patients are pretreated with a single dose of dexamethasone at 11 pm and receive human CRH intravenously at 3 pm the following day. The resulting DST-CRH test proved to be much more sensitive in detecting HPA system alterations than the DST. We have modified the DST-CRH test and used ovine CRH instead of human CRH in a pilot study of a group of young healthy volunteers. Results indicated that it produces results similar to the results obtained with human CRH. This suggests that ovine CRH can be used in psychiatric research. Alcoholism is associated with abnormalities in HPA function. Nonalcoholic subjects with a family history of alcoholism exhibit lower plasma ACTH and beta-endorphin as well as lower ACTH, cortisol, and beta-endorphin responses to psychological stress and CRH stimulation. This suggests that in children of alcoholics, alterations in the mechanisms that regulate HPA axis activity predate the development of alcohol dependence and may be considered inherited traits. Therefore, studies of the HPA system in persons at risk for alcoholism may help understand the neurobiological mechanisms of predisposition to alcoholism.

  8. TNF Receptor-Associated Factor 1 is a Major Target of Soluble TWEAK

    Science.gov (United States)

    Carmona Arana, José Antonio; Seher, Axel; Neumann, Manfred; Lang, Isabell; Siegmund, Daniela; Wajant, Harald

    2014-01-01

    Soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), in contrast to membrane TWEAK and TNF, is only a weak activator of the classical NFκB pathway. We observed that soluble TWEAK was regularly more potent than TNF with respect to the induction of TNF receptor-associated factor 1 (TRAF1), a NFκB-controlled signaling protein involved in the regulation of inflammatory signaling pathways. TNF-induced TRAF1 expression was efficiently blocked by inhibition of the classical NFκB pathway using the IKK2 inhibitor, TPCA1. In contrast, in some cell lines, TWEAK-induced TRAF1 production was only partly inhibited by TPCA1. The NEDD8-activating enzyme inhibitor MLN4924, however, which inhibits classical and alternative NFκB signaling, blocked TNF- and TWEAK-induced TRAF1 expression. This suggests that TRAF1 induction by soluble TWEAK is based on the cooperative activity of the two NFκB signaling pathways. We have previously shown that oligomerization of soluble TWEAK results in ligand complexes with membrane TWEAK-like activity. Oligomerization of soluble TWEAK showed no effect on the dose response of TRAF1 induction, but potentiated the ability of soluble TWEAK to trigger production of the classical NFκB-regulated cytokine IL8. Transfectants expressing soluble TWEAK and membrane TWEAK showed similar induction of TRAF1 while only the membrane TWEAK expressing cells robustly stimulated IL8 production. These data indicate that soluble TWEAK may efficiently induce a distinct subset of the membrane TWEAK-targeted genes and argue again for a crucial role of classical NFκB pathway-independent signaling in TWEAK-induced TRAF1 expression. Other TWEAK targets, which can be equally well induced by soluble and membrane TWEAK, remain to be identified and the relevance of the ability of soluble TWEAK to induce such a distinct subset of membrane TWEAK-targeted genes for TWEAK biology will have to be clarified in future studies. PMID:24600451

  9. Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment

    DEFF Research Database (Denmark)

    Rasmussen, Trine N; Novak, Ivana; Nielsen, Søren M

    2004-01-01

    The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized...

  10. ImmunoPET Imaging of Insulin-Like Growth Factor 1 Receptor in a Subcutaneous Mouse Model of Pancreatic Cancer

    Science.gov (United States)

    2016-06-30

    ImmunoPET Imaging of Insulin-Like Growth Factor 1 Receptor in a Subcutaneous Mouse Model of Pancreatic Cancer Christopher G. England,†,# Anyanee...and Weibo Cai*,†,‡,⊥ †Department of Medical Physics, ‡Department of Radiology, and ⊥Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin...Seoul 110-744, Korea ∥NeoClone Biotechnologies International, Madison, Wisconsin 53713, United States *S Supporting Information ABSTRACT: The role of

  11. Endocrine and hematological responses of beef heifers divergently ranked for residual feed intake following a bovine corticotropin-releasing hormone challenge.

    Science.gov (United States)

    Kelly, A K; Earley, B; McGee, M; Fahey, A G; Kenny, D A

    2016-04-01

    The objective of this study was to determine if beef heifers divergently ranked on phenotypic residual feed intake (RFI) differed in their physiological stress response to an exogenous bovine corticotropin-releasing hormone (bCRH) challenge. Yearling Limousin × Friesian heifers ( = 86) were ranked by RFI. The 15 highest (mean 0.66 kg DM/d; high RFI) and 15 lowest (mean -0.72 kg DM/d; low RFI) ranking animals were used for this study. During the study period, heifers (mean age 485 ± 13 d; mean BW 408 ± 31.4 kg) were housed in a slatted-floor facility. To facilitate intensive blood collection, heifers were fitted aseptically with indwelling jugular catheters. All heifers received dexamethasone (DEX; 20 µg/kg BW i.m.) 12 h before the bCRH challenge (d 0). Heparinized blood samples were collected at -60 and 0 min before administration of DEX, and 12 h after DEX administration. Following DEX administration, cortisol and dehydroepiandrosterone (DHEA) concentrations similarly decreased ( ≥ 0.22) between high and low RFI groups. The response of the HPA axis to a standardized dose of bCRH (0.3 μg/kg BW) was examined. On d 0, serial blood samples were collected at -20, 0, 20, 40, 60, 80, 100, 120, 150, 180, 210, 240, 270, 330, and 390 min relative to the time of bCRH administration (0 min) and were analyzed for plasma cortisol and DHEA concentrations. Blood hematology variables were also determined at -20, 0, 20, 80, 150, 270, 330, and 390 min relative to bCRH administration. Neither an RFI × sampling time interaction nor a direct effect of RFI were detected ( ≥ 0.36) for plasma cortisol, DHEA concentrations, or cortisol:DHEA ratio. An effect of sample time was observed for cortisol ( change in cortisol and DHEA concentrations following bCRH administration were not different ( ≥ 0.20) between the high and low RFI phenotypes. Similarly, an effect of RFI was not evident ( ≥ 0.16) for any of the hematology variables examined including neutrophil, lymphocyte, and

  12. GABA regulates the rat hypothalamic-pituitary-adrenocortical axis via different GABA-A receptor alpha-subtypes

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bundzikova, Jana; Larsen, Marianne Hald

    2008-01-01

    The control of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) is balanced by excitatory and inhibitory inputs. The GABA-A receptor, which is a major target for the inhibitory control, is composed of five subunits. The presence of an alpha(1)-, ...

  13. Crystallographic Identification and Functional Characterization of Phospholipids as Ligands for the Orphan Nuclear Receptor Steroidogenic Factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong; Choi, Mihwa; Cavey, Greg; Daugherty, Jennifer; Suino, Kelly; Kovach, Amanda; Bingham, Nathan C.; Kliewer, Steven A.; Xu, H.Eric (Van Andel); (U. of Texas-SMED)

    2010-11-10

    The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed to reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.

  14. Disruption of Stromal-Derived Factor-1/Chemokine Receptor 4 by Simvastatin

    Directory of Open Access Journals (Sweden)

    A Jalili

    2010-03-01

    Full Text Available Background: The alpha chemokine, stromal-derived factor (SDF-1 is produced by bone marrow stromal cells and other cells, especially damaged tissues. SDF-1 receptor, a chemokine receptor 4 (CXCR4, is expressed on inflammatory cells and that SDF-1/CXCR4 axis plays a critical role in migration of inflammatory cells. In cardiovascular diseases, SDF-1 is produced by endothelial cells and plaques and that SDF-1 chemoattracts monocytes to the endothelial cells resulting in a local inflammation. Simvastatin, a cholesterol-lowering agent, is a general drug for treatment of cardiovascular diseases. However, its molecular mechanism has not yet been completely elucidated.Method: Herein, we investigated the role of simvastatin on the SDF- 1/CXCR4 axis by employing flow cytometry, RT-PCR, chemotaxis and adhesion assays. Results: Simvastatin (i downregulates CXCR4 expression on monocytic cell line (THP-1 and primary monocyte in a dose-dependent manner, (ii inhibits adhesion of monocytes to endothelial cells and (iii decreases SDF-1 production by endothelial cells. Moreover, preincubation with simvastatin significantly decreased the migration of THP-1 towards the SDF-1 gradient.Conclusion: All together our data indicate that simvastatin inhibits the binding of monocytes to endothelial cells through disrupting of the SDF-1/CXCR4 axis.

  15. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  16. Modelling of the disulphide-swapped isomer of human insulin-like growth factor-1: implications for receptor binding.

    Science.gov (United States)

    Gill, R; Verma, C; Wallach, B; Ursø, B; Pitts, J; Wollmer, A; De Meyts, P; Wood, S

    1999-04-01

    Insulin-like growth factor-1 (IGF-1) is a serum protein which unexpectedly folds to yield two stable tertiary structures with different disulphide connectivities; native IGF-1 [18-61,6-48,47-52] and IGF-1 swap [18-61,6-47, 48-52]. Here we demonstrate in detail the biological properties of recombinant human native IGF-1 and IGF-1 swap secreted from Saccharomyces cerevisiae. IGF-1 swap had a approximately 30 fold loss in affinity for the IGF-1 receptor overexpressed on BHK cells compared with native IGF-1. The parallel increase in dose required to induce negative cooperativity together with the parallel loss in mitogenicity in NIH 3T3 cells implies that disruption of the IGF-1 receptor binding interaction rather than restriction of a post-binding conformational change is responsible for the reduction in biological activity of IGF-1 swap. Interestingly, the affinity of IGF-1 swap for the insulin receptor was approximately 200 fold lower than that of native IGF-1 indicating that the binding surface complementary to the insulin receptor (or the ability to attain it) is disturbed to a greater extent than that to the IGF-1 receptor. A 1.0 ns high-temperature molecular dynamics study of the local energy landscape of IGF-1 swap resulted in uncoiling of the first A-region alpha-helix and a rearrangement in the relative orientation of the A- and B-regions. The model of IGF-1 swap is structurally homologous to the NMR structure of insulin swap and CD spectra consistent with the model are presented. However, in the model of IGF-1 swap the C-region has filled the space where the first A-region alpha-helix has uncoiled and this may be hindering interaction of Val44 with the second insulin receptor binding pocket.

  17. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ralph Epaud

    Full Text Available BACKGROUND: Insulin-like growth factors (IGF-I and -II are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R. Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. METHODS AND FINDINGS: We first generated compound heterozygous mutant mice harboring a hypomorphic (Igf1r(neo and a null (Igf1r(- allele. These IGF-1R(neo/- mice express only 22% of normal IGF-1R levels and are viable. In adult IGF-1R(neo/- mice, we assessed lung morphology and respiratory physiology and found normal histomorphometric characteristics and normal breathing response to hypercapnia. We then generated homozygous IGF-1R knockout mutants (IGF-1R(-/- and analyzed their lung development during late gestation using histomorphometric and immunohistochemical methods. IGF-1R(-/- embryos displayed severe lung hypoplasia and markedly underdeveloped diaphragms, leading to lethal neonatal respiratory distress. Importantly, IGF-1R(-/- lungs from late gestation embryos were four times smaller than control lungs and showed markedly thickened intersaccular mesenchyme, indicating strongly delayed lung maturation. Cell proliferation and apoptosis were significantly increased in IGF-1R(-/- lung tissue as compared with IGF-1R(+/+ controls. Immunohistochemistry using pro-SP-C, NKX2-1, CD31 and vWF as markers revealed a delay in cell differentiation and arrest in the canalicular stage of prenatal respiratory organ development in IGF-1R(-/- mutant mice. CONCLUSIONS/SIGNIFICANCE: We found that low levels of IGF-1R were sufficient to ensure normal lung development in mice. In contrast, complete absence of IGF-1R significantly delayed end-gestational lung maturation. Results indicate that IGF-1R plays

  18. Targeting the insulin-like growth factor-1 receptor in human cancer

    Directory of Open Access Journals (Sweden)

    Alexandre eArcaro

    2013-03-01

    Full Text Available The insulin-like growth factor (IGF signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregulation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or -2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon and prostate cancer. Anticancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this Mini Review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.

  19. Receptor-Type Protein-Tyrosine Phosphatase ζ and Colony Stimulating Factor-1 Receptor in the Intestine: Cellular Expression and Cytokine- and Chemokine Responses by Interleukin-34 and Colony Stimulating Factor-1.

    Science.gov (United States)

    Zwicker, Stephanie; Bureik, Daniela; Bosma, Madeleen; Martinez, Gisele Lago; Almer, Sven; Boström, Elisabeth A

    2016-01-01

    Differential intestinal expression of the macrophage growth factors colony stimulating factor-1 (CSF-1), interleukin (IL)-34, and their shared CSF-1 receptor (CSF-1R) in inflammatory bowel disease (IBD) has been shown. Diverse expression between CSF-1 and IL-34, suggest that IL-34 may signal via an alternate receptor. Receptor-type protein-tyrosine phosphatase ζ (PTPRZ1, RPTP-ζ), an additional IL-34 receptor, was recently identified. Here, we aimed to assess PTPRZ1 expression in IBD and non-IBD intestinal biopsies. Further, we aimed to investigate cellular PTPRZ1 and CSF-1R expression, and cytokine- and chemokine responses by IL-34 and CSF-1. The expression of PTPRZ1 was higher in non-IBD colon compared to ileum. PTPRZ1 expression was not altered with inflammation in IBD, however, correlated to IL34, CSF1, and CSF1R. The expression patterns of PTPRZ1 and CSF-1R differed in peripheral blood mononuclear cells (PBMCs), monocytes, macrophages, and intestinal epithelial cell line. PBMCs and monocytes of the same donors responded differently to IL-34 and CSF-1 with altered expression of tumor-necrosis factor α (TNF-α), IL-1β, interferon γ (IFN-γ), IL-13, IL-8, and monocyte chemotactic protein-1 (MCP-1) levels. This study shows that PTPRZ1 was expressed in bowel tissue. Furthermore, CSF-1R protein was detected in an intestinal epithelial cell line and donor dependently in primary PBMCs, monocytes, and macrophages, and first hints also suggest an expression in these cells for PTPRZ1, which may mediate IL-34 and CSF-1 actions.

  20. Effects of naltrexone, duloxetine, and a corticotropin-releasing factor type 1 receptor antagonist on binge-like alcohol drinking in rats

    OpenAIRE

    Ji, Dong; Gilpin, Nicholas W.; Heather N Richardson; Rivier, Catherine L; Koob, George F.

    2008-01-01

    A ‘binge’ is defined by National Institute on Alcohol Abuse and Alcoholism as an excessive pattern of alcohol drinking that produces blood–alcohol levels (BALs) greater than 0.08 g% within a 2-h period and may or may not be associated with dependence. The purpose of this investigation was to explore the effects of several neuropharmacological agents in an animal model in which outbred rats voluntarily and orally self-administer pharmacologically meaningful alcohol doses that produce BALs ≥ 0....

  1. Osteosarcoma cell-intrinsic colony stimulating factor-1 receptor functions to promote tumor cell metastasis through JAG1 signaling.

    Science.gov (United States)

    Wen, Zhi-Qiang; Li, Xi-Gong; Zhang, Yi-Jun; Ling, Zhi-Heng; Lin, Xiang-Jin

    2017-01-01

    Therapeutic antibodies or inhibitors targeting CSF-1R block colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-R) signaling, and have shown remarkable efficacy in the treatment of cancer. However, little is known about tumor cell-intrinsic CSF-1R effects. Here, we show that human osteosarcomas contain CSF-1R-expressing cancer subpopulations, and demonstrate that osteosarcoma cell-intrinsic CSF-1R promotes growth in vitro and in vivo. CSF-1R inhibition in osteosarcoma cells by RNA interference suppresses cell proliferation and tumor growth in mice. Conversely, CSF-1R overexpression enhances cell proliferation and accelerates tumor growth. CSF-1R overexpression can significantly enhance osteosarcoma cell migration, invasion, and epithelial-mesenchymal transition (EMT), whereas silencing CSF-1R inhibits these processes. Microarray analysis suggests that jagged 1 (JAG1) can function as a downstream mediator of CSF-1R. Moreover, we report a signaling pathway involving CSF-1R and JAG1 that sustains osteosarcoma cell migration and invasion. Our results identify osteosarcoma cell intrinsic functions of the CSF-1R/JAG1 axis in dissemination of osteosarcoma cells.

  2. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    Science.gov (United States)

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-02

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability.

  3. SUMO‐modified insulin‐like growth factor 1 receptor (IGF‐1R) increases cell cycle progression and cell proliferation

    Science.gov (United States)

    Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg‐Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-01-01

    Increasing number of studies have shown nuclear localization of the insulin‐like growth factor 1 receptor (nIGF‐1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF‐1R have, however, still not been disclosed. Previously, we reported that IGF‐1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple‐SUMO‐site‐mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R‐). Cell clones (R‐WT and R‐TSM) expressing equal amounts of IGF‐1R were selected for experiments. Phosphorylation of IGF‐1R, Akt, and Erk upon IGF‐1 stimulation was equal in R‐WT and R‐TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R‐WT proliferated substantially faster than R‐TSM, which did not differ significantly from the empty vector control. Upon IGF‐1 stimulation G1‐S‐phase progression of R‐WT increased from 12 to 38%, compared to 13 to 20% of R‐TSM. The G1‐S progression of R‐WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO‐IGF‐1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO‐IGF‐1R dependent mechanisms seem important. PMID:28112398

  4. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    Science.gov (United States)

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  5. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization.

    Science.gov (United States)

    Stafford, Jason H; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B; Urata, Kimiko; West, Brian L; Brown, J Martin

    2016-06-01

    Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell-derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  7. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  8. INSULIN-LIKE GROWTH FACTOR-1 RECEPTOR INHIBITOR, AMG-479, IN CETUXIMAB-REFRACTORY HEAD AND NECK SQUAMOUS CELL CARCINOMA

    Science.gov (United States)

    Pohlmann, Paula R.; Rothenberg, Mace L.; Burkey, Brian B.; Parker, Joel; Palka, Kevin; Aulino, Joseph; Puzanov, Igor; Murphy, Barbara

    2011-01-01

    Background Recurrent head and neck squamous cell carcinoma (HNSCC) remains a difficult cancer to treat. Here, we describe a patient with HNSCC who had complete response to methotrexate (MTX) after progressing on multiple cytotoxic agents, cetuximab, and AMG-479 (monoclonal antibody against insulin-like growth factor-1 receptor [IGF-1R]). Methods The clinical information was collected by a retrospective medical record review under an Institutional Review Board–approved protocol. From 4 tumors and 2 normal mucosal epithelia, global gene expression, and IGF-1R and dihydrofolate reductase (DHFR) protein levels were determined. Results Effective target inhibition in the tumor was confirmed by the decreased protein levels of total and phospho-IGF-1R after treatment with AMG-479. Decreased level of DHFR and conversion of a gene expression profile associated with cetuximab-resistance to cetuximab-sensitivity were also observed. Conclusion This suggests that the combination of AMG- 479 and MTX or cetuximab may be a promising therapeutic approach in refractory HNSCC. PMID:20652976

  9. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response.

    Science.gov (United States)

    Lin, Yu-Lung; Tsai, Hong-Chieh; Liu, Pei-Yao; Benneyworth, Michael; Wei, Li-Na

    2017-12-12

    Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.

  10. Stromal derived factor-1 (SDF-1 and its receptors CXCR4 and CXCR7 in endometrial cancer patients.

    Directory of Open Access Journals (Sweden)

    Malgorzata Walentowicz-Sadlecka

    Full Text Available PURPOSE: One of the most important function of stromal derived factor-1 (SDF-1 and its receptors, is regulating the process of metastasis formation. The aim of our study was to investigate the correlation between SDF-1, CXCR4 and CXCR7 protein levels measured by immunohistochemistry with the clinicopathological features and the survival of endometrial cancer patients. MATERIALS AND METHODS: 92 patients aged 37-84 (mean 65.1±9.5 were enrolled to our study between January 2000 and December 2007. After the diagnosis of endometrial cancer, all women underwent total abdominal hysterectomy, with bilateral salpingoophorectomy and pelvic lymph node dissection. In all patients clinical stage (according to FIGO classification, histologic grade, myometrial invasion, lymph node and distant metastases were determined.Furthermore, the survival time was assessed. Immunohistochemical analyses of SDF-1, CXCR4 and CXCR7 were performed on archive formalin fixed paraffin embedded tissue sections. RESULTS: Statistically significant correlations (p0.05 between the proteins expression in the primary tumor cells and the clinicopathological features. Moreover, the Kaplan-Meier analyses demonstrated a stepwise impairment of cancer overall survival (OS with increasing SDF-1 expression. CONCLUSION: The important role of SDF-1 as a predictor of negative clinicopathological characteristics of a tumor suggests that the expression of this stromal factor should be included in the panel of accessory pathomorphological tests and could be helpful in establishing a more accurate prognosis in endometrial cancer patients.

  11. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    Science.gov (United States)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  12. Alterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.

    Science.gov (United States)

    Andrews, Jessica L; Newell, Kelly A; Matosin, Natalie; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2015-12-03

    Postnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001≤p≤0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014≤p≤0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that

  13. Insulin-like growth factor 1 receptor and response to anti-IGF1R antibody therapy in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Yu Cao

    Full Text Available Survival outcomes for patients with osteosarcoma (OS have remained stagnant over the past three decades. Insulin-like growth factor 1 receptor (IGF1R is over-expressed in a number of malignancies, and anti-IGF1R antibodies have and are currently being studied in clinical trials. Understanding the molecular aberrations which result in increased tumor response to anti-IGF1R therapy could allow for the selection of patients most likely to benefit from IGF1R targeted therapy.IGF1R mRNA expression was assessed by RT PCR in OS patient primary tumors, cell lines, and xenograft tumors. IGF1R copy number was assessed by 3 approaches: PCR, FISH, and dot blot analysis. Exons 1-20 of IGF1R were sequenced in xenograft tumors and 87 primary OS tumors, and surface expression of IGF1R was assessed by flow cytometry. Levels of mRNA and protein expression, copy number, and mutation status were compared with tumor response to anti-IGF1R antibody therapy in 4 OS xenograft models.IGF1R mRNA is expressed in OS. Primary patient samples and xenograft samples had higher mRNA expression and copy number compared with corresponding cell lines. IGF1R mRNA expression, cell surface expression, copy number, and mutation status were not associated with tumor responsiveness to anti-IGF1R antibody therapy.IGF1R is expressed in OS, however, no clear molecular markers predict response to IGF1R antibody-mediated therapy. Additional pre-clinical studies assessing potential predictive biomarkers and investigating targetable molecular pathways critical to the proliferation of OS cells are needed.

  14. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits.

    Directory of Open Access Journals (Sweden)

    Bryna Erblich

    Full Text Available The brain contains numerous mononuclear phagocytes called microglia. These cells express the transmembrane tyrosine kinase receptor for the macrophage growth factor colony stimulating factor-1 (CSF-1R. Using a CSF-1R-GFP reporter mouse strain combined with lineage defining antibody staining we show in the postnatal mouse brain that CSF-1R is expressed only in microglia and not neurons, astrocytes or glial cells. To study CSF-1R function we used mice homozygous for a null mutation in the Csflr gene. In these mice microglia are >99% depleted at embryonic day 16 and day 1 post-partum brain. At three weeks of age this microglial depletion continues in most regions of the brain although some contain clusters of rounded microglia. Despite the loss of microglia, embryonic brain development appears normal but during the post-natal period the brain architecture becomes perturbed with enlarged ventricles and regionally compressed parenchyma, phenotypes most prominent in the olfactory bulb and cortex. In the cortex there is increased neuronal density, elevated numbers of astrocytes but reduced numbers of oligodendrocytes. Csf1r nulls rarely survive to adulthood and therefore to study the role of CSF-1R in olfaction we used the viable null mutants in the Csf1 (Csf1(op gene that encodes one of the two known CSF-1R ligands. Food-finding experiments indicate that olfactory capacity is significantly impaired in the absence of CSF-1. CSF-1R is therefore required for the development of microglia, for a fully functional olfactory system and the maintenance of normal brain structure.

  15. Colony-stimulating factor 1 receptor blockade prevents fractionated whole-brain irradiation-induced memory deficits.

    Science.gov (United States)

    Feng, Xi; Jopson, Timothy D; Paladini, Maria Serena; Liu, Sharon; West, Brian L; Gupta, Nalin; Rosi, Susanna

    2016-08-30

    Primary central nervous system (CNS) neoplasms and brain metastases are routinely treated with whole-brain radiation. Long-term survival occurs in many patients, but their quality of life is severely affected by the development of cognitive deficits, and there is no treatment to prevent these adverse effects. Neuroinflammation, associated with activation of brain-resident microglia and infiltrating monocytes, plays a pivotal role in loss of neurological function and has been shown to be associated with acute and long-term effects of brain irradiation. Colony-stimulating factor 1 receptor (CSF-1R) signaling is essential for the survival and differentiation of microglia and monocytes. Here, we tested the effects of CSF-1R blockade by PLX5622 on cognitive function in mice treated with three fractions of 3.3 Gy whole-brain irradiation. Young adult C57BL/6J mice were given three fractions of 3.3 Gy whole-brain irradiation while they were on diet supplemented with PLX5622, and the effects on periphery monocyte accumulation, microglia numbers, and neuronal functions were assessed. The mice developed hippocampal-dependent cognitive deficits at 1 and 3 months after they received fractionated whole-brain irradiation. The impaired cognitive function correlated with increased number of periphery monocyte accumulation in the CNS and decreased dendritic spine density in hippocampal granule neurons. PLX5622 treatment caused temporary reduction of microglia numbers, inhibited monocyte accumulation in the brain, and prevented radiation-induced cognitive deficits. Blockade of CSF-1R by PLX5622 prevents fractionated whole-brain irradiation-induced memory deficits. Therapeutic targeting of CSF-1R may provide a new avenue for protection from radiation-induced memory deficits.

  16. Colony-Stimulating Factor-1 Receptor Is Required for Nurse-like Cell Survival in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Polk, Avery; Lu, Ye; Wang, Tianjiao; Seymour, Erlene; Bailey, Nathanael G; Singer, Jack W; Boonstra, Philip S; Lim, Megan S; Malek, Sami; Wilcox, Ryan A

    2016-12-15

    Monocytes and their progeny are abundant constituents of the tumor microenvironment in lymphoproliferative disorders, including chronic lymphocytic leukemia (CLL). Monocyte-derived cells, including nurse-like cells (NLC) in CLL, promote lymphocyte proliferation and survival, confer resistance to chemotherapy, and are associated with more rapid disease progression. Colony-stimulating factor-1 receptor (CSF-1R) regulates the homeostatic survival of tissue-resident macrophages. Therefore, we sought to determine whether CSF-1R is similarly required for NLC survival. CSF-1R expression by NLC was examined by flow cytometry and IHC. CSF-1R blocking studies were performed using an antagonistic mAb to examine its role in NLC generation and in CLL survival. A rational search strategy was performed to identify a novel tyrosine kinase inhibitor (TKI) targeting CSF-1R. The influence of TKI-mediated CSF-1R inhibition on NLC and CLL viability was examined. We demonstrated that the generation and survival of NLC in CLL is dependent upon CSF-1R signaling. CSF-1R blockade is associated with significant depletion of NLC and consequently inhibits CLL B-cell survival. We found that the JAK2/FLT3 inhibitor pacritinib suppresses CSF-1R signaling, thereby preventing the generation and survival of NLC and impairs CLL B-cell viability. CSF-1R is a novel therapeutic target that may be exploited in lymphoproliferative disorders, like CLL, that are dependent upon lymphoma-associated macrophages. Clin Cancer Res; 22(24); 6118-28. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Absence of Colony Stimulation Factor-1 Receptor Results in Loss of Microglia, Disrupted Brain Development and Olfactory Deficits

    Science.gov (United States)

    Etgen, Anne M.; Dobrenis, Kostantin; Pollard, Jeffrey W.

    2011-01-01

    The brain contains numerous mononuclear phagocytes called microglia. These cells express the transmembrane tyrosine kinase receptor for the macrophage growth factor colony stimulating factor-1 (CSF-1R). Using a CSF-1R-GFP reporter mouse strain combined with lineage defining antibody staining we show in the postnatal mouse brain that CSF-1R is expressed only in microglia and not neurons, astrocytes or glial cells. To study CSF-1R function we used mice homozygous for a null mutation in the Csflr gene. In these mice microglia are >99% depleted at embryonic day 16 and day 1 post-partum brain. At three weeks of age this microglial depletion continues in most regions of the brain although some contain clusters of rounded microglia. Despite the loss of microglia, embryonic brain development appears normal but during the post-natal period the brain architecture becomes perturbed with enlarged ventricles and regionally compressed parenchyma, phenotypes most prominent in the olfactory bulb and cortex. In the cortex there is increased neuronal density, elevated numbers of astrocytes but reduced numbers of oligodendrocytes. Csf1r nulls rarely survive to adulthood and therefore to study the role of CSF-1R in olfaction we used the viable null mutants in the Csf1 (Csf1op) gene that encodes one of the two known CSF-1R ligands. Food-finding experiments indicate that olfactory capacity is significantly impaired in the absence of CSF-1. CSF-1R is therefore required for the development of microglia, for a fully functional olfactory system and the maintenance of normal brain structure. PMID:22046273

  18. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21

    Science.gov (United States)

    Caescu, Cristina I.; Guo, Xingyi; Tesfa, Lydia; Bhagat, Tushar D.; Verma, Amit; Zheng, Deyou

    2015-01-01

    Macrophage polarization between the M2 (repair, protumorigenic) and M1 (inflammatory) phenotypes is seen as a continuum of states. The detailed transcriptional events and signals downstream of colony-stimulating factor 1 receptor (CSF-1R) that contributes to amplification of the M2 phenotype and suppression of the M1 phenotype are largely unknown. Macrophage CSF-1R pTyr-721 signaling promotes cell motility and enhancement of tumor cell invasion in vitro. Combining analysis of cellular systems for CSF-1R gain of function and loss of function with bioinformatic analysis of the macrophage CSF-1R pTyr-721–regulated transcriptome, we uncovered microRNA-21 (miR-21) as a downstream molecular switch controlling macrophage activation and identified extracellular signal-regulated kinase1/2 and nuclear factor-κB as CSF-1R pTyr-721–regulated signaling nodes. We show that CSF-1R pTyr-721 signaling suppresses the inflammatory phenotype, predominantly by induction of miR-21. Profiling of the miR-21–regulated messenger RNAs revealed that 80% of the CSF-1–regulated canonical miR-21 targets are proinflammatory molecules. Additionally, miR-21 positively regulates M2 marker expression. Moreover, miR-21 feeds back to positively regulate its own expression and to limit CSF-1R–mediated activation of extracellular signal-regulated kinase1/2 and nuclear factor-κB. Consistent with an anti-inflammatory role of miRNA-21, intraperitoneal injection of mice with a miRNA-21 inhibitor increases the recruitment of inflammatory monocytes and enhances the peritoneal monocyte/macrophage response to lipopolysaccharide. These results identify the CSF-1R–regulated miR-21 network that modulates macrophage polarization. PMID:25573988

  19. Colony-Stimulating Factor 1 Receptor Antagonists Sensitize Human Immunodeficiency Virus Type 1-Infected Macrophages to TRAIL-Mediated Killing.

    Science.gov (United States)

    Cunyat, Francesc; Rainho, Jennifer N; West, Brian; Swainson, Louise; McCune, Joseph M; Stevenson, Mario

    2016-07-15

    Strategies aimed at eliminating persistent viral reservoirs from HIV-1-infected individuals have focused on CD4(+) T-cell reservoirs. However, very little attention has been given to approaches that could promote elimination of tissue macrophage reservoirs. HIV-1 infection of macrophages induces phosphorylation of colony-stimulating factor 1 receptor (CSF-1R), which confers resistance to apoptotic pathways driven by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), thereby promoting viral persistence. In this study, we assessed whether CSF-1R antagonists (PLX647, PLX3397, and PLX5622) restored apoptotic sensitivity of HIV-1-infected macrophages in vitro PLX647, PLX3397, and PLX5622 at clinically relevant concentrations blocked the activation of CSF-1R and reduced the viability of infected macrophages, as well as the extent of viral replication. Our data show that strategies targeting monocyte colony-stimulating factor (MCSF) signaling could be used to promote elimination of HIV-1-infected myeloid cells and to contribute to the elimination of persistent viral reservoirs. As the HIV/AIDS research field explores approaches to eliminate HIV-1 in individuals on suppressive antiviral therapy, those approaches will need to eliminate both CD4(+) T-cell and myeloid cell reservoirs. Most of the attention has focused on CD4(+) T-cell reservoirs, and scant attention has been paid to myeloid cell reservoirs. The distinct nature of the infection in myeloid cells versus CD4(+) T cells will likely dictate different approaches in order to achieve their elimination. For CD4(+) T cells, most strategies focus on promoting virus reactivation to promote immune-mediated clearance and/or elimination by viral cytopathicity. Macrophages resist viral cytopathic effects and CD8(+) T-cell killing. Therefore, we have explored clearance strategies that render macrophages sensitive to viral cytopathicity. This research helps inform the design of strategies to promote

  20. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Cannell, Elizabeth; Dornan, Anthony J.; Halberg, Kenneth Agerlin

    2016-01-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin...... (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate...... that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule...

  1. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling.

    Science.gov (United States)

    Coniglio, Salvatore J; Eugenin, Eliseo; Dobrenis, Kostantin; Stanley, E Richard; West, Brian L; Symons, Marc H; Segall, Jeffrey E

    2012-05-09

    Glioblastoma multiforme is a deadly cancer for which current treatment options are limited. The ability of glioblastoma tumor cells to infiltrate the surrounding brain parenchyma critically limits the effectiveness of current treatments. We investigated how microglia, the resident macrophages of the brain, stimulate glioblastoma cell invasion. We first examined the ability of normal microglia from C57Bl/6J mice to stimulate GL261 glioblastoma cell invasion in vitro. We found that microglia stimulate the invasion of GL261 glioblastoma cells by approximately eightfold in an in vitro invasion assay. Pharmacological inhibition of epidermal growth factor receptor (EGFR) strongly inhibited microglia-stimulated invasion. Furthermore, blockade of colony stimulating factor 1 receptor (CSF-1R) signaling using ribonucleic acid (RNA) interference or pharmacological inhibitors completely inhibited microglial enhancement of glioblastoma invasion. GL261 cells were found to constitutively secrete CSF-1, the levels of which were unaffected by epidermal growth factor (EGF) stimulation, EGFR inhibition or coculture with microglia. CSF-1 only stimulated microglia invasion, whereas EGF only stimulated glioblastoma cell migration, demonstrating a synergistic interaction between these two cell types. Finally, using PLX3397 (a CSF-1R inhibitor that can cross the blood-brain barrier) in live animals, we discovered that blockade of CSF-1R signaling in vivo reduced the number of tumor-associated microglia and glioblastoma invasion. These data indicate that glioblastoma and microglia interactions mediated by EGF and CSF-1 can enhance glioblastoma invasion and demonstrate the possibility of inhibiting glioblastoma invasion by targeting glioblastoma-associated microglia via inhibition of the CSF-1R.

  2. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  3. Corticotropin-releasing factor (CRF) in stress and disease: A review of literature and treatment perspectives with special emphasis on psychiatric disorders

    DEFF Research Database (Denmark)

    Krohg, K.; Hageman, I.; Jorgensen, M.B.

    2008-01-01

    The CRF family of neuropeptides and receptors is involved in a variety of stress responses, in the regulation of appetite, metabolic and inflammatory processes as well as intestinal movements. From a primarily psychiatric perspective, the present paper reviews the literature on its anatomy......, physiology and its involvement in psychiatric, neurological and inflammatory diseases. Finally, recent developments in the pharmacological aspects of CRF in these diseases are reviewed Udgivelsesdato: 2008...

  4. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    Science.gov (United States)

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Expression and actions of corticotropin-releasing factor/diuretic hormone-like peptide (CDLP) and teneurin C-terminal associated peptide (TCAP) in the vase tunicate, Ciona intestinalis: Antagonism of the feeding response.

    Science.gov (United States)

    D'Aquila, Andrea L; Hsieh, Alan Hwa-Ruey; Hsieh, Adam Hwa-Ming; De Almeida, Reuben; Lovejoy, Sabine R; Lovejoy, David A

    2017-05-15

    Teneurin C-terminal associated peptide (TCAP) is a neuropeptide that bears some structural similarity to the corticotropin-releasing factor (CRF) family of peptides. TCAP and CRF are both implicated in the regulation of stress-related behaviors, as established in rodent models. However, in vertebrates, both TCAP and CRF possess three additional paralogous forms making vertebrate models difficult to assess with respect to TCAP-CRF interaction. As a urochordate, this species possesses single homologs of TCAP and of a CRF/Diuretic-like peptide (CDLP) in the genome, thereby establishing Ciona intestinalis as an excellent model organism to examine the interaction of these peptide systems. However, the lack of C. intestinalis synthetic peptides and specific antisera has complicated experimentation. We, therefore, prepared synthetic versions of CDLP and TCAP to prepare specific antisera and to investigate their bioactivity in this species. To analyze stress-related behaviors, a novel behavioral assay was used to characterize different types of contraction-based behaviors, using buccal opening contractions, cloacal opening contractions, lateral contractions, longitudinal contractions and expulsions. Protein and mRNA expression data indicate that the mature versions of both peptides are present in a number of tissues. With respect to behavioral activity, both TCAP- and CDLP-treated animals had distinct contraction profiles under ambient conditions. Moreover, food stimulation tests revealed that whereas CDLP-treated animals displayed a strong expulsion behavior in response to feeding, TCAP-treated animals did not show this effect. These actions are consistent with previous studies done in vertebrates. Copyright © 2016. Published by Elsevier Inc.

  6. The cytokines cardiotrophin-like cytokine/cytokine-like factor-1 (CLC/CLF) and ciliary neurotrophic factor (CNTF) differ in their receptor specificities.

