WorldWideScience

Sample records for corrosion products

  1. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  2. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  3. Corrosion Products and Formation Mechanism During Initial Stage of Atmospheric Corrosion of Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chao-fang; LI Xiao-gang; WANG Fu-ming

    2008-01-01

    The formation and development of corrosion products on carbon steel surface during the initial stage of atmospheric corrosion in a laboratory simulated environment have been studied by scanning electron microscopy (SEM)and Raman spectroscopy.The results showed that two different shapes of corrosion products,that is,ring and chain,were formed in the initial stage of corrosion.MnS clusters were found in the nuclei of corrosion products at the active local corrosion sites.The ring-shaped products were composed of lepidocrocite (γ-FeOOH) and maghemite(γ-Fe2 O3) transformed from lepidocrocite.The chain-type products were goethite (α-FeOOH).A formation mechanism of the corrosion products is proposed.

  4. High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    characterization of the corrosion products. The corrosion products consisted of three layers: i) the outermost layer consisting of a mixed layer of K2SO4 and FexOy on a partly molten layer of the initial deposit, ii) the middle layer consists of spinel (FeCr2O4) and Fe2O3, and iii) the innermost layer is a sponge......-like Ni3S2 containing layer. At the corrosion front, Cl-rich protrusions were observed. Results indicate that selective corrosion of Fe and Cr by Cl, active oxidation and sulphidation attack of Ni are possible corrosion mechanisms....

  5. High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    characterization of the corrosion products. The corrosion products consisted of three layers: i) the outermost layer consisting of a mixed layer of K2SO4 and FexOy on a partly molten layer of the initial deposit, ii) the middle layer consists of spinel (FeCr2O4) and Fe2O3, and iii) the innermost layer is a sponge......-like Ni3S2 containing layer. At the corrosion front, Cl-rich protrusions were observed. Results indicate that selective corrosion of Fe and Cr by Cl, active oxidation and sulphidation attack of Ni are possible corrosion mechanisms....

  6. Effects of alternating magnetic field on the corrosion rate and corrosion products of copper

    Institute of Scientific and Technical Information of China (English)

    GUO Bin; ZHANG Peng; JIN Yongping; CHENG Shukang

    2008-01-01

    The effects of alternating magnetic field on the corrosion morphologies, corrosion rate, and corrosion products of copper in 3.5% NaCl solution, sea water, and magnetized sea water were investigated using electrochemical test, scanning electron microscopy/energy dispersive analysis system of X-ray (SEM/EDAX), and X-ray diffraction (XRD). The results show that the corrosion rate of copper in magnetized sea water is minimal. Moreover, the surface of the specimen in magnetized sea water is uniform and compact as compared with those in 3.5% NaCl solution and sea water. The corrosion products of copper in magnetized sea water are mainly Cu2O and CuCl2. However, the corrosion products in sea water are CuCl, Cu2Cl(OH)3, and FeCl3·6H2O. The electrochemical corrosion mechanisms of copper in the three media were also discussed.

  7. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Wagh, A.B.

    the corrosion of mild steel and the temperature and dissolved oxygen of seawater. In contrast to this, the corrosion and mild steel was inversely related to the organic carbon and water extractable carbohydrates associated with the corrosion products of mild...

  8. Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Tran Thi Ngoc; Binh, Nguyen Thi Thanh [Vietnam National University, Ho Chi Minh (Viet Nam); Tru, Nguyen Nhi [Vietnam Institute for Tropical Technology and Environmental Protection, Ho Chi Minh (Viet Nam); Yoshino, Tsujino [Osaka Prefecture, Osaka (Japan); Yasuki, Maeda [Osaka Prefecture University, Osaka (Japan)

    2008-04-15

    Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time.

  9. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C...... changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature...... of the corrosion products as a function of distance from the deposit surface were revealed through this comprehensive characterisation. Corrosion attack during simulated straw-firing conditions was observed to occur through both active oxidation and sulphidation mechanisms....

  10. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela;

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-induced corrosion (10, 50, and 100 mu A/cm(2)). X-ray attenuation measurements and visual investigations provided both qualitative and quantitative information on the penetration of solid corrosion products into the surrounding cementitious matrix. X-ray attenuation measurements provided time- and location......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...

  11. Studying Cu Alloy Corrosion Products in Cooling Liquid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of cooiing liquid used for heat exchangers on the Cu alloy corrosion products has been examined using potential-time measurements under applied current condition (anodizing), potentiodynamic polarization, X-ray diffraction (XRD) and infrared spectroscopy (IR). The corrosion products formed on the Cu alloy surface during anodizing, are Cu2O, Cu2(OH)3CI, and Cu2S. NaCI is detected in the corrosion products. The film formation depends on the applied current and the shift of potential to nobler direction indicates its formation progress.

  12. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Serdar, Marijana [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Meral, Cagla [Middle East Technical University, Department of Civil Engineering, Ankara (Turkey); Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bjegovic, Dubravka [Department of Materials, Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb (Croatia); Wenk, Hans-Rudolf [Department of Earth and Planetary Science, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide–hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. - Highlights: • Synchrotron micro-diffraction used to map the distribution of crystalline phases. • Goethite and akaganeite are the main corrosion products during chloride induced corrosion in mortar. • Layers of goethite and akaganeite are negatively correlated. • EDS showed Cr present in corrosion products identified by SEM.

  13. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  14. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  15. Control of corrosion in oil and gas production tubing

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L. [Intetech Ltd., Chester (United Kingdom)

    1999-07-01

    Controlling corrosion in production tubing is essential for maintaining production and for preventing loss of well control. Materials for use downhole have to meet criteria for corrosion resistance and also mechanical requirements. The potential corrosion rate can be estimated and the risks of sulphide stress corrosion cracking assessed on the basis of the anticipated environmental conditions and flow regime. Material options for tubing can then be considered on the basis of published corrosion test data and also field experience. Candidate materials may be tested and the precise field conditions expected in order to ensure that overconservative choices are not made. Corrosion inhibitors, coated carbon steel, and fibre reinforced plastic tubing have temperature, flow regime, and mechanical limitations. Specific corrosion resistant alloys (CRAs) have environmental limitations with respect to temperature, hydrogen sulphide, and chloride content. Details of field experience with all of these material options are given. There exists a large amount of experience with CRAs for downhole applications. Correctly selected CRAs have a good track record of service, even for hostile, H{sub 2}S containing conditions. There are a few limited examples of CRA clad tubing. This product may be one that needs re-evaluation as it offers potential for economic use of costly but effective CRAs. (Author)

  16. Control of corrosion product transport in PWR secondary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sawochka, S.G.; Pearl, W.L. [NWT Corp., San Josa, CA (United States); Passell, T.O.; Welty, C.S. [Electric Power Research Institute, Palo Alto, CA (United States)

    1992-12-31

    Transport of corrosion products to PWR steam generators by the feedwater leads to sludge buildup on the tubesheets and fouling of tube-to-tube support crevices. In these regions, chemical impurities concentrate and accelerate tubing corrosion. Deposit buildup on the tubes also can lead to power generation limitations and necessitate chemical cleaning. Extensive corrosion product transport data for PWR secondary cycles has been developed employing integrating sampling techniques which facilitate identification of major corrosion product sources and assessments of the effectiveness of various control options. Plant data currently are available for assessing the impact of factors such as pH, pH control additive, materials of construction, blowdown, condensate treatment, and high temperature drains and feedwater filtration.

  17. Corrosion studies: geopressured aquifer gas production

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, A.N. (Bechtel Group, Inc., San Francisco, CA); Weekes, M.C.; Schoepflin, F.; Sharer, J.C.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    Analytical data, obtained on brine from three geopressured wells in Louisiana and one in Texas are presented. The chloride ion concentration of each brine is plotted against the total dissolved solids. Sulfate and bicarbonate ion concentrations are plotted against total dissolved solids. Experience with geothermal power plants, alternatives for corrosion prevention, and monitoring and test techniques are discussed. (MHR)

  18. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  19. Development of Calculation Code for Fission Product and Corrosion Product in PWR’s Primary Loop

    Institute of Scientific and Technical Information of China (English)

    XU; Zhi-long; WAN; Hai-xia; SHAO; Jing; WU; Xiao-chun; LI; Long; LIU; Xing-min; KE; Guo-tu

    2015-01-01

    With the basis of study on generation,release and migration of fission product,calculation model for each of the above processes was developed,and calculation method for source term of PWR fission products was established.Study on source term of corrosion product in primary loop was been done.Based on the study of corrosion,

  20. High temperature corrosion during biomass firing: improved understanding by depth resolved characterisation of corrosion products

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The high temperature corrosion of an austenitic stainless steel (TP 347H FG), widely utilised as a superheater tube material in Danish power stations, was investigated to verify the corrosion mechanisms related to biomass firing. KCl coated samples were exposed isothermally to 560 degrees C......, for one week, under conditions simulating straw-firing. Thorough characterisation of the exposed samples was conducted by the analysis of sample cross-sections applying microscopy and spectroscopy based techniques. Cross-section analysis revealed the microstructure, as well as chemical and morphological...... changes within the near surface region (covering both the deposit and the steel surface). Such cross-section analysis was further complemented by plan view investigations (additionally involving X-ray diffraction) combined with removal of the corrosion products. Improved insights into the nature...

  1. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete

    KAUST Repository

    Serdar, Marijana

    2015-05-01

    © 2015 Elsevier Ltd All rights reserved. The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (μ-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). μ-XRD revealed that goethite (α-FeOOH) and akaganeite (β-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel.

  2. Application of Moessbauer spectroscopy on corrosion products of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dekan, J., E-mail: julius.dekan@stuba.sk; Lipka, J.; Slugen, V. [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, SUT (Slovakia)

    2013-04-15

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original 'Bohunice' design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Moessbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Moessbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  3. 78 FR 15376 - Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea

    Science.gov (United States)

    2013-03-11

    ... COMMISSION Determinations: Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea On the basis... Korea and the antidumping duty orders on corrosion-resistant carbon steel flat products from Germany and... Corrosion-Resistant Carbon Steel Flat Products from Germany and Korea: Investigation Nos. 701-TA-350 and...

  4. Characterization of the corrosion products formed on mild steel in acidic medium with N-octadecylpyridinium bromide as corrosion inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N., E-mail: tnava@imp.mx; Likhanova, N. V. [Direccion de Investigacion y Posgrado, Instituto Mexicano del Petroleo (Mexico); Olivares-Xometl, O. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica (Mexico); Flores, E. A. [Direccion de Investigacion y Posgrado, Instituto Mexicano del Petroleo (Mexico); Lijanova, I. V. [CIITEC, Instituto Politecnico Nacional (Mexico)

    2011-11-15

    The characterization of the corrosion products formed on mild steel SAE 1018 after 2 months exposure in aqueous sulfuric acid with and without corrosion inhibitor N-octadecylpyridinium bromide has been carried out by means of transmission {sup 57}Fe Moessbauer spectroscopy and X-ray powder diffraction (XRD). The major constituent of the rust formed in this environment without corrosion inhibitor is goethite ({alpha}-FeOOH). The samples with N-octadecylpyridinium bromide contain rozenite and large amounts of melanterite in the corrosion layers.

  5. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  6. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela

    2011-01-01

    This paper introduces a non-destructive test method to monitor the development of corrosion products as well as the corrosion-induced formation and propagation of cracks in cementitious materials. A parametric experimental investigation (utilizing x-ray attenuation measurement technique...

  7. Characterization of Corrosion Product Layers from CO2 Corrosion of 13Cr Stainless Steel in Simulated Oilfield Solution

    Science.gov (United States)

    Yin, Z. F.; Wang, X. Z.; Liu, L.; Wu, J. Q.; Zhang, Y. Q.

    2011-10-01

    The influence of temperature and flow rate on the characterization and mechanisms of corrosion product layers from CO2 corrosion of 13Cr stainless steel was carried out in simulated oilfield solution. Cyclic potentiodynamic polarization method as well as weight loss tests in autoclave were utilized to investigate pitting corrosion behavior at various temperatures. Weight loss tests were performed at 100 and 160 °C under dynamic and static flow conditions. At the same time, the significant pitting parameters such as E corr, E pit, E pp, ∆ E, and I pass in cyclic polarization curves at various temperatures were analyzed and compared for revealing the pitting behavior of 13Cr stainless steel. The surface measurement techniques such as SEM, XRD, and XPS were used to detect the corrosion product layers. The results showed that both temperature and flow rate had significant effects on characterization of corrosion product layers or passive films formed on 13Cr stainless steel in CO2 corrosion system. At high temperature, lots of pits were formed at the localized corrosion areas of metal surfaces. Corrosion rates under the condition of 5 m/s were higher than those under the static condition regardless of the test temperatures.

  8. Estimation of elastic modulus of reinforcement corrosion products using inverse analysis of digital image correlation measurements for input in corrosion-induced cracking model

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Thybo, Anna Emilie A.;

    2012-01-01

    A combined experimental and numerical approach for estimating the elastic modulus of reinforcement corrosion products is presented. Deformations between steel and mortar were measured using digital image correlation during accelerated corrosion testing at 100 μA/cm2 (~1.16 mm/year). Measured...... deformations were compared to a numerical corrosion model that considers electrochemical, transport, and mechanical processes, including penetration of corrosion products into a ‘corrosion-accommodating region,’ provided by the mortar’s capillary porosity, directly surrounding the steel. Comparing model...... and experimental results provides an order-of-magnitude approximation of corrosion product stiffness of 2.0 GPa....

  9. Role of humic substances in the formation of nanosized particles of iron corrosion products

    Science.gov (United States)

    Pankratov, D. A.; Anuchina, M. M.

    2017-02-01

    The corrosion of metallic iron in aqueous solutions of humic substances (HS) with limited access to air is studied. The HS are found to exhibit multiple functions. Acid-base, redox, and surfactant properties, along with the ability to form complexes with iron in solution, are displayed in the corrosion process. Partial reduction of the HS during the corrosion reaction and their adsorption onto the main corrosion product (Fe3O4 nanoparticles) are observed.

  10. Electrochemical Characterisation of Filiform Corrosion on Aluminium Rolled Products

    NARCIS (Netherlands)

    Huisert, M.

    2001-01-01

    When aluminium is protected by an organic coating a special form of corrosion can occur underneath the organic coating; filiform corrosion. This form of corrosion manifests itself as threadlike filaments under the coating, it causes local delamination of the coating and the coating cannot protect th

  11. Electrochemical Characterisation of Filiform Corrosion on Aluminium Rolled Products

    NARCIS (Netherlands)

    Huisert, M.

    2001-01-01

    When aluminium is protected by an organic coating a special form of corrosion can occur underneath the organic coating; filiform corrosion. This form of corrosion manifests itself as threadlike filaments under the coating, it causes local delamination of the coating and the coating cannot protect

  12. Micromechanical study of corrosion products layers. Part I: Experimental characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dehoux, A., E-mail: dehoux@lmt.ens-cachan.fr [UPMC Univ., Paris 06, LMT-Cachan (ENS Cachan/UMR8535/UPMC) (France); Andra, Agence Nationale pour la gestion des Dechets RadioActifs, 1-7 rue Jean Monnet, parc de la croix blanche, 92298 Chatenay Malabry Cedex (France); Bouchelaghem, F.; Berthaud, Y. [UPMC Univ., Paris 06, LMT-Cachan (ENS Cachan/UMR8535/UPMC) (France); Neff, D. [SIS2M/LAPA-Laboratoire Pierre Suee, UMR 9956 CNRS, CEA, Bt. 637, CEA Saclay, 91191 Gif/Yvette (France); L' Hostis, V. [DEN, DANS, DPC, SCCME, Laboratoire d' Etude du Comportement des Betons et des Argiles, F-91191 Gif/Yvette (France)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The mechanical characterization of oxide formed on ancient ferrous artefacts has been performed. Black-Right-Pointing-Pointer The main phases present are goethite, magnetite and maghemite. Black-Right-Pointing-Pointer Typical ranges of the local mechanical properties can be related with the main phases present. Black-Right-Pointing-Pointer The Young moduli at the micrometric scale vary between 50 and 200 GPa. Black-Right-Pointing-Pointer Time dependent effects are negligible. - Abstract: A micromechanical characterization had been performed on ancient artefacts corrosion products. The proposed experimental approach allies scanning electron microscopy observations, micro-indentation tests which allow the characterization of the local stiffness of elementary constituents, and finally Raman micro-spectroscopy tests which give access to the local crystallised phases of the samples. The experimental campaign contains a large series of tests, which give us the opportunity to interpret the dispersion of local stiffness measurements.

  13. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea) for the period of... preliminary results of the instant administrative review. See Corrosion-Resistant Carbon Steel Flat Products...

  14. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  15. 77 FR 72827 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Final...

    Science.gov (United States)

    2012-12-06

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... on certain corrosion- resistant carbon steel flat products (``CORE'') from Germany and the Republic... Reviews'' section of this notice. \\1\\ Corrosion-Resistant Carbon Steel Flat Products From Germany and the...

  16. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea.... See Corrosion-Resistant Carbon Steel Flat Products from Germany and the Republic of Korea: Revocation...

  17. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year Reviews Concerning the Countervailing Duty Order on Corrosion-Resistant Carbon Steel Flat Products From Korea and the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel Flat Products From Germany and...

  18. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-20

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE..., 2008. See Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary...

  19. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five... duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead to...

  20. Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion.

    Science.gov (United States)

    Jang, Yongseok; Collins, Boyce; Sankar, Jagannathan; Yun, Yeoheung

    2013-11-01

    Simulated physiological solutions mimicking human plasma have been utilized to study the in vitro corrosion of biodegradable metals. However, corrosion and corrosion product formation are different for different solutions with varied responses and, hence, the prediction of in vivo degradation behavior is not feasible based on these studies alone. This paper reports the role of physiologically relevant salts and their concentrations on the corrosion behavior of a magnesium alloy (AZ31B) and subsequent corrosion production formation. Immersion tests were performed for three different concentrations of Ca(2+), HPO4(2-), HCO3(-) to identify the effect of each ion on the corrosion of AZ31B assessed at 1, 3 and 10 days. Time-lapse morphological characterization of the samples was performed using X-ray computed tomography and scanning electron microscopy. The chemical composition of the surface corrosion products was determined by electron dispersive X-ray spectroscopy and X-ray diffraction. The results show that: (1) calcium is not present in the corrosion product layer when only Cl(-) and OH(-) anions are available; (2) the presence of phosphate induces formation of a densely packed amorphous magnesium phosphate corrosion product layer when HPO4(2-) and Cl(-) are present in solution; (3) octacalcium phosphate and hydroxyapatite (HAp) are deposited on the surface of the magnesium alloy when HPO4(2-) and Ca(2+) are present together in NaCl solution (this coating limits localized corrosion and increases general corrosion resistance); (4) addition of HCO3(-) accelerates the overall corrosion rate, which increases with increasing bicarbonate concentration; (5) the corrosion rate decreases due to the formation of insoluble HAp on the surface when HCO3(-), Ca(2+), and HPO4(2-) are present together.

  1. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-12-01

    Full Text Available The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  2. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products.

    Science.gov (United States)

    Gerke, Tammie L; Scheckel, Kirk G; Maynard, J Barry

    2010-11-01

    Vanadium (V) when ingested from drinking water in high concentrations (>15 μg L(-1)) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb(5)(V(5+)O(4))(3)Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based μ-XRF mapping and μ-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb(5)(V(5+)O(4))(3)Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg(-1). We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg(-1), as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 μg L(-1) notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.

  3. Chapter 23: Corrosion of Metals in Wood Products

    Science.gov (United States)

    Samuel L. Zelinka

    2014-01-01

    The corrosion of metals in contact with wood has been studied for over 80 years, and in most situations wood is not corrosive [1]. Recently, however, the durability of fasteners in preservative--treated wood has become a concern. Changes in legislation and certification in the United States, the European Union, and Australasia have restricted the use of chromated...

  4. Quantifying movements of corrosion products in reinforced concrete using x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Michel, Alexander; Stang, Henrik

    2011-01-01

    of corrosion products move into the concrete without generating tensile stresses and cracks in the concrete. Typically, corrosion products are thought to occupy pores, interfacial defects, and/or air voids located near the concrete-steel interface and stresses develop only after filling of these pores. Further....... X-ray attenuation measurements are also capable of detecting cracks. Therefore, this approach provides a direct measurement of the amount and location of reinforcement corrosion products required to induce cracking. Results of a parametric investigation on the impact of water-to-cement ratio (0...

  5. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from... ] requests for administrative review and partial revocation of the countervailing duty order on corrosion...

  6. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  7. 77 FR 58512 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-09-21

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... conducting an administrative review of the countervailing duty (CVD) order on corrosion-resistant carbon... Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Notice of Extension of...

  8. 77 FR 44213 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea...

    Science.gov (United States)

    2012-07-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... certain corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea..., Director, Office 3, on ``Sunset Reviews of the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel...

  9. 76 FR 54209 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2011-08-31

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... conducting an administrative review of the countervailing duty (CVD) order on corrosion-resistant carbon... CORE from Korea with regard to Dongbu and POSCO. See Corrosion-Resistant Carbon Steel Flat Products...

  10. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic... corrosion-resistant carbon steel flat products (``CORE'') from Germany and the Republic of Korea (``Korea...-Year (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat...

  11. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... section entitled ``Final Results of Review.'' \\1\\ See Certain Corrosion-Resistant Carbon Steel Flat...

  12. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea... of the antidumping duty (AD) orders on corrosion-resistant carbon steel flat products (CORE) from... Countervailing Duty Operations, Office 3, regarding ``Sunset Reviews of the Antidumping Duty Orders on Corrosion...

  13. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) has completed its administrative review of the countervailing duty (CVD) order on corrosion-resistant...\\ See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

  14. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel Flat...

  15. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) published a notice of initiation of the administrative review of the antidumping duty order on corrosion... results of this review. See Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  16. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea...

  17. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  18. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  19. Wear Resistances of CO2 Corrosion Product Films in the Presence of Sand Particles

    Institute of Scientific and Technical Information of China (English)

    LI Jinling; ZHU Shidong; LIU Luzhen; QU Chengtun; YAN Yongli; YANG Bo

    2015-01-01

    Wear resistances of CO2 corrosion product iflms formed on P110 carbon steel at different CO2 partial pressures were investigated in water sand two-phase lfow by weight loss method, and the microstructures and compositions of corrosion product iflms were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The results showed that the wear rate of CO2 corrosion product iflms increased until a maximum and then decreased with the increasing of the film-forming pressure, and the maximum occurred at 2 MPa. However, the maximal corrosion rate and the loose and porous CO2 corrosion product iflms were obtained at 4 MPa. And the wear rate decreased and then went to be lfat with increasing test time. Furthermore, the microstructures and compositions of corrosion product iflms and the impact and wear of sand particles played an important role on wear resistances. In addition, the wear rate and corrosion rate were iftted by cubic polynomial, respectively, which were well in accordance with the measured results.

  20. Corrosion products of reinforcement in concrete in marine and industrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Vera, R. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile)], E-mail: rvera@ucv.cl; Villarroel, M. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile); Carvajal, A.M. [Facultad de Ingenieria, Escuela de Construccion Civil, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago (Chile); Vera, E.; Ortiz, C. [Universidad Pedagogica y Tecnologica de Colombia, Avenida Central Norte, Km 2, Tunja (Colombia)

    2009-03-15

    The corrosion products formed on embedded steel in concrete under simulated marine and industrial conditions and natural marine environment were studied. A 0.50 water/cement ratio concrete was used and 3.5% NaCl and 180 g L{sup -1} of H{sub 2}SO{sub 4} with 70 ppm of chloride ions solutions were used to simulate the synthetic medium. The initial electrochemical variables of the steel and pH, chlorides and sulfates profiles were measured according to the concrete depth. The morphology of the corrosive attack was determined via scanning electron microscopy (SEM), and the composition of the corrosion products was determined using an X-ray analyzer and an X-ray diffractometer (XRD). The protective power of the corrosion products was evaluated through anodic polarization curves in a saturated Ca(OH){sub 2} solution. The results from XRD and SEM show that all the resulting corrosion products correspond to lepidocrocite, goethite and magnetite mixtures; moreover, akaganeite was also identified under natural and simulated marine environments. Siderite was only detected in samples exposed to a natural marine environment. Concerning the protective nature of the corrosion products, these show lower performance in a simulated industrial environment, where the corrosion rate of the steel is up to 1.48 {mu}m year{sup -1}.

  1. Spectral Analysis of CO{sub 2} Corrosion Product Scales on 13Cr Tubing Steel

    Energy Technology Data Exchange (ETDEWEB)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng [The Key Laboratory for Mechanical and Environmental Behavior of Tubular Goods, Xi' an (China); Xun-yuan, Xu [PetroChina Tarim Oilfeld Compamy, Korla (China)

    2008-08-15

    CO{sub 2} corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO{sub 2} corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO{sub 3}, and the inner layer is composed of compact fine FeCO{sub 3} crystals and amorphous Cr(OH){sub 3}. Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO{sub 2} corrosion environment.

  2. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  3. A non-destructive test method to monitor corrosion products and corrosion-induced cracking in reinforced cement based materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Peterova, Adela;

    2011-01-01

    ) was conducted to describe the impact of water-to-cement ratio and corrosion current density (i.e., corrosion rate) on the reinforcement corrosion process. Focus was placed, in particular on the determination of the corrosion accommodating region (CAR) and time to corrosion-induced cracking. Experimental results...

