WorldWideScience

Sample records for cortex demonstrates stable

  1. Acupuncture Enhances Effective Connectivity between Cerebellum and Primary Sensorimotor Cortex in Patients with Stable Recovery Stroke

    Directory of Open Access Journals (Sweden)

    Zijing Xie

    2014-01-01

    Full Text Available Recent neuroimaging studies have demonstrated that stimulation of acupuncture at motor-implicated acupoints modulates activities of brain areas relevant to the processing of motor functions. This study aims to investigate acupuncture-induced changes in effective connectivity among motor areas in hemiparetic stroke patients by using the multivariate Granger causal analysis. A total of 9 stable recovery stroke patients and 8 healthy controls were recruited and underwent three runs of fMRI scan: passive finger movements and resting state before and after manual acupuncture stimuli. Stroke patients showed significantly attenuated effective connectivity between cortical and subcortical areas during passive motor task, which indicates inefficient information transmissions between cortical and subcortical motor-related regions. Acupuncture at motor-implicated acupoints showed specific modulations of motor-related network in stroke patients relative to healthy control subjects. This specific modulation enhanced bidirectionally effective connectivity between the cerebellum and primary sensorimotor cortex in stroke patients, which may compensate for the attenuated effective connectivity between cortical and subcortical areas during passive motor task and, consequently, contribute to improvement of movement coordination and motor learning in subacute stroke patients. Our results suggested that further efficacy studies of acupuncture in motor recovery can focus on the improvement of movement coordination and motor learning during motor rehabilitation.

  2. Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy.

    Science.gov (United States)

    Profant, Oliver; Balogová, Zuzana; Dezortová, Monika; Wagnerová, Dita; Hájek, Milan; Syka, Josef

    2013-08-01

    In humans, aging is accompanied by the deterioration of the hearing function--presbycusis. The major etiology for presbycusis is the loss of hair cells in the inner ear; less well known are changes in the central auditory system. Therefore, we used 1H magnetic resonance spectroscopy at 3T tomograph to examine metabolite levels in the auditory cortex of three groups of subjects: young healthy subjects less than 30 years old and subjects older than 65 years either with mild presbycusis corresponding to their age or with expressed presbycusis. Hearing function in all subjects was examined by pure tone audiometry (125-16,000 Hz). Significant differences were found in the concentrations of glutamate and N-acetylaspartate, with lower levels in aged subjects. Lactate was particularly increased in subjects with expressed presbycusis. Significant differences were not found in other metabolites, including GABA, between young and elderly subjects. The results demonstrate that the age-related changes of the inner ear are accompanied by a decrease in the excitatory neurotransmitter glutamate as well as a lactate increase in the auditory cortex that is more expressed in elderly subjects with large hearing threshold shifts.

  3. Sparse, reliable, and long-term stable representation of periodic whisker deflections in the mouse barrel cortex.

    Science.gov (United States)

    Mayrhofer, Johannes M; Haiss, Florent; Helmchen, Fritjof; Weber, Bruno

    2015-07-15

    The rodent whisker system is a preferred model for studying plasticity in the somatosensory cortex (barrel cortex). Contrarily, only a small amount of research has been conducted to characterize the stability of neuronal population activity in the barrel cortex. We used the mouse whisker system to address the neuronal basis of stable perception in the somatosensory cortex. Cortical representation of periodic whisker deflections was studied in populations of neurons in supragranular layers over extended time periods (up to 3 months) with long-term two-photon Ca(2+) imaging in anesthetized mice. We found that in most of the neurons (87%), Ca(2+) responses increased sublinearly with increasing number of contralateral whisker deflections. The imaged population of neurons was activated in a stereotypic way over days and for different deflection rates (pulse frequencies). Thus, pulse frequencies are coded by response strength rather than by distinct neuronal sub-populations. A small population of highly responsive neurons (~3%) was sufficient to decode the whisker stimulus. This conserved functional map, led by a small set of highly responsive neurons, might form the foundation of stable sensory percepts. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effective connectivity analysis demonstrates involvement of premotor cortex during speech perception.

    Science.gov (United States)

    Osnes, Berge; Hugdahl, Kenneth; Specht, Karsten

    2011-02-01

    Several reports of premotor cortex involvement in speech perception have been put forward. Still, the functional role of premotor cortex is under debate. In order to investigate the functional role of premotor cortex, we presented parametrically varied speech stimuli in both a behavioral and functional magnetic resonance imaging (fMRI) study. White noise was transformed over seven distinct steps into a speech sound and presented to the participants in a randomized order. As control condition served the same transformation from white noise into a music instrument sound. The fMRI data were modelled with Dynamic Causal Modeling (DCM) where the effective connectivity between Heschl's gyrus, planum temporale, superior temporal sulcus and premotor cortex were tested. The fMRI results revealed a graded increase in activation in the left superior temporal sulcus. Premotor cortex activity was only present at an intermediate step when the speech sounds became identifiable but were still distorted but was not present when the speech sounds were clearly perceivable. A Bayesian model selection procedure favored a model that contained significant interconnections between Heschl's gyrus, planum temporal, and superior temporal sulcus when processing speech sounds. In addition, bidirectional connections between premotor cortex and superior temporal sulcus and from planum temporale to premotor cortex were significant. Processing non-speech sounds initiated no significant connections to premotor cortex. Since the highest level of motor activity was observed only when processing identifiable sounds with incomplete phonological information, it is concluded that premotor cortex is not generally necessary for speech perception but may facilitate interpreting a sound as speech when the acoustic input is sparse.

  5. Demonstration of a stable high ionic conductivity solid oxide electrolyte. Final report, November 1993-January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, E.D.; Pound, B.G.; Jayaweera, P.; Jiang, N.; Lowe, D.

    1996-01-01

    The overall objective of this project is to develop a novel, low-cost, intermediate temperature, solid oxide fuel cell (SOFC) using currently available highly conducting CeO2 electrolytes. The specific technical objective is to demonstrate that a ceria electrolyte can be modified to obtain stability against reduction by H2 at the anode, as evident by a stable open circuit potential that is higher than could be obtained with an unmodifed ceria electrolyte.

  6. Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation.

    Science.gov (United States)

    Müller, J Florian M; Orekhov, Yuriy; Liu, Yali; Ziemann, Ulf

    2007-06-01

    Long-term potentiation (LTP) and long-term depression (LTD) underlie most models of learning and memory, but neural activity would grow or shrink in an uncontrolled manner, if not guarded by stabilizing mechanisms. The Bienenstock-Cooper-Munro (BCM) rule proposes a sliding threshold for LTP/LTD induction: LTP induction becomes more difficult if neural activity was high previously. Here we tested if this form of homeostatic plasticity applies to the human motor cortex (M1) in vivo by examining the interactions between two consecutive sessions of paired associative stimulation (PAS). PAS consisted of repeated pairs of electrical stimulation of the right median nerve followed by transcranial magnetic stimulation of the left M1. The first PAS session employed an interstimulus interval equalling the individual N20-latency of the median nerve somatosensory-evoked cortical potential plus 2 ms, N20-latency minus 5 ms, or a random alternation between these intervals, to induce an LTP-like increase in motor-evoked potential (MEP) amplitudes in the right abductor pollicis brevis muscle (PAS(LTP)), an LTD-like decrease (PAS(LTD)), or no change (PAS(Control)), respectively. The second PAS session 30 min later was always PAS(LTP). It induced an moderate LTP-like effect if conditioned by PAS(Control), which increased if conditioned by PAS(LTD), but decreased if conditioned by PAS(LTP). Effects on MEP amplitude induced by the second PAS session exhibited a negative linear correlation with those in the first PAS session. Because the two PAS sessions activate identical neuronal circuits, we conclude that 'homosynaptic-like' homeostatic mechanisms in accord with the BCM rule contribute to regulating plasticity in human M1.

  7. Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse pancreatic islets.

    Science.gov (United States)

    Wall, Martha L; Pound, Lynley D; Trenary, Irina; O'Brien, Richard M; Young, Jamey D

    2015-06-01

    A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat-fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Th17 cells demonstrate stable cytokine production in a proallergic environment.

    Science.gov (United States)

    Glosson-Byers, Nicole L; Sehra, Sarita; Stritesky, Gretta L; Yu, Qing; Awe, Olufolakemi; Pham, Duy; Bruns, Heather A; Kaplan, Mark H

    2014-09-15

    Th17 cells are critical for the clearance of extracellular bacteria and fungi, but also contribute to the pathology of autoimmune diseases and allergic inflammation. After exposure to an appropriate cytokine environment, Th17 cells can acquire a Th1-like phenotype, but less is known about their ability to adopt Th2 and Th9 effector programs. To explore this in more detail, we used an IL-17F lineage tracer mouse strain that allows tracking of cells that formerly expressed IL-17F. In vitro-derived Th17 cells adopted signature cytokine and transcription factor expression when cultured under Th1-, Th2-, or Th9-polarizing conditions. In contrast, using two models of allergic airway disease, Th17 cells from the lungs of diseased mice did not adopt Th1, Th2, or Th9 effector programs, but remained stable IL-17 secretors. Although in vitro-derived Th17 cells expressed IL-4Rα, those induced in vivo during allergic airway disease did not, possibly rendering them unresponsive to IL-4-induced signals. However, in vitro-derived, Ag-specific Th17 cells transferred in vivo to OVA and aluminum hydroxide-sensitized mice also maintained IL-17 secretion and did not produce alternative cytokines upon subsequent OVA challenge. Thus, although Th17 cells can adopt new phenotypes in response to some inflammatory environments, our data suggest that in allergic inflammation, Th17 cells are comparatively stable and retain the potential to produce IL-17. This might reflect a cytokine environment that promotes Th17 stability, and allow a broader immune response at tissue barriers that are susceptible to allergic inflammation.

  9. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, J.W.; Halonen, M.; Seaver, N.A.; Yamamura, H.I.

    1987-07-27

    Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting (TH)(-)quinuclidinyl benzilate or (TH)pirenzepine, the authors found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This results demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex. 20 references, 1 figure, 2 tables.

  10. Demonstration of a stable and uniform single-wavelength erbium-doped fiber laser based on microfiber knot resonator

    Science.gov (United States)

    Xu, Yiping; Ren, Liyong; Ma, Chengju; Kong, Xudong; Ren, Kaili

    2016-12-01

    We propose and demonstrate an application of microfiber knot resonator (MKR) in the generation of a stable and uniform single-wavelength erbium-doped fiber laser (EDFL). An MKR was fabricated using a microfiber a few micrometers in diameter. By embedding the MKR to the ring cavity of the EDFL, a laser with a wavelength of 1558.818 nm and a 3-dB linewidth of 0.0149 nm is demonstrated. The side mode suppression ratio of the laser is about 30 dB, and the maximum power fluctuation is about 0.85 dB. The results demonstrate that the MKR can be employed as a high-performance comb filter to realize a stable and uniform fiber laser.

  11. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    Science.gov (United States)

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  12. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fox, P.T.; Raichle, M.E.

    1984-05-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H/sub 2/(/sup 15/)O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H/sub 2/(/sup 15/)O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2(/sup 15/)O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism.

  13. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in

  14. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Strzelecki, Dominik; Podgórski, Michał; Kałużyńska, Olga; Stefańczyk, Ludomir; Kotlicka-Antczak, Magdalena; Gmitrowicz, Agnieszka; Grzelak, Piotr

    2015-10-15

    The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine) is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate) receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (¹H-NMR) spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left dorso-lateral prefrontal cortex (DLPFC) in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients) or placebo (25 patients) for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla ¹H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS). The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA) and neurogilal activity (mI) with simultaneous improvement

  15. Adaptive learning in a compartmental model of visual cortex - how feedback enables stable category learning and refinement

    Directory of Open Access Journals (Sweden)

    Georg eLayher

    2014-12-01

    Full Text Available The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, but both belong to the category of felines. In other words, tigers and leopards are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in the computational neurosciences. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of (sub- category representations. We demonstrate the temporal evolution of such learning and show how the approach successully establishes category and subcategory

  16. Highly Stable Tetra-Phenolato Titanium(IV Agent Formulated into Nanoparticles Demonstrates Anti-Tumoral Activity and Selectivity

    Directory of Open Access Journals (Sweden)

    Sigalit Meker

    2015-10-01

    Full Text Available Titanium(IV complexes exhibit high potential as anti-tumor agents, particularly due to their low intrinsic toxicity and cytotoxicity toward cisplatin resistant cells. Nevertheless, Ti(IV complexes generally undergo rapid hydrolysis that previously hampered their utilization as anticancer drugs. We recently overcame this difficulty by developing a highly stable Ti(IV complex that is based on tetra-phenolato, hexadentate ligand, formulated into organic nanoparticles. Herein we investigated the activity of this complex in vitro and in vivo. Although inactive when tested directly due to poor solubility, when formulated, this complex displayed (a high cytotoxicity toward cisplatin resistant human ovarian cells, A2780-cp, with resistance factor of 1.1; (b additive behavior in combination with cisplatin toward ovarian and colon cancer cells; (c selectivity toward cancer cells as implied by its mild activity toward non-cancerous, fibroblast lung cells, MRC-5; (d high stability and durability as manifested by the ability to maintain cytotoxicity, even following one week of incubation in 100% aquatic medium solution; and (e in vivo efficacy toward solid tumors of human colon cancer cells, HT-29, in nude mice without any clinical signs of toxicity. These features support the formulated phenolato Ti(IV complex being an effective and selective anti-tumoral agent.

  17. Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. 1H-NMR Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (1H-NMR spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC, the left frontal white matter (WM and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR, with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA, myo-inositol (mI, glutamatergic parameters (Glx, choline (Cho, and creatine (Cr between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS and the Calgary Depression Scale for Schizophrenia (CDSS. In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission—Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology.

  18. How Stable Is Stable?

    Science.gov (United States)

    Baehr, Marie

    1994-01-01

    Provides a problem where students are asked to find the point at which a soda can floating in some liquid changes its equilibrium between stable and unstable as the soda is removed from the can. Requires use of Newton's first law, center of mass, Archimedes' principle, stable and unstable equilibrium, and buoyant force position. (MVL)

  19. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C.; Costa e Silva, Filipe; Pereira, Joao S.; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought. PMID

  20. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange.

    Science.gov (United States)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra C; Costa E Silva, Filipe; Pereira, Joao S; Werner, Christiane

    2014-01-01

    Semi-arid ecosystems contribute about 40% to global net primary production (GPP) even though water is a major factor limiting carbon uptake. Evapotranspiration (ET) accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE) were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated. The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43 and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss) similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E) and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to drought.

  1. Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange

    Directory of Open Access Journals (Sweden)

    Maren eDubbert

    2014-10-01

    Full Text Available Semi-arid ecosystems contribute about 40% to global net primary production (GPP even though water is a major factor limiting carbon uptake. Evapotranspiration (ET accounts for up to 95% of the water loss and in addition, vegetation can also mitigate drought effects by altering soil water distribution. Hence, partitioning of carbon and water fluxes between the soil and vegetation components is crucial to gain mechanistic understanding of vegetation effects on carbon and water cycling. However, the possible impact of herbaceous vegetation in savanna type ecosystems is often overlooked. Therefore, we aimed at quantifying understory vegetation effects on the water balance and productivity of a Mediterranean oak savanna. ET and net ecosystem CO2 exchange (NEE were partitioned based on flux and stable oxygen isotope measurements and also rain infiltration was estimated.The understory vegetation contributed importantly to total ecosystem ET and GPP with a maximum of 43% and 51%, respectively. It reached water-use efficiencies (WUE; ratio of carbon gain by water loss similar to cork-oak trees. The understory vegetation inhibited soil evaporation (E and, although E was large during wet periods, it did not diminish WUE during water-limited times. The understory strongly increased soil water infiltration, specifically following major rain events. At the same time, the understory itself was vulnerable to drought, which led to an earlier senescence of the understory growing under trees as compared to open areas, due to competition for water. Thus, beneficial understory effects are dominant and contribute to the resilience of this ecosystem. At the same time the vulnerability of the understory to drought suggests that future climate change scenarios for the Mediterranean basin threaten understory development. This in turn will very likely diminish beneficial understory effects like infiltration and ground water recharge and therefore ecosystem resilience to

  2. Monkey brain cortex imaging by photoacoustic tomography

    OpenAIRE

    Yang, Xinmai; Wang, Lihong V.

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultras...

  3. Dopaminergic modulation of impulsive decision making in the rat insular cortex.

    Science.gov (United States)

    Pattij, Tommy; Schetters, Dustin; Schoffelmeer, Anton N M

    2014-08-15

    Neuroimaging studies have implicated the insular cortex in cognitive processes including decision making. Nonetheless, little is known about the mechanisms by which the insula contributes to impulsive decision making. In this regard, the dopamine system is known to be importantly involved in decision making processes, including impulsive decision making. The aim of the current set of experiments was to further elucidate the importance of dopamine signaling in the agranular insular cortex in impulsive decision making. This compartment of the insular cortex is highly interconnected with brain areas such as the medial prefrontal cortex, amygdala and ventral striatum which are implicated in decision making processes. Male rats were trained in a delay-discounting task and upon stable baseline performance implanted with bilateral cannulae in the agranular insular cortex. Intracranial infusions of the dopamine D1 receptor antagonist SCH23390 and dopamine D2 receptor antagonist eticlopride revealed that particularly blocking dopamine D1 receptors centered on the insular cortex promoted impulsive decision making. Together, the present results demonstrate an important role of the agranular insular cortex in impulsive decision making and, more specifically, highlight the contribution of dopamine D1-like receptors.

  4. Monkey brain cortex imaging by photoacoustic tomography.

    Science.gov (United States)

    Yang, Xinmai; Wang, Lihong V

    2008-01-01

    Photoacoustic tomography (PAT) is applied to image the brain cortex of a monkey through the intact scalp and skull ex vivo. The reconstructed PAT image shows the major blood vessels on the monkey brain cortex. For comparison, the brain cortex is imaged without the scalp, and then imaged again without the scalp and skull. Ultrasound attenuation through the skull is also measured at various incidence angles. This study demonstrates that PAT of the brain cortex is capable of surviving the ultrasound signal attenuation and distortion caused by a relatively thick skull.

  5. Stable distributions

    CERN Document Server

    Janson, Svante

    2011-01-01

    We give some explicit calculations for stable distributions and convergence to them, mainly based on less explicit results in Feller (1971). The main purpose is to provide ourselves with easy reference to explicit formulas. (There are no new results.)

  6. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  7. Stable compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Accetta, F.S.; Gleiser, M.; Holman, R.; Kolb, E.W.

    1986-03-01

    We show that compactifications of theories with extra dimensions are unstable if due to monopole configurations of an antisymmetric tensor field balanced against one-loop Casimir corrections. In the case of ten dimensional supergravity, it is possible, at least for a portion of the phase space, to achieve a stable compactification without fine-tuning by including the contribution of fermionic condensates to the monopole configurations. 23 refs., 2 figs.

  8. Where does TMS Stimulate the Motor Cortex?

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja;

    2016-01-01

    Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...... of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region...

  9. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  10. Tested Demonstrations.

    Science.gov (United States)

    Sands, Robert; And Others

    1982-01-01

    Procedures for two demonstrations are provided. The solubility of ammonia gas in water is demonstrated by introducing water into a closed can filled with the gas, collapsing the can. The second demonstration relates scale of standard reduction potentials to observed behavior of metals in reactions with hydrogen to produce hydrogen gas. (Author/JN)

  11. Neuropsychology of prefrontal cortex

    OpenAIRE

    2008-01-01

    The history of clinical frontal lobe study is long and rich which provides valuable insights into neuropsychologic determinants of functions of prefrontal cortex (PFC). PFC is often classified as multimodal association cortex as extremely processed information from various sensory modalities is integrated here in a precise fashion to form the physiologic constructs of memory, perception, and diverse cognitive processes. Human neuropsychologic studies also support the notion of different funct...

  12. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1983-01-01

    Free radical chlorination of methane is used in organic chemistry to introduce free radical/chain reactions. In spite of its common occurrence, demonstrations of the reaction are uncommon. Therefore, such a demonstration is provided, including background information, preparation of reactants/reaction vessel, introduction of reactants, irradiation,…

  13. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1983-01-01

    Discusses a supplement to the "water to rose" demonstration in which a pink color is produced. Also discusses blood buffer demonstrations, including hydrolysis of sodium bicarbonate, simulated blood buffer, metabolic acidosis, natural compensation of metabolic acidosis, metabolic alkalosis, acidosis treatment, and alkalosis treatment. Procedures…

  14. Complete Demonstration.

    Science.gov (United States)

    Yelon, Stephen; Maddocks, Peg

    1986-01-01

    Describes four-step approach to educational demonstration: tell learners they will have to perform; what they should notice; describe each step before doing it; and require memorization of steps. Examples illustrate use of this process to demonstrate a general mental strategy, and industrial design, supervisory, fine motor, and specific…

  15. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Describes two laboratory demonstrations in chemistry. One uses dry ice, freon, and freezer bags to demonstrate volume changes, vapor-liquid equilibrium, a simulation of a rain forest, and vaporization. The other uses the clock reaction technique to illustrate fast reactions and kinetic problems in releasing carbon dioxide during respiration. (TW)

  16. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1986-01-01

    Outlines a simple, inexpensive way of demonstrating electroplating using the reaction between nickel ions and copper metal. Explains how to conduct a demonstration of the electrolysis of water by using a colored Na2SO4 solution as the electrolyte so that students can observe the pH changes. (TW)

  17. Neurons and circuits for odor processing in the piriform cortex.

    Science.gov (United States)

    Bekkers, John M; Suzuki, Norimitsu

    2013-07-01

    Increased understanding of the early stages of olfaction has lead to a renewed interest in the higher brain regions responsible for forming unified 'odor images' from the chemical components detected by the nose. The piriform cortex, which is one of the first cortical destinations of olfactory information in mammals, is a primitive paleocortex that is critical for the synthetic perception of odors. Here we review recent work that examines the cellular neurophysiology of the piriform cortex. Exciting new findings have revealed how the neurons and circuits of the piriform cortex process odor information, demonstrating that, despite its superficial simplicity, the piriform cortex is a remarkably subtle and intricate neural circuit.

  18. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L.

    1990-01-01

    Included are three demonstrations that include the phase change of ice when under pressure, viscoelasticity and colloid systems, and flame tests for metal ions. The materials, procedures, probable results, and applications to real life situations are included. (KR)

  19. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1980-01-01

    Presented is a Corridor Demonstration which can be set up in readily accessible areas such as hallways or lobbies. Equipment is listed for a display of three cells (solar cells, fuel cells, and storage cells) which develop electrical energy. (CS)

  20. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Presents three demonstrations suitable for undergraduate chemistry classes. Focuses on experiments with calcium carbide, the induction by iron of the oxidation of iodide by dichromate, and the classical iodine clock reaction. (ML)

  1. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    Science.gov (United States)

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  2. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  3. ICT Demonstration

    DEFF Research Database (Denmark)

    Jensen, Tine Wirenfeldt; Bay, Gina

    In this demonstration we present and discuss two interrelated on-line learning resources aimed at supporting international students at Danish universities in building study skills (the Study Metro) and avoiding plagiarism (Stopplagiarism). We emphasize the necessity of designing online learning r...

  4. Effects of acetylcholine on neuronal properties in entorhinal cortex

    Directory of Open Access Journals (Sweden)

    James G Heys

    2012-07-01

    Full Text Available The entorhinal cortex receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB. To understand how cholinergic neurotransmission can modulate behavior, research has been directed towards identification of the specific cellular mechanisms in entorhinal cortex that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in entorhinal cortex that may underlie functions such as working memory, spatial processing and episodic memory. In particular, the study of stellate cells in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in entorhinal cortex that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in entorhinal cortex. Finally, the local circuits of entorhinal cortex demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of entorhinal cortex to underlie the functional role of acetylcholine in memory.

  5. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  6. Motor cortex neuroplasticity following brachial plexus transfer

    Directory of Open Access Journals (Sweden)

    Stefan eDimou

    2013-08-01

    Full Text Available In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27 year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralised to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced phantom limb pain.

  7. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  8. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings......The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  9. GASIS demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vidas, E.H. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

    1995-04-01

    A prototype of the GASIS database and retrieval software has been developed and is the subject of this poster session and computer demonstration. The prototype consists of test or preliminary versions of the GASIS Reservoir Data System and Source Directory datasets and the software for query and retrieval. The prototype reservoir database covers the Rocky Mountain region and contains the full GASIS data matrix (all GASIS data elements) that will eventually be included on the CD-ROM. It is populated for development purposes primarily by the information included in the Rocky Mountain Gas Atlas. The software has been developed specifically for GASIS using Foxpro for Windows. The application is an executable file that does not require Foxpro to run. The reservoir database software includes query and retrieval, screen display, report generation, and data export functions. Basic queries by state, basin, or field name will be assisted by scrolling selection lists. A detailed query screen will allow record selection on the basis of any data field, such as depth, cumulative production, or geological age. Logical operators can be applied to any-numeric data element or combination of elements. Screen display includes a {open_quotes}browse{close_quotes} display with one record per row and a detailed single record display. Datasets can be exported in standard formats for manipulation with other software packages. The Source Directory software will allow record retrieval by database type or subject area.

  10. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    Science.gov (United States)

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion.

  11. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  12. Egocentric and allocentric representations in auditory cortex.

    Science.gov (United States)

    Town, Stephen M; Brimijoin, W Owen; Bizley, Jennifer K

    2017-06-01

    A key function of the brain is to provide a stable representation of an object's location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position.

  13. Auditory Cortex Characteristics in Schizophrenia: Associations With Auditory Hallucinations.

    Science.gov (United States)

    Mørch-Johnsen, Lynn; Nesvåg, Ragnar; Jørgensen, Kjetil N; Lange, Elisabeth H; Hartberg, Cecilie B; Haukvik, Unn K; Kompus, Kristiina; Westerhausen, René; Osnes, Kåre; Andreassen, Ole A; Melle, Ingrid; Hugdahl, Kenneth; Agartz, Ingrid

    2017-01-01

    Neuroimaging studies have demonstrated associations between smaller auditory cortex volume and auditory hallucinations (AH) in schizophrenia. Reduced cortical volume can result from a reduction of either cortical thickness or cortical surface area, which may reflect different neuropathology. We investigate for the first time how thickness and surface area of the auditory cortex relate to AH in a large sample of schizophrenia spectrum patients. Schizophrenia spectrum (n = 194) patients underwent magnetic resonance imaging. Mean cortical thickness and surface area in auditory cortex regions (Heschl's gyrus [HG], planum temporale [PT], and superior temporal gyrus [STG]) were compared between patients with (AH+, n = 145) and without (AH-, n = 49) a lifetime history of AH and 279 healthy controls. AH+ patients showed significantly thinner cortex in the left HG compared to AH- patients (d = 0.43, P = .0096). There were no significant differences between AH+ and AH- patients in cortical thickness in the PT or STG, or in auditory cortex surface area in any of the regions investigated. Group differences in cortical thickness in the left HG was not affected by duration of illness or current antipsychotic medication. AH in schizophrenia patients were related to thinner cortex, but not smaller surface area of the left HG, a region which includes the primary auditory cortex. The results support that structural abnormalities of the auditory cortex underlie AH in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  15. Sensing with the Motor Cortex

    OpenAIRE

    Hatsopoulos, Nicholas G.; Suminski, Aaron J.

    2011-01-01

    The primary motor cortex is a critical node in the network of brain regions responsible for voluntary motor behavior. It has been less appreciated, however, that the motor cortex exhibits sensory responses in a variety of modalities including vision and somatosensation. We review current work that emphasizes the heterogeneity in sensori-motor responses in the motor cortex and focus on its implications for cortical control of movement as well as for brain-machine interface development.

  16. On Boolean Stable Laws

    CERN Document Server

    Arizmendi, Octavio

    2012-01-01

    We determine which Boolean stable law is freely infinitely divisible and which is not. Some positive Boolean stable laws and a mixture of them have completely monotonic densities and they are both freely and classically infinitely divisible. Freely infinitely divisible Boolean stable laws and the corresponding free stable laws are non trivial examples whose free divisibility indicators are infinity.

  17. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  18. Stability and Plasticity of Contextual Modulation in the Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Adam Ranson

    2017-01-01

    Full Text Available Activity of neurons in primary visual cortex is shaped by sensory and behavioral context. However, the long-term stability of the influence of contextual factors in the mature cortex remains poorly understood. To investigate this, we used two-photon calcium imaging to track the influence of surround suppression and locomotion on individual neurons over 14 days. We found that highly active excitatory neurons and parvalbumin-positive (PV+ interneurons exhibited relatively stable modulation by visual context. Similarly, most neurons exhibited a stable yet distinct degree of modulation by locomotion. In contrast, less active excitatory neurons exhibited plasticity in visual context influence, resulting in increased suppression. These findings suggest that the mature visual cortex possesses stable subnetworks of neurons, differentiated by cell type and activity level, which have distinctive and stable interactions with sensory and behavioral contexts, as well as other less active and more labile neurons, which are sensitive to visual experience.

  19. Organization of Estrogen-Associated Circuits in the Mouse Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available Sex steroid hormones influence the perceptual processing of sensory signals in vertebrates. In particular, decades of research have shown that circulating levels of estrogen correlate with hearing function. The mechanisms and sites of action supporting this sensory-neuroendocrine modulation, however, remain unknown. Here we combined a molecular cloning strategy, fluorescence in-situ hybridization and unbiased quantification methods to show that estrogen-producing and -sensitive neurons heavily populate the adult mouse primary auditory cortex (AI. We also show that auditory experience in freely-behaving animals engages estrogen-producing and -sensitive neurons in AI. These estrogen-associated networks are greatly stable, and do not quantitatively change as a result of acute episodes of sensory experience. We further demonstrate the neurochemical identity of estrogen-producing and estrogen-sensitive neurons in AI and show that these cell populations are phenotypically distinct. Our findings provide the first direct demonstration that estrogen-associated circuits are highly prevalent and engaged by sensory experience in the mouse auditory cortex, and suggest that previous correlations between estrogen levels and hearing function may be related to brain-generated hormone production. Finally, our findings suggest that estrogenic modulation may be a central component of the operational framework of central auditory networks.

  20. Apraxia, pantomime and the parietal cortex

    Directory of Open Access Journals (Sweden)

    E. Niessen

    2014-01-01

    In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies and elderly neurological patients (typically included in structural lesion studies may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  1. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  2. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Sep 19,2016 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, but ...

  3. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A; Semeralul, Mawahib O; Chen, Robert; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2015-02-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the

  4. Finding generically stable measures

    CERN Document Server

    Simon, Pierre

    2010-01-01

    We discuss two constructions for obtaining generically stable Keisler measures in an NIP theory. First, we show how to symmetrize an arbitrary invariant measure to obtain a generically stable one from it. Next, we show that suitable sigma-additive probability measures give rise to generically stable measures. Also included is a proof that generically stable measures over o-minimal theories and the p-adics are smooth.

  5. Entorhinal cortex and consolidated memory.

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  6. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  7. Orientation pop-out processing in human visual cortex.

    Science.gov (United States)

    Bogler, Carsten; Bode, Stefan; Haynes, John-Dylan

    2013-11-01

    Visual stimuli can "pop out" if they are different to their background. There has been considerable debate as to the role of primary visual cortex (V1) versus higher visual areas (esp. V4) in pop-out processing. Here we parametrically modulated the relative orientation of stimuli and their backgrounds to investigate the neural correlates of pop-out in visual cortex while subjects were performing a demanding fixation task in a scanner. Whole brain and region of interest analyses confirmed a representation of orientation contrast in extrastriate visual cortex (V4), but not in striate visual cortex (V1). Thus, although previous studies have shown that human V1 can be involved in orientation pop-out, our findings demonstrate that there are cases where V1 is "blind" and pop-out detection is restricted to higher visual areas. Pop-out processing is presumably a distributed process across multiple visual regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Action preparation shapes processing in early visual cortex.

    Science.gov (United States)

    Gutteling, Tjerk P; Petridou, Natalia; Dumoulin, Serge O; Harvey, Ben M; Aarnoutse, Erik J; Kenemans, J Leon; Neggers, Sebastian F W

    2015-04-22

    Preparation for an action, such as grasping an object, is accompanied by an enhanced perception of the object's action-relevant features, such as orientation and size. Cortical feedback from motor planning areas to early visual areas may drive this enhanced perception. To examine whether action preparation modulates activity in early human visual cortex, subjects grasped or pointed to oriented objects while high-resolution fMRI data were acquired. Using multivoxel pattern analysis techniques, we could decode with >70% accuracy whether a grasping or pointing action was prepared from signals in visual cortex as early as V1. These signals in early visual cortex were observed even when actions were only prepared but not executed. Anterior parietal cortex, on the other hand, showed clearest modulation for actual movements. This demonstrates that preparation of actions, even without execution, modulates relevant neuronal populations in early visual areas.

  9. Recurrent circuitry dynamically shapes the activation of piriform cortex.

    Science.gov (United States)

    Franks, Kevin M; Russo, Marco J; Sosulski, Dara L; Mulligan, Abigail A; Siegelbaum, Steven A; Axel, Richard

    2011-10-06

    In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar input. Pyramidal cells also activate inhibitory interneurons that mediate strong, local feedback inhibition that scales with excitation. This recurrent network can enhance or suppress bulbar input, depending on whether the input arrives before or after the cortex is activated. This circuitry may shape the ensembles of piriform cells that encode odorant identity.

  10. Reorganization of the Human Somatosensory Cortex in Hand Dystonia

    Directory of Open Access Journals (Sweden)

    Maria Jose Catalan

    2012-05-01

    Full Text Available Background and Purpose: Abnormalities of finger representations in the somatosensory cortex have been identified in patients with focal hand dystonia. Measuring blood flow with positron emission tomography (PET can be use to demonstrate functional localization of receptive fields. Methods: A vibratory stimulus was applied to the right thumb and little finger of six healthy volunteers and six patients with focal hand dystonia to map their receptive fields using H215O PET. Results: The cortical finger representations in the primary somatosensory cortex were closer to each other in patients than in normal subjects. No abnormalities were found in secondary somatosensory cortex, but the somatotopy there is less well distinguished. Conclusions: These data confirm prior electrophysiological and functional neuroimaging observations showing abnormalities of finger representations in somatosensory cortex of patients with focal hand dystonia.

  11. Stable canonical rules

    NARCIS (Netherlands)

    Iemhoff, R.; Bezhanishvili, N.; Bezhanishvili, Guram

    2016-01-01

    We introduce stable canonical rules and prove that each normal modal multi-conclusion consequence relation is axiomatizable by stable canonical rules. We apply these results to construct finite refutation patterns for modal formulas, and prove that each normal modal logic is axiomatizable by stable

  12. The expression of EPOR in renal cortex during postnatal development.

    Directory of Open Access Journals (Sweden)

    Lu Xiao

    Full Text Available Erythropoietin (EPO, known for its role in erythroid differentiation, has been shown to be an important growth factor for brain and heart. EPO is synthesized by fibroblast-like cells in the renal cortex. Prompted by this anatomical relationship and its significant impact on the maturation process of brain and heart, we asked whether EPO could play a role during the development of renal cortex. The relationship between the development of renal cortex and the change of EPO receptor (EPOR, through which EPO could act as a renotropic cytokine, became interesting to us. In this study, the day of birth was recorded as postnatal day 0(P0. P7, P14, P21, P28, P35, P42 and mature mice (postnatal days>56 were used as the animal model of different developmental stages. Immunohistochemistry and Western blotting were used to detect the expression of EPOR in mouse renal cortex. Results showed that expression of EPOR decreased with the development of renal cortex and became stable when kidney became mature. The expression of EPOR was detected at the renal tubule of all developmental stages and a relatively higher expression was observed at P14. However, at the renal corpuscle the expression was only observed at P7 and quickly became undetectable after that. All these suggested that a translocation of EPOR from renal corpuscle to renal tubule may take place during the developmental process of renal cortex. Also, EPO may be an essential element for the maturation of renal cortex, and the requirement for EPO was changed during postnatal development process.

  13. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    Science.gov (United States)

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  14. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  15. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  16. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS

    OpenAIRE

    Paul Fredrick Sowman; Jesper eRasmussen; Søren eDueholm; Natalie eMrachacz-Kersting

    2014-01-01

    Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time o...

  17. The multisensory function of the human primary visual cortex.

    Science.gov (United States)

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex.

  18. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  19. Auditory cortex basal activity modulates cochlear responses in chinchillas.

    Directory of Open Access Journals (Sweden)

    Alex León

    Full Text Available BACKGROUND: The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. METHODOLOGY/PRINCIPAL FINDINGS: Cochlear microphonics (CM, auditory-nerve compound action potentials (CAP and auditory cortex evoked potentials (ACEP were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments and a permanent reduction in five chinchillas (lesion experiments. We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. CONCLUSIONS/SIGNIFICANCE: These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the

  20. Transient human auditory cortex activation during volitional attention shifting.

    Science.gov (United States)

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues.

  1. Stable Principal Component Pursuit

    CERN Document Server

    Zhou, Zihan; Wright, John; Candes, Emmanuel; Ma, Yi

    2010-01-01

    In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entrywise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is...

  2. The adrenal cortex and life.

    Science.gov (United States)

    Vinson, Gavin P

    2009-03-05

    The template for our understanding of the physiological role of the adrenal cortex was set by Hans Selye, who demonstrated its key involvement in the response to stress, of whatever origin, and who also introduced the terms glucocorticoid and mineralocorticoid. Despite this, from the late 1940s on there was certainly general awareness of the multiple actions of glucocorticoids, including effects on the thymus and immune system, cardiovascular system, water balance, and the CNS. For these reasons, and perhaps because in the early studies of the actions of individual steroids there was less clear-cut difference between them, there was some initial resistance to the use of these terms. Today they are universal and unchallenged. It can be argued that, with respect to the glucocorticoids, this term colours our perception of their physiological importance, and may be misleading. By taking evidence from disease states, emphasis is placed on extreme conditions that do not necessarily reveal normal physiology. In particular, evidence for the role of glucocorticoid regulation of gluconeogenesis and blood glucose in the normal subject or animal is inconclusive. Similarly, while highly plausible theories explaining glucocorticoid actions on inflammation or the immune system as part of normal physiology have been presented, direct evidence to support them is hard to find. Under extreme conditions of chronic stress, the cumulative actions of glucocorticoids on insulin resistance or immunocompromise may indeed seem to be actually damaging. Two well-documented and long recognized situations create huge variation in glucocorticoid secretion. These are the circadian rhythm, and the acute response to mild stress, such as handling, in the rat. Neither of these can be adequately explained by the need for glucocorticoid action, as we currently understand it, particularly on carbohydrate metabolism or on the immune system. Perhaps we should re-examine other targets at the physiological

  3. The Role of the Orbitofrontal Cortex in Human Discrimination Learning

    Science.gov (United States)

    Chase, Henry W.; Clark, Luke; Myers, Catherine E.; Gluck, Mark A.; Sahakian, Barbara J.; Bullmore, Edward T.; Robbins, Trevor W.