    Science.gov (United States)

    Tormo, Aurélie Jeanne; Letellier, Marie-Claude; Lissilaa, Rami; Batraville, Laurie-Anne; Sharma, Mukut; Ferlin, Walter; Elson, Greg; Crabé, Sandrine; Gauchat, Jean-François

    2012-12-01

    Ciliary neurotrophic factor (CNTF) and cardiotrophin-like cytokine (CLC) are two cytokines with neurotrophic and immunomodulatory activities. CNTF is a cytoplasmic factor believed to be released upon cellular damage, while CLC requires interaction with a soluble cytokine receptor, cytokine-like factor 1 (CLF), to be efficiently secreted. Both cytokines activate a receptor complex comprising the cytokine binding CNTF receptor α (CNTFRα) and two signaling chains namely, leukemia inhibitory factor receptor β (LIFRβ) and gp130. Human CNTF can recruit and activate an alternative receptor in which CNTFRα is substituted by IL-6Rα. As both CNTF and CLC have immune-regulatory activities in mice, we compared their ability to recruit mouse receptors comprising both gp130 and LIFRβ signaling chains and either IL-6Rα or IL-11Rα which, unlike CNTFRα, are expressed by immune cells. Our results indicate that 1) mouse CNTF, like its human homologue, can activate cells expressing gp130/LIFRβ with either CNTFRα or IL-6Rα and, 2) CLC/CLF is more restricted in its specificity in that it activates only the tripartite CNTFR. Several gp130 signaling cytokines influence T helper cell differentiation. We therefore investigated the effect of CNTF on CD4 T cell cytokine production. We observed that CNTF increased the number of IFN-γ producing CD4 T cells. As IFN-γ is considered a mediator of the therapeutic effect of IFN-β in multiple sclerosis, induction of IFN-γ by CNTF may contribute to the beneficial immunomodulatory effect of CNTF in mouse multiple sclerosis models. Together, our results indicate that CNTF activates the same tripartite receptors in mouse and human cells and further validate rodent models for pre-clinical investigation of CNTF and CNTF derivatives. Furthermore, CNTF and CLC/CLF differ in their receptor specificities. The receptor α chain involved in the immunomodulatory effects of CLC/CLF remains to be identified. Crown Copyright © 2012. Published by

  7. MyD88 and TRIF mediate the cyclic adenosine monophosphate (cAMP induced corticotropin releasing hormone (CRH expression in JEG3 choriocarcinoma cell line

    Directory of Open Access Journals (Sweden)

    Kocak Hande

    2009-07-01

    Full Text Available Abstract Background Classically protein kinase A (PKA and transcription factor activator protein 1 (AP-1 mediate the cyclic AMP (cAMP induced-corticotrophin releasing hormone (CRH expression in the placenta. However enteric Gram (- bacterial cell wall component lipopolysaccharide (LPS may also induce-CRH expression via Toll like receptor (TLR4 and its adaptor molecule Myd88. Here we investigated the role of MyD88, TRIF and IRAK2 on cAMP-induced CRH promoter activation in JEG3 cells in the absence of LPS/TLR4 stimulation. Methods JEG3 cells were transfected with CRH-luciferase and Beta-galactosidase expression vectors and either empty or dominant-negative (DN-MyD88, DN-TRIF or DN-IRAK2 vectors using Fugene6 (Roche. cAMP-induced CRH promoter activation was examined by using a luminometer and luciferase assay. Calorimetric Beta-galactosidase assays were performed to correct for transfection efficiency. Luciferase expression vectors of cAMP-downstream molecules, CRE and AP-1, were used to further examine the signaling cascades. Results cAMP stimulation induced AP-1 and CRE promoter expression and led to dose-dependent CRH promoter activation in JEG3 cells. Inhibition of MyD88 signaling blocked cAMP-induced CRE and CRH promoter activation. Inhibition of TRIF signaling blocked cAMP-induced CRH but not CRE expression, while inhibition of IRAK2 did not have an effect on cAMP-induced CRH expression. Conclusion MyD88 and TRIF exert direct regulatory effect on cAMP-induced CRH promoter activation in JEG3 cells in the absence of infection. MyD88 most likely interacts with molecules upstream of IRAK2 to regulate cAMP-induced CRH expression.

  8. Amelioration of Diabetic Mouse Nephropathy by Catalpol Correlates with Down-Regulation of Grb10 Expression and Activation of Insulin-Like Growth Factor 1 / Insulin-Like Growth Factor 1 Receptor Signaling.

    Directory of Open Access Journals (Sweden)

    Shasha Yang

    Full Text Available Growth factor receptor-bound protein 10 (Grb10 is an adaptor protein that can negatively regulate the insulin-like growth factor 1 receptor (IGF-1R. The IGF1-1R pathway is critical for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropathy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has been reported to possess anti-inflammatory and anti-aging activities and then used to treat diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-associated complication. Our results showed that catalpol treatment improved diabetes-associated impaired renal functions and ameliorated pathological changes in kidneys of diabetic mice. We also found that Grb10 expression was significantly elevated in kidneys of diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol significantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary, IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of catalpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that elevated Grb10 expression may play an important role in the pathogenesis of diabetic nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a potential molecular target of catalpol for the treatment of this diabetic complication.

  9. Inhibition of the colony-stimulating-factor-1 receptor affects the resistance of lung cancer cells to cisplatin.

    Science.gov (United States)

    Pass, Harvey I; Lavilla, Carmencita; Canino, Claudia; Goparaju, Chandra; Preiss, Jordan; Noreen, Samrah; Blandino, Giovanni; Cioce, Mario

    2016-08-30

    In the present work we show that multiple lung cancer cell lines contain cisplatin resistant cell subpopulations expressing the Colony-Stimulating-Factor-Receptor-1 (CSF-1R) and surviving chemotherapy-induced stress. By exploiting siRNA-mediated knock down in vitro and the use of an investigational CSF-1R TKI (JNJ-40346527) in vitro and in vivo, we show that expression and function of the receptor are required for the clonogenicity and chemoresistance of the cell lines. Thus, inhibition of the kinase activity of the receptor reduced the levels of EMT-associated genes, stem cell markers and chemoresistance genes. Additionally, the number of high aldehyde dehydrogenase (ALDH) expressing cells was reduced, consequent to the lack of cisplatin-induced increase of ALDH isoforms. This affected the collective chemoresistance of the treated cultures. Treatment of tumor bearing mice with JNJ-40346527, at pharmacologically relevant doses, produced strong chemo-sensitizing effects in vivo. These anticancer effects correlated with a reduced number of CSF-1Rpos cells, in tumors excised from the treated mice. Depletion of the CD45pos cells within the treated tumors did not, apparently, play a major role in mediating the therapeutic response to the TKI. Thus, lung cancer cells express a functional CSF-1 and CSF-1R duo which mediates pro-tumorigenic effects in vivo and in vitro and can be targeted in a therapeutically relevant way. These observations complement the already known role for the CSF-1R at mediating the pro-tumorigenic properties of tumor-infiltrating immune components.

  10. Antidepressants blunt the effects of inescapable stress on male mating behaviour and decrease corticotropin-releasing hormone mRNA expression in the hypothalamic paraventricular nucleus of the Syrian hamster (Mesocricetus auratus).

    Science.gov (United States)

    Cordner, A P; Herwood, M B; Helmreich, D L; Parfitt, D B

    2004-07-01

    Stress decreases sexual activity. However, emerging research suggests that the psychological aspect of control prevents the detrimental effects of stress on male mating behaviour. The present study examined the effects of chronic escapable/inescapable stress on mating behaviour in the male Syrian hamster. Additionally, the ability of the antidepressant clomipramine to prevent the adverse effects of stress on mating behaviour was explored. In this paradigm, two groups received the same electric footshock stress, but differed in the psychological aspect of control. Cohorts were divided into two groups. One group received clomipramine via a sugar water solution while the other received plain sugar water. Mating behaviour was quantified before and after 12 consecutive days of stress. The morning following the final stress and behaviour session, trunk blood and brains were collected to assess: (i) plasma concentrations of testosterone and glucocorticoids and (ii) corticotropin-releasing hormone (CRH) mRNA expression within the paraventricular nucleus of the hypothalamus (PVN). In the drug-free groups, several aspects of mating behaviour were disrupted by inescapable but not escapable stress, including anogenital investigation before the first ejaculation and time of first ejaculation. Additionally, both escapable and inescapable stress caused a decrease in total hit rate compared to the no-stress control group. Unlike the sugar-water treated animals, hamsters in either stress condition receiving clomipramine showed no differences in anogenital investigation, time of first ejaculation, hit rate, or any other aspect of mating behaviour measured, compared to the clomipramine no-stress control males. The stress-induced inhibition of mating behaviour could not be explained by changes in baseline plasma concentrations of testosterone or total glucocorticoids; these values did not vary between any of the six treatment groups. It was found that clomipramine lowers CRH m

  11. Targeting Corticotropin-Releasing Factor Projections from the Oval Nucleus of the Bed Nucleus of the Stria Terminalis Using Cell-Type Specific Neuronal Tracing Studies in Mouse and Rat Brain.

    Science.gov (United States)

    Dabrowska, J; Martinon, D; Moaddab, M; Rainnie, D G

    2016-12-01

    The bed nucleus of the stria terminalis (BNST) is known to play a critical role in mediating the behavioural and autonomic responses to stressors. The oval nucleus of the BNST (BNSTov) contains cell bodies that synthesise the stress hormone corticotropin-releasing factor (CRF). Although afferent fibres originating from the BNSTov have been shown to innervate several key structures of the neuroendocrine and central autonomic system, the question remains as to whether some of these fibres are CRF-positive. To directly address this question, we injected a 'floxed' anterograde tracer (rAAV5/EF1a-DIO-mCherry) into the BNSTov of CRFp3.0CreGFP transgenic mice, which express a green fluorescent protein (GFP) under the control of the CRF promoter. Serial sections were then analysed for the presence of double-labelled fibres in potential projection sites. To determine whether CRF neurons in the rat BNSTov send comparable projections, we infused rat BNSTov with an adeno-associated viral vector (AAV) in which the human synapsin promoter drives enhanced GFP expression. We then used CRF immunoreactivity to examine double-labelled fluorescent fibres and axon terminals in projection sites from brain sections of the AAV-infused rats. We have observed several terminal fields in the mouse and rat brain with double-labelled fibres in the Dorsal raphe nucleus (DRD), the paraventricular nucleus of the hypothalamus and, to a lesser extent, in the ventral tegmental area. We found double-labelled terminal boutons in the nucleus accumbens shell, prelimbic cortex and posterior basolateral nucleus of the amygdala. The most intense double-labelling was found in midbrain, including substantia nigra pars compacta, red nucleus, periaqueductal grey and pontine nuclei, as well as DRD. The results of the present study indicate that CRF neurons are the output neurons of the BNSTov and they send projections not only to the centres of neuroendocrine and autonomic regulation, but also regions modulating

  12. Ten-year improvement of insulin resistance and growth with recombinant human insulin-like growth factor 1 in a patient with insulin receptor mutations resulting in leprechaunism.

    Science.gov (United States)

    de Kerdanet, M; Caron-Debarle, M; Nivot, S; Gaillot, T; Lascols, O; Fremont, B; Bonnaure-Mallet, M; Gie, S; Massart, C; Capeau, J

    2015-09-01

    Leprechaunism, a rare genetic disease resulting from mutations in two alleles of the insulin receptor gene, is characterized by severe insulin resistance, retarded growth and, usually, premature death. The ability of treatment with recombinant human insulin-like growth factor 1 (rhIGF1) to improve metabolic and clinical parameters in the long-term is still controversial. Mutations were looked for in the insulin receptor gene of a four-month-old female baby with leprechaunism. The patient's skin fibroblasts were analyzed for response to insulin and IGF1. At the clinical level, the very long-term effects of treatment with rhIGF1/rhIGFBP3 were evaluated by clinical and metabolic parameters. The patient's diagnosis was based on compound heterozygous mutations in two alleles of the insulin receptor gene, thus confirming leprechaunism. Cultured fibroblasts showed a decreased number of insulin receptors and were insulin-resistant. However, IGF1 was able to stimulate IGF1 receptor signalling, suggesting possible activation of a salvage pathway. Treatment with IGF1/IGFBP3 for 8.7 years, then IGF1 for 2 years, resulted in normalization of circulating levels of IGF1 and IGFBP3. Large daily variations in glycaemia and insulinaemia persisted, but mean glycaemia decreased. Regarding growth, the patient's BMI Z score normalized and length/height score improved. Our patient presented normal neurological development and academic achievement. The treatment was free of adverse effects. Our results provide evidence that rhIGF1 with and without rhIGFBP3 can prevent fatal outcomes, and improve growth and metabolic parameters, for more than 10 years in a patient with leprechaunism. Long-term rhIGF1 for severe insulin resistance syndrome should be considered. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Modulation of insulin-like growth factor-1 receptor and its signaling network for the treatment of cancer: current status and future perspectives

    Directory of Open Access Journals (Sweden)

    Meizhong Jin

    2013-04-01

    Full Text Available Based on over three decades of pre-clinical data, insulin-like growth factor-1 receptor (IGF-1R signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF-1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF- 1R targeted therapies (e.g. monoclonal antibodies and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such findings have led to the development of small molecule IGF-1R inhibitors which also co-inhibit additional targets such as insulin receptor and epidermal growth factor receptor. Such findings have helped to guide the design rationale of numerous drug combinations that are currently being evaluated in clinical trials.

  14. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  15. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma

    NARCIS (Netherlands)

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Boezen, Hendrika; de Bock, Geertruida H; van der Graaf, Wilhelmina; Wesseling, Jelle

    2011-01-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast

  16. Molecular cloning and function expression of a diuretic hormone receptor from the house cricket, Acheta domesticus.

    Science.gov (United States)

    Reagan, J D

    1996-01-01

    Insect diuretic hormones regulate fluid and ion secretion and the receptors with which they interact are attractive targets for new insect control agents. Recently, a diuretic hormone receptor from the moth Manduca sexta was isolated by expression cloning and found to be a member of the calcitonin/secretin/corticotropin releasing factor family of G-protein coupled receptors [Reagan J. D. (1994) J. Biol. Chem. 269, 9-12]. Degenerate oligonucleotides were designed based upon conserved regions in this receptor family and used to isolate a diuretic hormone receptor from the house cricket, Acheta domesticus. The complementary DNA isolated encodes a protein consisting of 441 amino acids with seven putative membrane spanning regions. Interestingly, unlike the M. sexta diuretic hormone receptor, the cricket diuretic hormone receptor contains a putative signal sequence. The receptor shares 53% and 38% sequence identity with the M. sexta diuretic hormone and human corticotropin releasing factor receptors respectively. When expressed in COS-7 cells, the receptor binds A. domesticus diuretic hormone with high affinity and stimulates adenylate cyclase with high potency. Four other insect diuretic hormones are considerably less effective at stimulating adenylate cyclase in COS-7 cells transfected with the receptor. This is in contrast to the M. sexta diuretic hormone receptor which is stimulated by all five insect diuretic hormones with high potency.

  17. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  19. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Regulation of mouse skeletal muscle L-type Ca2+ channel by activation of the insulin-like growth factor-1 receptor.

    Science.gov (United States)

    Delbono, O; Renganathan, M; Messi, M L

    1997-09-15

    We investigated the modulation of the skeletal muscle L-type Ca2+ channel/dihydropyridine receptor in response to insulin-like growth factor-1 receptor (IGF-1R) activation in single extensor digitorum longus muscle fibers from adult C57BL/6 mice. The L-type Ca2+ channel activity in its dual role as a voltage sensor and a selective Ca2+-conducting pore was recorded in voltage-clamp conditions. Peak Ca2+ current amplitude consistently increased after exposure to 20 ng/ml IGF-1 (EC50 = 5.6 +/- 1.8 nM). Peak IGF-1 effect on current amplitude at -20 mV was 210 +/- 18% of the control. Ca2+ current potentiation resulted from a shift in 13 mV of the Ca2+ current-voltage relationship toward more negative potentials. The IGF-1-induced facilitation of the Ca2+ current was not associated with an effect on charge movement amplitude and/or voltage distribution. These phenomena suggest that the L-type Ca2+ channel structures involved in voltage sensing are not involved in the response to the growth factor. The modulatory effect of IGF-1 on L-type Ca2+ channel was blocked by tyrosine kinase and PKC inhibitors, but not by a cAMP-dependent protein kinase inhibitor. IGF-1-dependent phosphorylation of the L-type Ca2+ channel alpha1 subunit was demonstrated by incorporation of [gamma-32P]ATP to monolayers of adult fast-twitch skeletal muscles. IGF-1 induced phosphorylation of a protein at the 165 kDa band, corresponding to the L-type Ca2+ channel alpha1 subunit. These results show that the activation of the IGF-1R facilitates skeletal muscle L-type Ca2+ channel activity via a PKC-dependent phosphorylation mechanism.

  1. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Directory of Open Access Journals (Sweden)

    Stroh Thorsten

    2011-05-01

    Full Text Available Abstract Background In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush Lindera obtusiloba (L.obtusiloba is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of L.obtusiloba extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of L.obtusiloba extract on human hepatocellular carcinoma (HCC cell lines and the signaling pathways involved. Methods Four human HCC cell lines representing diverse stages of differentiation were treated with L.obtusiloba extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined. Results L.obtusiloba extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, L.obtusiloba extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase. Conclusions The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized L.obtusiloba extract should be further analysed for its active compounds and explored as (complementary treatment option for HCC.

  2. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors.

    Science.gov (United States)

    Papadopoulos, Kyriakos P; Gluck, Larry; Martin, Lainie P; Olszanski, Anthony J; Tolcher, Anthony W; Ngarmchamnanrith, Gataree; Rasmussen, Erik; Amore, Benny M; Nagorsen, Dirk; Hill, John S; Stephenson, Joe

    2017-10-01

    Purpose: Binding of colony-stimulating factor 1 (CSF1) ligand to the CSF1 receptor (CSF1R) regulates survival of tumor-associated macrophages, which generally promote an immunosuppressive tumor microenvironment. AMG 820 is an investigational, fully human CSF1R antibody that inhibits binding of the ligands CSF1 and IL34 and subsequent ligand-mediated receptor activation. This first-in-human phase I study evaluated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of AMG 820.Experimental Design: Adult patients with relapsed or refractory advanced solid tumors received intravenous AMG 820 0.5 mg/kg once weekly or 1.5 to 20 mg/kg every 2 weeks until disease progression, adverse event (AE), or consent withdrawal.Results: Twenty-five patients received ≥1 dose of AMG 820. AMG 820 was tolerated up to 20 mg/kg; the MTD was not reached. One dose-limiting toxicity was observed (20 mg/kg; nonreversible grade 3 deafness). Most patients (76%) had treatment-related AEs; the most common were periorbital edema (44%), increased aspartate aminotransferase (AST; 28%), fatigue (24%), nausea (16%), increased blood alkaline phosphatase (12%), and blurred vision (12%). No patients had serious or fatal treatment-related AEs; 28% had grade ≥3 treatment-related AEs. Grade 3 AST elevations resolved when treatment was withheld. AMG 820 showed linear pharmacokinetics, with minimal accumulation (AMG 820 was tolerated with manageable toxicities up to 20 mg/kg every 2 weeks. Pharmacodynamic response was demonstrated, and limited antitumor activity was observed. Clin Cancer Res; 23(19); 5703-10. ©2017 AACR. ©2017 American Association for Cancer Research.

  3. Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors.

    Science.gov (United States)

    Jones, Robin L; Kim, Edward S; Nava-Parada, Pilar; Alam, Salma; Johnson, Faye M; Stephens, Andrew W; Simantov, Ronit; Poondru, Srinivasu; Gedrich, Rich; Lippman, Scott M; Kaye, Stan B; Carden, Craig P

    2015-02-15

    We determined the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, and preliminary activity of OSI-906, a potent, oral, dual inhibitor of insulin-like growth factor-1 receptor (IGF1R) and insulin receptor (IR), in patients with advanced solid tumors. This was a multicenter, open-label, dose escalation phase I study evaluating three intermittent dosing schedules of once-daily OSI-906 [schedule (S) 1, days 1-3 every 14 days; S2, days 1-5 every 14 days; S3, days 1-7 every 14 days]. A fed-fasting expansion cohort was included in the study. Seventy-nine patients were enrolled: 62 in S1, 4 in S2, and 13 in S3. S2 was discontinued. Dose-limiting toxicity comprised grade 3-4 hyperglycemia, vomiting, fatigue, and prolonged QTc interval. The MTD and recommended phase II dose of OSI-906 was 600 mg for both S1 and S3 schedules. Other common adverse events were grade 1-2 nausea, vomiting, fatigue, and diarrhea. The pharmacokinetics of OSI-906 was dose linear, and the terminal half-life ranged between 2 and 6 hours. High-fat meals had a moderate effect on the pharmacokinetics of OSI-906. At the MTD, inhibition of IGF1R and IR was observed in peripheral blood mononuclear cells. An increase in plasma IGF1 concentrations, an indirect measure of IGF1R signaling inhibition, was seen at doses ≥ 450 mg. Two patients with adrenocortical carcinoma achieved partial responses. The MTD of 600 mg was well tolerated and associated with preliminary antitumor activity. These data support further evaluation of OSI-906 in solid tumors. ©2014 American Association for Cancer Research.

  4. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates

    Science.gov (United States)

    Doloff, Joshua C.; Veiseh, Omid; Vegas, Arturo J.; Tam, Hok Hei; Farah, Shady; Ma, Minglin; Li, Jie; Bader, Andrew; Chiu, Alan; Sadraei, Atieh; Aresta-Dasilva, Stephanie; Griffin, Marissa; Jhunjhunwala, Siddharth; Webber, Matthew; Siebert, Sean; Tang, Katherine; Chen, Michael; Langan, Erin; Dholokia, Nimit; Thakrar, Raj; Qi, Meirigeng; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.

    2017-06-01

    Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.

  5. Modulation of insulin-like growth factor-1 receptor and its signaling network for the treatment of cancer: Current status and future perspectives

    Directory of Open Access Journals (Sweden)

    Meizhong Jin

    2013-04-01

    Full Text Available Based on over three decades of preclinical data, insulin-like growth factor-1 receptor (IGF-1R signaling has gained recognition as a promoter of tumorogenesis, driving cell survival and proliferation in multiple human cancers. As a result, IGF-1R has been pursued as a target for cancer treatment. Early pioneering efforts targeting IGF- 1R focused on highly selective monoclonal antibodies, with multiple agents advancing to clinical trials. However, despite some initial promising results, recent clinical disclosures have been less encouraging. Moreover, recent studies have revealed that IGF-1R participates in a dynamic and complex signaling network, interacting with additional targets and pathways thereof through various crosstalk and compensatory signaling mechanisms. Such mechanisms of bypass signaling help to shed some light on the decreased effectiveness of selective IGF-1R targeted therapies (e.g. monoclonal antibodies and suggest that targeting multiple nodes within this signaling network might be necessary to produce a more effective therapeutic response. Additionally, such finding have led to the development of small molecule IGF-1R inhibitors which also coinhibit additional targets such as IR and EGFR. Such findings have helped to guide the rationale design of numerous drug combinations which are currently being evaluated in clinical trials.

  6. Age and Expression of CD163 and Colony-Stimulating Factor 1 Receptor (CD115) Are Associated With the Biological Behavior of Central Giant Cell Granuloma.

    Science.gov (United States)

    Kahn, Adrian; Chaushu, Gavriel; Ginene, Lana; Vered, Marilena

    2017-07-01

    Central giant cell granulomas (CGCGs) are clinically classified as nonaggressive (nA-CGCGs) and aggressive (A-CGCGs). However, histopathologically, all lesions feature spindle mononuclear cells (MCs) and multinuclear giant cells (GCs) in a hemorrhage-rich stroma. We aimed to investigate the presence of cells with a monocyte- or macrophage-related phenotype and, together with clinical variables, to examine their predictive potential for the biological behavior of CGCGs. For our investigation, we implemented a retrospective cohort study. Sections were immunohistochemically stained for colony-stimulating factor 1 receptor (CSF-1R) (CD115), CD163, CD68, and nuclear factor κB. The clinical variables included age, gender, and location of lesions. Associations between immunostains, clinical variables, and CGCG aggressiveness were analyzed by the Wilcoxon (Mann-Whitney) exact test and t test. Significant variables were further analyzed by a logistic regression model followed by receiver operating characteristic (ROC) curve analysis for diagnostic sensitivity. Significance was set at P CSF-1R (CD115)-MC combined were the best predictor in distinguishing nA-CGCGs from A-CGCGs (area under ROC curve, 0.814; P CSF-1R (CD115)-MC can serve as significant predictors of nA-CGCGs. A functional link between CD163-GC and the characteristic areas of extravasation of erythrocytes is discussed. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Molecular cloning, pathologically-correlated expression and functional characterization of the colonystimulating factor 1 receptor (CSF-1R) gene from a teleost, Plecoglossus altivelis.

    Science.gov (United States)

    Chen, Qiang; Lu, Xin-Jiang; Li, Ming-Yun; Chen, Jiong

    2016-03-18

    Colony-stimulating factor 1 receptor (CSF-1R) is an important regulator of monocytes/macrophages (MO/MΦ). Although several CSF-1R genes have been identified in teleosts, the precise role of CSF- 1R in ayu (Plecoglossus altivelis) remains unclear. In this study, we characterized the CSF-1R homologue from P. altivelis, and named it PaCSF-1R. Multiple sequence alignment and phylogenetic tree analysis showed that PaCSF-1R was most closely related to that of Japanese ricefish (Oryzias latipes). Tissue distribution and expression analysis showed that the PaCSF-1R transcript was mainly expressed in the head kidney-derived MO/MΦ, spleen, and head kidney, and its expression was significantly altered in various tissues upon Vibrio anguillarum infection. After PaCSF-1R neutralization for 48 h, the phagocytic activity of MO/MΦ was significantly decreased, suggesting that PaCSF-1R plays a role in regulating the phagocytic function of ayu MO/MΦ.

  8. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma.

    Science.gov (United States)

    Ao, Jian-Yang; Zhu, Xiao-Dong; Chai, Zong-Tao; Cai, Hao; Zhang, Yuan-Yuan; Zhang, Ke-Zhi; Kong, Ling-Qun; Zhang, Ning; Ye, Bo-Gen; Ma, De-Ning; Sun, Hui-Chuan

    2017-08-01

    Colony-stimulating factor-1 (CSF-1) and its receptor, CSF-1R, regulate the differentiation and function of macrophages and play an important role in macrophage infiltration in the context of hepatocellular carcinoma. The therapeutic effects of CSF-1R blockade in hepatocellular carcinoma remain unclear. In this study, we found that CSF-1R blockade by PLX3397, a competitive inhibitor with high specificity for CSF-1R tyrosine kinase, significantly delayed tumor growth in mouse models. PLX3397 inhibited the proliferation of macrophages in vitro, but intratumoral macrophage infiltration was not decreased by PLX3397 in vivo Gene expression profiling of tumor-associated macrophages (TAM) showed that TAMs from the PLX3397-treated tumors were polarized toward an M1-like phenotype compared with those from vehicle-treated tumors. In addition, PLX3397 treatment increased CD8(+) T-cell infiltration, whereas CD4(+) T-cell infiltration was decreased. Further study revealed that tumor cell-derived CSF-2 protected TAMs from being depleted by PLX3397. In conclusion, CSF-1R blockade delayed tumor growth by shifting the polarization rather than the depletion of TAMs. CSF-1R blockade warrants further investigation in the treatment of hepatocellular carcinoma. Mol Cancer Ther; 16(8); 1544-54. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. The colony-stimulating factor-1 (CSF-1 receptor sustains ERK1/2 activation and proliferation in breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Andrea Morandi

    Full Text Available Breast cancer is the second leading cause of cancer-related deaths in western countries. Colony-Stimulating Factor-1 (CSF-1 and its receptor (CSF-1R regulate macrophage and osteoclast production, trophoblast implantation and mammary gland development. The expression of CSF-1R and/or CSF-1 strongly correlates with poor prognosis in several human epithelial tumors, including breast carcinomas. We demonstrate that CSF-1 and CSF-1R are expressed, although at different levels, in 16/17 breast cancer cell lines tested with no differences among molecular subtypes. The role of CSF-1/CSF-1R in the proliferation of breast cancer cells was then studied in MDAMB468 and SKBR3 cells belonging to different subtypes. CSF-1 administration induced ERK1/2 phosphorylation and enhanced cell proliferation in both cell lines. Furthermore, the inhibition of CSF-1/CSF-1R signaling, by CSF-1R siRNA or imatinib treatment, impaired CSF-1 induced ERK1/2 activation and cell proliferation. We also demonstrate that c-Jun, cyclin D1 and c-Myc, known for their involvement in cell proliferation, are downstream CSF-1R in breast cancer cells. The presence of a proliferative CSF-1/CSF-1R autocrine loop involving ERK1/2 was also found. The wide expression of the CSF-1/CSF-1R pair across breast cancer cell subtypes supports CSF-1/CSF-1R targeting in breast cancer therapy.

  10. Studies on Colony Stimulating Factor Receptor-1 and Ligands Colony Stimulating Factor-1 and Interleukin-34 in Alzheimer's Disease Brains and Human Microglia.

    Science.gov (United States)

    Walker, Douglas G; Tang, Tiffany M; Lue, Lih-Fen

    2017-01-01

    Microglia are dependent on signaling through the colony stimulating factor-1 receptor (CSF-1R/CD115) for growth and survival. Activation of CSF-1R can lead to cell division, while blocking CSF-1R can lead to rapid microglia cell death. CSF-1R has two ligands, the growth factors colony stimulating factor-1 (CSF-1) and the more recently identified interleukin-34 (IL-34). Studies of IL-34 activation of rodent microglia and human macrophages have suggested it has different properties to CSF-1, resulting in an anti-inflammatory reparative phenotype. The goal of this study was to identify if the responses of human postmortem brain microglia to IL-34 differed from their responses to CSF-1 with the aim of identifying different phenotypes of microglia as a result of their responses. To approach this question, we also sought to identify differences between IL-34, CSF-1, and CSF-1R expression in human brain samples to establish whether there was an imbalance in Alzheimer's disease (AD). Using human brain samples [inferior temporal gyrus (ITG) and middle temporal gyrus (MTG)] from distinct cohorts of AD, control and high pathology, or mild cognitive impairment cases, we showed that there was increased expression of CSF-1R and CSF-1 mRNAs in both series of AD cases, and reduced expression of IL-34 mRNA in AD ITG samples. There was no change in expression of these genes in RNA from cerebellum of AD, Parkinson's disease (PD), or control cases. The results suggested an imbalance in CSF-1R signaling in AD. Using RNA sequencing to compare gene expression responses of CSF-1 and IL-34 stimulated human microglia, a profile of responses to CSF-1 and IL-34 was identified. Contrary to earlier work with rodent microglia, IL-34 induced primarily a classical activation response similar to that of CSF-1. It was not possible to identify any genes expressed significantly different by IL-34-stimulated microglia compared to CSF-1-stimulated microglia, but both cytokines did induce certain

  11. Studies on Colony Stimulating Factor Receptor-1 and Ligands Colony Stimulating Factor-1 and Interleukin-34 in Alzheimer's Disease Brains and Human Microglia

    Directory of Open Access Journals (Sweden)

    Douglas G. Walker

    2017-08-01

    Full Text Available Microglia are dependent on signaling through the colony stimulating factor-1 receptor (CSF-1R/CD115 for growth and survival. Activation of CSF-1R can lead to cell division, while blocking CSF-1R can lead to rapid microglia cell death. CSF-1R has two ligands, the growth factors colony stimulating factor-1 (CSF-1 and the more recently identified interleukin-34 (IL-34. Studies of IL-34 activation of rodent microglia and human macrophages have suggested it has different properties to CSF-1, resulting in an anti-inflammatory reparative phenotype. The goal of this study was to identify if the responses of human postmortem brain microglia to IL-34 differed from their responses to CSF-1 with the aim of identifying different phenotypes of microglia as a result of their responses. To approach this question, we also sought to identify differences between IL-34, CSF-1, and CSF-1R expression in human brain samples to establish whether there was an imbalance in Alzheimer's disease (AD. Using human brain samples [inferior temporal gyrus (ITG and middle temporal gyrus (MTG] from distinct cohorts of AD, control and high pathology, or mild cognitive impairment cases, we showed that there was increased expression of CSF-1R and CSF-1 mRNAs in both series of AD cases, and reduced expression of IL-34 mRNA in AD ITG samples. There was no change in expression of these genes in RNA from cerebellum of AD, Parkinson's disease (PD, or control cases. The results suggested an imbalance in CSF-1R signaling in AD. Using RNA sequencing to compare gene expression responses of CSF-1 and IL-34 stimulated human microglia, a profile of responses to CSF-1 and IL-34 was identified. Contrary to earlier work with rodent microglia, IL-34 induced primarily a classical activation response similar to that of CSF-1. It was not possible to identify any genes expressed significantly different by IL-34-stimulated microglia compared to CSF-1-stimulated microglia, but both cytokines did induce

  12. Expression of estrogen receptors in non-malignant mammary tissue modifies the association between insulin-like growth factor 1 and breast cancer risk.

    Science.gov (United States)

    Samoli, E; Lagiou, A; Zourna, P; Barbouni, A; Georgila, C; Tsikkinis, A; Vassilarou, D; Minaki, P; Sfikas, C; Spanos, E; Trichopoulos, D; Lagiou, P

    2015-04-01

    Several studies have reported that the insulin-like growth factor 1 (IGF-1) is positively associated with estrogen receptor-positive [ER(+)] breast cancer risk, whereas there is little or no association with respect to ER(-) breast cancer. All comparisons of ER(+) breast cancer cases, however, have been made versus healthy controls, for whom there is no information about the ER expression in their mammary gland. In the context of a case-control investigation conducted in Athens, Greece, we studied 102 women with incident ERα(+) breast cancer and compared their IGF-1 blood levels with those of 178 ERα(+) and 83 ERα(-) women with benign breast disease (BBD) who underwent biopsies in the context of their standard medical care. Data were analysed using multiple logistic regression and controlling for potential confounding variables. ERα(+) breast cancer patients had higher IGF-1 levels compared with women with BBD [odds ratio (OR) 1.36, 95% confidence interval (CI): 0.95-1.94, per 1 standard deviation (SD) increase in IGF-1 levels]. When ERα status of women with BBD was taken into account, the difference in IGF-1 levels between ERα(+) breast cancer patients and women with BBD was clearly driven by the comparison with BBD women who were ERα(+) (OR = 1.95, 95% CI: 1.31-2.89 per 1 SD increase in IGF-1 levels), whereas there was essentially no association with IGF-1 levels when ERα(+) breast cancer patients were compared with ERα(-) BBD women. These contrasts were particularly evident among post/peri-menopausal women. We found evidence in support of an interaction of IGF-1 with the expression of ERα in the non-malignant mammary tissue in the context of breast cancer pathogenesis. This is in line with previous evidence suggesting that IGF-1 increases the risk of ER(+) breast cancer. Published by Oxford University Press on behalf of the European Society for Medical Oncology 2014.

  13. Pituitary tumor transforming gene and insulin-like growth factor 1 receptor expression and immunohistochemical measurement of Ki-67 as potential prognostic markers of pituitary tumors aggressiveness.

    Science.gov (United States)

    Sánchez-Tejada, Laura; Sánchez-Ortiga, Ruth; Moreno-Pérez, Oscar; Montañana, Carmen Fajardo; Niveiro, Maria; Tritos, Nicholas A; Alfonso, Antonio M Picó

    2013-01-01

    The ability to predict recurrence of pituitary adenoma (PA) after surgery may be helpful to determine follow-up frequency and the need for adjuvant treatment. The purpose of this study was to assess the prognostic capacity of pituitary tumor transforming gene (PTTG), insulin-like growth factor 1 receptor (IGF1R), and Ki-67. In this retrospective study, the normalized copy number (NCN) of PTIG and IGF1R mRNA was measured using RT-PCR, and the Ki-67 index was measured by immunohistochemistry in 46 PA samples. Clinical data, histological subtype, and radiographic characteristics were collected to assess associations between variables and tumor behavior. Progression of tumor remnants and its association to markers was also studied in 14 patients with no adjuvant treatment after surgery followed up for 46±36 months. Extrasellar tumors had a lower PTTG expression as compared to sellar tumors (0.065 [1st-3rd quartile: 0.000-0.089] NCN vs. 0.135 [0.105-0.159] NCN, p=0.04). IGF1R expression changed depending on histological subtype (p=0.014), and was greater in tumor with remnant growth greater than 20% during follow-up (10.69±3.84 NCN vs. 5.44±3.55 NCN, p=0.014). Our results suggest that the IGF1R is a more helpful molecular marker than PTTG in PA management. Ki-67 showed no association to tumor behavior. However, the potential of these markers should be established in future studies with standardized methods and on larger samples. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  14. High Expression of Colony-Stimulating Factor 1 Receptor Associates with Unfavorable Cancer-Specific Survival of Patients with Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Yang, Liu; Liu, Yidong; An, Huimin; Chang, Yuan; Zhang, Weijuan; Zhu, Yu; Xu, Le; Xu, Jiejie

    2016-03-01

    Colony-stimulating factor 1 receptor (CSF-1R), a single-pass type III transmembrane tyrosine-protein kinase, is mainly involved in inflammation and immune regulation to facilitate the progression of solid tumors. This study aimed to evaluate the impact of CSF-1R expression on clinical outcome of patients with clear cell renal cell carcinoma (ccRCC) after surgery. We retrospectively enrolled 268 patients with ccRCC undergoing nephrectomy between 2001 and 2004. Clinicopathologic features and cancer-specific survival (CSS) were collected. Western blot analysis was performed in the pairwise comparisons of CSF-1R expression in peritumor and tumor tissues of patients with ccRCC. Immunohistochemistry was conducted to determine CSF-1R expression level in tumor specimens. Survival analysis was performed by the Kaplan-Meier method. Cox regression models were used to evaluate the impact of prognostic factors on CSS. A concordance index was calculated to measure prognostic accuracy. A prognostic nomogram was constructed on the basis of the identified independent prognostic factors. CSF-1R expression in tumor tissues was higher than in peritumor tissues in 71.4% (5 of 7) patients. CSF-1R expression of tumor tissues was positively associated with metastasis, tumor, node, metastasis classification system (TNM) stage, Eastern Cooperative Oncology Group performance status score and poor CSS. CSF-1R expression was determined as an independent prognostic factor for CSS in patients with ccRCC. Furthermore, extension of the well-established prognostic models with CSF-1R expression presented significantly improved prognostic accuracy. An efficient prognostic nomogram was constructed on the basis of the independent prognostic factors. High CSF-1R expression is a potential independent adverse prognostic factor for CSS in patients with ccRCC.