  4. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.

    Science.gov (United States)

    Velimirovic, Milica; Carniato, Luca; Simons, Queenie; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2014-04-15

    In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate.

  5. Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, J. A.; Villalaz, M. S. de; Araque, L. de; Hernandez, C.; Bosquez, A. de

    2003-07-01

    Moessbauer spectroscopy and X-ray powder diffraction (in selected samples) have been used to characterize corrosion products on carbon steels after atmospheric exposure to the tropical Panamanian locations of Panama and Colon, classified according to ISO 9233 as C3 and C5, respectively. Goethite ({alpha}-FeOOH) of intermediate particle size (20-100 nm), lepidocrocite ({gamma}-FeOOH), a spinel phase consisting of non-stoichiometric magnetite (Fe{sub 3}-xO{sub 4}) and/or maghemita ({gamma}-Fe{sub 2}O{sub 3}) and nano-sized particles were identified in the corrosion products. The spinel phase is related to short term atmospheric exposure transforms in time to other corrosion products. The corrosion resistance increased with fraction of goethite following a saturation-type behavior. (Author) 13 refs.

  6. CEMS study of corrosion products formed by NaCl aqueous solution

    Science.gov (United States)

    Nakanishi, A.

    2012-03-01

    Conversion electron Mössbauer spectroscopy was used to study corrosion products by NaCl aqueous solution. A drop of the solution is put on an iron foil and the foil is left at RT. During the evaporation of the solution, corrosion products are formed. Conversion electron Mössbauer spectra were taken at temperatures between 15 K and room temperature (RT). In the Mössbauer spectra a ferric doublet is observed at RT, but sextets are found at 15 K. These results show that the corrosion product mainly consists of γ - FeOOH and a small amount of β - FeOOH is noticed. As NaCl concentration increases, the corrosion layer becomes thick and β- FeOOH / γ - FeOOH ratio increases slightly. Consequently, it has been concluded that the produced amount of β- FeOOH increases more rapidly than that of γ - FeOOH with increasing NaCl concentration.

  7. Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System

    Science.gov (United States)

    Understanding the effects of biofilm on the iron corrosion, iron release and associated corrosion by-products is critical for maintaining the water quality and the integrity of drinking water distribution system (DWDS). In this work, iron corrosion experiments under sterilized a...

  8. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...) is conducting an administrative review of the countervailing duty (CVD) order on corrosion-resistant.... SUPPLEMENTARY INFORMATION: Scope of the Order The merchandise covered by this Order \\2\\ is certain corrosion...

  9. Analysis of Steam Generators Corrosion Products from Slovak NPP Bohunice

    Directory of Open Access Journals (Sweden)

    Jarmila Degmová

    2012-01-01

    Full Text Available One of the main goals of the nuclear industry is to increase the nuclear safety and reliability of nuclear power plants (NPPs. As the steam generator (SG is the most corrosion sensitive component of NPPs, it is important to analyze the corrosion process and optimize its construction materials to avoid damages like corrosion cracking. For this purpose two different kinds of SGs and its feed water distributing systems from the NPP Jaslovske Bohunice were studied by nondestructive Mössbauer spectroscopy. The samples were scraped from the surface and analyzed in transmission geometry. Magnetite and hematite were found to be the main components in the corrosion layers of both SGs. Dependant of the material the SG consisted of, and the location in the system where the samples were taken, the ratios between magnetite and hematite and the paramagnetic components were different. The obtained results can be used to improve corrosion safety of the VVER-440 secondary circuit as well as to optimize its water chemistry regime.

  10. Speciation study of chromium corrosion product in molten LiF-NaF-KF salt

    Institute of Scientific and Technical Information of China (English)

    邱杰; 邹杨; 俞国军; 何上明; 刘文冠; 贾彦彦; 李志军; 徐洪杰

    2015-01-01

    To investigate the corrosion products of Cr in molten FLiNaK salt (46.5 mol% LiF–11.5 mol% NaF–42 mol%KF), the corrosion test of the pure metal Cr was performed in molten FLiNaK salt at 700◦C for 200 h. The FLiNaK salt after the corrosion test was thoroughly investigated by X-ray absorption near-edge structure spectroscopy, a transmission electron microscope, and X-ray diffraction. The results demonstrate that the pre-dominant oxidation state of Cr in FLiNaK salt is Cr3+, and the main corrosion product in cooled FLiNaK salt is K2NaCrF6.

  11. Effect of corrosion products (neodymium iron boron) on oral fibroblast proliferation.

    Science.gov (United States)

    Evans, R D; McDonald, F

    1995-01-01

    The biological effects of the corrosion products of neodymium iron boron (Nd2Fe14B) magnets are largely unknown. The aim of this study was to identify the types of corrosion product and to evaluate the effect of the corrosion products (CP) of Nd2Fe14B magnets on the proliferation of human oral mucosal fibroblasts. Uncoated Nd2Fe14B magnets were stored in saline at 37 degrees C for 6 months and the corrosion products collected. 100 microL of a cell suspension (human oral mucosal fibroblasts [14 x 10(4) cells/mL]) was aliquoted into 72 wells of a 96-well plate, the remaining plates receiving culture medium only. After 12 h incubation at 37 degrees C, each well then received 100 microL of either (A) culture medium, (B) 100% CP, (C) 50% CP, or (D) 0% CP. The plates were reincubated at 37 degrees C for a further 48, 96, or 144 h. Fibroblast proliferation was assessed using the methylene blue uptake/elution technique. The compounds in the corrosion product were examined using quantitative X-ray analysis. Statistical analysis (ANOVA, Bonferroni's test 0.05, SAS v 6.04), showed that at each time point, the cell numbers in groups B, C, and D were significantly lower than group A. Within groups B, C, and D no significant differences were found, despite the suggestion of a dose response effect. Fibroblast proliferation in the presence of corrosion products was significantly lower than with culture medium. Fibroblast proliferation did occur in the presence of 0, 50, and 100% CP. The actual corrosion products appeared to be salts of iron but 3.2% (+/- 0.6) of neodymium chloride (NdCl3) was found.

  12. Products of in Situ Corrosion of Depleted Uranium Ammunition in Bosnia and Herzegovina Soils.

    Science.gov (United States)

    Wang, Yuheng; von Gunten, Konstantin; Bartova, Barbora; Meisser, Nicolas; Astner, Markus; Burger, Mario; Bernier-Latmani, Rizlan

    2016-11-15

    Hundreds of tons of depleted uranium (DU) ammunition were used in previous armed conflicts in Iraq, Bosnia and Herzegovina, and Serbia/Kosovo. The majority (>90%) of DU penetrators miss their target and, if left in the environment, corrode in these postconflict zones. Thus, the best way to understand the fate of bulk DU material in the environment is to characterize the corrosion products of intact DU penetrators under field conditions for extended periods of time. However, such studies are scarce. To fill this knowledge gap, we characterized corrosion products formed from two intact DU penetrators that remained in soils in Bosnia and Herzegovina for over seven years. We used a combination of X-ray powder diffraction, electron microscopy, and X-ray absorption spectroscopy. The results show that metaschoepite (UO3(H2O)2) was a main component of the two DU corrosion products. Moreover, studtite ((UO2)O2(H2O)2·2(H2O)) and becquerelite (Ca(UO2)6O4(OH)6·8(H2O)) were also identified in the corrosion products. Their formation through transformation of metaschoepite was a result of the geochemical conditions under which the penetrators corroded. Moreover, we propose that the transformation of metaschoepite to becquerelite or studtite in the DU corrosion products would decrease the potential for mobilization of U from corroded DU penetrators exposed to similar environments in postconflict areas.

  13. Production technology for actual fields in severe corrosive environments; Fushoku kankyo jitsu fuirudo jisshoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takai, T.; Kaneda, E.; Shoda, S.; Tochikawa, T. [Japan National Oil Corp., Tokyo (Japan)

    1998-10-30

    Joc has been developing the hardware and software, in corrosion and protection research project which has tree subthema as follows with collaborators. 1. From 1985 JNOC and JRCM have been developing the Coated TBG. Last year, we selected a gas well for the evaluation in Astrakhan Gas Field in Russia where production gas contains 25 % H{sub 2}S, and started the verification test of the corrosion resistance of the Coated TBG. 2. Two new coating technologies (Plasma sintering and YAG-laser cladding technology) are tried to apply for coating of well equipment. The former technology aims at improving erosion-resistance of drilling tools, for instance, blade stabilizer. The later aims to improve erosion-resistance and corrosion-resistance of production equipment which have complex curved surface or narrow sections. 3. JNOC and Nippon Steel have been developing the Material Selection Program for Tubing Strings. The prototype program has been produced, which includes some new items, galvanic corrosion effect in combination strings, corrosion properties of new material (modified 13Cr), reflection on the environments in actual well, and including the material cost. The influence of fluid velocity, WOR and dew point upon the corrosion-rate will be estimated. (author)

  14. Formation Characteristic of CO2 Corrosion Product Layer of P110 Steel Investigated by SEM and Electrochemical Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-xian; LU Xiang-hong; XIANG Jian-min; HAN Yong

    2009-01-01

    Formation characteristic of CO2 corrosion product layer on the surface of P110 steel was investigated in simulated oilfield environment using mass-loss experiment, potentiodynamic polarization curve, impedance spectroscopy, and SEM micrograph analysis. Samples of different times up to 240 h were tested during exposure. Corrosion product was primarily composed of Fe(Ca, Mg)(CO3)2, which was distinguished by two layers. With an increase in the exposure time, the charge transfer resistance and polarization resistance increased progressively, the uniform corrosion rate decreased, and the corrosion reaction was controlled by the diffusion process instead of the activation process. All phenomena were attributed to the formation of the protective corrosion product layer. More compact and lower porosity of the layer made it more difficult to transfer and diffuse through the corrosion product layer for the charges and ions. Similar results were obtained by electrochemical test and mass-loss experiment.

  15. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, S., E-mail: sfeliu@cenim.csic.es; Llorente, I.

    2015-08-30

    Highlights: • Surface chemistry of the corrosion product layers on magnesium alloys. • Influence of the type of alloy on the carbonate surface enrichment. • Relation between surface composition and protection properties. - Abstract: This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  16. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  17. Forecasting of Corrosion Properties of Steel Wires for Production of Guide Wires for Cardiological Treatment

    Directory of Open Access Journals (Sweden)

    J. Przondziono

    2013-01-01

    Full Text Available The study presents evaluation of the influence of strain in drawing process and of surface modification on resistance to electrochemical corrosion of wires made of stainless steel for production of guide wires used in invasive cardiology. The results of static tensile test enabled us to determine the course of flow curve of wires made of X10CrNi 18-8 steel as well as mathematical form of flow stress function. Resistance to electrochemical corrosion was evaluated on the ground of registered anodic polarisation curves by means of potentiodynamic method. The tests were performed in solution simulating human blood on samples that were electrolytically polished and samples that were polished and then chemically passivated. Exemplary anodic polarisation curves were given. It was proved that with the applied strain, corrosion properties decrease. It was found that chemical passivation improves wire corrosion characteristics. Statistical analysis showed that there is a significant dependence between corrosion properties (polarisation resistance Rp and strain ε applied in drawing process. Functions that present the change Rp=f(ε were selected. The issue is of importance to guide wire manufacturers because application of the suggested methodology will enable us to forecast corrosion characteristics of wire with the required strength drawn with the applied strain.

  18. Mass Transfer of Corrosion Products in the Nonisothermal Sodium Loop of a Fast Reactor

    Science.gov (United States)

    Varseev, E. V.; Alekseev, V. V.

    2014-11-01

    The mass transfer of the products of corrosion of the steel surface of the sodium loop of a fast nuclear power reactor was investigated for the purpose of optimization of its parameters. The problem of deposition of the corrosion products on the surface of the heat-exchange unit of the indicated loop was considered. Experimental data on the rate of accumulation of deposits in the channel of this unit and results of the dispersion analysis of the suspensions contained in the sodium coolant are presented.

  19. Application of Mössbauer spectroscopy on corrosion products of NPP

    Science.gov (United States)

    Dekan, J.; Lipka, J.; Slugeň, V.

    2013-04-01

    Steam generator (SG) is generally one of the most important components at all nuclear power plants (NPP) with close impact to safe and long-term operation. Material degradation and corrosion/erosion processes are serious risks for long-term reliable operation. Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in period 1994-1998, in order to improve corrosion resistance of SGs. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in form of filters deposits. Newest results in our long-term corrosion study confirm good operational experiences and suitable chemical regimes (reduction environment) which results mostly in creation of magnetite (on the level 70 % or higher) and small portions of hematite, goethite or hydrooxides. Regular observation of corrosion/erosion processes is essential for keeping NPP operation on high safety level. The output from performed material analyses influences the optimisation of operating chemical regimes and it can be used in optimisation of regimes at decontamination and passivation of pipelines or secondary circuit components. It can be concluded that a longer passivation time leads more to magnetite fraction in the corrosion products composition.

  20. Development of Exterior Anti-corrosion Coating Production Line for Large Diameter Hot Bent Pipes

    Institute of Scientific and Technical Information of China (English)

    JiaoRuyi; ZhangYing

    2004-01-01

    The epoxy powder exterior anti-corrosion coating production line for bent pipes with a single (double) course production is a technologically advanced bent pipe anti-corrosion method with cost efficiency, environment friendliness and stable coating quality. The quality of the coating on the bent pipe fully meets the requirements of the current national and industrial standards. The application of the technology has filled the gap in the bent pipe anti-corrosion coating area of China, and leads the world technologically. With this technology the coating quality of the bent pipe has greatly improved, resulting in significant social and economic benefits. With the use of the technology in various large scale pipeline projects such as the “West to East Gas Pipeline Project”, it will exhibite a greater potential in the future pipeline projects with a broad application prospect.

  1. Modeling of hydrogen sulfide oxidation in concrete corrosion products from sewer pipes.

    Science.gov (United States)

    Jensen, Henriette Stokbro; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2009-04-01

    Abiotic and biotic oxidation of hydrogen sulfide related to concrete corrosion was studied in corrosion products originating from a sewer manhole. The concrete corrosion products were suspended in an acidic solution, mimicking the conditions in the pore water of corroded concrete. The removal of hydrogen sulfide and dissolved oxygen was measured in parallel in the suspension, upon which the suspension was sterilized and the measurement repeated. The results revealed the biotic oxidation to be fast compared with the abiotic oxidation. The stoichiometry of the hydrogen sulfide oxidation was evaluated using the ratio between oxygen and hydrogen sulfide uptake. The ratio for the biotic oxidation pointed in the direction of elemental sulfur being formed as an intermediate in the oxidation of hydrogen sulfide to sulfuric acid. The experimental results were applied to suggest a hypothesis and a mathematical model describing the hydrogen sulfide oxidation pathway in a matrix of corroded concrete.

  2. An X-ray diffraction study of corrosion products from low carbon steel

    Directory of Open Access Journals (Sweden)

    Morales, A. L.

    2003-12-01

    Full Text Available It was found in earlier work a decrease in the corrosion rate from low carbon steel when it was subjected to the action of a combined pollutant concentration (SO4-2 = 10-4 M + Cl- = 1.5 x 10-3 M. It was also found that large magnetite content of the rust was related to higher corrosion rates. In the present study corrosion products are further analyzed by means of X-ray diffraction to account for composition changes during the corrosion process. It is found that lepidocrocite and goethite are the dominant components for the short-term corrosion in all batches considered while for long-term corrosion lepidocrite and goethite dominates if the corrosion rate is low and magnetite dominates if the corrosion rate is high. The mechanism for decreasing the corrosion rate is related to the inhibition of magnetite production at this particular concentration.

    En un estudio anterior se encontró que la tasa de corrosión, de un acero al carbono, decrecía cuando se le sometía al efecto combinado de una mezcla de contaminantes (SO4-2 = 10-4 M + Cl- = 1,5 x 10-3 M. También, se concluyó que altos contenidos de magnetita en la herrumbre estaban asociados a altas tasas de corrosión. En este trabajo se retoman estas herrumbres para analizarlas por difractometría de rayos X para tomar en cuenta los cambios en composición durante el proceso corrosivo. Se encuentra que goethita y lepidocrocita son las componentes dominantes durante la etapa inicial del proceso en todos los experimentos. En cambio para tiempos largos de exposición, y si la tasa de corrosión es alta, la magnetita es el producto de corrosión dominante. El mecanismo que reduce la tasa de corrosión, en la mezcla mencionada anteriormente, está relacionado con la inhibición del proceso de producción de la magnetita en estas condiciones.

  3. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  4. Strontium Concentrations in Corrosion Products from Residential Drinking Water Distribution Systems

    Science.gov (United States)

    2013-04-22

    thoroughly mixed with 2.25 g of cellulose and pressed into 31 mm pellets for X-ray fluorescence (XRF) analysis. Two representative iron corrosion products...events in reticulation systems and evaluation of flushing methods to remove deposited particles: A review. Water Sci. Technol.: Water Supply 2003, 3 (1

  5. Complementary Methods for the Characterization of Corrosion Products on a Plant-Exposed Superheater Tube

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Nießen, Frank; Villa, Matteo

    2017-01-01

    geometry measuring with a small gauge volume from the sample surface through the corrosion product allowed depth-resolved phase identification and revealed the presence of (Fe,Cr)2O3 and FeCr2O4. This was supplemented by microstructural and elemental analysis correlating the additional presence of a Ni......-rich austenite phase to selective removal of Fe and Cr from the alloy, via a KCl-induced corrosion mechanism. Compositional variations were related to diffraction results and revealed a qualitative influence of the spinel cation concentration on the observed diffraction lines....

  6. Siderite as a Corrosion Product on Archaeological Iron from a Waterlogged Environment

    DEFF Research Database (Denmark)

    Matthiesen, H.; Hilbert, Lisbeth Rischel; Gregory, D.J.

    2003-01-01

    This paper discusses the occurrence of siderite (FeCO3) on iron artifacts excavated from the waterlogged peat and gyttja sediment of the Danish Iron Age site Nydam Mose. Siderite was identified by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron...... microscopy with energy-dispersive spectrometry (SEM-EDS), which showed only minor contents of other minerals in the corrosion scales. The implications of the formation of siderite as a corrosion product are discussed in terms of its possible passivating properties and thermodynamic stability in situ...

  7. Production technology for actual fields in severe corrosive environments; Fushoku kankyo jitsu field jisshoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, H.; Ihara, K.; Wasada, N. [Tech. Research Center, Japan National Oil Corp., Tokyo (Japan)

    1995-11-10

    Tests and studies were started for the verification of the coated tubing developed using the element technology introduced in the special study `Production Technology in High-Temperature Corrosive Environments`, for the development of oil exploring equipment serviceable in corrosive environments, and for the development of programs for selecting materials for use in corrosive environments. In connection with verification tests, investigations were conducted into the operating fields of domestic oil exploring corporations and into technical literature relating to the deterioration of basic materials in their resistance to SSC, and basic data were accumulated. In the efforts to develop equipment, it was decided that drilling stabilizer blades be developed by plasma sintering, that information be collected concerning technologies relating to functionally gradient materials, and that technologies be developed for YAG-laser cladding of flange seal surfaces and elbow inner surfaces. As for the development of material selecting programs, various tests were conducted into the 13Cr steel and super 13Cr steel for their SSC, total corrosion, and local corrosion, their performance was evaluated, and the limit of their serviceability was determined by mathematical treatment. 7 figs., 3 tabs.

  8. OSCAR-Na: A New Code for Simulating Corrosion Product Contamination in SFR

    Science.gov (United States)

    Génin, J.-B.; Brissonneau, L.; Gilardi, T.

    2016-12-01

    A code named OSCAR-Na has been developed to calculate the mass transfer of corrosion products in the primary circuit of sodium fast reactors (SFR). It is based on a solution/precipitation model, including diffusion in the steel (enhanced under irradiation), diffusion through the sodium boundary layer, equilibrium concentration of each element, and velocity of the interface (bulk corrosion or deposition). The code uses a numerical method for solving the diffusion equation in the steel and the complete mass balance in sodium for all elements. Corrosion and deposition rates are mainly determined by the iron equilibrium concentration in sodium and its oxygen-enhanced dissolution rate. All parameters of the model have been assessed from a literature review, but iron solubility had to be adjusted. A simplified primary system description of PHENIX French SFR was able to assess the correct amounts and profiles of contamination on heat exchanger surfaces for the main radionuclides.

  9. Rhenium Uptake, as Analogue for Tc-99, by Steel Corrosion Products

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M.; Brown, Christopher F.; Schaef, Herbert T.; Heald, Steve M.; Valenta, Michelle M.; Arey, Bruce W.

    2006-04-30

    Static batch experiments were used to examine the sorption of dissolved perrhenate [Re(VII)], as a surrogate for pertechnetate [Tc(VII)], on corrosion products of A-516 carbon steel coupons contacted with synthetic groundwater or dilute water. After 109 days of contact time, the concentration of dissolved Re(VII) in the synthetic groundwater matrix decreased by approximately 26%; the dilute water matrix experienced a 99% decrease in dissolved Re(VII) over the same time period. Bulk XRD results for the corroded steel coupons showed that the corrosion products consisted primarily of maghemite, lepidocrocite, and goethite. Analyses of the coupons by SEM/EDS indicated that Re was present with the morphologically complex assemblages of Fe oxide/hydroxide corrosion products for samples spiked with the highest dissolved Re(VII) concentration (1.0 mmol/L) used for these experiments. Analyses of corroded steel coupons contacted with solutions containing 1.0 mmol/L Re(VII) by synchrotron-based methods confirmed the presence of Re sorbed with the corrosion product on the steel coupons. Analyses showed that the Re sorbed on these corroded coupons was in the +7 oxidation state, suggesting that the Re(VII) uptake mechanism did not involve reduction of Re to a lower oxidation state, such as +4. The results of our studies using Re(VII) as an analogue for Tc(VII)-99 suggest that Tc(VII)-99 would also be sorbed with steel corrosion products and that the inventory of Tc(VII)-99 released from breached waste packages would be lower than what is now conservatively estimated.

  10. Models of Al-, Fe-, Cu- and Zr-alloys corrosion based on thermodynamic estimates of corrosion product solubilities in water coolants of nuclear power units

    Energy Technology Data Exchange (ETDEWEB)

    Kritskij, V.G. [VNIPIET, S.-Petersburg (Russian Federation)

    1998-12-31

    In this report an effort is made to provide thermodynamic explanation of the data on the corrosion of Fe-, Cu-, Zr- and Al-based construction materials in water-cooled circuits of NPPs at concrete water chemistry conditions. Physicochemical models of corrosion in chemically desalinized water are also presented using a complete set of equilibrium conditions in the system CPs - water coolant. At the 1st stage of the problem solution the solubility was defined for the system `corrosion products (Me{sub n}O{sub m}; Me(OH){sub k})) - water (H{sub 2}O) - gas (H{sub 2}, O{sub 2}) - additives (HCl, KOH) for pH correction` in the range of 25-350degC. The 2nd stage of our work includes the formation of the database on the kinetics and rate of metal corrosion in water - parabolic uniform process for Fe-, Cu- and Al-alloys; linear `post-transitional` process for Zr-alloys. The results obtained allow to establish a correlation between the corrosion parameters and the equilibrium solubility of that phase of CPs which remains stable during corrosion tests. (author)

  11. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on corrosion...

  12. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea..., the Department published in the Federal Register the countervailing duty order on corrosion-resistant...

  13. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on corrosion...

  14. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea..., the Department published in the Federal Register the countervailing duty order on corrosion-resistant...

  15. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea..., the Department published in the Federal Register the countervailing duty order on corrosion-resistant...

  16. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea...'') published a notice of initiation of the administrative review of the antidumping duty order on corrosion...

  17. The external beam facility used to characterize corrosion products in metallic statuettes

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil)]. E-mail: marcia.rizzutto@dfn.if.usp.br; Tabacniks, M.H. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Added, N. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Barbosa, M.D.L. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Curado, J.F. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Santos, W.A. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Lima, S.C. [Laboratorio de Conservacao e Restauracao, Museu de Arqueologia e Etnologia, Universidade de Sao Paulo, Av Prof. Almeida Prado, 1466, 05508-900 Sao Paulo, SP (Brazil); Melo, H.G. [Laboratorio de Eletroquimica e CorroSao, Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Av. Luciano Gualberto, trav.3, n.380, 05508-900 Sao Paulo, SP (Brazil); Neiva, A.C. [Laboratorio de Eletroquimica e CorroSao, Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Av. Luciano Gualberto, trav.3, n.380, 05508-900 Sao Paulo, SP (Brazil)

    2005-10-15

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts.

  18. Comparative study of the corrosion product films formed in biotic and abiotic media

    Energy Technology Data Exchange (ETDEWEB)

    Videla, H.A.; Mele, M.F.L. de [Univ. of La Plata (Argentina). Dept. of Chemistry; Swords, C. [Univ. of Leeds (United Kingdom). School of Materials; Edyvean, R.G.J. [Univ. of Sheffield (United Kingdom). Dept. of Chemical and Processing Engineering; Beech, I.B. [Univ. of Portsmouth (United Kingdom). Dept. of Chemistry

    1999-11-01

    The growth of sulfate-reducing bacteria (SRB) affects several important parameters at the metal/solution interface of carbon steel in liquid media such as pH and redox potential values, as well as modifications of the composition and structure of corrosion product layers. Electrochemical techniques for corrosion assessment and surface analyses by energy dispersion X-ray analysis (EDAX), X-ray photoelectron spectra (XPS), X-ray distraction (XRD) and electron microprobe analysis (EPMA) complemented with scanning electron microscopy (SEM) and atomic force microscopy (MM) observations, were used to study the structure and composition of protective films on carbon steel in abiotic and biotic media containing different sulfur anions. The results revealed that in biotic and abiotic sulfide films the outer layers were formed by both FeS and FeS{sub 2}, although the relative content of these compounds varied in each case. Usually, the corrosion product films biotically formed were more adherent to the metal surface than those developed abiotically. The latter were flaky and loosely adherent, thus differing in their function during the corrosion process.