    2008-01-01

    Several lines of evidence implicate the prefrontal cortex in learning but there is little evidence from studies of human lesion patients to demonstrate the critical role of this structure. To this end, we tested patients with lesions of the frontal lobe (n = 36) and healthy controls (n = 35) on two learning tasks: the weather prediction task…

  4. Anterior cingulate cortex involvement in subclinical social anxiety.

    Science.gov (United States)

    Duval, Elizabeth R; Hale, Lisa R; Liberzon, Israel; Lepping, Rebecca; N Powell, Joshua; Filion, Diane L; Savage, Cary R

    2013-12-30

    We demonstrated differential activation in the anterior cingulate cortex (ACC) between subjects with high and low social anxiety in response to angry versus neutral faces. Activation in the ACC distinguished between facial expressions in the low, but not the high, anxious group. The ACC's role in threat processing is discussed.

  5. Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning

    Science.gov (United States)

    Bartolucci, Marco; Smith, Andrew T.

    2011-01-01

    Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…

  6. Prefrontal cortex and neural mechanisms of executive function.

    Science.gov (United States)

    Funahashi, Shintaro; Andreau, Jorge Mario

    2013-12-01

    Executive function is a product of the coordinated operation of multiple neural systems and an essential prerequisite for a variety of cognitive functions. The prefrontal cortex is known to be a key structure for the performance of executive functions. To accomplish the coordinated operations of multiple neural systems, the prefrontal cortex must monitor the activities in other cortical and subcortical structures and control and supervise their operations by sending command signals, which is called top-down signaling. Although neurophysiological and neuroimaging studies have provided evidence that the prefrontal cortex sends top-down signals to the posterior cortices to control information processing, the neural correlate of these top-down signals is not yet known. Through use of the paired association task, it has been demonstrated that top-down signals are used to retrieve specific information stored in long-term memory. Therefore, we used a paired association task to examine the neural correlates of top-down signals in the prefrontal cortex. The preliminary results indicate that 32% of visual neurons exhibit pair-selectivity, which is similar to the characteristics of pair-coding activities in temporal neurons. The latency of visual responses in prefrontal neurons was longer than bottom-up signals but faster than top-down signals in inferior temporal neurons. These results suggest that pair-selective visual responses may be top-down signals that the prefrontal cortex provides to the temporal cortex, although further studies are needed to elucidate the neural correlates of top-down signals and their characteristics to understand the neural mechanism of executive control by the prefrontal cortex.

  7. Distance modulation of neural activity in the visual cortex.

    Science.gov (United States)

    Dobbins, A C; Jeo, R M; Fiser, J; Allman, J M

    1998-07-24

    Humans use distance information to scale the size of objects. Earlier studies demonstrated changes in neural response as a function of gaze direction and gaze distance in the dorsal visual cortical pathway to parietal cortex. These findings have been interpreted as evidence of the parietal pathway's role in spatial representation. Here, distance-dependent changes in neural response were also found to be common in neurons in the ventral pathway leading to inferotemporal cortex of monkeys. This result implies that the information necessary for object and spatial scaling is common to all visual cortical areas.

  8. Long-term motor cortex stimulation for phantom limb pain.

    Science.gov (United States)

    Pereira, Erlick A C; Moore, Tom; Moir, Liz; Aziz, Tipu Z

    2015-04-01

    We present the long-term course of motor cortex stimulation to relieve a case of severe burning phantom arm pain after brachial plexus injury and amputation. During 16-year follow-up the device continued to provide efficacious analgesia. However, several adjustments of stimulation parameters were required, as were multiple pulse generator changes, antibiotics for infection and one electrode revision due to lead migration. Steady increases in stimulation parameters over time were required. One of the longest follow-ups of motor cortex stimulation is described; the case illustrates challenges and pitfalls in neuromodulation for chronic pain, demonstrating strategies for maintaining analgesia and overcoming tolerance.

  9. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    Science.gov (United States)

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  10. Engineering Stable Hollow Capsules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Scientists at the CAS Institute of Chemistry have been succeeded in fabricating stable hollow capsules by extending covalent layer-by-layer self-assembly(CSA)technique from 2-dimensional to 3-dimensional systems.

  11. Stable Recursive Subhomogeneous Algebras

    CERN Document Server

    Liang, Hutian

    2011-01-01

    In this paper, we introduce stable recursive subhomogeneous algebras (SRSHAs), which is analogous to recursive subhomogeneous algebras (RSHAs) introduced by N. C. Phillips in the studies of free minimal integer actions on compact metric spaces. The difference between the stable version and the none stable version is that the irreducible representations of SRSHAs are infinite dimensional, but the irreducible representations of the RSHAs are finite dimensional. While RSHAs play an important role in the study of free minimal integer actions on compact metric spaces, SRSHAs play an analogous role in the study of free minimal actions by the group of the real numbers on compact metric spaces. In this paper, we show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one.

  12. Apraxia, pantomime and the parietal cortex.

    Science.gov (United States)

    Niessen, E; Fink, G R; Weiss, P H

    2014-01-01

    Apraxia, a disorder of higher motor cognition, is a frequent and outcome-relevant sequel of left hemispheric stroke. Deficient pantomiming of object use constitutes a key symptom of apraxia and is assessed when testing for apraxia. To date the neural basis of pantomime remains controversial. We here review the literature and perform a meta-analysis of the relevant structural and functional imaging (fMRI/PET) studies. Based on a systematic literature search, 10 structural and 12 functional imaging studies were selected. Structural lesion studies associated pantomiming deficits with left frontal, parietal and temporal lesions. In contrast, functional imaging studies associate pantomimes with left parietal activations, with or without concurrent frontal or temporal activations. Functional imaging studies that selectively activated parietal cortex adopted the most stringent controls. In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal)-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies) and elderly neurological patients (typically included in structural lesion studies) may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  13. Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.

    Science.gov (United States)

    Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel

    2016-01-01

    Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function.

  14. Computer assisted measurement of femoral cortex thickening on radiographs

    Science.gov (United States)

    Yao, Jianhua; Liu, Yixun; Chen, Foster; Summers, Ronald M.; Bhattacharyya, Timothy

    2013-03-01

    Radiographic features such as femoral cortex thickening have been frequently observed with atypical subtrochanteric fractures. These features may be a valuable finding to help prevent fractures before they happen. The current practice of manual measurement is often subjective and inconsistent. We developed a semi-automatic tool to consistently measure and monitor the progress of femoral cortex thickening on radiographs. By placing two seed points on each side of the femur, the program automatically extracts the periosteal and endosteal layers of the cortical shell by active contour models and B-spline fitting. Several measurements are taken along the femur shaft, including shaft diameter, cortical thickness, and integral area for medial and lateral cortex. The experiment was conducted on 52 patient datasets. The semi-automatic measurements were validated against manual measurements on 52 patients and demonstrated great improvement in consistency and accuracy (p<0.001).

  15. Development of the cerebellar cortex in the mouse

    Institute of Scientific and Technical Information of China (English)

    Xiangshu Cheng; Jin Du; Dongming Yu; Qiying Jiang; Yanqiu Hu; Lei Wang; Mingshan Li; Jinbo Deng

    2011-01-01

    The cerebellum is a highly conserved structure in the central nervous system of vertebrates, and is involved in the coordination of voluntary motor behavior. Supporting this function, the cerebellar cortex presents a layered structure which requires precise spatial and temporal coordination of proliferation, migration, differentiation, and apoptosis events. The formation of the layered structure in the developing cerebellum remains unclear. The present study investigated the development of the cerebellar cortex. The results demonstrate that the primordium of the cerebellum comprises the ependymal, mantle, and marginal layers at embryonic day 12 (E12). Subsequently, the laminated cerebellar cortex undergoes cell proliferation, differentiation, and migration, and at about postnatal day 0 (P0), the cerebellar cortex presents an external granular layer, a molecular layer, a Purkinje layer, and an internal granular layer. The external granular layer is thickest at P6/7 and disappears at P20. From P0 to P30, the internal granular cells and the Purkinje cells gradually differentiate and develop until maturity. Apoptotic neurons are evident in the layered structure in the developing cerebellar cortex. The external granular layer disappears gradually because of cell migration and apoptosis. The cells of the other layers primarily undergo differentiation, development, and apoptosis.

  16. How stable are the 'stable ancient shields'?

    Science.gov (United States)

    Viola, Giulio; Mattila, Jussi

    2014-05-01

    "Archean cratons are relatively flat, stable regions of the crust that have remained undeformed since the Precambrian, forming the ancient cores of the continents" (King, EPSL, 2005). While this type of statement is supported by a wealth of constraints in the case of episodes of thoroughgoing ductile deformation affecting shield regions of Archean and also Peleoproterozoic age, a growing amount of research indicates that shields are not nearly as structurally stable within the broad field of environmental conditions leading to brittle deformation. In fact, old crystalline basements usually present compelling evidence of long brittle deformation histories, often very complex and challenging to unfold. Recent structural and geochronological studies point to a significant mechanical instability of the shield areas, wherein large volumes of 'stable' rocks actually can become saturated with fractures and brittle faults soon after regional cooling exhumes them to below c. 300-350° C. How cold, rigid and therefore strong shields respond to applied stresses remains, however, still poorly investigated and understood. This in turn precludes a better definition of the shallow rheological properties of large, old crystalline blocks. In particular, we do not yet have good constraints on the mechanisms of mechanical reactivation that control the partial (if not total) accommodation of new deformational episodes by preexisting structures, which remains a key to untangle brittle histories lasting several hundred Myr. In our analysis, we use the Svecofennian Shield (SS) as an example of a supposedly 'stable' region with Archean nucleii and Paleoproterozoic cratonic areas to show how it is possible to unravel the details of brittle histories spanning more than 1.5 Gyr. New structural and geochronological results from Finland are integrated with a review of existing data from Sweden to explore how the effects of far-field stresses are partitioned within a shield, which was growing

  17. Neuropil distribution in the cerebral cortex differs between humans and chimpanzees.

    Science.gov (United States)

    Spocter, Muhammad A; Hopkins, William D; Barks, Sarah K; Bianchi, Serena; Hehmeyer, Abigail E; Anderson, Sarah M; Stimpson, Cheryl D; Fobbs, Archibald J; Hof, Patrick R; Sherwood, Chet C

    2012-09-01

    Increased connectivity of high-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is composed mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca's area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.

  18. Cholinergic excitation in mouse primary vs. associative cortex: region-specific magnitude and receptor balance.

    Science.gov (United States)

    Tian, Michael K; Bailey, Craig D C; Lambe, Evelyn K

    2014-08-01

    Cholinergic stimulation of the cerebral cortex is essential for tasks requiring attention; however, there is still some debate over which cortical regions are required for such tasks. There is extensive cholinergic innervation of both primary and associative cortices, and transient release of acetylcholine (ACh) is detected in deep layers of the relevant primary and/or associative cortex, depending on the nature of the attention task. Here, we investigated the electrophysiological effects of ACh in layer VI, the deepest layer, of the primary somatosensory cortex, the primary motor cortex, and the associative medial prefrontal cortex. Layer VI pyramidal neurons are a major source of top-down modulation of attention, and we found that the strength and homogeneity of their direct cholinergic excitation was region-specific. On average, neurons in the primary cortical regions showed weaker responses to ACh, mediated by a balance of contributions from both nicotinic and muscarinic ACh receptors. Conversely, neurons in the associative medial prefrontal cortex showed significantly stronger excitation by ACh, mediated predominantly by nicotinic receptors. The greatest diversity of responses to ACh was found in the primary somatosensory cortex, with only a subset of neurons showing nicotinic excitation. In a mouse model with attention deficits only under demanding conditions, cholinergic excitation was preserved in primary cortical regions but not in the associative medial prefrontal cortex. These findings demonstrate that the effect of ACh is not uniform throughout the cortex, and suggest that its ability to enhance attention performance may involve different cellular mechanisms across cortical regions.

  19. The Functions of the Orbitofrontal Cortex

    Science.gov (United States)

    Rolls, Edmund T.

    2004-01-01

    The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight…

  20. Evolutionary specializations of human association cortex

    NARCIS (Netherlands)

    Mars, R.B.; Passingham, R.E.; Neubert, F.X.; Verhagen, L.; Sallet, J.

    2017-01-01

    Is the human brain a big ape brain? We argue that the human association cortex is larger than would be expected for an equivalent ape brain, suggesting human association cortex is a unique adaptation. The internal organization of the human association cortex shows modifications of the ape plan in

  1. Efficient Methods for Stable Distributions

    Science.gov (United States)

    2007-11-02

    are used, corresponding to the common values used in digital signal processing. Five new functions for discrete/quantized stable distributions were...written. • sgendiscrete generates discrete stable random variates. It works by generating continuous stable random variables using the Chambers- Mallows ...with stable distributions. It allows engineers and scientists to analyze data and work with stable distributions within the common matlab environment

  2. Communication Apprehension and Resting Alpha Range Asymmetry in the Anterior Cortex

    Science.gov (United States)

    Beatty, Michael J.; Heisel, Alan D.; Lewis, Robert J.; Pence, Michelle E.; Reinhart, Amber; Tian, Yan

    2011-01-01

    In this study, we examined the relationship between trait-like communication apprehension (CA) and resting alpha range asymmetry in the anterior cortex (AC). Although theory and research in cognitive neuroscience suggest that asymmetry in the AC constitutes a relatively stable, inborn, substrate of emotion, some studies indicate that asymmetry can…

  3. Stable generalized complex structures

    CERN Document Server

    Cavalcanti, Gil R

    2015-01-01

    A stable generalized complex structure is one that is generically symplectic but degenerates along a real codimension two submanifold, where it defines a generalized Calabi-Yau structure. We introduce a Lie algebroid which allows us to view such structures as symplectic forms. This allows us to construct new examples of stable structures, and also to define period maps for their deformations in which the background three-form flux is either fixed or not, proving the unobstructedness of both deformation problems. We then use the same tools to establish local normal forms for the degeneracy locus and for Lagrangian branes. Applying our normal forms to the four-dimensional case, we prove that any compact stable generalized complex 4-manifold has a symplectic completion, in the sense that it can be modified near its degeneracy locus to produce a compact symplectic 4-manifold.

  4. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  5. Stable Flows over Time

    Directory of Open Access Journals (Sweden)

    Jannik Matuschke

    2013-08-01

    Full Text Available In this paper, the notion of stability is extended to network flows over time. As a useful device in our proofs, we present an elegant preflow-push variant of the Gale-Shapley algorithm that operates directly on the given network and computes stable flows in pseudo-polynomial time, both in the static flow and the flow over time case. We show periodical properties of stable flows over time on networks with an infinite time horizon. Finally, we discuss the influence of storage at vertices, with different results depending on the priority of the corresponding holdover edges.

  6. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process...

  7. The stable subgroup graph

    Directory of Open Access Journals (Sweden)

    Behnaz Tolue

    2018-07-01

    Full Text Available In this paper we introduce stable subgroup graph associated to the group $G$. It is a graph with vertex set all subgroups of $G$ and two distinct subgroups $H_1$ and $H_2$ are adjacent if $St_{G}(H_1\\cap H_2\

  8. Thermodynamically Stable Pickering Emulsions

    NARCIS (Netherlands)

    Sacanna, S.; Kegel, W.K.; Philipse, A.P.

    2007-01-01

    We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30–150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastabl

  9. Stable isotope studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  10. Stable Unhappy Marriages.

    Science.gov (United States)

    Heaton, Tim B.; Albrecht, Stan L.

    1991-01-01

    Examined prevalence and determinants of stable unhappy marriage using data from national survey. Results indicated age, lack of prior marital experience, commitment to marriage as an institution, low social activity, lack of control over one's life, and belief that divorce would detract from happiness were all predictive of stability in unhappy…

  11. 2005 Economy: Stable Development

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ 2005 is the fifth year of China's Tenth Five-Year Plan, it is an important year to implement commitment for entering into WTO as well as a key year for deepening macro-control. With further deepening of macro control and development of regional economy, Chinese economy will operate in a more healthy and stable way.

  12. 2005 Economy: Stable Development

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

      2005 is the fifth year of China's Tenth Five-Year Plan, it is an important year to implement commitment for entering into WTO as well as a key year for deepening macro-control. With further deepening of macro control and development of regional economy, Chinese economy will operate in a more healthy and stable way.……

  13. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  14. Farsightedly stable networks

    NARCIS (Netherlands)

    Herings, P.J.J.; Mauleon, A.; Vannetelbosch, V.; Carraro, C.

    2015-01-01

    A set of networks G is pairwise farsightedly stable (i) if all possible farsighted pairwise deviations from any network g  G to a network outside G are deterred by the threat of ending worse off or equally well off, (ii) if there exists a farsighted improving path from any network outside the set l

  15. A Computational Model for Spatial Navigation Based on Reference Frames in the Hippocampus, Retrosplenial Cortex, and Posterior Parietal Cortex

    Science.gov (United States)

    Oess, Timo; Krichmar, Jeffrey L.; Röhrbein, Florian

    2017-01-01

    Behavioral studies for humans, monkeys, and rats have shown that, while traversing an environment, these mammals tend to use different frames of reference and frequently switch between them. These frames represent allocentric, egocentric, or route-centric views of the environment. However, combinations of either of them are often deployed. Neurophysiological studies on rats have indicated that the hippocampus, the retrosplenial cortex, and the posterior parietal cortex contribute to the formation of these frames and mediate the transformation between those. In this paper, we construct a computational model of the posterior parietal cortex and the retrosplenial cortex for spatial navigation. We demonstrate how the transformation of reference frames could be realized in the brain and suggest how different brain areas might use these reference frames to form navigational strategies and predict under what conditions an animal might use a specific type of reference frame. Our simulated navigation experiments demonstrate that the model’s results closely resemble behavioral findings in humans and rats. These results suggest that navigation strategies may depend on the animal’s reliance in a particular reference frame and shows how low confidence in a reference frame can lead to fluid adaptation and deployment of alternative navigation strategies. Because of its flexibility, our biologically inspired navigation system may be applied to autonomous robots. PMID:28223931

  16. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  17. Single-unit activity in piriform cortex during slow-wave state is shaped by recent odor experience.

    Science.gov (United States)

    Wilson, Donald A

    2010-02-03

    Memory and its underlying neural plasticity play important roles in sensory discrimination and cortical pattern recognition in olfaction. Given the reported function of slow-wave sleep states in neocortical and hippocampal memory consolidation, we hypothesized that activity during slow-wave states within the piriform cortex may be shaped by recent olfactory experience. Rats were anesthetized with urethane and allowed to spontaneously shift between slow-wave and fast-wave states as recorded in local field potentials within the anterior piriform cortex. Single-unit activity of piriform cortical layer II/III neurons was recorded simultaneously. The results suggest that piriform cortical activity during slow-wave states is shaped by recent (several minutes) odor experience. The temporal structure of single-unit activity during slow waves was modified if the animal had been stimulated with an odor within the receptive field of that cell. If no odor had been delivered, the activity of the cell during slow-wave activity was stable across the two periods. The results demonstrate that piriform cortical activity during slow-wave state is shaped by recent odor experience, which could contribute to odor memory consolidation.

  18. Separating the influence of the cortex and foam on the mechanical properties of porcupine quills.

    Science.gov (United States)

    Yang, Wen; McKittrick, Joanna

    2013-11-01

    Lightweight thin cylinders filled with a foam have applications as collapsible energy absorbers for crashworthy and flotation applications. The local buckling compressive strength and Young's modulus are dependent on material and geometrical properties. Porcupine quills have a thin cortex filled with closed-cell foam, and are entirely composed of α-keratin. The cortex carries the majority of the compressive load, but the foam is able to accommodate and release some of the deformation of the cortex during buckling. The presence of the foam increases the critical buckling strength, buckling strain and elastic strain energy absorption over that of the cortex. Good agreement is found between experimental results and modeled predictions. A strain distribution map of the foam close to the buckled cortex demonstrates that the deformation of the cells plays an important role in accommodating local buckling of the cortex. The robust connection between the foam and cortex results in superior crushing properties compared to synthetic sandwich structure where the foam normally separates from the shell. The foam/cortex construction of the quill can guide future biomimetic fabrications of light weight buckle-resistant columns.

  19. Stable local oscillator module.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-11-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

  20. Stable charged cosmic strings.

    Science.gov (United States)

    Weigel, H; Quandt, M; Graham, N

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18)  m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

  1. Decomposability for stable processes

    CERN Document Server

    Wang, Yizao; Roy, Parthanil

    2011-01-01

    We characterize all possible independent symmetric $\\alpha$-stable (S$\\alpha$S) components of a non--Gaussian S$\\alpha$S process, $0<\\alpha<2$. In particular, we characterize the independent stationary S$\\alpha$S components of a stationary S$\\alpha$S process. One simple consequence of our characterization is that all stationary components of the S$\\alpha$S moving average processes are trivial. As a main application, we show that the standard Brown--Resnick process has a moving average representation. This complements a result of Kabluchko et al. (2009), who obtained mixed moving average representations for these processes. We also develop a parallel characterization theory for max-stable processes.

  2. Stable Spirocyclic Meisenheimer Complexes

    Directory of Open Access Journals (Sweden)

    Gonzalo Guirado

    2008-06-01

    Full Text Available Meisenheimer complexes are important intermediates in Nucleophilic Aromatic Substitution Reactions (SNAr. They are formed by the addition of electron rich species to polynitro aromatic compounds or aromatic compounds with strong electron withdrawing groups. It is possible to distinguish two types of Meisenheimer or σ-complexes, the σHcomplex or σX-complex (also named ipso, depending on the aromatic ring position attacked by the nucleophile (a non-substituted or substituted one, respectively. Special examples of σX- or ipso-complexes are formed through intermediate spiro adducts, via intramolecular SNAr. Some of these spirocyclic Meisenheimer complexes, a type of σXcomplex, are exceptionally stable in solution and/or as solids. They can be isolated and characterized using X-ray, and various spectroscopic techniques such as NMR, UV-Vis, IR, and fluorescence. A few of these stable spirocyclic Meisenheimer complexes are zwitterionic and exhibit interesting photophysical and redox properties. We will review recent advances, synthesis and potential applications of these stable spirocyclic Meisenheimer complexes.

  3. Kinetic Stable Delaunay Graphs

    CERN Document Server

    Agarwal, Pankaj K; Guibas, Leonidas J; Kaplan, Haim; Koltun, Vladlen; Rubin, Natan; Sharir, Micha

    2011-01-01

    We consider the problem of maintaining the Euclidean Delaunay triangulation $\\DT$ of a set $P$ of $n$ moving points in the plane, along algebraic trajectories of constant description complexity. Since the best known upper bound on the number of topological changes in the full $\\DT$ is nearly cubic, we seek to maintain a suitable portion of it that is less volatile yet retains many useful properties. We introduce the notion of a stable Delaunay graph, which is a dynamic subgraph of the Delaunay triangulation. The stable Delaunay graph (a) is easy to define, (b) experiences only a nearly quadratic number of discrete changes, (c) is robust under small changes of the norm, and (d) possesses certain useful properties. The stable Delaunay graph ($\\SDG$ in short) is defined in terms of a parameter $\\alpha>0$, and consists of Delaunay edges $pq$ for which the angles at which $p$ and $q$ see their Voronoi edge $e_{pq}$ are at least $\\alpha$. We show that (i) $\\SDG$ always contains at least roughly one third of the Del...

  4. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  5. Triterpenoid saponins from Cortex Albiziae

    OpenAIRE

    Zou, Kun; Zhao, Yuying

    2004-01-01

    Cortex Albiziae, the dried stem bark of a leguminous plant, Albizia julibrissin Durazz, was specified in Chinese Pharmacopoeia (1995 edit.) as a traditional Chinese medicine to be used.to relieve melancholia and uneasiness of body and mind, to invigorate the circulation of blood and subside a swelling. In a course of our quality assessment of traditional Chinese medicines, the n-BuOH soluble part of 95% EtOH extracts from the stem barks of Albizia julibrissin was subjected to a series of sol...

  6. Perceptual restoration of masked speech in human cortex

    Science.gov (United States)

    Leonard, Matthew K.; Baud, Maxime O.; Sjerps, Matthias J.; Chang, Edward F.

    2016-01-01

    Humans are adept at understanding speech despite the fact that our natural listening environment is often filled with interference. An example of this capacity is phoneme restoration, in which part of a word is completely replaced by noise, yet listeners report hearing the whole word. The neurological basis for this unconscious fill-in phenomenon is unknown, despite being a fundamental characteristic of human hearing. Here, using direct cortical recordings in humans, we demonstrate that missing speech is restored at the acoustic-phonetic level in bilateral auditory cortex, in real-time. This restoration is preceded by specific neural activity patterns in a separate language area, left frontal cortex, which predicts the word that participants later report hearing. These results demonstrate that during speech perception, missing acoustic content is synthesized online from the integration of incoming sensory cues and the internal neural dynamics that bias word-level expectation and prediction. PMID:27996973

  7. Discourse production following injury to the dorsolateral prefrontal cortex.

    Science.gov (United States)

    Coelho, Carl; Lê, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-12-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC lesions. All participants were 30-35 years post-onset of injury and presented with persistent discourse impairments. The discourse performance of the R DLPFC group was not significantly different from either the L DLPFC group or the non-injured comparison group. Individuals from the L DLPFC group demonstrated specific difficulties with narrative coherence and inclusion of critical story components. Both measures were significantly different from the comparison group. The discourse ability of the DLPFC groups was significantly correlated with measures of working memory. Findings support the use of discourse analysis for examining language impairments in individuals with PFC lesions.

  8. Peripheral sounds rapidly activate visual cortex: evidence from electrocorticography.

    Science.gov (United States)

    Brang, David; Towle, Vernon L; Suzuki, Satoru; Hillyard, Steven A; Di Tusa, Senneca; Dai, Zhongtian; Tao, James; Wu, Shasha; Grabowecky, Marcia

    2015-11-01

    Neurophysiological studies with animals suggest that sounds modulate activity in primary visual cortex in the presence of concurrent visual stimulation. Noninvasive neuroimaging studies in humans have similarly shown that sounds modulate activity in visual areas even in the absence of visual stimuli or visual task demands. However, the spatial and temporal limitations of these noninvasive methods prevent the determination of how rapidly sounds activate early visual cortex and what information about the sounds is relayed there. Using spatially and temporally precise measures of local synaptic activity acquired from depth electrodes in humans, we demonstrate that peripherally presented sounds evoke activity in the anterior portion of the contralateral, but not ipsilateral, calcarine sulcus within 28 ms of sound onset. These results suggest that auditory stimuli rapidly evoke spatially specific activity in visual cortex even in the absence of concurrent visual stimulation or visual task demands. This rapid auditory-evoked activation of primary visual cortex is likely to be mediated by subcortical pathways or direct cortical projections from auditory to visual areas.

  9. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex.

    Science.gov (United States)

    Hermes, D; Miller, K J; Wandell, B A; Winawer, J

    2015-09-01

    A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized another signal within the gamma band, a nonoscillatory, broadband signal, spanning 80-200 Hz. It remains unclear under what conditions gamma oscillations are elicited in visual cortex, whether they are necessary and ubiquitous in visual encoding, and what relationship they have to nonoscillatory, broadband field potentials. We demonstrate that ECoG responses in human visual cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but not by others (noise patterns and many natural images). The gamma oscillations can be conspicuous and robust, but because they are absent for many stimuli, which observers can see and recognize, the oscillations are not necessary for seeing. In contrast, all visual stimuli induced broadband spectral changes in ECoG responses. Asynchronous neural signals in visual cortex, reflected in the broadband ECoG response, can support transmission of information for perception and recognition in the absence of pronounced gamma oscillations.

  10. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Bleichner, Martin G; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  11. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    Directory of Open Access Journals (Sweden)

    Ling-Chia Chen

    2016-01-01

    Full Text Available Cochlear implant (CI users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users’ speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS. Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  12. LIMB Demonstration Project Extension and Coolside Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  13. Prefrontal cortex glutamate and extraversion.

    Science.gov (United States)

    Grimm, Simone; Schubert, Florian; Jaedke, Maren; Gallinat, Jürgen; Bajbouj, Malek

    2012-10-01

    Extraversion is considered one of the core traits of personality. Low extraversion has been associated with increased vulnerability to affective and anxiety disorders. Brain imaging studies have linked extraversion, approach behaviour and the production of positive emotional states to the dorsolateral prefrontal cortex (DLPFC) and glutamatergic neurotransmission. However, the relationship between extraversion and glutamate in the DLPFC has not been investigated so far. In order to address this issue, absolute glutamate concentrations in the DLPFC and the visual cortex as a control region were measured by 3-Tesla proton magnetic resonance spectroscopy (1H-MRS) in 29 subjects with high and low extraversion. We found increased glutamate levels in the DLPFC of introverts as compared with extraverts. The increased glutamate concentration was specific for the DLPFC and negatively associated with state anxiety. Although preliminary, results indicate altered top-down control of DLPFC due to reduced glutamate concentration as a function of extraversion. Glutamate measurement with 1H-MRS may facilitate the understanding of biological underpinnings of personality traits and psychiatric diseases associated with dysfunctions in approach behaviour and the production of positive emotional states.

  14. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS.

    Science.gov (United States)

    Sowman, Paul F; Dueholm, Søren S; Rasmussen, Jesper H; Mrachacz-Kersting, Natalie

    2014-01-01

    Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS) of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS)-induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  15. Developmental and functional biology of the primate fetal adrenal cortex.

    Science.gov (United States)

    Mesiano, S; Jaffe, R B

    1997-06-01

    The unique characteristics of the primate (particularly human) fetal adrenal were first realized in the early 1900s when its morphology was examined in detail and compared with that of other species. The unusual architecture of the human fetal adrenal cortex, with its unique and disproportionately enlarged fetal zone, its compact definitive zone, and its dramatic remodeling soon after birth captured the interest of developmental anatomists. Many detailed anatomical studies describing the morphology of the developing human fetal adrenal were reported between 1920 and 1960, and these morphological descriptions have not changed significantly. More recently, it has become clear that fetal adrenal cortical growth involves cellular hypertrophy, hyperplasia, apoptosis, and migration and is best described by the migration theory, i.e. cells proliferate in the periphery, migrate centripetally, differentiate during their migration to form the functional cortical zones, and then likely undergo apoptosis in the center of the cortex. Consistent with this model, cells of intermediate phenotype, arranged in columnar cords typical of migration, have been identified between the definitive and fetal zones. This cortical area has been referred to as the transitional zone and, based on the expression of steroidogenic enzymes, we consider it to be a functionally distinct cortical zone. Elegant experiments during the 1950s and 1960s demonstrated the central role of the primate fetal adrenal cortex in establishing the estrogenic milieu of pregnancy. Those findings were among the first indications of the function and physiological role of the human fetal adrenal cortex and led Diczfalusy and co-workers to propose the concept of the feto-placental unit, in which DHEA-S produced by the fetal adrenal cortex is used by the placenta for estrogen synthesis. Tissue and cell culture techniques, together with improved steroid assays, revealed that the fetal zone is the primary source of DHEA

  16. Stable States of Biological Organisms

    CERN Document Server

    Yukalov, V I; Yukalova, E P; Henry, J -Y; Cobb, J P

    2009-01-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  17. Momentum Transport and Stable Modes in Kelvin-Helmholtz Turbulence

    CERN Document Server

    Fraser, A E; Zweibel, E G

    2016-01-01

    The Kelvin-Helmholtz (KH) instability, which arises in astrophysical and fusion systems where turbulent momentum transport is important, has an unstable and a stable mode at the same scales. We show that in KH turbulence, as in other types of turbulence, the stable mode affects transport, nonlinearly removing energy from the inertial-range cascade to small scales. We quantify energy transfer to stable modes and its associated impact on turbulent amplitudes and transport, demonstrating that stable modes regulate transfer in KH systems. A quasilinear momentum transport calculation is performed to quantify the reduction in momentum transport due to stable modes.

  18. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  19. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease.

    Science.gov (United States)

    Di Lazzaro, V; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Daniele, A; Ghirlanda, S; Gainotti, G; Tonali, P A

    2004-04-01

    Recent transcranial magnetic stimulation (TMS) studies demonstrate that motor cortex excitability is increased in Alzheimer's disease (AD) and that intracortical inhibitory phenomena are impaired. The aim of the present study was to determine whether hyperexcitability is due to the impairment of intracortical inhibitory circuits or to an independent abnormality of excitatory circuits. We assessed the excitability of the motor cortex with TMS in 28 patients with AD using several TMS paradigms and compared the data of cortical excitability (evaluated by measuring resting motor threshold) with the amount of motor cortex disinhibition as evaluated using the test for motor cortex cholinergic inhibition (short latency afferent inhibition) and GABAergic inhibition (short latency intracortical inhibition). The data in AD patients were also compared with that from 12 age matched healthy individuals. The mean resting motor threshold was significantly lower in AD patients than in controls. The amount of short latency afferent inhibition was significantly smaller in AD patients than in normal controls. There was also a tendency for AD patients to have less pronounced short latency intracortical inhibition than controls, but this difference was not significant. There was no correlation between resting motor threshold and measures of either short latency afferent or intracortical inhibition (r = -0.19 and 0.18 respectively, NS). In 14 AD patients the electrophysiological study was repeated after a single oral dose of the cholinesterase inhibitor rivastigmine. Resting motor threshold was not significantly modified by the administration of rivastigmine. In contrast, short latency afferent inhibition from the median nerve was significantly increased by the administration of rivastigmine. The change in threshold did not seem to correlate with dysfunction of inhibitory intracortical cholinergic and GABAergic circuits, nor with the central cholinergic activity. We propose that the

  20. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  1. The POSEIDON Demonstrator

    NARCIS (Netherlands)

    Laar, P.J.L.J. van de

    2013-01-01

    In this chapter, we discuss the Poseidon demonstrator: a demonstrator that integrates the individual research results of all partners of the Poseidon project. After describing how the Poseidon demonstrator was built, deployed, and operated, we will not only show many results obtained from the demons

  2. Overhead Projector Demonstrations.

    Science.gov (United States)

    Kolb, Doris, Ed.

    1988-01-01

    Details two demonstrations for use with an overhead projector in a chemistry lecture. Includes "A Very Rapidly Growing Silicate Crystal" and "A Colorful Demonstration to Simulate Orbital Hybridization." The materials and directions for each demonstration are included as well as a brief explanation of the essential learning involved. (CW)

  3. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  4. Marginally Stable Nuclear Burning

    Science.gov (United States)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high-inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi-periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  5. Strategy Guideline: Demonstration Home

    Energy Technology Data Exchange (ETDEWEB)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  6. Strategy Guideline. Demonstration Home

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  7. Addiction and the adrenal cortex

    Science.gov (United States)

    Vinson, Gavin P; Brennan, Caroline H

    2013-01-01

    Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or mice) increase on drug withdrawal in a manner that suggests correlation with the behavioural and symptomatic sequelae both in man and in experimental animals. Corticosteroid levels fall back to normal values in resumption of drug intake. The possible interactions between brain corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly suggests that all may be interlinked and that CRH in the brain and brain POMC products interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are known to affect mood profoundly and may themselves be addictive. Additionally, there is a heightened susceptibility for addicted subjects to relapse in conditions that are associated with change in HPA activity, such as in stress, or at different times of the day. Recent studies give compelling evidence that a significant part of the array of addictive symptoms is directly attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids. Additionally, sex differences in addiction may also be attributable to adrenocortical function: in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in rats, females may be more susceptible because of higher corticosterone secretion. PMID:23825159

  8. Stable cosmic vortons.

    Science.gov (United States)

    Garaud, Julien; Radu, Eugen; Volkov, Mikhail S

    2013-10-25

    We present solutions in the gauged U(1)×U(1) model of Witten describing vortons-spinning flux loops stabilized against contraction by the centrifugal force. Vortons were heuristically described many years ago; however, the corresponding field theory solutions were not obtained and so the stability issue remained open. We construct explicitly a family of stationary vortons characterized by their charge and angular momentum. Most of them are unstable and break in pieces when perturbed. However, thick vortons with a small radius preserve their form in the 3+1 nonlinear dynamical evolution. This gives the first ever evidence of stable vortons and impacts several branches of physics where they could potentially exist. These range from cosmology, since vortons could perhaps contribute to dark matter, to QCD and condensed matter physics.

  9. Stable lepton mass matrices

    CERN Document Server

    Domcke, Valerie

    2016-01-01

    We study natural lepton mass matrices, obtained assuming the stability of physical flavour observables with respect to the variations of individual matrix elements. We identify all four possible stable neutrino textures from algebraic conditions on their entries. Two of them turn out to be uniquely associated to specific neutrino mass patterns. We then concentrate on the semi-degenerate pattern, corresponding to an overall neutrino mass scale within the reach of future experiments. In this context we show that i) the neutrino and charged lepton mixings and mass matrices are largely constrained by the requirement of stability, ii) naturalness considerations give a mild preference for the Majorana phase most relevant for neutrinoless double-beta decay, $\\alpha \\sim \\pi/2$, and iii) SU(5) unification allows to extend the implications of stability to the down quark sector. The above considerations would benefit from an experimental determination of the PMNS ratio $|U_{32}/U_{31}|$, i.e. of the Dirac phase $\\delta...

  10. Stable umbral chromospheric structures

    Science.gov (United States)

    Henriques, V. M. J.; Scullion, E.; Mathioudakis, M.; Kiselman, D.; Gallagher, P. T.; Keenan, F. P.