  15. High Expression of Macrophage Colony-Stimulating Factor-1 Receptor in Peritumoral Liver Tissue Is Associated with Poor Outcome in Hepatocellular Carcinoma After Curative Resection

    Science.gov (United States)

    Jia, Jin-Bin; Wang, Wen-Quan; Sun, Hui-Chuan; Zhu, Xiao-Dong; Liu, Liang; Zhuang, Peng-Yuan; Zhang, Ju-Bo; Zhang, Wei; Xu, Hua-Xiang; Kong, Ling-Qun; Lu, Lu; Wu, Wei-Zhong; Wang, Lu

    2010-01-01

    Background. Macrophage colony-stimulating factor 1 receptor (CSF-1R) expression in hepatocellular carcinoma (HCC) and its prognostic values are unclear. This study evaluated the prognostic values of the intratumoral and peritumoral expression of CSF-1R in HCC patients after curative resection. Methods. Tissue microarrays containing material from cohort 1 (105 patients) and cohort 2 (32 patients) were constructed. Immunohistochemistry was performed and prognostic values of these and other clinicopathological data were evaluated. The CSF-1R mRNA level was assessed by quantitative real-time polymerase chain reaction in cohort 3 (52 patients). Results. Both the CSF-1R density and its mRNA level were significantly higher in peritumoral liver tissue than in the corresponding tumor tissue. CSF-1R was distributed in a gradient in the long-distance peritumoral tissue microarray, with its density decreasing as the distance from the tumor margin increased. High peritumoral CSF-1R was significantly associated with more intrahepatic metastases and poorer survival. Peritumoral CSF-1R was an independent prognostic factor for both overall survival and time to recurrence and affected the incidence of early recurrence. However, intratumoral CSF-1R did not correlate with any clinicopathological feature. Peritumoral CSF-1R was also associated with both overall survival and time to recurrence in a subgroup with small HCCs (≤5 cm). Conclusions. Peritumoral CSF-1R is associated with intrahepatic metastasis, tumor recurrence, and patient survival after hepatectomy, highlighting the critical role of the peritumoral liver milieu in HCC progression. CSF-1R may become a potential therapeutic target for postoperative adjuvant treatment. PMID:20551429

  16. MicroRNA-375 Inhibits Growth and Enhances Radiosensitivity in Oral Squamous Cell Carcinoma by Targeting Insulin Like Growth Factor 1 Receptor

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-08-01

    Full Text Available Background: MicroRNAs (miRNAs have emerged as key players in various human biological processes, including tumorigenesis. Here, we investigated the roles of miR-375 in the pathogenesis of oral squamous cell carcinoma (OSCC. Methods: We performed quantitative real-time PCR (qRT-PCR to detect miR-375 expression in OSCC tissues and corresponding normal oral epithelial tissues and analyze the correlation of miR-375 expression with OSCC metastasis and patient’s survival. Then, the effects of miR-375 expression on proliferation, cell cycle, apoptosis and radiosensitivity in OSCC cells were determined by using MTT, flow cytometry and clonogenic survival assays. A dual-luciferase reporter assay was performed to test whether miR-375 binds to the 3’-untranslated region (3’-UTR of target mRNA. Results: The expression level of miR-375 in OSCC tissues was significantly lower than that in normal oral epithelial tissues, and low miR-375 expression was correlated with higher incidence of lymph node metastasis and poor survival of OSCC patients. Upregulation of miR-375 significantly inhibits growth, induces cell cycle arrest in G0/G1 phase, increases apoptosis and enhances radiosensitivity in OSCC cells. Analysis of luciferase activity demonstrated that miR-375 binds to the 3’-UTR of insulin like growth factor 1 receptor (IGF-1R. Small interfering RNA (shRNA-mediated IGF-1R knockdown mimics the effects of miR-375 upregulation, while overexpression of IGF-1R partially reverses those effects in OSCC cells. Conclusion: It was obviously demonstrated that miRNA-375 inhibits growth and enhances radiosensitivity in OSCC cells by targeting IGF-1R, suggesting that miR-375 may be a potential therapeutic target for OSCC patients.

  17. Angiotensin II receptor blockers suppress the release of stromal cell-derived factor-1α from infarcted myocardium in patients with acute myocardial infarction.

    Science.gov (United States)

    Yoshizaki, Toru; Uematsu, Manabu; Obata, Jun-Ei; Nakamura, Takamitsu; Fujioka, Daisuke; Watanabe, Kazuhiro; Nakamura, Kazuto; Kugiyama, Kiyotaka

    2018-04-01

    Although angiotensin II receptor blockers (ARBs) have been shown to have anti-inflammatory effects on infarcted myocardium in experimental models, little is known in humans. Stromal cell-derived factor-1α (SDF-1α), a pro-inflammatory chemokine, is released from infarcted tissue in patients with acute myocardial infarction (AMI). This study examined whether ARBs suppress SDF-1α production in the infarcted lesion in patients with AMI. SDF-1α levels were measured by enzyme-linked immunosorbent assays in plasma obtained from the aortic root (AO) and the anterior interventricular vein (AIV) in 50 patients with an anterior AMI. Measurement of SDF-1α levels and left ventriculography were repeated at discharge and 6 months after AMI. Patients were divided into 2 groups according to treatment with ARBs, which were administered at the discretion of the attending physician after admission. The AIV-AO gradient of SDF-1α, reflecting SDF-1α release from the infarcted myocardial region, decreased between the time of discharge and 6 months after AMI in patients taking an ARB. In contrast, the SDF-1α transcardiac gradient did not change in patients not taking an ARB. Among the clinical parameters tested, only the use of ARBs was significantly associated with percent changes in the SDF-1α transcardiac gradient from the time of discharge to 6 months after AMI in a linear regression analysis (r=-0.31, p=0.03). The SDF-1α transcardiac gradient 6 months after AMI was inversely correlated with the percent change in left ventricular (LV) ejection fraction (r=-0.52, pinfarcted myocardial region, which was associated with improvement in LV dysfunction and adverse remodeling in AMI survivors. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  18. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Labovsky Vivian

    2012-06-01

    Full Text Available Abstract Background While breast cancer (BC is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG, receptor activator of nuclear factor kappa B ligand (RANKL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, stromal cell-derived factor-1 (SDF-1, and their receptors (R in 2 human BC cell lines, MDA-MB-231 and MCF-7. Methods OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. Results MCF-7 cells released higher levels of OPG in conditioned media (CM than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. Conclusions MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.

  19. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34.

    Science.gov (United States)

    Gow, Deborah J; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P; Fici, Greg J; Shelly, John A; Wilson, Thomas L; Hume, David A

    2012-12-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis.

    Science.gov (United States)

    Gao, Song; Wassler, Michael; Zhang, Lulu; Li, Yangxin; Wang, Jun; Zhang, Yi; Shelat, Harnath; Williams, Jason; Geng, Yong-Jian

    2014-01-01

    MicroRNA-133a (miR-133a) and insulin-like growth factor-1 (IGF-1) are two different molecules known to regulate cardiovascular cell proliferation. This study tested whether miR-133a affects expression of IGF-1 receptor (IGF-1R) and proliferation of IGF-1-stimulated vascular smooth muscle cells (VSMC) in a murine model of atherosclerosis. Expression of IGF-1R was analyzed by immuno-fluorescence and immuno-blotting, and miR-133a by qRT-PCR in the aortas of wild-type C57BL/6J (WT) and apolipoprotein-E deficient (ApoE(-/-)) mice. Compared to those in WT aortas, the IGF-1R and miR-133a levels were lower in ApoE(-/-) aortas. ApoE(-/-) VSMC grew slower than WT cells in the cultures with IGF-1-containing medium. MiR-133a-specific inhibitor decreased miR-133a, IGF-1R expression, IGF-1-stimulated VSMC growth in lipoprotein deficient media. By contrast, miR-133a precursor increased IGF-1R levels and promoted IGF-1-induced VSMC proliferation. In the luciferase-IGF-1R 3'UTR reporter system, the reporter luciferase activity was not inhibited in VSMC with miR-133a overexpression. IGF-1R mRNA half-life in ApoE(-/-) VSMC was shorter than that in WT VSMC. MiR-133a inhibitor reduced but precursor increased the mRNA half-life, although the effects appeared less striking in ApoE(-/-) VSMC than in WT cells. MiR-133a serves as a stimulatory factor for IGF-1R expression through prolonging IGF-1R mRNA half-life. In atherosclerosis induced by ApoE deficiency, reduced miR-133a expression is associated with lower IGF-1R levels and suppressive VSMC growth. Administration of miR-133a precursor may potentiate IGF-1-stimulated VSMC survival and growth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Peptide receptor radionuclide therapy with {sup 177}Lu-DOTATATE in advanced bronchial carcinoids: prognostic role of thyroid transcription factor 1 and {sup 18}F-FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Ianniello, Annarita; Sansovini, Maddalena; Severi, Stefano; Nicolini, Silvia; Caroli, Paola; Paganelli, Giovanni [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Nuclear Medicine and Radiometabolic Unit, Meldola (Italy); Grana, Chiara Maria [European Institute of Oncology Milan (IEO), Division of Nuclear Medicine, Milan (Italy); Massri, Katrin [Ospedale San Luca, Nuclear Medicine, Department of Radiology, Lucca (Italy); Bongiovanni, Alberto [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Osteoncology and Rare Tumors Center, Meldola (Italy); Antonuzzo, Lorenzo [AOU Careggi, SC Oncologia Medica 1, Firenze (Italy); Di Iorio, Valentina [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Oncology Pharmacy Laboratory, Meldola (Italy); Sarnelli, Anna [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Medical Physics Unit, Meldola (Italy); Monti, Manuela; Scarpi, Emanuela [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Unit of Biostatistics and Clinical Trials, Meldola (Italy)

    2016-06-15

    Typical and atypical carcinoids (TC and AC) represent 20 - 25 % of all neuroendocrine tumours. No standard therapeutic approach is available for patients with advanced disease. The aim of this phase II study was to investigate the efficacy and safety of peptide receptor radionuclide therapy with {sup 177}Lu-DOTATATE (Lu-PRRT) and the role of thyroid transcription factor 1 (TTF-1) and {sup 18}F-FDG PET as prognostic factors in patients with advanced TC or AC. A total of 34 consecutive patients with radiologically documented progressive disease were treated with Lu-PRRT at a therapeutic cumulative activity of 18.5 or 27.8 GBq in four or five cycles according to the patient's kidney function and bone marrow reserve. Information on TTF-1 was available in all patients. FDG PET studies prior to Lu-PRRT were available in 29 patients. The median follow-up was 29 months (range 7 - 69 months). The disease control rate (DCR) in patients with TC was 80 %: 6 % complete response, 27 % partial response and 47 % stable disease. The median progression-free survival (mPFS) was 20.1 months (95 % CI 11.8 - 26.8 months). Stable disease was achieved in 47 % of patients with AC with a mPFS of 15.7 months (95 % CI 10.6 - 25.9 months). No major acute or delayed toxicity occurred in either group or with either cumulative activity. mPFS in patients with TTF-1-negative TC was 26.3 months (95 % CI 12.9 - 45.2 months), but in patients with TTF-1-positive TC mPFS was 7.2 months (4.2 - 14.0 months; p = 0.0009). FDG PET was negative in 13 patients (10 TC and 3 AC) and positive in 16 patients (4 TC and 12 AC). The mPFS in the FDG PET-negative group was 26.4 months (95 % CI 14.2 - 48.9 months) and 15.3 months (11.7 - 31.1 months) in the FDG PET-positive group. Lu-PRRT showed antitumour activity in terms of DCR and PFS and proved safe, even in patients with a higher risk of side effects. TTF-1 would appear to be a prognostic factor. FDG PET positivity in bronchial carcinoids is a hallmark of

  2. MicroRNA-133a Regulates Insulin-like Growth Factor-1 Receptor Expression and Vascular Smooth Muscle Cell Proliferation in Murine Atherosclerosis

    Science.gov (United States)

    Gao, Song; Wassler, Michael; Zhang, Lulu; Li, Yangxin; Wang, Jun; Zhang, Yi; Shelat, Harnath; Williams, Jason; Geng, Yong-Jian

    2014-01-01

    Objective MicroRNA-133a (miR-133a) and insulin-like growth factor-1 (IGF-1) are two different molecules known to regulate cardiovascular cell proliferation. This study tested whether miR-133a affects expression of IGF-1 receptor (IGF-1R) and proliferation of IGF-1-stimulated vascular smooth muscle cells (VSMC) in a murine model of atherosclerosis. Methods and Results Expression of IGF-1R was analyzed by immuno-fluorescence and immuno-blotting, and miR-133a by qRT-PCR in the aortas of wild-type C57BL/6J (WT) and apolipoprotein-E deficient (ApoE−/−) mice. Compared to those in WT aortas, the IGF-1R and miR-133a levels were lower in ApoE−/− aortas. ApoE−/− VSMC grew slower than WT cells in the cultures with IGF-1-containing medium. MiR-133a-specific inhibitor decreased miR-133a, IGF-1R expression, IGF-1-stimulated VSMC growth in lipoprotein-deficient media. By contrast, miR-133a precursor increased IGF-1R levels and promoted IGF-1-induced VSMC proliferation. In the luciferase-IGF-1R 3’UTR reporter system, the reporter luciferase activity was not inhibited in VSMC with miR-133a overexpression. IGF-1R mRNA half-life in ApoE−/− VSMC was shorter than that in WT VSMC. MiR-133a inhibitor reduced but precursor increased the mRNA half-life, although the effects appeared less striking in ApoE−/− VSMC than in WT cells. Conclusion MiR-133a serves as a stimulatory factor for IGF-1R expression through prolonging IGF-1R mRNA half-life. In atherosclerosis induced by ApoE deficiency, reduced miR-133a expression is associated with lower IGF-1R levels and suppressive VSMC growth. Administration of miR-133a precursor may potentiate IGF-1 stimulated VSMC survival and growth. PMID:24401233

  3. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

    Directory of Open Access Journals (Sweden)

    Andreas Stengel

    2017-04-01

    Full Text Available Corticotropin-releasing factor (CRF is the hallmark brain peptide triggering the response to stress and mediates—in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA axis—other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  4. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee; Yi, Bo-Rim; Hyun, Sang-Hwan; Jeung, Eui-Bae; Choi, Kyung-Chul, E-mail: kchoi@cbu.ac.kr

    2013-11-01

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylation of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.

  5. GPCR Interaction: 191 [GRIPDB[Archive

    Lifescience Database Archive (English)

    Full Text Available hetero oligomer between corticotropin releasing hormone receptor (CRHR) and VT2 vasotocin receptor (VT2R)...and interfaces of CRHR B Corticotropin releasing hormone ... CRHR A Vasotocin VT2 VT2R Experiment TM IV of

  6. Branchial expression and localization of the insulin-like growth factor 1 (IGF-1) receptor and changes in plasma IGF-1 and IGF-1 binding protein in striped bass during salinity acclimation

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Madsen, Steffen; Borski, Russell

    2006-01-01

    In euryhaline teleosts the insulin-like growth factor 1 (IGF-1)/growth hormone axis is known to affect salinity tolerance and gill Na,K-ATPase activity. However, virtually nothing is known on expression and cellular localization of the IGF-1 receptor (IGF-1R) in the teleost gill during salinity...... acclimation. In the present study, primers for the IGF type 1 receptor from striped bass (Morone saxatilis) were designed for a real-time quantitative PCR assay. Two salinity transfer experiments were performed and the time-course of gill IGF-1R expression was examined in parallel with changes in plasma IGF-1...... in the striped bass. Transfer from freshwater (FW) to seawater (SW) induced an overall increase in gill IGF-1R mRNA expression (Peffect on gill IGF-1R expression, while plasma IGF-1...

  7. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling.

    Science.gov (United States)

    Hume, David A; MacDonald, Kelli P A

    2012-02-23

    Macrophage-colony stimulating factor (CSF-1) signaling through its receptor (CSF-1R) promotes the differentiation of myeloid progenitors into heterogeneous populations of monocytes, macrophages, dendritic cells, and bone-resorbing osteoclasts. In the periphery, CSF-1 regulates the migration, proliferation, function, and survival of macrophages, which function at multiple levels within the innate and adaptive immune systems. Macrophage populations elicited by CSF-1 are associated with, and exacerbate, a broad spectrum of pathologies, including cancer, inflammation, and bone disease. Conversely, macrophages can also contribute to immunosuppression, disease resolution, and tissue repair. Recombinant CSF-1, antibodies against the ligand and the receptor, and specific inhibitors of CSF-1R kinase activity have been each been tested in a range of animal models and in some cases, in patients. This review examines the potential clinical uses of modulators of the CSF-1/CSF-1R system. We conclude that CSF-1 promotes a resident-type macrophage phenotype. As a treatment, CSF-1 has therapeutic potential in tissue repair. Conversely, inhibition of CSF-1R is unlikely to be effective in inflammatory disease but may have utility in cancer.

  8. The Nutrient and Energy Sensor Sirt1 Regulates the Hypothalamic-Pituitary-Adrenal (HPA) Axis by Altering the Production of the Prohormone Convertase 2 (PC2) Essential in the Maturation of Corticotropin-releasing Hormone (CRH) from Its Prohormone in Male Rats.

    Science.gov (United States)

    Toorie, Anika M; Cyr, Nicole E; Steger, Jennifer S; Beckman, Ross; Farah, George; Nillni, Eduardo A

    2016-03-11

    Understanding the role of hypothalamic neuropeptides and hormones in energy balance is paramount in the search for approaches to mitigate the obese state. Increased hypothalamic-pituitary-adrenal axis activity leads to increased levels of glucocorticoids (GC) that are known to regulate body weight. The axis initiates the production and release of corticotropin-releasing hormone (CRH) from the paraventricular nucleus (PVN) of the hypothalamus. Levels of active CRH peptide are dependent on the processing of its precursor pro-CRH by the action of two members of the family of prohormone convertases 1 and 2 (PC1 and PC2). Here, we propose that the nutrient sensor sirtuin 1 (Sirt1) regulates the production of CRH post-translationally by affecting PC2. Data suggest that Sirt1 may alter the preproPC2 gene directly or via deacetylation of the transcription factor Forkhead box protein O1 (FoxO1). Data also suggest that Sirt1 may alter PC2 via a post-translational mechanism. Our results show that Sirt1 levels in the PVN increase in rats fed a high fat diet for 12 weeks. Furthermore, elevated Sirt1 increased PC2 levels, which in turn increased the production of active CRH and GC. Collectively, this study provides the first evidence supporting the hypothesis that PVN Sirt1 activates the hypothalamic-pituitary-adrenal axis and basal GC levels by enhancing the production of CRH through an increase in the biosynthesis of PC2, which is essential in the maturation of CRH from its prohormone, pro-CRH. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, M.F. (Univ. of Tennessee, Memphis (USA)); Shurtleff, S.A.; Downing, J.R. (Saint Jude Children' s Research Hospital, Memphis, TN (USA)); Sherr, C.J. (Univ. of Tennessee College of Medicine, Memphis (USA) Saint Jude Children' s Research Hospital, Memphis, TN (USA))

    1990-09-01

    Substitution of phenylalanine for tyrosine-809 in the human colony-stimulating factor 1 receptor (CSF-1R) inhibited its ability to transduce ligand-dependent mitogenic signals in mouse NIH 3T3 cells. When combined with an activating mutation at codon 301 that induces constitutive CSF-1R tyrosine kinase activity, the codon 809 mutation suppressed ligand-independent cell transformation. Comparative mapping tryptic phosphopeptides from mutant and wild-type CSF-1R indicated that tyrosine-809 is a site of ligand-dependent receptor phosphorylation in vivo. The mutant receptor was active as a tyrosine kinase in vitro and in vivo, underwent CSF-1-dependent association with a phosphatidylinositol 3-kinase, and induced expression of the protooncogenes c-fos and junB, underscoring its ability to trigger some of the known cellular responses to CSF-1. The mutant receptor is likely to be impaired in its ability to interact with critical cellular effectors whose activity is required for mitogenesis.

  10. Recruitment of bone marrow-derived cells to the periodontal ligament via the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 axis.

    Science.gov (United States)

    Kaku, M; Kitami, M; Rosales Rocabado, J M; Ida, T; Akiba, Y; Uoshima, K

    2017-08-01

    The periodontal ligament (PDL) is a non-mineralized connective tissue that exists between the alveolar bone and root surface cementum and plays important roles in tooth function. The PDL harbors a remarkable reserve of multipotent stem cells, which maintain various types of cells. However, the sources of these stem cells, other than their developmental origin, are not well understood. To elucidate the recruitment of bone marrow (BM)-derived stem cells in the PDL, green fluorescent protein (GFP)-expressing BM-derived cells were transplanted into the femoral BM of immunodeficient rats, and the distribution and expression of stem cell markers in the PDL were analyzed in vivo. To evaluate the functional significance of BM-derived cells to the PDL, tooth replantation was performed and the expression of stromal cell-derived factor (SDF)-1, a critical chemotactic signal for mesenchymal stem cell recruitment, was analyzed. To confirm the SDF-1-dependency of BM-derived cell migration to the PDL, PDL-conditioned medium (CM) was prepared, and BM-derived cell migration was analyzed using a transwell culture system. Four weeks after cell transplantation, GFP-positive cells were detected in the PDL, and some of them were also positive for stem cell markers (i.e., CD29, SSEA4, and αSMA). Seven days after tooth replantation, the number of GFP- and SDF-1-positive cells significantly increased in PDL. Concurrently, the concentration of SDF-1 and the number of colony-forming units of fibroblasts in peripheral blood were increased. BM-derived cell migration increased in PDL-CM and was inhibited by an inhibitor of C-X-C chemokine receptor type 4 (CXCR4), an SDF-1 receptor. These results indicate that stem cells and their progeny in PDL are not only derived from their developmental origin but are also supplied from the BM via the blood as the need arises. Moreover, this BM-derived cell recruitment appears to be regulated, at least partially, by the SDF-1/CXCR4 axis. © 2017 John Wiley

  11. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors.

    Science.gov (United States)

    Holmgaard, Rikke B; Zamarin, Dmitriy; Lesokhin, Alexander; Merghoub, Taha; Wolchok, Jedd D

    2016-04-01

    Tumor indoleamine 2,3-dioxygenase (IDO) promotes immunosuppression by direct action on effector T cells and Tregs and through recruitment, expansion and activation of myeloid-derived suppressor cells (MDSCs). Targeting of MDSCs is clinically being explored as a therapeutic strategy, though optimal targeting strategies and biomarkers predictive of response are presently unknown. Maturation and tumor recruitment of MDSCs are dependent on signaling through the receptor tyrosine kinase CSF-1R on myeloid cells. Here, we show that MDSCs are the critical cell population in IDO-expressing B16 tumors in mediating accelerated tumor outgrowth and resistance to immunotherapy. Using a clinically relevant drug, we show that inhibition of CSF-1R signaling can functionally block tumor-infiltrating MDSCs and enhance anti-tumor T cell responses. Furthermore, inhibition of CSF-1R sensitizes IDO-expressing tumors to immunotherapy with T cell checkpoint blockade, and combination of CSF-1R blockade with IDO inhibitors potently elicits tumor regression. These findings provide evidence for a critical and functional role for MDSCs on the in vivo outcome of IDO-expressing tumors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Bernis

    2013-10-01

    Full Text Available Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r and the phosphatidylinositol 3 kinase (PI3k pathway. Wingless-type family growth factors (Wnts have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.

  13. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  14. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α

    Directory of Open Access Journals (Sweden)

    Alessio Paone

    2010-07-01

    Full Text Available Toll-like receptors (TLRs recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-induciblefactor 1 (HIF-1regulates several cellular processes, includingapoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific 1.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF. Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of 1.3 isoform of hif-1α in LNCaP cells allows poly(I:CI-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.

  15. Cisplatin targets the stromal cell-derived factor-1-CXC chemokine receptor type 4 axis to suppress metastasis and invasion of ovarian cancer-initiating cells.

    Science.gov (United States)

    Yu, Zhi-hua; Liu, Te; Zhao, Yan-hui; Huang, Yong-yi; Gao, Yong-tao

    2014-05-01

    In ovarian cancer, CD44+/CD117+ stem cells, also known as cancer-initiating cells (CICs), are highly proliferative and invasive. Therefore, the CD44+/CD117+ subpopulation is thought to be an important target for novel therapeutic strategies. In this study, we investigated the effects of cisplatin (CDDP) on metastasis and invasion suppression of ovarian CICs by targeting the CXC chemokine receptor-4 (CXCR4) signaling pathway in vitro and in vivo. CD44+/CD117+ ovarian CICs were enriched from human primary ovarian tumor tissues and confirmed by flow cytometry sorting. A 3-(4,5-dimethylthiazol-2-yl)-2.5-dipheny-tetrazolium bromide (MTT) assay revealed significant inhibition of proliferation of ovarian CICs with increasing CDDP drug concentrations. Moreover, colony formation and transwell migration assays indicated that CDDP significantly suppressed the invasive capacity of ovarian CICs in vitro. The expression levels of stromal cell-derived factor (SDF)-1, CXCR4, matrix metalloproteinase (MMP) 2, and MMP9 mRNA and protein levels were significantly reduced in CDDP-treated cells compared to untreated ovarian CICs. Furthermore, xenograft experiments confirmed that CDDP suppressed the growth of xenograft tumors formed by ovarian CICs in vivo. In addition, CXCR4 agonist (diprotin A) treatment of ovarian CICs weakened the effects of CDDP and enhanced SDF-1-CXCR4 axis expression in ovarian CICs. Thus, the SDF-1-CXCR4 axis is an important mediator of proliferation and invasion in CXCR4-overexpressing ovarian cancer-initiating cells (OCICs). Furthermore, CDDP inhibits invasion and metastasis of OCICs by targeting SDF-1-CXCR4 axis expression.

  16. Getting from A to B-exploring the activation motifs of the class B adhesion G protein-coupled receptor subfamily G member 4/GPR112

    DEFF Research Database (Denmark)

    Cornelia Peeters, Miriam; Mos, Iris; Lenselink, Eelke B

    2016-01-01

    into the structure-function relationship of ADGRs using the family member ADGR subfamily G member 4 (ADGRG4)/GPR112 as a model receptor. In a bioinformatics approach, we compared conserved, functional elements of the well-characterized class A and class B1 secretin-like G protein-coupled receptors with the ADGRs. We...... screening system and was further confirmed in a transfected mammalian human embryonic kidney 293 cell line. We evaluated the results in light of the crystal structures of the class A adenosine A2A receptor and the class B1 corticotropin-releasing factor receptor 1. ADGRG4 proved to have functionally...... important motifs resembling class A, class B, and combined elements, but also a unique highly conserved ADGR motif (H3.33). Given the high conservation of these motifs and residues across the adhesion G protein-coupled receptor family, it can be assumed that these are general elements of adhesion GPCR...

  17. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures.

    Science.gov (United States)

    Wootten, Denise; Reynolds, Christopher A; Koole, Cassandra; Smith, Kevin J; Mobarec, Juan C; Simms, John; Quon, Tezz; Coudrat, Thomas; Furness, Sebastian G B; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-03-01

    The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60(190), N3.43(240), Q7.49(394), and H6.52(363) as key residues involved in peptide-mediated biased agonism, with R2.60(190), N3.43(240), and Q7.49(394) predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53(364)A, N3.43(240)Q, Q7.49(394)N, and N3.43(240)Q/Q7.49(394)N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53(364) and R2.60(190) was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49(394), but not R2.60(190)/E6.53(364) was critical for calcium mobilization for all three peptides. Mutation of N3.43(240) and Q7.49(394) had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. A phase I/II study of erlotinib in combination with the anti-insulin-like growth factor-1 receptor monoclonal antibody IMC-A12 (cixutumumab) in patients with advanced non-small cell lung cancer.

    Science.gov (United States)

    Weickhardt, Andrew; Doebele, Robert; Oton, Ana; Lettieri, Janice; Maxson, DeLee; Reynolds, Michele; Brown, Amy; Jackson, Mary K; Dy, Grace; Adjei, Araba; Fetterly, Gerald; Lu, Xian; Franklin, Wilbur; Varella-Garcia, Marileila; Hirsch, Fred R; Wynes, Murry W; Youssoufian, Hagop; Adjei, Alex; Camidge, D Ross

    2012-02-01

    This phase I/II study evaluated the safety and antitumor effect of the combination of erlotinib with cixutumumab, a recombinant fully humanized anti-insulin-like growth factor-1 receptor IgG1 monoclonal antibody, in advanced non-small cell lung cancer (NSCLC). Patients with advanced NSCLC were treated in an initial safety-lead and drop-down cohorts using erlotinib 150 mg/d with cixutumumab 6 or 5 mg/kg on days 1, 8, 15, and 22 in 28-day cycles (cohorts 1 and 2). Emerging pharmacokinetic data led to an additional cohort (3 + 3 design) with cixutumumab at 15 mg/kg on day 1 in 21-day cycles (cohort 3). Eighteen patients entered the study (6 at 6 mg/kg, 8 at 5 mg/kg, and 4 at 15 mg/kg), with median age of 65 years. Four of six patients at 6 mg/kg experienced dose-limiting toxicities (DLTs), whereas at 5 mg/kg, one of eight patients experienced DLT but three of eight patients still required a dose delay during cycle 1. At 15 mg/kg every 21 days, two of four patients experienced DLTs. In all cohorts, DLTs were either G3 rash or fatigue. Five patients had stable disease as best response and 14 patients had progressive disease. The median progression-free survival was 39 days (range 21-432+ days). Biomarkers analyses showed a trend toward better progression-free survival seen with higher free baseline insulin-like growth factor-1 levels as seen with other insulin-like growth factor-1R inhibitors. The combinations of cixutumumab at 6 mg/kg every 7 days and 15 mg/kg every 21 days and full-dose erlotinib are not tolerable in unselected patients with NSCLC, as measured by DLT. Cixutumumab at 5 mg/kg every 7 days was tolerable per DLT, but dose delays were common. Efficacy in unselected patients with NSCLC seems to be low.

  19. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFκB signaling pathway in gastric cancer cells.

    Science.gov (United States)

    Hsieh, Yung-Yu; Shen, Chien-Heng; Huang, Wen-Shih; Chin, Chih-Chien; Kuo, Yi-Hung; Hsieh, Meng Chiao; Yu, Hong-Ren; Chang, Te-Sheng; Lin, Tseng-Hsi; Chiu, Yung-Wei; Chen, Cheng-Nan; Kuo, Hsing-Chun; Tung, Shui-Yi

    2014-06-14

    Stromal cell-derived factor-1 (SDF-1) (CXC chemokine ligand-12)/CXC chemokine receptor 4 (CXCR4) is involved in the carcinogenesis of human gastric cancer, where it stimulates angiogenesis and favors metastasis of tumor cells to distant organs. In addition, resistin is suggested to be an important link between obesity and the development of gastric cancer. Resistin has identified as an important player in inflammatory responses, and emerged as a mediator in inflammation-associated cancer. A limited number of studies have investigated the association of resistin and SDF-1 with gastric cancer. Herein, we investigated the molecular mechanisms by which resistin influences the expression of SDF-1 in gastric carcinoma cells. Human gastric cancer cell lines were exposed to doses of resistin; SDF-1 expression and secretion levels were then determined. Real-time polymerase chain reaction and western blotting analyses were performed to clarify molecular changes. Inhibition of Toll-like receptor 4 (TLR4) by a competitive antagonist inhibited resistin-induced SDF-1 expression. Pharmacological inhibitors and small interfering RNA (siRNA) demonstrated that activation of the p38 mitogen-activated protein kinase (MAPK) pathway is critical for resistin-induced SDF-1 expression mediated by TLR4. The promoter activity and transcription factor enzyme-linked immunosorbent assay revealed that resistin induced expression of SDF-1 mediated by NF-κB in gastric cancer cells. Inhibition of p38 MARK activation blocked the SDF-1-induced expression and the SDF-1 promoter activity in the cancer gastric cells. Chromatin immunoprecipitation assay revealed that inhibition of p38 MARK activation also blocked the resistin-increased NF-κB-DNA-binding activity. Resistin-induced SDF-1 upregulation by activation of TLR4, p38 MARK and NF-κB may explain a new role of resistin in the link of obesity and gastric cancer.

  20. Insulin-like growth factor-1 (IGF-1) induces WISP-2/CCN5 via multiple molecular cross-talks and is essential for mitogenic switch by IGF-1 axis in estrogen receptor-positive breast tumor cells.

    Science.gov (United States)

    Dhar, Kakali; Banerjee, Snigdha; Dhar, Gopal; Sengupta, Krishanu; Banerjee, Sushanta K

    2007-02-15

    Previously, we have shown that the expression of Wnt-1-induced signaling protein-2 (WISP-2), also known as CCN5, can be regulated by multiple stimulants in estrogen receptor (ER)-positive breast tumor cells to exert their mitogenic action in these cells. Here, we show that insulin-like growth factor-1 (IGF-1), a strong mitogen, enhanced the expression of the WISP-2/CCN5 gene parallel with the induction of proliferation of ER-positive breast tumor cells. An additive effect was also seen in combination with estrogen. Perturbation of IGF-1-induced WISP-2/CCN5 expression by WISP-2-specific RNA interference impaired the mitogenic action of IGF-1 on ER-positive breast tumor cells. Furthermore, the studies have shown that the multiple molecular cross-talks and side-talks among IGF-1R, ER-alpha, and phosphatidylinositol 3-kinase (PI3K)/Akt signaling molecules are required to induce WISP-2/CCN5 mRNA by IGF-1 in ER-positive, noninvasive breast tumor cells. Because a pure anti-ER ICI 182,780 is not only able to suppress the up-regulation of WISP-2/CCN5 mRNA expression by IGF-1, it also suppresses the PI3K/Akt activity induced by IGF-1 in MCF-7 cells; we anticipate that the membrane ER receptor may participate in this event. Collectively, these studies propose for the first time that WISP-2/CCN5 is an integral signaling molecule in mitogenic action of IGF-1 axis in ER-positive human breast tumor cells.

  1. RNA Interference of Interferon Regulatory Factor-1 Gene Expression in THP-1 Cell Line Leads to Toll-Like Receptor-4 Overexpression/Activation As Well As Up-modulation of Annexin-II

    Directory of Open Access Journals (Sweden)

    Christos I. Maratheftis

    2007-12-01

    Full Text Available Interferon regulatory factor-1 (IRF-1 is a candidate transcription factor for the regulation of the Toll-like receptor-4 (TLR-4 gene. Using a small interfering RNAbased (siRNA process to silence IRF-1 gene expression in the leukemic monocytic cell line THP-1, we investigated whether such a modulation would alter TLR-4 expression and activation status in these cells. The siIRF-1 cells expressed elevated levels of TLR-4 mRNA and protein compared to controls by 90% and 77%, respectively. ICAM.1 protein expression and apoptosis levels were increased by 8.35- and 4.25-fold, respectively. The siIRF-1 cells overexpressed Bax mRNA compared to controls. Proteomic analysis revealed upmodulation of the Annexin-II protein in siIRF-1 THP-1 cells. Myelodysplastic syndrome (MDS patients with an absence of full-length IRF-1 mRNA also overexpressed Annexin-II. It is plausible that this overexpression may lead to the activation of TLR-4 contributing to the increased apoptosis characterizing MDS.

  2. Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549 cells.

    Science.gov (United States)

    Ohnuma, Tomokazu; Sakamoto, Kazuya; Shinoda, Asumi; Takagi, Chiaki; Ohno, Shoko; Nishiyama, Takahito; Ogura, Kenichiro; Hiratsuka, Akira

    2017-12-01

    Many lines of evidence demonstrate that transcription factor nuclear factor-E2-related factor 2 (Nrf2) plays essential roles in cancer cell proliferation and resistance to chemotherapy, thereby indicating that suppression of abnormal Nrf2 activation is needed for a new therapeutic approach. Our previous studies reported that procyanidins prepared from Cinnamomi Cortex extract (CCE) have an ability to suppress cytoprotective enzymes and cell proliferation in human cancer cells with activated Nrf2. In the present study, we investigated the mechanism of CCE procyanidin-mediated antagonization of Nrf2. CCE procyanidin treatment rapidly reduced nuclear Nrf2 expression and phosphorylated insulin-like growth factor-1 receptor (IGF-1R) in A549 cells. Nrf2 protein expression in A549 cells with reduced IGF-1R expression and function was not affected by treatment with CCE procyanidins, which suggested that CCE procyanidins decreased Nrf2 through IGF-1R. Nrf2 suppression by CCE procyanidins was mitigated in the presence of protease inhibitors, not proteasome inhibitors. In addition, CCE procyanidin treatment led to enhancement of nuclear cysteine protease activity in A549 cells. Our findings suggest a novel mechanism by which CCE procyanidins can promote proteasome-independent degradation of nuclear Nrf2 through IGF-1R phosphorylation and cysteine protease activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. CXC chemokine receptor 4 expression and stromal cell-derived factor-1alpha-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    We report that interleukin (IL)-4 and IL-10 can significantly up- or down-regulate CXC chemokine receptor 4 (CXCR4) expression on CD4+ T lymphocytes, respectively. Stromal cell-derived factor-1alpha (SDF-1alpha)-induced CD4+ T-lymphocyte chemotaxis was also correspondingly regulated by IL-4 and IL......-10. IL-4 and IL-10 up- or down-regulated CXCR4 mRNA expression in CD4+ T lymphocytes, respectively, as detected by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Scatchard analysis revealed a type of CXCR4 with affinity (Kd approximately 6.3 nM), and approximately 70....... The regulation of CXCR4 expression in CD4+ T lymphocytes by IL-4 and IL-10 could be blocked by a selective inhibitor of protein kinase (staurosporine) or by a selective inhibitor of cAMP- and cGMP-dependent protein kinase (H-8), indicating that these cytokines regulate CXCR4 on CD4+ T lymphocytes via both c...

  4. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  5. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin.