  19. Excitation of Lamb waves over a large frequency-thickness product range for corrosion detection

    Science.gov (United States)

    Zeng, Liang; Luo, Zhi; Lin, Jing; Hua, Jiadong

    2017-09-01

    For corrosion detection, it is often desirable that a Lamb wave mode is highly sensitive to surface thinning and enjoys some degree of mode purity at a particular frequency. In view of this, this paper aims to generate a variety of Lamb wave modes over broad frequency bands to ensure an abundant supply of candidates for corrosion detection, and further, establish a strategy to find appropriate operation points efficiently and effectively. Firstly, a short-duration laser pulse is applied to generate Lamb waves over a large frequency-thickness product range. The selection of symmetric modes or anti-symmetric modes is obtained by addition or subtraction of signals captured by two identical transducers which are symmetrically coupled on both sides of the plate. Subsequently, the S0 mode at a non-dispersive frequency bandwidth is employed to improve the accuracy of the transmitter-receiver distance. Based on those, three selection criteria including mode separability, amplitude ratio and corrosion sensitivity, are presented to efficiently determine the suitable operation points (i.e., mode types and frequencies). The experimental results show that the simulated corrosion could be correctly detected and accurately localized at the chosen modes and frequencies.

  20. 77 FR 67395 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the...

    Science.gov (United States)

    2012-11-09

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Revised Schedule for the Subject Reviews AGENCY: United States International Trade Commission. ACTION: Notice. DATES: Effective...

  1. A Moessbauer and Electrochemical Characterization of the Corrosion Products Formed from Marine and Marine-Antartic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ohanian, M.; Caraballo, R.; Dalchiele, E. A.; Quagliata, E. [Instituto de Ingenieria Quimica, Facultad de Ingenieria (Uruguay)

    2003-06-15

    Corrosion products formed on low alloy steel under two marine environments are characterised. Both environments are classified as C4 according to the ISO 9223 Standard. The corrosion products are identified and their relative proportion is determined by Moessbauer spectroscopy (transmission geometry). Free potentials of corrosion are measured to evaluate the activity of their surfaces. Structural characterisation by XRD were performed on selected samples. It is concluded that the principal phases are goethite, lepidocrocite, ferrihidrite and maghemite. The relative amount of each of them changes with time and with the atmospheric dynamics of each environment.

  2. Corrosion product monitoring using an on-line X-ray fluorescence probe

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, C.C.; Connolly, D.J. [Babcock & Wilcox Research, Alliance, OH (United States); Millett, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-01-01

    The need for monitoring corrosion products is becoming increasingly important as power plants strive to minimize the effects of corrosion products on plant availability. Current methodology for monitoring corrosion products involves collection of samples using membrane filters followed by analysis of the membranes in the laboratory. This technique is labor intensive and provides only average values over lengthy sampling intervals. Recently, a laboratory tool, x-ray fluorescence spectroscopy, has been combined with on-line sampling capability resulting in an on-line instrument capable of measuring iron oxide particulates in a flowing stream at the ppb level and below. After development in the laboratory, the instrument was successfully field tested in a power plant and is currently undergoing a second field test at another plant. This paper will discuss the design and operation of the instrument, and field data obtained from plant service will be presented. Results show that this instrument will provide on-line measurements of iron oxides at the ppb level with minimal operator involvement.

  3. [Using Raman spectrum analysis to research corrosive productions occurring in alloy of ancient bronze wares].

    Science.gov (United States)

    Jia, La-jiang; Jin, Pu-jun

    2015-01-01

    The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually.

  4. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Lytle, Darren A; Bai, Yaohui; Wang, Dongsheng

    2014-03-01

    To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products.

  5. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  6. Environmental boundary and formation mechanism of different types of H2S corrosion products on pipeline steel

    Science.gov (United States)

    Zhang, Lei; Li, Hui-xin; Shi, Feng-xian; Yang, Jian-wei; Hu, Li-hua; Lu, Min-xu

    2017-04-01

    To establish an adequate thermodynamic model for the mechanism of formation of hydrogen sulfide (H2S) corrosion products, theoretical and experimental studies were combined in this work. The corrosion products of API X60 pipeline steel formed under different H2S corrosion conditions were analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. A thermodynamic model was developed to clarify the environmental boundaries for the formation and transformation of different products. Presumably, a dividing line with a negative slope existed between mackinawite and pyrrhotite. Using experimental data presented in this study combined with previously published results, we validated the model to predict the formation of mackinawite and pyrrhotite on the basis of the laws of thermodynamics. The established relationship is expected to support the investigation of the H2S corrosion mechanism in the oil and gas industry.

  7. Understanding Passive Layer Formation for Further Corrosion Management in Gas Production Pipes

    Science.gov (United States)

    Santoso, R. K.; Rahmawati, S. D.; Gadesa, A.; Wahyuningrum, D.

    2017-07-01

    Corrosion is a critical issue during the development of a gas field, especially wet gas or retrograde gas field. Corrosion affects the management system of a field and further impacts the amount of investment. Therefore, accurate prediction of corrosion rate is needed to plan an effective preventive action before going further to the development phase. One of the important parameters that should be noticed to create an accurate prediction is the formation of the passive layer. In CO2-H2S environment, there will be three possibilities of passive layer: FeS, FeCO3 or no passive layer. In this study, we create mathematical models to determine the formed passive layer in each segment of the gas production tubing and pipeline. The model is built using Faraday’s Law and Thermodynamic approach to account the passive layer formation at different temperature, pH, corrosion rate and partial pressure of CO2 and H2S. From the simulation, it was found that there were three boundary conditions: no scale-FeS boundary, no scale-FeCO3 boundary and FeS-FeCO3 boundary. The first two boundaries evolved over a time as the concentration of Fe2+ ions was increasing. However, FeS-FeCO3 boundary remained steady as it was not affected by the addition of Fe2+ ions. Using sample case study, few variations were noticed at production pipeline and tubing. It was caused by the gas composition, which contained high CO2 and very low H2S. Boundary conditions only changed slightly over two days period.

  8. Wear Resistance of CO2 Corrosion Product Scale Formed at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LIN Guan-fa; ZHENG Mao-sheng; BAI Zhen-quan; FENG Yao-rong

    2006-01-01

    To investigate the correlation between structure characteristics and wear resistance of CO2 corrosion product scales at high temperature and high pressure, an autoclave was used to prepare CO2 corrosion product scales on N80 steel in carbon dioxide corrosion environment. The correlation between wear resistance of the scales and many other factors, such as temperature, pressure, morphology, structure, velocity of fluid medium, sand grain size, and so on, was comparatively analyzed by a self-assembled wear device, and the scale morphologies before or after being worn were observed by scanning electron microscope (SEM). And then the surface grain size and thickness of scale were measured. The results showed that the cross-section of the corrosion scale was of a double-layer structure, the outer layer of which was composed of regular crystals, whereas the inner layer was a thin scale of fine grains. The outer grain size and thickness of scale varied with temperature, and the initial wear loss was consistent with the surface grain size; at the same time, the total wear loss corresponded to the thickness of scale. Compared to wear resistance in different depths of the scale, it was found that the structure of scale was a double-layer structure in cross-section, and the wear resistance of inner layer was better than that of the outer layer; the closer the scale to the matrix, the greater was the wear resistance of scale; and the larger the size or the higher the rotary speed of solid grain in multiphase flowing medium, the more was the wear loss of scale.

  9. Anti-corrosion paint and varnish coatings employing wastes from coke and coal chemicals production

    Energy Technology Data Exchange (ETDEWEB)

    L.B. Pavlovich; N.M. Alekseeva; V.P. Dolgopolov; A.A. Popov [West Siberian Metallurgical Combine, Siberia (Russian Federation)

    2004-06-01

    The various shops of the West Siberian Metallurgical Combine operate 392 gas-cleaning units, and the combine annually spends 1.5 million rubles a year on major repairs to this equipment. The need to increase the service life of the air ducts is obvious. At the same time, the production of phthalic anhydride (PA) from commercial grades of naphthalene made at coke and coal chemicals plants also yields large quantities of waste products formed in oxidation reactions - still residues from the distillation of PA. These residues are currently used in coking charges. It is important that a way be found to recycle wastes from the production of phthalic anhydride, which is the main raw material used to make corrosion-resistant paints and lacquers. The goal of the research was to use PA production wastes to help develop promising new environmentally clean materials to protect metal from corrosion. The Combine has developed and mastered the production of two types of powdered polymer-based paint: quick-drying epoxide paint PEFAN-501; decorative epoxide-polyester paint NOVOLAN-1605. A section to make these paints has been set up and equipped with three units that apply the paints in an electrostatic field. The Combine has also developed a technology for using PA still residues to obtain an alkyl-epoxide primer for protecting gas pipes from corrosion. Experimental batches of the primer have been successfully tested on a section of gas pipe connected to the car dumper in the crushing-sorting plant operated by the sinter-lime department.

  10. Metabolomic and Metagenomic Analysis of Two Crude Oil Production Pipelines Experiencing Differential Rates of Corrosion

    Science.gov (United States)

    Bonifay, Vincent; Wawrik, Boris; Sunner, Jan; Snodgrass, Emily C.; Aydin, Egemen; Duncan, Kathleen E.; Callaghan, Amy V.; Oldham, Athenia; Liengen, Turid; Beech, Iwona

    2017-01-01

    Corrosion processes in two North Sea oil production pipelines were studied by analyzing pig envelope samples via metagenomic and metabolomic techniques. Both production systems have similar physico-chemical properties and injection waters are treated with nitrate, but one pipeline experiences severe corrosion and the other does not. Early and late pigging material was collected to gain insight into the potential causes for differential corrosion rates. Metabolites were extracted and analyzed via ultra-high performance liquid chromatography/high-resolution mass spectrometry with electrospray ionization (ESI) in both positive and negative ion modes. Metabolites were analyzed by comparison with standards indicative of aerobic and anaerobic hydrocarbon metabolism and by comparison to predicted masses for KEGG metabolites. Microbial community structure was analyzed via 16S rRNA gene qPCR, sequencing of 16S PCR products, and MySeq Illumina shotgun sequencing of community DNA. Metagenomic data were used to reconstruct the full length 16S rRNA genes and genomes of dominant microorganisms. Sequence data were also interrogated via KEGG annotation and for the presence of genes related to terminal electron accepting (TEA) processes as well as aerobic and anaerobic hydrocarbon degradation. Significant and distinct differences were observed when comparing the ‘high corrosion’ (HC) and the ‘low corrosion’ (LC) pipeline systems, especially with respect to the TEA utilization potential. The HC samples were dominated by sulfate-reducing bacteria (SRB) and archaea known for their ability to utilize simple carbon substrates, whereas LC samples were dominated by pseudomonads with the genetic potential for denitrification and aerobic hydrocarbon degradation. The frequency of aerobic hydrocarbon degradation genes was low in the HC system, and anaerobic hydrocarbon degradation genes were not detected in either pipeline. This is in contrast with metabolite analysis, which

  11. Corrosion in the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Brondel, D. (Sedco Forex, Montrouge (France)); Edwards, R. (Schlumberger Well Services, Columbus, OH (United States)); Hayman, A. (Etudes et Productions Schlumberger, Clamart (France)); Hill, D. (Schlumberger Dowell, Tulsa, OK (United States)); Mehta, S. (Schlumberger Dowell, St. Austell (United Kingdom)); Semerad, T. (Mobil Oil Indonesia, Inc., Sumatra (Indonesia))

    1994-04-01

    Corrosion costs the oil industry billions of dollars a year, a fact that makes the role of the corrosion engineer an increasingly important one. Attention is paid to how corrosion affects every aspect of exploration and production, from offshore rigs to casing. Also the role of corrosion agents such as drilling and production fluids is reviewed. Methods of control and techniques to monitor corrosion are discussed, along with an explanation of the chemical causes of corrosion. 21 figs., 32 refs.

  12. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Andrey [Paul Scherrer Institut, Villigen (Switzerland); Degueldre, Claude, E-mail: claude.degueldre@psi.ch [Paul Scherrer Institut, Villigen (Switzerland); Kaufmann, Wilfried [Kernkraftwerk Leibstadt, Leibstadt (Switzerland)

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  13. A study on species transport in the corrosion products of ferrous archaeological analogues - a contribution to the modelling of iron long term corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Vega, E.; Dillmann, Ph.; Fluzin, Ph. [LRC CEA DSM 01-27: IRAMAT UMR5060 CNRS et Laboratoire Pierre Sue (CEA/CNRS), CEA Saclay 91191 Gif-sur-Yvette Cedex (France)

    2004-07-01

    One of the main technological and environmental challenges for the next centuries is the safe storage of nuclear wastes. For this purpose, the behaviour during several centuries of every material constituting the barrier between wastes and environment must be predicted. In addition to modelling and laboratory simulations, the only mean to study corrosion systems formed during several centuries is to analyse archaeological ferrous artefacts buried in soil. Precedent studies on this kind of artefacts have shown that the corrosion system is formed by the metallic core, a dense corrosion product layer, a transformed medium constituted of a mix of corrosion products and soil compounds, and the soil itself. Moreover, analytical and electrochemical studies seem to show that the corrosion mechanisms are driven by the species transport in the dense product layer (DPL) and especially by oxygen migration in the DPL pores. Thus, it seems necessary to precise the species transport properties in the DPL. A characterisation study on ferrous artefacts coming from the site of Glinet (16. AD) have been carried out. The rust layers have been studied using several techniques. The composition analyses were performed with Energy Dispersive Spectroscopy (EDS) coupled to the Scanning Electron Microscope, and Electron Probe Microanalysis (EPMA). Structural information have been obtained by X-ray micro-diffraction ({mu}XRD) and micro-Raman spectroscopy. The aim of this communication is to present the results of a study performed with markers in order to better understand the species transport in the DPL. Experiments focus on an archaeological artefact part from Glinet excavation. The migration in the DPL of I and Na ions (which have roughly the same diffusion coefficient in water than oxygen) will be studied by immersion of an archaeological analogue with his DPL in a saturated iodide (NaI) aqueous solution. After different immersion times (1 h, 3 h, 7 h and 168 h), the concentration

  14. Mini-review: the morphology, mineralogy and microbiology of accumulated iron corrosion products.

    Science.gov (United States)

    Little, Brenda J; Gerke, Tammie L; Lee, Jason S

    2014-09-01

    Despite obvious differences in morphology, substratum chemistry and the electrolyte in which they form, accumulations of iron corrosion products have the following characteristics in common: stratification of iron oxides/hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfate-reducing bacteria have been identified in some accumulations. Both biotic and abiotic mechanisms have been used to rationalize observations for particular sets of environmental data. This review is the first to compare observations and interpretations.

  15. The Role of Nanostructured Al2O3 Layer in Reduction of Hot Corrosion Products in Normal YSZ Layer

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-01-01

    Full Text Available YVO4 crystals and monoclinic ZrO2 are known as hot corrosion products that can considerably reduce the lifetime of thermal barrier coatings during service. The hot corrosion resistance of two types of air plasma sprayed thermal barrier coating systems was investigated: an Inconel 738/NiCrAlY/YSZ (yttria-stabilized zirconia and an Inconel 738/NiCrAlY/YSZ/nano-Al2O3 as an outer layer. Hot corrosion test was accomplished on the outer surface of coatings in molten salts (45% Na2SO4 + 55% V2O5 at 1000°C for 52 hour. It was found that nanostructured alumina as outer layer of YSZ/nano-Al2O3 coating had significantly reduced the infiltration of molten salts into the YSZ layer and resulted in lower reaction of fused corrosive salts with YSZ, as the hot corrosion products had been substantially decreased in YSZ/nano-Al2O3 coating in comparison with normal YSZ coating after hot corrosion process.

  16. Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama

    Directory of Open Access Journals (Sweden)

    Jaén, J. A.

    2003-12-01

    Full Text Available Mössbauer spectroscopy and X-ray powder diffraction (in selected samples have been used to characterize corrosion products on carbon steels after atmospheric exposure to the tropical Panamanian locations of Panama and Colon, classified according to ISO 9223 as C3 and C5, respectively. Goethite (α-FeOOH of intermediate particle size (20-100 nm, lepidocrocite (γ-FeOOH, a spinel phase consisting of non-stoichiometric magnetite (Fe3-xO4 and/or maghemite (γ-Fe2O3 and nano-sized particles were identified in the corrosion products. The spinel phase is related to short term atmospheric exposure transforms in time to other corrosion products. The corrosion resistance increased with fraction of goethite following a saturation-type behavior.

    Se caracterizaron los productos de corrosión de aceros al carbono expuestos a las atmósferas tropicales panameñas localizadas en Panamá y Colón, mediante el uso de la espectroscopia Mössbauer y difracción de rayos-X (en muestras seleccionadas. Las atmósferas se clasifican como C3 y C5, respectivamente, de acuerdo a la norma ISO 9223. Se lograron identificar los compuestos goethita (α-FeOOH de tamaño de partícula intermedio (20-100 nm, lepidocrocita (γ-FeOOH, una fase de espinela consistente en magnetita no estequiométrica (Fe3-xO4 y/o maghemita (γ-Fe2O3, y nanopartículas. La fase de espinela se puede correlacionar con exposiciones cortas a la atmósfera, transformándose en el tiempo en otros productos de corrosión. La resistencia a la corrosión se incrementa con la cantidad de goethita siguiendo una conducta de saturación.

  17. Corrosion product identification and relative rates of corrosion of candidate metals in an irradiated air-steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T.; Swayambunathan, V.; Tani, B.S. (Argonne National Lab., IL (USA)); Van Konynenburg, R.A. (Lawrence Livermore National Lab., CA (USA))

    1989-11-03

    Previously reported work by others indicates that dicopper trihydroxide nitrate, Cu{sub 2}NO{sub 3}(OH){sub 3}, forms on copper and copper alloys subjected to irradiated moist air near room temperature. We have performed experiments over a range of temperature and humidity, and have found that this species is formed at temperatures up to at least 150{degree}C if low to intermediate relative humidities are present. At 150{degree}C and 100% relative humidity, only Cu{sub 2}O and CuO were observed. The relative general corrosion rates of the copper materials tested in 1-month experiments at dose rates of 0.7 and 2.0 kGy/h were Cu > 70/30 Cu--Ni > Al-bronze. High-nickel alloy 825 showed no observable corrosion. 29 refs., 4 tabs.

  18. Anomalously deep and fast failure of copper and bronze under the action of the corrosion products existing on them

    Science.gov (United States)

    Pozhidaeva, S. D.; Eliseeva, A. Yu.; Ivanov, A. M.

    2015-12-01

    When the corrosion products on copper and bronze are in close contact with a diluted aqueous solution of hydrochloric acid and atmospheric oxygen, they rapidly transform into effective metal (alloy) oxidizers, which provide rapid and deep metal consumption. The metal can be almost fully consumed in a reasonable technological time provided the accumulated solid phase of the products is periodically removed.

  19. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    Science.gov (United States)

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA.

  20. Development of effective combined kinetic hydrate inhibitor/corrosion inhibitor (KHI/CI) products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Len. W.; Anderson, Joh.

    2006-03-15

    Low Dosage Hydrate Inhibitors (LDHIs) are gaining worldwide acceptance as a viable alternative to the more conventional methods of hydrate flow assurance control. Use of this LDHI technology in combination with Corrosion Inhibitors (CI) in production systems such as sub sea developments enables operating companies to further significantly reduce capital costs. CI can have a significant impact of the efficacy of Kinetic Hydrate Inhibitors (KHI). This paper will review the experience of developing combined KHI and CI products (KHI/CI) with the aim of producing effective products whilst also incorporating the goal of the use of more environmentally friendly CI. Relevant KHI/CI product case histories will be considered. The development of KHI to be used in the presence of CI will also be considered in different production scenarios. This relates to the typical situation of continuous CI usage with the seasonal application of KHI. Experience is also shown of how the incorporation of Thermodynamic Hydrate Inhibitors (THI) to KHI/CI products, in order to enable the combined product to control hydrates in higher subcooling systems, can also have a role to play in the influence that the CI has on the efficiency of the KHI. (author) (tk)

  1. Measurement of fuel corrosion products using planar laser-induced fluorescence

    Science.gov (United States)

    Wantuck, Paul J.; Sappey, Andrew D.; Butt, Darryl P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed.

  2. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  3. Corrosion of oil-fired boilers caused by sour combustion products of the sulfur contained in fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1987-01-01

    A corrosion model helps to experimentally explain why industrial boilers are more susceptible to corrosion than smaller boilers and why vapour dew points are relevant to heating boilers while sulfuric acid dew points are relevant to steam boilers. Analyses are based on model verifications (measurement of critical boiler factors). Access is given to the sulfur trioxide measuring methods as well as to the respective tests of 30 actively operated boilers (sulfur oxide concentrations at burner outlets), the catalytic formation of sulfur oxides, and tests of the test stand boiler (sulfur oxide deposits). The paper concludes with a description of corrosion product analyses as such as well as with an account of the results obtained. Analyses and results (wet analysis, X-ray structure analysis, influence of temperatures, FeSO/sub 4/ x H/sub 2/O tracing) are presented in the form of eight brief statements. (HWJ)

  4. A study of the corrosion products of mild steel in high ionic strength brines.

    Science.gov (United States)

    Wang, Z; Moore, R C; Felmy, A R; Mason, M J; Kukkadapu, R K

    2001-01-01

    The corrosion layer on steel surfaces that formed after exposure to waste isolation pilot plant (WIPP) brines under anoxic conditions was characterized for chemical composition, thickness and phase composition. The chemical composition of the corrosion layer was determined both by X-ray photoelectron spectroscopy (XPS) and by chemical analysis of acid solutions used to remove the corrosion layer. Atomic force microscopic (AFM) images indicated that the brine-corroded surface layer shows extensive granulation along the contours of the steel surface that is characteristic of sharp polishing marks. The corrosion layer seemed to be porous and could be dissolved and detached in dilute hydrochloric acid. The corrosion layer appears to be composed of iron oxides with some ionic substitutions from the brines. The 77 K Mössbauer spectrum recorded for iron powder leached under similar conditions indicated the corrosion layer was comprised principally of green rust.

  5. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  6. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  7. Selection of optimal conditions for anti-corrosive microbial biopolymer production by the Flavobacterium strain using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    mojtaba khani

    2016-09-01

    Full Text Available Introduction: Various methods have been proposed to deal with corrosion. One of these methods is using of paints and coatings. In formulation of paints and coatings several anti-corrosion compounds are applied that slow down the corrosion process. In this respect, using microbial biopolymers can improve this problem in the industry with lower costs because of biopolymer production not required to factory and advanced industry. in this study, the effects of temperature, pH and agitation on the biopolymer production using response surface methodology (RSM were evaluated. Materials and methods: To produce biopolymer, the culture medium (300 ml were added in the 500 ml erlenmeyer flasks. Then, the bacterial preculture medium (6% V/V were inoculated in the flasks and incubated for 96hr in different conditions (agitation speed, tempreture and pH. Afterwards, the medium was centrifuged at 9000 rpm for 10 min and the supernatant was mixed with triple volume of chilled absolute ethanol and stored at 4°C for 24hr to precipitate. Results: Analysis of the results of design experiments indicate that the biopolymer production­ was strongly governed by the temperature, pH and agitation. The biopolymer production increased steadily up to pH 8 and decreased in the higher pH values. Also, for cell growth suitable temperature was 33°C and maximum concentration of the biopolymer production was agitation of 210 rpm. Finally, maximum concentration of the biopolymer production (14.3g/l was determined to be in pH of 8, temperature of 33°C and agitation of 210­rpm. Discussion and conclusion: Anti-corrosive biopolymer production by Flavobacterium sp. affected significantly by physical parameters. The results of the biopolymer production by investigating the conditions of temperature, pH and agitation after optimization, indicates the importance of this parameter for economic production of biopolymer.

  8. Composition and Morphology of Product Layers in the Steel/Cement Paste Interface in Conditions of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP). Of particular interest was to investigate if the introduced pulse CP (as cost

  9. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    OpenAIRE

    Xuming Zhang; Guosong Wu; Xiang Peng; Limin Li; Hongqing Feng; Biao Gao; Kaifu Huo; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface c...

  10. CORROSION AND WEAR PROPERTIES OF MATERIALS USED FOR MINCED MEAT PRODUCTION

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Hansen, Martin Otto Laver; Hilbert, Lisbeth Rischel

    2009-01-01

    The risk of material degradation is present in minced-meat processing equipment. Corrosion, wear and tribocorrosion properties of commonly used steel materials for such processing equipment are therefore studied in detail. Corrosiveness of minced meat has been evaluated by potentiodynamic...