    2015-02-01

    Aims: We seek to understand the morphology of the chromosphere in sunspot umbra. We investigate if the horizontal structures observed in the spectral core of the Ca II H line are ephemeral visuals caused by the shock dynamics of more stable structures, and examine their relationship with observables in the H-alpha line. Methods: Filtergrams in the core of the Ca II H and H-alpha lines as observed with the Swedish 1-m Solar Telescope are employed. We utilise a technique that creates composite images and tracks the flash propagation horizontally. Results: We find 0.̋15 wide horizontal structures, in all of the three target sunspots, for every flash where the seeing is moderate to good. Discrete dark structures are identified that are stable for at least two umbral flashes, as well as systems of structures that live for up to 24 min. We find cases of extremely extended structures with similar stability, with one such structure showing an extent of 5''. Some of these structures have a correspondence in H-alpha, but we were unable to find a one-to-one correspondence for every occurrence. If the dark streaks are formed at the same heights as umbral flashes, there are systems of structures with strong departures from the vertical for all three analysed sunspots. Conclusions: Long-lived Ca II H filamentary horizontal structures are a common and likely ever-present feature in the umbra of sunspots. If the magnetic field in the chromosphere of the umbra is indeed aligned with the structures, then the present theoretical understanding of the typical umbra needs to be revisited. Movies associated to Figs. 3 and 4 are available in electronic form at http://www.aanda.org

  11. Stable superstring relics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.; Coriano, C. [Florida Univ., Gainesville, FL (United States). Inst. for Fundamental Theory; Faraggi, A.E. [Florida Univ., Gainesville, FL (United States). Inst. for Fundamental Theory]|[Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences

    1996-05-15

    The authors investigate the cosmological constraints on exotic stable matter states which arise in realistic free fermionic superstring models. These states appear in the superstring models due to a ``Wilson-line`` breaking of the unifying non-Abelian gauge symmetry. In the models that they consider the unifying SO(10) gauge symmetry is broken at the string level to SO(6) x SO(4), SU(5) x U(1) or SU(3) x SU(2) x U(1). The exotic matter states are classified according to the patterns of the SO(10) symmetry breaking. In SO(6) x XO(4) and SU(5) x U(1) type models one obtains fractionally charged states with Q{sub e.m.} = {+-}1/2. In SU(3) x SU(2) x U(1) type models one also obtains states with the regular charges under the Standard Model gauge group but with ``fractional`` charges under the U(1){sub z{prime}} symmetry. These states include down-like color triplets and electroweak doublets, as well as states which are Standard Model singlets. By analyzing the renormalizable and nonrenormalizable terms of the superpotential in a specific superstring model, the authors show that these exotic states can be stable. They investigate the cosmological constraints on the masses and relic density of the exotic states. They propose that, while the abundance and the masses of the fractionally charged states are highly constrained, the Standard Model-like states, and in particular the Standard Model singlet, are good dark matter candidates.

  12. Modeling the motor cortex: Optimality, recurrent neural networks, and spatial dynamics.

    Science.gov (United States)

    Tanaka, Hirokazu

    2016-03-01

    Specialization of motor function in the frontal lobe was first discovered in the seminal experiments by Fritsch and Hitzig and subsequently by Ferrier in the 19th century. It is, however, ironical that the functional and computational role of the motor cortex still remains unresolved. A computational understanding of the motor cortex equals to understanding what movement variables the motor neurons represent (movement representation problem) and how such movement variables are computed through the interaction with anatomically connected areas (neural computation problem). Electrophysiological experiments in the 20th century demonstrated that the neural activities in motor cortex correlated with a number of motor-related and cognitive variables, thereby igniting the controversy over movement representations in motor cortex. Despite substantial experimental efforts, the overwhelming complexity found in neural activities has impeded our understanding of how movements are represented in the motor cortex. Recent progresses in computational modeling have rekindled this controversy in the 21st century. Here, I review the recent developments in computational models of the motor cortex, with a focus on optimality models, recurrent neural network models and spatial dynamics models. Although individual models provide consistent pictures within their domains, our current understanding about functions of the motor cortex is still fragmented.

  13. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  14. Scene-Selectivity and Retinotopy in Medial Parietal Cortex

    Science.gov (United States)

    Silson, Edward H.; Steel, Adam D.; Baker, Chris I.

    2016-01-01

    Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Here, using functional magnetic resonance imaging, we combine detailed mapping of both population receptive fields (pRF) and category-selectivity, with independently acquired resting-state functional connectivity analyses, to examine scene and retinotopic processing within medial parietal cortex. We identified a medial scene-selective region, which was contained largely within the posterior and ventral bank of the parieto-occipital sulcus (POS). While this region is typically referred to as RSC, the spatial extent of our scene-selective region typically did not extend into retrosplenial cortex, and thus we adopt the term medial place area (MPA) to refer to this visually defined scene-selective region. Intriguingly MPA co-localized with a region identified solely on the basis of retinotopic sensitivity using pRF analyses. We found that MPA demonstrates a significant contralateral visual field bias, coupled with large pRF sizes. Unlike OPA and PPA, MPA did not show a consistent bias to a single visual quadrant. MPA also co-localized with a region identified by strong differential functional connectivity with PPA and the human face-selective fusiform face area (FFA), commensurate with its functional selectivity. Functional connectivity with OPA was much weaker than with PPA, and similar to that with face-selective occipital face area (OFA), suggesting a closer link with ventral than lateral cortex. Consistent with prior research, we also observed differential functional connectivity in medial parietal cortex for anterior over posterior PPA, as well as a region on the lateral

  15. Neuronal correlates of metacognition in primate frontal cortex

    Science.gov (United States)

    Middlebrooks, Paul G.; Sommer, Marc A.

    2012-01-01

    SUMMARY Humans are metacognitive: they monitor and control their cognition. Our hypothesis was that neuronal correlates of metacognition reside in the same brain areas responsible for cognition, including frontal cortex. Recent work demonstrated that non-human primates are capable of metacognition, so we recorded from single neurons in the frontal eye field, dorsolateral prefrontal cortex, and supplementary eye field of monkeys (Macaca mulatta) that performed a metacognitive visual-oculomotor task. The animals made a decision and reported it with a saccade, but received no immediate reward or feedback. Instead, they had to monitor their decision and bet whether it was correct. Activity was correlated with decisions and bets in all three brain areas, but putative metacognitive activity that linked decisions to appropriate bets occurred exclusively in the SEF. Our results offer a survey of neuronal correlates of metacognition and implicate the SEF in linking cognitive functions over short periods of time. PMID:22884334

  16. Downregulation of the posterior medial frontal cortex prevents social conformity.

    Science.gov (United States)

    Klucharev, Vasily; Munneke, Moniek A M; Smidts, Ale; Fernández, Guillén

    2011-08-17

    We often change our behavior to conform to real or imagined group pressure. Social influence on our behavior has been extensively studied in social psychology, but its neural mechanisms have remained largely unknown. Here we demonstrate that the transient downregulation of the posterior medial frontal cortex by theta-burst transcranial magnetic stimulation reduces conformity, as indicated by reduced conformal adjustments in line with group opinion. Both the extent and probability of conformal behavioral adjustments decreased significantly relative to a sham and a control stimulation over another brain area. The posterior part of the medial frontal cortex has previously been implicated in behavioral and attitudinal adjustments. Here, we provide the first interventional evidence of its critical role in social influence on human behavior.

  17. Fate-restricted neural progenitors in the mammalian cerebral cortex.

    Science.gov (United States)

    Franco, Santos J; Gil-Sanz, Cristina; Martinez-Garay, Isabel; Espinosa, Ana; Harkins-Perry, Sarah R; Ramos, Cynthia; Müller, Ulrich

    2012-08-10

    During development of the mammalian cerebral cortex, radial glial cells (RGCs) generate layer-specific subtypes of excitatory neurons in a defined temporal sequence, in which lower-layer neurons are formed before upper-layer neurons. It has been proposed that neuronal subtype fate is determined by birthdate through progressive restriction of the neurogenic potential of a common RGC progenitor. Here, we demonstrate that the murine cerebral cortex contains RGC sublineages with distinct fate potentials. Using in vivo genetic fate mapping and in vitro clonal analysis, we identified an RGC lineage that is intrinsically specified to generate only upper-layer neurons, independently of niche and birthdate. Because upper cortical layers were expanded during primate evolution, amplification of this RGC pool may have facilitated human brain evolution.

  18. Plasticity of the visual cortex and treatment of amblyopia.

    Science.gov (United States)

    Sengpiel, Frank

    2014-09-22

    Over the last 50 years, research into the developmental plasticity of the visual cortex has led to a growing understanding of first the causes and then of the underlying cellular mechanisms of amblyopia or 'lazy eye', the commonest childhood disorder of vision. While it is widely believed that amblyopia cannot be treated successfully after the age of about 7, recent animal studies have demonstrated that visual cortex plasticity can be restored or enhanced later in life, paving the way for new strategies for the treatment of amblyopia that attempt to remove molecular brakes on plasticity. In addition, both animal and human work has established that amblyopia is not simply a monocular deficit, and therefore the most promising new non-invasive approaches force the two eyes to cooperate as opposed to conventional procedures that severely penalise the good eye. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  20. Bilateral lesions of the central but not anterior or posterior parts of the piriform cortex retard amygdala kindling in rats.

    Science.gov (United States)

    Schwabe, K; Ebert, U; Löscher, W

    2000-01-01

    The piriform cortex is thought to be involved in temporal lobe seizure propagation, such as that occurring during kindling of the amygdala or hippocampus. A number of observations suggested that the circuits of the piriform cortex might act as a critical pathway for limbic seizure discharges to assess motor systems, but direct evidence for this suggestion is scarce. Furthermore, the piriform cortex is not a homogeneous structure, which complicates studies on its role in limbic epileptogenesis. We have previously reported data indicating that the central part of the piriform cortex might be particularly involved during amygdala kindling. In order to further evaluate the role of different parts of the piriform cortex during kindling development, we bilaterally destroyed either the central, anterior or posterior piriform cortex by microinjections of ibotenate two weeks before onset of amygdala kindling. Lesions of the anterior piriform cortex hardly affected kindling acquisition, except that fewer animals exhibited stage 3 (unilateral forelimb) seizures compared to sham controls. Lesions of the central piriform cortex significantly retarded kindling, which was due to a decreased progression from stage 3 to stage 4/5 seizures, i.e. the lesioned rats needed significantly longer for the acquisition of generalized clonic seizures in the late stages of kindling development. Lesions of the posterior piriform cortex did not significantly affect kindling development. The data demonstrate that different parts of the piriform cortex mediate qualitatively different effects on amygdala kindling. The central piriform cortex seems to be a neural substrate involved in the continuous development of kindling from stage 3 to stages 4/5, indicating that this part of the piriform cortex may have preferred access, either directly or indirectly, to structures capable of supporting generalized kindled seizure expression.

  1. Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty

    Science.gov (United States)

    Stolyarova, Alexandra; Izquierdo, Alicia

    2017-01-01

    We make choices based on the values of expected outcomes, informed by previous experience in similar settings. When the outcomes of our decisions consistently violate expectations, new learning is needed to maximize rewards. Yet not every surprising event indicates a meaningful change in the environment. Even when conditions are stable overall, outcomes of a single experience can still be unpredictable due to small fluctuations (i.e., expected uncertainty) in reward or costs. In the present work, we investigate causal contributions of the basolateral amygdala (BLA) and orbitofrontal cortex (OFC) in rats to learning under expected outcome uncertainty in a novel delay-based task that incorporates both predictable fluctuations and directional shifts in outcome values. We demonstrate that OFC is required to accurately represent the distribution of wait times to stabilize choice preferences despite trial-by-trial fluctuations in outcomes, whereas BLA is necessary for the facilitation of learning in response to surprising events. DOI: http://dx.doi.org/10.7554/eLife.27483.001 PMID:28682238

  2. Stable isotope dilution assays in mycotoxin analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rychlik, Michael; Asam, Stefan [Universitaet Muenchen, Lehrstuhl fuer Lebensmittelchemie der Technischen, Garching (Germany)

    2008-01-15

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis. (orig.)

  3. Stable isotope dilution assays in mycotoxin analysis.

    Science.gov (United States)

    Rychlik, Michael; Asam, Stefan

    2008-01-01

    The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC-MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.

  4. Toy Demonstrator's "VISIT" Handbook.

    Science.gov (United States)

    Levenstein, Phyllis

    The role of the toy demonstrator in a home-based, mother-involved intervention effort (Verbal Interaction Project) is presented in this handbook for staff members. It is believed that the prerequisites for functioning in the toy demonstrator's role are a sense of responsibility, patience with the children and their mothers, and willingness to be…

  5. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  6. Kinetics and Catalysis Demonstrations.

    Science.gov (United States)

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  7. Better Ira Remsen Demonstration

    Science.gov (United States)

    Dalby, David K.; Maynard, James H.; Moore, John W.

    2011-01-01

    Many versions of the classic Ira Remsen experience involving copper and concentrated nitric acid have been used as lecture demonstrations. Remsen's original reminiscence from 150 years ago is included in the Supporting Information, and his biography can be found on the Internet. This article presents a new version that makes the demonstration more…

  8. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  9. An fMRI Study of Audiovisual Speech Perception Reveals Multisensory Interactions in Auditory Cortex.

    Science.gov (United States)

    Okada, Kayoko; Venezia, Jonathan H; Matchin, William; Saberi, Kourosh; Hickok, Gregory

    2013-01-01

    Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.

  10. Visual Cortex Plasticity Following Peripheral Damage To The Visual System: fMRI Evidence.

    Science.gov (United States)

    Lemos, João; Pereira, Daniela; Castelo-Branco, Miguel

    2016-10-01

    Over the last two decades, functional magnetic resonance imaging (fMRI) has become a powerful research method to investigate cortical visual plasticity. Abnormal fMRI response patterns have been occasionally detected in the visually deprived cortex of patients with bilateral retinal diseases. Controversy remains whether these observations indicate structural reorganization of the visual cortex or unmasking of previously silent cortico-cortical connections. In optic nerve diseases, there is weak evidence showing that early visual cortex seems to lack reorganization, while higher-order visual areas undergo plastic changes which may contribute to optimise visual function. There is however accumulating imaging evidence demonstrating trans-synaptic degeneration of the visual cortex in patients with disease of the anterior visual pathways. This may preclude the use of restorative treatments in these patients. Here, we review and update the body of fMRI evidence on visual cortical plasticity.

  11. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  12. Altered magnesium transport in slices of kidney cortex from chemically-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, B.

    1981-10-01

    The uptake of magnesium-28 was measured in slices of kidney cortex from rats with alloxan-diabetes and from rats with streptozotocin-diabetes of increasing durations. In both forms of chemically-induced diabetes, magnesium-28 uptake by kidney cortex slices was significantly increased over uptake measured in kidney cortex slices from control rats. Immediate institution of daily insulin therapy to the diabetic rats prevented the diabetes-induced elevated uptake of magnesium without controlling blood glucose levels. Late institution of daily insulin therapy was ineffective in restoring the magnesium uptake to control values. These alterations in magnesium uptake occurred prior to any evidence of nephropathy (via the classic indices of proteinuria and increased BUN levels). The implications of these findings, together with our earlier demonstrations of altered calcium transport by kidney cortex slices from chemically-induced diabetic rats, are discussed in terms of disordered divalent cation transport being at least part of the basic pathogenesis underlying diabetic nephropathy.

  13. Tukey max-stable processes for spatial extremes

    KAUST Repository

    Xu, Ganggang

    2016-09-21

    We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process. © 2016 Elsevier B.V.

  14. Orbitofrontal cortex abnormality and deficit schizophrenia.

    Science.gov (United States)

    Kanahara, Nobuhisa; Sekine, Yoshimoto; Haraguchi, Tadashi; Uchida, Yoshitaka; Hashimoto, Kenji; Shimizu, Eiji; Iyo, Masaomi

    2013-02-01

    Deficit syndrome, which is characterized by primary and enduring negative symptoms, is a homogeneous subtype within schizophrenia. Negative symptoms in schizophrenia are currently considered to be closely linked with frontal lobe impairment. However, the etiology in the frontal lobe of people with deficit syndrome is not fully understood. We measured regional cerebral blood flow (rCBF) with single photon emission computed tomography (SPECT) in 33 patients with deficit syndrome, 40 patients with nondeficit syndrome, and 45 healthy controls, and we compared groups using the voxel-wise method. Schizophrenia combined group, the deficit syndrome and the nondeficit syndrome presented hypoperfusion in mainly the medial and lateral prefrontal cortices. The deficit syndrome group showed a significant decrease in rCBF in the right orbitofrontal cortex (OFC) compared to the nondeficit group. These results demonstrated that at-rest hypofrontality was a common feature within the disease group and suggested that the OFC might play an important role in the development of severe negative symptoms in people with deficit syndrome.

  15. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Qiu-Ju Jiang

    2016-01-01

    Full Text Available Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM; however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component was prepared, which completely inhibits high K+- and acetylcholine- (ACH- induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm.

  16. Stable isotopes. Applications and production; Les isotopes stables. Applications - production

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.; Louvet, P.; Soulie, E. [eds.

    1994-12-31

    This conference presents 46 communications concerning stable isotope production, utilization and application, grouped in 6 sessions and posters. The various themes are: biological applications (pharmacology, medical diagnosis, metabolism and protein studies, toxicity and response studies, labelled compounds), analysis procedures (NMR analysis for macromolecules, tracer studies), nuclear applications (utilization of stable isotopes in nuclear reactors), biological, physical and chemical applications (mass transfer, mobility, crystallography, isotopic exchange), stable isotope production (ion chromatography, ion cyclotron resonance, cryogenic distillation).

  17. The Functioning of a Cortex without Layers

    Directory of Open Access Journals (Sweden)

    Julien Guy

    2017-07-01

    Full Text Available A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, “molecular lesion”-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward

  18. Preparatory attention in visual cortex.

    Science.gov (United States)

    Battistoni, Elisa; Stein, Timo; Peelen, Marius V

    2017-05-01

    Top-down attention is the mechanism that allows us to selectively process goal-relevant aspects of a scene while ignoring irrelevant aspects. A large body of research has characterized the effects of attention on neural activity evoked by a visual stimulus. However, attention also includes a preparatory phase before stimulus onset in which the attended dimension is internally represented. Here, we review neurophysiological, functional magnetic resonance imaging, magnetoencephalography, electroencephalography, and transcranial magnetic stimulation (TMS) studies investigating the neural basis of preparatory attention, both when attention is directed to a location in space and when it is directed to nonspatial stimulus attributes (content-based attention) ranging from low-level features to object categories. Results show that both spatial and content-based attention lead to increased baseline activity in neural populations that selectively code for the attended attribute. TMS studies provide evidence that this preparatory activity is causally related to subsequent attentional selection and behavioral performance. Attention thus acts by preactivating selective neurons in the visual cortex before stimulus onset. This appears to be a general mechanism that can operate on multiple levels of representation. We discuss the functional relevance of this mechanism, its limitations, and its relation to working memory, imagery, and expectation. We conclude by outlining open questions and future directions. © 2017 New York Academy of Sciences.

  19. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.

    Science.gov (United States)

    Mouly, A-M; Di Scala, G

    2006-01-01

    The rodent olfactory bulb sends direct projections to the piriform cortex and to two structures intimately implicated in memory processes, the entorhinal cortex and the amygdala. The piriform cortex has monosynaptic projections with the amygdala and the piriform cortex and is therefore in a position to modulate olfactory input either directly in the piriform cortex, or via the amygdala. In order to investigate this hypothesis, field potential signals induced in anesthetized rats by electrical stimulation of the olfactory bulb or the entorhinal cortex were recorded simultaneously in the piriform cortex (anterior part and posterior part) and the amygdala (basolateral nucleus and cortical nucleus). Single-site paired-pulse stimulation was used to assess the time courses of short-term inhibition and facilitation in each recording site in response to electrical stimulation of the olfactory bulb and entorhinal cortex. Paired-pulse stimulation of the olfactory bulb induced homosynaptic inhibition for short interpulse interpulse intervals (20-30 ms) in all the recording sites, with a significantly lower degree of inhibition in the anterior piriform cortex than in the other structures. At longer intervals (40-80 ms), paired-pulse facilitation was observed in all the structures. Paired-pulse stimulation of the entorhinal cortex mainly resulted in inhibition for the shortest interval duration (20 ms) in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. Double-site paired-pulse stimulation was then applied to determine if stimulation of the entorhinal cortex can modulate responses to olfactory bulb stimulation. For short interpulse intervals (20 ms) heterosynaptic inhibition was observed in anterior piriform cortex, posterior piriform cortex and amygdala basolateral but not cortical nucleus. The level of inhibition was greater in the basolateral nucleus than in the other structures. Taken together these data suggest that the

  20. Methanol Cannon Demonstrations Revisited.

    Science.gov (United States)

    Dolson, David A.; And Others

    1995-01-01

    Describes two variations on the traditional methanol cannon demonstration. The first variation is a chain reaction using real metal chains. The second example involves using easily available components to produce sequential explosions that can be musical in nature. (AIM)

  1. TENCompetence tool demonstration

    NARCIS (Netherlands)

    Kluijfhout, Eric

    2010-01-01

    Kluijfhout, E. (2009). TENCompetence tool demonstration. Presented at Zorgacademie Parkstad (Health Academy Parkstad), Limburg Leisure Academy, Life Long Learning Limburg and a number of regional educational institutions. May, 18, 2009, Heerlen, The Netherlands: Open University of the Netherlands, T

  2. Land Management Research Demonstration

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2002, Neal Smith National Wildlife Refuge became one of the first Land Management and Research Demonstration (LMRD) sites. These sites are intended to serve as...

  3. Jordan: Surprisingly Stable

    OpenAIRE

    Ådnegard, Elisabeth

    2014-01-01

    Over the years, research has demonstrated that conflict spreads to the host country as a consequence of massive influx of refugees. Most studies gathered empirical evidence from African countries and focused on cases where conflict had already spread. In contrast to this literature, the main objective of this thesis is to examine the absence of conflict in Jordan after receiving Syrian refugees that amount to about 10 percent of Jordan s original population over the past three years, 2011-201...

  4. Pancreaticopleural fistula : CT demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jin Kyeung [Chuncheon Medical Center, ChunChon (Korea, Republic of)

    1997-03-01

    In patients with chronic pancreatitis, the pancreaticopleural fistula is known to cause recurrent exudative or hemorrhagic pleural effusions. These are often large in volume and require treatment, unlike the effusions in acute pancreatitis. Diagnosis can be made either by the finding of elevated pleural fluid amylase level or, using imaging studies, by the direct demonstration of the fistulous tract. We report two cases of pancreaticopleural fistula demonstrated by computed tomography.

  5. Education Payload Operation - Demonstrations

    Science.gov (United States)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.

  6. Stable isotope methods in biological and ecological studies of arthropods

    NARCIS (Netherlands)

    Hood-Nowotny, R.C.; Knols, B.G.J.

    2007-01-01

    This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can

  7. Edible Astronomy Demonstrations

    Science.gov (United States)

    Lubowich, Donald A.

    2007-12-01

    Astronomy demonstrations with edible ingredients are an effective way to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students - and the students remember these demonstrations after they are presented. In this poster I describe edible demonstrations I have created to simulate the expansion of the universe (using big-bang chocolate chip cookies); differentiation during the formation of the Earth and planets (using chocolate or chocolate milk with marshmallows, cereal, candy pieces or nuts); and radioactivity/radioactive dating (using popcorn). Other possible demonstrations include: plate tectonics (crackers with peanut butter and jelly); convection (miso soup or hot chocolate); mud flows on Mars (melted chocolate poured over angel food cake); formation of the Galactic disk (pizza); formation of spiral arms (coffee with cream); the curvature of Space (Pringles); constellations patterns with chocolate chips and chocolate chip cookies; planet shaped cookies; star shaped cookies with different colored frostings; coffee or chocolate milk measurement of solar radiation; Oreo cookie lunar phases. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and can be adapted for cultural, culinary, and ethnic differences among the students.

  8. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents.

    Science.gov (United States)

    Insausti, R; Herrero, M T; Witter, M P

    1997-01-01

    The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely

  9. Lateral-Medial Dissociation in Orbitofrontal Cortex-Hypothalamus Connectivity.

    Science.gov (United States)

    Hirose, Satoshi; Osada, Takahiro; Ogawa, Akitoshi; Tanaka, Masaki; Wada, Hiroyuki; Yoshizawa, Yasunori; Imai, Yoshio; Machida, Toru; Akahane, Masaaki; Shirouzu, Ichiro; Konishi, Seiki

    2016-01-01

    The orbitofrontal cortex (OFC) is involved in cognitive functions, and is also closely related to autonomic functions. The OFC is densely connected with the hypothalamus, a heterogeneous structure controlling autonomic functions that can be divided into two major parts: the lateral and the medial. Resting-state functional connectivity has allowed us to parcellate the cerebral cortex into putative functional areas based on the changes in the spatial pattern of connectivity in the cerebral cortex when a seed point is moved from one voxel to another. In the present high spatial-resolution fMRI study, we investigate the connectivity-based organization of the OFC with reference to the hypothalamus. The OFC was parcellated using resting-state functional connectivity in an individual subject approach, and then the functional connectivity was examined between the parcellated areas in the OFC and the lateral/medial hypothalamus. We found a functional double dissociation in the OFC: the lateral OFC (the lateral orbital gyrus) was more likely connected with the lateral hypothalamus, whereas the medial OFC (the medial orbital and rectal gyri) was more likely connected with the medial hypothalamus. These results demonstrate the fundamental heterogeneity of the OFC, and suggest a potential neural basis of the OFC-hypothalamic functional interaction.

  10. Topography and areal organization of mouse visual cortex.

    Science.gov (United States)

    Garrett, Marina E; Nauhaus, Ian; Marshel, James H; Callaway, Edward M

    2014-09-10

    To guide future experiments aimed at understanding the mouse visual system, it is essential that we have a solid handle on the global topography of visual cortical areas. Ideally, the method used to measure cortical topography is objective, robust, and simple enough to guide subsequent targeting of visual areas in each subject. We developed an automated method that uses retinotopic maps of mouse visual cortex obtained with intrinsic signal imaging (Schuett et al., 2002; Kalatsky and Stryker, 2003; Marshel et al., 2011) and applies an algorithm to automatically identify cortical regions that satisfy a set of quantifiable criteria for what constitutes a visual area. This approach facilitated detailed parcellation of mouse visual cortex, delineating nine known areas (primary visual cortex, lateromedial area, anterolateral area, rostrolateral area, anteromedial area, posteromedial area, laterointermediate area, posterior area, and postrhinal area), and revealing two additional areas that have not been previously described as visuotopically mapped in mice (laterolateral anterior area and medial area). Using the topographic maps and defined area boundaries from each animal, we characterized several features of map organization, including variability in area position, area size, visual field coverage, and cortical magnification. We demonstrate that higher areas in mice often have representations that are incomplete or biased toward particular regions of visual space, suggestive of specializations for processing specific types of information about the environment. This work provides a comprehensive description of mouse visuotopic organization and describes essential tools for accurate functional localization of visual areas.

  11. The insular taste cortex contributes to odor quality coding

    Directory of Open Access Journals (Sweden)

    Maria G Veldhuizen

    2010-07-01

    Full Text Available Despite distinct peripheral and central pathways, stimulation of both the olfactory and the gustatory systems may give rise to the sensation of sweetness. Whether there is a common central mechanism producing sweet quality sensations or two discrete mechanisms associated independently with gustatory and olfactory stimuli is currently unknown. Here we used fMRI to determine whether odor sweetness is represented in the piriform olfactory cortex, which is thought to code odor quality, or in the insular taste cortex, which is thought to code taste quality. Fifteen participants sampled two concentrations of a pure sweet taste (sucrose, two sweet food odors (chocolate and strawberry, and two sweet floral odors (lilac and rose. Replicating prior work we found that olfactory stimulation activated the piriform, orbitofrontal and insular cortices. Of these regions, only the insula also responded to sweet taste. More importantly, the magnitude of the response to the food odors, but not to the non-food odors, in this region of insula was positively correlated with odor sweetness rating. These findings demonstrate that insular taste cortex contributes to odor quality coding by representing the taste-like aspects of food odors. Since the effect was specific to the food odors, and only food odors are experienced with taste, we suggest this common central mechanism develops as a function of experiencing flavors.

  12. Audiovisual Association Learning in the Absence of Primary Visual Cortex.

    Science.gov (United States)

    Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice

    2015-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.

  13. Tonotopic organization of human auditory association cortex.

    Science.gov (United States)

    Cansino, S; Williamson, S J; Karron, D

    1994-11-07

    Neuromagnetic studies of responses in human auditory association cortex for tone burst stimuli provide evidence for a tonotopic organization. The magnetic source image for the 100 ms component evoked by the onset of a tone is qualitatively similar to that of primary cortex, with responses lying deeper beneath the scalp for progressively higher tone frequencies. However, the tonotopic sequence of association cortex in three subjects is found largely within the superior temporal sulcus, although in the right hemisphere of one subject some sources may be closer to the inferior temporal sulcus. The locus of responses for individual subjects suggests a progression across the cortical surface that is approximately proportional to the logarithm of the tone frequency, as observed previously for primary cortex, with the span of 10 mm for each decade in frequency being comparable for the two areas.

  14. On stable compact minimal submanifolds

    CERN Document Server

    Torralbo, Francisco

    2010-01-01

    Stable compact minimal submanifolds of the product of a sphere and any Riemannian manifold are classified whenever the dimension of the sphere is at least three. The complete classification of the stable compact minimal submanifolds of the product of two spheres is obtained. Also, it is proved that the only stable compact minimal surfaces of the product of a 2-sphere and any Riemann surface are the complex ones.

  15. Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex.

    Science.gov (United States)

    Kirk, Ulrich; Gu, Xiaosi; Harvey, Ann H; Fonagy, Peter; Montague, P Read

    2014-10-15

    Neuroimaging research has demonstrated that ventromedial prefrontal cortex (vmPFC) encodes value signals that can be modulated by top-down cognitive input such as semantic knowledge, price incentives, and monetary favors suggesting that such biases may have an identified biological basis. It has been hypothesized that mindfulness training (MT) provides one path for gaining control over such top-down influences; yet, there have been no direct tests of this hypothesis. Here, we probe the behavioral and neural effects of MT on value signals in vmPFC in a randomized longitudinal design of 8 weeks of MT on an initially naïve subject cohort. The impact of this within-subject training was assessed using two paradigms: one that employed primary rewards (fruit juice) in a simple conditioning task and another that used a well-validated art-viewing paradigm to test bias of monetary favors on preference. We show that MT behaviorally censors the top-down bias of monetary favors through a measurable influence on value signals in vmPFC. MT also modulates value signals in vmPFC to primary reward delivery. Using a separate cohort of subjects we show that 8 weeks of active control training (ACT) generates the same behavioral impact also through an effect on signals in the vmPFC. Importantly, functional connectivity analyses show that value signals in vmPFC are coupled with bilateral posterior insula in the MT groups in both paradigms, but not in the ACT groups. These results suggest that MT integrates interoceptive input from insular cortex in the context of value computations of both primary and secondary rewards.

  16. Food related processes in the insular cortex

    Directory of Open Access Journals (Sweden)

    Sabine eFrank

    2013-08-01

    Full Text Available The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex.In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa, bulimia nervosa. The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex.

  17. Motor Cortex Stimulation in Parkinson's Disease

    OpenAIRE

    Marisa De Rose; Giusy Guzzi; Domenico Bosco; Mary Romano; Serena Marianna Lavano; Massimiliano Plastino; Giorgio Volpentesta; Rosa Marotta; Angelo Lavano

    2012-01-01

    Motor Cortex Stimulation (MCS) is less efficacious than Deep Brain Stimulation (DBS) in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment...

  18. Immunocytochemical demonstration of axonal and perikaryal acetylcholinesterase in human cerebral cortex.

    Science.gov (United States)

    Mesulam, M M; Geula, C; Cosgrove, R; Mash, D; Brimijoin, S

    1991-01-25

    The adult human neocortex contains a dense net of axons and perikarya which yield an acetylcholinesterase-rich enzymatic reaction pattern in histochemical experiments. We employed a monoclonal antibody to human acetylcholinesterase and a method for the concurrent visualization of histochemical and immunohistochemical reaction-products to explore the relationship between immunological and enzymatic markers of acetylcholinesterase. We observed that the cortical axons and perikarya with a histochemically determined acetylcholinesterase-rich enzymatic activity also contain acetylcholinesterase-like immunoreactivity. This was especially informative for the intracortical acetylcholinesterase-rich perikarya of layers III and V since these neurons require prolonged incubations for histochemical detection and since they are not conspicuous in other animal species. The availability of a reliable immunohistochemical method makes it possible to investigate the distribution of the acetylcholinesterase enzyme molecule independent of its enzymatic activity.

  19. Dr. Otto Soltmann (1876) on development of the motor cortex and recovery after its removal in infancy.

    Science.gov (United States)

    Finger, S; Beyer, T; Koehler, P J

    2000-09-15

    In 1870, Fritsch and Hitzig demonstrated that dogs have a motor cortex. In a chapter published 6 years later, Otto Soltmann studied the functional development of the motor cortex, which he believed functioned in willed movement. He was the first to show that the dog's motor cortex becomes electrically excitable at about 10 days of age, with the contralateral forepaw area appearing first. He also studied the effects of ablating the cortical motor regions unilaterally and bilaterally, and encountered a remarkable degree of sparing of function in his animals operated on as newborns, but not in older-operated dogs. Soltmann turned to the theory of functional take-over (vicariation) to account for the absence of deficits in his young animals. He was especially intrigued by the fact that electrical stimulation of a healthy motor cortex could produce bilateral matched movements, but only in dogs that sustained opposite motor cortex lesions very early in life.

  20. Solar renovation demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Joergensen, O. [ed.

    1998-10-01

    In the framework of the IEA SHC Programme, a Task on building renovation was initiated, `Task 20, Solar Energy in Building Renovation`. In a part of the task, Subtask C `Design of Solar Renovation Projects`, different solar renovation demonstration projects were developed. The objective of Subtask C was to demonstrate the application of advanced solar renovation concepts on real buildings. This report documents 16 different solar renovation demonstration projects including the design processes of the projects. The projects include the renovation of houses, schools, laboratories, and factories. Several solar techniques were used: building integrated solar collectors, glazed balconies, ventilated solar walls, transparent insulation, second skin facades, daylight elements and photovoltaic systems. These techniques are used in several simple as well as more complex system designs. (au)

  1. [Investigation on chemical constituents of processed products of Eucommiae Cortex].

    Science.gov (United States)

    Tao, Yi; Sheng, Chen; Li, Wei-dong; Cai, Bao-chang; Lu, Tu-lin

    2014-11-01

    According to the 2010 Chinese pharmacopeia, salt processed and charcoal processed Eucommiae Cortex were pre- pared. HPLC-DAD analysis of the content of the bark and leaf of Eucommiae Cortex showed that the bark of Eucommiae Cortex mainly contained lignans such as pinoresinol glucose and iridoid including genipin, geniposide, geniposidic acid, while the leaf of Eucommiae Cortex consisted of flavonoids such as quercetin and phenolic compound such as chlorogenic acid. The content of pinoresinol diglucoside in the bark of Eucommiae Cortex was about 18 times more than that in the leaf of Eucommiae Cortex. The content of pinoresinol diglucoside in salted and charcoal processed Eucommiae Cortex decreased approximately by 30% and 85%, respectively. The content of genipin, geniposide and geniposidic acid in the bark of Eucommiae Cortex was about 3 times, 23 times, 28 times more than that in the leaf of Eucommiae Cortex. The content of genipin, geniposide and geniposidic acid in salted Eucommiae Cortex were reduced by 25%, 40% and 40%, respectively. The content of genipin, geniposide and geniposidic acid in charcoal processed Eucommiae Cortex were reduced by 98%, 70%, 70%, respectively. The content of caffeic acid in bark of Eucommiae Cortex was about 3 times more than that in the leaf of Eucommiae Cortex. The content of caffeic acid was decreased by about 50% in the salted Eucommiae Cortex. While the content of caffeic acid in charcoal processed Eucommiae Cortex was decreased approximately 75%; the content of chlorogenic acid in bark of Eucommiae Cortex was about 1/6 of that in the leaf of Eucommiae Cortex. The content of chlorogenic acid in salted and charcoal processed Eucommiae Cortex decreased by 40% and 75%, respectively; the content of quercetin in bark of Eucommiae Cortex was only 1/40 of that in the leaf of Eucommiae Cortex. The content of quercetin in salted and charcoal processed Eucommiae Cortex were reduced by 60% and 50%, respectively.

  2. The Role of Human Parietal Cortex in Attention Networks

    Science.gov (United States)

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  3. Mescaline-induced changes of brain-cortex ribosomes. Mescaline demethylase activity of brain-cortex soluble supernatant.

    Science.gov (United States)

    Datta, R K; Ghosh, J J

    1977-02-01

    Brain-cortex slices demethylate mescaline and p-methoxyacetanilide, a reference O-demethylating substrate, though the rate of demethylation of mescaline is about one third that of the reference substrate. The demethylase activity is localized mostly in the soluble supernatant (105 000 x g). It is purified 47-fold with respect to the demethylation of mescaline by ammonium sulfate precipitation and DEAE cellulose chromatography. The partially purified demethylase, which is stable for 3-5 days at -5 degrees C in the presence of dithiothreitol and glutathione and is inhibited by p-chloromercuribenzoate, has maximal activity at pH between 7.2 and 8.0. It demethylates mescaline into 3,4-dimethoxy-5-hydroxyphenethylamine and 3,5-dimethoxy-4-hydroxyphenethylamine and some unidentified derivatives.

  4. Acetylcholine release in the hippocampus and prelimbic cortex during acquisition of a socially transmitted food preference.

    Science.gov (United States)

    Gold, P E; Countryman, R A; Dukala, D; Chang, Q

    2011-10-01

    Interference with cholinergic functions in hippocampus and prefrontal cortex impairs learning and memory for social transmission of food preference, suggesting that acetylcholine (ACh) release in the two brain regions may be important for acquiring the food preference. This experiment examined release of ACh in the hippocampus and prefrontal cortex of rats during training for social transmission of food preference. After demonstrator rats ate a food with novel flavor and odor, a social transmission of food preference group of rats was allowed to interact with the demonstrators for 30 min, while in vivo microdialysis collected samples for later measurement of ACh release with HPLC methods. A social control group observed a demonstrator that had eaten food without novel flavor and odor. An odor control group was allowed to smell but not ingest food with novel odor. Rats in the social transmission but not control groups preferred the novel food on a trial 48 h later. ACh release in prefrontal cortex, with probes that primarily sampled prelimbic cortex, did not increase during acquisition of the social transmission of food preference, suggesting that training-initiated release of ACh in prelimbic cortex is not necessary for acquisition of the food preference. In contrast, ACh release in the hippocampus increased substantially (200%) upon exposure to a rat that had eaten the novel food. Release in the hippocampus increased significantly less (25%) upon exposure to a rat that had eaten normal food and did not increase significantly in the rats exposed to the novel odor; ACh release in the social transmission group was significantly greater than that of the either of the control groups. Thus, ACh release in the hippocampus but not prelimbic cortex distinguished well the social transmission vs. control conditions, suggesting that cholinergic mechanisms in the hippocampus but not prelimbic cortex are important for acquiring a socially transmitted food preference. Copyright

  5. Demonstrating marketing accountability.

    Science.gov (United States)

    Gombeski, William R; Britt, Jason; Taylor, Jan; Riggs, Karen; Wray, Tanya; Adkins, Wanda; Springate, Suzanne

    2008-01-01

    Pressure on health care marketers to demonstrate effectiveness of their strategies and show their contribution to organizational goals is growing. A seven-tiered model based on the concepts of structure (having the right people, systems), process (doing the right things in the right way), and outcomes (results) is discussed. Examples of measures for each tier are provided and the benefits of using the model as a tool for measuring, organizing, tracking, and communicating appropriate information are provided. The model also provides a framework for helping management understand marketing's value and can serve as a vehicle for demonstrating marketing accountability.