    Science.gov (United States)

    Zhang, Zi-Wei; Guo, Rui-Wei; Lv, Jin-Lin; Wang, Xian-Mei; Ye, Jin-Shan; Lu, Ni-Hong; Liang, Xing; Yang, Li-Xia

    2017-04-29

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    Science.gov (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( GPCR, MMP2/9, hbEGF, EGFR, erbB2, and IGF-1R. However, the mechanism through which TBA mediates changes in protein degradation is different and appears to involve only the EGFR and erbB2. Furthermore, it appears the protein kinase B pathway is involved in TBA's effects on fused BSC cultures.

  7. CRF1 receptor-deficiency increases cocaine reward.

    Science.gov (United States)

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF1 receptor-deficient (CRF1-/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF1-/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF1-/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF1-/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF1-/- mice by exogenous corticosterone does not affect CRF1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The reciprocal regulation of stress hormones and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Istvan eMody

    2012-01-01

    Full Text Available Stress-derived steroid hormones regulate the expression and function of GABAA receptors (GABAARs. Changes in GABAAR subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABAAR subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABAARs. Neurosteroids allosterically modulate GABAARs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABAARs, GABAARs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA axis, the activity of which is governed by corticotropin releasing hormone (CRH neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABAAR δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABAAR δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABAARs as well as the importance of GABAARs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABAARs following stress and the role in HPA axis regulation.

  9. Repetition rates of specific interval patterns in single spike train reflect excitation level of specific receptor types, shown by high-speed favored-pattern detection method.

    Science.gov (United States)

    Ku, Yun-Hui; Wang, Ming; Li, Yao-Hua; Sun, Ze-Jin; Guo, Tao; Wu, Jin-Sheng

    2006-10-03

    Interval patterns in single spike train, e.g. "favored patterns (FPs, the FP is a sequence of successive intervals of action potentials that occur more often than what is reasonably expected at random.)", may represent neural codes containing information. The present study developed a "high-speed FP-detection method" which could qualitatively and quantitatively analyze FPs. By using this method, single spike trains of nucleus paraventricularis (NPV) and rostral ventrolateral medulla (RVL) having different firing patterns, being involved in regulation of arterial pressure, and controlled by different transmitters, were chosen for analysis. (1) Corticotropin releasing factor, substance P and agonists of alpha-, beta- and M-receptor microinjected into these brain areas, respectively, induced dominant change of specific FP. Repetition rates of specific FPs reflect excitation level of specific receptor types. It shows that chemical codes (different transmitters with their receptor types or subtypes) are transformed into electrical codes (different FPs). (2) When alpha-, beta- and M-receptors of RVL neurons were activated simultaneously by intrinsic excitatory transmitters released due to activation of input pathway, only repetition rate of the specific FP that represented the predominant activity of the receptor type (alpha-adrenergic receptor) markedly increased. The activities of other receptor types (beta- and M-receptors) were masked. (3) Intrinsic inhibitory transmitters (GABA, beta-endorphin) in the RVL all decreased specific FP repetition rate of dominant receptor type. These results may provide a new way to further explore how information in the CNS is conveyed and processed.

  10. Expression levels of mRNA for insulin-like growth factors 1 and 2, IGF receptors and IGF binding proteins in in vivo and in vitro grown bovine follicles.

    Science.gov (United States)

    Rebouças, Emanuela L; Costa, José J N; Passos, Maria J; Silva, Anderson W B; Rossi, Rodrigo O D S; van den Hurk, Robert; Silva, José R V

    2014-11-01

    This study investigated mRNA levels for insulin-like growth factors (IGFs) IGF1 (IGF-I) and IGF2 (IGF-II), IGF receptors (IGF1R and IGF2R), and binding proteins (IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6) in bovine follicles of 0.2, 0.5 or 1.0 mm in diameter. mRNA expression levels in in vitro cultured follicles that reached approximately 0.5 mm were compared with that of in vivo grown follicles. IGF1R and IGF2R expression levels in 0.5 mm in vivo follicles were higher than in 1.0 or 0.2 mm follicles, respectively. IGFBP-1, IGFBP-2. IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 showed variable expression in the follicular size classes analyzed. In vitro grown follicles had significantly reduced expression levels for IGF1, IGF1R, IGFBP-3, IGFBP-5 and IGFBP-6 mRNA when compared with 0.2 mm follicles, but, when compared with in vivo grown follicles (0.5 mm), only IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 showed a reduction in their expression. In conclusion, IGFs, their receptors and IGFBPs showed variable expression of mRNA levels in the follicular size classes analyzed.

  11. Differential colocalization of estrogen receptor β (ERβ) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: An immunocytochemical study

    Science.gov (United States)

    Alves, Stephen E.; Lopez, Veronica; McEwen, Bruce S.; Weiland, Nancy G.

    1998-01-01

    Evidence exists for the localization of the newly identified estrogen receptor β (ERβ) within the rat paraventricular nucleus (PVN) and supraoptic nucleus (SON), regions which lack ERα. Presently, we investigate whether ERβ-like-immunoreactivity (-ir) is found within cells of several major neuropeptide systems of these regions. Young adult Sprague–Dawley rats were ovariectomized (OVX), and 1 week later half of the animals received estradiol-17β (E). Dual-label immunocytochemistry was performed on adjacent sections by using an ERβ antibody, followed by an antibody to either oxytocin (OT), arginine-vasopressin (AVP), or corticotropin releasing hormone. Nuclear ERβ-ir was identified within SON and retrochiasmatic SON, and in specific PVN subnuclei: medial parvicellular part, ventral and dorsal zones, dorsal and lateral parvicellular parts, and in the posterior magnocellular part, medial and lateral zones. However, the ERβ-ir within magnocellular areas was noticeably less intense. OT-/ERβ-ir colocalization was confirmed in neurons of the parvicellular subnuclei, in both OVX and OVX+E brains (≈50% of OT and 25% of ERβ-labeled cells between bregma −1.78 and −2.00). In contrast, few PVN parvicellular neurons contained both AVP- and ERβ-ir. As well, very little overlap was observed in the distribution of cells containing corticotropin releasing hormone- or ERβ-ir. In the SON, most nuclear ERβ-ir colocalized with AVP-ir, whereas few OT-/ERβ-ir dual-labeled cells were observed. These findings suggest that estrogen can directly modulate specific OT and AVP systems through an ERβ-mediated mechanism, in a tissue-specific manner. PMID:9501254

  12. Chronic social stress in pigs impairs intestinal barrier and nutrient transporter function, and alters neuro-immune mediator and receptor expression

    Science.gov (United States)

    Li, Yihang; Song, Zehe; Kerr, Katelyn A.; Moeser, Adam J.

    2017-01-01

    Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and nutrient transport function, corticotropin releasing factor (CRF) signaling and immunological responses. Results from this study showed that CSS resulted in a significant impairment of ileal and colonic barrier function indicated by reduced transepithelial electrical resistance (TER) in the ileum and increased FD4 flux in the ileum (by 0.8 fold) and colon (by 0.7 fold). Ileal sodium glucose linked transporter 1 (SGLT-1) function, measured as glucose-induced changes in short-circuit current (Isc), was diminished (by 52%) in CSS pigs, associated with reduced body weight gain and feed efficiency. Although reductions in SGLT-1 function were observed in CSS pigs, mRNA expression for SGLT-1, villus heights were increased in CSS pigs. Corticotropin releasing factor (CRF) mRNA was upregulated (by 0.9 fold) in the ileum of CSS pigs but not in the colon. Urocortin 2 (Ucn2) mRNA was upregulated (by 1.5 fold) in the colon of CSS pigs, but not in the ileum. In CSS pigs, a downregulation of pro-inflammatory cytokines mRNA (IL1B, TNFA, IL8, and IL6) was observed in both ileum and colon, compared with controls. In contrast CSS induced a marked upregulation of mRNA for IL10 and mast cell chymase gene (CMA1) in the ileum and colon. Together, these data demonstrate that chronic stress in pigs results in significant alterations in intestinal barrier and nutrient transport function and neuro-immune mediator and receptor expression. PMID:28170426

  13. Randomized, phase II study of the insulin-like growth factor-1 receptor inhibitor IMC-A12, with or without cetuximab, in patients with cetuximab- or panitumumab-refractory metastatic colorectal cancer.

    Science.gov (United States)

    Reidy, Diane Lauren; Vakiani, Efsevia; Fakih, Marwan G; Saif, Muhammad Wasif; Hecht, Joel Randolph; Goodman-Davis, Noah; Hollywood, Ellen; Shia, Jinru; Schwartz, Jonathan; Chandrawansa, Kumari; Dontabhaktuni, Aruna; Youssoufian, Hagop; Solit, David B; Saltz, Leonard B

    2010-09-20

    To evaluate the safety and efficacy of IMC-A12, a human monoclonal antibody (mAb) that blocks insulin-like growth factor receptor-1 (IGF-1R), as monotherapy or in combination with cetuximab in patients with metastatic refractory anti-epidermal growth factor receptor (EGFR) mAb colorectal cancer. A randomized, phase II study was performed in which patients in arm A received IMC-A12 10 mg/kg intravenously (IV) every 2 weeks, while patients in arm B received this same dose of IMC-A12 plus cetuximab 500 mg/m(2) IV every 2 weeks. Subsequently, arm C (same combination treatment as arm B) was added to include patients who had disease control on a prior anti-EGFR mAb and wild-type KRAS tumors. Archived pretreatment tumor tissue was obtained when possible for KRAS, PIK3CA, and BRAF genotyping, and immunohistochemistry was obtained for pAKT as well as IGF-1R. Overall, 64 patients were treated (median age, 61 years; range, 40 to 84 years): 23 patients in arm A, 21 in arm B, and 20 in arm C. No antitumor activity was seen in the 23 patients treated with IMC-A12 monotherapy. Of the 21 patients randomly assigned to IMC-A12 plus cetuximab, one patient (with KRAS wild type) achieved a partial response, with disease control lasting 6.5 months. Arm C (all patients with KRAS wild type), however, showed no additional antitumor activity. Serious adverse events thought possibly related to IMC-A12 included a grade 2 infusion-related reaction (2%; one of 64 patients), thrombocytopenia (2%; one of 64 patients), grade 3 hyperglycemia (2%; one of 64 patients), and grade 1 pyrexia (2%, one of 64 patients). IMC-A12 alone or in combination with cetuximab was insufficient to warrant additional study in patients with colorectal cancer refractory to EGFR inhibitors.

  14. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats.

    Science.gov (United States)

    Yeh, Chun; Ting, Ching-Heng; Doong, Ming-Luen; Chi, Chin-Wen; Lee, Shou-Dong; Chen, Chih-Yen

    2016-01-01

    Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated. We examined the differential effects of central O - n -octanoylated ghrelin, des-Gln 14 -ghrelin, and urocortin 3 on food intake, as well as on charcoal nonnutrient semiliquid gastric emptying in conscious rats that were chronically implanted with intracerebroventricular (ICV) catheters. The functional importance of corticotropin-releasing factor (CRF) receptor 2 in urocortin 3-induced responses was examined by ICV injection of the selective CRF receptor 2 antagonist, astressin 2 -B. ICV infusion of urocortin 3 opposed central acyl ghrelin-elicited hyperphagia via CRF receptor 2 in satiated rats. ICV injection of O - n -octanoylated ghrelin and des-Gln 14 -ghrelin were equally potent in accelerating gastric emptying in fasted rats, whereas ICV administration of urocortin 3 delayed gastric emptying. In addition, ICV infusion of urocortin 3 counteracted central acyl ghrelin-induced gastroprokinetic effects via CRF receptor 2 pathway. ICV-infused urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. Our results clearly showed that enhancing ghrelin and blocking CRF receptor 2 signaling in the brain accelerated gastric emptying, which provided important clues for a new therapeutic avenue in ameliorating anorexia and gastric ileus found in various chronic wasting disorders.

  15. A preliminary study on the expression and clinical value of platelet-derived growth factor BB, hypoxia inducible factor-1α and C-C motif chemokine receptor-2 in peripheral blood during the pathogenesis of Graves' disease.

    Science.gov (United States)

    Liu, Ying; Tang, Jinglan; Hu, Qiaohong; Lu, Kefeng; Hou, Chunjie

    2018-01-01

    Platelet-derived growth factor BB (PDGF-BB) plays an important role in the development of GD (Graves' disease). However, it is still unknown whether PDGF-BB is expressed in peripheral blood and whether the expression of PDGF-BB contributes to GD. We aim to study the expression of PDGF-BB, hypoxia inducible factor (HIF)-1α and C-C motif chemokine receptor (CCR)-2 in peripheral blood of patients with GD and explore its effect and potential mechanism in pathogenesis. 41 patients with GD (GD group) and forty-five healthy people (control group) were chosen. The concentration of PDGF-BB and HIF-1α in peripheral blood specimens were detected and compared between the two groups. The expression of CCR2 in macrophages in the peripheral blood specimens were examined using FCM (Flow Cytometry). Both PDGF-BB and HIF-1α were expressed in human peripheral blood from the two groups. Compared with specimens from healthy people, there were statistically increased concentrations of PDGF-BB and HIF-1α in the GD group (P BB through HIF-1α signal, and the high expression of PDGF-BB may be involved in the pathogenesis of GD.

  16. T cell factor-1 controls the lifetime of CD4+ CD8+ thymocytes in vivo and distal T cell receptor α-chain rearrangement required for NKT cell development.

    Directory of Open Access Journals (Sweden)

    Archna Sharma

    Full Text Available Natural killer T (NKT cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP thymocyte precursors after the rearrangement and expression of T cell receptor (TCR Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.

  17. Cloning and expression of feline colony stimulating factor receptor (CSF-1R) and analysis of the species specificity of stimulation by colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34).

    Science.gov (United States)

    Gow, Deborah J; Garceau, Valerie; Pridans, Clare; Gow, Adam G; Simpson, Kerry E; Gunn-Moore, Danielle; Hume, David A

    2013-02-01

    Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Bone Status in a Patient with Insulin-Like Growth Factor-1 Receptor Deletion Syndrome: Bone Quality and Structure Evaluation Using Dual-Energy X-Ray Absorptiometry, Peripheral Quantitative Computed Tomography, and Quantitative Ultrasonography.

    Science.gov (United States)

    Pelosi, Paola; Lapi, Elisabetta; Cavalli, Loredana; Verrotti, Alberto; Pantaleo, Marilena; de Martino, Maurizio; Stagi, Stefano

    2017-01-01

    Haploinsufficiency of the insulin-like growth factor ( IGF )-1 receptor ( IGF1R ) gene is a rare, probably under-diagnosed, cause of short stature. However, the effects of IGF1R haploinsufficiency on glucose metabolism, bone status, and metabolism have rarely been investigated. We report the case of a patient referred to our center at the age of 18 months for short stature, failure to thrive, and Silver-Russell-like phenotype. Genetic analysis did not show hypomethylation of the 11p15.5 region or uniparental disomy of chromosome 7. Growth hormone (GH) stimulation tests revealed GH deficiency, whereas IGF-1 was 248 ng/mL. r-hGH treatment showed only a slight improvement (from -4.4 to -3.5 SDS). At 10 years of age, the child was re-evaluated: CGH-array identified a heterozygous de novo 4.92 Mb deletion in 15q26.2, including the IGF1R gene. Dual-energy X-ray absorptiometry showed a normal bone mineral density z -score, while peripheral quantitative computed tomography revealed reduced cortical and increased trabecular elements. A phalangeal bone quantitative ultrasonography showed significantly reduced amplitude-dependent speed of sound and bone transmission time values. The changes in bone architecture, quality, and metabolism in heterozygous IGF1R deletion patients, support the hypothesis that IGF-1 can be a key factor in bone modeling and accrual.

  19. [{sup 99m}Tc(CO){sub 3}]{sup +}-(HE){sub 3}-Z{sub IGF1R:4551}, a new Affibody conjugate for visualization of insulin-like growth factor-1 receptor expression in malignant tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, Anna; Varasteh, Zohreh [Uppsala University, Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala (Sweden); Hofstroem, Camilla; Graeslund, Torbjoern [Royal Institute of Technology, Division of Molecular Biotechnology, School of Biotechnology, Stockholm (Sweden); Strand, Joanna [Uppsala University, Division of Biomedical Radiation Sciences, Uppsala (Sweden); Sandstrom, Mattias [Uppsala University Hospital, Medical Physics, Department of Oncology, Uppsala (Sweden); Andersson, Karl [Uppsala University, Division of Biomedical Radiation Sciences, Uppsala (Sweden); Ridgeview Instruments AB, Uppsala (Sweden); Tolmachev, Vladimir [Uppsala University, Division of Biomedical Radiation Sciences, Uppsala (Sweden); Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden)

    2013-03-15

    Radionuclide imaging of insulin-like growth factor type 1 receptor (IGF-1R) expression in tumours might be used for selection of patients who would benefit from IGF-1R-targeted therapy. We have previously shown the feasibility of IGF-1R imaging using the Affibody molecule {sup 111}In-DOTA-His{sub 6}-Z{sub IGF1R:4551}. The use of {sup 99m}Tc instead of {sup 111}In should improve sensitivity and resolution of imaging, and reduce the dose burden to patients. We hypothesized that inclusion of a HEHEHE tag instead of a His{sub 6} tag in Z{sub IGF1R:4551} would permit its convenient purification using IMAC, enable labelling with [{sup 99m}Tc(CO){sub 3}]{sup +}, and improve its biodistribution. Z{sub IGF1R:4551} was expressed with a HEHEHE tag in the N terminus. The resulting (HE){sub 3}-Z{sub IGF1R:4551} construct was labelled with [{sup 99m}Tc(CO){sub 3}]{sup +}. Targeting of IGF-1R-expressing cells using [{sup 99m}Tc(CO){sub 3}]{sup +}-(HE){sub 3}-Z{sub IGF1R:4551} was evaluated in vitro and in vivo. (HE){sub 3}-Z{sub IGF1R:4551} was stably labelled with {sup 99m}Tc with preserved specific binding to IGF-1R-expressing DU-145 prostate cancer cells in vitro. In mice, [{sup 99m}Tc(CO){sub 3}]{sup +}-(HE){sub 3}-Z{sub IGF1R:4551} accumulated in IGF-1R-expressing organs (pancreas, stomach, lung and salivary gland). [{sup 99m}Tc(CO){sub 3}]{sup +}-(HE){sub 3}-Z{sub IGF1R:4551} demonstrated 3.6-fold lower accumulation in the liver and spleen than {sup 111}In-DOTA-Z{sub IGF1R:4551}. In NMRI nu/nu mice with DU-145 prostate cancer xenografts, the tumour uptake was 1.32 {+-} 0.11 %ID/g and the tumour-to-blood ratio was 4.4 {+-} 0.3 at 8 h after injection. The xenografts were visualized using a gamma camera 6 h after injection. [{sup 99m}Tc(CO){sub 3}]{sup +}-(HE){sub 3}-Z{sub IGF1R:4551} is a promising candidate for visualization of IGF-1R expression in malignant tumours. (orig.)

  20. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    Science.gov (United States)

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  1. Behavioral, biological, and chemical perspectives on targeting CRF(1) receptor antagonists to treat alcoholism.

    Science.gov (United States)

    Zorrilla, Eric P; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-03-01

    Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry "Translational Research in Addiction" symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF(1)) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. We review the biology of CRF(1) systems, the activity of CRF(1) receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF(1) receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF(1) receptor pharmacotherapy for alcohol dependence. The evidence suggests that brain penetrant-CRF(1) receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF(1) receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF(1) receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available The basolateral nucleus (BLA of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF. Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatment for stress-related illness such as post-traumatic stress disorder.

  3. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  4. Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system.

    Science.gov (United States)

    Zhang, Li; Parks, Gregory S; Wang, Zhiwei; Wang, Lien; Lew, Michelle; Civelli, Olivier

    2013-04-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) involved in the regulation of energy homeostasis. Mice deficient in BRS-3 develop late-onset mild obesity with metabolic defects, while synthetic agonists activating BRS-3 show antiobesity profiles by inhibiting food intake and increasing metabolic rate in rodent models. The molecular mechanisms and the neural circuits responsible for these effects, however, remain elusive and demand better characterization. We report here a comprehensive mapping of BRS-3 mRNA in the rat and mouse brain through in situ hybridization. Furthermore, to investigate the neurochemical characteristics of the BRS-3-expressing neurons, double in situ hybridization was performed to determine whether BRS-3 colocalizes with other neurotransmitters or neuropeptides. Many, but not all, of the BRS-3-expressing neurons were found to be glutamatergic, while few were found to be cholinergic or GABAergic. BRS-3-containing neurons do not express some of the well-characterized neuropeptides, such as neuropeptide Y (NPY), proopiomelanocortin (POMC), orexin/hypocretin, melanin-concentrating hormone (MCH), thyrotropin-releasing hormone (TRH), gonadotropin-releasing hormone (GnRH), and kisspeptin. Interestingly, BRS-3 mRNA was found to partially colocalize with corticotropin-releasing factor (CRF) and growth hormone-releasing hormone (GHRH), suggesting novel interactions of BRS-3 with stress- and growth-related endocrine systems. Our study provides important information for evaluating BRS-3 as a potential therapeutic target for the treatment of obesity. Copyright © 2012 Wiley Periodicals, Inc.

  5. Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression.

    Science.gov (United States)

    Zalachoras, I; Verhoeve, S L; Toonen, L J; van Weert, L T C M; van Vlodrop, A M; Mol, I M; Meelis, W; de Kloet, E R; Meijer, O C

    2016-12-01

    Maladaptive glucocorticoid effects contribute to stress-related psychopathology. The glucocorticoid receptor (GR) that mediates many of these effects uses multiple signaling pathways. We have tested the hypothesis that manipulation of downstream factors ('coregulators') can abrogate potentially maladaptive GR-mediated effects on fear-motivated behavior that are linked to corticotropin releasing hormone (CRH). For this purpose the expression ratio of two splice variants of steroid receptor coactivator-1 (SRC-1) was altered via antisense-mediated 'exon-skipping' in the central amygdala of the mouse brain. We observed that a change in splicing towards the repressive isoform SRC-1a strongly reduced glucocorticoid-induced responsiveness of Crh mRNA expression and increased methylation of the Crh promoter. The transcriptional GR target gene Fkbp5 remained responsive to glucocorticoids, indicating gene specificity of the effect. The shift of the SRC-1 splice variants altered glucocorticoid-dependent exploratory behavior and attenuated consolidation of contextual fear memory. In conclusion, our findings demonstrate that manipulation of GR signaling pathways related to the Crh gene can selectively diminish potentially maladaptive effects of glucocorticoids.

  6. Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons

    NARCIS (Netherlands)

    Erkut, Z. A.; Pool, C.; Swaab, D. F.

    1998-01-01

    Glucocorticoids are widely used in clinical practice in a variety of immune-mediated and neoplastic diseases, mostly for their immunosuppressive, leukopenic, antiedematous, or malignancy-suppressive actions. However, their usage is limited because of serious and sometimes life-threatening

  7. Reduction in brain immunoreactive corticotropin-releasing factor (CRF) in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K.; Hattori, T.; Murakami, K.; Suemaru, S.; Kawada, Y.; Kageyama, J.; Ota, Z.

    1985-02-18

    The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of /sup 125/I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neurointermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.

  8. Corticotropin-releasing activity of gastrin-releasing peptide in normal men

    DEFF Research Database (Denmark)

    Knigge, U; Holst, J J; Knuhtsen, S

    1987-01-01

    Gastrin-releasing peptide (GRP; mammalian bombesin) exerts several functions within the hypothalamus and is a putative regulator of pituitary hormone secretion. We investigated the effect of GRP on the secretion of pituitary hormones and cortisol in normal men. GRP was infused iv as primed...

  9. Combined dexamethasone/corticotropin-releasing factor test in chronic fatigue syndrome

    NARCIS (Netherlands)

    Eede, F. van den; Moorkens, G.; Hulstijn, W.; Houdenhove, B. van; Cosyns, P.; Claes, S.J.

    2008-01-01

    Background Studies of hypothalamic–pituitary–adrenal (HPA) axis function in chronic fatigue syndrome (CFS) point to hypofunction, although there are negative reports. Suggested mechanisms include a reduced hypothalamic or supra-hypothalamic stimulus to the HPA axis and enhanced sensitivity to the

  10. In vitro Expression and Mutagenesis of a Gene for Corticotropin Releasing Factor

    Science.gov (United States)

    1989-10-31

    AS RPT 0 DTIC USERS (U) 22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL Dr. J.A. Maide (2n?) AQA -4097 nNR DD...the release of ACTH from pituitary cells. We will pursue this goal using a recently described and novel technique of molecular biology to synthesize...of Pharmacology Depts. of Biology & Psychology Univ. of Pennsylvania Georgia State University School of Medicine Atlanta, GA 30303 36th and Hamilton

  11. Class II G protein-coupled receptors and their ligands in neuronal function and protection.

    Science.gov (United States)

    Martin, Bronwen; Lopez de Maturana, Rakel; Brenneman, Randall; Walent, Tom; Mattson, Mark P; Maudsley, Stuart

    2005-01-01

    G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs-adenylate cyclase-cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders.

  12. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin V1B receptor antagonists: TASP0233278 and TASP0390325.

    Science.gov (United States)

    Iijima, M; Yoshimizu, T; Shimazaki, T; Tokugawa, K; Fukumoto, K; Kurosu, S; Kuwada, T; Sekiguchi, Y; Chaki, S

    2014-07-01

    Vasopressin V1B receptor antagonists may be effective for the treatment of depression and anxiety and the objective of this study was to characterize the pharmacological profiles of two newly synthesized arginine vasopressin receptor 1B (V1B receptor) antagonists, TASP0233278 and TASP0390325. We investigated the in vitro profiles of TASP0233278 and TASP0390325. In addition, the effect of TASP0390325 on the increase in plasma adrenocorticotropic hormone (ACTH) levels induced by corticotropin-releasing factor (CRF)/desmopressin (dDAVP) was investigated. We also investigated the antidepressant and anxiolytic profiles of TASP0233278 and TASP0390325 in animal models. Both TASP0233278 and TASP0390325 showed a high affinity and potent antagonist activity for V1B receptors. Oral administration of TASP0390325 antagonized the increase in plasma ACTH levels induced by CRF/dDAVP in rats, indicating that TASP0390325 blocks the anterior pituitary V1B receptor in vivo. Oral administration of TASP0233278 or TASP0390325 also exerted antidepressant effects in two models of depression (a forced swimming test and an olfactory bulbectomy model). Moreover, TASP0233278 improved depressive-like behaviour induced by repeated treatment with corticosterone, a model that has been shown to be resistant to treatment with currently prescribed antidepressants. In addition to depression models, TASP0233278 or TASP0390325 exerted anxiolytic effects in several anxiety models (social interaction, elevated plus-maze, stress-induced hyperthermia, separation-induced ultrasonic vocalization and sodium lactate-induced panic-like responses in panic-prone rats). TASP0233278 and TASP0390325 are potent and orally active V1B receptor antagonists with antidepressant and anxiolytic activities in rodents. © 2014 The British Pharmacological Society.

  13. CRF Receptor Antagonist Astressin-B Reverses and Prevents Alopecia in CRF Over-Expressing Mice

    Science.gov (United States)

    Rivier, Jean; Rivier, Catherine; Craft, Noah; Stenzel-Poore, Mary P.; Taché, Yvette

    2011-01-01

    Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4–9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF2 receptor antagonist, astressin2-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress. PMID:21359208

  14. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    2011-02-01

    Full Text Available Corticotropin-releasing factor (CRF signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.

  15. Sex differences in stress-related receptors: ″micro″ differences with ″macro″ implications for mood and anxiety disorders

    Directory of Open Access Journals (Sweden)

    Bangasser Debra A

    2013-01-01

    Full Text Available Abstract Stress-related psychiatric disorders, such as unipolar depression and post-traumatic stress disorder (PTSD, occur more frequently in women than in men. Emerging research suggests that sex differences in receptors for the stress hormones, corticotropin releasing factor (CRF and glucocorticoids, contribute to this disparity. For example, sex differences in CRF receptor binding in the amygdala of rats may predispose females to greater anxiety following stressful events. Additionally, sex differences in CRF receptor signaling and trafficking in the locus coeruleus arousal center combine to make females more sensitive to low levels of CRF, and less adaptable to high levels. These receptor differences in females could lead to hyperarousal, a dysregulated state associated with symptoms of depression and PTSD. Similar to the sex differences observed in CRF receptors, sex differences in glucocorticoid receptor (GR function also appear to make females more susceptible to dysregulation after a stressful event. Following hypothalamic pituitary adrenal axis activation, GRs are critical to the negative feedback process that inhibits additional glucocorticoid release. Compared to males, female rats have fewer GRs and impaired GR translocation following chronic adolescent stress, effects linked to slower glucocorticoid negative feedback. Thus, under conditions of chronic stress, attenuated negative feedback in females would result in hypercortisolemia, an endocrine state thought to cause depression. Together, these studies suggest that sex differences in stress-related receptors shift females more easily into a dysregulated state of stress reactivity, linked to the development of mood and anxiety disorders. The implications of these receptor sex differences for the development of novel pharmacotherapies are also discussed.

  16. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  17. Reduced vasopressin receptors activation mediates the anti-depressant effects of fluoxetine and venlafaxine in bulbectomy model of depression.

    Science.gov (United States)

    Poretti, María Belén; Sawant, Rahul S; Rask-Andersen, Mathias; de Cuneo, Marta Fiol; Schiöth, Helgi B; Perez, Mariela F; Carlini, Valeria Paola

    2016-03-01

    In response to stress, corticotropin releasing hormone (CRH) and vasopressin (AVP) are released from the hypothalamus, activate their receptors (CRHR1, CRHR2 or AVPr1b), and synergistically act to induce adrenocorticotropic hormone (ACTH) release from the anterior pituitary. Overstimulation of this system has been frequently associated with major depression states. The objective of the study is to assess the role of AVP and CRH receptors in fluoxetine and venlafaxine effects on the expression of depression-related behavior. In an animal model of depression (olfactory bulbectomy in mice, OB), we evaluated the effects of fluoxetine or venlafaxine (both 10 mg/kg/day) chronic administration on depression-related behavior in the tail suspension test. Plasma levels of AVP, CRH, and ACTH were determined as well as participation of their receptors in the expression of depression related-behavior and gene expression of AVP and CRH receptors (AVPr1b, CRHR1, and CRHR2) in the pituitary gland. The expression of depressive-like behavior in OB animals was reversed by treatment with both antidepressants. Surprisingly, OB-saline mice exhibited increased AVP and ACTH plasma levels, with no alterations in CRH levels when compared to sham mice. Chronic fluoxetine or venlafaxine reversed these effects. In addition, a significant increase only in AVPr1b gene expression was found in OB-saline. The antidepressant therapy used seems to be more likely related to a reduced activation of AVP rather than CRH receptors, since a positive correlation between AVP levels and depressive-like behavior was observed in OB animals. Furthermore, a full restoration of depressive behavior was observed in OB-fluoxetine- or venlafaxine-treated mice only when AVP was centrally administered but not CRH.

  18. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function o...

  19. CRF1 but not glucocorticoid receptor antagonists reduce separation-induced distress vocalizations in guinea pig pups and CRF overexpressing mouse pups. A combination study with paroxetine.

    Science.gov (United States)

    Verdouw, P Monika; van Esterik, Joantine C J; Peeters, Bernard W M M; Millan, Mark J; Groenink, Lucianne

    2017-03-01

    Given the large number of patients that does not respond sufficiently to currently available treatment for anxiety disorders, there is a need for improved treatment. We evaluated the anxiolytic effects of corticotropin releasing factor (CRF)1 receptor antagonists and glucocorticoid receptor (GR) antagonists in the separation-induced vocalization test in guinea pigs and transgenic mice with central CRF overexpression. Furthermore, we explored effects of these drugs when given in combination with a suboptimal dose of a selective serotonin re-uptake inhibitor (SSRI). In guinea pig pups, the CRF1 receptor antagonists CP-154,526 and DMP695, and the GR antagonists mifepristone and Org34517 (all at 2.5, 10 and 40mg/kg intraperitoneally (IP)) were tested alone or in combination with 0.63mg/kg paroxetine IP. In CRF overexpressing mouse pups and wild type littermates, effects of CP-154,526 (10, 20 and 40mg/kg subcutaneously (SC)) and mifepristone (5, 15, 45mg/kg SC) were studied alone or in combination with 0.03mg/kg paroxetine SC. CRF1 but not GR antagonists reduced the number of calls relative to vehicle in guinea pigs and mice, independent of genotype. Treatment of CRF1 receptor or GR antagonists with paroxetine had no combined effect in guinea pigs, wild type or CRF overexpressing mice. Current results indicate robust anxiolytic properties of CRF1 receptor antagonists in guinea pigs and mice overexpressing CRF, and lack thereof of GR antagonists. Although no combined treatment effects were observed, it would be interesting to study combined treatment of CRF1 receptor antagonists with SSRIs following chronic drug administration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    Science.gov (United States)

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  1. Involvement of mTOR in Type 2 CRF Receptor Inhibition of Insulin Signaling in Muscle Cells.

    Science.gov (United States)

    Chao, Hongxia; Li, Haochen; Grande, Rebecca; Lira, Vitor; Yan, Zhen; Harris, Thurl E; Li, Chien

    2015-06-01

    Type 2 corticotropin-releasing factor receptor (CRFR2) is expressed in skeletal muscle and stimulation of the receptor has been shown to inhibit the effect of insulin on glucose uptake in muscle cells. Currently, little is known about the mechanisms underlying this process. In this study, we first showed that both in vivo and in vitro CRFR2 expression in muscle was closely correlated with insulin sensitivity, with elevated receptor levels observed in insulin resistant muscle cells. Stimulation of CRFR2 by urocortin 2 (Ucn 2), a CRFR2-selective ligand, in C2C12 myotubes greatly attenuated insulin-induced glucose uptake. The inhibitory effect of CRFR2 signaling required cAMP production and is involved the mammalian target of rapamycine pathway, as rapamycin reversed the inhibitory effect of CRFR2 stimulation on insulin-induced glucose uptake. Moreover, stimulation of CRFR2 failed to inhibit glucose uptake in muscle cells induced by platelet-derived growth factor, which, similar to insulin, signals through Akt-mediated pathway but is independently of insulin receptor substrate (IRS) proteins to promote glucose uptake. This result argues that CRFR2 signaling modulates insulin's action likely at the levels of IRS. Consistent with this notion, Ucn 2 reduced insulin-induced tyrosine phosphorylation of IRS-1, and treatment with rapamycin reversed the inhibitory effect of Ucn 2 on IRS-1 and Akt phosphorylation. In conclusion, the inhibitory effect of CRFR2 signaling on insulin action is mediated by cAMP in a mammalian target of rapamycine-dependent manner, and IRS-1 is a key nodal point where CRFR2 signaling modulates insulin-stimulated glucose uptake in muscle cells.

  2. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of (111)In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin).

    Science.gov (United States)

    Cornelissen, Bart; McLarty, Kristin; Kersemans, Veerle; Reilly, Raymond M

    2008-08-01

    Our objective was to define the relationships between tumor uptake of [(111)In]-IGF-1 and [(111)In]-IGF-1(E3R), an analogue which does not bind insulin growth factor-1 (IGF-1) binding proteins (i.e., IGFBP-3), and the level of IGF-1 receptor (IGF-1R) expression on human breast cancer (BC) xenografts in athymic mice, as well as the feasibility for tumor imaging. A second objective was to correlate IGF-1R (and HER2 density) with the cytotoxicity of trastuzumab in the absence/presence of IGFBP-3 or the IGF-1R tyrosine kinase inhibitor, AG1024. The tumor and normal tissue uptake of [(111)In]-IGF-1 and [(111)In]-IGF-1(E3R) were determined at 4 h postinjection in mice implanted subcutaneously with MDA-MB-231, H2N, HR2 or MCF-7/HER2-18 human BC xenografts (8.5x10(4), 1.4x10(4), 4.0x10(4) and 1.0x10(5) IGF-1R/cell, respectively). The effect of co-injection of IGF-1 (50 microg) or IGFBP-3 (2 or 25 microg) was studied. The relationship between tumor uptake of [(111)In]-IGF-1(E3R) and IGF-1R density was examined. MicroSPECT/CT imaging was performed on mice with MCF-7/HER2-18 tumors injected with [(111)In]-IGF-1(E3R). The surviving fraction of BC cells exposed to trastuzumab (67.5 mug/ml) in the absence/presence of IGFBP-3 (1 microg/ml) or the IGF-1R kinase inhibitor, AG1024 (1 or 5 microg/ml), was determined. [(111)In]-IGF-1 was specifically taken up by MCF-7/HER2-18 xenografts; tumor uptake was decreased twofold when co-injected with IGF-1 (1.9+/-0.1 vs. 1.0+/-0.1 %ID/g). Co-injection of IGBP-3 decreased kidney uptake of [(111)In]-IGF-1 up to twofold and increased circulating radioactivity threefold. There was a strong linear correlation (r(2)=0.99) between the tumor uptake of (111)In-IGF-1(E3R) and IGF-1R density. Tumor uptake ranged from 0.4+/-0.05 %ID/g for H2N to 2.5+/-0.5 %ID/g for MCF-7/HER2-18 xenografts. MCF-7/HER2-18 tumors were visualized by microSPECT/CT. Resistance of BC cells to trastuzumab was directly associated with IGF-1R expression, despite co-expression of

  3. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of {sup 111}In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin)

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart; McLarty, Kristin; Kersemans, Veerle [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network Toronto, Toronto, ON, M5S 3M2 (Canada)], E-mail: raymond.reilly@utoronto.ca

    2008-08-15

    Introduction: Our objective was to define the relationships between tumor uptake of [{sup 111}In]-IGF-1 and [{sup 111}In]-IGF-1(E3R), an analogue which does not bind insulin growth factor-1 (IGF-1) binding proteins (i.e., IGFBP-3), and the level of IGF-1 receptor (IGF-1R) expression on human breast cancer (BC) xenografts in athymic mice, as well as the feasibility for tumor imaging. A second objective was to correlate IGF-1R (and HER2 density) with the cytotoxicity of trastuzumab in the absence/presence of IGFBP-3 or the IGF-1R tyrosine kinase inhibitor, AG1024. Methods: The tumor and normal tissue uptake of [{sup 111}In]-IGF-1 and [{sup 111}In]-IGF-1(E3R) were determined at 4 h postinjection in mice implanted subcutaneously with MDA-MB-231, H2N, HR2 or MCF-7/HER2-18 human BC xenografts (8.5x10{sup 4}, 1.4x10{sup 4}, 4.0x10{sup 4} and 1.0x10{sup 5} IGF-1R/cell, respectively). The effect of co-injection of IGF-1 (50 {mu}g) or IGFBP-3 (2 or 25 {mu}g) was studied. The relationship between tumor uptake of [{sup 111}In]-IGF-1(E3R) and IGF-1R density was examined. MicroSPECT/CT imaging was performed on mice with MCF-7/HER2-18 tumors injected with [{sup 111}In]-IGF-1(E3R). The surviving fraction of BC cells exposed to trastuzumab (67.5 {mu}g/ml) in the absence/presence of IGFBP-3 (1 {mu}g/ml) or the IGF-1R kinase inhibitor, AG1024 (1 or 5 {mu}g/ml), was determined. Results: [{sup 111}In]-IGF-1 was specifically taken up by MCF-7/HER2-18 xenografts; tumor uptake was decreased twofold when co-injected with IGF-1 (1.9{+-}0.1 vs. 1.0{+-}0.1 %ID/g). Co-injection of IGBP-3 decreased kidney uptake of [{sup 111}In]-IGF-1 up to twofold and increased circulating radioactivity threefold. There was a strong linear correlation (r{sup 2}=0.99) between the tumor uptake of {sup 111}In-IGF-1(E3R) and IGF-1R density. Tumor uptake ranged from 0.4{+-}0.05 %ID/g for H2N to 2.5{+-}0.5 %ID/g for MCF-7/HER2-18 xenografts. MCF-7/HER2-18 tumors were visualized by microSPECT/CT. Resistance of BC

  4. FAS inhibitor cerulenin reduces food intake and melanocortin receptor gene expression without modulating the other (an)orexigenic neuropeptides in chickens.