  11. Characterization of the corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Z.I.; Diaz-Arista, P.; Meas, Y.; Ortega-Borges, R. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, A.P. 064, C.P. 76703 Queretaro (Mexico); Trejo, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ), Parque Tecnologico Sanfandila, Pedro Escobedo, Queretaro, A.P. 064, C.P. 76703 Queretaro (Mexico)], E-mail: gtrejo@cideteq.mx

    2009-11-15

    The morphology, composition, phase composition and corrosion products of coatings of pure Zn (obtained from two types of electrolytic bath: an acidic bath (Zn{sub acid}) and a cyanide-free alkaline bath (Zn{sub alkaline})) and of Zn-Mn and Zn-Co alloys on steel substrates were studied. To achieve this, diverse techniques were used, including polarization curves, atomic force microscopy (AFM), scanning electron microscopy (SEM), glow discharge spectroscopy (GDS), X-ray diffraction (XRD), and the salt spray test. In the salt spray test, the exposure time required for the coatings to exhibit red corrosion (associated with the oxidation of steel) decreased in the following order: Zn-Mn{sub (432h)} > Zn-Co{sub (429h)} > Zn{sub alkaline(298h)} > Zn{sub acid(216h)}. The shorter exposure times required for corrosion of the pure Zn coatings are related to the coating composition and the crystallographic structure. Analysis of the corrosion products disclosed that Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O was a corrosion product of all of the coatings tested. However, the formation of oxides of manganese (MnO, Mn{sub 0.98}O{sub 2}, Mn{sub 5}O{sub 8}) in the Zn-Mn coating, and the formation of the hydroxide Zn{sub 2}Co{sub 3}(OH){sub 10}.2H{sub 2}O in the Zn-Co coating, produced more compact and stable passive layers, with lower dissolution rates.

  12. Investigations on Atmospheric Corrosion of Low carbon Steel in ...

    African Journals Online (AJOL)

    Nafiisah

    2008-07-17

    Jul 17, 2008 ... index which is directly related to the weight loss due to corrosion. The corrosion index ... easily observed by visual inspection, and the robust Gaussian filter was used. .... Method of removal of corrosion products from corrosion.

  13. Corrosion product deposits on boiling-water reactor cladding: Experimental and theoretical investigation of magnetic properties

    Science.gov (United States)

    Orlov, A.; Degueldre, C.; Wiese, H.; Ledergerber, G.; Valizadeh, S.

    2011-09-01

    Recent Eddy current investigations on the cladding of nuclear fuel pins have shown that the apparent oxide layers are falsified due to unexpected magnetic properties of corrosion product deposits. Analyses by Scanning Electron Microscopy (SEM) or Electron Probe Micro Analysis (EPMA) demonstrated that the deposit layer consists of complex 3-d element oxides (Ni, Mn, Fe) along with Zn, since the reactor operates with a Zn addition procedure to reduce buildup of radiation fields on the recirculation system surfaces. The oxides crystallise in ferritic spinel structures. These spinels are well-known for their magnetic behaviour. Since non-magnetic zinc ferrite (ZnFe 2O 4) may become magnetic when doped with even small amounts of Ni and/or Mn, their occurrence in the deposit layer has been analyzed. The magnetic permeability of zinc ferrite, trevorite and jacobsite and their solid solutions are estimated by magnetic moment additivity. From the void history examination, the low elevation sample (810 mm) did not face significant boiling during the irradiation cycles suggesting growth of (Mn0.092+Zn0.752+Fe0.293+)[(Fe1.713+Mn0.032+Ni0.132+)O] crystals with theoretical value of the magnetic permeability for the averaged heterogeneous CRUD layer of 9.5 ± 3. Meanwhile, (Mn0.162+Zn0.552+Fe0.293+)[(Fe1.713+Mn0.042+Ni0.252+)O] crystallizes at the mid elevation (1810 mm) with theoretical magnetic permeability for the CRUD layer of 4.2 ± 1.5 at the investigated azimuthal location. These theoretical data are compared with the magnetic permeability of the corrosion product deposited layers gained from reactor pool side Eddy current (EC) analyses (9.0 ± 1.0 for low and 3.5 ± 1.0 for high elevation). The calculated thicknesses and magnetic permeability values of the deposition layers (estimated by MAGNACROX multifrequency EC method) match together with these estimated using an "ion magnetic moment additivity" model.

  14. The problems of mass transfer and formation of deposits of corrosion products on fuel assemblies of a VVER-1200 reactor

    Science.gov (United States)

    Rodionov, Yu. A.; Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.

    2014-03-01

    On the basis of examination of materials published both in Russia and abroad, as well as their own investigations, the authors explain the reasons for the occurrence of such effects as AOA (Axial Offset Anomalies) and an increase in the coolant pressure difference in the core of nuclear reactors of the VVER type. To detect the occurrence of the AOA effect, the authors suggest using the specific activity of 58Co in the coolant. In the VVER-1200 design the thermohydraulic regime for fuel assemblies in the first year of their service life involves slight boiling of the coolant in the upper part of the core, which may induce the occurrence of the AOA effect, intensification of corrosion of fuel claddings, and abnormal increase in deposition of corrosion products. Radiolysis of the water coolant in the boiling section (boiling in pores of deposits) may intensify not only general corrosion but also a localized (nodular) one. As a result of intensification of the corrosion processes and growth of deposits, deterioration of the radiation situation in the rooms of the primary circuit of a VVER-1200 reactor as compared to that at nuclear power plants equipped with reactors of the VVER-1000 type is possible. Recommendations for preventing the AOA effect at nuclear power plants with VVER-1200 reactors on the matter of the direction of further investigations are made.

  15. Atmospheric corrosion in subtropical areas: XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife (Canary Islands, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Morales, J. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain)]. E-mail: jmorales@ull.es; Diaz, F. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain); Hernandez-Borges, J. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain); Gonzalez, S. [Departamento de Quimica Fisica, Universidad de La Laguna, 38071 La Laguna, Tenerife (Spain)

    2006-02-15

    In the present paper, zinc sheets have been exposed for 4 years to the action of different atmospheres in 35 test sites located in the province of Santa Cruz de Tenerife, Canary Islands, Spain. Corrosion products formed on the surface of the samples have been identified by means of X-ray diffraction (XRD) for the first and second year of exposure. Zincite, hydrozincite, simonkolleite, zinc chlorohydroxysulphate, zinc oxysulphate and zinc hydroxysulphate have been identified in the test sheets. Preliminary results of an electrochemical study of the breakdown potential of zinc samples are also presented in order to test the protective effect of the film formed on the surface of the samples. It was found that the protective effect of this film increases linearly with exposure time.

  16. Non-animal testing strategies for assessment of the skin corrosion and skin irritation potential of ingredients and finished products.

    Science.gov (United States)

    Robinson, M K; Cohen, C; de Fraissinette, A de Brugerolle; Ponec, M; Whittle, E; Fentem, J H

    2002-05-01

    The dermatotoxicologist today is faced with a dilemma. Protection of workers and consumers from skin toxicities (irritation and allergy) associated with exposure to products, and the ingredients they contain, requires toxicological skin testing prior to manufacture, transport, or marketing. Testing for skin corrosion or irritation has traditionally been conducted in animals, particularly in rabbits via the long established Draize test method. However, this procedure, among others, has been subject to criticism, both for its limited predictive capacity for human toxicity, as well as for its use of animals. In fact, legislation is pending in the European Union which would ban the sale of cosmetic products, the ingredients of which have been tested in animals. These considerations, and advancements in both in vitro skin biology and clinical testing, have helped drive an intensive effort among skin scientists to develop alternative test methods based either on in vitro test systems (e.g. using rat, pig or human skin ex vivo, or reconstructed human skin models) or ethical clinical approaches (human volunteer studies). Tools are now in place today to enable a thorough skin corrosion and irritation assessment of new ingredients and products without the need to test in animals. Herein, we describe general testing strategies and new test methods for the assessment of skin corrosion and irritation. The methods described, and utilized within industry today, provide a framework for the practicing toxicologist to support new product development initiatives through the use of reliable skin safety testing and risk assessment tools and strategies.

  17. Natural Convective Heat and Mass Transfer of Water with Corrosion Products at Super—Critical Pressures under Cooling COnditions

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1993-01-01

    A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures.The influence of variable properties at super-critical pressures on natural convertion has been analyzed.The difference between heat and mass transfer under cooling or heating conditions is also discussed and some correlations for heat and mass transfer under cooling conditions are recommended.

  18. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  19. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    Science.gov (United States)

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  20. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    Science.gov (United States)

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  1. Basic aspects of the carbon dioxide corrosion in oil and gas production; Aspectos basicos de la corrosion por dioxido de carbono en la produccion de petroleo y gas

    Energy Technology Data Exchange (ETDEWEB)

    Angulo Macias, J.

    2010-07-01

    Carbon dioxide (CO{sub 2}) is a non-corrosive gas within the driven conditions in the oil and gas industry, but the presence of water converts it, maybe, in the most important component in the corrosive processes in this industry. Corrosion has an important impact inside the oil and gas companies, no only in economics but also in safety, environmental and social aspects. After several decades of investigation of these corrosion processes, there are still several mechanisms not fully understood. (Author) 19 refs.

  2. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  3. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control

    Institute of Scientific and Technical Information of China (English)

    FAN Xiaomeng; GUAN Xiaohong; MA Jun; AI Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic and invariable pH conditions that was unsuitable for practical application.Without reaction conditions (dissolved oxygen or reaction pH) control, this study aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface.Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant.Additional test results showed that the reduction rate of nitrate increased with increasing Fe0 dosage.The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage.Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration.X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5.The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  4. LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Kaplan, D.

    2012-02-29

    The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness

  5. High temperature corrosion of superheater materials for power production through biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gotthjaelp, K.; Broendsted, P. [Forskningscenter Risoe (Denmark); Jansen, P. [FORCE Institute (Denmark); Montgomery, M.; Nielsen, K.; Maahn, E. [Technical Univ. of Denmark, Corrosion and Surface Techn. Inst. of Manufacturing Engineering (Denmark)

    1996-08-01

    The aim of the present study has been to establish a fundamental knowledge of the corrosion mechanisms acting on materials for use in biomass fired power plants. The knowledge is created based on laboratory exposures of selected materials in well-defined corrosive gas environments. The experiments using this facility includes corrosion studies of two types of high temperature resistant steels, Sanvik 8LR30 (18Cr 10Ni Ti) and Sanicro 28 (27Cr 31Ni 4Mo), investigated at 600 deg. C in time intervals up to 300 hours. The influence of HCl (200 ppm) and of SO{sub 2} (300 ppm) on the corrosion progress has been investigated. In addition the corrosion behaviour of the same materials was investigated after having been exposed under a cover of ash in air in a furnace at temperatures of 525 deg. C, 600 deg. C, and 700 deg. C. The ashes utilised are from a straw fired power plant and a synthetic ash composed of potassium chloride (KCl) and potassium sulphate (K{sub 2}SO{sub 4}). Different analysis techniques to characterise the composition of the ash coatings have been investigated in order to judge the reliability and accuracy of the SEM-EDX method. The results are considered as an important step towards a better understanding of the high temperature corrosion under the conditions found in biomass fired power plants. One of the problems to solve in a suggested subsequent project is to combine the effect of the aggressive gases (SO{sub 2} and HCl) and the active ash coatings on high temperature corrosion of materials. (EG) 20 refs.

  6. Production of carbon nano-tubes via CCVD method and their corrosion protection performance in epoxy based coatings

    Science.gov (United States)

    Raza, M. A.; Ghauri, F. A.; Awan, M. S.; Farooq, A.; Ahmad, R.

    2016-08-01

    Good yield of carbon products was obtained by catalytic chemical vapor deposition (CCVD) technique using 100-500mg of ferrocene catalyst at temperature of 900 °C and acetylene flow rate of 150-200cc/min. The effects of amount of ferrocene, temperature and hydrocarbons precursors on the yield of carbon nanomaterial's was calculated and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) andenergy- dispersive X-ray spectroscopy (EDS). Good yield of carbon nanomaterials primarily consisted of carbon nanotubes (CNTs) and carbon nanoparticles was obtained. CNTs obtained after purification were dispersed in epoxy resin to produce composite coatings which were coated on stainless steel 316L. The coated stainless steel samples’ corrosion behavior was studied using open circuit potential (OCP), cyclic polarization and electrochemical impedance spectroscopy (EIS) techniques. Results showed that epoxy coating containing 4 wt. % of CNTs offered improved corrosion resistance to stainless steel.

  7. Corrosion behavior of stainless steel in bio diesel production; Comportamento quanto a corrosao de acos inoxidaveis na producao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E.F. de [ArcelorMittal Sao Paulo Servicos, SP (Brazil); Moreira, M.C.; Lebrao, S.M.G. [Centro Universitario do Instituto Maua de Tecnologia, Sao Paulo, SP (Brazil)], e-mail: susana.lebrao@maua.br

    2010-07-01

    Biodiesel has become more attractive due to the benefits to the environment, mainly because it is a renewable resource. However, the main barrier to biodiesel is it cost. One factor which is charged to marketing is the use of stainless steel throughout the production line, the most used is AISI 304. To evaluate more economical stainless steels, weight loss and stress corrosion tests were performed on samples of AISI 304 and 439 in methanol PS X30% sodium methylate solution, crude soybean oil, glycerol and biodiesel for about two hundred and fifty days. The mass loss was negligible, and there was complete absence of pitting and stress corrosion cracking in all media studied, showing that both alloys are suitable for the manufacture of such equipment. (author)

  8. Accumulation of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg

    CSIR Research Space (South Africa)

    Hirschberg, G

    1999-03-01

    Full Text Available of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg G abor Hirschberg a,P al Baradlai a,K alm an Varga a,*, Gerrit Myburg b, J anos Schunk c,P eter Tilky c, Paul Stoddart d a Department of Radiochemistry, University...-cooled nuclear reactors is of great importance for a number of practical reasons. For instance, under normal operating conditions (when there is no ?ssion product release due to fuel cladding failure) the majority of radioactive contamination in the pri- mary...

  9. Measurement and evaluation of Corrosion Products deposition distribution in the Experimental Fast Reactor JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Takafumi; Sumino, Kozo [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Masui, Tomohiko; Saikawa, Takuya

    1997-12-01

    The Corrosion Product (CP) is the major radiation source in the primary cooling system of an LMFBR plant. It is important to characterize and predict the CP behavior to reduce the personnel exposure dose due to CP deposition. The CP measurement was carried out in the Experimental Fast Reactor JOYO during the 11th annual inspection period when the accumulated reactor thermal power reached about 143 GWd. The CP deposition density was measured using a pure germanium detector. The plastic scintillation fiber (PSF) was applied for the gamma-ray dose rate distribution measurement and compared with the thermoluminescence dosimeter (TLD). The major results obtained by the CP measurements in JOYO are the follows: (1) The major CP nuclides deposited in the primary cooling system are {sup 54}Mn and {sup 60}Co. {sup 54}Mn is the dominant isotope and it tends to deposit in the cold leg region. On the other hand, {sup 60}Co deposits mainly in the hot leg region. The deposition density of {sup 54}Mn is about seven times as much as that of {sup 60}Co in the cold leg region and twice in the hot leg region. (2) The deposition densities of {sup 54}Mn and {sup 60}Co, and the gamma-dose rate were decreased from the last data in the previous annual inspection period mainly due to the short operation time and the longer cooling time. (3) The continuous gamma-ray dose rate distribution up to 10m can be measured by using the PSF in a few minutes. The PSF is suitable to measure the gamma-ray dose rate distribution in the maintenance work area where it is narrow and the mixture of gamma-ray sources from primary pipings and components. The data base of detailed gamma-ray dose rate distribution was greatly extended by the PSF. (author)

  10. New Naturally Occurring Product Extract as Corrosion Inhibitor for 316 Stainless Steel in 5% HCl

    Institute of Scientific and Technical Information of China (English)

    T.Y.Soror

    2004-01-01

    Medipolymorphol, a new sterol isolated from the whole plant of Medicago polymorpha Roxb was used as corrosion inhibitor for 316 stainless steel in 5% HCl at room temperature. Electrochemical techniques have been found to be reliable in evaluating corrosion characteristics of the system. Several techniques have been used including Tafel, linear polarization, potentiodynamic polarization, and open circuit potential (OCP) studies. The additives simultaneously deaccelerated the anodic process, intensified the cathodic process and provided a stable passive state, giving good inhibition efficiencies to stainless steel electrodes. In addition, adsorption isotherm have been fitted for the inhibitor under investigation.

  11. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  12. Monitoring Microbially Influenced Corrosion

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... and diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  13. Analysis of corrosion products in some metallic statuettes of the Museum of Archaeology and Ethnology (MAE-USP)

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, Marcia A.; Tabacniks, Manfredo H.; Added, Nemitala; Barbosa, Marcel D.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica]. E-mail: rizzutto@if.usp.br; tabacniks@if.usp.br; nemitala@if.usp.br; mbarbosa@if.usp.br; Lima, Silvia Cunha [Sao Paulo Univ., SP (Brazil). Museu de Arqueologia e Etnologia. Lab. de Conservacao e Restauracao]. E-mail: silviacl@usp.br; Melo, Hercilio G.; Neiva, Augusto C. [Sao Paulo Univ., SP (Brazil). Dept. de Engenharia Quimica. Lab. de Eletroquimica e Corrosao]. E-mail: hgdemelo@usp.br; acneiva@usp.br

    2005-07-01

    The recent acquisition of a sealed chamber with controlled humidity by the Museum of Archaeology and Ethnology of the University of Sao Paulo (MAE-USP) requires new methods for conservation and restoration of metallic objects in its collection. To establish new procedures for the identification of corrosion mechanisms and agents in the exhibition environment, and to set up new standards for conservation of the museum's collection, Proton Induced X-Ray Emission (PIXE) elementary analysis of some metallic objects is in progress, using the external beam facility at LAMFI. The first analysis involved metallic objects from the collection of MAE, two African statuettes 'male Edans' from the Ogboni Secret Society, of the Ilobu-Ioruba ethnic group, one pectoral adornment from the Chimu culture, Peru and one anthropomorphic pendant from the Tairona culture, Colombia. The in air non destructive PIXE analysis allowed identifying major and some secondary components in the alloys and in the corrosion products on the samples, data that were used to identify the corrosion sources and to set up the exhibition environment. (author)

  14. Reduction transport of corrosion products through the secondary circuit by increasing the dosage of ammonia; Reduccion del transporte de productos de corrosion a traves del circuito secundario mediante el aumento de la dosificacion de amoniaco

    Energy Technology Data Exchange (ETDEWEB)

    Espanol, J.; Boronat, M.

    2015-07-01

    Reduce transport of corrosion products through the Secondary Circuit, mainly magnetite, by increasing the dosage of ammonia in order to reduce oxides accumulation in the Steam Generators top of tube sheet where become hard sludge, as one of the TTS denting mitigation actions. (Author)

  15. Carbon Dioxide Corrosion:

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup

    2008-01-01

    CO2 corrosion is a general problem in the industry and it is expensive. The focus of this study is an oil gas production related problem. CO2 corrosion is observed in offshore natural gas transportation pipelines. A general overview of the problem is presented in chapter 1. The chemical system co...

  16. Investigation on Atmospheric Corrosiveness in Hainan Province

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the results of four-year exposure tests for carbon steel samples in Hainan province, the influences of meteorological factors and Cl- on atmospheric corrosion were investigated. The feature of atmospheric corrosion in this area was summarized. A corrosive map for the area was drawn. The corrosion products on carbon steel at some typical places were analyzed by XRD and XPS.

  17. Sulphide Production and Corrosion in Seawaters During Exposure to FAME Diesel

    Science.gov (United States)

    2012-05-12

    Anaerobic metabolism of biodiesel and its impact on metal corrosion. Energ Fuel 24:2924- 2928. Altschul SF , Gish W, Miller W, Myers EW, Lipman DJ...1990. Basic local alignment search tool. J Mol Biol 215:403-410. Altschul SF , Madden TL, SchafTer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. 1997...DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, et al. 2009. CDD: specific functional annotation with the Conserved Domain Database

  18. A systematic approach to Bronze corrosion products and the methods of treatment , applied on three bronze anklets from Dhamar museum , Yemen

    Directory of Open Access Journals (Sweden)

    Hazem Mohamed

    2014-04-01

    Full Text Available Three bronze anklets were found during the archaeological excavation of Yemeni mission 2002 A.D, in Gabal al- lawd , Jawf area , Yemen , they dated back to Minaean period in Yemen [sixth century B.C – 24 B.C] , and now they are situated in Dhamar regional museum .They were suffered from the deterioration aspects , two of these anklets had a thick corrosion products of pale green / brown , the third anklet had a rust-colored Black and Brown with the presence of small parts and scattered pale green. The aim of this paper is to examine, in detail, the corrosion of the selected objects that was grown during the long-term burial and identify its products that will help us to understand the corrosive factors and the degradation mechanisms , as well as their constituting metals in order to carry out scientific treatment and conservation .For this purpose ,samples from the objects were examined by Metallographic Microscope (ME , Scanning Electron Microscope (SEM, the corrosion products were analyzed by X-ray diffraction (XRD and X-ray fluorescence( XRF was used to determine the objects metallic constituents . XRD data showed that the corrosion products constitute of cuprite , atacamite , and paratacamite , whereas XRF analysis declared that the anklets compose of bronze alloy . Microscopic examination reveals that the three anklets were suffered from the deterioration spots , which dispersed on the metal surface . Chemical cleaning was chosen for treating the objects , finally they were isolated to preserve them against further attack.

  19. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines.

    Science.gov (United States)

    Rajasekar, Aruliah; Anandkumar, Balakrishnan; Maruthamuthu, Sundaram; Ting, Yen-Peng; Rahman, Pattanathu K S M

    2010-01-01

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed.

  20. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekar, Aruliah; Ting, Yen-Peng [National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Anandkumar, Balakrishnan [Sourashtra Coll., Madurai (India). Dept. of Biotechnology; Maruthamuthu, Sundaram [Central Electrochemical Research Inst., Karaikudi (India). Biocorrosion Group; Rahman, Pattanathu K.S.M. [Teesside Univ., Tees Valley (United Kingdom). Chemical and Bioprocess Engineering Group

    2010-01-15

    Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed. (orig.)

  1. X-ray Powder Diffraction in Conservation Science: Towards Routine Crystal Structure Determination of Corrosion Products on Heritage Art Objects.

    Science.gov (United States)

    Dinnebier, Robert E; Fischer, Andrea; Eggert, Gerhard; Runčevski, Tomče; Wahlberg, Nanna

    2016-06-08

    The crystal structure determination and refinement process of corrosion products on historic art objects using laboratory high-resolution X-ray powder diffraction (XRPD) is presented in detail via two case studies. The first material under investigation was sodium copper formate hydroxide oxide hydrate, Cu4Na4O(HCOO)8(OH)2∙4H2O (sample 1) which forms on soda glass/copper alloy composite historic objects (e.g., enamels) in museum collections, exposed to formaldehyde and formic acid emitted from wooden storage cabinets, adhesives, etc. This degradation phenomenon has recently been characterized as "glass induced metal corrosion". For the second case study, thecotrichite, Ca3(CH3COO)3Cl(NO3)2∙6H2O (sample 2), was chosen, which is an efflorescent salt forming needlelike crystallites on tiles and limestone objects which are stored in wooden cabinets and display cases. In this case, the wood acts as source for acetic acid which reacts with soluble chloride and nitrate salts from the artifact or its environment. The knowledge of the geometrical structure helps conservation science to better understand production and decay reactions and to allow for full quantitative analysis in the frequent case of mixtures.

  2. Research into processes of production of hydrides of materials containing rare-earth metals and their corrosion

    Science.gov (United States)

    Sofronov, V. L.; Kartashov, E. Y.; Molokov, P. B.; Zhiganov, A. N.; Kalaev, M. E.

    2017-01-01

    Production of permanent magnets on basis of rare earth elements (REE) is implemented by means of powder metallurgy, therefore a technologically important operation is the multistage mechanical crushing of materials to the extent of domains. The promising technique of crushing of magnetic materials is their consistent hydrogenation-dehydrogenation that allows obtaining nano-dispersed powders which are stable enough in air. Hydrogenation apparatuses, as opposed to conventional grinding machines, do not comprise motion works and their producing capacity is much higher. Hydrogenation process does not require any additional preparation of materials and it excludes undermilling and overmilling as well as material oxidation. The paper presents the results of investigation on the temperature effect on the hydrogenation process of Nd-Fe alloys. The study results on the corrosion stability of ligature hydrides under various conditions are also given. Kinetic parameters of the hydrogenation process of ligatures are determined. The phase composition of corrosion products is detected. Guidelines on hydride powder storage are given.

  3. Mentha pulegium extract as a natural product for the inhibition of corrosion. Part I: electrochemical studies.

    Science.gov (United States)

    Khadraoui, Abdelkader; Khelifa, Abdellah; Boutoumi, Hocine; Hammouti, Belkheir

    2014-01-01

    The inhibitory effect of Mentha pulegium extract (MPE) on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy. The inhibition efficiency of MPE was found to increase with the concentration and reached 88% at 33% (v/v). Polarisation measurements show that the natural extract acted as a mixed inhibitor. The remarkable inhibition efficiency of MPE was discussed in terms of blocking of electrode surface by adsorption of inhibitor molecules through active centres. The adsorption of MPE was found to accord with the Temkin isotherm.