  6. Demonstrating Supernova Remnant Evolution

    Science.gov (United States)

    Leahy, Denis A.; Williams, Jacqueline

    2017-01-01

    We have created a software tool to calculate at display supernova remnant evolution which includes all stages from early ejecta dominated phase to late-time merging with the interstellar medium. The software was created using Python, and can be distributed as Python code, or as an executable file. The purpose of the software is to demonstrate the different phases and transitions that a supernova remnant undergoes, and will be used in upper level undergraduate astrophysics courses as a teaching tool. The usage of the software and its graphical user interface will be demonstrated.

  7. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  8. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  9. Inductrack demonstration model

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.

    1998-02-03

    A small-scale model track of a new type of magnetic levitation system (dubbed the ``Inductrack`` system), and a passively magnetically levitated cart, has been designed, constructed and operated. The track consists of a close-packed array of rectangular levitation coils, 15 centimeters in width transversely and 20 meters in length. The array of coils is inductively loaded above and below its lower horizontal section with ferrite tiles. Paralleling the levitation coils on each side are aluminum-channel rails on which ride auxiliary wheels attached to the cart. The cart has, on its lower surface and on its sides, fore and aft, special arrays (``Halbach arrays``) of permanent magnet bars that produce a strong periodic magnetic field below the cart. This magnetic field, when the cart is in motion, induces repelling currents in the Inductrack coils, levitating it and centering it transversely. When mechanically launched (with a pulley- and-weight system) at speeds substantially above a ``transition speed`` of about 2 meters per second, the cart levitated and flew stably down the track, settling to rest on its wheels near the end of the track. In the last phase of the program an electromagnetic launching section consisting of another array of coils, connected to pulse-driver circuits, was added at the beginning of the track. Aided by an initial launch (from stretched ``bungee`` cords), this electromagnetic launching system was operated successfully, resulting again in levitation and subsequent stable flight of the cart.

  10. Monty Roberts’ public demonstrations

    NARCIS (Netherlands)

    Loftus, Loni; Marks, Kelly; Jones-McVey, Rosie; Gonzales, Jose L.; Fowler, Veronica L.

    2016-01-01

    Effective training of horses relies on the trainer’s awareness of learning theory and equine ethology, and should be undertaken with skill and time. Some trainers, such as Monty Roberts, share their methods through the medium of public demonstrations. This paper describes the opportunistic analys

  11. Arctic Craft Demonstration Report

    Science.gov (United States)

    2012-11-01

    it received a lot of attention from the local population. Demonstration personnel, both Coast Guard and contractors, were asked to be receptive to...www.uscg.mil/top/missions/ . Counter-Drug Interdiction and Alien Migrant Interdiction operations are currently not included. In the non-Polar regions

  12. Participatory Lecture Demonstrations.

    Science.gov (United States)

    Battino, Rubin

    1979-01-01

    The use of participatory lecture demonstrations in the classroom is described. Examples are given for the following topics: chromatography, chemical kinetics, balancing equations, the gas laws, kinetic molecular theory, Henry's law of gas solubility, electronic energy levels in atoms, and translational, vibrational, and rotational energies of…

  13. Demonstrating the Gas Laws.

    Science.gov (United States)

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  14. Polarized Light: Three Demonstrations.

    Science.gov (United States)

    Goehmann, Ruth; Welty, Scott

    1984-01-01

    Describes three demonstrations used in the Chicago Museum of Science and Industry polarized light show. The procedures employed are suitable for the classroom by using smaller polarizers and an overhead projector. Topic areas include properties of cellophane tape, nondisappearing arrows, and rope through a picket fence. (JN)

  15. Passive damping technology demonstration

    Science.gov (United States)

    Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.

    1995-05-01

    A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.

  16. PHARUS ASAR demonstrator

    NARCIS (Netherlands)

    Smith, A.J.E.; Bree, R.J.P. van; Calkoen, C.J.; Dekker, R.J.; Otten, M.P.G.; Rossum, W.L. van

    2001-01-01

    PHARUS is a polarimetric phased array C-band Synthetic Aperture Radar (SAR), designed and built for airborne use. Advanced SAR (ASAR) data in image and alternating polarization mode have been simulated with PHARUS to demonstrate the use of Envisat for a number of typical SAR applications that are no

  17. Distance Learning Environment Demonstration.

    Science.gov (United States)

    1996-11-01

    The Distance Learning Environment Demonstration (DLED) was a comparative study of distributed multimedia computer-based training using low cost high...measurement. The DLED project provides baseline research in the effective use of distance learning and multimedia communications over a wide area ATM/SONET

  18. Calculus Demonstrations Using MATLAB

    Science.gov (United States)

    Dunn, Peter K.; Harman, Chris

    2002-01-01

    The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…

  19. Palpability Support Demonstrated

    DEFF Research Database (Denmark)

    Brønsted, Jeppe; Grönvall, Erik; Fors, David

    2007-01-01

    is based on the Active Surfaces concept in which therapists rehabilitate physically and mentally impaired children by means of an activity that stimulates the children both physically and cognitively. In this paper we demonstrate how palpability can be supported in a prototype of the Active Surfaces...

  20. Polarized Light: Three Demonstrations.

    Science.gov (United States)

    Goehmann, Ruth; Welty, Scott

    1984-01-01

    Describes three demonstrations used in the Chicago Museum of Science and Industry polarized light show. The procedures employed are suitable for the classroom by using smaller polarizers and an overhead projector. Topic areas include properties of cellophane tape, nondisappearing arrows, and rope through a picket fence. (JN)

  1. Age-Related Changes in Perirhinal Cortex Sensitivity to Configuration and Part Familiarity and Connectivity to Visual Cortex

    Directory of Open Access Journals (Sweden)

    Laura Cacciamani

    2017-09-01

    Full Text Available The perirhinal cortex (PRC is a medial temporal lobe (MTL structure known to be involved in assessing whether an object is familiar (i.e., meaningful or novel. Recent evidence shows that the PRC is sensitive to the familiarity of both whole object configurations and their parts, and suggests the PRC may modulate part familiarity responses in V2. Here, using functional magnetic resonance imaging (fMRI, we investigated age-related decline in the PRC’s sensitivity to part/configuration familiarity and assessed its functional connectivity to visual cortex in young and older adults. Participants categorized peripherally presented silhouettes as familiar (“real-world” or novel. Part/configuration familiarity was manipulated via three silhouette configurations: Familiar (parts/configurations familiar, Control Novel (parts/configurations novel, and Part-Rearranged Novel (parts familiar, configurations novel. “Real-world” judgments were less accurate than “novel” judgments, although accuracy did not differ between age groups. The fMRI data revealed differential neural activity, however: In young adults, a linear pattern of activation was observed in left hemisphere (LH PRC, with Familiar > Control Novel > Part-Rearranged Novel. Older adults did not show this pattern, indicating age-related decline in the PRC’s sensitivity to part/configuration familiarity. A functional connectivity analysis revealed a significant coupling between the PRC and V2 in the LH in young adults only. Older adults showed a linear pattern of activation in the temporopolar cortex (TPC, but no evidence of TPC-V2 connectivity. This is the first study to demonstrate age-related decline in the PRC’s representations of part/configuration familiarity and its covariance with visual cortex.

  2. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  3. A1 demonstrates restricted tissue distribution during embryonic development and functions to protect against cell death.

    Science.gov (United States)

    Carrió, R.; López-Hoyos, M.; Jimeno, J.; Benedict, M. A.; Merino, R.; Benito, A.; Fernández-Luna, J. L.; Núñez, G.; García-Porrero, J. A.; Merino, J.

    1996-01-01

    Members of the bcl-2 gene family are essential regulators of cell survival in a wide range of biological processes. A1, a member of the family, is known to be expressed in certain adult tissues. However, the precise tissue distribution and function of A1 remains poorly understood. We show here that A1 is expressed in multiple tissues during murine embryonic development. In the embryo, A1 was detected first at embryonic day 11.5 in liver, brain, and limbs. At day 13.5 of gestation, A1 expression was observed in the central nervous system, liver, perichondrium, and digital zones of developing limbs in a pattern different from that of bcl-X. In the central nervous system of 15.5-day embryos, A1 was expressed at high levels in the ventricular zone and cortical plate of brain cortex. Significantly, the interdigital zones of limbs and the intermediate region of the developing brain cortex, two sites associated with extensive cell death, were devoid of A1 and bcl-X. The expression of A1 was retained in many adult tissues. To assess the ability of A1 to modulate cell death, stable transfectants expressing different amounts of A1 protein were generated in K562 cells. Expression of A1 was associated with retardation of apoptotic cell death induced by actinomycin D and cycloheximide as well as by okadaic acid. Confocal microscopy showed that the A1 protein was localized to the cytoplasm in a pattern similar to that of Bcl-2. These results demonstrate that the expression of A1 is wider than previously reported in adult tissues. Furthermore, its distribution in multiple tissues of the embryo suggests that A1 plays a role in the regulation of physiological cell death during embryonic development. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8952545

  4. Within-digit functional parcellation of Brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 tesla.

    Science.gov (United States)

    Sanchez-Panchuelo, Rosa M; Besle, Julien; Beckett, Alex; Bowtell, Richard; Schluppeck, Denis; Francis, Susan

    2012-11-07

    The primary somatosensory cortex (S1) can be subdivided cytoarchitectonically into four distinct Brodmann areas (3a, 3b, 1, and 2), but these areas have never been successfully delineated in vivo in single human subjects. Here, we demonstrate the functional parcellation of four areas of S1 in individual human subjects based on high-resolution functional MRI measurements made at 7 T using vibrotactile stimulation. By stimulating four sites along the length of the index finger, we were able to identify and locate map reversals of the base to tip representation of the index finger in S1. We suggest that these reversals correspond to the areal borders between the mirrored representations in the four Brodmann areas, as predicted from electrophysiology measurements in nonhuman primates. In all subjects, maps were highly reproducible across scanning sessions and stable over weeks. In four of the six subjects scanned, four, mirrored, within-finger somatotopic maps defining the extent of the Brodmann areas could be directly observed on the cortical surface. In addition, by using multivariate classification analysis, the location of stimulation on the index finger (four distinct sites) could be decoded with a mean accuracy of 65% across subjects. Our measurements thus show that within-finger topography is present at the millimeter scale in the cortex and is highly reproducible. The ability to identify functional areas of S1 in vivo in individual subjects will provide a framework for investigating more complex aspects of tactile representation in S1.

  5. The role of sensory cortex in behavioral flexibility.

    Science.gov (United States)

    Guo, Lan; Ponvert, Nicholas D; Jaramillo, Santiago

    2017-03-14

    To thrive in a changing environment, organisms evolved strategies for rapidly modifying their behavioral responses to sensory stimuli. In this review, we investigate the role of sensory cortical circuits in these flexible behaviors. First, we provide a framework for classifying tasks in which flexibility is required. We then present studies in animal models which demonstrate that responses of sensory cortical neurons depend on the expected outcome associated with a stimulus. Last, we discuss inactivation studies which indicate that sensory cortex facilitates behavioral flexibility, but is not always required for adapting to changes in environmental conditions. This analysis provides insights into the contributions of cortical and subcortical sensory circuits to flexibility in behavior.

  6. Compression Maps and Stable Relations

    CERN Document Server

    Price, Kenneth L

    2011-01-01

    Balanced relations were defined by G. Abrams to extend the convolution product used in the construction of incidence rings. We define stable relations,which form a class between balanced relations and preorders. We also define a compression map to be a surjective function between two sets which preserves order, preserves off-diagonal relations, and has the additional property every transitive triple is the image of a transitive triple. We show a compression map preserves the balanced and stable properties but the compression of a preorder may be stable and not transitive. We also cover an example of a stable relation which is not the compression of a preorder. In our main theorem we provide necessary and sufficient conditions for a finite stable relation to be the compression of a preorder.

  7. Nucla CFB Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  8. IGCC technology and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [A. Ahlstrom Corporation, Karhula (Finland). Hans Ahlstrom Lab.; Lundqvist, R.G. [A. Ahlstrom Corporation, Helsinki (Finland); Staahl, K. [Sydkraft AB, Malmoe (Sweden)

    1996-12-31

    Future energy production will be performed by advanced technologies that are more efficient, more environmentally friendly and less expensive than current technologies. Integrated gasification combined cycle (IGCC) power plants have been proposed as one of these systems. Utilising biofuels in future energy production will also be emphasised since this lowers substantially carbon dioxide emissions into the atmosphere due to the fact that biomass is a renewable form of energy. Combining advanced technology and biomass utilisation is for this reason something that should and will be encouraged. A. Ahlstrom Corporation of Finland and Sydkraft AB of Sweden have as one part of company strategies adopted this approach for the future. The companies have joined their resources in developing a biomass-based IGCC system with the gasification part based on pressurised circulating fluidized-bed technology. With this kind of technology electrical efficiency can be substantially increased compared to conventional power plants. As a first concrete step, a decision has been made to build a demonstration plant. This plant, located in Vaernamo, Sweden, has already been built and is now in commissioning and demonstration stage. The system comprises a fuel drying plant, a pressurised CFB gasifier with gas cooling and cleaning, a gas turbine, a waste heat recovery unit and a steam turbine. The plant is the first in the world where the integration of a pressurised gasifier with a gas turbine will be realised utilising a low calorific gas produced from biomass. The capacity of the Vaernamo plant is 6 MW of electricity and 9 MW of district heating. Technology development is in progress for design of plants of sizes from 20 to 120 MWe. The paper describes the Bioflow IGCC system, the Vaernamo demonstration plant and experiences from the commissioning and demonstration stages. (orig.)

  9. The Majorana Demonstrator

    CERN Document Server

    Aguayo, E; Hoppe, E W; Keillor, M E; Kephart, J D; Kouzes, R T; LaFerriere, B D; Merriman, J; Orrell, J L; Overman, N R; Avignone, F T; Back, H O; Combs, D C; Leviner, L E; Young, A R; Barabash, A S; Konovalov, S I; Vanyushin, I; Yumatov, V; Bergevin, M; Chan, Y-D; Detwiler, J A; Loach, J C; Martin, R D; Poon, A W P; Prior, G; Vetter, K; Bertrand, F E; Cooper, R J; Radford, D C; Varner, R L; Yu, C -H; Boswell, M; Elliott, S R; Gehman, V M; Hime, A; Kidd, M F; LaRoque, B H; Rielage, K; Ronquest, M C; Steele, D; Brudanin, V; Egorov, V; Gusey, K; Kochetov, O; Shirchenko, M; Timkin, V; Yakushev, E; Busch, M; Esterline, J; Tornow, W; Christofferson, C D; Horton, M; Howard, S; Sobolev, V; Collar, J I; Fields, N; Creswick, R J; Doe, P J; Johnson, R A; Knecht, A; Leon, J; Marino, M G; Miller, M L; Robertson, R G H; Schubert, A G; Wolfe, B A; Efremenko, Yu; Ejiri, H; Hazama, R; Nomachi, M; Shima, T; Finnerty, P; Fraenkle, F M; Giovanetti, G K; Green, M P; Henning, R; Howe, M A; MacMullin, S; Phillips, D G; Snavely, K J; Strain, J; Vorren, K; Guiseppe, V E; Keller, C; Mei, D -M; Perumpilly, G; Thomas, K; Zhang, C; Hallin, A L; Keeter, K J; Mizouni, L; Wilkerson, J F

    2011-01-01

    A brief review of the history and neutrino physics of double beta decay is given. A description of the MAJORANA DEMONSTRATOR research and development program including background reduction techniques is presented in some detail. The application of point contact (PC) detectors to the experiment is discussed, including the effectiveness of pulse shape analysis. The predicted sensitivity of a PC detector array enriched to 86% in 76Ge is given.

  10. The Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, Estanislao; Fast, James E.; Hoppe, Eric W.; Keillor, Martin E.; Kephart, Jeremy D.; Kouzes, Richard T.; LaFerriere, Brian D.; Merriman, Jason H.; Orrell, John L.; Overman, Nicole R.; Avignone, Frank T.; Back, Henning O.; Combs, Dustin C.; Leviner, L.; Young, A.; Barabash, Alexander S.; Konovalov, S.; Vanyushin, I.; Yumatov, Vladimir; Bergevin, M.; Chan, Yuen-Dat; Detwiler, Jason A.; Loach, J. C.; Martin, R. D.; Poon, Alan; Prior, Gersende; Vetter, Kai; Bertrand, F.; Cooper, R. J.; Radford, D. C.; Varner, R. L.; Yu, Chang-Hong; Boswell, M.; Elliott, S.; Gehman, Victor M.; Hime, Andrew; Kidd, M. F.; LaRoque, B. H.; Rielage, Keith; Ronquest, M. C.; Steele, David; Brudanin, V.; Egorov, Viatcheslav; Gusey, K.; Kochetov, Oleg; Shirchenko, M.; Timkin, V.; Yakushev, E.; Busch, Matthew; Esterline, James H.; Tornow, Werner; Christofferson, Cabot-Ann; Horton, Mark; Howard, S.; Sobolev, V.; Collar, J. I.; Fields, N.; Creswick, R.; Doe, Peter J.; Johnson, R. A.; Knecht, A.; Leon, Jonathan D.; Marino, Michael G.; Miller, M. L.; Robertson, R. G. H.; Schubert, Alexis G.; Wolfe, B. A.; Efremenko, Yuri; Ejiri, H.; Hazama, R.; Nomachi, Masaharu; Shima, T.; Finnerty, P.; Fraenkle, Florian; Giovanetti, G. K.; Green, M.; Henning, Reyco; Howe, M. A.; MacMullin, S.; Phillips, D.; Snavely, Kyle J.; Strain, J.; Vorren, Kris R.; Guiseppe, Vincente; Keller, C.; Mei, Dong-Ming; Perumpilly, Gopakumar; Thomas, K.; Zhang, C.; Hallin, A. L.; Keeter, K.; Mizouni, Leila; Wilkerson, J. F.

    2011-09-03

    A brief review of the history and neutrino physics of double beta decay is given. A description of the MAJORANA DEMONSTRATOR research and development program, including background reduction techniques, is presented in some detail. The application of point contact (PC) detectors to the experiment is discussed, including the effectiveness of pulse shape analysis. The predicted sensitivity of a PC detector array enriched to 86% to 76Ge is given.

  11. Perirhinal cortex and temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Giuseppe eBiagini

    2013-08-01

    Full Text Available The perirhinal cortex – which is interconnected with several limbic structures and is intimately involved in learning and memory - plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.

  12. Stable isotopes in Lithuanian bioarcheological material

    Science.gov (United States)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  13. Enhanced cholinergic suppression of previously strengthened synapses enables the formation of self-organized representations in olfactory cortex.

    Science.gov (United States)

    Linster, Christiane; Maloney, Michaella; Patil, Madhvi; Hasselmo, Michael E

    2003-11-01

    Computational modeling assists in analyzing the specific functional role of the cellular effects of acetylcholine within cortical structures. In particular, acetylcholine may regulate the dynamics of encoding and retrieval of information by regulating the magnitude of synaptic transmission at excitatory recurrent connections. Many abstract models of associative memory function ignore the influence of changes in synaptic strength during the storage process and apply the effect of these changes only during a so-called recall-phase. Efforts to ensure stable activity with more realistic, continuous updating of the synaptic strength during the storage process have shown that the memory capacity of a realistic cortical network can be greatly enhanced if cholinergic modulation blocks transmission at synaptic connections of the association fibers during the learning process. We here present experimental data from an olfactory cortex brain slice preparation showing that previously potentiated fibers show significantly greater suppression (presynaptic inhibition) by the cholinergic agonist carbachol than unpotentiated fibers. We conclude that low suppression of non-potentiated fibers during the learning process ensures the formation of self-organized representations in the neural network while the higher suppression of previously potentiated fibers minimizes interference between overlapping patterns. We show in a computational model of olfactory cortex, that, together, these two phenomena reduce the overlap between patterns that are stored within the same neural network structure. These results further demonstrate the contribution of acetylcholine to mechanisms of cortical plasticity. The results are consistent with the extensive evidence supporting a role for acetylcholine in encoding of new memories and enhancement of response to salient sensory stimuli.

  14. Nuclear physics and stable isotopes; Physique nucleaire et isotopes stables

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, D. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1994-12-31

    The aim of this paper is to show that fundamental research in nuclear physics requires utilization of stable isotopes; stable isotopes are essential as target material since a large quantity of nucleus have to be studied in order to appreciate all the complexity of the nuclear structure, but also as a tool, such as beams, for the same purpose. Examples are given with samarium, tin and germanium isotopes. 7 figs.

  15. Learning From Demonstration?

    DEFF Research Database (Denmark)

    Koch, Christian; Bertelsen, Niels Haldor

    2014-01-01

    . This paper reports on an early demonstration project, the Building of a passive house dormitory in the Central Region of Denmark in 2006-2009. The project was supposed to deliver value, lean design, prefabrication, quality in sustainability, certification according to German standards for passive houses...... of control, driven by such challenges as complying with cost goals, the need to choose a German prefab supplier, and local contractors. Energy calculations, indoor climate, issues related to square meter requirements, and the hydrogen element became problematic. The aim to obtain passive house certification...

  16. Learning From Demonstration?

    DEFF Research Database (Denmark)

    Koch, Christian; Bertelsen, Niels Haldor

    2014-01-01

    , and micro combined heat and power using hydrogen. Using sociological and business economic theories of innovation, the paper discusses how early movers of innovation tend to obtain only partial success when demonstrating their products and often feel obstructed by minor details. The empirical work...... encompasses both an evaluation of the design and Construction process as well as a post-occupancy evaluation. Process experiences include the use of a multidisciplinary competence group and performance measurement. The commencement of the project was enthusiastic, but it was forced into more traditional forms...

  17. Visual Electricity Demonstrator

    Science.gov (United States)

    Lincoln, James

    2017-09-01

    The Visual Electricity Demonstrator (VED) is a linear diode array that serves as a dynamic alternative to an ammeter. A string of 48 red light-emitting diodes (LEDs) blink one after another to create the illusion of a moving current. Having the current represented visually builds an intuitive and qualitative understanding about what is happening in a circuit. In this article, I describe several activities for this device and explain how using this technology in the classroom can enhance the understanding and appreciation of physics.

  18. Exploration Medical System Demonstration

    Science.gov (United States)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  19. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  20. Deep prepiriform cortex kindling and amygdala interactions.

    Science.gov (United States)

    Zhao, D Y; Moshé, S L

    1987-03-01

    The deep prepiriform cortex (DPC) has been recently suggested to be a crucial epileptogenic site in the rat brain. We investigated the susceptibility of the DPC to the development of electrical kindling as compared to that of the superficial prepiriform cortex (SPC) and amygdala as well as the transfer interactions between the two prepiriform sites and amygdala. Adult rats with electrodes implanted in the right prepiriform cortex (DPC or SPC) and left amygdala were divided into a DPC-amygdala and SPC-amygdala group while a third group consisted of rats with electrodes implanted in the ipsilateral DPC and amygdala. Within each group the rats were initially kindled from one site selected randomly and then rekindled from the other site. Both DPC and SPC were as sensitive to the development of kindling as the amygdala. The behavioral seizures elicited with DPC or SPC primary kindling were identical to those induced by amygdala kindling. Initial DPC kindling facilitated the development of kindling from either ipsilateral or contralateral amygdala with the ipsilateral transfer being significantly more potent than the contralateral. SPC kindling also facilitated the development of contralateral amygdala kindling but was less effective than DPC kindling. On the other hand, amygdala kindling did not facilitate contralateral SPC or DPC kindling although it transferred to the ipsilateral DPC. These results indicate that the prepiriform cortex can be readily kindled but not faster than the amygdala and that there are unequal kindling transfer interactions between prepiriform cortex and amygdala.

  1. [Prefrontal cortex in memory and attention processes].

    Science.gov (United States)

    Allegri, R F; Harris, P

    The role of the prefrontal cortex still remains poorly understood. Only after 1970, the functions of the frontal lobes have been conceptualized from different points of view (behaviorism, cognitivism). Recently,different parallel circuits connecting discrete cortical and subcortical regions of the frontal lobes have been described. Three of these circuits are the most relevant to understanding of behavior: the dorsolateral prefrontal circuit, that mediates executive behavior; the orbitofrontal prefrontal circuit, mediating social behavior, and the medial frontal circuit, involved in motivation. Damage to the frontal cortex impairs planning, problem solving, reasoning, concept formation, temporal ordering of stimuli, estimation, attention, memory search, maintaining information in working memory, associative learning,certain forms of skilled motor activities, image generation and manipulation of the spatial properties of a stimulus, metacognitive thinking, and social cognition. Several theories have been proposed to explain the functions of the prefrontal cortex. Currently,the most influential cognitive models are: the Norman and Shallice supervisory attentional system, involved in non-routine selection; the Baddeley working memory model with the central executive as a supervisory controlling system, in which impairment leads to a 'dysexecutive syndrome'; and the Grafman's model of managerial knowledge units, stored as macrostructured information in the frontal cortex. The prefrontal cortex is essential for attentional control, manipulation of stored knowledge and modulation of complex actions, cognition, emotion and behavior.

  2. Visual motion discrimination by propagating patterns in primate cerebral cortex.

    Science.gov (United States)

    Townsend, Rory; Solomon, Selina S; Martin, Paul R; Solomon, Samuel G; Gong, Pulin

    2017-09-14

    Visual stimuli can evoke waves of neural activity that propagate across the surface of visual cortical areas. The relevance of these waves for visual processing is unknown. Here we measured the phase and amplitude of local field potentials (LFPs) in electrode array recordings from motion-processing medial temporal area (MT) of anesthetized male marmosets. Animals viewed grating or dot-field stimuli drifting in different directions. We found that on individual trials, the direction of LFP wave propagation is sensitive to the direction of stimulus motion. Propagating LFP patterns are also detectable in trial-averaged activity, but the trial-averaged patterns exhibit different dynamics and behaviors to those in single trials and are similar across motion directions. We show that this difference arises because stimulus-sensitive propagating patterns are present in the phase of single-trial oscillations, whereas the trial-averaged signal is dominated by additive amplitude effects. Our results demonstrate that propagating LFP patterns can represent sensory inputs, at timescales relevant to visually-guided behaviors, and raise the possibility that propagating activity patterns serve neural information processing in area MT and other cortical areas.SIGNIFICANCE STATEMENTPropagating wave patterns are widely observed in the cortex, but their functional relevance remains unknown. We show here that visual stimuli generate propagating wave patterns in local field potentials (LFPs) in a movement-sensitive area of the primate cortex, and that the propagation direction of these patterns is sensitive to stimulus motion direction. We also show that averaging LFP signals across multiple stimulus presentations (trial-averaging) yields propagating patterns which capture different dynamic properties of the LFP response and show negligible direction sensitivity. Our results demonstrate that sensory stimuli can reliably modulate propagating wave patterns in the cortex. The relevant

  3. Education Demonstration Equipment

    Science.gov (United States)

    Nagy, A.; Lee, R. L.

    2003-10-01

    The General Atomics fusion education program ``Scientist in the Classroom" (SIC) now in its sixth year, uses scientists and engineers to present plasma as a state of matter to students in the classroom. Using hands-on equipment, students see how magnets, gas pressure changes, and different gases are turned into plasmas. A piston, sealed volume, and vacuum chamber illuminate ideal gas laws. Liquid nitrogen is used to explore thermodynamic temperature effects and changes in states of matter. Light bulbs are excited with a Tesla coil to ionize gases, thus becoming an inexpensive plasma devices and a plasma tube shows magnetic interactions with plasma. The demonstration equipment used in this program is built with simple designs and common commercial equipment keeping in mind a teacher's tight budget. The SIC program ( ˜25 school presentations per year) has become very popular and has acquired an enthusiastic group of regular teacher clientele requesting repeat visits. In addition, three very popular and successful ``Build-It" days, sponsored by the General Atomics Fusion Education Outreach Program, enables teachers to build and keep in their classroom some of this equipment. The demonstration devices will be presented along with their ``build-it" details.

  4. Inseparable phone books demonstration

    Science.gov (United States)

    Balta, Nuri; Çetin, Ali

    2017-05-01

    This study is aimed at first introducing a well-known discrepant event; inseparable phone books and second, turning it into an experiment for high school or middle school students. This discrepant event could be used especially to indicate how friction force can be effective in producing an unexpected result. Demonstration, discussion, explanation and experiment steps are presented on how to turn a simple discrepant event into an instructional activity. Results showed the relationships between number of pages and force, as well as between amounts of interleave and force. In addition to these, the mathematical equation for the total force between all interleaved pages is derived. As a conclusion, this study demonstrated that not only can phone books be used, but also ordinary books, to investigate this discrepant event. This experiment can be conducted as an example to show the agreement between theoretical and experimental results along with the confounding variables. This discrepant event can be used to create a cognitive conflict in students’ minds about the concepts of ‘force and motion’ and ‘friction force’.

  5. PFBC Utility Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

  6. Smart Grid Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Craig [National Rural Electric Cooperative Association, Arlington, VA (United States); Carroll, Paul [National Rural Electric Cooperative Association, Arlington, VA (United States); Bell, Abigail [National Rural Electric Cooperative Association, Arlington, VA (United States)

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  7. (/sup 3/H)pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Watson, M.; Roeske, W.R.; Yamamura, H.I.

    1982-11-01

    The specific binding of (/sup 3/H)pirenzepine was investigated in homogenates of rat cerebral cortex, cerebellar cortex, and heart. Specific binding of (/sup 3/H)pirenzepine in the cerebral cortex as defined by displacement with atropine sulfate (1..mu..M) was of high affinity (K/sub d/ = 4-10 nM, receptor density = 1.06 pmoles/mg protein), stereoselective, and competitive with drugs specific for the muscarinic receptor. In contrast, few (/sup 3/H)pirenzepine binding sites were demonstrated in cerebellar and heart homogenates.

  8. Cortex shatters the glass ceiling.

    Science.gov (United States)

    Au, Edmund; Fishell, Gord

    2008-11-06

    Recreating developmental structures in vitro has been a primary challenge for stem cell biologists. Recent studies in Cell Stem Cell (Eiraku et al., 2008) and Nature (Gaspard et al., 2008) demonstrate that embryonic stem cells can recapitulate early cortical development, enabling them to generate specific cortical subtypes.

  9. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  10. Mismatch Receptive Fields in Mouse Visual Cortex.

    Science.gov (United States)

    Zmarz, Pawel; Keller, Georg B

    2016-11-23

    In primary visual cortex, a subset of neurons responds when a particular stimulus is encountered in a certain location in visual space. This activity can be modeled using a visual receptive field. In addition to visually driven activity, there are neurons in visual cortex that integrate visual and motor-related input to signal a mismatch between actual and predicted visual flow. Here we show that these mismatch neurons have receptive fields and signal a local mismatch between actual and predicted visual flow in restricted regions of visual space. These mismatch receptive fields are aligned to the retinotopic map of visual cortex and are similar in size to visual receptive fields. Thus, neurons with mismatch receptive fields signal local deviations of actual visual flow from visual flow predicted based on self-motion and could therefore underlie the detection of objects moving relative to the visual flow caused by self-motion. VIDEO ABSTRACT.

  11. Detecting Cortex Fragments During Bacterial Spore Germination.

    Science.gov (United States)

    Francis, Michael B; Sorg, Joseph A

    2016-06-25

    The process of endospore germination in Clostridium difficile, and other Clostridia, increasingly is being found to differ from the model spore-forming bacterium, Bacillus subtilis. Germination is triggered by small molecule germinants and occurs without the need for macromolecular synthesis. Though differences exist between the mechanisms of spore germination in species of Bacillus and Clostridium, a common requirement is the hydrolysis of the peptidoglycan-like cortex which allows the spore core to swell and rehydrate. After rehydration, metabolism can begin and this, eventually, leads to outgrowth of a vegetative cell. The detection of hydrolyzed cortex fragments during spore germination can be difficult and the modifications to the previously described assays can be confusing or difficult to reproduce. Thus, based on our recent report using this assay, we detail a step-by-step protocol for the colorimetric detection of cortex fragments during bacterial spore germination.

  12. Jennings Demonstration PLant

    Energy Technology Data Exchange (ETDEWEB)

    Russ Heissner

    2010-08-31

    Verenium operated a demonstration plant with a capacity to produce 1.4 million gallons of cellulosic ethanol from agricultural resiues for about two years. During this time, the plant was able to evaluate the technical issues in producing ethanol from three different cellulosic feedstocks, sugar cane bagasse, energy cane, and sorghum. The project was intended to develop a better understanding of the operating parameters that would inform a commercial sized operation. Issues related to feedstock variability, use of hydrolytic enzymes, and the viability of fermentative organisms were evaluated. Considerable success was achieved with pretreatment processes and use of enzymes but challenges were encountered with feedstock variability and fermentation systems. Limited amounts of cellulosic ethanol were produced.

  13. Preferred extensions as stable models

    CERN Document Server

    Nieves, Juan Carlos; Cortés, Ulises

    2008-01-01

    Given an argumentation framework AF, we introduce a mapping function that constructs a disjunctive logic program P, such that the preferred extensions of AF correspond to the stable models of P, after intersecting each stable model with the relevant atoms. The given mapping function is of polynomial size w.r.t. AF. In particular, we identify that there is a direct relationship between the minimal models of a propositional formula and the preferred extensions of an argumentation framework by working on representing the defeated arguments. Then we show how to infer the preferred extensions of an argumentation framework by using UNSAT algorithms and disjunctive stable model solvers. The relevance of this result is that we define a direct relationship between one of the most satisfactory argumentation semantics and one of the most successful approach of non-monotonic reasoning i.e., logic programming with the stable model semantics.

  14. Stable field emission from nanoporous silicon carbide.

    Science.gov (United States)

    Kang, Myung-Gyu; Lezec, Henri J; Sharifi, Fred

    2013-02-15

    We report on a new type of stable field emitter capable of electron emission at levels comparable to thermal sources. Such an emitter potentially enables significant advances in several important technologies which currently use thermal electron sources. These include communications through microwave electronics, and more notably imaging for medicine and security where new modalities of detection may arise due to variable-geometry x-ray sources. Stable emission of 6 A cm(-2) is demonstrated in a macroscopic array, and lifetime measurements indicate these new emitters are sufficiently robust to be considered for realistic implementation. The emitter is a monolithic structure, and is made in a room-temperature process. It is fabricated from a silicon carbide wafer, which is formed into a highly porous structure resembling an aerogel, and further patterned into an array. The emission properties may be tuned both through control of the nanoscale morphology and the macroscopic shape of the emitter array.

  15. Preferred extensions as stable models

    OpenAIRE

    2008-01-01

    Given an argumentation framework AF, we introduce a mapping function that constructs a disjunctive logic program P, such that the preferred extensions of AF correspond to the stable models of P, after intersecting each stable model with the relevant atoms. The given mapping function is of polynomial size w.r.t. AF. In particular, we identify that there is a direct relationship between the minimal models of a propositional formula and the preferred extensions of an argumentation framework by w...

  16. Corticofugal GABAergic projection neurons in the mouse frontal cortex

    Directory of Open Access Journals (Sweden)

    Ryohei eTomioka

    2015-10-01

    Full Text Available Cortical projection neurons are classified by hodology in corticocortical, commissural and corticofugal subtypes. Although cortical projection neurons had been regarded as only glutamatergic neurons, recently corticocortical GABAergic projection neurons has been also reported in several species. Here we demonstrate corticofugal GABAergic projection neurons in the mouse frontal cortex. We employed viral-vector-mediated anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize neocortical GABAergic projection neurons. Injections of the Cre-dependent adeno-associated virus into glutamate decarboxylase 67-Cre knock-in mice revealed neocortical GABAergic projections widely to the forebrain, including the cerebral cortices, caudate putamen, ventral pallidum, lateral globus pallidus, nucleus accumbens, and olfactory tubercle. Minor GABAergic projections were also found in the mediodorsal thalamic nucleus, diagonal band of Broca, medial globus pallidus, substantial nigra, and dorsal raphe nucleus. Retrograde tracing studies also demonstrated corticofugal GABAergic projection neurons in the mouse frontal cortex. Further immunohistochemical screening with neurochemical markers revealed the majority of corticostriatal GABAergic projection neurons were positive for somatostatin-immunoreactivity. In contrast, corticothalamic GABAergic projection neurons were not identified by representative neurochemical markers for GABAergic neurons. These findings suggest that corticofugal GABAergic projection neurons are heterogeneous in terms of their neurochemical properties and target nuclei, and provide axonal innervations mainly to the nuclei in the basal ganglia.

  17. Quantifying uncertainty in stable isotope mixing models

    Science.gov (United States)

    Davis, Paul; Syme, James; Heikoop, Jeffrey; Fessenden-Rahn, Julianna; Perkins, George; Newman, Brent; Chrystal, Abbey E.; Hagerty, Shannon B.