    Science.gov (United States)

    Dridi, Sami; Ververken, Cedric; Hillgartner, F Bradley; Arckens, Lutgarde; Lutgarde, Arckens; Van der Gucht, Estel; Cnops, Lieselotte; Decuypere, Eddy; Buyse, Johan

    2006-07-01

    Cerulenin, a natural fatty acid synthase (FAS) inhibitor, and its synthetic analog C75 are hypothesized to alter the metabolism of neurons in the hypothalamus that regulate ingestive behavior to cause a profound decrease of food intake and an increase in metabolic rate, leading to body weight loss. The bulk of data exclusively originates from mammals (rodents); however, such effects are currently lacking in nonmammalian species. We have, therefore, addressed this issue in broiler chickens because this species is selected for high growth rate and high food intake and is prone to obesity. First, we demonstrate that FAS messenger and protein are expressed in the hypothalamus of chickens. FAS immunoreactivity was detected in a number of brain regions, including the nucleus paraventricularis magnocellularis and the nucleus infundibuli hypothalami, the avian equivalent of the mammalian arcuate nucleus, suggesting that FAS may be involved in the regulation of food intake. Second, we show that hypothalamic FAS gene expression was significantly (P inhibition of fatty acid synthesis on food intake, we administered cerulenin by intravenous injections (15 mg/kg) to 2-wk-old broiler chickens. Cerulenin administration significantly reduced food intake by 23 to 34% (P agouti gene-related peptide, orexin, and orexin receptor) and anorexigenic (pro-opiomelanocortin and corticotropin-releasing hormone) neuropeptide mRNA levels remained unchanged after cerulenin treatment. These results suggest that the catabolic effect of cerulenin in chickens may be mediated through the melanocortin system rather than the other neuropeptides known to be involved in food intake regulation.

  5. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Andrea eBecchetti

    2015-02-01

    Full Text Available Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE is a focal epilepsy with attacks typically arising in the frontal lobe during non rapid eye movement (NREM sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs. This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel, DEPD5 (Dishevelled, Egl-10 and Pleckstrin Domain-containing protein 5, and CRH (Corticotropin-Releasing Hormone. Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.

  6. In vivo neutralization of IL-6 receptors ameliorates gastrointestinal dysfunction in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Manning, J; Buckley, M M; O'Halloran, K D; O'Malley, D

    2016-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease characterized by progressive deterioration and degeneration of striated muscle. A mutation resulting in the loss of dystrophin, a structural protein which protects cells from contraction-induced damage, underlies DMD pathophysiology. Damage to muscle fibers results in chronic inflammation and elevated levels of proinflammatory cytokines such as interleukin-6 (IL-6). However, loss of cellular dystrophin also affects neurons and smooth muscle in the gastrointestinal (GI) tract with complaints such as hypomotility, pseudo-obstruction, and constipation reported in DMD patients. Using dystrophin-deficient mdx mice, studies were carried out to examine colonic morphology and function compared with wild-type mice. Treatment with neutralizing IL-6 receptor antibodies (xIL-6R) and/or the corticotropin-releasing factor (CRF) 2 receptor agonist, urocortin 2 (uro2) was tested to determine if they ameliorated GI dysfunction in mdx mice. Mdx mice exhibited thickening of colonic smooth muscle layers and delayed stress-induced defecation. In organ bath studies, neurally mediated IL-6-evoked contractions were larger in mdx colons. In vivo treatment of mdx mice with xIL-6R normalized defecation rates and colon lengths. Uro2 treatment did not affect motility or morphology. The potentiated colonic contractile response to IL-6 was attenuated by treatment with xIL-6R. These findings confirm the importance of dystrophin in normal GI function and implicate IL-6 as an important regulator of GI motility in the mdx mouse. Inhibition of IL-6 signaling may offer a potential new therapeutic strategy for treating DMD-associated GI symptoms. © 2016 John Wiley & Sons Ltd.

  7. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity.

    Science.gov (United States)

    Knowles, Megan Dunbar; de la Tremblaye, Patricia Barra; Azogu, Idu; Plamondon, Hélène

    2016-04-03

    Global cerebral ischemia in rodents, which mimics cardiac arrest in humans, is associated with a surge in endocannabinoids and increased transmission of dopamine and glutamate leading to excitotoxic cell death. The current study assessed the role of CB1 receptor activation at the moment of an ischemic insult on ensuing regulation of stress and reward signaling molecules, neuronal injury and anxiety-like behavior. Male Wistar rats were separated into 4 groups (n=10/group); sham and ischemic rats administered the CB1 endocannabinoid receptor antagonist AM251 (2mg/kg, i.p.) 30min prior to global cerebral ischemia, and vehicle-treated counterparts. The effects of CB1 receptor blockade on corticotropin-releasing hormone (CRH), vesicular glutamate transporter 2 (vGluT2), tyrosine hydroxylase (TH) and dopamine receptor 1 (DRD1) signaling expression, together with CA1 neuronal damage and anxiety-like behaviors were assessed. Our findings show attenuated CA1 injury and behavioral deficits in AM251-treated ischemic rats. AM251-pretreatment also partially or completely reversed ischemia-induced alterations in TH-ir expression at the hippocampus, ventral tegmental area (VTA), nucleus accumbens (NAc) and basolateral amygdala (BLA), normalized DRD1-ir at the medial forebrain bundle, and diminished BLA and PVN-CRH expression. All groups showed comparable vGluT2 expression at the BLA and PVN-parvocellular subdivision. These findings support a determinant role of CB1 receptor activation at time of ischemia on functional recovery. They also support "state-dependent" effects of endocannabinoids, raising considerations in the development of effective molecules to regulate HPA axis function and mood disorders following cardiac arrest and stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    Science.gov (United States)

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  9. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    Science.gov (United States)

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2015-02-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus1

    Science.gov (United States)

    Chee, Melissa J. S.; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance thus mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expressed cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin but neither orexin nor MCH neurons expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. PMID:23605441

  11. Effect of the CRF1-receptor antagonist pexacerfont on stress-induced eating and food craving.

    Science.gov (United States)

    Epstein, David H; Kennedy, Ashley P; Furnari, Melody; Heilig, Markus; Shaham, Yavin; Phillips, Karran A; Preston, Kenzie L

    2016-12-01

    In rodents, antagonism of receptors for corticotropin-releasing factor (CRF) blocks stress-induced reinstatement of drug or palatable food seeking. To test anticraving properties of the CRF1 antagonist pexacerfont in humans. We studied stress-induced eating in people scoring high on dietary restraint (food preoccupation and chronic unsuccessful dieting) with body-mass index (BMI) >22. In a double-blind, between-groups trial, 31 "restrained" eaters were stabilized on either pexacerfont (300 mg/day for 7 days, then 100 mg/day for 21 days) or placebo. On day 15, they underwent a math-test stressor; during three subsequent visits, they heard personalized craving-induction scripts. In each session, stress-induced food consumption and craving were assessed in a bogus taste test and on visual analog scales. We used digital video to monitor daily ingestion of study capsules and nightly rating of food problems/preoccupation on the Yale Food Addiction Scale (YFAS). The study was stopped early due to an administrative interpretation of US federal law, unrelated to safety or outcome. The bogus taste tests suggested some protective effect of pexacerfont against eating after a laboratory stressor (r effect = 0.30, 95 % CL = -0.12, 0.63, Bayes factor 11.30). Similarly, nightly YFAS ratings were lower with pexacerfont than placebo (r effect = 0.39, CI 0.03, 0.66), but this effect should be interpreted with caution because it was present from the first night of pill ingestion, despite pexacerfont's slow pharmacokinetics. The findings may support further investigation of the anticraving properties of CRF1 antagonists, especially for food.

  12. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus.

    Science.gov (United States)

    Chee, Melissa J S; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-07-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance; thus, mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expresses cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin, but neither orexin nor MCH neurons, expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. Copyright © 2012 Wiley Periodicals, Inc.

  13. Role of bed nucleus of the stria terminalis corticotrophin-releasing factor receptors in frustration stress-induced binge-like palatable food consumption in female rats with a history of food restriction.

    Science.gov (United States)

    Micioni Di Bonaventura, Maria Vittoria; Ciccocioppo, Roberto; Romano, Adele; Bossert, Jennifer M; Rice, Kenner C; Ubaldi, Massimo; St Laurent, Robyn; Gaetani, Silvana; Massi, Maurizio; Shaham, Yavin; Cifani, Carlo

    2014-08-20

    We developed recently a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after 15 min exposure to the sight of the palatable food. This "frustration stress" manipulation also activates the hypothalamic-pituitary-adrenal stress axis. Here, we determined the role of the stress neurohormone corticotropin-releasing factor (CRF) in stress-induced binge eating in our model. We also assessed the role of CRF receptors in the bed nucleus of the stria terminalis (BNST), a brain region implicated in stress responses and stress-induced drug seeking, in stress-induced binge eating. We used four groups that were first exposed or not exposed to repeated intermittent cycles of regular chow food restriction during which they were also given intermittent access to high-caloric palatable food. On the test day, we either exposed or did not expose the rats to the sight of the palatable food for 15 min (frustration stress) before assessing food consumption for 2 h. We found that systemic injections of the CRF1 receptor antagonist R121919 (2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-a]pyrimidine) (10-20 mg/kg) and BNST (25-50 ng/side) or ventricular (1000 ng) injections of the nonselective CRF receptor antagonist D-Phe-CRF(12-41) decreased frustration stress-induced binge eating in rats with a history of food restriction. Frustration stress also increased Fos (a neuronal activity marker) expression in ventral and dorsal BNST. Results demonstrate a critical role of CRF receptors in BNST in stress-induced binge eating in our rat model. CRF1 receptor antagonists may represent a novel pharmacological treatment for bingeing-related eating disorders. Copyright © 2014 the authors 0270-6474/14/3411316-09$15.00/0.

  14. In vivo evidence for ligand-specific receptor activation in the central CRF system, as measured by local cerebral glucose utilization.

    Science.gov (United States)

    Warnock, Geoff; Moechars, Dieder; Langlois, Xavier; Steckler, Thomas

    2009-05-01

    Corticotropin-releasing factor (CRF) is well known for its role in the hypothalamic-pituitary-adrenocortical (HPA) axis and its involvement in stress and anxiety. CRF acts via two main receptor subtypes, CRF(1) and CRF(2). Other endogenous CRF-related peptide ligands are the Urocortins 1 and 2 and Stresscopin. While CRF is thought to mediate its anxiogenic-like properties through CRF(1), the role of CRF(2) and its endogenous ligands Urocortin 2 and Stresscopin are less clear, with a suggested role in mediating the delayed effects of stress. Measurement of local cerebral glucose utilization (LCGU) provides an estimate of neuronal activity, and is of potential use as a translational tool in comparison to FDG PET. We hypothesized that comparison of the patterns of metabolic changes induced by CRF-related peptides could provide further information on their role in the brain. The present studies examined the effects of CRF-related peptides on LCGU, and the role of CRF(1) and CRF(2) in the CRF-induced LCGU response. CRF induced increases in LCGU in hypothalamic, thalamic, cerebellar and hippocampal regions, and further studies using antagonists or mutant mice lacking a functional CRF(1) receptor clearly suggested a role for CRF(2) in this effect. Urocortin 1 increased LCGU in a dissected hindbrain region. However, central administration of the CRF(2)-selective agonists Urocortin 2 and Stresscopin failed to affect LCGU, which may suggest ligand-dependent receptor activation within the CRF system. The present data supports a role for CRF(2) in the regulation of neuronal glucose metabolism.

  15. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity.

    Science.gov (United States)

    Liu, Xiu

    2015-06-01

    Overeating beyond individuals' homeostatic needs critically contributes to obesity. The neurobehavioral mechanisms underlying the motivation to consume excessive foods with high calories are not fully understood. The present study examined whether a pharmacological stressor, yohimbine, enhances the motivation to procure food reward with an emphasis on comparisons between standard lab chow and high-fat foods. The effects of corticotropin-releasing factor (CRF) receptor blockade by a CRF1-selective antagonist NBI on the stress-enhanced motivation for food reward were also assessed. Male Sprague-Dawley rats with chow available ad libitum in their home cages were trained to press a lever under a progressive ratio schedule for deliveries of either standard or high-fat food pellets. For testing yohimbine stress effects, rats received an intraperitoneal administration of yohimbine 10 min before start of the test sessions. For testing effects of CRF1 receptor blockade on stress responses, NBI was administered 20 min prior to yohimbine challenge. The rats emitted higher levels of lever responses to procure the high-fat food pellets compared with their counterparts on standard food pellets. Yohimbine challenge facilitated lever responses for the reward in all of the rats, whereas the effect was more robust in the rats on high-fat food pellets compared with their counterparts on standard food pellets. An inhibitory effect of pretreatment with NBI was observed on the enhancing effect of yohimbine challenge but not on the responses under baseline condition without yohimbine administration. Stress challenge significantly enhanced the motivation of satiated rats to procure extra food reward, especially the high-fat food pellets. Activation of CRF1 receptors is required for the stress-enhanced motivation for food reward. These results may have implications for our better understanding of the biobehavioral mechanisms of overeating and obesity.

  16. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression

    NARCIS (Netherlands)

    Zhou, Tian; Wang, Shanshan; Ren, Haigang; Qi, Xin-Rui; Luchetti, Sabina; Kamphuis, Willem; Zhou, Jiang-Ning; Wang, Guanghui; Swaab, Dick F.

    2010-01-01

    The recently discovered dendritic cell nuclear protein-1 is the product of a novel candidate gene for major depression. The A allele encodes full-length dendritic cell nuclear protein-1, while the T allele encodes a premature termination of translation at codon number 117 on chromosome 5. In the

  17. Stress and Female Reproductive System: Disruption of Corticotropin-Releasing Hormone/Opiate Balance by Sympathetic Nerve Traffic

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2009-09-01

    Full Text Available Nowadays stress is an integral part of everyday living and the physiological and behavioral consequences of exposure to stressful situations have been extensively studied for decades. The stress response is a necessary mechanism but disrupts homeostatic process and it is sub served by a complex system located in both the central nervous system (CNS and the periphery. Stressor-induced activation of the hypothalamus–pituitary–adrenal (HPA axis and the sympathetic nervous system (SNS results in a series of neural and endocrine adaptations known as the "stress response" or "stress cascade." The stress cascade is responsible for allowing the body to make the necessary physiological and metabolic changes required to cope with the demands of a homeostatic challenge. Normal activation of the HPA axis is essential for reproduction, growth, metabolic homeostasis, and responses to stress and they are critical for adapting to changes in the external environment. The regulation of gonadal function in men and women is under the control of the HPA. This regulation is complex and sex steroids are important regulators of GnRH and gonadotropin release through classical feedback mechanisms in the hypothalamus and the pituitary. The present overview focuses on the neuroendocrine infrastructure of the adaptive response to stress and its effects on the female reproductive system. 

  18. The value of corticotropin-releasing hormone (CRH test for differential diagnosis of Cushing’s syndrome

    Directory of Open Access Journals (Sweden)

    Penezić Zorana

    2007-01-01

    Full Text Available Introduction: Diagnosis and differential diagnosis of Cushing’s syndrome (CS remain considerable challenge in endocrinology. For more than 20 years, CRH has been widely used as differential diagnostic test. Following the CRH administration, the majority of patients with ACTH secreting pituitary adenoma show a significant rise of plasma cortisol and ACTH, whereas those with ectopic ACTH secretion characteristically do not. Objective The aim of our study was to assess the value of CRF test for differential diagnosis of CS using the ROC (receiver operating characteristic curve method. Method A total of 30 patients with CS verified by pathological examination and postoperative testing were evaluated. CRH test was performed within diagnostic procedures. ACTH secreting pituitary adenoma was found in 18, ectopic ACTH secretion in 3 and cortisol secreting adrenal adenoma in 9 of all patients with CS. Cortisol and ACTH were determined -15, 0, 15, 30, 45, 60, 90 and 120 min. after i.v. administration of 100μg of ovine CRH. Cortisol and ACTH were determined by commercial RIA. Statistical data processing was done by ROC curve analysis. Due to small number, the patients with ectopic ACTH secretion were excluded from test evaluation by ROC curve method. Results In evaluated subgroups, basal cortisol was (1147.3±464.3 vs. 1589.8±296.3 vs. 839.2±405.6 nmol/L; maximal stimulated cortisol (1680.3±735.5 vs. 1749.0±386.6 vs. 906.1±335.0 nmol/L; and maximal increase as a percent of basal cortisol (49.1±36.9 vs. 9.0±7.6 vs. 16.7±37.3 %. Consequently, basal ACTH was (100.9 ±85.0 vs. 138.0±123.7 vs. 4.8±4.3 pg/mL and maximal stimulated ACTH (203.8 ±160.1 vs. 288.0±189.5 vs. 7.4±9.2 pg/mL. For cortisol, determination area under ROC curve was 0.815±0.083 (CI 95% 0.652-0.978. For cortisol increase cut-off level of 20%, test sensitivity was 83%, with specificity of 78%. For ACTH, determination area under ROC curve was 0.637±0.142 (CI 95% 0.359-0.916. For ACTH increase cut-off level of 30%, test sensitivity was 70%, with specificity of 57%. Conclusion Determination of cortisol and ACTH levels in CRH test remains reliable tool in differential diagnosis of Cushing’s syndrome.

  19. The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment

    Directory of Open Access Journals (Sweden)

    Greta B Raglan

    2017-02-01

    Full Text Available The stress response has been linked to the expression of anxiety and depression, but the mechanisms for these connections are under continued consideration. The activation and expression of glucocorticoids and CRH are variable and may hold important clues to individual experiences of mood disorders. This paper explores the interactions of glucocorticoids and CRH in the presentation of anxiety and depressive disorders in an effort to better describe their differing roles in each of these clinical presentations. In addition, it focuses on ways in which extra-hypothalamic glucocorticoids and CRH, often overlooked, may play important roles in the presentation of clinical disorders.

  20. Palatable Foods, Stress, and Energy Stores Sculpt Corticotropin-Releasing Factor, Adrenocorticotropin, and Corticosterone Concentrations after Restraint

    National Research Council Canada - National Science Library

    Foster, Michelle T; Warne, James P; Ginsberg, Abigail B; Horneman, Hart F; Pecoraro, Norman C; Akana, Susan F; Dallman, Mary F

    2009-01-01

    Previous studies have shown reduced hypothalamo-pituitary-adrenal responses to both acute and chronic restraint stressors in rats allowed to ingest highly palatable foods (32% sucrose ± lard) prior to restraint...

  1. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression)

    NARCIS (Netherlands)

    Appelhof, Bente C.; Huyser, Jochanan; Verweij, Mijke; Brouwer, Jantien P.; van Dyck, Richard; Fliers, Eric; Hoogendijk, Witte J. G.; Tijssen, Jan G. P.; Wiersinga, Wilmar M.; Schene, Aart H.

    2006-01-01

    BACKGROUND: Knowledge of pathogenic mechanisms and predictors of relapse in major depressive disorder is still limited. Hypothalamic-pituitary-adrenocortical (HPA) axis dysregulation is thought to be related to the development and course of depression. METHODS: We investigated whether

  2. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery.

    Science.gov (United States)

    Henckens, M J A G; Printz, Y; Shamgar, U; Dine, J; Lebow, M; Drori, Y; Kuehne, C; Kolarz, A; Eder, M; Deussing, J M; Justice, N J; Yizhar, O; Chen, A

    2017-12-01

    The bed nucleus of the stria terminalis (BNST) is critical in mediating states of anxiety, and its dysfunction has been linked to stress-related mental disease. Although the anxiety-related role of distinct subregions of the anterior BNST was recently reported, little is known about the contribution of the posterior BNST (pBNST) to the behavioral and neuroendocrine responses to stress. Previously, we observed abnormal expression of corticotropin-releasing factor receptor type 2 (CRFR2) to be associated with post-traumatic stress disorder (PTSD)-like symptoms. Here, we found that CRFR2-expressing neurons within the pBNST send dense inhibitory projections to other stress-related brain regions (for example, the locus coeruleus, medial amygdala and paraventricular nucleus), implicating a prominent role of these neurons in orchestrating the neuroendocrine, autonomic and behavioral response to stressful situations. Local CRFR2 activation by urocortin 3 depolarized the cells, increased the neuronal input resistance and increased firing of action potentials, indicating an enhanced excitability. Furthermore, we showed that CRFR2-expressing neurons within the pBNST are critically involved in the modulation of the behavioral and neuroendocrine response to stress. Optogenetic activation of CRFR2 neurons in the pBNST decreased anxiety, attenuated the neuroendocrine stress response, ameliorated stress-induced anxiety and impaired the fear memory for the stressful event. Moreover, activation following trauma exposure reduced the susceptibility for PTSD-like symptoms. Optogenetic inhibition of pBNST CRFR2 neurons yielded opposite effects. These data indicate the relevance of pBNST activity for adaptive stress recovery.

  3. Effect of childhood trauma on adult depression and neuroendocrine function: sex-specific moderation by CRH receptor 1 gene

    Directory of Open Access Journals (Sweden)

    Christine Heim

    2009-11-01

    Full Text Available Variations of the corticotropin-releasing hormone receptor 1 (CRHR1 gene appear to moderate the development of depression after childhood trauma. Depression more frequently affects women than men. We examined sex differences in the effects of the CRHR1 gene on the relationship between childhood trauma and adult depression. Methods: We recruited 1,063 subjects from the waiting rooms of a public urban hospital. Childhood trauma exposure and symptoms of depression were assessed using dimensional rating scales. Subjects were genotyped for rs110402 within the CRHR1 gene. An independent sample of 78 subjects underwent clinical assessment, genotyping, and a dexamethasone/CRH test. The age range at recruitment was 18-77 years and 18-45, for the two studies respectively. Results: In the hospital sample, the protective effect of the rs110402 A-allele against developing depression after childhood trauma was observed in men (N=424, but not in women (N=635. In the second sample, the rs110402 A-allele was associated with decreased cortisol response in the dexamethasone/CRH test only in men. In A-allele carriers with childhood trauma exposure women exhibited increased cortisol response compared men; there were no sex differences in A-allele carriers without trauma exposure. This effect may, however, not be related to gender-differences per se, but to differences in the type of experienced abuse between men and women. CRHR x environment interactions in the hospital sample were observed with exposure to physical, but not sexual or emotional abuse. Physical abuse was the most common type of abuse in men in this cohort, while sexual abuse was most commonly suffered by women. Conclusion: Our results suggest that the CRHR1 gene may only moderate the effects of specific types of childhood trauma on depression. Gender differences in environmental exposures could thus be reflected in sex-specific CRHR1 x child abuse interactions.

  4. Effect of Childhood Trauma on Adult Depression and Neuroendocrine Function: Sex-Specific Moderation by CRH Receptor 1 Gene.

    Science.gov (United States)

    Heim, Christine; Bradley, Bekh; Mletzko, Tanja C; Deveau, Todd C; Musselman, Dominique L; Nemeroff, Charles B; Ressler, Kerry J; Binder, Elisabeth B

    2009-01-01

    Variations of the corticotropin-releasing hormone receptor 1 (CRHR1) gene appear to moderate the development of depression after childhood trauma. Depression more frequently affects women than men. We examined sex differences in the effects of the CRHR1 gene on the relationship between childhood trauma and adult depression. We recruited 1,063 subjects from the waiting rooms of a public urban hospital. Childhood trauma exposure and symptoms of depression were assessed using dimensional rating scales. Subjects were genotyped for rs110402 within the CRHR1 gene. An independent sample of 78 subjects underwent clinical assessment, genotyping, and a dexamethasone/CRH test. The age range at recruitment was 18-77 years and 18-45, for the two studies respectively. In the hospital sample, the protective effect of the rs110402 A-allele against developing depression after childhood trauma was observed in men (N = 424), but not in women (N = 635). In the second sample, the rs110402 A-allele was associated with decreased cortisol response in the dexamethasone/CRH test only in men. In A-allele carriers with childhood trauma exposure women exhibited increased cortisol response compared men; there were no sex differences in A-allele carriers without trauma exposure. This effect may, however, not be related to gender differences per se, but to differences in the type of experienced abuse between men and women. CRHR x environment interactions in the hospital sample were observed with exposure to physical, but not sexual or emotional abuse. Physical abuse was the most common type of abuse in men in this cohort, while sexual abuse was most commonly suffered by women. Our results suggest that the CRHR1 gene may only moderate the effects of specific types of childhood trauma on depression. Gender differences in environmental exposures could thus be reflected in sex-specific CRHR1 x child abuse interactions.

  5. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression

    Science.gov (United States)

    Videlock, Elizabeth J.; Shih, Wendy; Adeyemo, Mopelola; Mahurkar-Joshi, Swapna; Presson, Angela P.; Polytarchou, Christos; Alberto, Melissa; Iliopoulos, Dimitrios; Mayer, Emeran A.; Chang, Lin

    2016-01-01

    Background and aims Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in irritable bowel syndrome (IBS). Enhanced HPA axis response has been associated with reduced glucocorticoid receptor (GR) mediated negative feedback inhibition. We aimed to study the effects of IBS status, sex, or presence of early adverse life events (EAL) on the cortisol response to corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and on GR mRNA expression in peripheral blood mononuclear cells (PBMCs). Methods Rome III+ IBS patients and healthy controls underwent CRF (1 μg/kg ovine) and ACTH (250 μg) stimulation tests with serial plasma ACTH and cortisol levels measured (n = 116). GR mRNA levels were measured using quantitative PCR (n = 143). Area under the curve (AUC) and linear mixed effects models were used to compare ACTH and cortisol response measured across time between groups. Results There were divergent effects of IBS on the cortisol response to ACTH by sex. In men, IBS was associated with an increased AUC (p = 0.009), but in women AUC was blunted in IBS (p = 0.006). Men also had reduced GR mRNA expression (p = 0.007). Cumulative exposure to EALs was associated with an increased HPA response. Lower GR mRNA was associated with increased pituitary HPA response and increased severity of overall symptoms and abdominal pain in IBS. Conclusion This study highlights the importance of considering sex in studies of IBS and the stress response in general. Our findings also provide support for PBMC GR mRNA expression as a peripheral marker of central HPA response. PMID:27038676

  6. The CRH-R₁ receptor mediates luteinizing hormone, prolactin, corticosterone and progesterone secretion induced by restraint stress in estrogen-primed rats.

    Science.gov (United States)

    Traslaviña, Guillermo A Ariza; Franci, Celso Rodrigues

    2011-11-03

    Acute stress has been shown to modify hypothalamus-pituitary-gonadal (HPG) axis activity. Corticotropin-releasing hormone (CRH), the principal regulator of the hypothalamus-pituitary-adrenal (HPA) axis, has been implicated as a mediator of stress-induced effects on the reproductive axis. The role of the specific CRH receptor subtypes in this response is not completely understood. In the current study, we investigated the role of the CRH-R(1) receptor on luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL), progesterone (P) and corticosterone (CT) secretion in stress-induced responses under the influence of estrogen (E(2)). Estrogen-primed ovariectomized rats (estradiol cypionate, 10 μg sc) received an i.v. administration of antalarmin (0.1 or 1mg/kg), a selective CRH-R(1) antagonist, or vehicle before restraint stress for 40 min. Seven blood samples were collected from two experimental groups (one from 10:00 h to 14:00 h and the other from 10:00 h to 18:00 h). An increase of plasma LH induced by restraint acute-stress was followed by alteration of the secretion pattern in the estrogen-induced afternoon surge. In a similar manner, we observed a suppression of the afternoon surge in plasma FSH, a delay of E(2)-induced PRL secretion, and an increase in plasma P and CT. Antalarmin attenuated stress-induce LH increase, decreased CT and P secretion and blocked the stress effects on PRL secretion. These findings suggest that CRH-R(1) mediates, at least in part, the restraint stress effects on the HPA, PRL, and reproductive axes. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Presynaptic CRF1 Receptors Mediate the Ethanol Enhancement of GABAergic Transmission in the Mouse Central Amygdala

    Directory of Open Access Journals (Sweden)

    Zhiguo Nie

    2009-01-01

    Full Text Available Corticotropin-releasing factor (CRF is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs in CeA neurons from wild-type (WT and CRF2 knockout (KO mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2 KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63 blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting

  8. Sex differences between CRF1 receptor deficient mice following naloxone-precipitated morphine withdrawal in a conditioned place aversion paradigm: implication of HPA axis.

    Directory of Open Access Journals (Sweden)

    Juan-Antonio García-Carmona

    Full Text Available Extinction period of positive affective memory of drug taking and negative affective memory of drug withdrawal, as well as the different response of men and women might be important for the clinical treatment of drug addiction. We investigate the role of corticotropin releasing factor receptor type one (CRF1R and the different response of male and female mice in the expression and extinction of the aversive memory.We used genetically engineered male and female mice lacking functional CRF1R. The animals were rendered dependent on morphine by intraperitoneally injection of increasing doses of morphine (10-60 mg/kg. Negative state associated with naloxone (1 mg/kg s.c.-precipitated morphine withdrawal was examined by using conditioned place aversion (CPA paradigm. No sex differences for CPA expression were found in wild-type (n = 29 or CRF1R knockout (KO mice (n = 29. However, CRF1R KO mice presented less aversion score than wild-type mice, suggesting that CRF1R KO mice were less responsive than wild-type to continuous associations between drug administration and environmental stimuli. In addition, CPA extinction was delayed in wild-type and CRF1R KO male mice compared with females of both genotypes. The genetic disruption of the CRF1R pathway decreased the period of extinction in males and females suggesting that CRF/CRF1R is implicated in the duration of aversive memory. Our results also showed that the increase in adrenocorticotropic hormone (ACTH levels observed in wild-type (n = 11 mice after CPA expression, were attenuated in CRF1R KO mice (n = 10. In addition, ACTH returned to the baseline levels in males and females once CPA extinction was finished.These results suggest that, at least, CPA expression is partially due to an increase in plasma ACTH levels, through activation of CRF1R, which can return when CPA extinction is finished.

  9. Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus control cardiovascular reactivity and anxiety-like behavior in male mice.

    Science.gov (United States)

    Wang, Lei; Hiller, Helmut; Smith, Justin A; de Kloet, Annette D; Krause, Eric G

    2016-09-01

    This study tested the hypothesis that deletion of angiotensin type 1a receptors (AT1a) from the paraventricular nucleus of hypothalamus (PVN) attenuates anxiety-like behavior, hypothalamic-pituitary-adrenal (HPA) axis activity, and cardiovascular reactivity. We used the Cre/LoxP system to generate male mice with AT1a specifically deleted from the PVN. Deletion of the AT1a from the PVN reduced anxiety-like behavior as indicated by increased time spent in the open arms of the elevated plus maze. In contrast, PVN AT1a deletion had no effect on HPA axis activation subsequent to an acute restraint challenge but did reduce hypothalamic mRNA expression for corticotropin-releasing hormone (CRH). To determine whether PVN AT1a deletion inhibits cardiovascular reactivity, we measured systolic blood pressure, heart rate, and heart rate variability (HRV) using telemetry and found that PVN AT1a deletion attenuated restraint-induced elevations in systolic blood pressure and elicited changes in HRV indicative of reduced sympathetic nervous activity. Consistent with the decreased HRV, PVN AT1a deletion also decreased adrenal weight, suggestive of decreased adrenal sympathetic outflow. Interestingly, the altered stress responsivity of mice with AT1a deleted from the PVN was associated with decreased hypothalamic microglia and proinflammatory cytokine expression. Collectively, these results suggest that deletion of AT1a from the PVN attenuates anxiety, CRH gene transcription, and cardiovascular reactivity and reduced brain inflammation may contribute to these effects. Copyright © 2016 the American Physiological Society.

  10. Chronic Fatigue Syndrome and DNA Hypomethylation of the Glucocorticoid Receptor Gene Promoter 1F Region: Associations With HPA Axis Hypofunction and Childhood Trauma.

    Science.gov (United States)

    Vangeel, Elise; Van Den Eede, Filip; Hompes, Titia; Izzi, Benedetta; Del Favero, Jurgen; Moorkens, Greta; Lambrechts, Diether; Freson, Kathleen; Claes, Stephan

    2015-10-01

    Chronic fatigue syndrome (CFS) has been associated with hypothalamic-pituitary-adrenal axis hypofunction and enhanced glucocorticoid receptor (GR) sensitivity. In addition, childhood trauma is considered a major risk factor for the syndrome. This study examines DNA methylation of the GR gene (NR3C1) in CFS and associations with childhood sexual and physical trauma. Quantification of DNA methylation within the 1F promoter region of NR3C1 was performed in 76 female patients (46 with no/mild and 30 with moderate/severe childhood trauma) and 19 healthy controls by using Sequenom EpiTYPER. Further, we examined the association of NR3C1-1F promoter methylation with the outcomes of the low-dose (0.5 mg) dexamethasone/corticotropin-releasing factor test in a subset of the study population. Mann-Whitney U tests and Spearman correlations were used for statistical analyses. Overall NR3C1-1F DNA methylation was lower in patients with CFS than in controls. After cytosine guanine dinucleotide (CpG)-specific analysis, CpG_1.5 remained significant after Bonferroni correction (adjusted p = .0014). Within the CFS group, overall methylation (ρ = 0.477, p = .016) and selective CpG units (CpG_1.5: ρ = 0.538, p = .007; CpG_12.13: ρ = 0.448, p = .025) were positively correlated with salivary cortisol after dexamethasone administration. There was no significant difference in NR3C1-1F methylation between traumatized and nontraumatized patients. We found evidence of NR3C1 promoter hypomethylation in female patients with CFS and the functional relevance of these differences was consistent with the hypothalamic-pituitary-adrenalaxis hypofunction hypothesis (GR hypersuppression). However, we found no evidence of an additional effect of childhood trauma on CFS via alterations in NR3C1 methylation.

  11. Toll-Like Receptor 4 in Paraventricular Nucleus Mediates Visceral Hypersensitivity Induced by Maternal Separation

    Directory of Open Access Journals (Sweden)

    Hui-Li Tang

    2017-05-01

    Full Text Available Neonatal maternal separation (MS is a major early life stress that increases the risk of emotional disorders, visceral pain perception and other brain dysfunction. Elevation of toll-like receptor 4 (TLR4 signaling in the paraventricular nucleus (PVN precipitates early life colorectal distension (CRD-induced visceral hypersensitivity and pain in adulthood. The present study aimed to investigate the role of TLR4 signaling in the pathogenesis of postnatal MS-induced visceral hypersensitivity and pain during adulthood. The TLR4 gene was selectively knocked out in C57BL/10ScSn mice (Tlr4-/-. MS was developed by housing the offspring alone for 6 h daily from postnatal day 2 to day 15. Visceral hypersensitivity and pain were assessed in adulthood. Tlr4+/+, but not Tlr4-/-, mice that had experienced neonatal MS showed chronic visceral hypersensitivity and pain. TLR4 immunoreactivity was observed predominately in microglia in the PVN, and MS was associated with an increase in the expression of protein and/or mRNA levels of TLR4, corticotropin-releasing factor (CRF, CRF receptor 1 (CRFR1, tumor necrosis factor-α, and interleukin-1β in Tlr4+/+ mice. These alterations were not observed in Tlr4-/- mice. Local administration of lipopolysaccharide, a TLR4 agonist, into the lateral cerebral ventricle elicited visceral hypersensitivity and TLR4 mRNA expression in the PVN, which could be prevented by NBI-35965, an antagonist to CRFR1. The present results indicate that neonatal MS induces a sensitization and upregulation of microglial TLR4 signaling activity, which facilitates the neighboring CRF neuronal activity and, eventually, precipitates visceral hypersensitivity in adulthood.Highlights(1Neonatal MS does not induce chronic visceral hypersensitivity and pain in Tlr4-/- mice.(2Neonatal MS increases the expression of TLR4 mRNA, CRF protein and mRNA, CRFR1 protein, TNF-α protein, and IL-1β protein in Tlr4+/+ mice.(3TLR4 agonist LPS (i.c.v. elicits visceral

  12. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  13. IGF-1 (Insulin-Like Growth Factor -1) Test

    Science.gov (United States)

    ... High-sensitivity C-reactive Protein (hs-CRP) Histamine Histone Antibody HIV Antibody and HIV Antigen (p24) HIV ... Tests Online adjunct board member. (© 1995-2010). Unit Code 15867: Insulin-Like Growth Factor 1 (IGF-1), ...