  4. Refractory Corrosion Mechanisms in a Novel High Carbon Ferromanganese Production Furnace

    Science.gov (United States)

    Gregurek, D.; Wenzl, C.; Kreuzer, D.; Spanring, A.; Kirschen, M.; Zeelie, D.; Groenewald, J.

    2016-12-01

    The present paper presents the refractory design for a novel HCFeMn smelting furnace that, other than standard submerged arc furnaces, allows the processing of fine ores. A combination of basic and non-basic materials, comprising bricks, castables and ramming was chosen, under consideration of the unique furnace design and process conditions. Post-mortem investigations on refractory samples from the different furnace zones were carried out and provided information about the main wear mechanism. Additionally, investigations of the process slag and metal were carried out both practically and theoretically using thermodynamic calculations, to better understand the corrosion phenomena observed in the post mortem samples.

  5. Refractory Corrosion Mechanisms in a Novel High Carbon Ferromanganese Production Furnace

    Science.gov (United States)

    Gregurek, D.; Wenzl, C.; Kreuzer, D.; Spanring, A.; Kirschen, M.; Zeelie, D.; Groenewald, J.

    2016-09-01

    The present paper presents the refractory design for a novel HCFeMn smelting furnace that, other than standard submerged arc furnaces, allows the processing of fine ores. A combination of basic and non-basic materials, comprising bricks, castables and ramming was chosen, under consideration of the unique furnace design and process conditions. Post-mortem investigations on refractory samples from the different furnace zones were carried out and provided information about the main wear mechanism. Additionally, investigations of the process slag and metal were carried out both practically and theoretically using thermodynamic calculations, to better understand the corrosion phenomena observed in the post mortem samples.

  6. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    Science.gov (United States)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  7. Maximizing Modern Distribution of Complex Anatomical Spatial Information: 3D Reconstruction and Rapid Prototype Production of Anatomical Corrosion Casts of Human Specimens

    Science.gov (United States)

    Li, Jianyi; Nie, Lanying; Li, Zeyu; Lin, Lijun; Tang, Lei; Ouyang, Jun

    2012-01-01

    Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical…

  8. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions

    Science.gov (United States)

    Oyabu, Matashige; Nomura, Kiyoshi; Koike, Yuya; Okazawa, Atsushi

    2016-12-01

    Weathering steels (COR-TEN) were corroded by wet-dry cycles using a splay of various solutions in a laboratory. Corrosion products on weathering steel were characterized by X-ray diffractometry and Mössbauer spectrometry at room and low temperatures. Fine α-FeOOH, γ-FeOOH and γ-Fe 2 O 3 are fundamentally formed in various atmospheric conditions. β-FeOOH is additionally formed under the existence of chloride ions, but not formed when sulfate ions are coexisting. Spraying a NaF solution prevents the progress of corrosion.

  9. Mössbauer and XRD analysis of corrosion products on weathering steel treated by wet-dry cycles using various solutions

    Energy Technology Data Exchange (ETDEWEB)

    Oyabu, Matashige; Nomura, Kiyoshi, E-mail: dqf10204@nifty.com [Kanazawa Institute of Technology (Japan); Koike, Yuya [Meiji University, Department of Applied Chemistry (Japan); Okazawa, Atsushi [The University of Tokyo, School of Arts and Sciences (Japan)

    2016-12-15

    Weathering steels (COR-TEN) were corroded by wet-dry cycles using a splay of various solutions in a laboratory. Corrosion products on weathering steel were characterized by X-ray diffractometry and Mössbauer spectrometry at room and low temperatures. Fine α-FeOOH, γ-FeOOH and γ-Fe {sub 2}O{sub 3} are fundamentally formed in various atmospheric conditions. β-FeOOH is additionally formed under the existence of chloride ions, but not formed when sulfate ions are coexisting. Spraying a NaF solution prevents the progress of corrosion.

  10. Accumulation of radioactive corrosion products on steel surfaces of VVER type nuclear reactors. I. 110mAg

    Science.gov (United States)

    Hirschberg, Gábor; Baradlai, Pál; Varga, Kálmán; Myburg, Gerrit; Schunk, János; Tilky, Péter; Stoddart, Paul

    Formation, presence and deposition of corrosion product radionuclides (such as 60Co, 51Cr, 54Mn, 59Fe and/or 110mAg) in the primary circuits of water-cooled nuclear reactors (PWRs) throw many obstacles in the way of normal operation. During the course of the work presented in this series, accumulations of such radionuclides have been studied at austenitic stainless steel type 08X18H10T (GOST 5632-61) surfaces (this austenitic stainless steel corresponds to AISI 321). Comparative experiments have been performed on magnetite-covered carbon steel (both materials are frequently used in some Soviet VVER type PWRs). For these laboratory-scale investigations a combination of the in situ radiotracer `thin gap' method and voltammetry is considered to be a powerful tool due to its high sensitivity towards the detection of the submonolayer coverages of corrosion product radionuclides. An independent technique (XPS) is also used to characterize the depth distribution and chemical state of various contaminants in the passive layer formed on austenitic stainless steel. In the first part of the series the accumulation of 110mAg has been investigated. Potential dependent sorption of Ag + ions (cementation) is found to be the predominant process on austenitic steel, while in the case of magnetite-covered carbon steel the silver species are mainly depleted in the form of Ag 2O. The XPS depth profile of Ag gives an evidence about the embedding of metallic silver into the entire passive layer of the austenitic stainless steel studied.

  11. 7 CFR 2902.44 - Corrosion preventatives.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Corrosion preventatives. 2902.44 Section 2902.44... Items § 2902.44 Corrosion preventatives. (a) Definition. Products designed to prevent the deterioration (corrosion) of metals. (b) Minimum biobased content. The preferred procurement product must have a...

  12. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  14. Study of ferrous corrosion products on iron archaeological objects by electron backscattered diffraction (EBSD)

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, Ilanith; Conforto, Egle; Refait, Philippe; Remazeilles, Celine [FRE 3474 CNRS - Universite de La Rochelle, Laboratoire des Sciences de l' Ingenieur pour l' Environnement, La Rochelle cedex 01 (France)

    2013-02-15

    The corrosion of iron-based archaeomaterials in anoxic environments leads mainly to Fe(II) compounds, like the hydroxychloride {beta}-Fe{sub 2}(OH){sub 3}Cl, chukanovite Fe{sub 2}(OH){sub 2}CO{sub 3} or siderite FeCO{sub 3}. The understanding of the mechanisms then necessarily implies a thorough investigation of the chemical, mechanical and morphological characteristics of the Fe(II)-based layer that develops between the metal surface and the environment. In the peculiar case of Fe(II) compounds, generally very reactive towards O{sub 2}, the main concern is to prevent any transformation by air during the analysis. The EBSD technique is adapted on a scanning electron microscope (SEM) where the samples are analysed under vacuum and consequently sheltered from air. Different options offered by EBSD for phase characterisation and microstructural study were tested for the first time on the rust layers of two archaeological iron nails. Results were confronted to those obtained by micro-Raman spectroscopy, which was used as reference method. Magnetite, Fe(II) hydroxychloride {beta}-Fe{sub 2}(OH){sub 3}Cl and siderite were analysed successfully but improvements have to be brought for the study of other compounds such as iron oxyhydroxides and chukanovite. The choice of experimental parameters in our approach as well as the potentialities and limits of the technique for this kind of application are discussed. (orig.)

  15. Study of ferrous corrosion products on iron archaeological objects by electron backscattered diffraction (EBSD)

    Science.gov (United States)

    Azoulay, Ilanith; Conforto, Egle; Refait, Philippe; Rémazeilles, Céline

    2013-02-01

    The corrosion of iron-based archaeomaterials in anoxic environments leads mainly to Fe(II) compounds, like the hydroxychloride β-Fe2(OH)3Cl, chukanovite Fe2(OH)2CO3 or siderite FeCO3. The understanding of the mechanisms then necessarily implies a thorough investigation of the chemical, mechanical and morphological characteristics of the Fe(II)-based layer that develops between the metal surface and the environment. In the peculiar case of Fe(II) compounds, generally very reactive towards O2, the main concern is to prevent any transformation by air during the analysis. The EBSD technique is adapted on a scanning electron microscope (SEM) where the samples are analysed under vacuum and consequently sheltered from air. Different options offered by EBSD for phase characterisation and microstructural study were tested for the first time on the rust layers of two archaeological iron nails. Results were confronted to those obtained by micro-Raman spectroscopy, which was used as reference method. Magnetite, Fe(II) hydroxychloride β-Fe2(OH)3Cl and siderite were analysed successfully but improvements have to be brought for the study of other compounds such as iron oxyhydroxides and chukanovite. The choice of experimental parameters in our approach as well as the potentialities and limits of the technique for this kind of application are discussed.

  16. Corrosion protection

    Science.gov (United States)

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  17. Numerical simulation of the detection of crack in reinforced concrete structures of NPP due to expansion of reinforcing corrosive products using Impact-Echo method

    Directory of Open Access Journals (Sweden)

    Morávka Š.

    2008-12-01

    Full Text Available Nuclear energy boom is starting nowadays. But also current nuclear power plants (NPP are duty to certify their security for regular renewal of their operating licenses. NPP security can be significantly affected by defects of large amount of ageing reinforced concrete structures. Advanced Impact-Echo method seams to be very hopeful to cooperate at performing in-service inspections such structures. Just these in-service inspections are included in the first priority group of specific technical issues according to the recommendations of OECD-Nuclear Energy Agency, Commission on Safety of Nuclear Installation in the field of ageing management.This paper continues of extensive project dealing with Impact-Echo method application. It will present method description and main results of numerical modeling of detection and localization of crack caused by corrosive product expansion. Steel reinforcing rods are subjected to corrosion due to diffusion of corrosive agents from structure surface. Corrosive products have up to 7-times larger volume than pure steel. Raised strain can cad lead up to concrete failure and crack development. We investigate whether it is possible to detect these growing cracks by Impact-Echo method in time.Experimental verification of our numerical predictions is prepared on Civil Faculty in Brno.

  18. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles: Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  19. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles: Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle comp

  20. Solutions of corrosion Problems in advanced Technologies

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Austenitic and ferritic steels were exposed in the superheater area of a straw-fired CHP plant. The specimens were exposed for 1400 hours at 450-600°C. The rate of corrosion was assessed based on unattacked metal remaining. The corrosion products and course of corrosion for the various steel types...... were investigated using light optical and scanning electron microscopy. The ferritic steels suffered from corrosion mainly via material loss. The austenitic steels suffered from predominantly selective corrosion resulting in chromium depletion from the alloy. A clear trend was observed that selective...... corrosion increased with increasing chromium content of the alloy....

  1. Corrosion Engineering.

    Science.gov (United States)

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  2. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  3. The effect of nickel as a nickel chromium restoration corrosion product on gingival fibroblast through analysis of BCl-2

    Directory of Open Access Journals (Sweden)

    FX Ady Soesetijo

    2012-12-01

    Full Text Available Background: Restoration of NiCr may undergo corrosion process in artificial saliva. Corrosion product is soluble Ni substances in salivary electrolytes. Ni2+ may freely enter the cells through passive transport DMT-1. Ni2+ in the cell causes initiation of the ROS formation,which subsequently can conduct the redoxs reactions leading to DNA damage. The damage DNA affects the genetic expression, especially bcl-2, and even triggers apoptosis. Purpose: The aim of this study was to reveal the mechanism of Ni toxicity as a corrosion product of NiCr restoration on gingival fibroblasts through expression analysis of Bcl-2. Methods: Cells with a density of 105 planted on each coverslip in 72 wells to the treatment group and 24 wells to the control group (24 hours incubation. In the treatment groups, each well exposed with 20 μL artificial saliva containing Ni concentration results immerse each restoration, whereas the control group was exposed to 20 μL artificial saliva (incubation 1, 3, and 7 days. The data collected were subsequently analyzed using two-ways ANOVA, followed by one-way ANOVA. Comparing between experimental groups after one-way ANOVA was conducted using Fisher’s LSD. Whereas, the calculation and documentation of Bcl-2 expression was performed camera of Olympus Microscope BX-50 Japan. Results: Statistical analysis of two-ways ANOVA showed the presence of interaction between the increasing Ni concentration and exposure duration on the expression of Bcl-2 gingival fibroblasts (p=0.021

  4. Positive aspects issued from bio corrosion studies: from hydrogen production to biofuel cells; Des aspects positifs issus des recherches en biocorrosion: de la production d'hydrogene aux biopiles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Silva Munoz, L. de

    2007-12-15

    Microbially influenced corrosion or bio corrosion is a problem that generates heavy global economic losses (several billion euros per year). In spite of the progress made on the understanding of the underlying mechanisms, the complexity of the phenomenon has prevented finding definitive solutions to the problem and continues to inspire many research works. The participation in bio corrosion of catalytic mechanisms induced by weak acids was studied in this work. Another objective of the thesis has been to take advantage from catalytic phenomena found in bio corrosion research to apply them in other areas: energy production with biofuel cells or electrochemical hydrogen production in mild conditions. This work has shown that the presence of weak acids and amino acids inside bio-films could play a major role in steel bio corrosion accelerating the phenomenon through the catalysis of the water reduction reaction. The reversibility of this mechanism, discerned and proved here, could explain the corrosion increase when hydrogen is removed (bacterial consumption, agitation...). In addition, phosphates allow the production of hydrogen by electrolysis in mild pH conditions (pH 4.0 - 8.0) with an equal or better performance than those found in alkaline electrolysis. Finally, industrial materials like stainless steel and titanium could be used in the fabrication of enzymatic electrodes for biosensors or microsystems. The use of the glucose oxidase/glucose system in an aqueous fuel cell with a stainless steel cathode, allows the improvement of the cell performance thanks to the production of hydrogen peroxide that is easily reduced. Moreover, the use of materials with micro-structured surfaces like sandblasted steels deserve to be studied in detail to exploit the remarkable reactivity they present compared to smooth electrodes. (author)

  5. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  6. Effect of amalgam corrosion products in non-discolored dentin on the bond strength of replaced composite resin

    Directory of Open Access Journals (Sweden)

    Marjaneh Ghavamnasiri

    2015-01-01

    Full Text Available Objectives: To evaluate the effect of amalgam corrosion products in non-discolored dentin on the bond strength of replaced composite resin. Materials and Methods: One hundred and sixty-one Class I cavities were prepared on extracted premolars and divided into seven groups. Group 1: Light-cured composite; Groups 2, 3, and 4: Amalgam stored in 37°C normal saline for respectively 1, 3, and 6 months and then replaced with composite leaving the cavity walls intact. Groups 5, 6, and 7: Identical to Groups 2, 3, and 4, except the cavity walls were extended 0.5 mm after amalgam removal. Eighteen specimens from each group were selected for shear bond strength testing, while on remaining five samples, elemental microanalysis was conducted. Data were analyzed using Mann-Whitney and Freidman (α = 0.05. Results: There was a significant difference between Groups 1 and 4 and also between Group 1 and Groups 5, 6, and 7. However, Groups 1, 2, and 3 showed no significant difference regarding bond strength. Bond strengths of Group 4 was significantly less than Groups 2 and 3. However, Groups 5, 6, and 7 showed similar bond strength. There was no difference among all groups in terms of metal elements at any storage times.

  7. Application of CATE 2.0 code on evaluating activated corrosion products in a PWR cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingyu; Li, Lu; Chen, Yixue [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering

    2017-03-15

    In PWR plants, most Occupational Radiation Exposure (ORE) for personnel results from Activated Corrosion Products (ACPs) in the cooling loop. In order to evaluate the ACPs in the cooling loop, a three-region transport model is built up based on the theory of driving force from the concentration difference in CATE 2.0 code. In order to analyze the nuclide composition of ACPs, the EAF-2007 nuclear database is embedded in CATE 2.0. The case of MIT PCCL test loop is simulated to test the availability of CATE 2.0 on PWR ACPs evaluation, and the activity of Co-58 and Co-60 after operation for 42 days calculated by CATE 2.0 is consistent with that from the code CRUDSIM adopted by MIT. Then, the nuclide composition of ACPs is analyzed in detail respectively for operation of 42 days and 12 months using CATE 2.0. The results show that the short-lived nuclides contribute a majority of the activity in the regions of in-flux wall and coolant, while the long-lived nuclides contribute most of the activity in the region of out-flux wall.

  8. Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2).

    Science.gov (United States)

    Xie, Yanjiao; Wang, Yin; Singhal, Vidhi; Giammar, Daniel E

    2010-02-01

    Lead(IV) oxide is a corrosion product that can develop on lead pipes and affect lead concentrations in drinking water. Continuously stirred flow-though reactors were used to quantify the dissolution rates of plattnerite (beta-PbO(2)) at different pH values and dissolved inorganic carbon (DIC) concentrations. Organic pH buffers were not used, because several were found to be reductants for PbO(2) that accelerated its dissolution. Most plattnerite dissolution rates were on the order of 10(-10) mol/min-m(2). The rate of dissolution increased with decreasing pH and with increasing DIC. The effect of DIC is consistent with a reductive dissolution mechanism that involves the reduction of Pb(IV) to Pb(II) at the plattnerite surface followed by the formation of soluble Pb(II)-carbonate complexes that accelerate Pb(II) release from the surface. Under the experimental conditions, dissolved lead concentrations were controlled by the dissolution rate of plattnerite and not by its equilibrium solubility. A dissolution rate model was developed and can be used to predict dissolution rates of plattnerite as a function of pH and DIC.

  9. Combined use of GDOES, SEM+EDS, XRD and OM for the microchemical study of the corrosion products on archaeological bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Ingo, G.M.; Caro, T. de [CNR - Istituto per lo Studio dei Materiali Nanostrutturati, CP 10, 00016, Monterotondo Stazione Roma (Italy); Angelini, E. [Dipartimento Scienza Materiali ed Ingegneria Chimica, Politecnico di Torino, corso Duca degli Abruzzi 24, 1029, Torino (Italy); Bultrini, G. [Dipartimento Scienze Chimiche, Universita di Catania, viale A. Doria 6, 95125, Catania (Italy); Calliari, I. [Dipartimento DIMEG, Universita di Padova, via Marzolo 9, 35131, Padova (Italy)

    2004-07-01

    By means of the combined use of glow discharge optical emission spectrometry (GDOES), scanning electron microscopy+energy dispersive spectrometry (SEM+EDS), X-ray diffraction (XRD) and optical microscopy (OM), corrosion products, i.e., the patina, grown on archaeological leaded bronze artefacts used by Punics and Romans, have been studied. This innovative approach has been utilised in order to gain further insight into the microchemical structure of the corrosion products as well as for selecting the cleaning and restoration methods. For all of the archaeological artefacts, the results show that via the innovative use of GDOES, it is possible to obtain reliable and reproducible quantitative elemental composition depth profiles for the outermost corroded layers, which are briefly discussed in combination with the microchemical features obtained via SEM+EDS, XRD and optical microscopy. Finally, the results show that GDOES, with its ability to provide routine and rapid analysis of layers of thickness up to 120 {mu}m, seems to be a powerful technique in studies of the corrosion products on archaeological bronzes, with the aim of restoring and conserving ancient high tin or low tin leaded bronzes. (orig.)

  10. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    Science.gov (United States)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  11. Effect of gadolinium nitrate concentration on molecular product yield during gamma irradiation and on corrosion of stainless steel

    Science.gov (United States)

    Mal, D.; Puspalata, R.; Rangarajan, S.; Velmurugan, S.

    2017-09-01

    Effect of high concentrations of soluble neutron poison gadolinium nitrate, Gd(NO3)3, in the moderator system of a proposed advanced Indian nuclear reactor, was evaluated from the safety point of view. The radiolytic yields of H2 and H2O2 was expected to be high as moderator water system pH would be lowered and conductivity also would be high by the addition of higher concentration Gd(NO3)3 solutions during various shutdown states. Experiments were carried out to estimate this increase in radiolytic yield of molecular products with the addition of Gd(NO3)3 in the concentration range of 15-400 mg kg-1. Both the H2O2 and H2 yields were found to increase with absorbed dose and also with increasing Gd3+ concentration up to 100 mg kg-1 but the increase were marginal in 100-400 mg kg-1 range. For a given concentration of Gd(NO3)3 solution, radiolysis in high purity D2O showed a lower D2 formation than H2 in light water. In a simulated moderator temperature of 65 °C, a higher yield of H2 was observed. The headspace provided above the liquid phase in irradiation zone had shown to have a substantial effect on the generation of H2. With decreasing headspace, H2 generation increased and went through a maximum. Considering the expected long operational life ( 100 years) for the proposed reactor, the corrosion rate of the structural materials (stainless steel 304 LN) in contact with this high concentration Gd(NO3)3 solution was also estimated at 65 °C which showed a negligible effect.

  12. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  13. CORROSION IN AIRFRAMES

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  14. Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data

    Science.gov (United States)

    Nave, Maryana I.; Kornev, Konstantin G.

    2017-03-01

    Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.

  15. Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data

    Science.gov (United States)

    Nave, Maryana I.; Kornev, Konstantin G.

    2016-12-01

    Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.

  16. High Temperature Corrosion on Biodust Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi

    The high content of alkali metals and chlorine in biomass gives rise to fouling/slagging and corrosion of heat exchange components, such as superheaters, in biomass fired power plants. Increasing the lifetime of these components, and in addition, preventing unwarranted plant shutdowns due...... to their failure, requires understanding of the complex corrosion mechanisms, as well as development of materials that are resistant to corrosion under biomass firing conditions, thereby motivating the current work. To understand the mechanisms of corrosion attack, comprehensive analysis of corrosion products...... was necessary. In the present work, two complementary methodologies based on analysis of cross sections and plan views were applied to achieve comprehensive characterization of corrosion products. The suitability of these methods for both laboratory scale and full scale corrosion investigations was demonstrated...

  17. Atmospheric corrosion sensor based on strain measurement

    Science.gov (United States)

    Kasai, Naoya; Hiroki, Masatoshi; Yamada, Toshirou; Kihira, Hiroshi; Matsuoka, Kazumi; Kuriyama, Yukihisa; Okazaki, Shinji

    2017-01-01

    In this paper, an in situ atmospheric corrosion sensor based on strain measurement is discussed. The theoretical background for measuring the reduction in thickness of low carbon steel is also presented. Based on the theoretical considerations, a test piece and apparatus for an atmospheric corrosion sensor were designed. Furthermore, in a dry–wet cyclic accelerated exposure experiment, the measured strain indicated thinning of the test piece, although the corrosion product generated on the surface of the test piece affected the results. The atmospheric corrosion sensor would be effective for evaluating atmospheric corrosion of many types of infrastructure.

  18. Fatigue and corrosion fatigue behavior of 13Cr and duplex stainless steel and a welded nickel alloy employed in oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, R.M. [Department of Metallurgy Engineering, Federal University of Rio Grande do Sul, Porto Alegre (Brazil); Juca Batista, Ipanema, Porto Alegre, Rio Grande do Sul CEP (Brazil); Mueller, I.L. [Department of Metallurgy Engineering, Federal University of Rio Grande do Sul, Porto Alegre (Brazil); Aneron Correia de Oliveira, Porto Alegre, Rio Grande do Sul (Brazil)

    2009-05-15

    The materials used in off-shore oil and gas production, e.g. in risers, are often exposed to cyclic loads from the water movement because of their contact with seawater. These factors acting together can develop a corrosion fatigue (CF) process. A duplex and a 13% chromium (13Cr) wrought stainless steel (SS) and a welded nickel base alloy Inconel 625 were tested at different cyclic load magnitudes in an eccentric fatigue machine type. The specimens were tested in the presence of a corrosive environment at low loading frequencies (0.3 Hz). The medium used was an aqueous solution with 115.000 ppm of chloride, pH adjusted to 4, and CO{sub 2} bubbling inside the solution during the test. The end of the test was determined in maximum 500.000 cycles (23 days for frequency of 0.3 Hz) if no fracture occurred before. In the 13Cr steel the fissure seems to propagate in a uniform unique path, while in the duplex steel the crack changes the direction when passing from the ferritic to austenitic grains. The propagation speed seems to be different in the ferrite and in the austenitic structures. Among the materials tested the Inconel 625 alloy, even being in the welded condition, showed higher CF strength than the SSs; 13Cr shows better results when compared with the duplex steel, even though the last one would be more corrosion resistant. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. DPC materials and corrosion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  20. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ..., plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or... nonmetallic substances in addition to the metallic coating, in coils (whether or not in successively... other nonmetallic substances in addition to the metallic coating. Excluded from the order are...

  1. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2011-09-06

    ... rectangular shape, either clad, plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based alloys, whether or not corrugated or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in...

  2. 76 FR 15291 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2011-03-21

    ... rectangular shape, either clad, plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based alloys, whether or not corrugated or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in...

  3. 75 FR 13490 - Certain Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Notice of...

    Science.gov (United States)

    2010-03-22

    ... with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers..., varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating....

  4. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2012-03-12

    ... coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers..., varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating....