    2015-05-01

    Mixing models are powerful tools for identifying biogeochemical sources and determining mixing fractions in a sample. However, identification of actual source contributors is often not simple, and source compositions typically vary or even overlap, significantly increasing model uncertainty in calculated mixing fractions. This study compares three probabilistic methods, Stable Isotope Analysis in R (SIAR), a pure Monte Carlo technique (PMC), and Stable Isotope Reference Source (SIRS) mixing model, a new technique that estimates mixing in systems with more than three sources and/or uncertain source compositions. In this paper, we use nitrate stable isotope examples (δ15N and δ18O) but all methods tested are applicable to other tracers. In Phase I of a three-phase blind test, we compared methods for a set of six-source nitrate problems. PMC was unable to find solutions for two of the target water samples. The Bayesian method, SIAR, experienced anchoring problems, and SIRS calculated mixing fractions that most closely approximated the known mixing fractions. For that reason, SIRS was the only approach used in the next phase of testing. In Phase II, the problem was broadened where any subset of the six sources could be a possible solution to the mixing problem. Results showed a high rate of Type I errors where solutions included sources that were not contributing to the sample. In Phase III some sources were eliminated based on assumed site knowledge and assumed nitrate concentrations, substantially reduced mixing fraction uncertainties and lowered the Type I error rate. These results demonstrate that valuable insights into stable isotope mixing problems result from probabilistic mixing model approaches like SIRS. The results also emphasize the importance of identifying a minimal set of potential sources and quantifying uncertainties in source isotopic composition as well as demonstrating the value of additional information in reducing the uncertainty in calculated

  18. Hadamard Factorization of Stable Polynomials

    Science.gov (United States)

    Loredo-Villalobos, Carlos Arturo; Aguirre-Hernández, Baltazar

    2011-11-01

    The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p,q ∈ R[x]:p(x) = anxn+an-1xn-1+...+a1x+a0q(x) = bmx m+bm-1xm-1+...+b1x+b0the Hadamard product (p × q) is defined as (p×q)(x) = akbkxk+ak-1bk-1xk-1+...+a1b1x+a0b0where k = min(m,n). Some results (see [16]) shows that if p,q ∈R[x] are stable polynomials then (p×q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n> 4 (see [15]).In this work we will give some conditions to Hadamard factorization existence for stable polynomials.

  19. The Anterior Cingulate Cortex and Pain Processing

    Directory of Open Access Journals (Sweden)

    Perry Neil Fuchs

    2014-05-01

    Full Text Available The neural network that contributes to the suffering which accompanies persistent pain states involves a number of brain regions. Of primary interest is the contribution of the cingulate cortex in processing the affective component of pain. The purpose of this review is to summarize recent data obtained using novel behavioral paradigms in animals based on measuring escape and/or avoidance of a noxious stimulus. These paradigms have successfully been used to study the nature of the neuroanatomical and neurochemical contributions of the anterior cingulate cortex to higher order pain processing in rodents.

  20. Coding of movements in the motor cortex.

    Science.gov (United States)

    Georgopoulos, Apostolos P; Carpenter, Adam F

    2015-08-01

    The issue of coding of movement in the motor cortex has recently acquired special significance due to its fundamental importance in neuroprosthetic applications. The challenge of controlling a prosthetic arm by processed motor cortical activity has opened a new era of research in applied medicine but has also provided an 'acid test' for hypotheses regarding coding of movement in the motor cortex. The successful decoding of movement information from the activity of motor cortical cells using their directional tuning and population coding has propelled successful neuroprosthetic applications and, at the same time, asserted the utility of those early discoveries, dating back to the early 1980s.

  1. Postictal inhibition of the somatosensory cortex

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Jovanovic, Marina; Atkins, Mary Doreen

    2011-01-01

    Transient suppression of the motor cortex and of the speech areas cause well-described postictal phenomena following seizures involving the respective cortical areas. Pain is a rare symptom in epileptic seizures. We present a patient with painful tonic seizures in the left leg. The amplitude...... of the cortical component of the somatosensory evoked potential following stimulation of the left tibial nerve was reduced immediately after the seizure. Our findings suggest that the excitability of the sensory cortex is transiently reduced following a seizure involving the somatosensory area....

  2. Increased positive emotional memory after repetitive transcranial magnetic stimulation over the orbitofrontal cortex

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Honk, E.J. van

    2006-01-01

    Objective: Several studies have demonstrated increased left orbitofrontal cortex (OFC) activity during negative and depressed mood. These mood states have also been associated with reduced memory for positive emotional stimuli. The aim of the present study was to investigate whether slow, inhibitory

  3. Role of Medial Prefrontal Cortex Narp in the Extinction of Morphine Conditioned Place Preference

    Science.gov (United States)

    Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M.

    2013-01-01

    Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…

  4. Disruption of the Perineuronal Net in the Hippocampus or Medial Prefrontal Cortex Impairs Fear Conditioning

    Science.gov (United States)

    Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K.

    2013-01-01

    The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…

  5. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

    Science.gov (United States)

    Mori, Kensaku; Manabe, Hiroyuki; Narikiyo, Kimiya; Onisawa, Naomi

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness may require neuronal circuit mechanisms for the "binding" of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron-olfactory bulb-olfactory cortex-orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  6. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex and orbitofrontal cortex

    Directory of Open Access Journals (Sweden)

    Kensaku eMori

    2013-10-01

    Full Text Available The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory sensory neuron – olfactory bulb – olfactory cortex – orbitofrontal cortex, but other pathways exist, including transthalamic pathways. Here, we review studies on the structural organization and functional properties of the shortest pathway, and propose a model of neuronal circuit mechanisms underlying the temporal bindings of distributed neuronal activities in the olfactory cortex. We describe a hypothesis that suggests functional roles of gamma oscillations in the bindings. This hypothesis proposes that two types of projection neurons in the olfactory bulb, tufted cells and mitral cells, play distinct functional roles in bindings at neuronal circuits in the olfactory cortex: tufted cells provide specificity-projecting circuits which send odor information with early-onset fast gamma synchronization, while mitral cells give rise to dispersedly-projecting feed-forward binding circuits which transmit the response synchronization timing with later-onset slow gamma synchronization. This hypothesis also suggests a sequence of bindings in the olfactory cortex: a small-scale binding by the early-phase fast gamma synchrony of tufted cell inputs followed by a larger-scale binding due to the later-onset slow gamma synchrony of mitral cell inputs. We discuss that behavioral state, including wakefulness and sleep, regulates gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex.

  7. NASA Bioreactor Demonstration System

    Science.gov (United States)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  8. Nuclear power demonstrating

    Energy Technology Data Exchange (ETDEWEB)

    Basmajian, V. V.; Haldeman, C. W.

    1980-08-12

    Apparatus for demonstrating the operation of a closed loop nuclear steam electric generating plant includes a transparent boiler assembly having immersion heating elements, which may be quartz lamps or stainless steel encased resistive immersion heating units with a quartz iodide lamp providing a source of visible radiation when using the encased immersion heating units. A variable voltage autotransformer is geared to a support rod for simulated reactor control rods for controlling the energy delivered to the heating elements and arranged so that when the voltage is high, the rods are withdrawn from the boiler to produce increased heating and illumination proportional to rod position, thereby simulating nuclear reaction. A relief valve, steam outlet pipe and water inlet pipe are connected to the boiler with a small stainless steel resistive heating element in the steam outlet pipe providing superheat. This heater is connected in series with a rheostat mounted on the front panel to provide superheat adjustments and an interlock switch that prevents the superheater from being energized when the steam valve is off with with no flow through the superheater. A heavy blue plastic radiation shield surrounds the boiler inside a bell jar.

  9. Tidd PFBC demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Marrocco, M. [American Electric Power, Columbus, OH (United States)

    1997-12-31

    The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent of sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.

  10. A Demonstration of Lusail

    KAUST Repository

    Mansour, Essam

    2017-05-10

    There has been a proliferation of datasets available as interlinked RDF data accessible through SPARQL endpoints. This has led to the emergence of various applications in life science, distributed social networks, and Internet of Things that need to integrate data from multiple endpoints. We will demonstrate Lusail; a system that supports the need of emerging applications to access tens to hundreds of geo-distributed datasets. Lusail is a geo-distributed graph engine for querying linked RDF data. Lusail delivers outstanding performance using (i) a novel locality-aware query decomposition technique that minimizes the intermediate data to be accessed by the subqueries, and (ii) selectivityawareness and parallel query execution to reduce network latency and to increase parallelism. During the demo, the audience will be able to query actually deployed RDF endpoints as well as large synthetic and real benchmarks that we have deployed in the public cloud. The demo will also show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  11. Insular cortex and neuropsychiatric disorders: a review of recent literature.

    Science.gov (United States)

    Nagai, M; Kishi, K; Kato, S

    2007-09-01

    The insular cortex is located in the centre of the cerebral hemisphere, having connections with the primary and secondary somatosensory areas, anterior cingulate cortex, amygdaloid body, prefrontal cortex, superior temporal gyrus, temporal pole, orbitofrontal cortex, frontal and parietal opercula, primary and association auditory cortices, visual association cortex, olfactory bulb, hippocampus, entorhinal cortex, and motor cortex. Accordingly, dense connections exist among insular cortex neurons. The insular cortex is involved in the processing of visceral sensory, visceral motor, vestibular, attention, pain, emotion, verbal, motor information, inputs related to music and eating, in addition to gustatory, olfactory, visual, auditory, and tactile data. In this article, the literature on the relationship between the insular cortex and neuropsychiatric disorders was summarized following a computer search of the Pub-Med database. Recent neuroimaging data, including voxel based morphometry, PET and fMRI, revealed that the insular cortex was involved in various neuropsychiatric diseases such as mood disorders, panic disorders, PTSD, obsessive-compulsive disorders, eating disorders, and schizophrenia. Investigations of functions and connections of the insular cortex suggest that sensory information including gustatory, olfactory, visual, auditory, and tactile inputs converge on the insular cortex, and that these multimodal sensory information may be integrated there.

  12. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  13. Qualitative and quantitative aspects of the microanatomy of the African elephant cerebellar cortex.

    Science.gov (United States)

    Maseko, Busisiwe C; Jacobs, Bob; Spocter, Muhammad A; Sherwood, Chet C; Hof, Patrick R; Manger, Paul R

    2013-01-01

    The current study provides a number of novel observations on the organization and structure of the cerebellar cortex of the African elephant by using a combination of basic neuroanatomical and immunohistochemical stains with Golgi and stereologic analysis. While the majority of our observations indicate that the cerebellar cortex of the African elephant is comparable to other mammalian species, several features were unique to the elephant. The three-layered organization of the cerebellar cortex, the neuronal types and some aspects of the expression of calcium-binding proteins were common to a broad range of mammalian species. The Lugaro neurons observed in the elephant were greatly enlarged in comparison to those of other large-brained mammals, suggesting a possible alteration in the processing of neural information in the elephant cerebellar cortex. Analysis of Golgi impregnations indicated that the dendritic complexity of the different interneuron types was higher in elephants than other mammals. Expression of parvalbumin in the parallel fibers and calbindin expressed in the stellate and basket cells also suggested changes in the elephant cerebellar neuronal circuitry. The stereologic analysis confirmed and extended previous observations by demonstrating that neuronal density is low in the elephant cerebellar cortex, providing for a larger volume fraction of the neuropil. With previous results indicating that the elephants have the largest relative cerebellar size amongst mammals, and one of the absolutely largest mammalian cerebella, the current observations suggest that the elephants have a greater volume of a potentially more complexly organized cerebellar cortex compared to other mammals. This quantitatively larger and more complex cerebellar cortex likely represents part of the neural machinery required to control the complex motor patterns involved in movement of the trunk and the production of infrasonic vocalizations.

  14. Increased firing irregularity as an emergent property of neural-state transition in monkey prefrontal cortex.

    Science.gov (United States)

    Sakamoto, Kazuhiro; Katori, Yuichi; Saito, Naohiro; Yoshida, Shun; Aihara, Kazuyuki; Mushiake, Hajime

    2013-01-01

    Flexible behaviors are organized by complex neural networks in the prefrontal cortex. Recent studies have suggested that such networks exhibit multiple dynamical states, and can switch rapidly from one state to another. In many complex systems such as the brain, the early-warning signals that may predict whether a critical threshold for state transitions is approaching are extremely difficult to detect. We hypothesized that increases in firing irregularity are a crucial measure for predicting state transitions in the underlying neuronal circuits of the prefrontal cortex. We used both experimental and theoretical approaches to test this hypothesis. Experimentally, we analyzed activities of neurons in the prefrontal cortex while monkeys performed a maze task that required them to perform actions to reach a goal. We observed increased firing irregularity before the activity changed to encode goal-to-action information. Theoretically, we constructed theoretical generic neural networks and demonstrated that changes in neuronal gain on functional connectivity resulted in a loss of stability and an altered state of the networks, accompanied by increased firing irregularity. These results suggest that assessing the temporal pattern of neuronal fluctuations provides important clues regarding the state stability of the prefrontal network. We also introduce a novel scheme that the prefrontal cortex functions in a metastable state near the critical point of bifurcation. According to this scheme, firing irregularity in the prefrontal cortex indicates that the system is about to change its state and the flow of information in a flexible manner, which is essential for executive functions. This metastable and/or critical dynamical state of the prefrontal cortex may account for distractibility and loss of flexibility in the prefrontal cortex in major mental illnesses such as schizophrenia.

  15. Bilinearity, rules, and prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Peter Dayan

    2007-11-01

    Full Text Available Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function.

  16. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  17. Large-scale Contextual Effects in Early Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Sung Jun Joo

    2012-10-01

    Full Text Available A commonly held view about neurons in early visual cortex is that they serve as localized feature detectors. Here, however, we demonstrate that the responses of neurons in early visual cortex are sensitive to global visual patterns. Using multiple methodologies–psychophysics, fMRI, and EEG–we measured neural responses to an oriented Gabor (“target” embedded in various orientation patterns. Specifically, we varied whether a central target deviated from its context by changing distant orientations while leaving the immediately neighboring flankers unchanged. The results of psychophysical contrast adaptation and fMRI experiments show that a target that deviates from its context results in more neural activity compared to a target that is grouped into an alternating pattern. For example, the neural response to a vertically oriented target was greater when it deviated from the orientation of flankers (HHVHH compared to when it was grouped into an alternating pattern (VHVHV. We then found that this pattern-sensitive response manifests in the earliest sensory component of the event-related potential to the target. Finally, in a forced-choice classification task of “noise” stimuli, perceptions are biased to “see” an orientation that deviates from its context. Our results show that neurons in early visual cortex are sensitive to large-scale global patterns in images in a way that is more sophisticated than localized feature detection. Our results showing a reduced neural response to statistical redundancies in images is not only optimal from an information theory perspective but also takes into account known energy constraints in neural processing.

  18. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  19. Microglia in the Cerebral Cortex in Autism

    Science.gov (United States)

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  20. Structure of Orbitofrontal Cortex Predicts Social Influence

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Kanai, Ryota; Bahrami, Bahador

    2012-01-01

    to guide choices and behaviour. These values can often be updated by the expressed preferences of other people as much as by independent experience. In this correspondence, we report a linear relationship between grey matter volume (GM) in a region of lateral orbitofrontal cortex (lOFCGM) and the tendency...

  1. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  2. The Piriform Cortex and Human Focal Epilepsy

    Directory of Open Access Journals (Sweden)

    David eVaughan

    2014-12-01

    Full Text Available It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic - being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in humans. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.

  3. The piriform cortex and human focal epilepsy.

    Science.gov (United States)

    Vaughan, David N; Jackson, Graeme D

    2014-01-01

    It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic - being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.

  4. Contour extracting networks in early extrastriate cortex

    NARCIS (Netherlands)

    Dumoulin, Serge O.; Hess, Robert F.; May, Keith A.; Harvey, Ben M.; Rokers, Bas; Barendregt, Martijn

    2014-01-01

    Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ''association field'' proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour

  5. Mapping tonotopy in human auditory cortex

    NARCIS (Netherlands)

    van Dijk, Pim; Langers, Dave R M; Moore, BCJ; Patterson, RD; Winter, IM; Carlyon, RP; Gockel, HE

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier

  6. The Harmonic Organization of Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Xiaoqin eWang

    2013-12-01

    Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  7. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  8. Hierarchical error representation in medial prefrontal cortex.

    Science.gov (United States)

    Zarr, Noah; Brown, Joshua W

    2016-01-01

    The medial prefrontal cortex (mPFC) is reliably activated by both performance and prediction errors. Error signals have typically been treated as a scalar, and it is unknown to what extent multiple error signals may co-exist within mPFC. Previous studies have shown that lateral frontal cortex (LFC) is arranged in a hierarchy of abstraction, such that more abstract concepts and rules are represented in more anterior cortical regions. Given the close interaction between lateral and medial prefrontal cortex, we explored the hypothesis that mPFC would be organized along a similar rostro-caudal gradient of abstraction, such that more abstract prediction errors are represented further anterior and more concrete errors further posterior. We show that multiple prediction error signals can be found in mPFC, and furthermore, these are arranged in a rostro-caudal gradient of abstraction which parallels that found in LFC. We used a task that requires a three-level hierarchy of rules to be followed, in which the rules changed without warning at each level of the hierarchy. Task feedback indicated which level of the rule hierarchy changed and led to corresponding prediction error signals in mPFC. Moreover, each identified region of mPFC was preferentially functionally connected to correspondingly anterior regions of LFC. These results suggest the presence of a parallel structure between lateral and medial prefrontal cortex, with the medial regions monitoring and evaluating performance based on rules maintained in the corresponding lateral regions.

  9. Contour extracting networks in early extrastriate cortex

    NARCIS (Netherlands)

    Dumoulin, Serge O.; Hess, Robert F.; May, Keith A.; Harvey, Ben M.; Rokers, Bas; Barendregt, Martijn

    2014-01-01

    Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ''association field'' proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour i

  10. Is synaesthesia really stable – or does it gradually consolidate?

    DEFF Research Database (Denmark)

    Sørensen, Thomas Alrik

    is that the associations are stable over time. However, here we present the case of AR, a colour-grapheme synaesthete who clearly demonstrate synaesthesia, but also a gradual consolidation over time (Sørensen, Nordfang, & Ásgeirsson, accepted). Also, AR does not demonstrate some of the typical modulations of attention...

  11. Postoperative increase in grey matter volume in visual cortex after unilateral cataract surgery

    DEFF Research Database (Denmark)

    Lou, Astrid R.; Madsen, Kristoffer Hougaard; Julian, Hanne O.

    2013-01-01

    surgery induces a regional increase in grey matter in areas V1 and V2 of the visual cortex. Results:  In all patients, cataract surgery immediately improved visual acuity, contrast sensitivity and mean sensitivity in the visual field of the operated eye. The improvement in vision was stable throughout...... the 6 weeks after operation. VBM revealed a regional expansion of grey matter volume in area V2 contralateral to the operated eye during the 6-week period after surgery. Individual increases in grey matter were predicted by the symmetry in visual acuity between the operated eye and nonoperated eye....... The more symmetrical visual acuity became after unilateral cataract surgery, the more pronounced was the grey matter increase in visual cortex. Conclusion:  The data suggest that cataract surgery triggered a use-dependent structural plasticity in V2 presumably through improved binocular integration...

  12. Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual Cortex.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type-specific rules.

  13. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex.

    Directory of Open Access Journals (Sweden)

    Wei-Chung Allen Lee

    2006-02-01

    Full Text Available Despite decades of evidence for functional plasticity in the adult brain, the role of structural plasticity in its manifestation remains unclear. To examine the extent of neuronal remodeling that occurs in the brain on a day-to-day basis, we used a multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire neurons in the superficial layers of the rodent cerebral cortex. Here we show the first unambiguous evidence (to our knowledge of dendrite growth and remodeling in adult neurons. Over a period of months, neurons could be seen extending and retracting existing branches, and in rare cases adding new branch tips. Neurons exhibiting dynamic arbor rearrangements were GABA-positive non-pyramidal interneurons, while pyramidal cells remained stable. These results are consistent with the idea that dendritic structural remodeling is a substrate for adult plasticity and they suggest that circuit rearrangement in the adult cortex is restricted by cell type-specific rules.

  14. Contextual Learning Induces Dendritic Spine Clustering in Retrosplenial Cortex

    Directory of Open Access Journals (Sweden)

    Adam C Frank

    2014-03-01

    Full Text Available Molecular and electrophysiological studies find convergent evidence suggesting that plasticity within a dendritic tree is not randomly dispersed, but rather clustered into functional groups. Further, results from in silico neuronal modeling show that clustered plasticity is able to increase storage capacity 45 times compared to dispersed plasticity. Recent in vivo work utilizing chronic 2-photon microscopy tested the clustering hypothesis and showed that repetitive motor learning is able to induce clustered addition of new dendritic spines on apical dendrites of L5 neurons in primary motor cortex; moreover, clustered spines were found to be more stable than non-clustered spines, suggesting a physiological role for spine clustering. To further test this hypothesis we used in vivo 2-photon imaging in Thy1-YFP-H mice to chronically examine dendritic spine dynamics in retrosplenial cortex (RSC during spatial learning. RSC is a key component of an extended spatial learning and memory circuit that includes hippocampus and entorhinal cortex. Importantly, RSC is known from both lesion and immediate early gene studies to be critically involved in spatial learning and more specifically in contextual fear conditioning. We utilized a modified contextual fear conditioning protocol wherein animals received a mild foot shock each day for five days; this protocol induces gradual increases in context freezing over several days before the animals reach a behavioral plateau. We coupled behavioral training with four separate in vivo imaging sessions, two before training begins, one early in training, and a final session after training is complete. This allowed us to image spine dynamics before training as well as early in learning and after animals had reached behavioral asymptote. We find that this contextual learning protocol induces a statistically significant increase in the formation of clusters of new dendritic spines in trained animals when compared to home

  15. Cortex Matures Faster in Youths With Highest IQ

    Science.gov (United States)

    ... Current Issue Past Issues Research News From NIH Cortex Matures Faster in Youths With Highest IQ Past ... scans showed that their brains' outer mantle, or cortex, thickens more rapidly during childhood, reaching its peak ...

  16. Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Christopher C Lay

    Full Text Available Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA, single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections, a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential.

  17. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    Science.gov (United States)

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity.

  18. Induction of neuroserpin expression in rat frontal cortex after chronic antidepressant treatment and electroconvulsive treatment.

    Science.gov (United States)

    Tanaka, Satoshi; Yamada, Misa; Kitahara, Sari; Higuchi, Teruhiko; Honda, Kazuo; Kamijima, Kunitoshi; Yamada, Mitsuhiko

    2006-02-01

    Using expressed sequence tag (EST) analysis, we previously identified certain molecular machinery that mediates antidepressant effects. To date, several partial cDNA fragments, termed antidepressant-related genes (ADRGs), have been isolated as ESTs from rat brain. In the present study, we identified two of the ADRGs to be rat neuroserpin. Using real-time quantitative PCR, we demonstrated increased neuroserpin mRNA expression in rat frontal cortex after chronic treatment with several classes of antidepressants, including imipramine, fluoxetine, sertraline, and venlafaxine. Electroconvulsive treatment (ECT), another therapeutic treatment for depression, also increased neuroserpin expression in rat frontal cortex. Neuroserpin is a serine protease inhibitor that is implicated in the regulation of synaptic plasticity, neuronal migration, and axogenesis in the central nervous system. In conclusion, our results support the hypothesis that neuroserpin-mediated plastic changes in frontal cortex may underlie the therapeutic action of antidepressants and ECT.

  19. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  20. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  1. Optical properties of the medulla and the cortex of human scalp hair

    Science.gov (United States)

    Kharin, Aleksey; Varghese, Babu; Verhagen, Rieko; Uzunbajakava, Natallia

    2009-03-01

    An increasing number of applications, including non- or minimally invasive diagnostics and treatment as well as various cosmetic procedures, has resulted in a need to determine the optical properties of hair and its structures. We report on the measurement of the total attenuation coefficient of the cortex and the medulla of blond, gray, and Asian black human scalp hair at a 633-nm wavelength. Our results show that for blond and gray hair the total attenuation coefficient of the medulla is more than 200 times higher compared to that of the cortex. This difference is only 1.5 times for Asian black hair. Furthermore, we present the total attenuation coefficient of the cortex of blond, gray, light brown, and Asian black hair measured at wavelengths of 409, 532, 633, 800, and 1064 nm. The total attenuation coefficient consistently decreases with an increase in wavelength, as well as with a decrease in hair pigmentation. Additionally, we demonstrate the dependence of the total attenuation coefficient of the cortex and the medulla of Asian black hair on the polarization of incident light. A similar dependence is observed for the cortex of blond and gray hair but not for the medulla of these hair types.

  2. Effects of visual cortex activation on the nociceptive blink reflex in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Simona L Sava

    Full Text Available Bright light can cause excessive visual discomfort, referred to as photophobia. The precise mechanisms linking luminance to the trigeminal nociceptive system supposed to mediate this discomfort are not known. To address this issue in healthy human subjects we modulated differentially visual cortex activity by repetitive transcranial magnetic stimulation (rTMS or flash light stimulation, and studied the effect on supraorbital pain thresholds and the nociceptive-specific blink reflex (nBR. Low frequency rTMS that inhibits the underlying cortex, significantly decreased pain thresholds, increased the 1st nBR block ipsi- and contralaterally and potentiated habituation contralaterally. After high frequency or sham rTMS over the visual cortex, and rMS over the right greater occipital nerve we found no significant change. By contrast, excitatory flash light stimulation increased pain thresholds, decreased the 1st nBR block of ipsi- and contralaterally and increased habituation contralaterally. Our data demonstrate in healthy subjects a functional relation between the visual cortex and the trigeminal nociceptive system, as assessed by the nociceptive blink reflex. The results argue in favour of a top-down inhibitory pathway from the visual areas to trigemino-cervical nociceptors. We postulate that in normal conditions this visuo-trigeminal inhibitory pathway may avoid disturbance of vision by too frequent blinking and that hypoactivity of the visual cortex for pathological reasons may promote headache and photophobia.

  3. Visual activation and audiovisual interactions in the auditory cortex during speech perception: intracranial recordings in humans.

    Science.gov (United States)

    Besle, Julien; Fischer, Catherine; Bidet-Caulet, Aurélie; Lecaignard, Francoise; Bertrand, Olivier; Giard, Marie-Hélène

    2008-12-24

    Hemodynamic studies have shown that the auditory cortex can be activated by visual lip movements and is a site of interactions between auditory and visual speech processing. However, they provide no information about the chronology and mechanisms of these cross-modal processes. We recorded intracranial event-related potentials to auditory, visual, and bimodal speech syllables from depth electrodes implanted in the temporal lobe of 10 epileptic patients (altogether 932 contacts). We found that lip movements activate secondary auditory areas, very shortly (approximately equal to 10 ms) after the activation of the visual motion area MT/V5. After this putatively feedforward visual activation of the auditory cortex, audiovisual interactions took place in the secondary auditory cortex, from 30 ms after sound onset and before any activity in the polymodal areas. Audiovisual interactions in the auditory cortex, as estimated in a linear model, consisted both of a total suppression of the visual response to lipreading and a decrease of the auditory responses to the speech sound in the bimodal condition compared with unimodal conditions. These findings demonstrate that audiovisual speech integration does not respect the classical hierarchy from sensory-specific to associative cortical areas, but rather engages multiple cross-modal mechanisms at the first stages of nonprimary auditory cortex activation.

  4. Insular cortex representation of dynamic mechanical allodynia in trigeminal neuropathic rats.

    Science.gov (United States)

    Alvarez, Pedro; Dieb, Wisam; Hafidi, Aziz; Voisin, Daniel L; Dallel, Radhouane

    2009-01-01

    Dynamic mechanical allodynia is a widespread symptom of neuropathic pain for which mechanisms are still poorly understood. The present study investigated the organization of dynamic mechanical allodynia processing in the rat insular cortex after chronic constriction injury to the infraorbital nerve (IoN-CCI). Two weeks after unilateral IoN-CCI, rats showed a dramatic bilateral trigeminal dynamic mechanical allodynia. Light, moving stroking of the infraorbital skin resulted in strong, bilateral upregulation of extracellular-signal regulated kinase phosphorylation (pERK-1/2) in the insular cortex of IoN-CCI animals but not sham rats, in whose levels were similar to those of unstimulated IoN-CCI rats. pERK-1/2 was located in neuronal cells only. Stimulus-evoked pERK-1/2 immunopositive cell bodies displayed rostrocaudal gradient and layer selective distribution in the insula, being predominant in the rostral insula and in layers II-III of the dysgranular and to a lesser extent, of the agranular insular cortex. In layers II-III of the rostral dysgranular insular cortex, intense pERK also extended into distal dendrites, up to layer I. These results demonstrate that trigeminal nerve injury induces a significant alteration in the insular cortex processing of tactile stimuli and suggest that ERK phosphorylation contributes to the mechanisms underlying abnormal pain perception under this condition.

  5. Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex.

    Science.gov (United States)

    Li, Xu-Hui; Song, Qian; Chen, Tao; Zhuo, Min

    2017-01-01

    Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca(2+) increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca(2+)signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca(2+) influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons.

  6. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    Science.gov (United States)

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks.

  7. Chronic infusions of GABA into the medial prefrontal cortex induce spatial alternation deficits in aged rats.

    Science.gov (United States)

    Meneses, S; Galicia, O; Brailowsky, S

    1993-10-21

    It has been proposed that functions associated with the prefrontal cortex could change as a consequence of aging. Previous experiments in young rats have demonstrated that anatomical lesions or chronic GABA infusions into this area produce deficits in spatial delayed alternation tasks. The present study examines the effect of chronic (7 days) GABA or saline infusion into the prefrontal cortex on the performance of delayed alternation task in old rats (24 months). The results suggested that aged rats needed more sessions to acquire the delayed alternation task. GABA infusions into the prefrontal cortex produced deficits in spatial alternation tasks similar to those previously observed in young rats. Performance rapidly recovered after the infusion period. Histological analysis showed similar lesion size in both groups. The results suggest that aged prefrontal cortex and/or related areas participating in the acquisition of the delayed alternation task are more sensitive to aging processes. Furthermore, the prefrontal cortex is important for the retention of a previously learned spatial delayed alternation task. The structures involved in functional recovery from these deficits appear to be fully functional in aged rats.

  8. The Corpus Callosum and the Visual Cortex: Plasticity Is a Game for Two

    Directory of Open Access Journals (Sweden)

    Marta Pietrasanta

    2012-01-01

    Full Text Available Throughout life, experience shapes and selects the most appropriate brain functional connectivity to adapt to a changing environment. An ideal system to study experience-dependent plasticity is the visual cortex, because visual experience can be easily manipulated. In this paper, we focus on the role of interhemispheric, transcallosal projections in experience-dependent plasticity of the visual cortex. We review data showing that deprivation of sensory experience can modify the morphology of callosal fibres, thus altering the communication between the two hemispheres. More importantly, manipulation of callosal input activity during an early critical period alters developmental maturation of functional properties in visual cortex and modifies its ability to remodel in response to experience. We also discuss recent data in rat visual cortex, demonstrating that the corpus callosum plays a role in binocularity of cortical neurons and is involved in the plastic shift of eye preference that follows a period of monocular eyelid suture (monocular deprivation in early age. Thus, experience can modify the fine connectivity of the corpus callosum, and callosal connections represent a major pathway through which experience can mediate functional maturation and plastic rearrangements in the visual cortex.

  9. TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex.

    Science.gov (United States)

    Koch, Giacomo; Rothwell, John C

    2009-09-14

    Transcranial magnetic stimulation (TMS) can be used in two different ways to investigate the contribution of cortical areas involved in grasp/reach movements in humans. It can produce "virtual lesions" that interfere with activity in particular cortical areas at specific times during a task, or it can be used in a twin coil design to test the excitability of cortical projections to M1 at different times during a task. The former method has described how cortical structures such as the ventral premotor cortex (PMv), dorsal premotor cortex (PMd) and the anterior intraparietal sulcus (aIPS) are important for specific aspects of reaching, grasping and lifting objects. In the latter method, a conditioning stimulus (CS) is first used to activate putative pathways to the motor cortex from, for example, posterior parietal cortex (PPC) or PMd, while a second, test stimulus (TS), delivered over the primary motor cortex a few ms later probes any changes in excitability that are produced by the input. Thus changes in the effectiveness of the conditioning pulse give an indication of how the excitability of the connection changes over time and during a specific task. Here we review studies describing the time course of operation of parallel intracortical circuits and cortico-cortical connections between the PMd, PMv, PPC and M1, thus demonstrating that functional interplay between these areas and the primary motor cortices is not fixed, but can change in a highly task-, condition- and time-dependent manner.

  10. Stable Degeneracies for Ising Models

    Science.gov (United States)

    Knauf, Andreas

    2016-10-01

    We introduce and consider the notion of stable degeneracies of translation invariant energy functions, taken at spin configurations of a finite Ising model. By this term we mean the lack of injectivity that cannot be lifted by changing the interaction. We show that besides the symmetry-induced degeneracies, related to spin flip, translation and reflection, there exist additional stable degeneracies, due to more subtle symmetries. One such symmetry is the one of the Singer group of a finite projective plane. Others are described by combinatorial relations akin to trace identities. Our results resemble traits of the length spectrum for closed geodesics on a Riemannian surface of constant negative curvature. There, stable degeneracy is defined w.r.t. Teichmüller space as parameter space.

  11. Stable clocks and general relativity

    CERN Document Server

    Will, C M

    1995-01-01

    We survey the role of stable clocks in general relativity. Clock comparisons have provided important tests of the Einstein Equivalence Principle, which underlies metric gravity. These include tests of the isotropy of clock comparisons (verification of local Lorentz invariance) and tests of the homogeneity of clock comparisons (verification of local position invariance). Comparisons of atomic clocks with gravitational clocks test the Strong Equivalence Principle by bounding cosmological variations in Newton's constant. Stable clocks also play a role in the search for gravitational radiation: comparision of atomic clocks with the binary pulsar's orbital clock has verified gravitational-wave damping, and phase-sensitive detection of waves from inspiralling compact binaries using laser interferometric gravitational observatories will facilitate extraction of useful source information from the data. Stable clocks together with general relativity have found important practical applications in navigational systems s...

  12. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex

    OpenAIRE

    Kensaku eMori; Hiroyuki eManabe; Kimiya eNarikiyo; Naomi eOnisawa

    2013-01-01

    The orbitofrontal cortex receives multi-modality sensory inputs, including olfactory input, and is thought to be involved in conscious perception of the olfactory image of objects. Generation of olfactory consciousness requires neuronal circuit mechanisms for the ‘binding’ of distributed neuronal activities, with each constituent neuron representing a specific component of an olfactory percept. The shortest neuronal pathway for odor signals to reach the orbitofrontal cortex is olfactory senso...

  13. Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Lundbye-Jensen, Jesper; Geertsen, Svend Sparre;

    2007-01-01

    Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex. This act......Movement perception relies on sensory feedback, but the involvement of efference copies remains unclear. We investigated movements without proprioceptive feedback using ischemic nerve block during fMRI in healthy humans, and found preserved activation of the primary somatosensory cortex...

  14. Projection from the perirhinal cortex to the frontal motor cortex in the rat.

    Science.gov (United States)

    Kyuhou, Shin ichi; Gemba, Hisae

    2002-03-01

    Stimulation of the anterior perirhinal cortex (PERa) induced marked surface-negative and depth-positive field potentials in the rat frontal motor cortex (MC) including the rostral and caudal forelimb areas. Injection of biotinylated dextran into the PERa densely labeled axon terminals in the superficial layers of the MC, where vigorous unit responses were evoked after PERa stimulation, indicated that the perirhinal-frontal projection preferentially activates the superficial layer neurons of the MC.

  15. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    Science.gov (United States)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  16. Absolutely stable solitons in two-component active systems

    CERN Document Server

    Malomed, B A; Malomed, Boris; Winful, Herbert

    1995-01-01

    As is known, a solitary pulse in the complex cubic Ginzburg-Landau (GL) equation is unstable. We demonstrate that a system of two linearly coupled GL equations with gain and dissipation in one subsystem and pure dissipation in another produces absolutely stable solitons and their bound states. The problem is solved in a fully analytical form by means of the perturbation theory. The soliton coexists with a stable trivial state; there is also an unstable soliton with a smaller amplitude, which is a separatrix between the two stable states. This model has a direct application in nonlinear fiber optics, describing an Erbium-doped laser based on a dual-core fiber.

  17. Orbitofrontal cortex, decision-making and drug addiction

    OpenAIRE

    Schoenbaum, Geoffrey; Roesch, Matthew R.; Stalnaker, Thomas A

    2006-01-01

    The orbitofrontal cortex, as a part of prefrontal cortex, is implicated in executive function. However, within this broad region, the orbitofrontal cortex is distinguished by its unique pattern of connections with crucial subcortical associative learning nodes, such as basolateral amygdala and nucleus accumbens. By virtue of these connections, the orbitofrontal cortex is uniquely positioned to use associative information to project into the future, and to use the value of perceived or expecte...

  18. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex.

    Science.gov (United States)

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-03-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.

  19. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    Science.gov (United States)

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  20. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    Science.gov (United States)

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  1. Sensitive Dependence of Mental Function on Prefrontal Cortex

    OpenAIRE

    Alen J Salerian

    2015-01-01

    This study offers evidence to suggest that both normalcy and psychiatric illness are sensitively dependent upon prefrontal cortex function. In general, the emergence of psychiatric symptoms coincide with diminished influence of prefrontal cortex function. The mediating influence of prefrontal cortex may be independent of molecular and regional brain dysfunctions contributory to psychiatric illness.

  2. The prefrontal cortex and variants of sequential behaviour: indications of functional differentiation between subdivisions of the rat's prefrontal cortex

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Holm, Søren

    1994-01-01

    Neurobiologi, præfrontal cortex, sekventiel adfærd, rotte, adfærdsprogrammering, informationsbearbejdning......Neurobiologi, præfrontal cortex, sekventiel adfærd, rotte, adfærdsprogrammering, informationsbearbejdning...

  3. Cytoarchitecture and probability maps of the human medial orbitofrontal cortex.

    Science.gov (United States)

    Henssen, Anton; Zilles, Karl; Palomero-Gallagher, Nicola; Schleicher, Axel; Mohlberg, Hartmut; Gerboga, Fatma; Eickhoff, Simon B; Bludau, Sebastian; Amunts, Katrin

    2016-02-01

    Previous architectonical studies of human orbitofrontal cortex (OFC) provided divergent maps regarding number, location, and extent of areas. To solve this controversy, an observer-independent cytoarchitectonical mapping of medial OFC (mOFC) was performed. Borders of cortical areas were detected in histological sections of ten human post-mortem brains using a quantitative, statistically testable method, and their stereotaxic localization and intersubject variability were determined. Three areas were identified: granular Fo1 mainly on the rostral Gyrus rectus and medial of the olfactory sulcus; granular to dysgranular Fo2, mainly on the posterior part of the ventromedial Gyrus rectus and the medial and lateral banks of the olfactory sulcus; granular Fo3 between the olfactory and medial or intermediate orbital sulci. Fo3 was bordered medially by Fo1 and Fo2 and laterally by the lateral OFC (lOFC). A cluster analysis of the cytoarchitectonical features of Fo1-Fo3, subgenual cingulate areas, BA12, lateral and medial areas of the frontopolar cortex, lOFC and areas of Broca's region demonstrated the cytoarchitectonical similarity between the mOFC areas in contrast to all other frontal areas. Probabilistic maps of mOFC areas show a considerable intersubject variability in extent and position in stereotaxic space, and provide spatial templates for anatomical localization of in vivo neuroimaging data via the JuBrain atlas and the Anatomy Toolbox.