  14. Hypoxia-inducible factor 1-α in chronic gastrointestinal ischemia

    NARCIS (Netherlands)

    Harki, Jihan; Sana, Aria; van Noord, Désirée; van Diest, Paul J; van der Groep, Petra; Kuipers, Ernst J; Moons, Leon M G; Biermann, Katharina; Tjwa, Eric T T L

    Chronic gastrointestinal ischemia (CGI) is the result of decreased mucosal perfusion. Typical histological characteristics are lacking which hamper its early diagnosis. Hypoxia-inducible factor-1α (HIF-1α) is expressed under acute hypoxia. We investigated HIF-1α expression in chronic ischemic and

  15. Hypoxia-inducible factor 1-α in chronic gastrointestinal ischemia

    NARCIS (Netherlands)

    J. Harki (Jihan); A. Sana (Aria); D. van Noord (Désirée); P.J. van Diest (Paul); P. van der Groep (Petra); E.J. Kuipers (Ernst); L.M.G. Moons (Leon); K. Biermann (Katharina); E.T.T.L. Tjwa (Eric)

    2014-01-01

    textabstractChronic gastrointestinal ischemia (CGI) is the result of decreased mucosal perfusion. Typical histological characteristics are lacking which hamper its early diagnosis. Hypoxia-inducible factor-1α (HIF-1α) is expressed under acute hypoxia. We investigated HIF-1α expression in chronic

  16. Hypoxia-inducible factor 1-alpha in chronic gastrointestinal ischemia

    NARCIS (Netherlands)

    Harki, J.; Sana, A.; Noord, D. van; Diest, P.J. van; Groep, P. van der; Kuipers, E.J.; Moons, L.M.; Biermann, K.; Tjwa, E.T.

    2015-01-01

    Chronic gastrointestinal ischemia (CGI) is the result of decreased mucosal perfusion. Typical histological characteristics are lacking which hamper its early diagnosis. Hypoxia-inducible factor-1alpha (HIF-1alpha) is expressed under acute hypoxia. We investigated HIF-1alpha expression in chronic

  17. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...

  18. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    Science.gov (United States)

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (pGrowth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (pgrowth hormone receptor and insulin-like growth factor-1 (pgrowth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Insulin-like growth factor 1 and growth hormone in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Becker, Povl Ulrik

    1992-01-01

    mainly due to the decreased liver function. Low levels of somatomedins are also seen in patients with growth hormone (GH) insufficiency, renal impairment, and malnutrition. GH stimulates the production of IGF-1, and both are part of a negative feedback system acting on hepatic, pituitary......Somatomedins or insulin-like growth factors (IGF) are peptides synthesized in the liver. IGFs have different anabolic and metabolic actions and are important in normal growth and development. The concentration of insulin-like growth factor 1 (IGF-1) is low in patients with chronic liver disease......, and hypothalamic levels. The basal and stimulated GH concentration is pathologically elevated in patients with chronic liver disease and may be due to a disturbed regulation. Alterations in liver IGF receptors in patients with chronic liver disease still require investigation as they may be important for the liver...

  20. Heat shock factor 1 prevents the reduction in thrashing due to heat shock in Caenorhabditis elegans.

    Science.gov (United States)

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2015-07-03

    Heat shock factor 1 (HSF-1) is activated by heat stress and induces the expression of heat shock proteins. However, the role of HSF-1 in thermotolerance remains unclear. We previously reported that heat stress reversibly reduces thrashing movement in Caenorhabditis elegans. In this study, we analyzed the function of HSF-1 on thermotolerance by monitoring thrashing movement. hsf-1 RNAi suppressed the restoration of thrashing reduced by heat stress. In contrast, hsf-1 knockdown cancelled prevention of movement reduction in insulin/IGF-1-like growth factor 1 receptor (daf-2) mutant, but didn't suppress thrashing restoration in daf-2 mutant. In addition, hsf-1 RNAi accelerated the reduction of thrashing in heat-shocked wild-type C. elegans. And, daf-16 KO didn't accelerate the reduction of thrashing by heat stress. Taken together, these results suggest that HSF-1 prevents the reduction of thrashing caused by heat shock. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Development of Mechanical Hypersensitivity in Rats During Heroin and Ethanol Dependence: Alleviation by CRF1 Receptor Antagonism

    OpenAIRE

    Edwards, Scott; Vendruscolo, Leandro F.; Schlosburg, Joel E.; Misra, Kaushik K.; Wee, Sunmee; Park, Paula E.; Schulteis, Gery; Koob, George F.

    2011-01-01

    Animal models of drug dependence have described both reductions in brain reward processes and potentiation of stress-like (or anti-reward) mechanisms, including a recruitment of corticotropin-releasing factor (CRF) signaling. Accordingly, chronic exposure to opiates often leads to the development of mechanical hypersensitivity. We measured paw withdrawal thresholds (PWTs) in male Wistar rats allowed limited (short access group: ShA) or extended (long access group: LgA) access to heroin or coc...

  2. The neurohormone orexin stimulates hypoxia-inducible factor-1 activity

    OpenAIRE

    Sikder, Devanjan; Kodadek, Thomas

    2007-01-01

    Orexin A and Orexin B (also known as hypocretins) are neuropeptides that bind two related G-coupled protein receptors (OXR1 and OXR2) and thus induce wakefulness, food consumption, and locomotion. Conversely, deletion of the orexin gene in mice produces a condition similar to canine and human narcolepsy. Despite the central importance of the orexin system in regulating wakefulness and feeding behavior, little is known about the downstream signaling mechanisms that achieve these effects. In th...

  3. Stromal cell-derived factor-1α as a novel biomarker for hyperlipidemia.

    Science.gov (United States)

    Li, Shou-Lin; Lin, Wei; Zhang, Yan; Zheng, Zhi-Chang; Liu, Li-Jun; Fu, Hao; Liu, Jie; Wang, Guo-Dong; Chen, Si-Yuan; Feng, Li-Hong

    2012-12-01

    Stromal cell-derived factor-1 (SDF-1) is expressed in a wide variety of organs, such as heart, and plays a pivotal role in the mobilization of hematopoietic stem and progenitor cells in bone marrow. SDF-1α, a common subtype of SDF-1, may control hematopoiesis and angiogenesis, but its role in the pathogenesis of hyperlipidemia is unknown. The aim of this study was to determine the role of SDF-1α in the pathogenesis of hyperlipidemia. First, log-transformed SDF-1α serum levels (logSDF-1α) were significantly higher in male patients with borderline high lipid profile (BHLP; n=28; 2.15±0.08 ng/ml) compared to control subjects (n=37; 1.94±0.06 ng/ml; Ppathophysiology in male and female patients with hyperlipidemia. Moreover, flow cytometry analysis showed that expression of the SDF-1α receptor, CXC-chemokine receptor 4, was lower in peripheral blood mononuclear cells of patients with BHLP (n=10) and HLP (n=10), compared to control subjects (n=10; Phyperlipidemia that may be helpful to uncover the pathogenesis of hyperlipidemia.

  4. IκB kinase ε targets interferon regulatory factor 1 in activated T lymphocytes.

    Science.gov (United States)

    Sgarbanti, Marco; Marsili, Giulia; Remoli, Anna Lisa; Stellacci, Emilia; Mai, Antonello; Rotili, Dante; Perrotti, Edvige; Acchioni, Chiara; Orsatti, Roberto; Iraci, Nunzio; Ferrari, Mathieu; Borsetti, Alessandra; Hiscott, John; Battistini, Angela

    2014-03-01

    IκB kinase ε (IKK-ε) has an essential role as a regulator of innate immunity, functioning downstream of pattern recognition receptors to modulate NF-κB and interferon (IFN) signaling. In the present study, we investigated IKK-ε activation following T cell receptor (TCR)/CD28 stimulation of primary CD4(+) T cells and its role in the stimulation of a type I IFN response. IKK-ε was activated following TCR/CD28 stimulation of primary CD4(+) T cells; however, in T cells treated with poly(I·C), TCR/CD28 costimulation blocked induction of IFN-β transcription. We demonstrated that IKK-ε phosphorylated the transcription factor IFN regulatory factor 1 (IRF-1) at amino acid (aa) 215/219/221 in primary CD4(+) T cells and blocked its transcriptional activity. At the mechanistic level, IRF-1 phosphorylation impaired the physical interaction between IRF-1 and the NF-κB RelA subunit and interfered with PCAF-mediated acetylation of NF-κB RelA. These results demonstrate that TCR/CD28 stimulation of primary T cells stimulates IKK-ε activation, which in turn contributes to suppression of IFN-β production.

  5. Hypoxia-inducible factor 1 and breast cancer metastasis.

    Science.gov (United States)

    Liu, Zhao-Ji; Semenza, Gregg L; Zhang, Hua-Feng

    2015-01-01

    Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.

  6. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment.

    Science.gov (United States)

    de la Garza, Rocio G; Morales-Garza, Luis Alonso; Martin-Estal, Irene; Castilla-Cortazar, Inma

    2017-04-01

    Cirrhosis represents the final stage of chronic liver damage, which can be due to different factors such as alcohol, metabolic syndrome with liver steatosis, autoimmune diseases, drugs, toxins, and viral infection, among others. Nowadays, cirrhosis is an important health problem and it is an increasing cause of morbidity and mortality, being the 14th most common cause of death worldwide. The physiopathological pathways that lead to fibrosis and finally cirrhosis partly depend on the etiology. Nevertheless, some common features are shared in this complex mechanism. Recently, it has been demonstrated that cirrhosis is a dynamic process that can be altered in order to delay or revert fibrosis. In addition, when cirrhosis has been established, insulin-like growth factor-1 (IGF-1) deficiency or reduced availability is a common condition, independently of the etiology of chronic liver damage that leads to cirrhosis. IGF-1 deprivation seriously contributes to the progressive malnutrition of cirrhotic patient, increasing the vulnerability of the liver to establish an inflammatory and oxidative microenvironment with mitochondrial dysfunction. In this context, IGF-1 deficiency in cirrhotic patients can justify some of the common characteristics of these individuals. Several studies in animals and humans have been done in order to test the replacement of IGF-1 as a possible therapeutic option, with promising results.

  7. Insulin-Like Growth Factor-1 Deficiency and Cirrhosis Establishment

    Science.gov (United States)

    de la Garza, Rocio G.; Morales-Garza, Luis Alonso; Martin-Estal, Irene; Castilla-Cortazar, Inma

    2017-01-01

    Cirrhosis represents the final stage of chronic liver damage, which can be due to different factors such as alcohol, metabolic syndrome with liver steatosis, autoimmune diseases, drugs, toxins, and viral infection, among others. Nowadays, cirrhosis is an important health problem and it is an increasing cause of morbidity and mortality, being the 14th most common cause of death worldwide. The physiopathological pathways that lead to fibrosis and finally cirrhosis partly depend on the etiology. Nevertheless, some common features are shared in this complex mechanism. Recently, it has been demonstrated that cirrhosis is a dynamic process that can be altered in order to delay or revert fibrosis. In addition, when cirrhosis has been established, insulin-like growth factor-1 (IGF-1) deficiency or reduced availability is a common condition, independently of the etiology of chronic liver damage that leads to cirrhosis. IGF-1 deprivation seriously contributes to the progressive malnutrition of cirrhotic patient, increasing the vulnerability of the liver to establish an inflammatory and oxidative microenvironment with mitochondrial dysfunction. In this context, IGF-1 deficiency in cirrhotic patients can justify some of the common characteristics of these individuals. Several studies in animals and humans have been done in order to test the replacement of IGF-1 as a possible therapeutic option, with promising results. PMID:28270882

  8. CRF1 receptor signaling regulates food and fluid intake in the drinking-in-the-dark model of binge alcohol consumption.

    Science.gov (United States)

    Giardino, William J; Ryabinin, Andrey E

    2013-07-01

    Several recent studies implementing the standard "drinking-in-the-dark" (DID) model of short-term binge-like ethanol (EtOH) intake in C57BL/6J mice highlighted a role for the stress-related neuropeptide corticotropin-releasing factor (CRF) and its primary binding partner, the CRF type-1 (CRF1) receptor. We evaluated the selectivity of CRF1 involvement in binge-like EtOH intake by interrupting CRF1 function via pharmacological and genetic methods in a slightly modified 2-bottle choice DID model that allowed calculation of an EtOH preference ratio. In addition to determining EtOH intake and preference, we also measured consumption of food and H2 O during the DID period, both in the presence and absence of EtOH and sweet tastant solutions. Treatment with either of the CRF1-selective antagonists CP-376,395 (CP; 10 to 20 mg/kg, i.p.) or NBI-27914 (10 to 30 mg/kg, i.p.) decreased intake of 15% EtOH in male C57BL/6J mice, but did so in the absence of a concomitant decrease in EtOH preference. These findings were replicated genetically in a CRF1 knockout (KO) mouse model (also on a C57BL/6J background). In contrast to effects on EtOH intake, pharmacological blockade of CRF1 with CP increased intake of 10% sucrose, consistent with previous findings in CRF1 KO mice. Finally, pharmacological and genetic disruption of CRF1 activity significantly reduced feeding and/or total caloric intake in all experiments, confirming the existence of nonspecific effects. Our findings indicate that blockade of CRF1 receptors does not exert specific effects on EtOH intake in the DID paradigm, and that slight modifications to this procedure, as well as additional consummatory control experiments, may be useful when evaluating the selectivity of pharmacological and genetic manipulations on binge-like EtOH intake. Copyright © 2013 by the Research Society on Alcoholism.

  9. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  10. A Structural Analysis of DNA Binding by Myelin Transcription Factor 1 Double Zinc Fingers*

    Science.gov (United States)

    Gamsjaeger, Roland; O'Connell, Mitchell R.; Cubeddu, Liza; Shepherd, Nicholas E.; Lowry, Jason A.; Kwan, Ann H.; Vandevenne, Marylene; Swanton, Michael K.; Matthews, Jacqueline M.; Mackay, Joel P.

    2013-01-01

    Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development. PMID:24097990

  11. Targeting insulin-like growth factor 1 leads to amelioration of inflammatory demyelinating disease.

    Directory of Open Access Journals (Sweden)

    Matthew F Cusick

    Full Text Available In patients with multiple sclerosis (MS and in mice with experimental autoimmune encephalomyelitis (EAE, proliferating autoreactive T cells play an important role in the pathogenesis of the disease. Due to the importance of these myelin-specific T cells, these cells have been therapeutic targets in a variety of treatments. Previously we found that Lenaldekar (LDK, a novel small molecule, could inhibit exacerbations in a preclinical model of MS when given at the start of an EAE exacerbation. In those studies, we found that LDK could inhibit human T cell recall responses and murine myelin responses in vitro. In these new studies, we found that LDK could inhibit myelin specific T cell responses through the insulin-like growth factor-1 receptor (IGF-1R pathway. Alteration of this pathway led to marked reduction in T cell proliferation and expansion. Blocking this pathway could account for the observed decreases in clinical signs and inflammatory demyelinating disease, which was accompanied by axonal preservation. Our data indicate that IGF-1R could be a potential target for new therapies for the treatment of autoimmune diseases where autoreactive T cell expansion is a requisite for disease.

  12. Targeting insulin-like growth factor 1 leads to amelioration of inflammatory demyelinating disease.

    Science.gov (United States)

    Cusick, Matthew F; Libbey, Jane E; Trede, Nikolaus S; Fujinami, Robert S

    2014-01-01

    In patients with multiple sclerosis (MS) and in mice with experimental autoimmune encephalomyelitis (EAE), proliferating autoreactive T cells play an important role in the pathogenesis of the disease. Due to the importance of these myelin-specific T cells, these cells have been therapeutic targets in a variety of treatments. Previously we found that Lenaldekar (LDK), a novel small molecule, could inhibit exacerbations in a preclinical model of MS when given at the start of an EAE exacerbation. In those studies, we found that LDK could inhibit human T cell recall responses and murine myelin responses in vitro. In these new studies, we found that LDK could inhibit myelin specific T cell responses through the insulin-like growth factor-1 receptor (IGF-1R) pathway. Alteration of this pathway led to marked reduction in T cell proliferation and expansion. Blocking this pathway could account for the observed decreases in clinical signs and inflammatory demyelinating disease, which was accompanied by axonal preservation. Our data indicate that IGF-1R could be a potential target for new therapies for the treatment of autoimmune diseases where autoreactive T cell expansion is a requisite for disease.

  13. Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.

    Science.gov (United States)

    Zito, Ester; Buono, Mario; Pepe, Stefano; Settembre, Carmine; Annunziata, Ida; Surace, Enrico Maria; Dierks, Thomas; Monti, Maria; Cozzolino, Marianna; Pucci, Piero; Ballabio, Andrea; Cosma, Maria Pia

    2007-05-16

    Sulfatase modifying factor 1 (SUMF1) is the gene mutated in multiple sulfatase deficiency (MSD) that encodes the formylglycine-generating enzyme, an essential activator of all the sulfatases. SUMF1 is a glycosylated enzyme that is resident in the endoplasmic reticulum (ER), although it is also secreted. Here, we demonstrate that upon secretion, SUMF1 can be taken up from the medium by several cell lines. Furthermore, the in vivo engineering of mice liver to produce SUMF1 shows its secretion into the blood serum and its uptake into different tissues. Additionally, we show that non-glycosylated forms of SUMF1 can still be secreted, while only the glycosylated SUMF1 enters cells, via a receptor-mediated mechanism. Surprisingly, following its uptake, SUMF1 shuttles from the plasma membrane to the ER, a route that has to date only been well characterized for some of the toxins. Remarkably, once taken up and relocalized into the ER, SUMF1 is still active, enhancing the sulfatase activities in both cultured cells and mice tissues.

  14. Molecular cloning and expression analysis of fushi tarazu factor 1 in the brain of air-breathing catfish, Clarias gariepinus.

    Directory of Open Access Journals (Sweden)

    Parikipandla Sridevi

    Full Text Available BACKGROUND: Fushi tarazu factor 1 (FTZ-F1 encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1 and liver receptor homologue 1 (LRH-1 and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b during development, recrudescence and after human chorionic gonadotropin (hCG induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors.

  15. Drug: D09610 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ression, and IBS corticotropin releasing hormone receptor 1 (CRF1) antagonist [HSA:...D09610 Drug Emicerfont (USAN/INN) C22H24N6O2 404.1961 404.465 D09610.gif Treatment of anxiety disorders, dep

  16. CRFR1 is expressed on pancreatic beta cells, promotes beta cell proliferation, and potentiates insulin secretion in a glucose-dependent manner

    DEFF Research Database (Denmark)

    Huising, Mark O; van der Meulen, Talitha; Vaughan, Joan M

    2009-01-01

    Corticotropin-releasing factor (CRF), originally characterized as the principal neuroregulator of the hypothalamus-pituitary-adrenal axis, has broad central and peripheral distribution and actions. We demonstrate the presence of CRF receptor type 1 (CRFR1) on primary beta cells and show that acti...

  17. Drug: D09695 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D09695 Drug Verucerfont (USAN/INN) C22H26N6O2 406.2117 406.4808 D09695.gif Treatment of depression and anxie...ty corticotropin releasing hormone receptor 1 antagonist [HSA:1394] [KO:K04578] hsa

  18. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1)

    OpenAIRE

    Ara, Toshiaki; Nakamura, Yuri; Egawa, Takeshi; Sugiyama, Tatsuki; Abe, Kuniya; Kishimoto, Tadamitsu; Matsui, Yasuhisa; Nagasawa, Takashi

    2003-01-01

    Primordial germ cells (PGCs) are the founders of sperm or oocytes. PGCs migrate through the tissues of the embryos and colonize the gonads during development. However, the cytokines essential for colonization of the gonads by PGCs in mammals remain unclear. Stromal cell-derived factor-1 (SDF-1, also called PBSF and CXCL12) is a member of chemokines, a family of structurally related chemoattractive cytokines. SDF-1 and its primary physiologic receptor CXCR4 have multiple essential functions in...

  19. Enduring Effects Of Traumatic Stress On Brain Neuropeptide Y (NPY) and Corticotropin-Releasing Factor (CRF) Systems: Molecular and Neuropharmacologic Studies

    Science.gov (United States)

    2009-12-01

    is (Flanagan-Cato, 2003), defensive aggression (Can- eras et al., 1994; Canteras, 2002), and innate affective eactions to pain (Borszcz, 2006). The...to generation of the affective dimension of pain . Pain 123:155–168. rown ER, Sawchenko PE (1997) Hypophysiotropic CRF neurons display a sustained...stimulates secretion of corticotropin and beta- endorphin . Science 213:1394–1397. an Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin

  20. Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse

    NARCIS (Netherlands)

    Rinne, Thomas; de Kloet, E. Ronald; Wouters, Luuk; Goekoop, Jaap G.; DeRijk, Roel H.; van den Brink, Wim

    2002-01-01

    Background: High coincidence of childhood abuse, major depressive disorder (MDD), and posttraumatic stress disorder (PTSD) has been reported in patients with borderline personality disorder (BPD). Animals exposed to early trauma show increased stress-induced hypothalamic-pituitary-adrenal (HPA) axis

  1. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain

    NARCIS (Netherlands)

    Doelen, R.H. van der; Arnoldussen, I.A.C.; Ghareh, H.; Och, L. van; Homberg, J.R.; Kozicz, L.T.

    2015-01-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene x Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid

  2. Identification of corticotropin-releasing factor (CRF) target cells and effects of dexamethasone on binding in anterior pituitary using a fluorescent analog of CRF

    DEFF Research Database (Denmark)

    Schwartz, J; Billestrup, Nils; Perrin, M

    1986-01-01

    . Fluorescence was eliminated by coincubation with a 200-fold excess of unlabeled CRF. Treatment with dexamethasone (10(-9)-10(-7) M) decreased visible fluorescence in a dose-dependent manner. These results demonstrate the utility of a fluorescent CRF analog for identification of cells with specific CRF...

  3. Comparative efficacy of dexamethasone or corticotropin releasing hormone and vasopressin administration as a model to induce chronic physiological stress in beef cattle

    Science.gov (United States)

    The objective of this study was to delineate a model for chronic stress by evaluating physiological and hematological alterations in cattle administered: 1) 0.5 mg/kg body weight dexamethasone (DEX) once daily at 10am for 3 days consecutively, or 2) 0.3 micrograms/kg body weight corticotropin releas...

  4. Corticotropin-releasing factor-like peptide modifies the AMPA-, NMDA-dependent and GABAB-ergic properties of synaptic transmissions in vitro.

    Science.gov (United States)

    Mokrushin, Anatoly A

    2014-01-10

    The aim of this study was to investigate the neurotrophic effects of the mystixin-7 mini-peptide (MTX, a synthetic corticotrophin-releasing-factor-like peptide-like peptide) using a slice-based system. The technique on-line monitoring of electrophysiological parameters (excitatory glutamatergic AMPAR-, NMDAR-dependent and inhibitory GABAB-ergic postsynaptic mechanisms) in the olfactory cortex slices of the rat brain exposed to varied amounts of MTX was used. MTX in a dose-dependent manner inhibited both the AMPAR- and NMDAR-mediated postsynaptic processes. The peptide caused depression of inhibitory GABAB-ergic processes only at low doses of MTX (10, 25, 50 mg/mL) while at higher doses (100, 250 mg/mL) it enhanced them. These effects of MTX were reversible. AMPA-dependent (but not NMDA-mediated mechanisms) and inhibitory processes were restored after washing. Triple reperfusion of slices with MTX (100 mg/mL) accelerated the inhibitory processes and induced NMDAR desensitization. MTX evoked the long-term depression on θ burst stimulation of the slices. This study did not only lead to the conclusion that the functions of the MTX mini-peptide is not limited to anti-inflammatory effects, but also is included modifications of excitatory glutamatergic AMPAR-, NMDAR-dependent and inhibitory GABAB-ergic postsynaptic mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Augmentation of leptin and hypoxia-inducible factor 1alpha mRNAs in the pre-eclamptic placenta.

    Science.gov (United States)

    Iwagaki, S; Yokoyama, Y; Tang, L; Takahashi, Y; Nakagawa, Y; Tamaya, T

    2004-05-01

    The placenta is a major source of leptin in the fetomaternal circulation, although its physiological role remains to be clarified. Leptin in the fetomaternal circulation is proposed to be a marker of acute stress in the fetus, and the fetus suffering from pre-eclampsia would be under chronic stress. In 16 pre-eclamptic placentas, the expressions of leptin, hypoxia-inducible factor 1alpha (HIF1alpha) and leptin receptor mRNAs were analyzed by semi-quantitative reverse-transcriptase-polymerase chain reaction and compared with clinical data. The co-expressions of leptin and the isoforms of the leptin receptor were observed in all the pre-eclamptic placentas. Leptin mRNA was significantly augmented in the pre-eclamptic placentas, although the level in fetal plasma was not high. The level of the expression of leptin mRNA was correlated with the placental HIF1alpha mRNA level and fetal body weight, but not with the levels of the leptin receptor isoforms in the pre-eclamptic placentas. This observation may suggest that autocrine/paracrine regulation of leptin exists in the human placenta and is upregulated in the pre-eclamptic placenta.

  6. Stroma cell-derived factor-1α signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Ielham Hadad

    Full Text Available Stroma cell-derived factor-1α (SDF-1α is a cardioprotective chemokine, acting through its G-protein coupled receptor CXCR4. In experimental acute myocardial infarction, administration of SDF-1α induces an early improvement of systolic function which is difficult to explain solely by an anti-apoptotic and angiogenic effect. We wondered whether SDF-1α signaling might have direct effects on calcium transients and beating frequency.Primary rat neonatal cardiomyocytes were culture-expanded and characterized by immunofluorescence staining. Calcium sparks were studied by fluorescence microscopy after calcium loading with the Fluo-4 acetoxymethyl ester sensor. The cardiomyocyte enriched cellular suspension expressed troponin I and CXCR4 but was vimentin negative. Addition of SDF-1α in the medium increased cytoplasmic calcium release. The calcium response was completely abolished by using a neutralizing anti-CXCR4 antibody and partially suppressed and delayed by preincubation with an inositol triphosphate receptor (IP3R blocker, but not with a ryanodine receptor (RyR antagonist. Calcium fluxes induced by caffeine, a RyR agonist, were decreased by an IP3R blocker. Treatment with forskolin or SDF-1α increased cardiomyocyte beating frequency and their effects were additive. In vivo, treatment with SDF-1α increased left ventricular dP/dtmax.These results suggest that in rat neonatal cardiomyocytes, the SDF-1α/CXCR4 signaling increases calcium transients in an IP3-gated fashion leading to a positive chronotropic and inotropic effect.

  7. Interferon regulatory factor 1-Rab27a regulated extracellular vesicles promote liver ischemia/reperfusion injury.

    Science.gov (United States)

    Yang, Mu-Qing; Du, Qiang; Goswami, Julie; Varley, Patrick R; Chen, Bin; Wang, Rong-Hua; Morelli, Adrian E; Stolz, Donna B; Billiar, Timothy R; Li, Jiyu; Geller, David A

    2017-10-23

    The role and regulators of extracellular vesicles (EV) secretion in hepatic ischemia/reperfusion (IR) injury have not been defined. Rab27a is a GTPase known to control EVs release. Interferon regulatory factor 1 (IRF-1) is a transcription factor that plays an important role in liver IR and regulates certain GTPases. However, the relationships among IRF-1, Rab27a, and EVs secretion are largely unknown. Here, we show induction of IRF-1 and Rab27a both in vitro in hypoxic hepatocytes and in vivo in warm IR and orthotopic liver transplantation livers. Interferon γ stimulation, IRF-1 transduction, or IR promoted Rab27a expression and EVs secretion. Meanwhile, silencing of IRF-1 decreased Rab27a expression and EVs secretion. Rab27a silencing decreased EVs secretion and liver IR injury. Ten putative IRF-1 binding motifs in the 1,692 base pairs Rab27a promoter region were identified. Chromatin immunoprecipitation and electrophoretic mobility shift assay verified five functional IRF-1 binding motifs, which were confirmed by Rab27a promoter luciferase assay. IR-induced EVs contained higher oxidized phospholipids (OxPL). OxPLs on EVs surface activated neutrophil through toll like receptor 4 (TLR-4) pathway. OxPL-neutralizing E06 antibody blocked the effect of EVs and decreased liver IR injury. These findings provide a novel mechanism by which IRF-1 regulates Rab27a transcription and EVs secretion, leading to OxPL activation of neutrophils and subsequent hepatic IR injury. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  8. Stromal-Derived Factor-1α (CXCL12) Levels Increase in Periodontal Disease

    Science.gov (United States)

    Havens, Aaron M.; Chiu, Evonne; Taba, Mario; Wang, Jincheng; Shiozawa, Yusuke; Jung, Younghun; Taichman, L. Susan; D'Silva, Nisha J.; Gopalakrishnan, R.; Wang, CunYu; Giannobile, William V.; Taichman, Russell S.

    2008-01-01

    Background The CXC chemokine receptor 4 (CXCR4) and its ligand, stromal cell–derived factor-1 (SDF-1α or CXC chemokine ligand 12) are involved in the trafficking of leukocytes into and out of extravascular tissues. The purpose of this study was to determine whether SDF-1α secreted by host cells plays a role in recruiting inflammatory cells into the periodontia during local inflammation. Methods SDF-1α levels were determined by enzyme-linked immunosorbent assay in gingival crevicular fluid (GCF) of 24 individuals with periodontitis versus healthy individuals in tissue biopsies and in a preclinical rat model of Porphyromonas gingivalis lipopolysaccharide–induced experimental bone loss. Neutrophil chemotaxis assays were also used to evaluate whether SDF-1α plays a role in the recruitment of host cells at periodontal lesions. Results Subjects with periodontal disease had higher levels of SDF-1α in their GCF compared to healthy subjects. Subjects with periodontal disease who underwent mechanical therapy demonstrated decreased levels of SDF-1α. Immunohistologic staining showed that SDF-1α and CXCR4 levels were elevated in samples obtained from periodontally compromised individuals. Similar results were observed in the rodent model. Neutrophil migration was enhanced in the presence of SDF-1α, mimicking immune cell migration in periodontal lesions. Conclusions SDF-1α may be involved in the immune defense pathway activated during periodontal disease. Upon the development of diseased tissues, SDF-1α levels increase and may recruit host defensive cells into sites of inflammation. These studies suggest that SDF-1α may be a useful biomarker for the identification of periodontal disease progression. PMID:18454663

  9. Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan; Alizadeh-Rad, Negin; Piell, Kellianne; Van Hoose, Patrick; Cole, Marsha P.; Muluhngwi, Penn; Kalbfleisch, Ted S. [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Rouchka, Eric C. [Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292 (United States); Hill, Bradford G. [Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Klinge, Carolyn M., E-mail: carolyn.klinge@louisville.edu [Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292 (United States)

    2016-09-10

    Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed that LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.

  10. Differentiation-inducing factor-1 and -2 function also as modulators for Dictyostelium chemotaxis.

    Directory of Open Access Journals (Sweden)

    Hidekazu Kuwayama

    Full Text Available BACKGROUND: In the early stages of development of the cellular slime mold Dictyostelium discoideum, chemotaxis toward cAMP plays a pivotal role in organizing discrete cells into a multicellular structure. In this process, a series of signaling molecules, such as G-protein-coupled cell surface receptors for cAMP, phosphatidylinositol metabolites, and cyclic nucleotides, function as the signal transducers for controlling dynamics of cytoskeleton. Differentiation-inducing factor-1 and -2 (DIF-1 and DIF-2 were originally identified as the factors (chlorinated alkylphenones that induce Dictyostelium stalk cell differentiation, but it remained unknown whether the DIFs had any other physiologic functions. METHODOLOGY/PRINCIPAL FINDINGS: To further elucidate the functions of DIFs, in the present study we investigated their effects on chemotaxis under various conditions. Quite interestingly, in shallow cAMP gradients, DIF-1 suppressed chemotaxis whereas DIF-2 promoted it greatly. Analyses with various mutants revealed that DIF-1 may inhibit chemotaxis, at least in part, via GbpB (a phosphodiesterase and a decrease in the intracellular cGMP concentration ([cGMP](i. DIF-2, by contrast, may enhance chemotaxis, at least in part, via RegA (another phosphodiesterase and an increase in [cGMP](i. Using null mutants for DimA and DimB, the transcription factors that are required for DIF-dependent prestalk differentiation, we also showed that the mechanisms for the modulation of chemotaxis by DIFs differ from those for the induction of cell differentiation by DIFs, at least in part. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that DIF-1 and DIF-2 function as negative and positive modulators for Dictyostelium chemotaxis, respectively. To our knowledge, this is the first report in any organism of physiologic modulators (small molecules for chemotaxis having differentiation-inducing activity.

  11. Light stimuli control neuronal migration by altering of insulin-like growth factor 1 (IGF-1) signaling.

    Science.gov (United States)

    Li, Ying; Komuro, Yutaro; Fahrion, Jennifer K; Hu, Taofang; Ohno, Nobuhiko; Fenner, Kathleen B; Wooton, Jessica; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-02-14

    The role of genetic inheritance in brain development has been well characterized, but little is known about the contributions of natural environmental stimuli, such as the effect of light-dark cycles, to brain development. In this study, we determined the role of light stimuli in neuronal cell migration to elucidate how environmental factors regulate brain development. We show that in early postnatal mouse cerebella, granule cell migration accelerates during light cycles and decelerates during dark cycles. Furthermore, cerebellar levels of insulin-like growth factor 1 (IGF-1) are high during light cycles and low during dark cycles. There are causal relationships between light-dark cycles, speed of granule cell migration, and cerebellar IGF-1 levels. First, changes in light-dark cycles result in corresponding changes in the fluctuations of both speed of granule cell migration and cerebellar IGF-1 levels. Second, in vitro studies indicate that exogenous IGF-1 accelerates the migration of isolated granule cells through the activation of IGF-1 receptors. Third, in vivo studies reveal that inhibiting the IGF-1 receptors decelerates granule cell migration during light cycles (high IGF-1 levels) but does not alter migration during dark cycles (low IGF-1 levels). In contrast, stimulating the IGF-1 receptors accelerates granule cell migration during dark cycles (low IGF-1 levels) but does not alter migration during light cycles (high IGF-1 levels). These results suggest that during early postnatal development light stimuli control granule cell migration by altering the activity of IGF-1 receptors through modification of cerebellar IGF-1 levels.

  12. Current investigational drugs for major depression.

    Science.gov (United States)

    Kulkarni, Shrinivas K; Dhir, Ashish

    2009-06-01

    The World Health Organization (WHO) report has predicted that major depression will become a key cause of illness-induced disability by the year 2020, second only to ischemic heart diseases. Although a large number of antidepressant drugs (from monoamine oxidase inhibitors and tricyclic antidepressants to dual reuptake inhibitors) are available for treatment of the disease, approximately 30% of patients failed to respond to this therapy. Therefore, the search for newer or novel drug targets for the treatment of major depression continues. Some of these targets include dopamine, triple reuptake inhibition, L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway, sigma-1 receptors, neurosteroids, melatonin, glutamate, 5HT6, 5HT7 serotonin receptor antagonists, beta-3 adrenoceptor antagonist, vasopressin V(Ib) receptor antagonists, NK2 tachykinin receptor antagonists, glucocorticoid receptor antagonists and corticotropin-releasing factor-1 receptor antagonists, as well as herbal antidepressant drugs. The present review attempts to discuss the status of some of these novel approaches and the drugs that are under investigation for the treatment of major depression. An attempt is also made to review the status of three indigenous plant-derived drugs, berberine, curcumin and rutin, as novel and safe future herbal antidepressants. There is an exciting future in the discovery of novel targets and target-specific agents for the management of major depression.

  13. Colony Stimulating Factor-1 Receptor Expressing Cells Infiltrating the Cornea Control Corneal Nerve Degeneration in Response to HSV-1 Infection.

    Science.gov (United States)

    Chucair-Elliott, Ana J; Gurung, Hem R; Carr, Meghan M; Carr, Daniel J J

    2017-09-01

    Herpes simplex virus type-1 (HSV-1) is a leading cause of neurotrophic keratitis, characterized by decreased or absent corneal sensation due to damage to the sensory corneal innervation. We previously reported the elicited immune response to infection contributes to the mechanism of corneal nerve regression/damage during acute HSV-1 infection. Our aim is to further establish the involvement of infiltrated macrophages in the mechanism of nerve loss upon infection. Macrophage Fas-Induced Apoptosis (MAFIA) transgenic C57BL/6 mice were systemically treated with AP20187 dimerizer or vehicle (VEH), and their corneas, lymph nodes, and blood were assessed for CD45+CD11b+GFP+ cell depletion by flow cytometry (FC). Mice were ocularly infected with HSV-1 or left uninfected. At 2, 4, and/or 6 days post infection (PI), corneas were assessed for sensitivity and harvested for FC, nerve structure by immunohistochemistry, viral content by plaque assay, soluble factor content by suspension array, and activation of signaling pathways by Western blot analysis. C57BL6 mice were used to compare to the MAFIA mouse model. MAFIA mice treated with AP20187 had efficient depletion of CD45+CD11b+GFP+ cells in the tissues analyzed. The reduction of CD45+CD11b+GFP+ cells recruited to the infected corneas of AP20187-treated mice correlated with preservation of corneal nerve structure and function, decreased protein concentration of inflammatory cytokines, and decreased STAT3 activation despite no changes in viral content in the cornea compared to VEH-treated animals. Our results suggest infiltrated macrophages are early effectors in the nerve regression following HSV-1 infection. We propose the neurodegeneration mechanism involves macrophages, local up-regulation of IL-6, and activation of STAT3.

  14. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    Science.gov (United States)

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  15. Serum inactivation contributes to the failure of stromal-derived factor-1 to block HIV-I infection in vivo.

    Science.gov (United States)

    Villalba, Sabrina; Salvucci, Ombretta; Aoki, Yoshiyasu; De La Luz Sierra, Maria; Gupta, Ghanshyam; Davis, David; Wyvill, Kathleen; Little, Richard; Yarchoan, Robert; Tosato, Giovanna

    2003-11-01

    The chemokine stromal-derived factor-1 (SDF-1) can block human immunodeficiency virus type 1 (HIV-1) infection in vitro by binding to the CXC chemokine receptor, CXCR-4, which serves as a coreceptor for T cell tropic HIV-1. In spite of being constitutively expressed in vivo, SDF-1 does not appear to block HIV-1 infection and spread in vivo. We report that SDF-1 is consistently measured in normal serum (15.4+/-3.0 ng/ml; mean+/-sd) and in serum from AIDS patients (16.6+/-3.7 ng/ml). However, we find that circulating SDF-1 is modified to an inactive form. When exposed to serum, recombinant SDF-1 is specifically and rapidly altered to yield an apparently smaller chemokine that does not bind to SDF-1 receptor-expressing cells, does not have chemoattractive or pre-B cell stimulatory activity, and does not block HIV-1 infection. Thus, serum modification and inactivation contribute to the failure of SDF-1 to block HIV-1 infection and spread in man. The inactivation of circulating SDF-1 may be critical in permitting local gradients to develop and direct cell trafficking.