  5. INTERNAL CORROSION MONITORING IN OFFSHORE PLATFORMS

    Directory of Open Access Journals (Sweden)

    Fernando Benedicto Mainier

    2008-08-01

    Full Text Available Corrosion is one of the main causes of failures in equipment and pipes in off-shore oil production. These failures harm the process, slow the production operational chronogram, and generate high costs of maintenance, beyond generation risks to health and environment. Due to the fact that most of the equipment, tubing and pipes of production platforms are made of steel, in general, carbon steel, the industry of petroleum exploration will always coexist with the corrosive process. The use of a Corrosion Monitoring Plan to diagnostic, to control and to manage the evolution of corrosives process in off-shore oil platforms is the strategy proposed in this work to prevent problems as described above. The Internal Corrosion Monitoring Plan (ICMP, is based on lab analysis of the corrosively of fluids and residues showed periodically in off-shore operational platform; in the corrosion rate determined by the periodic use of test bodies installed inside off-shore oil platforms tubing systems, as mass loss coupons and electric resistance probes; and finally, in periodic operational data collect obtained during the off-shore oil platform systems operation. The ICMP will direct and manage the actions to be taken in case of aggravation of a corrosive process, quickly identifying to the corrosive mechanisms and its localization in the various systems of the platforms. The optimized use of the corrosion inhibitor and other chemical products are one of the main advantages of the ICMP.

  6. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay

    Science.gov (United States)

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1 Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t = 104 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1 Ma are approximately equal to 1 and 3.3 cm thick, respectively. The hyper-alkaline front (pH > 8.5) spreads 2.5 cm into the clay formation after 1 Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1 Ma.

  7. Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay.

    Science.gov (United States)

    Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús

    2017-02-01

    Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t=10(4)years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1Ma are approximately equal to 1 and 3.3cm thick, respectively. The hyper-alkaline front (pH>8.5) spreads 2.5cm into the clay formation after 1Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1Ma.

  8. Corrosion Mechanism of Corrosion-Resistant Steel Developed for Bottom Plate of Cargo Oil Tanks

    Institute of Scientific and Technical Information of China (English)

    Feilong SUN; Xiaogang LI; Fan ZHANG; Xuequn CHENG; Cheng ZHOU; Nianchun WU; Yuqun YIN

    2013-01-01

    A new type of corrosion-resistant steel consisting of ferrite and bainite phases was developed for cargo oil tanks of crude oil tankers.The corrosion rate of this new steel was 0.22 mm/a,which was equivalent to ca.1/5 of the criterion (≤ 1 mm/a) for corrosion-resistant steels.The composition and element distribution of the corrosion products were investigated by micro-Raman spectrometry and energy dispersive spectrometer.The results demonstrated that the corrosion product was composed of α-FeOOH,Fe3O4 and a continuous Cu enrichment layer.This kind of corrosion product was protective to the steel matrix and accounted for the enhancement of the corrosion resistance of the new developed steel.

  9. XPS on corrosion products of ZnCr coated steel: on the reliability of Ar+ ion depth profiling for multi component material analysis

    CERN Document Server

    Steinberger, Roland; Arndt, Martin; Stifter, David

    2013-01-01

    X-ray photoelectron spectroscopy combined with Ar+ ion etching is a powerful concept to identify different chemical states of compounds in depth profiles, important for obtaining information underneath surfaces or at layer interfaces. The possibility of occurring sputter damage is known but insufficiently investigated for corrosion products of Zn-based steel coatings like ZnCr. Hence, in this work reference materials are studied according to stability against ion sputtering. Indeed some investigated compounds reveal a very unstable chemical nature. On the basis of these findings the reliability of depth profiles of real samples can be rated to avoid misinterpretations of observed chemical species.

  10. Co-sputtered amorphous Nb–Ta, Nb–Zr and Ta–Zr coatings for corrosion protection of cyclotron targets for [{sup 18}F] production

    Energy Technology Data Exchange (ETDEWEB)

    Skliarova, Hanna, E-mail: Hanna.Skliarova@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Ferrara, Ferrara (Italy); Azzolini, Oscar, E-mail: Oscar.Azzolini@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); Johnson, Richard R., E-mail: richard.johnson@teambest.com [BEST Cyclotron Systems Inc., 8765 Ash Street Unit 7, Vancouver, BC V6P 6T3 (Canada); Palmieri, Vincenzo, E-mail: Vincenzo.Palmieri@lnl.infn.it [National Institute of Nuclear Physics, Legnaro National Laboratories, Viale dell’Università, 2, 35020 Legnaro, Padua (Italy); University of Padua, Padua (Italy)

    2015-08-05

    Highlights: • Nb–Ta, Nb–Zr and Ta–Zr alloy films were deposited by co-sputtering. • Co-sputtered Nb–Zr and Nb–Ta alloy coatings had crystalline microstructures. • Diffusion barrier efficiency of Nb–Zr and Nb–Ta decreased with the increase of Nb %. • Co-sputtered Ta–Zr films with 30–73 at.% Ta were amorphous. • Sputtered amorphous Ta–Zr films showed superior diffusion barrier efficiency. - Abstract: Protective corrosion resistant coatings serve for decreasing the amount of ionic contaminants from Havar® entrance foils of the targets for [{sup 18}F] production. The corrosion damage of coated entrance foils is caused mainly by the diffusion of highly reactive products of water radiolysis through the protective film toward Havar® substrate. Since amorphous metal alloys (metallic glasses) are well-known to perform a high corrosion resistance, the glass forming ability, microstructure and diffusion barrier efficiency of binary alloys containing chemically inert Nb, Ta, Zr were investigated. Nb–Ta, Nb–Zr and Ta–Zr films of different alloy composition and ∼1.5 μm thickness were co-deposited by magnetron sputtering. Diffusion barrier efficiency tests used reactive aluminum underlayer and protons of acid solution and gallium atoms at elevated temperature as diffusing particles. Though co-sputtered Nb–Ta and Nb–Zr alloy films of different contents were crystalline, Ta–Zr alloy was found to form dense amorphous microstructures in a range of composition with 30–73% atomic Ta. The diffusion barrier efficiency of Nb–Zr and Nb–Ta alloy coatings decreased with increase of Nb content. The diffusion barrier efficiency of sputtered Ta–Zr alloy coatings increased with the transition from nanocrystalline columnar microstructure to amorphous for coatings with 30–73 at.% Ta.

  11. The dual role of microbes in corrosion.

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  12. The dual role of microbes in corrosion

    Science.gov (United States)

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  13. Electrochemical corrosion measurements on noble electrodeposits

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1998-01-01

    Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness.......Novel electrodeposits are compared with hard chrome and electroless Ni-P with respect to production, corrosion resistance and hardness....

  14. Diffusion Coatings as Corrosion Inhibitors

    Science.gov (United States)

    Ivanov, Radoslav; Ignatova-Ivanova, Tsveteslava

    2016-03-01

    Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of B2O3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH4)2.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of B2O3), and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.

  15. Diffusion Coatings as Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Ivanov Radoslav

    2016-03-01

    Full Text Available Corrosion is the cause of irretrievable loss of huge amounts of metals and alloys. The harmful effects of corrosion can be reduced significantly by applying appropriate methods of corrosion protection. One method to protect metals against corrosion is the formation of diffusion coatings on them. High corrosion resistance is typical for the boride diffusion layers. Aluminothermy is one of the main methods for diffusion saturation of the surface of metal products with various elements, including boron, and under certain conditions with aluminum, too. Samples of steel 45 were put to aluminothermic diffusion saturation with boron in a pressurized steel container at a temperature of 1100K, for 6 hours in powdered aluminothermic mixtures. The content of В2О3 in the starting mixtures decreased from the optimum - 20% to 0%, and the content of Al and the activator - (NH42.4BF3 is constant, respectively 7% and 0.5%. Al2O3 was used as filler. The borided samples were tested for corrosion resistance in 10% HCl for 72 hours. The results show that their corrosion resistance depends on the composition of the starting saturating mixture (mainly on the content of В2О3, and respectively on the composition, structure, thickness and degree of adhesion of the layer to the metal base.

  16. Modelling aqueous corrosion of nuclear waste phosphate glass

    Science.gov (United States)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  17. Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments

    Science.gov (United States)

    Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.

    2012-03-01

    Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.

  18. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil

    Institute of Scientific and Technical Information of China (English)

    Shengrong Wang; Cuiwei Dun; Xiaogang Li; Zhiyong Liunn; Min Zhu; Dawei Zhang

    2015-01-01

    The corrosion behavior of X70 pipeline steel buried in red soil environment has been studied. The surface morphology and elemental distribution were determined by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion kinetics was evaluated by weight loss measurement. The results show that in red soil, the corrosion rate of X70 steel decreases with time, and follows the exponential decay law. General corrosion with non-uniform and localized pitting occurred on the steel surface.α-FeOOH was the dominate products during corrosion in whole buried periods, and the corrosion products exhibited well protective properties. The potentiodynamic polarization tests revealed that icorr decreased with time, indicating the improvement of corrosion resistance. The results of Electrochemical impendence spectroscopy (EIS) are consistent with potentiodynamic polarization tests.

  19. Field corrosion characterization of soil corrosion of X70 pipeline steel in a red clay soil

    Directory of Open Access Journals (Sweden)

    Shengrong Wang

    2015-06-01

    Full Text Available The corrosion behavior of X70 pipeline steel buried in red soil environment has been studied. The surface morphology and elemental distribution were determined by scanning electron microscopy (SEM,energy dispersive X-ray spectroscopy (EDS, and X-ray diffraction (XRD. The corrosion kinetics was evaluated by weight loss measurement. The results show that in red soil, the corrosion rate of X70 steel decreases with time, and follows the exponential decay law. General corrosion with non-uniform and localized pitting occurred on the steel surface. α-FeOOH was the dominate products during corrosion in whole buried periods, and the corrosion products exhibited well protective properties. The potentiodynamic polarization tests revealed that icorr decreased with time, indicating the improvement of corrosion resistance. The results of Electrochemical impendence spectroscopy (EIS are consistent with potentiodynamic polarization tests.

  20. 综合防腐技术在肉制品生产中的应用%Comprehensive Anti-corrosion Technology in Meat Production

    Institute of Scientific and Technical Information of China (English)

    韩磊

    2016-01-01

    With the development of economy, the quality of people's daily life is increasing continuously. Consumer demand for food is also gradually strict, especially for meat quality requirements have become strict. At present, the emergence of comprehensive anti corrosion technology to meat production technology has been improved, but also on the meat of the anti-corrosion ability has been greatly improved. On the perception and freshness of meat products have been largely improved.%随着经济的发展,人们的日常生活质量不断提高,消费者对食品的要求也逐渐严格,特别是对肉制品质量要求也变得严格起来。目前,综合防腐技术的出现对肉制品制作技术得到了提高,同时也对肉制品的防腐能力得到了很大的提高。对肉类产品的观感与新鲜度得到了很大程度上的改善。

  1. Report on accelerated corrosion studies.

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  2. Colorimetric visualization of tin corrosion: A method for early stage corrosion detection on printed circuit boards

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    A majority of printed circuit board surfaces are covered with tin, therefore tin corrosion under humid conditions and movement of tin ions under the influence of an electric field plays an important role in the corrosion failure development. Tracking tin corrosion products spread on the printed...... a colorimetric tin ion indicator applied as a gel. The examples provided in this paper include visualization of corrosion caused by weak organic acids found in solder fluxes, corrosion profiling on the PCBAs after climatic device level testing, and failure analysis of field returns....

  3. Screening of soil corrosivity by field testing: Results and design of an electrochemical soil corrosion probe

    DEFF Research Database (Denmark)

    Nielsen, Lars vendelbo; Bruun, Niels Kåre

    1996-01-01

    The corrosivity of different types of soil have been assessed by exposing carbon-steel plates at 50 different locations in Denmark for an extended period of time. The investigations included weight loss measurements and analysis of the chemical compositions of the corrosion products formed...... on the plates during exposure. An electrochemical soil corrosion probe has been designed and manufactured allowing for simultaneous measurements of several qauntities to predict corrosion. The probe consists of individual sections capable of measuring redox-potential, corrosion potential, soil resistivity...

  4. Utilization of on-line corrosion monitoring in the flue gas cleaning system

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Nielsen, Lars V.; Petersen, Michael B.

    2015-01-01

    such as HCl, KCl or chlorine containing corrosion products. Without knowing when corrosion occurs, it is difficult to take reasonable measures to reduce corrosion. In order to gain an improved understanding of the corrosion problem, an on-line corrosion measurement system was established before the booster....... A root cause analysis concluded that corrosion occurred due to corrosion products/deposit formed during operation; however it was unclear whether the majority of corrosion occurred during operation or downtime. In both cases the chlorine content in the flue gas results in the presence of chlorine species...

  5. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  6. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  7. Modeling of Corrosion-induced Concrete Damage

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik

    2013-01-01

    In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non......-uniform formation of corrosion products at the concrete/reinforcement interface, a deterministic approach is used. The model gives good estimates of both deformations in the con-crete/reinforcement interface and crack width when compared to experimental data. Further, it is shown that non-uniform deposition...... of corrosion products affects both the time-to cover cracking and the crack width at the concrete surface....

  8. 水下油气生产系统防腐蚀设计的探讨%Corrosion Control Design of Subsea Production System

    Institute of Scientific and Technical Information of China (English)

    王旭东; 裴海涛; 王培勇; 崔成杨; 鲁振兴; 曹志刚

    2012-01-01

    Subsea production systems can save much construction investment,and are not affected by bad weather and have good reliablity,so thut the system is the key equipment for the deep water oil and gas field development and widely used around the world.Because steels may be corroded severely in sea and subsea production systems and can not be repaired after installation,it is very important to control the corrosion of subsea production systems.The corrosion control specifications of a common offshore project and three typical subsea production systems are analyzed and compared in this paper.%水下油气生产系统可以节省大量建设投资,因受灾害天气影响较小可靠性强,是开采深水油气田的关键设施。海洋环境对钢材腐蚀严重,而且水下油气生产系统投产后无法进行全面维修和维护,因此水下生产系统的防腐蚀非常重要。本文对比分析了普通海洋工程、两个国外水下生产系统和我公司承担的国家科技重大专项子课题的防腐蚀设计,提出了自己的观点。

  9. Degradation of bioabsorbable Mg-based alloys: Assessment of the effects of insoluble corrosion products and joint effects of alloying components on mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Claudia A.; Alvarez, Florencia [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata-CONICET, Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Fernández Lorenzo de Mele, Mónica A., E-mail: mmele@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata-CONICET, Facultad de Ciencias Exactas, Departamento de Química, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 1 esq. 47, 1900 La Plata (Argentina)

    2016-01-01

    This work is focused on the processes occurring at the bioabsorbable metallic biomaterial/cell interfaces that may lead to toxicity. A critical analysis of the results obtained when degradable metal disks (pure Mg and rare earth-containing alloys (ZEK100 alloys)) are in direct contact with cell culture and those obtained with indirect methods such as the use of metal salts and extracts was made. Viability was assessed by Acridine Orange dye, neutral red and clonogenic assays. The effects of concentration of corrosion products and possible joint effects of the binary and ternary combinations of La, Zn and Mg ions, as constituents of ZEK alloys, were evaluated on a mammalian cell culture. In all cases more detrimental effects were found for pure Mg than for the alloys. Experiments with disks showed that gradual alterations in pH and in the amount of corrosion products were better tolerated by cells and resulted in higher viability than abrupt changes. In addition, viability was dependent on the distance from the source of ions. Experiments with extracts showed that the effect of insoluble degradation products was highly detrimental. Indirect tests with Zn ions revealed that harmful effects may be found at concentrations ≥ 150 μM and at ≥ 100 μM in mixtures with Mg. These mixtures lead to more deleterious effects than single ions. Results highlight the need to develop a battery of tests to evaluate the biocompatibility of bioabsorbable biomaterials. - Highlights: • A metal disk setup is better in simulating in vivo situations than extracts and salts. • The biodegradation process and cell metabolism were interdependent. • Zn (100 μM) and Mg (8.2 × 10{sup 3} μM) mixtures are more toxic than single Zn or Mg. • Insoluble degradation products of Mg showed high negative effect on cell viability.

  10. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    Energy Technology Data Exchange (ETDEWEB)

    LaVerne, Jay A.

    2005-06-01

    Experiments in combination with diffusion-kinetic modeling incorporating track structure simulations are used to examine the radiation chemistry of aqueous systems containing chlorinated hydrocarbons. Irradiations with both Co-60 gamma rays and alpha particles are employed in order to simulate typical mixed radiation environments encountered in waste management. The goal is to determine fundamental mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management.

  11. FEM Modelling of the Evolution of Corrosion Cracks in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Corrosion cracks are caused by the increasing volume of corrosion products during the corrosion of the reinforcement. After corrosion initiation the rust products from the corroded reinforcement will initially fill the porous zone near the reinforcement and the result in an expansion of the concr...

  12. Corrosion of oil-fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-05-01

    Depending on the surface temperature of the flue gas side the corrosion of oil fired domestic boilers proceeds either mainly by acid corrosion or by oxygen corrosion: (1) At surface temperatures of 60/sup 0/C and higher the corrosion mechanism of acid corrosion prevails and the corrosion rates amount to 0.1-0.3 mm/year (values referred to continuous burner operation). The corrosion products consist of soluble iron(II)- and iron(III)sulfates. Higher corrosion rates can be attributed to an appreciable catalytic formation of sulfur trioxide on the corrosion products formed on the convective heating surfaces. (2) At surface temperatures of 40/sup 0/C the mechanism of oxygen corrosion already dominates and the corrosion rates are about ten times higher (1.5-3 mm/year, referred to continuous burner operation). The high portion of iron oxide hydrates, especially goethit (/alpha/-FeOOH), makes the corrosion products difficult to remove. (3) Distinctly reduced service lives are also expected for the so called reduced temperature boilers ('Niedertemperaturkessel') and low temperature boilers ('Tieftemperaturkessel'): According to the manufacturers these boilers may be operated at boiler water temperatures well below 60/sup 0/C, as they are equipped with constructive measures to enhance the surface temperature on the flue gas side. However, these measures are only fully effective under stationary conditions. Some of the results were obtained from weight loss measurements on test specimen made from St 35.8 and gray cast iron, that were exposed to the flue gases of an fired experimental boiler. Other important results come from field measurements of the sulfuric acid content of about 30 boilers that are in practical use. (orig.).

  13. Micro-chemical and micro-structural investigation of the corrosion products on `` The Dancing Satyr'' (Mazara del Vallo, Sicily, Italy)

    Science.gov (United States)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Casaletto, M. P.; Guida, G.

    2010-09-01

    The “ Dancing Satyr”, a bronze statue measuring more than 2 metres in height and weighting 108 kg, represents one of the most important recent archaeological finds in Italy. The statue was discovered on the floor of the Sicilian channel (the portion of the Mediterranean sea between Sicily and Tunisia), not far from the south-western Sicilian coast, under 500 metres of seawater in 1998. The bronze statue depicts a nude satyr captured in a frenzied whirling movement during a dance in honour of Dionysus, the God of wine. Though some scholars dated it to the IV century B.C. as an original Praxiteles work or a copy thereof, it could be also dated either back to the Hellenistic period (III or II century B.C.) or possibly to the Roman Empire age (early II century A.D.). The nature and structure of the corrosion products grown on the Dancing Satyr surface and the metallurgical features of the statue were investigated taking into account the nature of the marine environment of provenance. A detailed micro-chemical and micro-structural characterisation was performed by means of the combined use of scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD) and optical microscopy (OM). Results provided good insight into the different corrosion layers and a tentative correlation of the patina nature and the chemical composition of the statue and the marine context is proposed.

  14. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Cave, M.R.; Kemp, S.J.; Taylor, B.H.; Green, K.A.; Williams, C.L.; Shaw, R.A.; Gowing, C.J.B.; Eatherington, N.D. (British Geological Survey (United Kingdom))

    2009-01-15

    present from the original MX-80 bentonite but part of this will also probably be secondary magnetite formed as a corrosion product of the steel. Nevertheless, sequential chemical extraction analyses also suggest that a large proportion of the iron (11-38%) may be present within the silicate/clay mineral lattice. The implication of this would be that there has been significant conversion of the original montmorillonite to an Fe-rich clay mineral within these alteration haloes. Although XRD does not detect very much change in clay mineralogy, and suggests that the smectite in the altered bentonite is dioctahedral, it is likely that the subsampling for XRD analysis was on too coarse a scale to be able to resolve the alteration within these very narrow reaction zones around the corroded wires. The alteration observed around the corroded steel wires in experiments NFC4, NFC7 and NFC13 is more complex than that in NFC1 or earlier experiments studied in Phase 1 or previously by Smart et al. 2006. The reacted bentonite from these experiments exhibited the formation of a Mg-Fe-rich clay mineral or aluminosilicate alteration product. This was formed within the Fe-enriched alteration halo but appears to have formed relatively early and was subsequently partially overprinted or replaced by more Fe-rich aluminosilicate. EDXA microchemical mapping did suggest some slight Mg enhancement in the reacted bentonite from NFC1 but no discrete Mg-rich phase was detected. Whilst Mg may potentially have been derived from the 'Allard' reference water used in experiment NFC4, in the case of NFC7 and NFC13 it could only have been derived from the breakdown of the bentonite itself since the porefluid only contained NaCl in these two experiments. XRD observations indicated a slight increase in d002/d003 peak ratio, which could possibly be accounted for by a small amount of substitution of Fe into the octahedral layers of the smectite. This is not supported by exchangeable cation analyses

  15. Aircraft Corrosion

    Science.gov (United States)

    1981-08-01

    allowed to dry. The area is then checked for the golden brown color which is produced by the chemical conversion material. If the work area requires...Materials, pp. 258-3074 1968. 41. W. IH. Ailor, "Seven-year exposure at Point leyes , California," "Corrosion in Natural Environments, ASTM STP 558," American... Color Units 3 Turbidity Units 0.7 pH Units 7.6 Temperature OF 76 Sp. Conductivity MMhos 425 B.O.D. (5 days at 206C) 0.2 SjV i;~-- 1201 A .9 8 ~ 8 kl

  16. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  17. Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Li, Ping; Bai, Xiaolei; Misra, R. D. K.

    2017-02-01

    Immersion experiments were carried out to study H2S/CO2 corrosion behavior of low-alloy pipeline steel in terms of microstructure, corrosion kinetics, corrosion phases, microscopic surface morphology, cross-sectional morphology and elemental distribution. The experimental results indicated that the microstructure of designed steel was tempered martensite. The corrosion rate followed exponential behavior. H2S corrosion dominated the corrosion process, and the corrosion products were mackinawite, greigite and troilite. The corrosion products changed from mackinawite/greigite to mackinawite/troilite, and mackinawite dominated the corrosion phases. The corrosion products became more compact with immersion time, which led to decrease in corrosion rate. The chromium and molybdenum content in the corrosion product was higher than that in the steel substrate.

  18. Corrosion Behavior of Low-Alloy Pipeline Steel Exposed to H2S/CO2-Saturated Saline Solution

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Li, Ping; Bai, Xiaolei; Misra, R. D. K.

    2017-03-01

    Immersion experiments were carried out to study H2S/CO2 corrosion behavior of low-alloy pipeline steel in terms of microstructure, corrosion kinetics, corrosion phases, microscopic surface morphology, cross-sectional morphology and elemental distribution. The experimental results indicated that the microstructure of designed steel was tempered martensite. The corrosion rate followed exponential behavior. H2S corrosion dominated the corrosion process, and the corrosion products were mackinawite, greigite and troilite. The corrosion products changed from mackinawite/greigite to mackinawite/troilite, and mackinawite dominated the corrosion phases. The corrosion products became more compact with immersion time, which led to decrease in corrosion rate. The chromium and molybdenum content in the corrosion product was higher than that in the steel substrate.

  19. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...

  20. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO2 aqueous environment

    Science.gov (United States)

    Liu, Wei; Lu, Songle; Zhang, Peng; Dou, Juanjuan; Zhao, Qinghe

    2016-08-01

    Corrosion behavior of 3Cr steel in CO2 aqueous environment containing silty sand was investigated by immersion test. The results show that CO2 corrosion rate and morphology of 3Cr steel were obviously affected by the size of silty sand. 5000 mesh silty sand mixed with corrosion products, forming compact Cr-rich corrosion scale and resulting in low corrosion rate and uniform corrosion. 1000 mesh silty sand mixed with corrosion products, forming porous corrosion scale without Cr enrichment and resulting in high corrosion rate and pitting corrosion. 5000 mesh silty sand enhanced Cr enrichment in corrosion scale, leading to low anodic current. However, 1000 mesh silty sand deteriorated Cr enrichment in corrosion scale, leading to high anodic current. Cathodic current was reduced by silty sand, but was not affected by two sizes of silty sand. Cr enrichment in corrosion scale of 3Cr steel was obviously affected by separation effect of silty sand.

  1. Disposal of bituminized and other low- and medium-level wastes: Waste characterization and the retention of migrating radionuclides by steel corrosion products

    Science.gov (United States)

    Biegalski, Kendra Mylene Foltz

    1998-09-01

    The validity of using scaling factors with the reference nuclide, sp{137}Cs, for activity determinations of sp{238}Pu, sp{239,\\ 240}Pu, and sp{241}Am in low- and medium-level bituminized and unconditioned evaporator concentrates (ECs) produced at Riso National Laboratory (RNL), Denmark was investigated. The presence of constant activity ratios between sp{137}Cs and the Pu isotopes above was predicted because a large part of this waste stream originated from research on irradiated light water reactor fuel. Activity ratios were measured in different waste samples by comparison of gamma-measurements to results from destructive analyses using alpha-spectrometry. Results were verified using activity ratios of spent low-enriched fuel from the literature. Continuation studies on the mechanisms influencing releases from bituminized low- and medium-level wastes were performed by leach tests on samples of various compositions and exposed to diverse environments. Four compositions of bituminized materials were studied including (1) bitumen with NaNOsb3 and BaSOsb4, (2) bitumen with NaNOsb3, BaSOsb4, and Nisb2Fe(CN)sb6, (3) bitumen with NaNOsb3, BaSOsb4, Nisb2Fe(CN)sb6, and K-soap, and (4) bituminized RNL ECs. Leachant solutions used included (1) filtered deionized water, (2) 0.001-N KOH, (3) 0.01-N KOH, and (4) 0.001-N Ca(OH)sb2. One trial was exposed to high-humidity air while two others had a cement disk suspended in the leachant. Some of the resulting data was used for the on-going validation of the SWL (Swelling, Water uptake, and Leaching) code created at RNL. To improve the accuracy of projected releases from radioactive waste disposal systems, the sorption characteristics of steel corrosion products were investigated with a special emphasis on competitive sorption between Sr and Na. The corrosion rate of steel exposed to various environments was studied qualitatively and, with some systems, quantitatively. Traditional and non-traditional adsorption

  2. Polymer concrete composites for the production of high strength pipe and linings in high temperature corrosive environments

    Science.gov (United States)

    Zeldin, A.; Carciello, N.; Fontana, J.; Kukacka, L.