  4. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  5. An effect of bilingualism on the auditory cortex.

    Science.gov (United States)

    Ressel, Volker; Pallier, Christophe; Ventura-Campos, Noelia; Díaz, Begoña; Roessler, Abeba; Ávila, César; Sebastián-Gallés, Núria

    2012-11-21

    Two studies (Golestani et al., 2007; Wong et al., 2008) have reported a positive correlation between the ability to perceive foreign speech sounds and the volume of Heschl's gyrus (HG), the structure that houses the auditory cortex. More precisely, participants with larger left Heschl's gyri learned consonantal or tonal contrasts faster than those with smaller HG. These studies leave open the question of the impact of experience on HG volumes. In the current research, we investigated the effect of early language exposure on Heschl's gyrus by comparing Spanish-Catalan bilinguals who have been exposed to two languages since childhood, to a group of Spanish monolinguals matched in education, socio-economic status, and musical experience. Manual volumetric measurements of HG revealed that bilinguals have, on average, larger Heschl's gyri than monolinguals. This was corroborated, for the left Heschl's gyrus, by a voxel-based morphometry analysis showing larger gray matter volumes in bilinguals than in monolinguals. Since the bilinguals in this study were not a self-selected group, this observation provides a clear demonstration that learning a second language is a causal factor in the increased size of the auditory cortex.

  6. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation.

    Science.gov (United States)

    Cash, Robin F H; Murakami, Takenobu; Chen, Robert; Thickbroom, Gary W; Ziemann, Ulf

    2016-01-01

    Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS).

  7. Task engagement selectively modulates neural correlations in primary auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2015-05-13

    Noise correlations (r(noise)) between neurons can affect a neural population's discrimination capacity, even without changes in mean firing rates of neurons. r(noise), the degree to which the response variability of a pair of neurons is correlated, has been shown to change with attention with most reports showing a reduction in r(noise). However, the effect of reducing r(noise) on sensory discrimination depends on many factors, including the tuning similarity, or tuning correlation (r(tuning)), between the pair. Theoretically, reducing r(noise) should enhance sensory discrimination when the pair exhibits similar tuning, but should impair discrimination when tuning is dissimilar. We recorded from pairs of neurons in primary auditory cortex (A1) under two conditions: while rhesus macaque monkeys (Macaca mulatta) actively performed a threshold amplitude modulation (AM) detection task and while they sat passively awake. We report that, for pairs with similar AM tuning, average r(noise) in A1 decreases when the animal performs the AM detection task compared with when sitting passively. For pairs with dissimilar tuning, the average r(noise) did not significantly change between conditions. This suggests that attention-related modulation can target selective subcircuits to decorrelate noise. These results demonstrate that engagement in an auditory task enhances population coding in primary auditory cortex by selectively reducing deleterious r(noise) and leaving beneficial r(noise) intact.

  8. Dissociable mechanisms of cognitive control in prefrontal and premotor cortex.

    Science.gov (United States)

    Chambers, Christopher D; Bellgrove, Mark A; Gould, Ian C; English, Therese; Garavan, Hugh; McNaught, Elizabeth; Kamke, Marc; Mattingley, Jason B

    2007-12-01

    Intelligent behavior depends on the ability to suppress inappropriate actions and resolve interference between competing responses. Recent clinical and neuroimaging evidence has demonstrated the involvement of prefrontal, parietal, and premotor areas during behaviors that emphasize conflict and inhibition. It remains unclear, however, whether discrete subregions within this network are crucial for overseeing more specific inhibitory demands. Here we probed the functional specialization of human prefrontal cortex by combining repetitive transcranial magnetic stimulation (rTMS) with integrated behavioral measures of response inhibition (stop-signal task) and response competition (flanker task). Participants undertook a combined stop-signal/flanker task after rTMS of the inferior frontal gyrus (IFG) or dorsal premotor cortex (dPM) in each hemisphere. Stimulation of the right IFG impaired stop-signal inhibition under conditions of heightened response competition but did not influence the ability to suppress a competing response. In contrast, stimulation of the right dPM facilitated execution but had no effect on inhibition. Neither of these results was observed during rTMS of corresponding left-hemisphere regions. Overall, our findings are consistent with existing evidence that the right IFG is crucial for inhibitory control. The observed double dissociation of neurodisruptive effects between the right IFG and right dPM further implies that response inhibition and execution rely on distinct neural processes despite activating a common cortical network.

  9. Projections from Orbitofrontal Cortex to Anterior Piriform Cortex in the Rat Suggest a Role in Olfactory Information Processing

    OpenAIRE

    ILLIG, KURT R.

    2005-01-01

    The orbitofrontal cortex (OFC) has been characterized as a higher-order, multimodal sensory cortex. Evidence from electrophysiological and behavioral studies in the rat has suggested that OFC plays a role in modulating olfactory guided behavior, and a significant projection to OFC arises from piriform cortex, the traditional primary olfactory cortex. To discern how OFC interacts with primary olfactory structures, the anterograde tracer Phaseolus vulgaris leucoagglutinin was injected into orbi...

  10. Monitoring of stable glaucoma patients

    NARCIS (Netherlands)

    K.M. Holtzer-Goor (Kim); N.S. Klazinga (Niek); M.A. Koopmanschap (Marc); H.G. Lemij (Hans); T. Plochg; E. van Sprundel (Esther)

    2010-01-01

    textabstractA high workload for ophthalmologists and long waiting lists for patients challenge the organization of ophthalmic care. Tasks that require less specialized skills, like the monitoring of stable (well controlled) glaucoma patients could be substituted from ophthalmologists to other profes

  11. Bayesian stable isotope mixing models

    Science.gov (United States)

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  12. Stable Networks and Convex Payoffs

    NARCIS (Netherlands)

    Gilles, R.P.; Sarangi, S.

    2005-01-01

    Recently a variety of link-based stability concepts have emerged in the literature on game theoretic models of social network formation.We investigate two basic formation properties that establish equivalence between some well known types of stable networks and their natural extensions.These propert

  13. Stimulating Multiple-Demand Cortex Enhances Vocabulary Learning.

    Science.gov (United States)

    Sliwinska, Magdalena W; Violante, Inês R; Wise, Richard J S; Leech, Robert; Devlin, Joseph T; Geranmayeh, Fatemeh; Hampshire, Adam

    2017-08-09

    It is well established that networks within multiple-demand cortex (MDC) become active when diverse skills and behaviors are being learnt. However, their causal role in learning remains to be established. In the present study, we first performed functional magnetic resonance imaging on healthy female and male human participants to confirm that MDC was most active in the initial stages of learning a novel vocabulary, consisting of pronounceable nonwords (pseudowords), each associated with a picture of a real object. We then examined, in healthy female and male human participants, whether repetitive transcranial magnetic stimulation of a frontal midline node of the cingulo-opercular MDC affected learning rates specifically during the initial stages of learning. We report that stimulation of this node, but not a control brain region, substantially improved both accuracy and response times during the earliest stage of learning pseudoword-object associations. This stimulation had no effect on the processing of established vocabulary, tested by the accuracy and response times when participants decided whether a real word was accurately paired with a picture of an object. These results provide evidence that noninvasive stimulation to MDC nodes can enhance learning rates, thereby demonstrating their causal role in the learning process. We propose that this causal role makes MDC candidate target for experimental therapeutics; for example, in stroke patients with aphasia attempting to reacquire a vocabulary.SIGNIFICANCE STATEMENT Learning a task involves the brain system within which that specific task becomes established. Therefore, successfully learning a new vocabulary establishes the novel words in the language system. However, there is evidence that in the early stages of learning, networks within multiple-demand cortex (MDC), which control higher cognitive functions, such as working memory, attention, and monitoring of performance, become active. This activity declines

  14. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  15. Alterations of interneurons in the striatum and frontal cortex of mice during postnatal development.

    Science.gov (United States)

    Eto, Risa; Abe, Manami; Kimoto, Hiroki; Imaoka, Eri; Kato, Hiroyuki; Kasahara, Jiro; Araki, Tsutomu

    2010-08-01

    We investigated the postnatal alterations of neuronal nuclei (NeuN)-positive neurons, parvalbumin (PV)-positive interneurons, neuronal nitric oxide synthase (nNOS)-positive interneurons, and neurotrophic factors in the mouse striatum and frontal cortex using immunohistochemistry. NeuN, PV, nNOS, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse striatum and frontal cortex from 1 up to 8 weeks of age. In contrast, a significant decrease in the number of PV-positive interneurons was observed in the striatum and frontal cortex of 1-, 2- and 4-week-old mice. Furthermore, a significant increase of nNOS-positive interneurons was found in the striatum and frontal cortex of 1- and/or 2-week-old mice. NGF-positive neurons were unchanged in the mouse striatum from 1 up to 8 weeks of age. In the frontal cortex, a significant increase in the number of NGF-positive neurons was observed only in 1-week-old mice. In contrast, a significant increase in the number of NGF-positive glia 1 cells was found in the striatum and frontal cortex of 4-week-old mice. Our double-labeled immunostaining showed that nNOS immunoreactivity was not found in PV-immunopositive interneurons. Furthermore, BDNF immunoreactivity was observed in both nNOS-positive and PV-positive interneurons in the striatum of 1- or 2-week-old mice. These results show that the maturation of nNOS-immunopositive interneurons precedes the maturation of PV-immunopositive interneurons in the striatum and frontal cortex during postnatal development. Furthermore, our results demonstrate that the expression of BDNF may play some role in the maturation of interneurons in the striatum and frontal cortex during postnatal development. Moreover, our findings suggest that the expression of NGF in glia cells may play some role in the maturation of glial cells and PV-positive interneurons

  16. Social distance evaluation in human parietal cortex.

    Science.gov (United States)

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. "close friends" "high lord"). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space.

  17. Determining physical properties of the cell cortex

    CERN Document Server

    Saha, A; Behrndt, M; Heisenberg, C -P; Jülicher, F; Grill, S W

    2015-01-01

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using ...

  18. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging.

  19. Effects of aging on motor cortex excitability.

    Science.gov (United States)

    Oliviero, A; Profice, P; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Ranieri, F; Di Lazzaro, V

    2006-05-01

    To determine whether aging is associated with changes in excitability of the cerebral cortex, we evaluated the excitability of the motor cortex with transcranial magnetic stimulation (TMS). We compared TMS related measures obtained in a group of young people with those of a group of old people. Motor evoked potential (MEP) amplitude was significantly smaller in older than in younger controls (1.3+/-0.8 mV versus 2.7+/-1.1 mV; p<0.0071). Mean cortical silent period (CSP) duration was shorter in older than in younger controls (87+/-29 ms versus 147+/-39 ms; p<0.0071). SP duration/MEP amplitude ratios were similar in both groups. Our results are consistent with an impaired efficiency of some intracortical circuits in old age.

  20. Orbitofrontal Cortex, Associative Learning, and Expectancies

    Science.gov (United States)

    Schoenbaum, Geoffrey; Roesch, Matthew

    2009-01-01

    Orbitofrontal cortex is characterized by its unique pattern of connections with subcortical areas, such as basolateral amygdala. Here we distinguish between the critical role of these areas in associative learning and the pivotal contribution of OFC to the manipulation of this information to control behavior. This contribution reflects the ability of OFC to signal the desirability of expected outcomes, which requires the integration of associative information with information concerning internal states and goals in representational memory. PMID:16129393

  1. Cone inputs to murine striate cortex

    Directory of Open Access Journals (Sweden)

    Gouras Peter

    2008-11-01

    Full Text Available Abstract Background We have recorded responses from single neurons in murine visual cortex to determine the effectiveness of the input from the two murine cone photoreceptor mechanisms and whether there is any unique selectivity for cone inputs at this higher region of the visual system that would support the possibility of colour vision in mice. Each eye was stimulated by diffuse light, either 370 (strong stimulus for the ultra-violet (UV cone opsin or 505 nm (exclusively stimulating the middle wavelength sensitive (M cone opsin, obtained from light emitting diodes (LEDs in the presence of a strong adapting light that suppressed the responses of rods. Results Single cells responded to these diffuse stimuli in all areas of striate cortex. Two types of responsive cells were encountered. One type (135/323 – 42% had little to no spontaneous activity and responded at either the on and/or the off phase of the light stimulus with a few impulses often of relatively large amplitude. A second type (166/323 – 51% had spontaneous activity and responded tonically to light stimuli with impulses often of small amplitude. Most of the cells responded similarly to both spectral stimuli. A few (18/323 – 6% responded strongly or exclusively to one or the other spectral stimulus and rarely in a spectrally opponent manner. Conclusion Most cells in murine striate cortex receive excitatory inputs from both UV- and M-cones. A small fraction shows either strong selectivity for one or the other cone mechanism and occasionally cone opponent responses. Cells that could underlie chromatic contrast detection are present but extremely rare in murine striate cortex.

  2. Working Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Shintaro Funahashi

    2017-04-01

    Full Text Available The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.

  3. Processing of sound location in human cortex.

    Science.gov (United States)

    Lewald, Jörg; Riederer, Klaus A J; Lentz, Tobias; Meister, Ingo G

    2008-03-01

    This functional magnetic resonance imaging study was focused on the neural substrates underlying human auditory space perception. In order to present natural-like sound locations to the subjects, acoustic stimuli convolved with individual head-related transfer functions were used. Activation foci, as revealed by analyses of contrasts and interactions between sound locations, formed a complex network, including anterior and posterior regions of temporal lobe, posterior parietal cortex, dorsolateral prefrontal cortex and inferior frontal cortex. The distinct topography of this network was the result of different patterns of activation and deactivation, depending on sound location, in the respective voxels. These patterns suggested different levels of complexity in processing of auditory spatial information, starting with simple left/right discrimination in the regions surrounding the primary auditory cortex, while the integration of information on hemispace and eccentricity of sound may take place at later stages. Activations were identified as being located in regions assigned to both the dorsal and ventral auditory cortical streams, that are assumed to be preferably concerned with analysis of spatial and non-spatial sound features, respectively. The finding of activations also in the ventral stream could, on the one hand, reflect the well-known functional duality of auditory spectral analysis, that is, the concurrent extraction of information based on location (due to the spectrotemporal distortions caused by head and pinnae) and spectral characteristics of a sound source. On the other hand, this result may suggest the existence of shared neural networks, performing analyses of auditory 'higher-order' cues for both localization and identification of sound sources.

  4. The role of prefrontal cortex in psychopathy

    OpenAIRE

    Koenigs, Michael

    2012-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingu...

  5. Extrastriate visual cortex reorganizes despite sequential bilateral occipital stroke: implications for vision recovery

    Directory of Open Access Journals (Sweden)

    Amy eBrodtmann

    2015-04-01

    Full Text Available The extent of visual cortex reorganization following injury remains controversial. We report serial functional magnetic resonance imaging (fMRI data from a patient with sequential posterior circulation strokes occurring three weeks apart, compared with data from an age-matched healthy control subject. At 8 days following a left occipital stroke, contralesional visual cortical activation was within expected striate and extrastriate sites, comparable to that seen in controls. Despite a further infarct in the right (previously unaffected hemisphere, there was evolution of visual cortical reorganization progressed. In this patient, there was evidence of utilization of peri-infarct sites (right-sided and recruitment of new activation sites in extrastriate cortices, including in the lateral middle and inferior temporal lobes. The changes over time corresponded topographically with the patient’s lesion site and its connections. Reorganization of the surviving visual cortex was demonstrated 8 days after the first stroke. Ongoing reorganization in extant cortex was demonstrated at the 6 month scan. We present a summary of mechanisms of recovery following stroke relevant to the visual system. We conclude that mature primary visual cortex displays considerable plasticity and capacity to reorganize, associated with evolution of visual field deficits. We discuss these findings and their implications for therapy within the context of current concepts in visual compensatory and restorative therapies.

  6. Top-down influence on the visual cortex of the blind during sensory substitution

    Science.gov (United States)

    Murphy, Matthew C.; Nau, Amy C.; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.

    2017-01-01

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. PMID:26584776

  7. Top-down influence on the visual cortex of the blind during sensory substitution.

    Science.gov (United States)

    Murphy, Matthew C; Nau, Amy C; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S; Chan, Kevin C

    2016-01-15

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine.

  8. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.

    Science.gov (United States)

    Cordova, Chris A; Jackson, Danielle; Langdon, Kristopher D; Hewlett, Krista A; Corbett, Dale

    2014-01-01

    Small (lacunar) infarcts frequently arise in frontal and midline thalamic regions in the absence of major stroke. Damage to these areas often leads to impairment of executive function likely as a result of interrupting connections of the prefrontal cortex. Thus, patients experience frontal-like symptoms such as impaired ability to shift ongoing behavior and attention. In contrast, executive dysfunction has not been demonstrated in rodent models of stroke, thereby limiting the development of potential therapies for human executive dysfunction. Male Sprague-Dawley rats (n=40) underwent either sham surgery or bilateral endothelin-1 injections in the mediodorsal nucleus of the thalamus or in the medial prefrontal cortex. Executive function was assessed using a rodent attention set shifting test that requires animals to shift attention to stimuli in different stimulus dimensions. Medial prefrontal cortex ischemia impaired attention shift performance between different stimulus dimensions while sparing stimulus discrimination and attention shifts within a stimulus dimension, indicating a selective attention set-shift deficit. Rats with mediodorsal thalamic lacunar damage did not exhibit a cognitive impairment relative to sham controls. The selective attention set shift impairment observed in this study is consistent with clinical data demonstrating selective executive disorders following stroke within specific sub-regions of frontal cortex. These data contribute to the development and validation of a preclinical animal model of executive dysfunction, that can be employed to identify potential therapies for ameliorating cognitive deficits following stroke.

  9. Extrastriate visual cortex reorganizes despite sequential bilateral occipital stroke: implications for vision recovery.

    Science.gov (United States)

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2015-01-01

    The extent of visual cortex reorganization following injury remains controversial. We report serial functional magnetic resonance imaging (fMRI) data from a patient with sequential posterior circulation strokes occurring 3 weeks apart, compared with data from an age-matched healthy control subject. At 8 days following a left occipital stroke, contralesional visual cortical activation was within expected striate and extrastriate sites, comparable to that seen in controls. Despite a further infarct in the right (previously unaffected hemisphere), there was evolution of visual cortical reorganization progressed. In this patient, there was evidence of utilization of peri-infarct sites (right-sided) and recruitment of new activation sites in extrastriate cortices, including in the lateral middle and inferior temporal lobes. The changes over time corresponded topographically with the patient's lesion site and its connections. Reorganization of the surviving visual cortex was demonstrated 8 days after the first stroke. Ongoing reorganization in extant cortex was demonstrated at the 6 month scan. We present a summary of mechanisms of recovery following stroke relevant to the visual system. We conclude that mature primary visual cortex displays considerable plasticity and capacity to reorganize, associated with evolution of visual field deficits. We discuss these findings and their implications for therapy within the context of current concepts in visual compensatory and restorative therapies.

  10. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    Science.gov (United States)

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  11. Specialized elements of orbitofrontal cortex in primates.

    Science.gov (United States)

    Barbas, Helen

    2007-12-01

    The orbitofrontal cortex is associated with encoding the significance of stimuli within an emotional context, and its connections can be understood in this light. This large cortical region is architectonically heterogeneous, but its connections and functions can be summarized by a broad grouping of areas by cortical type into posterior and anterior sectors. The posterior (limbic) orbitofrontal region is composed of agranular and dysgranular-type cortices and has unique connections with primary olfactory areas and rich connections with high-order sensory association cortices. Posterior orbitofrontal areas are further distinguished by dense and distinct patterns of connections with the amygdala and memory-related anterior temporal lobe structures that may convey signals about emotional import and their memory. The special sets of connections suggest that the posterior orbitofrontal cortex is the primary region for the perception of emotions. In contrast to orbitofrontal areas, posterior medial prefrontal areas in the anterior cingulate are not multi-modal, but have strong connections with auditory association cortices, brain stem vocalization, and autonomic structures, in pathways that may mediate emotional communication and autonomic activation in emotional arousal. Posterior orbitofrontal areas communicate with anterior orbitofrontal areas and, through feedback projections, with lateral prefrontal and other cortices, suggesting a sequence of information processing for emotions. Pathology in orbitofrontal cortex may remove feedback input to sensory cortices, dissociating emotional context from sensory content and impairing the ability to interpret events.

  12. Emotion, decision making and the orbitofrontal cortex.

    Science.gov (United States)

    Bechara, A; Damasio, H; Damasio, A R

    2000-03-01

    The somatic marker hypothesis provides a systems-level neuroanatomical and cognitive framework for decision making and the influence on it by emotion. The key idea of this hypothesis is that decision making is a process that is influenced by marker signals that arise in bioregulatory processes, including those that express themselves in emotions and feelings. This influence can occur at multiple levels of operation, some of which occur consciously and some of which occur non-consciously. Here we review studies that confirm various predictions from the hypothesis. The orbitofrontal cortex represents one critical structure in a neural system subserving decision making. Decision making is not mediated by the orbitofrontal cortex alone, but arises from large-scale systems that include other cortical and subcortical components. Such structures include the amygdala, the somatosensory/insular cortices and the peripheral nervous system. Here we focus only on the role of the orbitofrontal cortex in decision making and emotional processing, and the relationship between emotion, decision making and other cognitive functions of the frontal lobe, namely working memory.

  13. Binocular form deprivation influences the visual cortex

    Institute of Scientific and Technical Information of China (English)

    Mingming Liu; Chuanhuang Weng; Hanping Xie; Wei Qin

    2012-01-01

    1a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are considered to play a crucial role in synaptic plasticity in the developing visual cortex. In this study, we established a rat model of binocular form deprivation by suturing the rat binocular eyelids before eye-opening at postnatal day 14. During development, the decay time of excitatory postsynaptic currents mediated by 1a-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptors of normal rats became longer after eyeopening; however, the decay time did not change significantly in binocular form deprivation rats. The peak value in the normal group became gradually larger with age, but there was no significant change in the binocular form deprivation group. These findings indicate that binocular form deprivation influences the properties of excitatory postsynaptic currents mediated by β-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat visual cortex around the end of the critical period, indicating that form stimulation is associated with the experience-dependent modification of neuronal synapses in the visual cortex.

  14. Rhythmic spontaneous activity in the piriform cortex.

    Science.gov (United States)

    Sanchez-Vives, Maria V; Descalzo, V F; Reig, R; Figueroa, N A; Compte, A; Gallego, R

    2008-05-01

    Slow spontaneous rhythmic activity is generated and propagates in neocortical slices when bathed in an artificial cerebrospinal fluid with ionic concentrations similar to the ones in vivo. This activity is extraordinarily similar to the activation of the cortex in physiological conditions (e.g., slow-wave sleep), thus representing a unique in vitro model to understand how cortical networks maintain and control ongoing activity. Here we have characterized the activity generated in the olfactory or piriform cortex and endopiriform nucleus (piriform network). Because these structures are prone to generate epileptic discharges, it seems critical to understand how they generate and regulate their physiological rhythmic activity. The piriform network gave rise to rhythmic spontaneous activity consisting of a succession of up and down states at an average frequency of 1.8 Hz, qualitatively similar to the corresponding neocortical activity. This activity originated in the deep layers of the piriform network, which displayed higher excitability and denser connectivity. A remarkable difference with neocortical activity was the speed of horizontal propagation (114 mm/s), one order of magnitude faster in the piriform network. Properties of the piriform cortex subserving fast horizontal propagation may underlie the higher vulnerability of this area to epileptic seizures.

  15. Human prefrontal cortex: evolution, development, and pathology.

    Science.gov (United States)

    Teffer, Kate; Semendeferi, Katerina

    2012-01-01

    The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.

  16. An integrator circuit in cerebellar cortex.

    Science.gov (United States)

    Maex, Reinoud; Steuber, Volker

    2013-09-01

    The brain builds dynamic models of the body and the outside world to predict the consequences of actions and stimuli. A well-known example is the oculomotor integrator, which anticipates the position-dependent elasticity forces acting on the eye ball by mathematically integrating over time oculomotor velocity commands. Many models of neural integration have been proposed, based on feedback excitation, lateral inhibition or intrinsic neuronal nonlinearities. We report here that a computational model of the cerebellar cortex, a structure thought to implement dynamic models, reveals a hitherto unrecognized integrator circuit. In this model, comprising Purkinje cells, molecular layer interneurons and parallel fibres, Purkinje cells were able to generate responses lasting more than 10 s, to which both neuronal and network mechanisms contributed. Activation of the somatic fast sodium current by subthreshold voltage fluctuations was able to maintain pulse-evoked graded persistent activity, whereas lateral inhibition among Purkinje cells via recurrent axon collaterals further prolonged the responses to step and sine wave stimulation. The responses of Purkinje cells decayed with a time-constant whose value depended on their baseline spike rate, with integration vanishing at low ( 30 per s). The model predicts that the apparently fast circuit of the cerebellar cortex may control the timing of slow processes without having to rely on sensory feedback. Thus, the cerebellar cortex may contain an adaptive temporal integrator, with the sensitivity of integration to the baseline spike rate offering a potential mechanism of plasticity of the response time-constant.

  17. Hierarchical Bayesian inference in the visual cortex

    Science.gov (United States)

    Lee, Tai Sing; Mumford, David

    2003-07-01

    Traditional views of visual processing suggest that early visual neurons in areas V1 and V2 are static spatiotemporal filters that extract local features from a visual scene. The extracted information is then channeled through a feedforward chain of modules in successively higher visual areas for further analysis. Recent electrophysiological recordings from early visual neurons in awake behaving monkeys reveal that there are many levels of complexity in the information processing of the early visual cortex, as seen in the long-latency responses of its neurons. These new findings suggest that activity in the early visual cortex is tightly coupled and highly interactive with the rest of the visual system. They lead us to propose a new theoretical setting based on the mathematical framework of hierarchical Bayesian inference for reasoning about the visual system. In this framework, the recurrent feedforward/feedback loops in the cortex serve to integrate top-down contextual priors and bottom-up observations so as to implement concurrent probabilistic inference along the visual hierarchy. We suggest that the algorithms of particle filtering and Bayesian-belief propagation might model these interactive cortical computations. We review some recent neurophysiological evidences that support the plausibility of these ideas. 2003 Optical Society of America

  18. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  19. Predictive Thermal Control Technology for Stable Telescope

    Science.gov (United States)

    Stahl, H. Philip

    Predictive Thermal Control (PTC) project is a multiyear effort to develop, demonstrate, mature towards TRL6, and assess the utility of model based Predictive Thermal Control technology to enable a thermally stable telescope. PTC demonstrates technology maturation by model validation and characterization testing of traceable components in a relevant environment. PTC's efforts are conducted in consultation with the Cosmic Origins Office and NASA Program Analysis Groups. To mature Thermally Stable Telescope technology, PTC has three objectives: • Validate models that predict thermal optical performance of real mirrors and structure based on their designs and constituent material properties, i.e. coefficient of thermal expansion (CTE) distribution, thermal conductivity, thermal mass, etc. • Derive thermal system stability specifications from wavefront stability requirements. • Demonstrate utility of Predictive Thermal Control for achieving thermal stability. To achieve these objectives, PTC has five quantifiable milestones: 1. Develop a high-fidelity model of the AMTD-2 1.5 meter ULE® mirror, including 3D CTE distribution and reflective optical coating, that predicts its optical performance response to steady-state and dynamic thermal gradients under bang/bang and proportional thermal control. 2. Derive specifications for thermal control system as a function of wavefront stability. 3. Design and build a predictive Thermal Control System for a 1.5 meter ULE® mirror using new and existing commercial-off-the-shelf components that sense temperature changes at the 1mK level and actively controls the mirrors thermal environment at the 20mK level. 4. Validate the model by testing a 1.5-m class ULE® mirror in a relevant thermal vacuum environment in the MSFC X-ray and Cryogenic Facility (XRCF) test facility. 5. Use validated model to perform trade studies to optimize thermo-optical performance as a function of mirror design, material selection, mass, etc. PTC advances

  20. Unexpected novelty and familiarity orienting responses in lateral parietal cortex during recognition judgment.

    Science.gov (United States)

    Jaeger, Antonio; Konkel, Alex; Dobbins, Ian G

    2013-05-01

    The role of lateral parietal cortex during recognition memory is heavily debated. We examined parietal activation during an Explicit Memory Cueing recognition paradigm that biases participants towards expecting novel or familiar stimuli on a trial-by-trial basis using anticipatory cues ("Likely Old", "Likely New"), compared to trials with neutral cues ("????"). Three qualitatively distinct patterns were observed in the left lateral parietal cortex. An unexpected novelty response occurred in left anterior intraparietal cortex (IPS)/post-central gyrus (PoCG) in which greater activation was observed for new vs. old materials following the "Likely Old" cue, but not following the "Likely New" cue. In contrast, anterior angular gyrus demonstrated an unexpected familiarity response with greater activation for old vs. new materials following the "Likely New" cue, but not the "Likely Old" cue. Thus these two regions demonstrated increased responses that were selective for either new or old materials respectively, but only when they were unexpected. In contrast, a mid IPS area demonstrated greater response for whichever class of memoranda was unanticipated given the cue condition (an unexpected memory response). Analogous response patterns in regions outside of parietal cortex, and the results of a resting state connectivity analysis, suggested these three response patterns were associated with visuo-spatial orienting following unexpected novelty, source monitoring operations following unexpected familiarity, and general executive control processes following violated expectations. These findings support a Memory Orienting Model of the left lateral parietal cortex in which the region is linked to the investigation of unexpected novelty or familiarity in the environment.

  1. Cortex-M0处理器初探%Cortex-M0 Processor:An Initial Survey

    Institute of Scientific and Technical Information of China (English)

    范云龙; 方安平; 李宁

    2010-01-01

    介绍Cortex-M0处理器的特点;详细分析Cortex-M0处理器的编程模型、存储模型、异常处理和功耗管理,并将Cortex-M0与Cortex-M3和基于8/16位架构的处理器作了对比分析;最后简要介绍Cortex-M0处理器的相关开发工具.

  2. Topographic representation of the human body in the occipitotemporal cortex.

    Science.gov (United States)

    Orlov, Tanya; Makin, Tamar R; Zohary, Ehud

    2010-11-04

    Large-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants. Using converging methods, the preference for specific body parts was demonstrated to be robust and did not merely reflect shape differences between the categories. Finally, execution of (unseen) movements with different body parts resulted in a limited topographic representation of the limbs and trunk, which partially overlapped with the visual body part map. This motor-driven activation in the OTC could not be explained solely by visual or motor imagery of the body parts. This suggests that visual and motor-related information converge within the OTC in a body part specific manner. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Damage to ventromedial prefrontal cortex impairs judgment of harmful intent

    Science.gov (United States)

    Young, Liane; Bechara, Antoine; Tranel, Daniel; Damasio, Hanna; Hauser, Marc; Damasio, Antonio

    2011-01-01

    Summary Moral judgments, whether delivered in ordinary experience or in the courtroom, depend on our ability to infer intentions. We forgive unintentional or accidental harms and condemn failed attempts to harm. Prior work demonstrates that patients with damage to the ventromedial prefrontal cortex (VMPC) deliver abnormal judgments in response to moral dilemmas, and that these patients are especially impaired in triggering emotional responses to inferred or abstract events (e.g., intentions), as opposed to real or actual outcomes. We therefore predicted that VMPC patients would deliver abnormal moral judgments of harmful intentions in the absence of harmful outcomes, as in failed attempts to harm. This prediction was confirmed in the current study: VMPC patients judged attempted harms including attempted murder as more morally permissible relative to controls. These results highlight the critical role of the VMPC in processing harmful intent for moral judgment. PMID:20346759

  4. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    Directory of Open Access Journals (Sweden)

    Boes Aaron D

    2011-12-01

    Full Text Available Abstract Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process.

  5. Associative Encoding in Anterior Piriform Cortex versus Orbitofrontal Cortex during Odor Discrimination and Reversal Learning

    Science.gov (United States)

    Roesch, Matthew R.; Stalnaker, Thomas A.; Schoenbaum, Geoffrey

    2008-01-01

    Recent proposals have conceptualized piriform cortex as an association cortex, capable of integrating incoming olfactory information with descending input from higher order associative regions such as orbitofrontal cortex (OFC). If true, encoding in piriform cortex should reflect associative features prominent in these areas during associative learning involving olfactory cues. To test this hypothesis, we recorded from neurons in OFC and anatomically related parts of the anterior piriform cortex (APC) in rats, learning and reversing novel odor discriminations. Findings in OFC were similar to what we have reported previously, with nearly all the cue-selective neurons exhibiting substantial plasticity during learning and reversal. Also, many of the cue-selective neurons were originally responsive in anticipation of the outcomes early in learning, thereby providing a single-unit representation of the cue-outcome associations. Some of these features were also evident in firing activity in APC, including some plasticity across learning and reversal. However, APC neurons failed to reverse cue selectivity when the associated outcome was changed, and the cue-selective population did not include neurons that were active prior to outcome delivery. Thus, although representations in APC are substantially more associative than expected in a purely sensory region, they do appear to be somewhat more constrained by the sensory features of the odor cues than representations in downstream areas of OFC. PMID:16699083

  6. Neural field theory of plasticity in the cerebral cortex.

    Science.gov (United States)

    Fung, P K; Haber, A L; Robinson, P A

    2013-02-07

    A generalized timing-dependent plasticity rule is incorporated into a recent neural field theory to explore synaptic plasticity in the cerebral cortex, with both excitatory and inhibitory populations included. Analysis in the time and frequency domains reveals that cortical network behavior gives rise to a saddle-node bifurcation and resonant frequencies, including a gamma-band resonance. These system resonances constrain cortical synaptic dynamics and divide it into four classes, which depend on the type of synaptic plasticity window. Depending on the dynamical class, synaptic strengths can either have a stable fixed point, or can diverge in the absence of a separate saturation mechanism. Parameter exploration shows that time-asymmetric plasticity windows, which are signatures of spike-timing dependent plasticity, enable the richest variety of synaptic dynamics to occur. In particular, we predict a zone in parameter space which may allow brains to attain the marginal stability phenomena observed experimentally, although additional regulatory mechanisms may be required to maintain these parameters.

  7. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  8. Decreased premotor cortex volume in victims of urban violence with posttraumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Vanessa Rocha-Rego

    Full Text Available BACKGROUND: Studies addressing posttraumatic stress disorder (PTSD have demonstrated that PTSD patients exhibit structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus, amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery, are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor areas in PTSD? METHODOLOGY/PRINCIPAL FINDINGS: Structural magnetic resonance imaging scans were acquired from a sample of individuals that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the pregenual anterior cingulate cortex. CONCLUSIONS: Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging studies that investigated different types of traumatic events.

  9. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    Science.gov (United States)

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  10. Experience-driven axon retraction in the pharmacologically inactivated visual cortex does not require synaptic transmission.

    Directory of Open Access Journals (Sweden)

    Kana Watanabe

    Full Text Available BACKGROUND: Experience during early postnatal development plays an important role in the refinement of specific neural connections in the brain. In the mammalian visual system, altered visual experiences induce plastic adaptation of visual cortical responses and guide rearrangements of afferent axons from the lateral geniculate nucleus. Previous studies using visual deprivation demonstrated that the afferents serving an open eye significantly retract when cortical neurons are pharmacologically inhibited by applying a gamma-aminobutyric acid type A receptor agonist, muscimol, whereas those serving a deprived eye are rescued from retraction, suggesting that presynaptic activity can lead to the retraction of geniculocortical axons in the absence of postsynaptic activity. Because muscimol application suppresses the spike activity of cortical neurons leaving transmitter release intact at geniculocortical synapses, local synaptic interaction may underlie the retraction of active axons in the inhibited cortex. METHOD AND FINDINGS: New studies reported here determined whether experience-driven axon retraction can occur in the visual cortex inactivated by blocking synaptic inputs. We inactivated the primary visual cortex of kittens by suppressing synaptic transmission with cortical injections of botulinum neurotoxin type E, which cleaves a synaptic protein, SNAP-25, and blocks transmitter release, and examined the geniculocortical axon morphology in the animals with normal vision and those deprived of vision binocularly. We found that afferent axons in the animals with normal vision showed a significant retraction in the inactivated cortex, as similarly observed in the muscimol-treated cortex, whereas the axons in the binocularly deprived animals were preserved. CONCLUSIONS: Therefore, the experience-driven axon retraction in the inactivated cortex can proceed in the absence of synaptic transmission. These results suggest that presynaptic mechanisms play

  11. Characterization of axo-axonic synapses in the piriform cortex of Mus musculus.

    Science.gov (United States)

    Wang, Xinjun; Sun, Qian-Quan

    2012-03-01

    Previous anatomical and physiological studies have established major glutamatergic and GABAergic neuronal subtypes within the piriform cortical circuits. However, quantitative information regarding axo-axonic inhibitory synapses mediated by chandelier cells across major cortical subdivisions of piriform cortex is lacking. Therefore, we examined the properties of these synapses across the entire piriform cortex. Our results show the following. 1) γ-Aminobutyric acid membrane transporter 1-positive varicosities, whose appearance resembles chandelier cartridges, are found around the initial segments of axons of glutamatergic cells across layers II and III. 2) Both the density of axo-axonic cartridges and the degree of γ-aminobutyric acid membrane transporter 1 innervation in each axo-axonic synapse are significantly higher in the piriform cortex than in the neocortex. 3) Glutamate decarboxylase 67, vesicular GABA transporter, and parvalbumin, but not calbindin, are colocalized with the presynaptic varicosities, whereas gephyrin, Na-K-2Cl cotransporter 1, and GABA(A) receptor α1 subunit, but not K-Cl cotransporter 2, are colocalized at the presumed postsynaptic sites. 4) The axo-axonic cartridges innervate the majority of excitatory neurons and are distributed more frequently in putative centrifugal cells and posterior piriform cortex. We further describe the morphology of chandelier cells by using parvalbumin-immunoreactivity and single-cell labeling. In summary, our results demonstrate that a small population of chandelier cells mediates abundant axo-axonic synapses across the entire piriform cortex. Because of the critical location of these inhibitory synapses in relation to action potential regulation, our results highlight a critical role of axo-axonic synapses in regulating information flow and olfactory-related oscillations within the piriform cortex in vivo.

  12. Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2014-01-01

    Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD.

  13. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.