  16. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells.

    Science.gov (United States)

    Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary

    2017-10-13

    Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism.

    Science.gov (United States)

    Liang, Guang; Song, Lintao; Chen, Zilu; Qian, Yuanyuan; Xie, Junjun; Zhao, Longwei; Lin, Qian; Zhu, Guanghui; Tan, Yi; Li, Xiaokun; Mohammadi, Moosa; Huang, Zhifeng

    2018-01-01

    Inflammation plays a central role in the etiology of diabetic nephropathy, a global health issue. We observed a significant reduction in the renal expression of fibroblast growth factor 1, a known mitogen and insulin sensitizer, in patients with diabetic nephropathy and in mouse models implying that fibroblast growth factor 1 possesses beneficial anti-inflammatory and renoprotective activities in vivo. To test this possibility, we investigated the effects of chronic intraperitoneal administration of fibroblast growth factor 1 into both the streptozotocin-induced type 1 diabetes and db/db type 2 diabetes models. Indeed, recombinant fibroblast growth factor 1 significantly suppressed renal inflammation (i.e., cytokines, macrophage infiltration), glomerular and tubular damage, and renal dysfunction in both type 1 and type 2 diabetes mice. Fibroblast growth factor 1 was able to correct the elevated blood glucose levels in type 2 but not in type 1 diabetic mice, suggesting that the anti-inflammatory effect of fibroblast growth factor 1 was independent of its glucose-lowering activity. The mechanistic study demonstrated that fibroblast growth factor 1-mediated inhibition of the renal inflammation in vivo was accompanied by attenuation of the nuclear factor κB and c-Jun N-terminal kinase signaling pathways, further validated in vitro using cultured glomerular mesangial cells and podocytes. Thus, fibroblast growth factor 1 holds great promise for developing new treatments for diabetic nephropathy through countering inflammatory signaling cascades in injured renal tissue. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis.

    Directory of Open Access Journals (Sweden)

    Marco Cassano

    2008-09-01

    Full Text Available Hepatocyte Growth Factor (HGF is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation.Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1 is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with alpha-sarcoglycan knock-out mice -a mouse model of muscular dystrophy- or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests.Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major

  19. Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A

    DEFF Research Database (Denmark)

    Jank, Thomas; Belyi, Yury; Wirth, Christophe

    2017-01-01

    Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A), delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A is posttranslat......Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A), delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A...

  20. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency.

    Science.gov (United States)

    Martín-Estal, I; de la Garza, R G; Castilla-Cortázar, I

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several biological activities, such as proliferation, mitochondrial protection, cell survival, tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and antiaging. This hormone plays an important role in embryological and postnatal states, being essential for normal foetal and placental growth and differentiation. During gestation, the placenta is one of the major sources of IGF-1, among other hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction (IUGR) is the second most frequent cause of perinatal morbidity and mortality, defined as the inability to achieve the expected weight for gestational age. Different studies have revealed that IUGR infants have placental dysfunction and low circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that IGF-1 deficiency in gestational state may be one of the major causes of foetal growth retardation. The aim of this review is to study the epidemiology, physiopathology and possible causes of IUGR. Also, it intends to study the possible role of the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be considered as a novel condition of IGF-1 deficiency and if its treatment with low doses of IGF-1 could be a suitable therapeutic strategy.

  1. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  2. Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin

    Directory of Open Access Journals (Sweden)

    Michael G. Kemp

    2017-02-01

    Full Text Available The growing incidence of non-melanoma skin cancer (NMSC necessitates a thorough understanding of its primary risk factors, which include exposure to ultraviolet (UV wavelengths of sunlight and age. Whereas UV radiation (UVR has long been known to generate photoproducts in genomic DNA that promote genetic mutations that drive skin carcinogenesis, the mechanism by which age contributes to disease pathogenesis is less understood and has not been sufficiently studied. In this review, we highlight studies that have considered age as a variable in examining DNA damage responses in UV-irradiated skin and then discuss emerging evidence that the reduced production of insulin-like growth factor-1 (IGF-1 by senescent fibroblasts in the dermis of geriatric skin creates an environment that negatively impacts how epidermal keratinocytes respond to UVR-induced DNA damage. In particular, recent data suggest that two principle components of the cellular response to DNA damage, including nucleotide excision repair and DNA damage checkpoint signaling, are both partially defective in keratinocytes with inactive IGF-1 receptors. Overcoming these tumor-promoting conditions in aged skin may therefore provide a way to lower aging-associated skin cancer risk, and thus we will consider how dermal wounding and related clinical interventions may work to rejuvenate the skin, re-activate IGF-1 signaling, and prevent the initiation of NMSC.

  3. Increased insulin-like growth factor-1 levels in cerebrospinal fluid of advanced subacute sclerosing panencephalitis patients.

    Science.gov (United States)

    Yılmaz, Deniz; Yüksel, Deniz; Gökkurt, Didem; Oguz, Hava; Anlar, Banu

    2016-07-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal disease. Brain histopathology in certain SSPE patients shows, neurofibrillary tangles composed of abnormally phosphorylated, microtubule-associated protein tau (PHF-tau). Because the, phosphorylation of tau is inhibited by insulin and insulin-like growth factor-1 (IGF-1), we investigated cerebrospinal fluid (CSF) insulin and IGF-1 levels in SSPE patients. In this study CSF IGF-1 and insulin levels of 45 SSPE and 25 age-matched control patients were investigated. CSF IGF-1 levels were significantly higher in SSPE patients at stage 4, compared to other stages (p 0.05). CSF insulin and IGF-1 levels were both positively correlated with serum measles IgG. The correlation between CSF insulin and IGF-1 levels and serum measles virus IgG titer may be the result of, insulin activating IGF-1 receptors, and consequently, IGF-1 stimulating, plasma cells and enhancing IgG production. Increased IGF-1 may also, inhibit the phosphorylation of tau. Further studies examining the, correlation between IGF-1, insulin, tau, and PHF-tau levels in the same, patients may clarify any possible pathogenetic relation between these, pathways. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss.

    Science.gov (United States)

    Rodríguez-de la Rosa, Lourdes; Lassaletta, Luis; Calvino, Miryam; Murillo-Cuesta, Silvia; Varela-Nieto, Isabel

    2017-01-01

    Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.

  5. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss

    Directory of Open Access Journals (Sweden)

    Lourdes Rodríguez-de la Rosa

    2017-12-01

    Full Text Available Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1 bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL, also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.

  6. The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation.

    Science.gov (United States)

    Carr, Tiffany; Krishnamoorthy, Veena; Yu, Shuyang; Xue, Hai-Hui; Kee, Barbara L; Verykokakis, Mihalis

    2015-05-04

    Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4(+) T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate-specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation. © 2015 Carr et al.

  7. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... in innate immunity and produce reactive oxygen species and reduce the severity and duration of parasitic infection and autoimmune disease. NCF1 also has a role in T cell activation. Key words: Neutrophil cytosol factor 1 (NCF1) gene, exons, T cell activation. INTRODUCTION. An immune system is a ...

  8. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gullik, T.M.; Storm, Gerrit; Heger, M.

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression

  9. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of

  10. Targeting cleavage and polyadenylation specific factor 1 via shRNA ...

    Indian Academy of Sciences (India)

    Cleavage and polyadenylation specificity factor 1 (CPSF1), a member of CPSF complex, has been reported to play a keyrole in pre-mRNA 30-end formation, but its possible role in ovarian cancer remains unclear. In the present study, we foundthe mRNA level of CPSF1 was overexpressed in ovarian cancer tissues using ...

  11. Lower insulin-like growth factor-1 concentrations in women with premenstrual dysphoric disorder.

    Science.gov (United States)

    Thys-Jacobs, Susan; McMahon, Don; Bilezikian, John P

    2008-05-01

    Recent evidence suggests that abnormalities in calcium metabolism may be responsible for the luteal phase symptoms in women experiencing premenstrual syndrome. Our objective was to measure the cyclic variations in bone turnover across the menstrual cycle in women with and without luteal phase symptoms consistent with severe premenstrual syndrome or premenstrual dysphoric disorder. We measured the indices of bone metabolism, N-telopeptide, osteocalcin and insulin-like growth factor-1 in women with and without premenstrual dysphoric disorder using a cross-sectional and prospective design. Participating women underwent 2 months of self-assessment symptom screening and 1 month of hormonal evaluation. Overall serum insulin-like growth factor-1 (mean +/- standard deviation) was significantly lower in the premenstrual dysphoric disorder group compared with controls (205.7 +/- 56.8 vs 240.2 +/- 76.9 ng/ mL, P = .01) and was significantly lower throughout all 5 phases of the menstrual cycle in the premenstrual dysphoric disorder group compared with controls. In both groups of women, serum insulin-like growth factor-1 concentrations were highest and urinary N-telopeptide levels were lowest during the luteal phase. Bone remodeling indices of formation and resorption during the menstrual cycle were greater and appeared earlier in the control compared with the premenstrual dysphoric disorder group. Significantly lower insulin-like growth factor-1 concentrations in premenstrual dysphoric disorder subjects compared with controls may hold insights about how premenstrual dysphoric disorder subjects differ from asymptomatic controls.

  12. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes

    NARCIS (Netherlands)

    Mirhendi, Hossein; Makimura, Koichi; de Hoog, G Sybren; Rezaei-Matehkolaei, Ali; Najafzadeh, Mohammad Javad; Umeda, Yoshiko; Ahmadi, Bahram

    2014-01-01

    Intra- and interspecies variations of the translation elongation factor 1-α (Tef-1α) gene were evaluated as a new identification marker in a wide range of dermatophytes, which included 167 strains of 30 species. An optimized pan-dermatophyte primer pair was designed, and the target was sequenced.

  13. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  14. Insulin-like growth factor 1 and growth hormone in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Becker, Povl Ulrik

    1992-01-01

    Somatomedins or insulin-like growth factors (IGF) are peptides synthesized in the liver. IGFs have different anabolic and metabolic actions and are important in normal growth and development. The concentration of insulin-like growth factor 1 (IGF-1) is low in patients with chronic liver disease...

  15. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... The neutrophil cytosol factor 1 (NCF1) gene consists of 11 exons and is found in two forms; one is wild type gene and the other is pseudogene. It has more than 98% homology. Both genes occupy the same chromosome region. The mutation in this gene leads to various types of diseases such as chronic.

  16. Elevated circulating stromal-derived factor-1 levels in sickle cell disease

    NARCIS (Netherlands)

    Landburg, P P; Nur, E; Maria, N; Brandjes, D P M; Biemond, B J; Schnog, J B; Duits, A J

    2009-01-01

    Inflammation and angiogenesis are of importance in the pathophysiology of sickle cell disease (SCD). Recently, the chemokine stromal-derived factor-1 (SDF-1) has been shown to be a key mediator of angiogenesis and inflammation. In this study we determined serum SDF-1 levels in consecutive adult

  17. Preadipocyte factor-1 is associated with metabolic profile in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, J

    2011-04-01

    Dysfunctional adipose tissue has been proposed as a key pathological process linking obesity and metabolic disease. Preadipocyte factor-1 (Pref-1) has been shown to inhibit differentiation in adipocyte precursor cells and could thereby play a role in determining adipocyte size, adipose tissue functioning, and metabolic profile in obese individuals.

  18. Circulating concentrations of insulin-like growth factor-1 in dogs with naturally occurring mitral regurgitation

    DEFF Research Database (Denmark)

    Pedersen, Henrik Duelund; Falk, Bo Torkel; Häggström, Jens

    2005-01-01

    Insulin-like growth factor-1 (IGF-1), which mediates most effects of growth hormone, has effects on cardiac mass and function, and plays an important role in the regulation of vascular tone. In humans, an inverse relationship between degree of heart failure (HF) and circulating IGF-1 concentratio...

  19. Association of thymidylate synthase and hypoxia inducible factor-1alpha DNA polymorphisms with pancreatic cancer.

    Science.gov (United States)

    Ruiz-Tovar, Jaime; Fernandez-Contreras, Maria Encarnación; Martín-Perez, Elena; Gamallo, Carlos

    2012-01-01

    Thymidylate synthase and hypoxia inducible factor-1α play a central role in the control of tumor progression. In the present study, we investigated the effect of three DNA polymorphisms within the thymidylate synthase gene and two within hypoxia inducible factor-1α on the prognosis of pancreatic cancer. A retrospective study was performed in 59 patients diagnosed with invasive ductal adenocarcinoma of the pancreas and 159 healthy volunteers. The studied DNA polymorphisms were a variable tandem repeat of 28 bp (rs45445694), a G/C single nucleotide polymorphism (rs34743033), and a deletion of 6 bp (ins1494del 6bp; rs34489327) within the thymidylate synthase gene and C1772T and G1790A single nucleotide polymorphisms within hypoxia inducible factor-1α (rs11549465 and rs11549467, respectively) . Variable tandem repeats were determined by specific polymerase chain reaction, whereas thymidylate synthase single nucleotide polymorphism G/C, ins1494del 6pb, and hypoxia inducible factor-1α polymorphisms were identified by polymerase chain reaction and RFLP. Thymidylate synthase and hypoxia inducible factor-1α genotype distributions in patients and healthy volunteers were determined. The impact of the polymorphisms on clinico-pathological variables, including survival, was also studied. The frequency of carriers of the variant del6bp allele was significantly higher among patients (70.0% vs 51.0% of healthy donors, P = 0.02); 42% of male patients were homozygous 2R/2R vs 13.6% of females (P = 0.03), but differences regarding gender were not observed among healthy volunteers. Concerning hypoxia inducible factor-1α C1772T and G1790A single nucleotide polymorphisms, the rates of variant T/T and A/A homozygous genotypes were significantly elevated among patients (18.6% vs 5.3%, P = 0.001, and 5.1% vs none, P = 0.021 respectively). In our study, the variant del14946bp allele within the thymidylate synthase gene, and TT and AA genotypes of C1772T and G1790A hypoxia inducible

  20. Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Issinger, O G

    2001-01-01

    We show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging...... the view that protein kinase CK2 plays an important role in certain steps of apoptosis....

  1. Stromal Cell-Derived Factor-1 Is Associated with Angiogenesis and Inflammatory Cell Infiltration in Aneurysm Walls

    Science.gov (United States)

    Hoh, Brian L.; Hosaka, Koji; Downes, Daniel P.; Nowicki, Kamil W.; Wilmer, Erin N.; Velat, Gregory J.; Scott, Edward W.

    2013-01-01

    Object A small percentage of cerebral aneurysms rupture, but when they do, the effects are devastating. Current management of unruptured aneurysms consist of surgery, endovascular treatment, or watchful waiting. If the biology of how aneurysms grow and rupture were better known, a novel drug could be developed to prevent unruptured aneurysms from rupturing. Ruptured cerebral aneurysms are characterized by inflammation-mediated wall remodeling. We studied the role of stromal cell-derived factor-1 (SDF-1) in inflammation-mediated wall remodeling in cerebral aneurysms. Methods Human aneurysms; murine carotid aneurysms; and murine intracranial aneurysms were studied by immunohistochemistry. Flow cytometry analysis was performed on blood from mice developing carotid aneurysms or intracranial aneurysms. The effect of SDF-1 on endothelial cells and macrophages was studied by chemotaxis cell migration assay and capillary tube formation assay. Anti-SDF-1 blocking antibody was given to mice and compared to control (vehicle)-administered mice for its effects on the walls of carotid aneurysms and the development of intracranial aneurysms. Results Human aneurysms, murine carotid aneurysms, and murine intracranial aneurysms, all express SDF-1; and mice with developing carotid aneurysms or intracranial aneurysms have increased progenitor cells expressing CXCR4, the receptor for SDF-1 (Paneurysms and murine carotid aneurysms have endothelial cells, macrophages, and capillaries in the walls of the aneurysms; and the presence of capillaries in the walls of human aneurysms is associated with presence of macrophages (P=0.01). SDF-1 promotes endothelial cell and macrophage migration (Paneurysm wall. Mice given anti-SDF-1 blocking antibody develop significantly fewer intracranial aneurysms (33% versus 89% in mice given control IgG)(Paneurysms, and may have a role in the development of intracranial aneurysms. PMID:24160472

  2. Platelet expression of stromal cell-derived factor-1 is associated with the degree of valvular aortic stenosis.

    Directory of Open Access Journals (Sweden)

    Thomas Wurster

    Full Text Available BACKGROUND AND PURPOSE: Platelet surface expression of stromal-cell-derived factor-1 (SDF-1 is increased during platelet activation and constitutes an important factor in hematopoetic progenitor cell trafficking at sites of vascular injury and ischemia. Enhanced platelet SDF-1 expression has been reported previously in patients suffering from acute coronary syndrome (ACS. We hypothesized that expression of platelet associated SDF-1 may also be influenced by calcified valvular aortic stenosis (AS. METHODS: We consecutively evaluated 941 patients, who were admitted to the emergency department with dyspnea and chest pain. Platelet surface expression of SDF-1 was determined by flow cytometry, AS was assessed using echocardiography and hemodynamic assessment by heart catheterization. A 1∶1 propensity score matching was implemented to match 218 cases with 109 pairs adjusting for age, sex, cardiovascular risk factors, and medication including ACE inhibitors, angiotensin receptor blockers, beta blockers, statins, aspirin, clopidogrel, GPIIb/IIIa antagonists, and vitamin K antagonists. RESULTS: Patients with valvular AS showed enhanced platelet SDF-1 expression compared to patients without AS (non-valvular disease, NV independent of ACS and stable coronary artery disease (SAP [mean fluorescence intensity (MFI for ACS (AS vs. NV: 75±40.4 vs. 39.5±23.3; P = 0.002; for SAP (AS vs. NV: 54.9±44.6 vs. 24.3±11.2; P = 0.008]. Moreover, the degree of AS significantly correlated with SDF-1 platelet surface expression (r = 0.462; P = 0.002. CONCLUSIONS: Valvular AS is associated with enhanced platelet-SDF-1 expression; moreover the degree of valvular AS correlates with SDF-1 platelet surface expression. These findings may have clinical implications in the future.

  3. Platelet expression of stromal cell-derived factor-1 is associated with the degree of valvular aortic stenosis.

    Science.gov (United States)

    Wurster, Thomas; Tegtmeyer, Roland; Borst, Oliver; Rath, Dominik; Geisler, Tobias; Gawaz, Meinrad; Bigalke, Boris

    2014-01-01

    Platelet surface expression of stromal-cell-derived factor-1 (SDF-1) is increased during platelet activation and constitutes an important factor in hematopoetic progenitor cell trafficking at sites of vascular injury and ischemia. Enhanced platelet SDF-1 expression has been reported previously in patients suffering from acute coronary syndrome (ACS). We hypothesized that expression of platelet associated SDF-1 may also be influenced by calcified valvular aortic stenosis (AS). We consecutively evaluated 941 patients, who were admitted to the emergency department with dyspnea and chest pain. Platelet surface expression of SDF-1 was determined by flow cytometry, AS was assessed using echocardiography and hemodynamic assessment by heart catheterization. A 1∶1 propensity score matching was implemented to match 218 cases with 109 pairs adjusting for age, sex, cardiovascular risk factors, and medication including ACE inhibitors, angiotensin receptor blockers, beta blockers, statins, aspirin, clopidogrel, GPIIb/IIIa antagonists, and vitamin K antagonists. Patients with valvular AS showed enhanced platelet SDF-1 expression compared to patients without AS (non-valvular disease, NV) independent of ACS and stable coronary artery disease (SAP) [mean fluorescence intensity (MFI) for ACS (AS vs. NV): 75±40.4 vs. 39.5±23.3; P = 0.002; for SAP (AS vs. NV): 54.9±44.6 vs. 24.3±11.2; P = 0.008]. Moreover, the degree of AS significantly correlated with SDF-1 platelet surface expression (r = 0.462; P = 0.002). Valvular AS is associated with enhanced platelet-SDF-1 expression; moreover the degree of valvular AS correlates with SDF-1 platelet surface expression. These findings may have clinical implications in the future.

  4. Sphingosine-1-Phosphate as a Regulator of Hypoxia-Induced Factor-1α in Thyroid Follicular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Veronica Kalhori

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid, which regulates several cancer-related processes including migration and angiogenesis. We have previously shown S1P to induce migration of follicular ML-1 thyroid cancer cells. Hypoxia-induced factor-1 (HIF-1 is an oxygen-sensitive transcription factor, which adapts cells to hypoxic conditions through increased survival, motility and angiogenesis. Due to these properties and its increased expression in response to intratumoral hypoxia, HIF-1 is considered a significant regulator of tumor biology. We found S1P to increase expression of the regulatory HIF-1α subunit in normoxic ML-1 cells. S1P also increased HIF-1 activity and expression of HIF-1 target genes. Importantly, inhibition or knockdown of HIF-1α attenuated the S1P-induced migration of ML-1 cells. S1P-induced HIF-1α expression was mediated by S1P receptor 3 (S1P3, Gi proteins and their downstream effectors MEK, PI3K, mTOR and PKCβI. Half-life measurements with cycloheximide indicated that S1P treatment stabilized the HIF-1α protein. On the other hand, S1P activated translational regulators eIF-4E and p70S6K, which are known to control HIF-1α synthesis. In conclusion, we have identified S1P as a non-hypoxic regulator of HIF-1 activity in thyroid cancer cells, studied the signaling involved in S1P-induced HIF-1α expression and shown S1P-induced migration to be mediated by HIF-1.

  5. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes.

    Science.gov (United States)

    Sugden, Chris; Urbaniak, Michael D; Araki, Tsuyoshi; Williams, Jeffrey G

    2015-02-15

    Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555. © 2015 Sugden et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. A CSF-1 Receptor Phosphotyrosine 559 Signaling Pathway Regulates Receptor Ubiquitination and Tyrosine Phosphorylation*

    Science.gov (United States)

    Xiong, Ying; Song, Da; Cai, Yunfei; Yu, Wenfeng; Yeung, Yee-Guide; Stanley, E. Richard

    2011-01-01

    Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages. PMID:21041311

  7. Role of the insulin-like growth factor 1 axis and visceral adiposity in oesophageal adenocarcinoma.

    LENUS (Irish Health Repository)

    Donohoe, C L

    2012-03-01

    Epidemiological studies have linked obesity with many cancers. The insulin-like growth factor (IGF) 1 axis may be an important mediator in obesity-associated cancer. This study examined the relationship between IGF-1 and its receptor (IGF-1R) in oesophageal adenocarcinoma, a cancer strongly linked to obesity.

  8. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  9. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    OpenAIRE

    Chai, Xiqing; Kong, Weina; Liu, Lingyun; Yu, Wenguo; Zhang, Zhenqing; Sun, Yimin

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we constructed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1α gene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1α represses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results confirmed that rAAV-HIF-1α significantly reduces apoptosis induced by amyl...

  10. GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function

    OpenAIRE

    Mel��n, Laverne Camille; Maguire, Jamie

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes are regulated by GABAergic signaling at the level of corticotropin-releasing hormone (CRH) and gonadotropin-releasing hormone (GnRH) neurons, respectively. Under basal conditions, activity of CRH and GnRH neurons are controlled in part by both phasic and tonic GABAergic inhibition, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs), respectively. For CRH neurons, this tonic GABAergic inhibitio...

  11. Prevention of Alcohol-Heightened Aggression by CRF-R1 Antagonists in Mice: Critical Role for DRN-PFC Serotonin Pathway

    OpenAIRE

    Quadros, Isabel M.; Hwa, Lara S.; Shimamoto, Akiko; Carlson, Julia; DeBold, Joseph F.; Miczek, Klaus A.

    2014-01-01

    Alcohol can escalate aggressive behavior in a significant subgroup of rodents, humans, and nonhuman primates. The present study investigated whether blockade of corticotropin-releasing factor receptor type 1 (CRF-R1) could prevent the emergence of alcohol-heightened aggression in mice. The serotonin (5-HT) pathway from the dorsal raphe nucleus (DRN) to the medial prefrontal cortex (mPFC) by CRF-R1 was investigated as a possible target for the prevention of alcohol-heightened aggressive behavi...

  12. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala

    OpenAIRE

    Abiri, Dina; Douglas, Christina E.; Calakos, Katina C.; Barbayannis, Georgia; Roberts, Andrea; Bauer, Elizabeth P.

    2014-01-01

    The neuropeptide corticotropin-releasing factor (CRF) is released during periods of anxiety and modulates learning and memory formation. One region with particularly dense concentrations of CRF receptors is the basolateral nucleus of the amygdala (BLA), a critical structure for both Pavlovian fear conditioning and fear extinction. While CRF has the potential to modify amygdala-dependent learning, its effect on fear extinction has not yet been assessed. In the present study, we examined the mo...

  13. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  14. Role of CXC chemokine receptor type 4 as a lactoferrin receptor.

    Science.gov (United States)

    Takayama, Yoshiharu; Aoki, Reiji; Uchida, Ryo; Tajima, Atsushi; Aoki-Yoshida, Ayako

    2017-02-01

    Lactoferrin exerts its biological activities by interacting with receptors on target cells, including LDL receptor-related protein-1 (LRP-1/CD91), intelectin-1 (omentin-1), and Toll-like receptor 4 (TLR4). However, the effects mediated by these receptors are not sufficient to fully explain the many functions of lactoferrin. C-X-C-motif cytokine receptor 4 (CXCR4) is a ubiquitously expressed G-protein coupled receptor for stromal cell-derived factor-1 (SDF-1/CXCL12). Lactoferrin was found to be as capable as SDF-1 in blocking infection by an HIV variant that uses CXCR4 as a co-receptor (X4-tropic HIV), suggesting that lactoferrin interacts with CXCR4. We addressed whether CXCR4 acts as a lactoferrin receptor using HaCaT human keratinocytes and Caco-2 human intestinal cells. We found that bovine lactoferrin interacted with CXCR4-containing lipoparticles, and that this interaction was not antagonized by SDF-1. In addition, activation of Akt in response to lactoferrin was abrogated by AMD3100, a small molecule inhibitor of CXCR4, or by a CXCR4-neutralizing antibody, suggesting that CXCR4 functions as a lactoferrin receptor able to mediate activation of the PI3K-Akt signaling pathway. Lactoferrin stimulation mimicked many aspects of SDF-1-induced CXCR4 activity, including receptor dimerization, tyrosine phosphorylation, and ubiquitination. Cycloheximide chase assays indicated that turnover of CXCR4 was accelerated in response to lactoferrin. These results indicate that CXCR4 is a potent lactoferrin receptor that mediates lactoferrin-induced activation of Akt signaling.

  15. The androgen receptor and estrogen receptor

    NARCIS (Netherlands)

    Oosterkamp, H.M.; Bernards, R.A.

    2002-01-01

    The androgen receptor (AR) and the estrogen receptors (ER) are members of the nuclear receptor (NR) family. These NRs are distinguished from the other transcription factors by their ability to control gene expression upon ligand binding (steroids, retinoids, thyroid hormone, vitamin D, fatty

  16. Estrogen receptor, progesterone receptor, and human epidermal ...

    African Journals Online (AJOL)

    Current clinical practice employs the use of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), as biomarkers to appropriately select patients that would benefit from targeted therapy against these major molecular pathways of the disease. This study aims at ...

  17. Comparison of insulin-like growth factor 1 and insulin effects on prolactin-induced lactogenesis in the rabbit mammary gland in vitro.

    Science.gov (United States)

    Duclos, M; Houdebine, L M; Djiane, J

    1989-08-01

    In organ culture of pregnant rabbit mammary gland, a low casein synthesis occurs with prolactin (PRL) alone. Insulin markedly potentiates the effect of PRL. Only pharmacological concentrations of insulin (5 micrograms/ml) exert the maximal enhancement, suggesting a possible interaction with the insulin-like growth factor 1 (IGF1) receptor. The presence of IGF1 and insulin binding sites was analyzed and the biological effects of both peptides were compared. Binding of iodinated human IGF1 or porcine insulin to mammary microsomes prepared from mid-pregnant rabbits revealed distinct high affinity binding sites for both peptides (Kd approximately 2 nM). In rabbit mammary explants, we confirmed that only non-physiological concentrations of insulin (greater than or equal to 100 ng/ml) exerted a significant stimulation of the PRL effect. Surprisingly, IGF1 was not found to be more potent than insulin on a molar basis, which did not provide evidence for the exclusive involvement of the IGF1 receptor. Near-physiological concentrations of IGF1 (approximately 100 ng/ml), however, exerted a significant enhancement which suggested a possible action for IGF1 on PRL-induced lactogenesis in vivo.

  18. Serum insulin-like growth factor 1 in the aging horse

    DEFF Research Database (Denmark)

    Lygren, Tone; Hansen, Sanni; Langberg, Henning

    2014-01-01

    BACKGROUND: Insulin-like growth factor 1 (IGF-1) has important roles in anabolic processes in the musculoskeletal system and has been reported to decrease with age in both people and horses. OBJECTIVES: The objective of this study was to determine serum IGF-1 levels in the aging horse from early...... to late adulthood (age range 5-27 years). METHODS: Healthy horses (n = 72) were used in a cross-sectional study, while 37 paired serum samples were available for a longitudinal study. Serum IGF-1 protein was determined using an ELISA kit validated for use in equine samples. RESULTS: No association...... was found between serum IGF-1 levels and age in the cross-sectional study. In the longitudinal study, a latent variable model fitted to the data revealed that horses in general experienced a 5.2% increase of serum IGF-1 levels over a 5-year period, but horses crossing a change point around 9 years of age...

  19. Resveratrol Reactivates Latent HIV through Increasing Histone Acetylation and Activating Heat Shock Factor 1.

    Science.gov (United States)

    Zeng, Xiaoyun; Pan, Xiaoyan; Xu, Xinfeng; Lin, Jian; Que, Fuchang; Tian, Yuanxin; Li, Lin; Liu, Shuwen

    2017-06-07

    The persistence of latent HIV reservoirs presents a significant challenge to viral eradication. Effective latency reversing agents (LRAs) based on "shock and kill" strategy are urgently needed. The natural phytoalexin resveratrol has been demonstrated to enhance HIV gene expression, although its mechanism remains unclear. In this study, we demonstrated that resveratrol was able to reactivate latent HIV without global T cell activation in vitro. Mode of action studies showed resveratrol-mediated reactivation from latency did not involve the activation of silent mating type information regulation 2 homologue 1 (SIRT1), which belonged to class-3 histone deacetylase (HDAC). However, latent HIV was reactivated by resveratrol mediated through increasing histone acetylation and activation of heat shock factor 1 (HSF1). Additionally, synergistic activation of the latent HIV reservoirs was observed under cotreatment with resveratrol and conventional LRAs. Collectively, this research reveals that resveratrol is a natural LRA and shows promise for HIV therapy.

  20. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously...... shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days...... in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected...

  1. Analysis of serum insulin growth factor-1 concentrations in localized osteosarcoma: a children's oncology group study.

    Science.gov (United States)

    Borinstein, Scott C; Barkauskas, Donald A; Bernstein, Mark; Goorin, Allen; Gorlick, Richard; Krailo, Mark; Schwartz, Cindy L; Wexler, Leonard H; Toretsky, Jeffrey A

    2014-04-01

    To investigate the role of insulin-like growth factor-1 (IGF-1), in localized osteosarcoma, serum levels of IGF-1, IGFBP-2, and IGFBP-3 were measured in 224 similarly treated, newly diagnosed patients. We demonstrated that younger patients had lower concentrations of IGF-1 and IGFBP-3 compared to older (P < 0.001) along with lower IGFBP-3:IGF-1 and IGFBP-2:IGF-1 ratios (P < 0.001). IGFBP-2 did not correlate with age (P = 0.16), yet IGFBP-2:IGF-1 ratios were higher in the younger population (P < 0.001). These findings show that older patients have higher concentrations of free IGF-1. None of IGF-1, IGFBP-2, nor IGFBP-3 concentrations were associated with event-free nor overall survival. © 2013 Wiley Periodicals, Inc.

  2. Hypoxia-inducible factor-1α: a promising therapeutic target for autoimmune diseases.

    Science.gov (United States)

    Guan, Shi-Yang; Leng, Rui-Xue; Tao, Jin-Hui; Li, Xiang-Pei; Ye, Dong-Qing; Olsen, Nancy; Zheng, Song Guo; Pan, Hai-Feng

    2017-07-01

    Hypoxia-inducible factor-1α (HIF-1α) plays a crucial role in both innate and adaptive immunity. Emerging evidence indicates that HIF-1α is associated with the inflammation and pathologic activities of autoimmune diseases. Areas covered: Considering that the types of autoimmune diseases are complicated and various, this review aims to cover the typical kinds of autoimmune diseases, discuss the molecular mechanisms, biological functions and expression of HIF-1α in these diseases, and further explore its therapeutic potential. Expert opinion: Inflammation and hypoxia are interdependent. HIF-1α as a key regulator of hypoxia, exerts a crucial role in the balance between Th17 and Treg, and involves in the inflammation and pathologic activities of autoimmune diseases. Although there are many challenges remaining to be overcome, targeting HIF-1α could be a promising strategy for autoimmune diseases therapies.

  3. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development.

    Science.gov (United States)

    Hellström, Ann; Ley, David; Hansen-Pupp, Ingrid; Hallberg, Boubou; Löfqvist, Chatarina; van Marter, Linda; van Weissenbruch, Mirjam; Ramenghi, Luca A; Beardsall, Kathryn; Dunger, David; Hård, Anna-Lena; Smith, Lois E H

    2016-06-01

    Poor postnatal growth after preterm birth does not match the normal rapid growth in utero and is associated with preterm morbidities. Insulin-like growth factor 1 (IGF-1) axis is the major hormonal mediator of growth in utero, and levels of IGF-1 are often very low after preterm birth. We reviewed the role of IGF-1 in foetal development and the corresponding preterm perinatal period to highlight the potential clinical importance of IGF-1 deficiency in preterm morbidities. There is a rationale for clinical trials to evaluate the potential benefits of IGF-1 replacement in very preterm infants. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  4. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    RNA (pre-mRNA) splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to several age-related chronic illnesses. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...... via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...

  5. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  6. Expression and clinical significance of fibroblast growth factor 1 in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Liu NQ

    2015-03-01

    Full Text Available Naiqing Liu,1,2,* Jingyu Zhang,2,* Shuxiang Sun,2 Liguang Yang,2 Zhongjin Zhou,2 Qinli Sun,2 Jun Niu11Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, People’s Republic of China; 2Department of General Surgery, Yishui Central Hospital, Linyi, People’s Republic of China*These authors contributed equally to this workBackground: The clinical significance of fibroblast growth factor 1 (FGF1 has been revealed in several cancers, including ovarian cancer, breast cancer, and bladder cancer. However, the clinical significance of FGF1 in gastric adenocarcinoma has not been explored.Patients and methods: In our experiments, we systematically evaluated FGF1 expression in 178 cases of gastric adenocarcinoma with immunohistochemistry, and subsequently analyzed the correlation between FGF1 expression and clinicopathologic features. Moreover, FGF1 expression in tumor tissue and corresponding adjacent tissue was detected and compared by real-time polymerase chain reaction. The Kaplan–Meier method and the Cox-regression model were used with univariate and multivariate analysis, respectively, to evaluate the prognostic value of FGF1 in gastric adenocarcinoma.Results: Higher FGF1 expression rate is 56.7% (101/178 in gastric adenocarcinoma. FGF1 expression in gastric adenocarcinoma was significantly higher than adjacent tissue (P<0.0001. Expression of FGF1 is significantly associated with lymph node invasion (P<0.001, distant metastasis (P=0.013, and differentiation (P=0.015. Moreover, FGF1 overexpression was closely related to unfavorable overall survival rate (P=0.021, and can be identified to be an independent unfavorable prognostic factor (P=0.004.Conclusion: FGF1 is an independent prognostic factor, indicating that FGF1 could be a potential molecular drug target in gastric adenocarcinoma.Keywords: fibroblast growth factor 1, gastric adenocarcinoma, prognosis, biomarker, lymph node, gene fusion

  7. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  8. Protein arginine methyltransferase 5 is an essential component of the hypoxia-inducible factor 1 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji-Hong; Choi, Yong-Joon; Cho, Chung-Hyun [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of); Park, Jong-Wan, E-mail: parkjw@snu.ac.kr [Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799 (Korea, Republic of)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer HIF-1{alpha} is expressed PRMT5-dependently in hypoxic cancer cells. Black-Right-Pointing-Pointer The HIF-1 regulation of hypoxia-induced genes is attenuated in PRMT5-knocked-down cells. Black-Right-Pointing-Pointer The de novo synthesis of HIF-1{alpha} depends on PRMT5. Black-Right-Pointing-Pointer PRMT5 is involved in the HIF-1{alpha} translation initiated by 5 Prime UTR of HIF-1{alpha} mRNA. -- Abstract: Protein arginine methyltransferase 5 (PRMT5) is an enzyme that transfers one or two methyl groups to the arginine residues of histones or non-histone proteins, and that plays critical roles in cellular processes as diverse as receptor signaling and gene expression. Furthermore, PRMT5 is highly expressed in tumors, where it may be associated with tumor growth. Although much research has been conducted on PRMT5, little is known regarding its role in adaption to hypoxia. As hypoxia-inducible factor 1 (HIF-1) is a key player in hypoxic response, we examined the possible involvement of PRMT5 in the HIF-1 signaling pathway. Of the siRNAs targeting PRMT1-8, only PRMT5 siRNA attenuated the hypoxic induction of HIF-1{alpha} in A549 cells, and this result was reproducible in all three cancer cell lines examined. PRMT5 knock-down also repressed the promoter activities and the transcript levels of HIF-1-governed genes. Mechanistically, de novo synthesis of HIF-1{alpha} protein was reduced in PRMT5-knocked-down A549 cells, and this was rescued by PRMT5 restoration. In contrast, HIF-1{alpha} transcription, RNA processing, and protein stability were unaffected by PRMT5 knock-down. Furthermore, PRMT5 was found to be essential for the HIF-1{alpha} translation initiated by the 5 Prime UTR of HIF-1{alpha} mRNA. Given our results and previous reports, we believe that PRMT5 probably promotes tumor growth by stimulating cell proliferation and by participating in the construction of a tumor-favorable microenvironment via HIF-1 activation.