    High temperature corrosive resistant, non-aqueous polymer concrete composites are described. They comprise about 12 to 20% by weight of a water-insoluble polymer binder polymerized in situ from a liquid monomer mixture consisting essentially of about 40 to 70% by weight of styrene, about 25 to 45% by weight acrylonitrile and about 2.5 to 7.5% by weight acrylamide or methacrylamide and about 1 to 10% by weight of a crosslinking agent. This agent is selected from the group consisting of trimethylolpropane trimethacrylate and divinyl benzene; and about 80 to 88% by weight of an inert inorganic filler system containing silica sand and portland cement, and optionally Fe/sub 2/O/sub 3/ or carbon black or mica. A free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other organic peroxides and combinations thereof to initiate crosspolymerization of the monomer mixture in the presence of said inorganic filler.

  3. The Morphology, Phase Composition and Effect of Corrosion Product on Simulated Archaeological Iron%仿古铸铁腐蚀产物的形貌、结构的演化历程及其危害性研究

    Institute of Scientific and Technical Information of China (English)

    王紫色; 许淳淳; 曹霞; 徐奔

    2007-01-01

    The immersion corrosion of archaeological iron in solution (0.06mol·L-1 NaCl+0.03mol·L-1 Na2SO4+ 0.01mol·L-1 NaHCO3) simulating soil water composition was presented.The evolution of archaeological iron from iron to iron oxide and to iron oxy-hydroxides compounds was investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis.According to the morphology, phase composition, and transformation process, the contributions of each corrosion product to archaeological iron were discussed.

  4. Failure of a MEA reclaimer tube bundle due to corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, H.; Abdo, M.S.E.; Lal, D.P.

    1988-08-01

    The removal of sulphur compounds from natural gas used in ammonia production is carried out by scrubbing with monoethanol amine (MEA). To avoid build up of corrosion and degradation products, a portion of the circulating MEA solution is passed through a reclaimer. This is essentially a kettle-type reboiler with a tube bundle made of 316L stainless steel. Occasional failures of the tube bundle due to pitting corrosion have been reported. It is suggested that the excessive pitting corrosion observed on the upper rows of the tube bundle could be partly due to high steam temperature but mainly due to the liquid level falling below the tubes leaving an accumulation of corrosive degradation products on the exposed surfaces, normally these corrosive products remain diluted in the MEA solution and cause little corrosion of the covered tubes. Their concentration on the dry upper layers of the hot metal tubes, however, leads to excessive corrosion. (U.K.).

  5. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...

  6. Assessment of the corrosiveness of cellulosic insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Weil, R.; Graviano, A.

    1979-06-01

    A discussion of the information which is available about the corrosiveness of cellulose and other related properties is presented. A survey of the literature dealing with the corrosiveness of wood products other than cellulose and of the corrosiveness in other media by fire-retardant chemicals generally used with cellulosic insulation is included. The types of corrosion which could be caused by cellulosic insulation are briefly discussed.

  7. Corrosion Evolution of Reinforcing Steel in Concrete under Dry/Wet Cyclic Conditions Contaminated with Chloride

    Institute of Scientific and Technical Information of China (English)

    J. Wei; X.X. Fu; J.H. Dong; W. Ke

    2012-01-01

    The corrosion evolution of rebar in concrete was monitored by electrochemical impedance spectroscopy (EIS) under dry/wet alternated accelerated corrosion test. Four stages with different dynamic characteristics were observed during the corrosion evolution. They were passive stage, local corrosion controlled by the charge transfer step, accelerated corrosion controlled by the mass transfer step, and constant rate corrosion controlled by the mass transfer step through a barrier layer. X-ray diffraction (XRD) analysis showed that the corrosion product of rebar in mortar was composed of α-FeOOH, γ-FeOOH and Fe304. The corrosion mechanisms of all four stages were discussed and the corrosion reactions were proposed according to the corrosion product and corrosion evolution characteristics.

  8. Semiquantitative analysis of corrosion products in iron channel by the X-ray diffraction technique; Analise semi quantitativa de produtos de corrosao em canal de corrida por difracao de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, C.R.E.; Varela, J.A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Olivi, P.; Paskocimas, C.; Longo, E. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Silva, S.N.; Marques, O.R. [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil)

    1995-12-31

    The corrosion in the us very important in the slag line region, but in others regions over and above this line there is a corrosion process still important. We have made a detailed mapping of phases present in seven different regions in the iron channel in three distinct positions. After the phases identifications, it was made a deconvolution of the diffractograms using Gaussian functions. The analysis of the relative intensity of each phase gave an idea for a semi-quantitative analysis and we have proposed a mechanism of the refractory corrosion. It was observed that the calcium oxide migrates by diffusion to different regions originating low melting point products like pseudo-wolastonite, anorthite and guelenite. (author) 2 figs.

  9. Corrosion behavior of corrosion resistant alloys in stimulation acids

    Energy Technology Data Exchange (ETDEWEB)

    Cheldi, Tiziana [ENI E and P Division, 20097 San Donato Milanese Milano (Italy); Piccolo, Eugenio Lo; Scoppio, Lucrezia [Centro Sviluppo Materiali, via Castel Romano 100, 00128 Rome (Italy)

    2004-07-01

    In the oil and gas industry, selection of CRAs for downhole tubulars is generally based on resistance to corrosive species in the production environment containing CO{sub 2}, H{sub 2}S, chloride and in some case elemental sulphur. However, there are non-production environments to which these materials must also be resistant for either short term or prolonged duration; these environments include stimulation acids, brine and completion fluids. This paper reports the main results of a laboratory study performed to evaluate the corrosion and stress corrosion behaviour to the acidizing treatments of the most used CRAs for production tubing and casing. Laboratory tests were performed to simulate both 'active' and 'spent' acids operative phases, selecting various environmental conditions. The selected steel pipes were a low alloyed steel, martensitic, super-martensitic, duplex 22 Cr, superduplex 25 Cr and super-austenitic stainless steels (25 Cr 35 Ni). Results obtained in the 'active' acid environments over the temperature range of 100-140 deg. C, showed that the blend acids with HCl at high concentration and HCl + HF represented too much severe conditions, where preventing high general corrosion and heavy localised corrosion by inhibition package becomes very difficult, especially for duplex steel pipe, where, in some case, the specimens were completely dissolved into the solution. On the contrary, all steels pipes were successfully protected by inhibitor when organic acid solution (HCOOH + CH{sub 3}COOH) were used. Furthermore, different effectiveness on corrosion protection was showed by the tested inhibitors packages: e.g. in the 90% HCl at 12% + 10 CH{sub 3}COOH acid blend. In 'spent' acid environments, all steel pipes showed to be less susceptible to the localised and general corrosion attack. Moreover, no Sulphide Stress Corrosion Cracking (SSC) was observed. Only one super-austenitic stainless steel U-bend specimen showed

  10. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Saman Hosseinpour

    2017-04-01

    Full Text Available Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  11. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Science.gov (United States)

    Hosseinpour, Saman; Johnson, Magnus

    2017-01-01

    Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm. PMID:28772781

  12. Corrosion of Steel in Concrete – Thermodynamical Aspects

    DEFF Research Database (Denmark)

    Küter, Andre; Møller, Per; Geiker, Mette Rica

    2004-01-01

    The present understanding of selected corrosion phenomena in reinforced concrete is reviewed. Special emphasis is given to chloride induced corrosion. There is a general acceptance of the basic corrosion mechanism for steel in concrete. However different anodic reactions governing the subsequent...... formation and composition of corrosion products have been proposed. Suggested reactions, except half-cell reactions, are verified or rejected based on their Gibbs free energy, while the electrode potential is calculated for half-cell reactions. Corrosion products postulated to form are related...

  13. Corrosion-Resistant High-Entropy Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Yunzhu Shi

    2017-02-01

    Full Text Available Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.

  14. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  15. Electrochemical corrosion of metallic biomaterials.

    Science.gov (United States)

    Pourbaix, M

    1984-05-01

    Methods of electrochemical thermodynamics (electrode potential-pH equilibrium diagrams) and electrochemical kinetics (polarization curves) may help to understand and predict the corrosion behaviour of metals and alloys in the presence of body fluids. A short review of the literature is given concerning some applications of such methods, both in vitro and in vivo, relating to surgical implants (stainless steels, chromium-cobalt-molybdenum alloys, titanium and titanium alloys) and to dental alloys (silver-tin-copper amalgams, silver-base and gold-base casting alloys, nickel-base casting alloys). Attention is drawn to the necessity of more basic research on crevice- and fretting-corrosion of surgical implant materials and dental alloys, and to the toxicity of corrosion products. A perfect understanding of the exact significance of electrode-potentials is essential for the success of such a task.

  16. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  17. Mineralogical investigations of the interaction between iron corrosion products and bentonite from the NF-PRO Experiments (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Cave, M.R.; Kemp, S.J.; Taylor, B.H.; Vickers, B.P.; Green, K.A.; Williams, C.L.; Shaw, R.A. (British Geological Survey (United Kingdom))

    2009-01-15

    This report summarises the findings of a programme of work under taken by the British Geological Survey (BGS) on behalf of SKB, to characterise the mineralogical alteration of compacted bentonite from experiments designed to study the interaction between iron corrosion and bentonite. The experiments were undertaken by Serco Assurance (Culham Laboratory, Oxfordshire, United Kingdom), and were co-funded by SKB within the EU Framework 6 NF-PRO Project. Reacted bentonite residues from three NF-PRO Experiments - NFC12, NFC16 and NFC17 were examined by BGS using; X-ray diffraction analysis (XRD); petrographical analysis with backscattered scanning electron microscopy (BSEM) and energy-dispersive X-ray microanalysis (EDXA) techniques, cation exchange capacity (CEC) and exchangeable cation analysis; and sequential chemical extraction. Bentonite immediately adjacent to corroding steel was found to have interacted with Fe released from the corroding metal. This resulted in the formation of narrow haloes of altered bentonite around the corroding steel wires, in which the clay matrix was significantly enriched in Fe. Detailed petrographical observation found no evidence for the formation of discrete iron oxide or iron oxyhydroxide phases within the clay matrix but appeared to show that the clay particles themselves had become enriched in Fe. XRD observations indicated a slight increase in d002/d003 peak ratio, which could possibly be accounted for by a small amount of substitution of Fe into the octahedral layers of the montmorillonite. If correct, then this alteration might represent the early stages of conversion of the dioctahedral montmorillonite to an iron-rich dioctahedral smectite such as nontronite. Alternatively, the same effect may have been produced as a result of the displacement of exchangeable interlayer cations by Fe and subsequent conversion to form additional Fe-rich octahedral layers. In either case, the XRD results are consistent with the petrographical

  18. The Numerical Analysis and Experiment Research of the Effect of Corrosion Product to Defects of Magnetic Leakage Field%腐蚀产物对漏磁场影响的数值分析与实验研究

    Institute of Scientific and Technical Information of China (English)

    苗长青

    2012-01-01

    漏磁检测方法由于其简便、快捷、结果准确等特点,在现在无损检测领域得到越来越广泛的应用.但是在现场检测过程中,由于提离值波动、铁磁性杂物等影响,使得漏磁检测量化结果会产生误差,甚至会产生误判.这对检测结果的准确性有很大的影响.本文研究了缺陷腐蚀产物与漏磁场之间的关系,利用有限元方法建立直径、深度相同腐蚀产物厚度不同的漏磁检测模型,通过计算得到不同腐蚀产物厚度模型漏磁场分布,对比分析结果表明:无腐蚀产物缺陷的漏磁场最明显,随着腐蚀产物厚度的增加,缺陷漏磁场变得越不明显.在实验室条件下进行了腐蚀产物影响实验,实验结果与有限元数值分析结果一致.%For magnetic flux leakage detection method is simple, quick and accurate and other characteristics, now it gets more and more widely used in nondestructive testing field. But in the field detection process, because the " lift-off" value fluctuation, magnetic sundry etc effects, resulting in magnetic flux leakage testing quantitative results will produce error, and even produce a miscalculation. This to the results of detection accuracy has very big effect. The relationship is studied between the corrosion products and the leakage magnetic field. The finite element method is used to establish the same depth and diameter, different thickness of the corrosion products of magnetic flux leakage testing model, through the calculation get different thickness of corrosion product leakage magnetic field distribution model, The results show that, no corrosion product defect has the most obvious of magnetic leakage field, with the increasing of the thickness of corrosion products, the defects of magnetic leakage field not become more and more not obvious. In the laboratory conditions, the corrosion-product-impact experiment is done, the experimental results and the finite element numerical analysis results

  19. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...... is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...

  20. Comparison of corrosion behavior of ZL104 alloy at as-cast and heat treatment states

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The corrosion behavior of ZL 104 alloy at different states (as-cast and heat treatment) in salt spray corrosion (SSC) was studied. The results show that the sample treated after refinement and modification has the least corrosive resistance compared with the sample bearing as-cast structure at the beginning of the corrosion. As the corrosion process continued, however, the trend reversed itself. After 44 h continuous corrosion, the corrosive rates of all samples tend to be stable. After experiments, the sample bearing as-cast structure had the most corrosive products on the surface whereas the sample being refined and modified had the least products. The Fourier transformation infrared spectroscopy (FTIR)analyses of the corrosion products show that these products are composed of hydroxyl-containing substances.

  1. Challenges and Threat of Creep Corrosion to Cloud Computing and Electronic Products%电路板爬行腐蚀对云算及电子产品的挑战与威胁

    Institute of Scientific and Technical Information of China (English)

    陈星慈

    2013-01-01

    PCB Creep Corrosion is the common factor to cause electronic product failed. Creep corrosion usually occurs in terminal system, circuit board, connector and assembly, mainly because they are exposed to the humid environment containing high sulfide relatively. Circuit board creep corrosion phenomenon is caused by common factors of electronic products failure. Focus on the circuit board of non-solder mask design, discuss the corrosion phenomenon of three kinds of surface treatment ( ImAg, Post-Treatment ImAg, HT OSP ) after accelerated test of corrosion of four kinds of mixed gas (H2S, SO2, NO2 and Cl2).%  电路板爬行腐蚀的现象是造成电子产品失效的常见因素。爬行腐蚀通常可发生在系统端、电路板以及连接器和组件上,主要是因为电子产品暴露在含有高硫化物的相对潮湿的环境中。将主要针对非阻焊设计的电路板,探讨三种不同表面处理(ImAg沉银、Post-Treatment ImAg抗氧沉银和HT OSP高温型有机保焊膜)经过四种混和气体(H2S、SO2、NO2和Cl2)腐蚀的加速试验后,所形成的爬行腐蚀现象。

  2. Research on a new type of fiber Bragg grating based corrosion sensor

    Science.gov (United States)

    Li, Peng; Song, Shide; Wang, Xiaona; Zhou, Weijie; Zhang, Zuocai

    2015-08-01

    Investigations of the corrosion of rebars in concrete structures are widely studied because of the serious damage to concrete caused by rebar corrosion. The rebar corrosion products in reinforced concrete take up 2~6 times the volume of the rebar. Based on this principle, a new type of fiber Bragg grating (FBG) corrosion sensor is proposed in this paper, which consists of two sensors, an FBG corrosion measurement sensor to measure the expansion strain caused by rebar corrosion, and a temperature compensation sensor to eliminate the cross-sensitivity of FBG corrosion sensor. The corrosion rate is derived by the wavelength shift of FBG corrosion sensor, so rebar corrosion can be monitored and assessed by the FBG wavelength shift. A customized rebar with epoxy fixing groove is designed to install a corrosion sensor on its surface and an embedded temperature compensation sensor. The corrosion sensor is embedded in cement mortar and subsequently casted in concrete. The performance of the corrosion sensor is studied in an accelerated electrochemical corrosion test. Experimental results show that the new type of corrosion sensor has advantage of relatively large measurement range of corrosion rate. The corrosion sensor is suitable to monitor slightly and moderately corroded rebars.

  3. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  4. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  5. Corrosion performance of structural alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  6. Corrosion inhibitors; Los inhibidores de corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, L. A.; Meas, Y.; Ortega-Borges, R.; Corona, A.

    2003-07-01

    In this paper, we briefly describe the characteristics, cost and electrochemical nature of the corrosion phenomena as well as some of the technologies that are currently employed to minimize its effect. The main subject of the paper however, deals with the description, classification and mechanism of protection of the so-called corrosion inhibitors. Examples of the use of these substances in different aggressive environments are also presented as means to show that these compounds, or their combination, can in fact be used as excellent and relatively cheap technologies to control the corrosion of some metals. In the last part of the paper, the most commonly used techniques to evaluate the efficiency and performance of corrosion inhibitors are presented as well as some criteria to make a careful and proper selection of a corrosion inhibitor technology in a given situation. (Author) 151 refs.

  7. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  8. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  9. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...... and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general...

  10. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K; Joseph Murphy, J

    2008-07-18

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding that was induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species used in the construction of the packaging, followed by polyvinyl acetate (PVAc) glue. Fiberboard material, also used in the construction of the packaging induced corrosion to a much lesser extent than the PVAc glue and RTV sealant, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water. In light of these corrosion mechanisms, the lead shielding was sheathed in a stainless steel liner to mitigate against corrosion.

  11. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general......Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...

  12. Microorganisms as potential corrosion inhibitors of metallic materials

    Directory of Open Access Journals (Sweden)

    Tasić Žaklina Z.

    2016-01-01

    Full Text Available Corrosion presents the destruction of materials through chemical or electrochemical interactions with their environment. Interactions between the metal surface and bacterial cells or products of their metabolic activities can lead to microbially-influenced corrosion. Also, it is known that certain microorganisms can contribute to corrosion inhibition. In accordance to that, the literature dealing with the application of different microorganisms as a potentialy corrosion inhibitors of metals is investigated. Different bacterial strains as a corrosion inhibitor of a metalic materials are examined. Further, the role of extracellular polymeric substances in corrosion behavior of metals is emphasized. Based on the data presented in this work, it can be said that inhibition efficiency depends on microorganism as well as type of metal. Also, it is presented that some bacterial species can be used as a good corrosion inhibitor instead of toxic organic compounds.

  13. Corrosion of titanium in phosphoric acid at 250 ℃

    Institute of Scientific and Technical Information of China (English)

    LU Jian-shu

    2009-01-01

    Corrosion studies of a commercially pure titanium in phosphoric acid solutions at 250 ℃ were carried out by immersion test in an autoclave. At lower phosphoric acid concentration (0.1 mol/L), the corrosion was mild. At higher phosphoric concentration (1.0 mol/L) corrosion, a 25 μm-thick white corrosion products layer was formed on the samples after 24 h immersion. XRD analysis shows that the white layer consists mainly of titanium oxide phosphate hydrate (π-Ti2O(PO4)2·2H2O). The corrosion product shows the morphology of fiber bundles. A thermodynamic analysis of the formation of the corrosion product is presented.

  14. EFFECT OF CHLORIDE ON THE ATMOSPHERIC CORROSION OF SIMULATED ARTIFACT IRON IN NO3-BEARING POLLUTANT ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    X. Cao; C.C. Xu

    2006-01-01

    The effect of chloride in nitrogen-bearing pollutant on the atmospheric corrosion of cast iron was investigated by using periodic wet-dry test, electrochemical experiment and surface tension test.Scanning electron microscopy (SEM) with energy disperse atomic X-ray (EDAX) was used to identify the corrosion processes and products. The results of the weight loss measurement showed that the whole corrosion kinetics can be approximately described by: AW=AtB. With the addition of NaC1, B increases. The result presented that Cl- accelerated the corrosion rate obviously during the whole corrosion process. The initial corrosion process was investigated from the viewpoint of surface tension. At the initial corrosion period, the corrosion rate was proportion to the adsorption of anions contained the solutions. And as corrosion went on, the penetration effect of anions and different characteristics of the corrosion products began to dominant the corrosion process, which led to the accelerated effect.

  15. Effect of Ca2+ and Mg2+ on CO2 Corrosion Behavior of Tube Steel

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-xian; LI Jian-ping; HAO Shi-ming; L(U) Xiang-hong; LI He-lin

    2005-01-01

    Effects of Ca2+ and Mg2+ on the CO2 corrosion behaviors of tube steel were studied in simulated oil-fieldenvironment. The influence of Ca2+ and Mg2+ on the corrosion rate and morphologies of corrosion product layerwas determined by scanning electron microscope and measuring mass loss. Potentiodynamic polarization and im-pedance spectroscopy were used to investigate the change of electrochemical characteristic parameters of corrosionproduct layer and corrosion dynamic process. The results show that with Ca2+ and Mg2+ in electrolyte, the mor-phologies and microstructures of corrosion product layer changed obviously, thus affecting the corrosion process.

  16. Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. Dhanapal

    2013-01-01

    Full Text Available Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW processes. The specimens were exposed to salt spray conditions and immersion conditions to characterize their corrosion rates on the effect of pH value, chloride ion concentration, and corrosion time. In addition, an attempt was made to develop an empirical relationship to predict the corrosion rate of FSW welds in salt spray corrosion test and galvanic corrosion test using design of experiments. The corrosion morphology and the pit morphology were analyzed by optical microscopy, and the corrosion products were examined using scanning electron microscope and X-ray diffraction analysis. From this research work, it is found that, in both corrosion tests, the corrosion rate decreases with the increase in pH value, the decrease in chloride ion concentration, and a higher corrosion time. The results show the usage of the magnesium alloy for best environments and suitable applications from the aforementioned conditions. Also, it is found that AZ61A magnesium alloy welds possess low-corrosion rate and higher-corrosion resistance in the galvanic corrosion test than in the salt spray corrosion test.

  17. Corrosion inhibitors for intermediate cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Falk, I.; Suhr, L.

    1985-04-01

    The selected inhibitors were tested for heat and radiation stability and corrosion protection on the bench scale. Based on the results from these tests two of the products were selected, Bycoguard 81 and Bycoguard MP4S for continuing corrosion tests in an autoclave loop at 90 degrees C and 120 degrees C. Oxygen saturated deionized water with an addition of 1 ppm chloride was recirculated in the loop. Samples of copper and carbon steel were exposed to the water in the autoclave for periods up to 10 weeks. The purpose of this project was to find a substitute for hydrazine and chromates. Besides good corrosion protection qualities the toxic and environmental effect of the inhibitors should be minimal. The investigation has shown that the copper inhibitor BTA (benzotriazole) loses its corrosion protection qualities at a water temperature of 120 degrees C. The protection effects at 90 degrees C were satisfactory for both of the materials. The corrosion rates measured were 0.01 mm/y or less for the copper and carbon steel samples. The environment in the autoclave during the testing was more corrosive than is to be found in intermediate cooling systems. Due to the low corrosion rates measured the two inhibitors are to be recommended as alternatives to hydrazine and chromates.

  18. Controlling internal corrosion of oil and gas pipelines : the corrosion inhibitor selection software (CISS) program

    Energy Technology Data Exchange (ETDEWEB)

    Doiron, A.; Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2009-07-01

    The internal pitting corrosion of oil and gas pipelines can be effectively controlled through the addition of inhibitors. However, simulation of field operating conditions is necessary because the performance of corrosion inhibitors is influenced by several interacting parameters. This paper reviewed the Corrosion Inhibitor Selection Software (CISS) program. The materials transported in production pipelines are often multiphase, containing oil, aqueous (brine), and gas phases. The corrosion rate and inhibitor performance are influenced by composition, temperature, flow and pressure. Steel composition and structure also influence both the rate and type of corrosion. Improvements in corrosion test methodologies are aimed at simulating field corrosion conditions in the laboratory in a compressed time-scale. The parameters that influence the types of corrosion must be simulated in order for laboratory methodology to be relevant. The variables controlled should be quantifiable. There should also be a correlation between the influence of variables controlled in the laboratory and of the same variables in the field. The CISS program evaluates inhibitors in the following 4 steps: (1) pipeline operating conditions, (2) selection of laboratory methodology, (3) determination of operating conditions for the laboratory methodologies, and (4) selection of corrosion inhibitors. The 7 objectives of the CISS program are to optimize the strategies of inhibitor selection for pipeline applications; determine the hydrodynamic parameters of the pipe from field operating conditions; select appropriate laboratory methodologies for evaluating inhibitors; determine flow conditions for high-shear laboratory methodologies; develop a qualitative relationship between corrosion rates of non-shear laboratory methodologies and of pipelines; evaluate corrosion inhibitors based on results from different laboratory methodologies; and design cost-effective inhibitors for future applications. 47 refs

  19. Study on corrosion simulation device for marine structural steel

    Indian Academy of Sciences (India)

    Hou Baorong; Xiang Bin

    2003-04-01

    A corrosion simulation device was studied using offshore long scale hanging specimens. An Ni–Cu–P steel specimen was studied by analysing its corrosion products and corrosion types. The appearance of the samples and the surface of the metallic substrate after the removal of the rust layer produced by these two methods were observed and compared after 470 days of exposure. The phase structure of the corrosion products under different marine environments were analysed and compared. It further indicated good correlation between the electrically connected hanging specimen method and the long scale hanging specimen method.