    Science.gov (United States)

    Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine

    2009-05-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between

  14. Shelf Stable Epoxy Repair Adhesive

    Science.gov (United States)

    2015-02-01

    manufacturing operations are more efficient , discarding less expired film. Commercial and military aircraft repair operations at Boeing experience very similar...successfully encapsulated at concentrations greater than 50 wt% within four N N = CC Infoscitex Corporation Shelf Stable Epoxy Resin Adhesive WP-1763 8...affects the composition of the encapsulant , which in turn affects the ability of the encapsulant to wet the core phase, the barrier properties of the

  15. Prices Up and Volumes Stable

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011 First Half China Garment Industry Report Exports Grew at a Slower Pace China Customs reported the garment & accessories export value of $51.286 billion for the first five months of this year, up 23.12% y/y, accounting for 56.28 percent of the total, 5% lower than the previous year’s points.Despite sales prices increase, sales volume remain stable. From Jan. to May

  16. Phases of stable representations of quivers

    CERN Document Server

    Engenhorst, Magnus

    2015-01-01

    We consider stable representations of non-Dynkin quivers with respect to a central charge. On one condition the existence of a stable representation with self-extensions implies the existence of infinitely many stables without self-extensions. In this case the phases of the stable representations approach one or two limit points. In particular, the phases are not dense in two arcs.

  17. Mimicking the mechanical properties of the cell cortex by the self-assembly of an actin cortex in vesicles

    Science.gov (United States)

    Luo, Tianzhi; Srivastava, Vasudha; Ren, Yixin; Robinson, Douglas N.

    2014-04-01

    The composite of the actin cytoskeleton and plasma membrane plays important roles in many biological events. Here, we employed the emulsion method to synthesize artificial cells with biomimetic actin cortex in vesicles and characterized their mechanical properties. We demonstrated that the emulsion method provides the flexibility to adjust the lipid composition and protein concentrations in artificial cells to achieve the desired size distribution, internal microstructure, and mechanical properties. Moreover, comparison of the cortical elasticity measured for reconstituted artificial cells to that of real cells, including those manipulated using genetic depletion and pharmacological inhibition, strongly supports that actin cytoskeletal proteins are dominant over lipid molecules in cortical mechanics. Our study indicates that the assembly of biological systems in artificial cells with purified cellular components provides a powerful way to answer biological questions.

  18. Quantitative microbial ecology through stable isotope probing.

    Science.gov (United States)

    Hungate, Bruce A; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; McHugh, Theresa A; Marks, Jane C; Morrissey, Ember M; Price, Lance B

    2015-11-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in (18)O and (13)C composition after exposure to [(18)O]water or [(13)C]glucose. The addition of glucose increased the assimilation of (18)O into DNA from [(18)O]water. However, the increase in (18)O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.

  19. Early exposure to urethane anesthesia: Effects on neuronal activity in the piriform cortex of the developing brain.

    Science.gov (United States)

    Kajiwara, Riichi; Takashima, Ichiro

    2015-07-23

    Exposure to urethane anesthesia reportedly produces selective neuronal cell loss in the piriform cortex of young brains; however, resulting functional deficits have not been investigated. The present study found abnormalities in piriform cortex activity of isolated brains in vitro that were harvested from guinea pigs exposed to urethane anesthesia at 14 days of age. Current source density (CSD) analysis and voltage-sensitive dye (VSD) imaging experiments were conducted 48h after urethane injection. We applied paired-pulse stimulation to the lateral olfactory tract (LOT) and assessed short-interval intra-cortical inhibition in the piriform cortex. CSD analysis revealed that a current sink in layer Ib remained active in response to successive stimuli, with an inter-stimulus interval of 30-60 ms, which was typically strongly inhibited. VSD imaging demonstrated stronger and extended neural activity in the urethane-treated piriform cortex, even in response to a second stimulus delivered in short succession. We identified gamma-aminobutyric acid (GABA) ergic neurons in the piriform cortex of sham and urethane-treated animals and found a decrease in GABA-immunoreactive cell density in the urethane group. These results suggest that urethane exposure induces loss of GABAergic interneurons and a subsequent reduction in paired-pulse inhibition in the immature piriform cortex.

  20. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.

    Science.gov (United States)

    Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah

    2016-01-11

    Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates.

  1. [Functional asymmetry of the frontal cortex and lateral hypothalamus of cats during food instrumental conditioning].

    Science.gov (United States)

    Vanetsiian, G L; Pavlova, I V

    2003-01-01

    The synchronism and latency of auditory evoked potentials (EP) recorded in symmetric points of the frontal cortex and lateral hypothalamus of cats were measured at different stages of instrumental food conditioning and after the urgent transition to 30% reinforcement. Correlation coefficients between EPs in the cortex and hypothalamus were high (with left-side dominance) at the beginning of the experiments, when food motivation was high, and during the whole experiments in cases of high-probability of conditioned performance. Analysis of early positive P55-80 EP component showed that at all conditioning stages the peak latency of this component was shorter in the left cortical areas than in symmetrical points, whereas in the hypothalamus the shorter latency at the left side was observed at the stage of unstable conditioned reflex, and at the stage of stable reflex the latency of the studied component was shorter at the right side. During transition to 30% reinforcement, the latency was also shorter in the right hypothalamus. It is suggested that the high left-side correlation between the hypothalamus and cortex was associated with motivational and motor component of behavior rather than reflected the emotional stress induced by transition to another stereotype of food reinforcement (30%).

  2. Physical activity-associated gene expression signature in nonhuman primate motor cortex.

    Science.gov (United States)

    Mitchell, Amanda C; Leak, Rehana K; Garbett, Krassimira; Zigmond, Michael J; Cameron, Judy L; Mirnics, Károly

    2012-03-01

    It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.

  3. Locomotion Induces Stimulus-Specific Response Enhancement in Adult Visual Cortex.

    Science.gov (United States)

    Kaneko, Megumi; Fu, Yu; Stryker, Michael P

    2017-03-29

    The responses of neurons in the visual cortex (V1) of adult mammals have long been thought to be stable over long periods. Here, we investigated whether repeated exposure to specific stimuli would enhance V1 visual responses in mice using intrinsic signal imaging through the intact skull and two-photon imaging of calcium signals in single neurons. Mice ran on Styrofoam balls floating on air while viewing one of three different, high-contrast visual stimuli. V1 responses to the stimuli that were viewed by the animal were specifically enhanced, while responses to other stimuli were unaffected. Similar exposure in stationary mice or in mice in which NMDA receptors were partially blocked did not significantly enhance responses. These findings indicate that stimulus-specific plasticity in the adult visual cortex depends on concurrent locomotion, presumably as a result of the high-gain state of the visual cortex induced by locomotion.SIGNIFICANCE STATEMENT We report a rapid and persistent increase in visual cortical responses to visual stimuli presented during locomotion in intact mice. We first used a method that is completely noninvasive to image intrinsic signals through the intact skull. We then measured the same effects on single neurons using two-photon calcium imaging and found that the increase in response to a particular stimulus produced by locomotion depends on how well the neuron is initially driven by the stimulus. To our knowledge, this is the first time such enhancement has been described in single neurons or using noninvasive measurements.

  4. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Gavin D Tempest

    Full Text Available The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes of affective (pleasure-displeasure responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ in oxygenation (O2Hb, deoxygenation (HHb, blood volume (tHb and haemoglobin difference (HbDiff were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a all regions of the left hemisphere and (b lateral (dorsal and ventral regions followed by the midline (ventral region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  5. Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex.

    Science.gov (United States)

    Bissonette, Gregory B; Powell, Elizabeth M; Roesch, Matthew R

    2013-08-01

    Impaired attentional set-shifting and inflexible decision-making are problems frequently observed during normal aging and in several psychiatric disorders. To understand the neuropathophysiology of underlying inflexible behavior, animal models of attentional set-shifting have been developed to mimic tasks such as the Wisconsin Card Sorting Task (WCST), which tap into a number of cognitive functions including stimulus-response encoding, working memory, attention, error detection, and conflict resolution. Here, we review many of these tasks in several different species and speculate on how prefrontal cortex and anterior cingulate cortex might contribute to normal performance during set-shifting. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Prearcuate cortex in the Cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotor-related brainstem nuclei.

    Science.gov (United States)

    Leichnetz, G R; Gonzalo-Ruiz, A

    1996-01-01

    The cortical and subcortical connections of the prearcuate cortex were studied in capuchin monkeys (Cebus apella, albifrons) using the anterograde and retrograde transport capabilities of the horseradish peroxidase technique. The findings demonstrate remarkable similarities to those of the macaque frontal eye field and strongly support their homology. The report then focuses on specific prearcuate projections to oculomotor-related brainstem nuclei that were shown in a companion experiment to entertain connections with the caudal oculomotor portion of the cerebellar fastigial nucleus. The principal corticocortical connections of the cebus prearcuate cortex were with dorsomedial prefrontal cortex, lateral intraparietal sulcal cortex, posterior medial parietal cortex, and superior temporal sulcal cortex, which were for the most part reciprocal and columnar in organization. The connections of the dorsal prearcuate region were heavier to the dorsomedial prefrontal and posterior medial parietal cortices, and those of the ventral region were heavier to the superior temporal sulcal cortex. The prearcuate cortex projects to several brainstem areas which also receive projections from the caudal fastigial nucleus, including the supraoculomotor periaqueductal gray matter, superior colliculus, medial nucleus reticularis tegmenti pontis, dorsomedial basilar pontine nucleus, dorsolateral basilar pontine nucleus, nucleus reticularis pontis caudalis, pontine raphe, and nucleus prepositus hypoglossi. The findings define a neuroanatomical framework within which convergence of prearcuate (putative frontal eye field) and caudal fastigial nucleus connections might occur, facilitating their potential interaction in saccadic and smooth pursuit eye movement.

  7. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    Science.gov (United States)

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  8. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  9. Speed of processing in the primary motor cortex: a continuous theta burst stimulation study.

    Science.gov (United States)

    Lakhani, Bimal; Bolton, David A E; Miyasike-Dasilva, Veronica; Vette, Albert H; McIlroy, William E

    2014-03-15

    'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

  10. Damp heat stable doped zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hüpkes, J., E-mail: j.huepkes@fz-juelich.de [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Owen, J.I. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Wimmer, M.; Ruske, F. [Institute of Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin (Germany); Greiner, D.; Klenk, R. [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Zastrow, U. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Hotovy, J. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2014-03-31

    Zinc oxide is widely used as transparent contact in thin film solar cells. We investigate the damp heat stability of aluminum doped ZnO (ZnO:Al) films sputter deposited at different conditions. Increase in resistivity upon damp heat exposure was observed for as-deposited ZnO:Al films and the water penetration was directly linked to this degradation. Deuterium was used as isotopic marker to identify the amount of water taken up by the films. Finally, we applied a special annealing step to prepare highly stable ZnO:Al films with charge carrier mobility of 70 cm{sup 2}/Vs after 1000 h of damp heat treatment. A grain boundary reconstruction model is proposed to explain the high stability of ZnO:Al films after annealing. - Highlights: • Study of damp heat degradation on electrical properties of ZnO:Al • Demonstration of fast water penetration and replacement mechanism • Damp heat stable ZnO:Al films with high mobility after damp heat treatment.

  11. Stable isotope enrichment using a plasma centrifuge

    Science.gov (United States)

    Krishnan, Mahadevan; Bures, Brian; Madden, Robert

    2012-10-01

    A primary goal of the Department of Energy's Isotope Development and Production for Research and Applications Program (Isotope Program) within the Office of Nuclear Physics (NP) is to produce isotopes that are in short supply in the U.S. and of which there exists no or insufficient domestic commercial production capability. A vacuum arc plasma centrifuge is a rigid rotor column of metal plasma in which centrifugal forces re-distribute ions radially according to their mass/charge ratio. Early work demonstrated rotation at 2 million rpm and separation of various stable isotopes. The spinning plasma column had a Gaussian flux profile, peaked on the rigid rotor axis. This work adopts a more efficient approach, with the plasma created as a hollow column, wherein the flux is concentrated at larger radii where the centrifugal action is highest. By tailoring the vacuum arc discharge geometry, the rotation rate can also be increased to ˜10 million rpm. Data from Cu, Al and other metal plasmas will be presented and discussed in light of enriched stable isotopes needed for research and medicine.

  12. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  13. Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for diet-induced prefrontal cortex dysregulation.

    Science.gov (United States)

    Baker, Kathryn D; Reichelt, Amy C

    2016-12-01

    Anxiety disorders and obesity are both common in youth and young adults. Despite increasing evidence that over-consumption of palatable high-fat/high-sugar "junk" foods leads to adverse neurocognitive outcomes, little is known about the effects of palatable diets on emotional memories and fear regulation. In the present experiments we examined the effects of daily 2h consumption of a high-fat/high-sugar (HFHS) food across adolescence on fear inhibition and anxiety-like behaviour in young adult rats. Rats exposed to the HFHS diet exhibited impaired retention of fear extinction and increased anxiety-like behaviour in an emergence test compared to rats fed a standard diet. The HFHS-fed rats displayed diet-induced changes in prefrontal cortex (PFC) function which were detected by altered expression of GABAergic parvalbumin-expressing inhibitory interneurons and the stable transcription factor ΔFosB which accumulates in the PFC in response to chronic stimuli. Immunohistochemical analyses of the medial PFC revealed that animals fed the HFHS diet had fewer parvalbumin-expressing cells and increased levels of FosB/ΔFosB expression in the infralimbic cortex, a region implicated in the consolidation of fear extinction. There was a trend towards increased IBA-1 immunoreactivity, a marker of microglial activation, in the infralimbic cortex after HFHS diet exposure but expression of the extracellular glycoprotein reelin was unaffected. These findings demonstrate that a HFHS diet during adolescence is associated with reductions of prefrontal parvalbumin neurons and impaired fear inhibition in adulthood. Adverse effects of HFHS diets on the mechanisms of fear regulation may precipitate a vulnerability in obese individuals to the development of anxiety disorders.

  14. Stable extensions by line bundles

    CERN Document Server

    Teixidor-i-Bigas, M

    1997-01-01

    Let C be an algebraic curve of genus g. Consider extensions E of a vector bundle F'' of rank n'' by a vector bundle F' of rank n'. The following statement was conjectured by Lange: If 0stable. We prove this result for the generic curve when F' is a line bundle. Our method uses a degeneration argument to a reducible curve.

  15. Online BCI with Stable Sources

    OpenAIRE

    2012-01-01

    In this paper, we show that the estimated intra-cranial sources using source localization on EEG signals can be used for online Brain Computer Interation (BCI) and the discriminant sources remain stable over days. Classifiers are trained on discriminant sources obtained for Error-related Potential (ErrP) based BCI on day 1 and then tested online on day 2. The results for nine subjects show that the source localization with discriminant sources can be used for online detection of ErrPs. Furthe...

  16. SYSTEMS OF ECOLOGICALLY STABLE CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2013-09-01

    Full Text Available Energy saving, reduction of carbon dioxide emission, preserving environment are topical issues of modern construction. Future-oriented, ecologically stable construction (ESC means the necessity to consider the questions of environmental protection, ecology and social protection in the process of planning and performing the works. The systems of ESC are realized in the projects initiated by the leading companies producing heat-efficient construction products and in particular autoclave gas concrete blocks and wide range of products on the basis of rock wool.

  17. Stable Hemiaminals: 2-Aminopyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Kwiecień

    2015-08-01

    Full Text Available Stable hemiaminals can be obtained in the one-pot reaction between 2-aminopyrimidine and nitrobenzaldehyde derivatives. Ten new hemiaminals have been obtained, six of them in crystal state. The molecular stability of these intermediates results from the presence of both electron-withdrawing nitro groups as substituents on the phenyl ring and pyrimidine ring, so no further stabilisation by intramolecular interaction is required. Hemiaminal molecules possess a tetrahedral carbon atom constituting a stereogenic centre. As the result of crystallisation in centrosymmetric space groups both enantiomers are present in the crystal structure.

  18. Orbitofrontal cortex function and structure in depression.

    Science.gov (United States)

    Drevets, Wayne C

    2007-12-01

    The orbitofrontal cortex (OFC) has been implicated in the pathophysiology of major depression by evidence obtained using neuroimaging, neuropathologic, and lesion analysis techniques. The abnormalities revealed by these techniques show a regional specificity, and suggest that some OFC regions which appear cytoarchitectonically distinct also are functionally distinct with respect to mood regulation. For example, the severity of depression correlates inversely with physiological activity in parts of the posterior lateral and medial OFC, consistent with evidence that dysfunction of the OFC associated with cerebrovascular lesions increases the vulnerability for developing the major depressive syndrome. The posterior lateral and medial OFC function may also be impaired in individuals who develop primary mood disorders, as these patients show grey-matter volumetric reductions, histopathologic abnormalities, and altered hemodynamic responses to emotionally valenced stimuli, probabilistic reversal learning, and reward processing. In contrast, physiological activity in the anteromedial OFC situated in the ventromedial frontal polar cortex increases during the depressed versus the remitted phases of major depressive disorder to an extent that is positively correlated with the severity of depression. Effective antidepressant treatment is associated with a reduction in activity in this region. Taken together these data are compatible with evidence from studies in experimental animals indicating that some orbitofrontal and medial prefrontal cortex regions function to inhibit, while others function to enhance, emotional expression. Alterations in the functional balance between these regions and the circuits they form with anatomically related areas of the temporal lobe, striatum, thalamus, and brain stem thus may underlie the pathophysiology of mood disorders, such as major depression.

  19. Inhibition by somatostatin interneurons in olfactory cortex

    Directory of Open Access Journals (Sweden)

    Adam M Large

    2016-08-01

    Full Text Available Inhibitory circuitry plays an integral cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST interneurons onto pyramidal cells, parvalbumin (PV interneurons and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre and G42 that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS interneurons rather than regular (RS or low threshold spiking (LTS phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that somatostatin interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.

  20. Determining Physical Properties of the Cell Cortex

    Science.gov (United States)

    Saha, Arnab; Nishikawa, Masatoshi; Behrndt, Martin; Heisenberg, Carl-Philipp; Jülicher, Frank; Grill, Stephan W.

    2016-03-01

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse grained physical description of the cortex in terms of a two dimensional thin film of an active viscoelastic gel. To determine the Maxwell time, the hydrodynamic length and the ratio of active stress and per-area friction, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. We provide an accurate and robust means for measuring physical parameters of the actomyosin cortical layer.It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights in the active mechanics processes that govern tissue-scale morphogenesis.

  1. Plasticity of neuronal response properties in adult cat striate cortex.

    Science.gov (United States)

    McLean, J; Palmer, L A

    1998-01-01

    demonstrate the ability of mature visual cortical neurons to alter their integrative properties. Our results lend further support to models of synaptic plasticity where temporal correlations between presynaptic and postsynaptic activity levels control the efficiency of transmission at existing synapses, and to the idea that the mature visual cortex is, in some sense, dynamically organized.

  2. Superradiantly stable non-extremal Reissner-Nordstroem black holes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jia-Hui [School of Physics and Telecommunication Engineering, South China Normal University, Laboratory of Quantum Engineering and Quantum Materials, Guangzhou (China); Mai, Zhan-Feng [Beijing Normal University, Department of Physics, Center for Advanced Quantum Studies, Beijing (China)

    2016-06-15

    The superradiant stability is investigated for non-extremal Reissner-Nordstroem black holes. We use an algebraic method to demonstrate that all non-extremal Reissner-Nordstroem black holes are superradiantly stable against a charged massive scalar perturbation. This improves the results obtained before for non-extremal Reissner-Nordstroem black holes. (orig.)

  3. Stable Kernel Representations as Nonlinear Left Coprime Factorizations

    NARCIS (Netherlands)

    Paice, A.D.B.; Schaft, A.J. van der

    1994-01-01

    A representation of nonlinear systems based on the idea of representing the input-output pairs of the system as elements of the kernel of a stable operator has been recently introduced. This has been denoted the kernel representation of the system. In this paper it is demonstrated that the kernel

  4. Long solitary internal waves in stable stratifications

    Directory of Open Access Journals (Sweden)

    W. B. Zimmerman

    2004-01-01

    Full Text Available Observations of internal solitary waves over an antarctic ice shelf (Rees and Rottman, 1994 demonstrate that even large amplitude disturbances have wavelengths that are bounded by simple heuristic arguments following from the Scorer parameter based on linear theory for wave trapping. Classical weak nonlinear theories that have been applied to stable stratifications all begin with perturbations of simple long waves, with corrections for weak nonlinearity and dispersion resulting in nonlinear wave equations (Korteweg-deVries (KdV or Benjamin-Davis-Ono that admit localized propagating solutions. It is shown that these theories are apparently inappropriate when the Scorer parameter, which gives the lowest wavenumber that does not radiate vertically, is positive. In this paper, a new nonlinear evolution equation is derived for an arbitrary wave packet thus including one bounded below by the Scorer parameter. The new theory shows that solitary internal waves excited in high Richardson number waveguides are predicted to have a halfwidth inversely proportional to the Scorer parameter, in agreement with atmospheric observations. A localized analytic solution for the new wave equation is demonstrated, and its soliton-like properties are demonstrated by numerical simulation.

  5. Hemodynamic Responses on Prefrontal Cortex Related to Meditation and Attentional Task

    Directory of Open Access Journals (Sweden)

    Singh eDeepeshwar

    2015-02-01

    Full Text Available Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF in the prefrontal cortex (PFC. The present study employed functional near infrared spectroscopy (fNIRS to evaluate the relative hemodynamic changes in prefrontal cortex during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years performed a color-word stroop task before and after 20 minutes of meditation and random thinking. Repeated measures ANOVA was performed followed by a post-hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of ‘During’ and ‘Post’ with ‘Pre’ state. During meditation there was an increased in oxy-hemoglobin (∆HbO and total hemoglobin (∆THC concentration with reduced deoxy-hemoglobin (∆HbR concentration over the right prefrontal cortex (rPFC, whereas in random thinking there was increased ∆HbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time was shorter in stroop color word task with reduced ∆THC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with prefrontal cortex activation.

  6. Layer-specific diffusion weighted imaging in human primary visual cortex in vitro.

    Science.gov (United States)

    Kleinnijenhuis, Michiel; Zerbi, Valerio; Küsters, Benno; Slump, Cornelis H; Barth, Markus; van Cappellen van Walsum, Anne-Marie

    2013-10-01

    One of the most prominent characteristics of the human neocortex is its laminated structure. The first person to observe this was Francesco Gennari in the second half the 18th century: in the middle of the depth of primary visual cortex, myelinated fibres are so abundant that he could observe them with bare eyes as a white line. Because of its saliency, the stria of Gennari has a rich history in cyto- and myeloarchitectural research as well as in magnetic resonance (MR) microscopy. In the present paper we show for the first time the layered structure of the human neocortex with ex vivo diffusion weighted imaging (DWI). To achieve the necessary spatial and angular resolution, primary visual cortex samples were scanned on an 11.7 T small-animal MR system to characterize the diffusion properties of the cortical laminae and the stria of Gennari in particular. The results demonstrated that fractional anisotropy varied over cortical depth, showing reduced anisotropy in the stria of Gennari, the inner band of Baillarger and the deepest layer of the cortex. Orientation density functions showed multiple components in the stria of Gennari and deeper layers of the cortex. Potential applications of layer-specific diffusion imaging include characterization of clinical abnormalities, cortical mapping and (intra)cortical tractography. We conclude that future high-resolution in vivo cortical DWI investigations should take into account the layer-specificity of the diffusion properties.

  7. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    Science.gov (United States)

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  8. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Erika K Hussey

    Full Text Available Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty. Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1 processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2 performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1 the sentence processing conditions requiring executive-control, and (2 only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing.

  9. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

    Science.gov (United States)

    Neymotin, Samuel A.; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D.; Lytton, William W.

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails. PMID:27378922

  10. Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex.

    Science.gov (United States)

    Neymotin, Samuel A; Dura-Bernal, Salvador; Lakatos, Peter; Sanger, Terence D; Lytton, William W

    2016-01-01

    A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails.

  11. Loss of connexin36 in rat hippocampus and cerebellar cortex in persistent Borna disease virus infection.

    Science.gov (United States)

    Köster-Patzlaff, Christiane; Hosseini, Seyed Mehdi; Reuss, Bernhard

    2009-03-01

    Neonatal Borna disease virus (BDV) infection of the Lewis rat leads to progressive degeneration of dentate gyrus granule cells, and cerebellar Purkinje neurons. Our aim here was to clarify whether BDV interfered with the formation of electrical synapses, and we, therefore, analysed expression of the neuronal gap junction protein connexin36 (Cx36) in the Lewis rat hippocampal formation, and cerebellar cortex, 4 and 8 weeks after neonatal infection. Semiquantitative RT-PCR, revealed a BDV-dependent decrease in Cx36 mRNA in the hippocampal formation 4 and 8 weeks post-infection (p.i.), and in the cerebellar cortex 8 weeks p.i. Correspondingly, immunofluorescent staining revealed reduced Cx36 immunoreactivity in both dentate gyrus, and ammons horn CA3 region, 4 and 8 weeks post-infection. In the cerebellar cortex, Cx36 immunoreactivity was detected only 8 weeks post-infection in the molecular layer, where it was down regulated by BDV. Our findings demonstrate, for the first time, distinct BDV-dependent reductions in Cx36 mRNA and protein in the rat hippocampal formation and cerebellar cortex, suggesting altered neuronal network properties to be an important feature of persistent viral brain infections.

  12. Segregation of vowels and consonants in human auditory cortex: Evidence for distributed hierarchical organization

    Directory of Open Access Journals (Sweden)

    Jonas eObleser

    2010-12-01

    Full Text Available The speech signal consists of a continuous stream of consonants and vowels, which must be de– and encoded in human auditory cortex to ensure the robust recognition and categorization of speech sounds. We used small-voxel functional magnetic resonance imaging (fMRI to study information encoded in local brain activation patterns elicited by consonant-vowel syllables, and by a control set of noise bursts.First, activation of anterior–lateral superior temporal cortex was seen when controlling for unspecific acoustic processing (syllables versus band-passed noises, in a classic subtraction-based design. Second, a classifier algorithm, which was trained and tested iteratively on data from all subjects to discriminate local brain activation patterns, yielded separations of cortical patches discriminative of vowel category versus patches discriminative of stop-consonant category across the entire superior temporal cortex, yet with regional differences in average classification accuracy. Overlap (voxels correctly classifying both speech sound categories was surprisingly sparse. Third, lending further plausibility to the results, classification of speech–noise differences was generally superior to speech–speech classifications, with the notable exception of a left anterior region, where speech–speech classification accuracies were significantly better.These data demonstrate that acoustic-phonetic features are encoded in complex yet sparsely overlapping local patterns of neural activity distributed hierarchically across different regions of the auditory cortex. The redundancy apparent in these multiple patterns may partly explain the robustness of phonemic representations.

  13. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    Science.gov (United States)

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  14. Selective lesion to the entorhinal cortex leads to an impairment in familiarity but not recollection.

    Science.gov (United States)

    Brandt, Karen R; Eysenck, Michael W; Nielsen, Maria Kragh; von Oertzen, Tim J

    2016-04-01

    The present research explored the effects of selective impairment to the entorhinal cortex on the processes of familiarity and recollection. To achieve this objective, the performance of patient MR, who has a selective impairment of the left entorhinal cortex, was compared to that of age and IQ-matched controls. Four experiments tested participants' recognition memory for familiar and unfamiliar faces and words. In all experiments, participants studied lists of items and then completed an old/new recognition test in which they also made remember/know/guess judgements. A fifth experiment tested participants' priming associated with the familiarity process. MR had intact performance in both face recognition experiments as well as having intact performance in pseudoword recognition. Crucially, however, in the familiar word experiment, whilst MR performed similarly to control participants in terms of recollection, she showed a marked impairment in familiarity. Furthermore, she also demonstrated a reversed conceptual priming effect. MR's impairment is both material-specific and selective for previously encountered but not new verbal items (pseudowords). These findings provide the first clear evidence that selective impairment of the entorhinal cortex impairs the familiarity process for familiar verbal material whilst leaving recollection intact. These results suggest the entorhinal cortex does not have attributes reflective of both recollection and familiarity as previously assumed, but rather supports context-free long-term familiarity-based recognition memory.

  15. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Yukako Yokota

    Full Text Available Interneurons originating from the ganglionic eminence migrate tangentially into the developing cerebral wall as they navigate to their distinct positions in the cerebral cortex. Compromised connectivity and differentiation of interneurons are thought to be an underlying cause in the emergence of neurodevelopmental disorders such as schizophrenia. Previously, it was suggested that tangential migration of interneurons occurs in a radial glia independent manner. Here, using simultaneous imaging of genetically defined populations of interneurons and radial glia, we demonstrate that dynamic interactions with radial glia can potentially influence the trajectory of interneuronal migration and thus the positioning of interneurons in cerebral cortex. Furthermore, there is extensive local interneuronal migration in tangential direction opposite to that of pallial orientation (i.e., in a medial to lateral direction from cortex to ganglionic eminence all across the cerebral wall. This counter migration of interneurons may be essential to locally position interneurons once they invade the developing cerebral wall from the ganglionic eminence. Together, these observations suggest that interactions with radial glial scaffold and localized migration within the expanding cerebral wall may play essential roles in the guidance and placement of interneurons in the developing cerebral cortex.

  16. The importance of premotor cortex for supporting speech production after left capsular-putaminal damage.

    Science.gov (United States)

    Seghier, Mohamed L; Bagdasaryan, Juliana; Jung, Dorit E; Price, Cathy J

    2014-10-22

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage. Copyright © 2014 Seghier et al.

  17. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test.

    Science.gov (United States)

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong; Choi, Jee Hyun

    2017-04-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.

  18. Early Hearing-Impairment Results in Crossmodal Reorganization of Ferret Core Auditory Cortex

    Directory of Open Access Journals (Sweden)

    M. Alex Meredith

    2012-01-01

    Full Text Available Numerous investigations of cortical crossmodal plasticity, most often in congenital or early-deaf subjects, have indicated that secondary auditory cortical areas reorganize to exhibit visual responsiveness while the core auditory regions are largely spared. However, a recent study of adult-deafened ferrets demonstrated that core auditory cortex was reorganized by the somatosensory modality. Because adult animals have matured beyond their critical period of sensory development and plasticity, it was not known if adult-deafening and early-deafening would generate the same crossmodal results. The present study used young, ototoxically-lesioned ferrets (n=3 that, after maturation (avg. = 173 days old, showed significant hearing deficits (avg. threshold = 72 dB SPL. Recordings from single-units (n=132 in core auditory cortex showed that 72% were activated by somatosensory stimulation (compared to 1% in hearing controls. In addition, tracer injection into early hearing-impaired core auditory cortex labeled essentially the same auditory cortical and thalamic projection sources as seen for injections in the hearing controls, indicating that the functional reorganization was not the result of new or latent projections to the cortex. These data, along with similar observations from adult-deafened and adult hearing-impaired animals, support the recently proposed brainstem theory for crossmodal plasticity induced by hearing loss.

  19. Long-term potentiation in the neonatal rat barrel cortex in vivo.

    Science.gov (United States)

    An, Shuming; Yang, Jenq-Wei; Sun, Haiyan; Kilb, Werner; Luhmann, Heiko J

    2012-07-11

    Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro. We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV/lower layer II/III at P3-P5 and in the cortical plate/upper layer V at P0-P1. Our study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo.

  20. Bromine-76 and carbon-11 labelled NNC 13-8199, metabolically stable benzodiazepine receptor agonists as radioligands for positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Foged, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm (Sweden)]|[Novo Nordisk A/S, Health Care Discovery and Development, Maaloev (Denmark); Halldin, C.; Pauli, S.; Suhara, T.; Swahn, C.G.; Karlsson, P.; Farde, L. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm (Sweden); Loc`h, C.; Maziere, B.; Maziere, M. [Service Hospitalier Frederic Joliot, CEA, Orsay (France); Hansen, H.C. [Novo Nordisk A/S, Health Care Discovery and Development, Maaloev (Denmark)

    1997-10-01

    NNC 13-8241 has recently been labelled with iodine-123 and developed as a metabolically stable benzodiazepine receptor ligand for single-photon emission computed tomography (SPECT) in monkeys and man. NNC 13-8199 is a bromo-analogue of NNC 13-8241. This partial agonist binds selectively and with subnanomolar affinity to the benzodiazepine receptors. We prepared {sup 76}Br labelled NNC 13-8199 from the trimethyltin precursor by the chloramine-T method. Carbon-11 labelled NNC 13-8199 was synthesised by N-alkylation of the nitrogen of the amide group with [{sup 11}C]methyl iodide. Positron emission tomography (PET) examination with the two radioligands in monkeys demonstrated a high uptake of radioactivity in the occipital, temporal and frontal cortex. In the study with [{sup 76}Br]NNC 13-8199, the monkey brain uptake continued to increase until the time of displacement with flumazenil at 215 min after injection. For both radioligands the radioactivity in the cortical brain regions was markedly reduced after displacement with flumazenil. More than 98% of the radioactivity in monkey plasma represented unchanged radioligand 40 min after injection. The low degree of metabolism indicates that NNC 13-8199 is metabolically much more stable than hitherto developed PET radioligands for imaging of benzodiazepine receptors in the primate brain. [{sup 76}Br]NNC 13-8199 has potential as a radioligand in human PET studies using models where a slow metabolism is an advantage. (orig.) With 8 figs., 28 refs.

  1. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  2. Stable helical solitons in optical media

    Indian Academy of Sciences (India)

    Boris Malomed; G D Peng; P L Chu; Isaac Towers; Alexander V Buryak; Rowland A Sammut

    2001-11-01

    We present a review of new results which suggest the existence of fully stable spinning solitons (self-supporting localised objects with an internal vorticity) in optical fibres with self-focusing Kerr (cubic) nonlinearity, and in bulk media featuring a combination of the cubic self-defocusing and quadratic nonlinearities. Their distinctive difference from other optical solitons with an internal vorticity, which were recently studied in various optical media, theoretically and also experimentally, is that all the spinning solitons considered thus far have been found to be unstable against azimuthal perturbations. In the first part of the paper, we consider solitons in a nonlinear optical fibre in a region of parameters where the fibre carries exactly two distinct modes, viz., the fundamental one and the first-order helical mode. From the viewpoint of application to communication systems, this opens the way to doubling the number of channels carried by a fibre. Besides that, these solitons are objects of fundamental interest. To fully examine their stability, it is crucially important to consider collisions between them, and their collisions with fundamental solitons, in (ordinary or hollow) optical fibres. We introduce a system of coupled nonlinear Schrödinger equations for the fundamental and helical modes with nonstandard values of the cross-phase-modulation coupling constants, and show, in analytical and numerical forms, results of collisions between solitons carried by the two modes. In the second part of the paper, we demonstrate that the interaction of the fundamental beam with its second harmonic in bulk media, in the presence of self-defocusing Kerr nonlinearity, gives rise to the first ever example of completely stable spatial ring-shaped solitons with intrinsic vorticity. The stability is demonstrated both by direct simulations and by analysis of linearized equations.

  3. High voltage testing for the MAJORANA DEMONSTRATOR

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arnquist, I.J. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone, F.T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Barabash, A.S. [National Research Center “Kurchatov Institute” Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F.E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bradley, A.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Brudanin, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busch, M. [Department of Physics, Duke University, Durham, NC (United States); Triangle Universities Nuclear Laboratory, Durham, NC (United States); Buuck, M. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Byram, D. [Department of Physics, University of South Dakota, Vermillion, SD (United States); Caldwell, A.S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chan, Y-D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Christofferson, C.D. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chu, P.-H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Cuesta, C., E-mail: ccuesta@uw.edu [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); Detwiler, J.A.; Doe, P.J. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA (United States); and others

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in {sup 76}Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  4. High voltage testing for the MAJORANA Demonstrator

    CERN Document Server

    Abgrall, N; Avignone, F T; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Cuesta, C; Detwiler, J A; Doe, P J; Dunagan, C; Efremenko, Yu; Ejiri, H; Elliott, S R; Fu, Z; Galindo-Uribarri, A; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; Li, A; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Thompson, A; Ton, K T; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V

    2016-01-01

    The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in Ge-76. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA Demonstrator. This eff?ect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including diff?erent improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA Demonstrator was characterized and the micro-discharge eff?ects during the MAJORANA Demonstrator commissioning phase were studied. A stable c...

  5. High voltage testing for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Li, A.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Thompson, A.; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.

    2016-07-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA DEMONSTRATOR. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA DEMONSTRATOR was characterized and the micro-discharge effects during the MAJORANA DEMONSTRATOR commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  6. High voltage testing for the Majorana Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.; Barabash, A.; Bertrand, F.; Bradley, A. W.; Brudanin, V.; Busch, Matthew; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, C. D.; Chu, Pamela M.; Cuesta, C.; Detwiler, Jason A.; Doe, P. J.; Dunagan, C.; Efremenko, Yuri; Ejiri, H.; Elliott, S. R.; Fu, Z.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, Eric W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K.; Kidd, M. F.; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Li, Alexander D.; MacMullin, J.; Martin, R. D.; Massarcyk, R.; Meijer, S. J.; Mertens, S.; Orrell, John L.; O' Shaughnessy, C.; Poon, Alan W.; Radford, D. C.; Rager, J.; Rielage, Keith; Robertson, R. G. H.; Romero Romo, M.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, Anne-Marie E.; Tedeschi, D.; Thompson, Andrew; Ton, K. T.; Trimble, J. E.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, Chang-Hong; Yumatov, V.

    2016-07-01

    The Majorana Collaboration is constructing theMajorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of theMajorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during theMajorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

  7. Persistence Length of Stable Microtubules

    Science.gov (United States)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  8. Stable Imaging for Astronomy (SIA)

    Science.gov (United States)

    Beaulieu, Mathilde; Ottogalli, Sebastien; Preis, Olivier; Bresson, Yves; Rivet, Jean-Pierre; Abe, Lyu; Vakili, Farrokh

    2014-07-01

    One of the most challenging fields of astronomical instrumentation is probably high-contrast imaging since it ultimately combines ultra-high sensitivity at low flux and the ability to cope with photon flux contrasts of several hundreds of millions or even more. These two aspects implicitly require that high-contrast instruments should be highly stable in the sense of the reproducibility of their measurements at different times, but also, continuously stable over time. In most high contrast instruments or experiments, their sensitivity is broken after at most tens of minutes of operation due to uncontrolled and unknown behaviour of the whole experiment regarding the environmental conditions. In this paper, we introduce a general approach of an exhaustive stability study for high-contrast imaging that has been initiated at Lagrange Laboratory, Observatoire de la Côte d'Azur (OCA). On a practical ground, one of the fundamental issues of this study is the metrology, which is the basis of all reproducible measurements. We describe a small experiment designed to understand the behaviour of one of our ultra-precise metrology tools (a commercial sub-nanometric 3-way interferometer) and derive the conditions under which its operation delivers reliable results. The approach will apply to the high-contrast imaging test-bench SPEED, under development at OCA.