  9. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways.

    Directory of Open Access Journals (Sweden)

    Yujiro Hayashi

    Full Text Available Stem cell factor (mouse: Kitl, human: KITLG and insulin-like growth factor-1 (IGF1, acting via KIT and IGF1 receptor (IGF1R, respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST, the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC, the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2, a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i. GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes.

  10. Effect of nonpersistent pesticides on estrogen receptor, androgen receptor, and aryl hydrocarbon receptor.

    Science.gov (United States)

    Medjakovic, Svjetlana; Zoechling, Alfred; Gerster, Petra; Ivanova, Margarita M; Teng, Yun; Klinge, Carolyn M; Schildberger, Barbara; Gartner, Michael; Jungbauer, Alois

    2014-10-01

    Nonpersistent pesticides are considered less harmful for the environment, but their impact as endocrine disruptors has not been fully explored. The pesticide Switch was applied to grape vines, and the maximum residue concentration of its active ingredients was quantified. The transactivation potential of the pesticides Acorit, Frupica, Steward, Reldan, Switch, Cantus, Teldor, and Scala and their active compounds (hexythiazox, mepanipyrim, indoxacarb, chlorpyrifos-methyl, cyprodinil, fludioxonil, boscalid, fenhexamid, and pyrimethanil) were tested on human estrogen receptor α (ERα), androgen receptor (AR) and arylhydrocarbon receptor (AhR) in vitro. Relative binding affinities of the pure pesticide constituents for AR and their effect on human breast cancer and prostate cancer cell lines were evaluated. Residue concentrations of Switch's ingredients were below maximum residue limits. Fludioxonil and fenhexamid were ERα agonists (EC50 -values of 3.7 and 9.0 μM, respectively) and had time-dependent effects on endogenous ERα-target gene expression (cyclin D1, progesterone receptor, and nuclear respiratory factor 1) in MCF-7 human breast cancer cells. Fludioxonil, mepanipyrim, cyprodinil, pyrimethanil, and chlorpyrifos-methyl were AhR-agonists (EC50 s of 0.42, 0.77, 1.4, 4.6, and 5.1 μM, respectively). Weak AR binding was shown for chlorpyrifos-methyl, cyprodinil, fenhexamid, and fludioxonil. Assuming a total uptake which does not take metabolism and clearance rates into account, our in vitro evidence suggests that pesticides could activate pathways affecting hormonal balance, even within permitted limits, thus potentially acting as endocrine disruptors. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  11. Chenodeoxycholic Acid Reduces Hypoxia Inducible Factor-1α Protein and Its Target Genes.

    Directory of Open Access Journals (Sweden)

    Yunwon Moon

    Full Text Available This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2 and severe hypoxia (0.1% O2. We found that chenodeoxy cholic acid (CDCA reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR, a CDCA receptor and its target gene, Small heterodimer partner (SHP are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein.

  12. ADP-Ribosylation Factor 1 Regulates Proliferation, Migration, and Fusion in Early Stage of Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Min Jae Kim

    2015-12-01

    Full Text Available Small G-protein adenosine diphosphate (ADP-ribosylation factors (ARFs regulate a variety of cellular functions, including actin cytoskeleton remodeling, plasma membrane reorganization, and vesicular transport. Here, we propose the functional roles of ARF1 in multiple stages of osteoclast differentiation. ARF1 was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL-induced osteoclast differentiation and transiently activated in an initial stage of their differentiation. Differentiation of ARF1-deficient osteoclast precursors into mature osteoclasts temporarily increased in pre-maturation stage of osteoclasts followed by reduced formation of mature osteoclasts, indicating that ARF1 regulates the osteoclastogenic process. ARF1 deficiency resulted in reduced osteoclast precursor proliferation and migration as well as increasing cell-cell fusion. In addition, ARF1 silencing downregulated c-Jun N-terminal kinase (JNK, Akt, osteopontin, and macrophage colony-stimulating factor (M-CSF-receptor c-Fms as well as upregulating several fusion-related genes including CD44, CD47, E-cadherin, and meltrin-α. Collectively, we showed that ARF1 stimulated proliferation and migration of osteoclast precursors while suppressing their fusion, suggesting that ARF1 may be a plausible inter-player that mediates the transition to osteoclast fusion at multiple steps during osteoclast differentiation

  13. Kisspeptin-10 inhibits stromal-derived factor 1-induced invasion of human endometrial cancer cells.

    Science.gov (United States)

    Schmidt, Elena; Haase, Maike; Ziegler, Elke; Emons, Günter; Gründker, Carsten

    2014-02-01

    The cross talk between metastatic cancer cells and target sites is critical for the development and progression of metastases. Disruption of this interaction will allow to design mechanism-based effective and specific therapeutic interventions for metastases. We have established a coculture system of cells derived from different tumor entities and MG63 human osteoblastlike cells to analyze tumor cell invasion. Recently, we have shown that breast cancer cell invasion was dramatically increased when cocultured with MG63 cells.Using this model, we have now analyzed whether stromal-derived factor 1 (SDF-1) is responsible for human endometrial cancer cell invasion and whether kisspeptin-10 (KP-10) treatment affects SDF-1-induced invasion of endometrial cancer cells in vitro. Invasion was quantified by assessment of endometrial cancer cell migration rate through an artificial basement membrane in a modified Boyden chamber during coculture with MG63 cells or after treatment with SDF-1α, SDF-1β, or the combination of both SDF-1 isoforms. In addition, the role of SDF-1 in invasion of endometrial cancer cells was analyzed by blocking SDF-1 secretion during coculture with MG64 cells. Furthermore, the effects of KP-10 treatment on MG63 coculture-driven and SDF-1-induced invasion were analyzed. Endometrial cancer cell invasion was significantly increased when cocultured with MG63 cells. Treatment with KP-10 reduced the ability to invade a reconstituted basement membrane and to migrate in response to the cellular stimulus. This effect was significant in a dose window of 10(-13) to 10(-11) mol/L. During coculture, SDF-1 protein expression of MG63 cells was significantly increased. The MG63 coculture-induced increase of endometrial cancer cell invasion could be blocked by anti-SDF-1 antibodies. Treatment of endometrial cancer cells in monoculture (without MG63) with SDF-1α, SDF-1β, or the combination of both isoforms resulted in a significant increase of endometrial cancer

  14. Expression Profile of Interferon Regulatory Factor 1 in Chronic Hepatitis B Virus-Infected Liver Transplant Patients.

    Science.gov (United States)

    Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid

    2017-12-01

    Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between

  15. Gingerol-induced hypoxia-inducible factor 1 alpha inhibits human prion peptide-mediated neurotoxicity.

    Science.gov (United States)

    Jeong, Jae-Kyo; Moon, Myung-Hee; Park, Yang-Gyu; Lee, Ju-Hee; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2013-08-01

    Prion diseases are a family member of neurodegenerative disorders caused by the accumulation of misfolded-prion proteins (scrapie form of PrP, PrP(Sc)). The accumulation of PrP(Sc) in the brain leads to neurotoxicity by the induction of mitochondrial-apoptotic pathways. Recent studies implicated gingerol in protection against neurodegeneration. However, the basis of the neuroprotection in prion disease remains unclear. Thus, we investigated the influence of gingerol on prion peptide-induced neuronal damage. Gingerol blocked PrP(106-126)-mediated neurotoxicity by protecting mitochondrial function. Moreover, the protective effect of gingerol against PrP(106-126)-induced mitochondrial damage was associated with hypoxia-inducible factor 1 alpha (HIF-1α) expression. Gingerol-induced HIF-1α expression inhibited the PrP(106-126)-induced mitochondrial dysfunction. On the other hand, inhibition of gingerol-induced HIF-1 α expression attenuated the gingerol-mediated neuroprotective effect. Here, we demonstrate for the first time that treatment with gingerol prevents prion peptide-mediated neuronal cell death and that the neuroprotection is induced by HIF-1α-mediated signals. This study suggests that treatment with gingerol may provide a novel therapeutic strategy for prion-mediated neurotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1

    Science.gov (United States)

    Khanna, Omaditya; Moya, Monica L; Opara, Emmanuel C; Brey, Eric M

    2010-01-01

    Alginate microcapsules coated with a permselective poly-L-ornithine (PLO) membrane have been investigated for the encapsulation and transplantation of islets as a treatment for type 1 diabetes. The therapeutic potential of this approach could be improved through local stimulation of microvascular networks in order to meet mass transport demands of the encapsulated cells. Fibroblast growth factor-1 (FGF-1) is a potent angiogenic factor with optimal effect occurring when it is delivered in a sustained manner. In this paper, a technique is described for the generation of multilayered alginate microcapsules with an outer alginate layer that can be used for the delivery of FGF-1. The influence of alginate concentration and composition (high mannuronic acid (M) or guluronic acid (G) content) on outer layer size and stability, protein encapsulation efficiency, and release kinetics was investigated. The technique results in a stable outer layer of alginate with a mean thickness between 113–164 µm, increasing with alginate concentration and G-content. The outer layer was able to encapsulate and release FGF-1 for up to thirty days, with 1.25% of high G alginate displaying the most sustained release. The released FGF-1 retained its biologic activity in the presence of heparin, and the addition of the outer layer did not alter the permselectivity of the PLO coat. This technique could be used to generate encapsulation systems that deliver proteins to stimulate local neovascularization around encapsulated islets. PMID:20725969

  17. Roles of hypoxia inducible factor-1α in the temporomandibular joint.

    Science.gov (United States)

    Mino-Oka, Akiko; Izawa, Takashi; Shinohara, Takehiro; Mori, Hiroki; Yasue, Akihiro; Tomita, Shuhei; Tanaka, Eiji

    2017-01-01

    Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease characterized by permanent cartilage loss. Articular cartilage is maintained in a low-oxygen environment. The chondrocyte response to hypoxic conditions involves expression of hypoxia inducible factor 1α (HIF-1α), which induces chondrocytes to increase expression of vascular endothelial growth factor (VEGF). Here, we investigated the role of HIF-1α in mechanical load effects on condylar cartilage and subchondral bone in heterozygous HIF-1α-deficient mice (HIF-1α+/-). Mechanical stress was applied to the TMJ of C57BL/6NCr wild-type (WT) and HIF-1α+/- mice with a sliding plate for 10 days. Histological analysis was performed by HE staining, Safranin-O/Fast green staining, and immunostaining specific for articular cartilage homeostasis. HIF-1α+/- mice had thinner cartilage and smaller areas of proteoglycan than WT controls, without and with mechanical stress. Mechanical stress resulted in prominent degenerative changes with increased expression of HIF-1α, VEGF, and the apoptosis factor cleaved Caspase-3 in condylar cartilage. Our results indicate that HIF-1α may be important for articular cartilage homeostasis and protective against articular cartilage degradation in the TMJ under mechanical stress condition, therefore HIF-1α could be an important new therapeutic target in TMJ-OA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant DefenseW⃞

    Science.gov (United States)

    Lorenzo, Oscar; Piqueras, Raquel; Sánchez-Serrano, Jose J.; Solano, Roberto

    2003-01-01

    Cross-talk between ethylene and jasmonate signaling pathways determines the activation of a set of defense responses against pathogens and herbivores. However, the molecular mechanisms that underlie this cross-talk are poorly understood. Here, we show that ethylene and jasmonate pathways converge in the transcriptional activation of ETHYLENE RESPONSE FACTOR1 (ERF1), which encodes a transcription factor that regulates the expression of pathogen response genes that prevent disease progression. The expression of ERF1 can be activated rapidly by ethylene or jasmonate and can be activated synergistically by both hormones. In addition, both signaling pathways are required simultaneously to activate ERF1, because mutations that block any of them prevent ERF1 induction by any of these hormones either alone or in combination. Furthermore, 35S:ERF1 expression can rescue the defense response defects of coi1 (coronative insensitive1) and ein2 (ethylene insensitive2); therefore, it is a likely downstream component of both ethylene and jasmonate signaling pathways. Transcriptome analysis in Col;35S:ERF1 transgenic plants and ethylene/jasmonate-treated wild-type plants further supports the notion that ERF1 regulates in vivo the expression of a large number of genes responsive to both ethylene and jasmonate. These results suggest that ERF1 acts downstream of the intersection between ethylene and jasmonate pathways and suggest that this transcription factor is a key element in the integration of both signals for the regulation of defense response genes. PMID:12509529

  19. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  20. Elongation Factor-1α Accurately Reconstructs Relationships Amongst Psyllid Families (Hemiptera: Psylloidea), with Possible Diagnostic Implications.

    Science.gov (United States)

    Martoni, Francesco; Bulman, Simon R; Pitman, Andrew; Armstrong, Karen F

    2017-12-05

    The superfamily Psylloidea (Hemiptera: Sternorrhyncha) lacks a robust multigene phylogeny. This impedes our understanding of the evolution of this group of insects and, consequently, an accurate identification of individuals, of their plant host associations, and their roles as vectors of economically important plant pathogens. The conserved nuclear gene elongation factor-1 alpha (EF-1α) has been valuable as a higher-level phylogenetic marker in insects and it has also been widely used to investigate the evolution of intron/exon structure. To explore evolutionary relationships among Psylloidea, polymerase chain reaction amplification and nucleotide sequencing of a 250-bp EF-1α gene fragment was applied to psyllids belonging to five different families. Introns were detected in three individuals belonging to two families. The nine genera belonging to the family Aphalaridae all lacked introns, highlighting the possibility of using intron presence/absence as a diagnostic tool at a family level. When paired with cytochrome oxidase I gene sequences, the 250 bp EF-1α sequence appeared to be a very promising higher-level phylogenetic marker for psyllids. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Structure of human heat-shock transcription factor 1 in complex with DNA.

    Science.gov (United States)

    Neudegger, Tobias; Verghese, Jacob; Hayer-Hartl, Manajit; Hartl, F Ulrich; Bracher, Andreas

    2016-02-01

    Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA.

  2. Insulin-like growth factor-1 levels in children with Beta-thalassemia minor

    Directory of Open Access Journals (Sweden)

    Mehran Karimi

    2008-09-01

    Full Text Available Objective: Growth retardation in children with b-thalassemia major is multifactorial. Some etiologies described for this condition are hemochromatosis, disturbed growth hormone (GH / insulin growth factor-1 (IGF-1 axis, undernutrition and hypermetabolism. It has also been proven that growth retardation is present in b-thalassemia major children despite regular transfusion and chelation. Our aim was to evaluate the level of IGF-1 in b-thalassemia minor subjects and compare it with that in healthy children. Material and Methods: Fifty children aged 6 months to 15 years with b-thalassemia minor (32 males, 18 females and 50 age- and sex-matched normal healthy children were selected. Medical history was taken and complete physical examination was done in each case; IGF-1 level was checked in all cases. This study was done in Shiraz, southern Iran, during 2005.Results: IGF-1 levels were significantly lower in b-thalassemia minor children than normal children (P = 0.015. This result demonstrates that some etiologies of growth failure in b-thalassemia major other than those described to date can exist, which may be shared with b-thalassemia minor in feature or may be transformed by genes that are either expressed or not.Conclusion: We conclude that in addition to that observed in b-thalassemia major, IGF-1 level is also decreased in b-thalassemia minor, and these two may have similar etiologies.

  3. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.

    Directory of Open Access Journals (Sweden)

    H Hans Salamanca

    Full Text Available Heat shock factor 1 (HSF1 is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.

  4. Induction of antiviral state in fish cells by Japanese flounder, Paralichthys olivaceus, interferon regulatory factor-1.

    Science.gov (United States)

    Caipang, Christopher Marlowe A; Hirono, Ikuo; Aoki, Takashi

    2005-07-01

    Interferon regulatory factor-1 (IRF-1) mediates an antiviral state in cells by regulating the expression of the interferon (IFN-alpha/beta) system. To elucidate the role of IRF-1 in fish during virus infections, we constructed a recombinant plasmid of the Japanese flounder, Paralichthys olivaceus IRF-1 (JF IRF-1) under the control of the cytomegalovirus (CMV) immediate/early enhancer promoter. The antiviral mechanism of JF IRF-1 was studied using transfection experiments in a homologous cell line. Here, we show that cell supernatants obtained from transiently transfected cells enhanced cell viability of a heterologous cell line upon incubation, reduced the titers of hirame rhabdovirus (HIRRV) and viral hemorrhagic septicemia virus (VHSV), and possessed cytokine-like activity, as shown by their ability to protect cells against virus infections. The supernatants also inhibited the replication of the rhabdoviruses during the early stages of infection as indicated by the reduction of viral titers in the presence of the supernatants obtained from the transfected cells. Further analysis showed that the cell culture supernatants contain cytokine-like substances that possess acid-labile and temperature-resistant properties. These results indicate that JF IRF-1 induces an antiviral state in cells by mediating the production of cytokine-like substances. Thus, JF IRF-1 might be useful as an adjuvant in the development of DNA vaccines against commercially important viral pathogens in Japanese flounder aquaculture.

  5. Serum preadipocyte factor-1 is increased in fetuses of pregnancy complicated with severe preeclampsia.

    Science.gov (United States)

    Zhou, Qunyan; Li, Jie; Wang, Hanzhi; Han, Cong; Tian, Ting; Zhu, Qiuyuan; Huang, Hefeng; Dong, Minyue

    2013-09-23

    Preadipocyte factor-1 (Pref-1), an inhibitor of adipocyte differentiation, is increased in fetal blood of small for gestational age (SGA) and is considered a factor involved in determining adiposity and associated with high risk of metabolic diseases in adulthood. Preeclampsia is a condition closely associated with SGA, however, the alteration of Pref-1 of in fetuses of preeclampsia remains unknown. The aims of the current investigation were to clarify the alteration of serum Pref-1 in fetuses of preeclamptic pregnancy and to explore possible role of Pref-1 in metabolic diseases in late life. Cord blood samples were taken at birth from 45 fetuses of normal pregnancy, 16 of gestational hypertension, 29 of mild preeclampsia and 29 of severe preeclampsia. Serum Pref-1 concentrations were measured with ELISA. There were significant differences in cord blood Pref-1 and neonatal birth weight among normal pregnancy, gestational hypertension, mild and severe preeclampsia (F=8.557, Ppregnancy, gestational hypertension and mild preeclampsia respectively (Ppregnancy, gestational hypertension and mild preeclampsia (P>0.05 for all). Fetal Pref-1 concentration was significantly negatively correlated with birth weight (R(2)=0.175, P=0.027 for severe preeclampsia; R(2)=0.209, Pcomplicated pregnancy, and it may be proposed that Pref-1 is among the possible mediators leading to high risk of metabolic diseases in adulthood. © 2013.

  6. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 (MTG16 co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1 heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1. Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α.

  7. Hypoxia-Inducible Factor-1 as a Therapeutic Target in Endometrial Cancer Management

    Directory of Open Access Journals (Sweden)

    Laura M. S. Seeber

    2010-01-01

    Full Text Available In the Western world, endometrial cancer (EC is the most common malignant tumor of the female genital tract. Solid tumors like EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1 (HIF-1 plays an essential role in the adaptive cellular response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways upstream or downstream HIF-1 are known to decrease HIF-1 protein levels. In clinical trials for the treatment of advanced and/or recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab. Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to translate these into clinical trials.

  8. The Effect of Insulin Like Growth Factor-1 on Recovery of Facial Nerve Crush Injury.

    Science.gov (United States)

    Bayrak, Asuman Feda; Olgun, Yuksel; Ozbakan, Ayla; Aktas, Safiye; Kulan, Can Ahmet; Kamaci, Gonca; Demir, Emine; Yilmaz, Osman; Olgun, Levent

    2017-12-01

    The aim of this study is to investigate the efficacy of locally applied insulin-like growth factor 1 (IGF-1) on the recovery of facial nerve functions after crush injury in a rabbit model. The rabbits were randomly assigned into three groups. Group 1 consisted of the rabbits with crush injury alone; group 2, the animals applied saline solution onto the crushed facial nerve and group 3, IGF-1 implemented to the nerve in the same manner. Facial nerve injury was first electrophysiologically studied on 10th and 42nd days of the procedure. The damage to the facial nerves was then investigated histopathologically, after sacrification of the animals. In the electrophysiological study, compound muscle action potential amplitudes of the crushed nerves in the second group were decreased. In pathological specimens of the first and second groups, the orders of axons were distorted; demyelination and proliferation of Schwann cells were observed. However, in IGF-1 treated group axonal order and myelin were preserved, and Schwann cell proliferation was close to normal (Precovery of the facial nerve crush injury in rabbits. IGF-1 was considered worthy of being tried in clinical studies in facial nerve injury cases.

  9. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  10. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity.

    Science.gov (United States)

    Carr-Schmid, A; Valente, L; Loik, V I; Williams, T; Starita, L M; Kinzy, T G

    1999-08-01

    Translation elongation factor 1beta (EF-1beta) is a member of the family of guanine nucleotide exchange factors, proteins whose activities are important for the regulation of G proteins critical to many cellular processes. EF-1beta is a highly conserved protein that catalyzes the exchange of bound GDP for GTP on EF-1alpha, a required step to ensure continued protein synthesis. In this work, we demonstrate that the highly conserved C-terminal region of Saccharomyces cerevisiae EF-1beta is sufficient for normal cell growth. This region of yeast and metazoan EF-1beta and the metazoan EF-1beta-like protein EF-1delta is highly conserved. Human EF-1beta, but not human EF-1delta, is functional in place of yeast EF-1beta, even though both EF-1beta and EF-1delta have previously been shown to have guanine nucleotide exchange activity in vitro. Based on the sequence and functional homology, mutagenesis of two C-terminal residues identical in all EF-1beta protein sequences was performed, resulting in mutants with growth defects and sensitivity to translation inhibitors. These mutants also enhance translational fidelity at nonsense codons, which correlates with a reduction in total protein synthesis. These results indicate the critical function of EF-1beta in regulating EF-1alpha activity, cell growth, translation rates, and translational fidelity.

  11. Mutations in Elongation Factor 1β, a Guanine Nucleotide Exchange Factor, Enhance Translational Fidelity

    Science.gov (United States)

    Carr-Schmid, Anne; Valente, Louis; Loik, Valerie I.; Williams, Tanishia; Starita, Lea M.; Kinzy, Terri Goss

    1999-01-01

    Translation elongation factor 1β (EF-1β) is a member of the family of guanine nucleotide exchange factors, proteins whose activities are important for the regulation of G proteins critical to many cellular processes. EF-1β is a highly conserved protein that catalyzes the exchange of bound GDP for GTP on EF-1α, a required step to ensure continued protein synthesis. In this work, we demonstrate that the highly conserved C-terminal region of Saccharomyces cerevisiae EF-1β is sufficient for normal cell growth. This region of yeast and metazoan EF-1β and the metazoan EF-1β-like protein EF-1δ is highly conserved. Human EF-1β, but not human EF-1δ, is functional in place of yeast EF-1β, even though both EF-1β and EF-1δ have previously been shown to have guanine nucleotide exchange activity in vitro. Based on the sequence and functional homology, mutagenesis of two C-terminal residues identical in all EF-1β protein sequences was performed, resulting in mutants with growth defects and sensitivity to translation inhibitors. These mutants also enhance translational fidelity at nonsense codons, which correlates with a reduction in total protein synthesis. These results indicate the critical function of EF-1β in regulating EF-1α activity, cell growth, translation rates, and translational fidelity. PMID:10409717

  12. Growth hormone and insulin-like growth factor 1 affect the severity of Graves' disease.

    Science.gov (United States)

    Di Cerbo, Alfredo; Pezzuto, Federica; Di Cerbo, Alessandro

    2017-01-01

    Graves' disease, the most common form of hyperthyroidism in iodine-replete countries, is associated with the presence of immunoglobulins G (IgGs) that are responsible for thyroid growth and hyperfunction. In this article, we report the unusual case of a patient with acromegaly and a severe form of Graves' disease. Here, we address the issue concerning the role of growth hormone (GH) and insulin-like growth factor 1 (IGF1) in influencing thyroid function. Severity of Graves' disease is exacerbated by coexistent acromegaly and both activity indexes and symptoms and signs of Graves' disease improve after the surgical remission of acromegaly. We also discuss by which signaling pathways GH and IGF1 may play an integrating role in regulating the function of the immune system in Graves' disease and synergize the stimulatory activity of Graves' IgGs. Clinical observations have demonstrated an increased prevalence of euthyroid and hyperthyroid goiters in patients with acromegaly.The coexistence of acromegaly and Graves' disease is a very unusual event, the prevalence being Graves' disease associated with acromegaly and show that surgical remission of acromegaly leads to a better control of symptoms of Graves' disease.

  13. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update.

    Science.gov (United States)

    Ciocca, Daniel R; Arrigo, Andre Patrick; Calderwood, Stuart K

    2013-01-01

    Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.

  14. Methylseleninic acid downregulates hypoxia-inducible factor-1α in invasive prostate cancer.

    Science.gov (United States)

    Sinha, Indu; Null, Kevin; Wolter, William; Suckow, Mark A; King, Tonya; Pinto, John T; Sinha, Raghu

    2012-03-15

    Alternative strategies are needed to control growth of advanced and hormone refractory prostate cancer. In this regard, we investigated the efficacy of methylseleninic acid (MSeA), a penultimate precursor to the highly reactive selenium metabolite, methylselenol, to inhibit growth of invasive and hormone refractory rat (PAIII) and human (PC-3 and PC-3M) prostate cancer cells. Our results demonstrate that MSeA inhibits PAIII cell growth in vitro as well as reduces weights of tumors generated by PAIII cells treated ex vivo. A significant reduction in the number of metastatic lung foci by MSeA treatment was also noted in Lobund-Wistar rats. The PAIII cells along with PC-3, DU145 and PC-3M cells undergo apoptosis after MSeA treatments in both normoxia and hypoxia. Treatment of metastatic rat and human prostate cancer cell lines with MSeA decreased hypoxia-inducible factor-1α (HIF-1α) levels in a dose-dependent manner. Additionally, HIF-1α transcription activity both in normoxic and hypoxic conditions is reduced after MSeA treatment of prostate cancer cells. Furthermore, VEGF and GLUT1, downstream targets of HIF-1α, were also reduced in prostate cancer cells after MSeA treatment. Our study illustrates the efficacy of MSeA in controlling growth of hormone refractory prostate cancer by downregulating HIF-1α, which is possibly occurring through stabilization or increase in prolyl hydroxylase activity. Copyright © 2011 UICC.

  15. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    Science.gov (United States)

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-06-20

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Solution structure of protein synthesis initiation factor 1 from Pseudomonas aeruginosa.

    Science.gov (United States)

    Hu, Yanmei; Bernal, Alejandra; Bullard, James M; Zhang, Yonghong

    2016-12-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen and a primary cause of nosocomial infection in humans. The rate of antibiotic resistance in P. aeruginosa is increasing worldwide leading to an unmet need for discovery of new chemical compounds distinctly different from present antimicrobials. Protein synthesis is an essential metabolic process and a validated target for the development of new antibiotics. Initiation factor 1 from P. aeruginosa (Pa-IF1) is the smallest of the three initiation factors that act to establish the 30S initiation complex during initiation of protein biosynthesis. Here we report the characterization and solution NMR structure of Pa-IF1. Pa-IF1 consists of a five-stranded β-sheet with an unusual extended β-strand at the C-terminus and one short α-helix arranged in the sequential order β1-β2-β3-α1-β4-β5. The structure adopts a typical β-barrel fold and contains an oligomer-binding motif. A cluster of basic residues (K39, R41, K42, K64, R66, R70, and R72) located on the surface of strands β4 and β5 near the short α-helix may compose the binding interface with the 30S subunit. © 2016 The Protein Society.

  17. MicroRNA-24 Regulates Osteogenic Differentiation via Targeting T-Cell Factor-1

    Directory of Open Access Journals (Sweden)

    Weigong Zhao

    2015-05-01

    Full Text Available MicroRNAs (miRNAs have been reported to have diverse biological roles in regulating many biological processes, including osteogenic differentiation. In the present study, we identified that miR-24 was a critical regulator during osteogenic differentiation. We found that overexpression of miR-24 significantly inhibited osteogenic differentiation, which decreased alkaline phosphatase activity, matrix mineralization and the expression of osteogenic differentiation markers. In contrast, inhibition of miR-24 exhibited an opposite effect. Furthermore, we delineated that miR-24 regulates post-transcriptionals of T-cell factor-1 (Tcf-1 via targeting the 3'-untranslated region (UTR of Tcf-1 mRNA. MiR-24 was further found to regulate the protein expression of Tcf-1 in the murine osteoprogenitors cells and bone mesenchymal stem cells. Additionally, the positive effect of miR-24 suppression on osteoblast differentiation was apparently abrogated by Tcf-1 silencing. Taken together, our data suggest that miR-24 participates in osteogenic differentiation by targeting and regulating Tcf-1 expression in osteoblastic cells.

  18. T Cell factor 1 represses CD8+ effector T cell formation and function.

    Science.gov (United States)

    Tiemessen, Machteld M; Baert, Miranda R M; Kok, Lianne; van Eggermond, Marja C J A; van den Elsen, Peter J; Arens, Ramon; Staal, Frank J T

    2014-12-01

    The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. Interferon regulatory factor-1 polymorphisms are associated with the control of Plasmodium falciparum infection

    Science.gov (United States)

    Mangano, Valentina D; Luoni, Gaia; Rockett, Kirk A; Sirima, Bienvenu S; Konaté, Amadou; Forton, Julian; Clark, Taane; Bancone, Germana; Akha, Elham Sadighi; Kwiatkowski, Dominic P; Modiano, David

    2010-01-01

    We describe the haplotypic structure of the Interferon Regulatory Factor-1 (IRF-1) locus in two West African ethnic groups, Fulani and Mossi, that differ in their susceptibility and immune response to Plasmodium falciparum malaria. Both populations showed significant associations between IRF-1 polymorphisms and carriage of P. falciparum infection, with different patterns of association that may reflect their different haplotypic architecture. Genetic variation at this locus does not therefore account for the Fulani-specific resistance to malaria while it could contribute to parasite clearance's ability in populations living in endemic areas. We then conducted a case-control study of three haplotype-tagging Single Nucleotide Polymorphisms (htSNPs) in 370 hospitalized malaria patients (160 severe and 210 uncomplicated) and 410 healthy population controls, all from the Mossi ethnic group. All 3 htSNPs showed correlation with blood infection levels in malaria patients, and the rs10065633 polymorphism was associated with severe disease (p=0.02). These findings provide the first evidence of the involvement in malaria susceptibility of a specific locus within the 5q31 region, previously shown to be linked with P. falciparum infection levels. PMID:18200030

  20. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  1. Sulfatase modifying factor 1–mediated fibroblast growth factor signaling primes hematopoietic multilineage development

    Science.gov (United States)

    Buono, Mario; Visigalli, Ilaria; Bergamasco, Roberta

    2010-01-01

    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1−/− HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote β-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro–B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1−/− mice. Transplantation of Sumf1−/− HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling. PMID:20643830

  2. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.

    Science.gov (United States)

    Buono, Mario; Visigalli, Ilaria; Bergamasco, Roberta; Biffi, Alessandra; Cosma, Maria Pia

    2010-08-02

    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.

  3. Dysregulation of Elongation Factor 1A Expression is Correlated with Synaptic Plasticity Impairments in Alzheimer's Disease.

    Science.gov (United States)

    Beckelman, Brenna C; Day, Stephen; Zhou, Xueyan; Donohue, Maggie; Gouras, Gunnar K; Klann, Eric; Keene, C Dirk; Ma, Tao

    2016-09-06

    Synaptic dysfunction may represent an early and crucial pathophysiology in Alzheimer's disease (AD). Recent studies implicate a connection between synaptic plasticity deficits and compromised capacity of de novo protein synthesis in AD. The mRNA translational factor eukaryotic elongation factor 1A (eEF1A) is critically involved in several forms of long-lasting synaptic plasticity. By examining postmortem human brain samples, a transgenic mouse model, and application of synthetic human Aβ42 on mouse hippocampal slices, we demonstrated that eEF1A protein levels were significantly decreased in AD, particularly in the hippocampus. In contrast, brain levels of eukaryotic elongation factor 2 were unaltered in AD. Further, upregulation of eEF1A expression by the adenylyl cyclase activator forskolin, which induces long-lasting synaptic plasticity, was blunted in hippocampal slices derived from Tg2576 AD model mice. Finally, Aβ-induced hippocampal long-term potentiation defects were alleviated by upregulation of eEF1A signaling via brain-specific knockdown of the gene encoding tuberous sclerosis 2. In summary, our findings suggest a strong correlation between the dysregulation of eEF1A synthesis and AD-associated synaptic failure. These findings provide insights into the understanding of molecular mechanisms underlying AD etiology and may aid in identification of novel biomarkers and therapeutic targets.

  4. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  5. Dynamic Distribution and Interaction of the Arabidopsis SRSF1 Subfamily Splicing Factors1

    Science.gov (United States)

    Stankovic, Nancy; Schloesser, Marie; Joris, Marine; Sauvage, Eric; Hanikenne, Marc; Motte, Patrick

    2016-01-01

    Ser/Arg-rich (SR) proteins are essential nucleus-localized splicing factors. Our prior studies showed that Arabidopsis (Arabidopsis thaliana) RSZ22, a homolog of the human SRSF7 SR factor, exits the nucleus through two pathways, either dependent or independent on the XPO1 receptor. Here, we examined the expression profiles and shuttling dynamics of the Arabidopsis SRSF1 subfamily (SR30, SR34, SR34a, and SR34b) under control of their endogenous promoter in Arabidopsis and in transient expression assay. Due to its rapid nucleocytoplasmic shuttling and high expression level in transient assay, we analyzed the multiple determinants that regulate the localization and shuttling dynamics of SR34. By site-directed mutagenesis of SR34 RNA-binding sequences and Arg/Ser-rich (RS) domain, we further show that functional RRM1 or RRM2 are dispensable for the exclusive protein nuclear localization and speckle-like distribution. However, mutations of both RRMs induced aggregation of the protein whereas mutation in the RS domain decreased the stability of the protein and suppressed its nuclear accumulation. Furthermore, the RNA-binding motif mutants are defective for their export through the XPO1 (CRM1/Exportin-1) receptor pathway, but retain nucleocytoplasmic mobility. We performed a yeast two hybrid screen with SR34 as bait and discovered SR45 as a new interactor. SR45 is an unusual SR splicing factor bearing two RS domains. These interactions were confirmed in planta by FLIM-FRET and BiFC and the roles of SR34 domains in protein-protein interactions were further studied. Altogether, our report extends our understanding of shuttling dynamics of Arabidopsis SR splicing factors. PMID:26697894

  6. Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets

    Science.gov (United States)

    Cheng, Kim; Ho, Kenneth; Stokes, Rebecca; Scott, Christopher; Lau, Sue Mei; Hawthorne, Wayne J.; O’Connell, Philip J.; Loudovaris, Thomas; Kay, Thomas W.; Kulkarni, Rohit N.; Okada, Terumasa; Wang, Xiaohui L.; Yim, Sun Hee; Shah, Yatrik; Grey, Shane T.; Biankin, Andrew V.; Kench, James G.; Laybutt, D. Ross; Gonzalez, Frank J.; Kahn, C. Ronald; Gunton, Jenny E.

    2010-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that regulates cellular stress responses. While the levels of HIF-1α protein are tightly regulated, recent studies suggest that it can be active under normoxic conditions. We hypothesized that HIF-1α is required for normal β cell function and reserve and that dysregulation may contribute to the pathogenesis of type 2 diabetes (T2D). Here we show that HIF-1α protein is present at low levels in mouse and human normoxic β cells and islets. Decreased levels of HIF-1α impaired glucose-stimulated ATP generation and β cell function. C57BL/6 mice with β cell–specific Hif1a disruption (referred to herein as β-Hif1a-null mice) exhibited glucose intolerance, β cell dysfunction, and developed severe glucose intolerance on a high-fat diet. Increasing HIF-1α levels by inhibiting its degradation through iron chelation markedly improved insulin secretion and glucose tolerance in control mice fed a high-fat diet but not in β-Hif1a-null mice. Increasing HIF-1α levels markedly increased expression of ARNT and other genes in human T2D islets and improved their function. Further analysis indicated that HIF-1α was bound to the Arnt promoter in a mouse β cell line, suggesting direct regulation. Taken together, these findings suggest an important role for HIF-1α in β cell reserve and regulation of ARNT expression and demonstrate that HIF-1α is a potential therapeutic target for the β cell dysfunction of T2D. PMID:20440072

  7. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  8. Association Between Omentin, Visfatin and Insulin-Like Growth Factor-1 in Women With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Goodarzi

    2014-12-01

    Full Text Available Background Adipokines that are produced by adipose tissue have extensive effects on carbohydrate and lipid metabolism and also on the pathogenesis of the metabolic syndrome (MetS. Objectives This study aimed to measure the concentrations of omentin-1, visfatin and insulin-like growth factor-1 (IGF-1 as likely markers of metabolic syndrome and also to demonstrate their associations in women with MetS. Materials and Methods Eighty women with MetS and eighty healthy women as controls participated in this study. Blood pressure, waist circumference, body mass index (BMI, and serum biochemical parameters were determined in all subjects. The serum level of IGF-1, omentin-1 and visfatin were assessed using the enzyme linked immunosorbent assay (ELISA. The association between omentin, visfatin and IGF-1 was also determined in these women. Results Significantly lower levels of omentin-1 and IGF-1 were observed in MetS subjects compared to the controls (P = 0.009 and < 0.001 respectively. However, a significant difference was not observed in visfatin concentration between the two studied groups (P = 0.67. A positive association was observed between omentin-1, visfatin and IGF-1 in the MetS group. Conclusions Our findings indicated a lower level of both omentin-1 and IGF-1 in women with MetS; this might play a role in the pathogenesis of MetS. Furthermore, the main finding of the current investigation was the association between omentin, visfatin and IGF-1; however determining the molecular mechanism of the observed relationships needs further studies.

  9. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-