  9. A thought-provoking demonstration

    Science.gov (United States)

    Cowley, E. Roger; Holton, Brian; Horton, George K.

    1998-01-01

    We present and discuss a physics demonstration, similar to, but distinct from, the ballistic-pendulum demonstration, one that illustrates all three conservation laws of mechanics (for energy, momentum, and angular momentum) simultaneously.

  10. Cathodal transcranial direct current stimulation of the posterior parietal cortex reduces steady-state postural stability during the effect of light touch.

    Science.gov (United States)

    Ishigaki, Tomoya; Imai, Ryota; Morioka, Shu

    2016-09-28

    Touching a stable object with a fingertip using slight force (mechanical support, which is referred to as the effect of light touch (LT). In the neural mechanism of the effect of LT, the specific contribution of the cortical brain activity toward the effect of LT remains undefined, particularly the contribution toward steady-state postural sway. The aim of the present study was to investigate the cortical region responsible for the reduction of postural sway in response to the effect of LT. Active LT was applied with the right fingertip and transcranial direct current stimulation (sham or cathodal) was applied to the left primary sensorimotor cortex or the left posterior parietal cortex in the two groups. The experiments were conducted using a single-blind sham-controlled crossover design. Steady-state postural sway was compared with the factors of transcranial direct current stimulation (sham or cathodal) and time (pre or post). In the results, the effect of LT reduced postural stability in the mediolateral direction after cathodal transcranial direct current stimulation of the left posterior parietal cortex. No effect was observed after stimulation of the left primary sensorimotor cortex. This indicates that the left posterior parietal cortex is partly responsible for the effect of LT when touching a fixed point with the right fingertip during suprapostural tasks, where posture is adjusted according to the precision requirements. Cortical processing of sensory integration for voluntary postural orientation in response to touch occurs in the posterior parietal cortex.

  11. Paleoproxies: Heavy Stable Isotope Perspectives

    Science.gov (United States)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the

  12. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    Science.gov (United States)

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.

  13. Teleoperation for learning by demonstration

    DEFF Research Database (Denmark)

    Kukliński, Kamil; Fischer, Kerstin; Marhenke, Ilka

    2014-01-01

    Learning by demonstration is a useful technique to augment a robot's behavioral inventory, and teleoperation allows lay users to demonstrate novel behaviors intuitively to the robot. In this paper, we compare two modes of teleoperation of an industrial robot, the demonstration by means of a data...... glove and by means of a control object (peg). Experiments with 16 lay users, performing assembly task on the Cranfield benchmark objects, show that the control peg leads to more success, more efficient demonstration and fewer errors....

  14. Teleoperation for learning by demonstration

    DEFF Research Database (Denmark)

    Kukliński, Kamil; Fischer, Kerstin; Marhenke, Ilka;

    2014-01-01

    Learning by demonstration is a useful technique to augment a robot's behavioral inventory, and teleoperation allows lay users to demonstrate novel behaviors intuitively to the robot. In this paper, we compare two modes of teleoperation of an industrial robot, the demonstration by means of a data...... glove and by means of a control object (peg). Experiments with 16 lay users, performing assembly task on the Cranfield benchmark objects, show that the control peg leads to more success, more efficient demonstration and fewer errors....

  15. Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia

    OpenAIRE

    Laura M. Tully, PhD; Sarah Hope Lincoln, MA; Christine I. Hooker, PhD

    2014-01-01

    LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC) activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investiga...

  16. Wideband quin-stable energy harvesting via combined nonlinearity

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2017-04-01

    Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.

  17. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations.

    Science.gov (United States)

    Khundakar, Ahmad A; Hanson, Peter S; Erskine, Daniel; Lax, Nichola Z; Roscamp, Joseph; Karyka, Evangelia; Tsefou, Eliona; Singh, Preeti; Cockell, Simon J; Gribben, Andrew; Ramsay, Lynne; Blain, Peter G; Mosimann, Urs P; Lett, Deborah J; Elstner, Matthias; Turnbull, Douglass M; Xiang, Charles C; Brownstein, Michael J; O'Brien, John T; Taylor, John-Paul; Attems, Johannes; Thomas, Alan J; McKeith, Ian G; Morris, Christopher M

    2016-06-30

    Dementia with Lewy bodies (DLB) patients frequently experience well formed recurrent complex visual hallucinations (RCVH). This is associated with reduced blood flow or hypometabolism on imaging of the primary visual cortex. To understand these associations in DLB we used pathological and biochemical analysis of the primary visual cortex to identify changes that could underpin RCVH. Alpha-synuclein or neurofibrillary tangle pathology in primary visual cortex was essentially absent. Neurone density or volume within the primary visual cortex in DLB was also unchanged using unbiased stereology. Microarray analysis, however, demonstrated changes in neuropeptide gene expression and other markers, indicating altered GABAergic neuronal function. Calcium binding protein and GAD65/67 immunohistochemistry showed preserved interneurone populations indicating possible interneurone dysfunction. This was demonstrated by loss of post synaptic GABA receptor markers including gephyrin, GABARAP, and Kif5A, indicating reduced GABAergic synaptic activity. Glutamatergic neuronal signalling was also altered with vesicular glutamate transporter protein and PSD-95 expression being reduced. Changes to the primary visual cortex in DLB indicate that reduced GABAergic transmission may contribute to RCVH in DLB and treatment using targeted GABAergic modulation or similar approaches using glutamatergic modification may be beneficial.

  18. Finger somatotopy in human motor cortex.

    Science.gov (United States)

    Beisteiner, R; Windischberger, C; Lanzenberger, R; Edward, V; Cunnington, R; Erdler, M; Gartus, A; Streibl, B; Moser, E; Deecke, L

    2001-06-01

    Although qualitative reports about somatotopic representation of fingers in the human motor cortex exist, up to now no study could provide clear statistical evidence. The goal of the present study was to reinvestigate finger motor somatotopy by means of a thorough investigation of standardized movements of the index and little finger of the right hand. Using high resolution fMRI at 3 Tesla, blood oxygenation level-dependent (BOLD) responses in a group of 26 subjects were repeatedly measured to achieve reliable statistical results. The center of mass of all activated voxels within the primary motor cortex was calculated for each finger and each run. Results of all runs were averaged to yield an individual index and little finger representation for each subject. The mean center of mass localizations for all subjects were then submitted to a paired t test. Results show a highly significant though small scale somatotopy of fingerspecific activation patterns in the order indicated by Penfields motor homunculus. In addition, considerable overlap of finger specific BOLD responses was found. Comparing various methods of analysis, the mean center of mass distance for the two fingers was 2--3 mm with overlapping voxels included and 4--5 mm with overlapping voxels excluded. Our data may be best understood in the context of the work of Schieber (1999) who recently described overlapping somatotopic gradients in lesion studies with humans. Copyright 2001 Academic Press.

  19. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  20. Motor cortex stimulation in Parkinson's disease.

    Science.gov (United States)

    De Rose, Marisa; Guzzi, Giusy; Bosco, Domenico; Romano, Mary; Lavano, Serena Marianna; Plastino, Massimiliano; Volpentesta, Giorgio; Marotta, Rosa; Lavano, Angelo

    2012-01-01

    Motor Cortex Stimulation (MCS) is less efficacious than Deep Brain Stimulation (DBS) in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27-31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39), and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD). During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27-31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  1. Motor Cortex Stimulation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marisa De Rose

    2012-01-01

    Full Text Available Motor Cortex Stimulation (MCS is less efficacious than Deep Brain Stimulation (DBS in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27–31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39, and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD. During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27–31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  2. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  3. Extensive p-tau pathology and SDS-stable p-tau oligomers in Alzheimer's cortical synapses.

    Science.gov (United States)

    Henkins, Kristen M; Sokolow, Sophie; Miller, Carol A; Vinters, Harry V; Poon, Wayne W; Cornwell, Lindsey B; Saing, Tommy; Gylys, Karen Hoppens

    2012-11-01

    Like amyloid beta (Aβ) oligomers, tau aggregates are increasingly recognized as potential key toxic intermediates in Alzheimer's disease (AD) and as therapeutic targets. P-tau co-localizes with Aβ in cortical AD synapses and may contribute to synapse dysfunction and loss. Flow cytometry analysis of synaptosomes from AD compared with aged cognitively normal cortex demonstrates increased immunolabeling for three p-tau antibodies (AT8, PHF-1 and pS422), indicating phosphorylation at multiple tau epitopes. Sequential extraction experiments show increased soluble p-tau in AD synapses, but a sizable pool of p-tau requires detergent solubilization, suggesting endosomal/lysosomal localization. P-tau is co-localized with Aβ in individual synaptosomes in dual labeling experiments, and flow cytometry sorting of Aβ-positive synaptosomes from an AD case reveals a marked enrichment of p-tau aggregates. The p-tau enrichment, a 76-fold increase over the initial homogenate, is consistent with sequestration of p-tau in internal synaptic compartments. Western analysis of a series of AD and normal cases shows SDS-stable tau oligomers in the dimer/trimer size range in AD samples. These results indicate that widespread synaptic p-tau pathology accompanies Aβ accumulations in surviving synaptic terminals, particularly in late-stage AD.

  4. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans.

    Science.gov (United States)

    Reagh, Zachariah M; Yassa, Michael A

    2014-10-07

    Recent models of episodic memory propose a division of labor among medial temporal lobe cortices comprising the parahippocampal gyrus. Specifically, perirhinal and lateral entorhinal cortices are thought to comprise an object/item information pathway, whereas parahippocampal and medial entorhinal cortices are thought to comprise a spatial/contextual information pathway. Although several studies in human subjects have demonstrated a perirhinal/parahippocampal division, such a division among subregions of the human entorhinal cortex has been elusive. Other recent work has implicated pattern separation computations in the dentate gyrus and CA3 subregions of the hippocampus as a mechanism supporting the resolution of mnemonic interference. However, the nature of contributions of medial temporal lobe cortices to downstream hippocampal computations is largely unknown. We used high-resolution fMRI during a task selectively taxing mnemonic discrimination of object identity or spatial location, designed to differentially engage the two information pathways in the medial temporal lobes. Consistent with animal models, we demonstrate novel evidence for a domain-selective dissociation between lateral and medial entorhinal cortex in humans, and between perirhinal and parahippocampal cortex as a function of information content. Conversely, hippocampal dentate gyrus/CA3 demonstrated signals consistent with resolution of mnemonic interference across domains. These results provide insight into the information processing capacities and hierarchical interference resolution throughout the human medial temporal lobe.

  6. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  7. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  8. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  9. Modulation of excitability in human primary somatosensory and motor cortex by paired associative stimulation targeting the primary somatosensory cortex.

    Science.gov (United States)

    Kriváneková, Lucia; Lu, Ming-Kuei; Bliem, Barbara; Ziemann, Ulf

    2011-10-01

    Input from primary somatosensory cortex (S1) to primary motor cortex (M1) is important for high-level motor performance, motor skill learning and motor recovery after brain lesion. This study tested the effects of manipulating S1 excitability with paired associative transcranial stimulation (S1-PAS) on M1 excitability. Given the important role of S1 in sensorimotor integration, we hypothesized that changes in S1 excitability would be directly paralleled by changes in M1 excitability. We applied two established protocols (S1-PAS(LTP) and S1-PAS(LTD) ) to the left S1 to induce long-term potentiation (LTP)-like or long-term depression (LTD)-like plasticity. S1 excitability was assessed by the early cortical components (N20-P25) of the median nerve somatosensory-evoked potential. M1 excitability was assessed by motor-evoked potential amplitude and short-interval intracortical inhibition. Effects of S1-PAS(LTP) were compared with those of a PAS(LTP) protocol targeting the left M1 (M1-PAS(LTP) ). S1-PAS(LTP) and S1-PAS(LTD) did not result in significant modifications of S1 or M1 excitability at the group level due to substantial interindividual variability. The individual S1-PAS-induced changes in S1 and M1 excitability showed no correlation. Furthermore, the individual changes in S1 and M1 excitability induced by S1-PAS(LTP) did not correlate with changes in M1 excitability induced by M1-PAS(LTP) . This demonstrates that the effects of S1-PAS in S1 are variable across individuals and, within a given individual, unrelated to those induced by S1-PAS or M1-PAS in M1. Potentially, this extends the opportunities of therapeutic PAS applications because M1-PAS 'non-responders' may well respond to S1-PAS.

  10. Stable line defects in silicene

    Science.gov (United States)

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-11-01

    Line defects in two-dimensional (2D) materials greatly modulate various properties of their pristine form. Using ab initio molecular dynamics (AIMD) simulations, we investigate the structural reconstructions of different kinds of grain boundaries in the silicene sheets. It is evident that depending upon the presence of silicon adatoms and edge shape of grain boundaries (i.e., armchair or zigzag), stable extended line defects (ELDs) can be introduced in a controlled way. Further studies show the stability of these line-defects in silicene, grown on Ag(111) surface at room-temperature. Importantly, unlike most of the 2D sheet materials such as graphene and hexagonal boron nitride, 5-5-8 line defects modify the nonmagnetic semimetallic pristine silicene sheet to spin-polarized metal. As ferromagnetically ordered magnetic moments remain strongly localized at the line defect, a one-dimensional spin channel gets created in silicene. Interestingly, these spin channels are quite stable because, unlike the edge of nanoribbons, structural reconstruction or contamination cannot destroy the ordering of magnetic moments here. Zigzag silicene nanoribbons with a 5-5-8 line defect also exhibit various interesting electronic and magnetic properties depending upon their width as well as the nature of the magnetic coupling between edge and defect spin states. Upon incorporation of other ELDs, such as 4-4-4 and 4-8 defects, 2D sheets and nanoribbons of silicene show a nonmagnetic metallic or semiconducting ground state. Highlighting the controlled formation of ELDs and consequent emergence of technologically important properties in silicene, we propose new routes to realize silicene-based nanoelectronic and spintronic devices.

  11. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex.

    Science.gov (United States)

    Schomers, Malte R; Garagnani, Max; Pulvermüller, Friedemann

    2017-03-15

    The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory-a specifically human trait providing the foundation for language abilities-but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order "jumping links" between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage.SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in language area

  12. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex

    Science.gov (United States)

    Pulvermüller, Friedemann

    2017-01-01

    The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory—a specifically human trait providing the foundation for language abilities—but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order “jumping links” between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage. SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in

  13. The CLIC feasibility demonstration in CTF3

    CERN Document Server

    Skowroński, P K; Bettoni, S; Constance, B; Corsini, R; Divall Csatari, M; Dabrowski, A E; Doebert, S; Dubrovskiy, A; Kononenko, O; Olvegaard, M; Persson, T; Rabiller, A; Tecker, F; Farabolini, W; Lillestol, R L; Adli, E; Palaia, A; Ruber, R

    2011-01-01

    The objective of the CLIC Test Facility CTF3 is to demonstrate the feasibility issues of the CLIC two-beam technology: the efficient generation of a very high current drive beam, used as the power source to accelerate the main beam to multi-TeV energies with gradients of over 100 MeV/m, and stable drive beam deceleration. Results of successful beam acceleration with over 100 MeV/m energy gain are shown. Measurements of drive beam deceleration over a chain of Power Extraction Structures (PETS) are presented. The achieved RF power levels, the stability of the power production and of the deceleration are discussed. Finally, we give an overview of the remaining issues to be addressed by the end of 2011.

  14. Consolidation of visual associative long-term memory in the temporal cortex of primates.

    Science.gov (United States)

    Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T

    1998-01-01

    Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches.

  15. Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla.

    Science.gov (United States)

    Fatterpekar, Girish M; Naidich, Thomas P; Delman, Bradley N; Aguinaldo, Juan G; Gultekin, S Humayun; Sherwood, Chet C; Hof, Patrick R; Drayer, Burton P; Fayad, Zahi A

    2002-09-01

    The laminar patterns displayed by MR microscopy (MRM) form one basis for the classification of the cytoarchitectonic areas (Brodmann areas). It is plausible that in the future MRM may depict Brodmann areas directly, and not only by inference from gross anatomic location. Our purpose was to depict the laminar cytoarchitecture of excised, formalin-fixed specimens of human cerebral cortex by use of 9.4-T MR and to correlate MR images with histologic stains of the same sections. Formalin-fixed samples of human sensory isocortex (calcarine, Heschl's, and somatosensory cortices), motor isocortex (hand motor area of M1), polar isocortex (frontal pole), allocortex (hippocampal formation), and transitional periallocortex (retrosplenial cortex) were studied by MRM at 9.4 T with intermediate-weighted pulse sequences for a total overnight acquisition time of 14 hours 17 minutes for each specimen. The same samples were then histologically analyzed to confirm the MR identification of the cortical layers. Curves representing the change in MR signal intensity across the cortex were generated to display the signal intensity profiles for each type of cortex. High-field-strength MR imaging at a spatial resolution of 78 x 78 x 500 micro m resolves the horizontal lamination of isocortex, allocortex, and periallocortex and displays specific intracortical structures such as the external band of Baillarger. The signal intensity profiles demonstrate the greatest hypointensity at the sites of maximum myelin concentration and maximum cell density and show gradations of signal intensity inversely proportional to varying cell density. MRM at 9.4 T depicts important aspects of the cytoarchitecture of normal formalin-fixed human cortex.

  16. Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats.

    Science.gov (United States)

    Varga, Zsófia; Csabai, Dávid; Miseta, Attila; Wiborg, Ove; Czéh, Boldizsár

    2017-01-01

    Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  18. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    Science.gov (United States)

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  19. Laser Communications Relay Demonstration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Laser Communications Relay Demonstration project will advance optical communications technology, expanding industry’s capability to produce competitive,...

  20. Regulation of prefrontal cortex myelination by the microbiota.

    Science.gov (United States)

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-04-05

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.

  1. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex.

    Science.gov (United States)

    Collignon, Olivier; Dormal, Giulia; Albouy, Geneviève; Vandewalle, Gilles; Voss, Patrice; Phillips, Christophe; Lepore, Franco

    2013-09-01

    Contrasting the impact of congenital versus late-onset acquired blindness provides a unique model to probe how experience at different developmental periods shapes the functional organization of the occipital cortex. We used functional magnetic resonance imaging to characterize brain activations of congenitally blind, late-onset blind and two groups of sighted control individuals while they processed either the pitch or the spatial attributes of sounds. Whereas both blind groups recruited occipital regions for sound processing, activity in bilateral cuneus was only apparent in the congenitally blind, highlighting the existence of region-specific critical periods for crossmodal plasticity. Most importantly, the preferential activation of the right dorsal stream (middle occipital gyrus and cuneus) for the spatial processing of sounds was only observed in the congenitally blind. This demonstrates that vision has to be lost during an early sensitive period in order to transfer its functional specialization for space processing toward a non-visual modality. We then used a combination of dynamic causal modelling with Bayesian model selection to demonstrate that auditory-driven activity in primary visual cortex is better explained by direct connections with primary auditory cortex in the congenitally blind whereas it relies more on feedback inputs from parietal regions in the late-onset blind group. Taken together, these results demonstrate the crucial role of the developmental period of visual deprivation in (re)shaping the functional architecture and the connectivity of the occipital cortex. Such findings are clinically important now that a growing number of medical interventions may restore vision after a period of visual deprivation.

  2. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-12-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging.Methods: We examined 75 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence, and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index.Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann’s Area 34, partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i serum lutein and temporal cortex structure, (ii serum lutein and crystallized intelligence, and (iii parahippocampal cortex structure

  3. Anodic or cathodic motor cortex stimulation for pain?

    NARCIS (Netherlands)

    Holsheimer, J.; Manola, L.

    2006-01-01

    Objective. In motor cortex stimulation (MCS) for central and trigeminal pain Resume leads are placed epidurally over the motor and sensory cortex. Several bipolar combinations are used to identify the cortical target corresponding to the painful body segment. The cathode giving the largest motor r

  4. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    Science.gov (United States)

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  5. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  6. Representation of reward feedback in primate auditory cortex.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  7. Prefrontal Cortex: A Mystery of Belated Memories.

    Science.gov (United States)

    Eichenbaum, Howard

    2017-06-05

    A recent study suggests that the prefrontal cortex gradually becomes critical as a storage site for remotely acquired memories. How do we interpret this observation in light of the well-known functional role of the prefrontal cortex in cognition and memory? Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex

    Science.gov (United States)

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…

  9. [Lipid peroxidation in the adrenal cortex during exhausting stress].

    Science.gov (United States)

    Doroshkevich, N A; Antsulevich, S N; Naumov, A V; Vinogradov, V V

    1990-05-01

    Under prolonged stress which is connected with exhaustion of functional resources of adrenal cortex the activation of lipid peroxidation processes in this gland was found. It is possible that the reason for such lipid peroxidation activation is the decrease in the content of adrenal cortex ascorbic acid and alpha-tocopherol.

  10. Olfactocentric Paralimbic Cortex Morphology in Adolescents with Bipolar Disorder

    Science.gov (United States)

    Wang, Fei; Kalmar, Jessica H.; Womer, Fay Y.; Edmiston, Erin E.; Chepenik, Lara G.; Chen, Rachel; Spencer, Linda; Blumberg, Hilary P.

    2011-01-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together,…

  11. Hemispheric asymmetry in cerebrovascular reactivity of the human primary motor cortex: an in vivo study at 7 T.

    Science.gov (United States)

    Driver, Ian D; Andoh, Jamila; Blockley, Nicholas P; Francis, Susan T; Gowland, Penny A; Paus, Tomáš

    2015-05-01

    Current functional MRI (fMRI) approaches assess underlying neuronal activity through monitoring the related local variations in cerebral blood oxygenation, blood volume and blood flow. This vascular response is likely to vary across brain regions and across individuals, depending on the composition of the local vascular bed and on the vascular capacity to dilate. The most widely used technique uses the blood oxygen level dependent (BOLD) fMRI signal, which arises from a complex combination of all of these factors. The model of handedness provides a case where one brain region (dominant motor cortex) is known to have a stronger BOLD response over another (non-dominant motor cortex) during hand motor task performance. We predict that this is accompanied by a higher vascular reactivity in the dominant motor cortex, when compared with the non-dominant motor cortex. Precise measurement of end-tidal CO2 and a novel sinusoidal CO2 respiratory challenge were combined with the high sensitivity and finer spatial resolution available for fMRI at 7 T to measure BOLD cerebrovascular reactivity (CVR) in eight healthy male participants. BOLD CVR was compared between the left (dominant) and right (non-dominant) primary motor cortices of right-handed adults. Hemispheric asymmetry in vascular reactivity was predicted and observed in the primary motor cortex (left CVR = 0.60 ± 0.15%/mm Hg; right CVR = 0.47 ± 0.08%/mm Hg; left CVR > right CVR, P = 0.04), the first reported evidence of such a vascular difference. These findings demonstrate a cerebral vascular asymmetry between the left and right primary motor cortex. The origin of this asymmetry largely arises from the contribution of large draining veins. This work has implications for future motor laterality studies that use BOLD, and it is also suggestive of a vascular plasticity in the human primary motor cortex.

  12. A Comprehensive General Chemistry Demonstration

    Science.gov (United States)

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  13. Teaching and Demonstrating Classical Conditioning.

    Science.gov (United States)

    Sparrow, John; Fernald, Peter

    1989-01-01

    Discusses classroom demonstrations of classical conditioning and notes tendencies to misrepresent Pavlov's procedures. Describes the design and construction of the conditioner that is used for demonstrating classical conditioning. Relates how students experience conditioning, generalization, extinction, discrimination, and spontaneous recovery.…

  14. A Comprehensive General Chemistry Demonstration

    Science.gov (United States)

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  15. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  16. Pine pollen inhibits cell apoptosis-related protein expression in the cerebral cortex of mice with arsenic poisoning

    Institute of Scientific and Technical Information of China (English)

    Yanhong Luo; Yaodong Wei; Taizhong Wang; Dongzhu Chen; Tiansheng Lu; Ruibo Wu; Keke Si

    2012-01-01

    Previous studies have demonstrated that pine pollen can inhibit cerebral cortical cell apoptosis in mice with arsenic poisoning. The present study sought to detect the influence of pine pollen on apoptosis-related proteins. Immunohistochemistry, western blotting and enzyme-linked immuno-sorbent assays were used to measure the levels of apoptosis-related proteins in the cerebral cortex of mice with arsenic poisoning. Results indicated that pine pollen suppressed cell apoptosis in the cerebral cortex of arsenic-poisoned mice by reducing Bax, Bcl-2 protein expression and increasing p53 protein expression.

  17. Evaluation of the contribution of the renal capsule and cortex to kidney autofluorescence intensity under ultraviolet excitation

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2008-12-12

    The use of reduced nicotinamide adenine dinucleotide (NADH) fluorescence to gain metabolic information on kidneys in response to an alteration in oxygen availability has previously been experimentally demonstrated, but signal quantification has not to date been addressed. In this work the relative contribution to rat kidney autofluorescence of the capsule vs. cortex under ultraviolet excitation is determined from experimental results obtained using autofluorescence microscopy and a suitable mathematical model. The results allow for a quantitative assessment of the relative contribution of the signal originating in the metabolically active cortex as a function of capsule thickness for different wavelengths.

  18. Does the orbitofrontal cortex signal value?

    Science.gov (United States)

    Schoenbaum, Geoffrey; Takahashi, Yuji; Liu, Tzu-Lan; McDannald, Michael A

    2011-12-01

    The orbitofrontal cortex (OFC) has long been implicated in associative learning. Early work by Mishkin and Rolls showed that the OFC was critical for rapid changes in learned behavior, a role that was reflected in the encoding of associative information by orbitofrontal neurons. Over the years, new data-particularly neurophysiological data-have increasingly emphasized the OFC in signaling actual value. These signals have been reported to vary according to internal preferences and judgments and to even be completely independent of the sensory qualities of predictive cues, the actual rewards, and the responses required to obtain them. At the same time, increasingly sophisticated behavioral studies have shown that the OFC is often unnecessary for simple value-based behavior and instead seems critical when information about specific outcomes must be used to guide behavior and learning. Here, we review these data and suggest a theory that potentially reconciles these two ideas, value versus specific outcomes, and bodies of work on the OFC.

  19. Conserved Sequence Processing in Primate Frontal Cortex.

    Science.gov (United States)

    Wilson, Benjamin; Marslen-Wilson, William D; Petkov, Christopher I

    2017-02-01

    An important aspect of animal perception and cognition is learning to recognize relationships between environmental events that predict others in time, a form of relational knowledge that can be assessed using sequence-learning paradigms. Humans are exquisitely sensitive to sequencing relationships, and their combinatorial capacities, most saliently in the domain of language, are unparalleled. Recent comparative research in human and nonhuman primates has obtained behavioral and neuroimaging evidence for evolutionarily conserved substrates involved in sequence processing. The findings carry implications for the origins of domain-general capacities underlying core language functions in humans. Here, we synthesize this research into a 'ventrodorsal gradient' model, where frontal cortex engagement along this axis depends on sequencing complexity, mapping onto the sequencing capacities of different species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Deep Hierarchies in the Primate Visual Cortex

    DEFF Research Database (Denmark)

    Krüger, Norbert; Jannsen, Per; Kalkan, S.

    2013-01-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition or vision-based navigation and manipulation. This article...... reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles...... of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchal processing in the primate visual system is characterized by a sequence of different levels of processing (in the order of ten) that constitute a deep hierarchy in contrast to the flat...

  1. An extended retinotopic map of mouse cortex

    Science.gov (United States)

    Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack

    2017-01-01

    Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700

  2. Sex, beauty and the orbitofrontal cortex.

    Science.gov (United States)

    Ishai, Alumit

    2007-02-01

    Face perception is mediated by a distributed neural system in the human brain. Attention, memory and emotion modulate the neural activation evoked by faces, however the effects of gender and sexual orientation are currently unknown. To test whether subjects would respond more to their sexually-preferred faces, we scanned 40 hetero- and homosexual men and women whilst they assessed facial attractiveness. Behaviorally, regardless of their gender and sexual orientation, all subjects similarly rated the attractiveness of both male and female faces. Consistent with our hypothesis, a three-way interaction between stimulus gender, beauty and the sexual preference of the subject was found in the medial orbitofrontal cortex (OFC). In heterosexual women and homosexual men, attractive male faces elicited stronger activation than attractive female faces, whereas in heterosexual men and homosexual women, attractive female faces evoked stronger activation than attractive male faces. These findings suggest that the OFC represents the value of salient sexually-relevant faces, irrespective of their reproductive fitness.

  3. Spindle Bursts in Neonatal Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Jenq-Wei Yang

    2016-01-01

    Full Text Available Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i the functional properties of spindle bursts, (ii the mechanisms underlying their generation, (iii the synchronous patterns and cortical networks associated with spindle bursts, and (iv the physiological and pathophysiological role of spindle bursts during early cortical development.

  4. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  5. Early GABAergic circuitry in the cerebral cortex.

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity.

  6. Demonstrative and non-demonstrative reasoning by analogy

    OpenAIRE

    Ippoliti, Emiliano

    2008-01-01

    The paper analizes a set of issues related to analogy and analogical reasoning, namely: 1) The problem of analogy and its duplicity; 2) The role of analogy in demonstrative reasoning; 3) The role of analogy in non-demonstrative reasoning; 4) The limits of analogy; 5) The convergence, particularly in multiple analogical reasoning, of these two apparently distinct aspects and its methodological and philosophical consequences. The paper, using example from number theory, argues for an heuristc c...

  7. Functioning of Circuits Connecting Thalamus and Cortex.

    Science.gov (United States)

    Sherman, S Murray

    2017-03-16

    Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver, which carries the main information between cells, and modulator, which modifies how driver inputs function. Identifying driver inputs helps to reveal functional computational circuits, and one set of such circuits identified by this approach are cortico-thalamo-cortical (or transthalamic corticocortical) circuits. This, in turn, leads to the conclusion that there are two types of thalamic relay: first order nuclei (such as the lateral geniculate nucleus) that relay driver input from a subcortical source (i.e., retina), and higher order nuclei (such as the pulvinar) which are involved in these transthalamic pathways by relaying driver input from layer 5 of one cortical area to another. This thalamic division is also seen in other sensory pathways and beyond these so that most of thalamus by volume consists of higher-order relays. Many, and perhaps all, direct driver connections between cortical areas are paralleled by an indirect cortico-thalamo-cortical (transthalamic) driver route involving higher order thalamic relays. Such thalamic relays represent a heretofore unappreciated role in cortical functioning, and this assessment challenges and extends conventional views regarding both the role of thalamus and mechanisms of corticocortical communication. Finally, many and perhaps the vast majority of driver inputs relayed through thalamus arrive via branching axons, with extrathalamic targets often being subcortical motor centers. This raises the possibility that inputs relayed by thalamus to cortex also serve as efference copies, and this may represent an important feature of information relayed up the cortical hierarchy via transthalamic circuits. © 2017 American Physiological Society. Compr Physiol 7:713-739, 2017.

  8. Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex.

    Science.gov (United States)

    Wallis, Jonathan D; Kennerley, Steven W

    2011-12-01

    Damage to the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC) impairs decision making, but the underlying value computations that cause such impairments remain unclear. Both the OFC and ACC encode a wide variety of signals correlated with decision making. The current challenge is to determine how these two different areas support decision-making processes. Here, we review a series of experiments that have helped define these roles. A special population of neurons in the ACC, but not the OFC, multiplex value information across decision parameters using a unified encoding scheme, and encode reward prediction errors. In contrast, neurons in the OFC, but not the ACC, encode the value of a choice relative to the recent history of choice values. Together, these results suggest complementary valuation processes: OFC neurons dynamically evaluate current choices relative to the value contexts recently experienced, while ACC neurons encode choice predictions and prediction errors using a common valuation currency reflecting the integration of multiple decision parameters.

  9. Retinotopy versus face selectivity in macaque visual cortex.

    Science.gov (United States)

    Rajimehr, Reza; Bilenko, Natalia Y; Vanduffel, Wim; Tootell, Roger B H

    2014-12-01

    Retinotopic organization is a ubiquitous property of lower-tier visual cortical areas in human and nonhuman primates. In macaque visual cortex, the retinotopic maps extend to higher-order areas in the ventral visual pathway, including area TEO in the inferior temporal (IT) cortex. Distinct regions within IT cortex are also selective to specific object categories such as faces. Here we tested the topographic relationship between retinotopic maps and face-selective patches in macaque visual cortex using high-resolution fMRI and retinotopic face stimuli. Distinct subregions within face-selective patches showed either (1) a coarse retinotopic map of eccentricity and polar angle, (2) a retinotopic bias to a specific location of visual field, or (3) nonretinotopic selectivity. In general, regions along the lateral convexity of IT cortex showed more overlap between retinotopic maps and face selectivity, compared with regions within the STS. Thus, face patches in macaques can be subdivided into smaller patches with distinguishable retinotopic properties.

  10. The discovery of motor cortex and its background.

    Science.gov (United States)

    Gross, Charles G

    2007-01-01

    In 1870 Gustav Fritsch and Edvard Hitzig showed that electrical stimulation of the cerebral cortex of a dog produced movements. This was a crucial event in the development of modern neuroscience because it was the first good experimental evidence for a) cerebral cortex involvement in motor function, b) the electrical excitability of the cortex, c) topographic representation in the brain, and d) localization of function in different regions of the cerebral cortex. This paper discusses their experiment and some developments in the previous two centuries that led to it including the ideas of Thomas Willis and Emanuel Swedenborg, the widespread interest in electricity and the localizations of function of Franz Joseph Gall, John Hughlings Jackson, and Paul Broca. We also consider the subsequent study of the motor cortex by David Ferrier and others.

  11. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach.

    Science.gov (United States)

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion intensity.

  12. Stable piecewise polynomial vector fields

    Directory of Open Access Journals (Sweden)

    Claudio Pessoa

    2012-09-01

    Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

  13. Activation of mu opioid receptor inhibits the excitatory glutamatergic transmission in the anterior cingulate cortex of the rats with peripheral inflammation.

    Science.gov (United States)

    Zheng, Weihong

    2010-02-25

    Emerging evidence recently indicates that the anterior cingulate cortex is critically involved in the central processing and modulation of noxious stimulus, although the neuroadaptation in the anterior cingulate cortex has not been well documented in the conditions of chronic pain. Meanwhile, the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex remains unclear. To address these issues, the present study was undertaken to explore the adaptation of excitatory glutamatergic transmission and mu opioid receptor-mediated modulation of glutamatergic transmission in the anterior cingulate cortex slices from the complete Freund's adjuvant (CFA)-inflamed rats. The results demonstrated that glutamatergic paired-pulse facilitation was decreased in the anterior cingulate cortex neurons from the CFA-inflamed rats, indicating an enhanced presynaptic glutamate release. In addition, activation of mu opioid receptor significantly inhibited the glutamatergic excitatory postsynaptic currents (EPSCs) in the anterior cingulate cortex neurons, which was attained through the suppression of presynaptic glutamate release. Taken together, these findings provided the evidence for the functional adaptation of central glutamatergic transmission induced by peripheral inflammation, and elucidated the cellular mechanism underlying opiate analgesia in the anterior cingulate cortex.

  14. Loss of asymmetric spine synapses in prefrontal cortex of motor-asymptomatic, dopamine-depleted, cognitively impaired MPTP-treated monkeys.

    Science.gov (United States)

    Elsworth, John D; Leranth, Csaba; Redmond, D Eugene; Roth, Robert H

    2013-05-01

    Parkinson's disease is usually characterized as a movement disorder; however, cognitive abilities that are dependent on the prefrontal cortex decline at an early stage of the disease in most patients. The changes that underlie cognitive deficits in Parkinson's disease are not well understood. We hypothesize that reduced dopamine signalling in the prefrontal cortex in Parkinson's disease is a harbinger of detrimental synaptic changes in pyramidal neurons in the prefrontal cortex, whose function is necessary for normal cognition. Our previous data showed that monkeys exposed to the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), but not exhibiting overt motor deficits (motor-asymptomatic), displayed cognitive deficits in prefrontal cortex-dependent tasks. The present results demonstrate that motor-asymptomatic MPTP-treated monkeys have a reduced dopamine concentration and a substantially lower number (50%) of asymmetric (excitatory) spine synapses in layer II/III, but not layer V, of the dorsolateral prefrontal cortex, compared to controls. In contrast, neither dopamine concentration nor asymmetric synapse number was altered in the entorhinal cortex of MPTP-treated monkeys. Together, these findings suggest that the number of asymmetric spine synapses on dendrites in the prefrontal cortex is dopamine-dependent and that the loss of synapses may be a morphological substrate of the cognitive deficits induced by a reduction in dopamine neurotransmission in this region.

  15. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

    Science.gov (United States)

    Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward

    2016-08-03

    Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus

  16. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.

    Science.gov (United States)

    Sirohi, Sunil; Walker, Brendan M

    2015-11-01

    Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function.

  17. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  18. Location of the auditory cortex in the Mongolian gerbil as determined by click stimulation.

    Science.gov (United States)

    Gillette, R G

    1978-07-01

    An investigation was made of the auditory projection area in the cerebral cortex of the Mongolian gerbil (Meriones unguiculatus) using clicks at a standard intensity to map the cerebral hemisphere by the evoked potential method. The major results can be summarized as follows: (1) As is typical for other mammals, click-evoked responses characterizing the gerbil auditory area were initially surface-positive potentials (amplitudes ranging between 0.1 and 1.7 mV) with peak latencies ranging between 13 and 32 msec. (2) Only one click-responsive field was found in the temporal area. However, the data suggest that this area may actually represent two separate projections to the cortex, since a small subarea characterized by longer response latencies was located posteriorally and laterally within the click field in the majority of animals investigated. (3) The size (5 mm long by 4 mm wide) and location (temporal neocortex below the middle cerebral artery) of the gerbil auditory cortex are consistent with mapping results obtained in other rodent species. (4) The validity of the surface maps was confirmed in four cases by demonstrating that the evoked response reversed polarity between the cortical surface and underlying white matter. The reversal was demonstrated by recording with a penetrating microelectrode at representative points "bordering" the auditory projection area.

  19. File list: Pol.Neu.20.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Prefrontal_Cortex.bed ...

  20. File list: Pol.Neu.50.AllAg.Prefrontal_Cortex [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Prefrontal_Cortex hg19 RNA polymerase Neural Prefrontal Cortex htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Prefrontal_Cortex.bed ...