  20. 76 FR 11553 - WTO Dispute Settlement Proceeding Regarding United States-Anti Dumping Measures on Corrosion...

    Science.gov (United States)

    2011-03-02

    ... Corrosion-Resistant Carbon Steel Flat Products From Korea AGENCY: Office of the United States Trade... (``WTO Agreement'') concerning antidumping measures regarding corrosion- resistant carbon steel flat... concerning antidumping measures regarding corrosion-resistant carbon steel flat products from Korea. Korea...

  1. Long Term Corrosion/Degradation Test Six Year Results

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    the performance assessment for the SDA. The corrosion on the carbon steel, beryllium, and aluminum were more evident with a clear difference in corrosion performance between the 4-ft and 10-ft levels. Notable surface corrosion products were evident as well as numerous pit initiation sites. Since the corrosion of the beryllium and aluminum is characterized by pitting, the geometrical character of the corrosion becomes more significant than the general corrosion rate. Both pitting factor and weight loss data should be used together. For six-year exposure, the maximum carbon steel corrosion rate was 0.3643 MPY while the maximum beryllium corrosion rate was 0.3282 MPY and the maximum aluminum corrosion rate was 0.0030 MPY.

  2. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II: Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  3. The corrosive nature of manganese in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Bastida, C. [Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca, Km. 14.5, C.P. 50200, Toluca, Estado de México (Mexico); Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón y Tollocan s/n, C.P. 50000, Toluca, Estado de México (Mexico); Martínez-Miranda, V.; Vázquez-Mejía, G. [Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca, Km. 14.5, C.P. 50200, Toluca, Estado de México (Mexico); Solache-Ríos, M., E-mail: marcos.solache@inin.gob.mx [Departamento de Química, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801 México, D.F. (Mexico); Fonseca-Montes de Oca, G. [Centro Interamericano de Recursos del Agua, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca, Km. 14.5, C.P. 50200, Toluca, Estado de México (Mexico); Trujillo-Flores, E. [Facultad de Ingeniería, Universidad Autónoma del Estado de México, Cerro de Coatepec s/n, Ciudad Universitaria, C.P. 50130, Toluca, Estado de México (Mexico)

    2013-03-01

    Corrosion problems having to do with drinking water distribution systems are related to many processes and factors and two of them are ionic acidity and carbon dioxide, which were considered in this work. The corrosion character of water is determined by the corrosion indexes of Langelier, Ryznar, Larson, and Mojmir. The results show that pipes made of different materials, such as plastics or metals, are affected by corrosion, causing manganese to be deposited on materials and dissolved in water. The deterioration of the materials, the degree of corrosion, and the deposited corrosion products were determined by X-ray diffraction and Scanning Electron Microscopy. High levels of manganese and nitrate ions in water may cause serious damage to the health of consumers of water. Three wells were examined, one of them presented a high content of manganese; the others had high levels of nitrate ions, which increased the acidity of the water and, therefore, the amount of corrosion of the materials in the distribution systems. - Highlights: ► Corrosion of distribution systems affects the quality of drinking water. ► Corrosion in water distribution systems is related to acidity and carbon dioxide. ► Pipes are corroded and manganese is deposited on pipes and dissolved in water. ► The deterioration of the pipes and the corrosion products were determined. ► Nitrate ions increase the acidity of water in the wells.

  4. In-line fiber Bragg grating sensors for steel corrosion detection

    Science.gov (United States)

    Deng, Fodan; Huang, Ying; Azarmi, Fardad

    2016-04-01

    A corrosion monitoring system for steel using Fiber Bragg grating (FBG) sensors is proposed. FBG sensors were protected by hypodermic tubes and a layer of adhesive. The increase in volume caused by the presence of corrosion product introduces strain that can be monitored by FBG sensors. Experimental results showed a positive correlation between the strain and corrosion product, and the change in central wavelength has the potential to serve as an indicator for material weight loss due to corrosion.

  5. Corrosion behavior of tantalum and its nitride in alkali solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Deyuan; LIN Qin; FEI Qinyong; ZHAO Haomin; KANG Guangyu; GENG Man

    2003-01-01

    The corrosion behavior of tantalum and its nitrides in stirring NaOH solutions was researched by potenfiostatic method, cyclic voltammetry and XPS. The results showed that the corrosion products were composed of Ta2O5 and NaTaO3.The corrosion reaction formula of tantalum and its nitrides was written according to cyclic volt-ampere curves. The electric charge transfer coefficient and the electric charge transfer number were calculated.

  6. Effects of Variations in Salt-Spray Conditions on the Corrosion Mechanisms of an AE44 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Holly J. Martin

    2010-01-01

    Full Text Available The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying. The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.

  7. 中原油田采油一厂腐蚀严重井的治理%Corrosion Control of Oil Well in 1 st Oil Production Plant of Zhongyuan Oil Field

    Institute of Scientific and Technical Information of China (English)

    丁其杰; 韩长喜; 刘生福; 王红; 陈慧丽

    2012-01-01

    中原油田分公司采油一厂地质状况复杂,产出液具有“四高一低”的特点,产出液Cl-含量为3~11×10^4mg/L、矿化度为(7~22)×10^4mg/L、HCO3-为50~400mg/L、井底温度高达130—150℃、pH值低(5.5左右)的特点,腐蚀性较强。通过对采油一厂10口油井腐蚀因素调查,摸清了腐蚀原因是产出液中Cl-,HCO3-等强腐蚀性离子含量高,同时含有一定量的CO2,并含SRB,从而形成弱酸性腐蚀水体。经向套管中注入KY-2高效缓性剂(加药浓度100μg/g)后,腐蚀速率由0.0913mm/a降为0.0223mm/a,总铁值由36.1mg/L降为26.6mg/L;治理后减少腐蚀作业14井次,防腐效果明显。%The geological conditions in 1 st Oil Production Plant of Zhongyuan Oil Field are very complex. The production liquid is characterized by higher C1 (3 - 11 ) × 104mg/L, higher minerality (7 -22)×104mg/L, higher temperature (well bottom temperature 130 - 150℃ ) and lower pH value (about 5.5 ). The liquid is very corrosive. The investigation of the corrosion in the 10 oil wells in 1 st Oil Production Plant revealed that the corrosion culprit was the weak acid body resulted from higher C1- , HCO3 , CO2 and sulfate reducing bacteria(SRB) in the production liquid. After injection of high - efficiency corrosion inhibitor KY -2 in the conduit at a dosage of 100 ppm, the corrosion rate was reduced from 0. 0913mm/a to 0. 0223mm/a. The iron ion in the production water was lowered from 36.1 mg,/L to 26.6 mg/L. The underground work for corrosion control has been reduced by 14 well times as compared with that before the injection. The corrosion prevention effect is obvious.

  8. Electrochemical corrosion studies

    Science.gov (United States)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  9. Erosion-corrosion; Erosionkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Aghili, B

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment 32 refs, 16 figs, tabs

  10. The Mechanism and Influencing Factors of Corrosion in a Gas Heating-Furnace

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-gang; ZHANG Ning-sheng; WU Xin-min

    2005-01-01

    Natural gas should be heated and throttled for the purpose of purification and transportation at the first gas production factory of the Changqing field. The safe use and heat-transfer efficiency of a heating-furnace affect the safe and smooth production of natural gas directly. At gas collecting stations now, no measures of anticorrosion have been adopted in heating furnaces which erode and scale badly.In order to solve the corrosive problem of heating-furnaces, prolong operating life of heating-furnaces,assure safe and smooth production of natural gas, the mechanism and influencing factors of corrosion of the heating-furnace were analyzed and some corresponding measures were brought forward based on a field investigation of usage behavior and present operational status of heating-furnaces at the first gas production factory. The results show that the corrosive ion and soluble CO2 and O2 in water erode metal badly at the condition of being heated. Corrosion of a heating-furnace are mostly oxygen corrosion, corrosive ion corrosion, acid corrosion, iron encrustation corrosion, dry and wet interface corrosion, caustic corrosion, etc; The influencing factors of corrosion mainly include soluble O2 and CO2 in water, pH value, heat loading, corrosive ion, soluble solid (salinity) and non-flowing character of water, etc.

  11. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  12. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  13. On Corrosion of Ferrous in Typical Indian Soils-Part II Wrought Iron

    Directory of Open Access Journals (Sweden)

    Brajendra Nath Tripathi

    1965-07-01

    Full Text Available Corrosion of wrought iron in ten Indian soils, employing Schwerdtfeger's soil corrosion cell procedure has been studied. The corrosion of wrought iron n non-acidic solid proceeds through electrochemical mechanism. Usually the rate of corrosion is maximum at the beginning and with the development of the film of the common products, the rate gradually decreases with time until it becomes more or less constant . In most of the cases 'uneven' general or local corrosion with pittings is observed. The maximum penetration is directly proportional to the corrodibility. Soils having moisture equivalent in the range 25-30% are most corrosive. The corrosivity of soils increases with increase in the concentration of soluble electrolytes. Ferric oxide present in laterite soil functions as a cathodic depolariser and hence increase the corrosivity. In and acidic sol the corrosion mainly proceeds through the mechanism of direct chemical reaction . The results have also been analyzed and correlated with various factors.

  14. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  15. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

    Directory of Open Access Journals (Sweden)

    Qing Qu

    2014-07-01

    Full Text Available As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs, polarization curves and electrochemical impedance spectroscopy (EIS. OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results.

  16. CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Kerry Dunn, K

    2007-11-16

    Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.

  17. Corrosion evaluation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of {+-} 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs.

  18. Avionics Corrosion Control Study

    Science.gov (United States)

    1974-01-01

    found at seacoast (harsn) environnents is the most destructive. Differences in electrolte concentration and oxygen concentration promote corrosion...against corrosion by acting as moisture and gas barriers. CMCVIT B0.4ID *COATINGS Polyurethane’s, cprxies, silicones, and polystyrenes are the most

  19. Corrosion behaviour of mooring chain steel in seawater

    NARCIS (Netherlands)

    Zhang, X.; Noel, N.; Ferrari, G.; Hoogland, M.G.

    2016-01-01

    Failures of mooring lines on floating production, storage and offloading systems (FPSOs) raise concern to the offshore industry. Localized corrosion of mooring chain is regarded as one of main failure mechanisms. The project of Localized Mooring Chain Corrosion (LMCC) is aiming at studying the mecha

  20. Diagnosing, Measuring and Monitoring Microbiologically Influenced Corrosion (MIC)

    Science.gov (United States)

    2011-01-01

    to determine the presence of specific groups of bacteria in the bulk medium ( planktonic cells) or associated with corrosion products (sessile cells...ESEM to study marine biofilms on stainless steel surfaces. They observed a gelatinous layer in which bacteria and microalgae were embedded...monitoring planktonic bacteria was not effective at predicting microbial fouling or MIC. Additionally, general corrosion rates were low throughout

  1. Corrosion behaviour of mooring chain steel in seawater

    NARCIS (Netherlands)

    Zhang, X.; Noel, N.; Ferrari, G.; Hoogland, M.G.

    2016-01-01

    Failures of mooring lines on floating production, storage and offloading systems (FPSOs) raise concern to the offshore industry. Localized corrosion of mooring chain is regarded as one of main failure mechanisms. The project of Localized Mooring Chain Corrosion (LMCC) is aiming at studying the

  2. Corrosion on the acetabular liner taper from retrieved modular metal-on-metal total hip replacements.

    Science.gov (United States)

    Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M

    2014-10-01

    Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products.

  3. The role of iron in sulfide induced corrosion of sewer concrete.

    Science.gov (United States)

    Jiang, Guangming; Wightman, Elaine; Donose, Bogdan C; Yuan, Zhiguo; Bond, Philip L; Keller, Jurg

    2014-02-01

    The sulfide-induced corrosion of concrete sewer is a widespread and expensive problem for water utilities worldwide. Fundamental knowledge of the initiation and propagation of sewer corrosion, especially the interactions between chemical reactions and physical structure changes, is still largely unknown. Advanced mineral analytical techniques were applied to identify the distribution of corrosion products and the micro-cracking that developed along the corrosion boundary. It was found that sewer concrete corrosion caused by reactions with sulfuric acid progressed uniformly in the cement of concrete. In contrast to conventional knowledge, iron rust rather than gypsum and ettringite was likely the factor responsible for cracking ahead of the corrosion front. The analysis also allowed quantitative determination of the major corrosion products, i.e., gypsum and ettringite, with the latter found closer to the corrosion front. The conceptual model based on these findings clearly demonstrated the complex interactions among different chemical reactions, diffusion, and micro-structure changes.

  4. Monitoring corrosion rates and localised corrosion in low conductivity water

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2006-01-01

    Monitoring of low corrosion rates and localised corrosion in a media with low conductivity is a challenge. In municipal district heating, quality control may be improved by implementing on-line corrosion monitoring if a suitable technique can be identified to measure both uniform and localised...... corrosion. Electrochemical techniques (LPR, EIS, crevice corrosion current) as well as direct measurement techniques (high-sensitive electrical resistance, weight loss) have been applied in operating plants. Changes in the corrosion processes are best monitored in non-aggressive, low conductivity media...... with sensitive electrical resistance technique and crevice corrosion current measurements....

  5. Corrosion circumstance in the Tokai Reprocessing Plant and evaluation of the corrosion rate

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Akira [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai Reprocessing Center, Tokai, Ibaraki (Japan)

    2002-03-01

    In the reprocessing plant, corrosive circumstances arise, because the major equipment contains a high concentration of the metal ions that originate from the fission products. They are also equipped in the various concentrations of nitric acid and various temperatures. Based on failed experiments due to corrosion, repairing the equipment and exchanging materials, the corrosion rate of stainless steel containing Nb was measured over 1 mm/yr in the heat transfer surface of the dissolver. Pin-holes in the weld zone of the heat conduction surface of the dissolver and the acid recovery evaporator were observed. Although the corrosion rate of Ti-5Ta in the vapor zone of the plutonium solution evaporator reached 0.1 - 0.3 mm/yr, no local attacks were confirmed. On the other hand, the corrosion of Ti-5Ta was not observed in the acid recovery evaporator. This report presents the survey result of the corrosion equipment and an outline of the corrosion tests, with the wall thickness measurement result obtained as a soundness confirmation of the equipment. (author)

  6. Corrosion Behavior of Au, Hastelloy C-276 Alloy and Monel 400 Alloy in Molten Lithium Fluoride

    Institute of Scientific and Technical Information of China (English)

    WANG; Chang-shui; GUO; Jun-kang

    2013-01-01

    For searching better corrosion-resistant material in high temperature,we investigated the corrosion behavior of Au,Haynes C-276 alloy and Monel 400 alloy in molten lithium fluoride at 950℃.The corrosion products and fine structures of the corroded specimens were characterized by inductively coupled plasma mass spectrometry(ICP-MS),scanning electron microscope(SEM),energy dispersive

  7. Assessment of corrosion in the flue gas cleaning system using on-line monitoring

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vendelbo Nielsen, Lars; Berggreen Petersen, Michael

    2015-01-01

    products/deposits were detected. An on-line corrosion measurement system was established to determine corrosion mechanisms. It was revealed that many shutdowns/start-ups of the plant influence corrosion and result in decreased lifetime of components and increased maintenance. The change of fuel from...

  8. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  9. Monitoring reinforcement corrosion and corrosion-induced cracking using non-destructive x-ray attenuation measurements

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Bradley Justin; Geiker, Mette Rica

    2011-01-01

    To test the applicability of the x-ray attenuation method to monitor the movement of corrosion products as well as the formation and propagation of cracks in cementitious materials reinforced mortar samples were prepared and tested under accelerated corrosion conditions. It is evident from...

  10. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed.

  11. Corrosion Failures in Marine Environment

    Directory of Open Access Journals (Sweden)

    R. Krishnan

    1985-04-01

    Full Text Available This paper gives a brief description of typical marine environments and the most common form of corrosion of materials used in this environment. Some typical case histories of failures pertaining to pitting, bimetallic corrosion, dealloying, cavitation and stress corrosion cracking are illustrated as typical examples of corrosion failures.

  12. Corrosion Inhibitors for Reinforced Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Steel corrosion in reinforced concrete structures has been a major problem across the U.S. Steel-reinforced concrete structures are continually subject to attack by corrosion brought on by naturally occurring environmental conditions. FerroGard, a corrosion inhibitor, developed by Sika Corporation, penetrates hardened concrete to dramatically reduce corrosion by 65% and extend the structure's service life.

  13. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  14. Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fonnesbeck, J.

    2000-03-20

    Three unirradiated EBR-II blanket fuel samples containing depleted uranium metal were corrosion tested in simulated J-13 well water at 90 C. The corrosion rate of the blanket uranium metal was then determined relative to H{sub 2} formation. Corrosion of one of the samples was interrupted prior to complete oxidation of the uranium metal and the solid corrosion product was analyzed for UO{sub 2} and UH{sub 3}.

  15. Study on Mechanism of Concrete Failure Induced by Steel Corrosion under Externally Applied Direct Current

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the combination of electrochemical corrosion due to straycurrent in running tunnels of metro, the formula to determine the corrosion products of rebars in reinforced concrete subjected to externally applied direct current is proposed, and the influence of corrosion on stress in concrete is also discussed. Meanwhile, the concept of corrosion stress field and its mathematical formula are presented in the paper. Finally the failure mode of concrete and its shortest breaking time are also analyzed.

  16. The Corrosion and Preservation of Iron Antiques.

    Science.gov (United States)

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  17. The Effect of Material Removal on the Corrosion Resistance and Biocompatibility of Nitinol Laser-Cut and Wire-Form Products

    Science.gov (United States)

    Decker, Jennifer Fino; Trépanier, Christine; Vien, Lot; Pelton, Alan R.

    2011-07-01

    Laser cutting and wire forming are two of the most commonly used processes in the manufacture of Nitinol medical devices. This study explores how varying the amount of material removed during the final surface treatment steps affects the corrosion resistance of Z-type stents that have either been laser-cut from tube or shape set from wire. All parts were subjected to a typical heat treatment process necessary to achieve an Austenite finish (Af) temperature of 25 ± 5 °C, and were subsequently post-processed with an electrochemical passivation process. The total weight loss during post-processing was recorded and the process adjusted to create groups with less than 5%, less than 10%, and less than 25% amounts of weight loss. The parts were then crimped to 6 mm and allowed to expand back to their original diameter. The corrosion test results showed that on average both groups of Z-stents experienced an increase in the corrosion breakdown potential and a decrease in the standard deviation with increasing amounts of material removal. In addition, less material removal is required from the wire-form Z-stents as compared to the laser-cut Z-stents to achieve high corrosion resistance. Finally, 7 day nickel ion release tests performed on the wire-formed Z-stents showed a dramatic decrease from 0.0132 mg of nickel leached per day for the low weight loss group to approximately 0.001 mg/day for the medium and high weight loss groups.

  18. Corrosion control in mining technology

    Energy Technology Data Exchange (ETDEWEB)

    Telekesi, J.

    1985-01-01

    An overview of corrosion effects in mining technology and the importance of protection is presented. The most common corrosion processes and effects are summarized and the system and criteria of their avoidance are discussed in detail. Preventive measures are recommended to decrease possible corrosion effects including the selection of corrosion-resistive constructions, to use protective coatings and inhibition techniques and some other protection possibilities where applicable. The organization aspects and the economic impact of corrosion control in mining are discussed.

  19. Corrosion-resistant uranium

    Science.gov (United States)

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  20. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  1. Corrosion behaviour of Ni–Co alloy coatings at Kish Island (marine) atmosphere

    Indian Academy of Sciences (India)

    Kourosh Sharifi; Mohammad Ghorbani

    2014-05-01

    In this study, the corrosion behaviour of Ni-Co alloys with low Co content, electroplated on steel substrate in sulphate bath, was investigated. The morphology of coatings was studied by optical and SEM microscopy. The corrosion products were analyzed using EDX. The results showed that Ni–1% Co coatings had a better corrosion resistance 0.30, 0.92 and 3.75 mpy for atmospheric, salt spray and polarization tests, respectively. These are 0.41, 1.20 and 5.40 mpy for pure nickel coatings that indicate the least corrosion resistance. Surface analysis revealed the presence of oxides, sulphides and chlorides in corrosion products.

  2. The corrosion of depleted uranium in terrestrial and marine environments.

    Science.gov (United States)

    Toque, C; Milodowski, A E; Baker, A C

    2014-02-01

    Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm(-2) y(-1) and 2.5-48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area.

  3. Effect of CO2 on Atmospheric Corrosion of UNS G10190 Steel under Thin Electrolyte Film

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The atmospheric corrosion of UNS G10190 steel under a thin electrolyte film in the atmosphere polluted by CO2 has been studied in the lab using an atmospheric corrosion monitor(ACM) in combination with XRD and SEM observations of the surface of steel. The ACM study indicated that the corrosion rate of the steel increased with increasing carbon dioxide concentration. The XRD and SEM observations showed that no carbonate was found in the corrosion product on the steel surface. The corrosion product consisted of two layers, i. e., inner and outer layer. From the experimental results, it was concluded that CO2 played an enhancing role in the atmospheric corrosion of UNS G10190 steel. The film of the corrosion product showed slight protection.

  4. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  5. Corrosion behavior of Zn-Ni-Al2O3 composite coating

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huanyu; AN Maozhong; LU Junfeng

    2006-01-01

    The corrosion behavior and anti-corrosion mechanism of the Zn-Ni-Al2O3 composite coating were investigated by SEM, EDS and XPS.The results indicate that the corrosion type of the Zn-Ni-Al2O3 coatings in neutral 5 wt.% NaCl solution is uniform corrosion.The presence of compact and uniformly dispersed nano alumina particles substantially inhibits the corrosion of Zn-Ni-Al2O3 composite coatings.In the initial corrosion stage, the corrosive products of Zn-Ni matrix form a compact ZnCl2·4Zn(OH)2 layer.With the development of corrosion, some nano alumina particles are embedded and form a Ni enrichment layer.In Ni enrichment layer, Ni presents as Ni and NiO.

  6. Corrosion of copper containers prior to saturation of a nuclear fuel waste disposal vault

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Kolar, M

    1997-12-01

    The buffer material surrounding the containers in a Canadian nuclear fuel waste disposal vault will partially desiccate as a result of the elevated temperature at the container surface. This will lead to a period of corrosion in a moist air atmosphere. Corrosion will either take the form of slow oxidation if the container surface remains dry or aqueous electrochemical corrosion if the surface is wetted by a thin liquid film. The relevant literature is reviewed, from which it is concluded that corrosion should be uniform in nature, except if the surface is wetted, in which case localized corrosion is a possibility. A quantitative analysis of the extent and rate of uniform corrosion during the unsaturated period is presented. Two bounding cases are considered: first, the case of slow oxidation in moist air following either logarithmic or parabolic oxide-growth kinetics and, second, the case of electrochemically based corrosion occurring in a thin liquid film uninhibited by the growth of corrosion products. (author)

  7. Influence of Paper Surface Compounds on Corrosion of Printing Machines

    Directory of Open Access Journals (Sweden)

    Kresimir Dragcevic

    2013-01-01

    Full Text Available This paper deals with investigation of corrosion processes on construction steel in contact with aqueous solutions of surface coatings of high gloss and standard uncoated papers for sheet-fed printing. During the period of four months, changes in the mass of steel specimens were measured (loss of material, as well as changes in pH values and conductivity of the examined solutions. Formation of corrosion products on the surface was identified by changes of spectrophotometric reemission in the visible portion of the steel spectrum and by FT-IR spectral recordings. In addition, the electrochemical potentiodynamic measurements were carried out with the direct current and the method of linear polarization and Tafel’s extrapolation, by which the corrosion parameters were determined: corrosion potential, corrosion current density, polarization resistance cathodic and anodic inclination of Tafel’s lines, as well as the corrosion rate. The results show that the dynamics of the corrosion in printing machines is directly influenced by the type of the paper used for printing. This investigation gave an insight into dynamics and mechanisms of corrosion under conditions close to those in printing production, thus facilitating better understanding of the entire process.

  8. A Mathematical model of copper corrosion

    CERN Document Server

    Clarelli, Fabrizio; Natalini, Roberto

    2012-01-01

    A new partial differential model for monitoring and detecting copper corrosion products (mainly brochantite and cuprite) is proposed to provide predictive tools suitable for describing the evolution of damage induced on bronze specimens by sulfur dioxide (SO_2) pollution. This model is characterized by the movement of a double free boundary. Numerical simulations show a nice agreement with experimental result.

  9. Corrosion in drinking water pipes: the importance of green rusts.

    Science.gov (United States)

    Swietlik, Joanna; Raczyk-Stanisławiak, Urszula; Piszora, Paweł; Nawrocki, Jacek

    2012-01-01

    Complex crystallographic composition of the corrosion products is studied by diffraction methods and results obtained after different pre-treatment of samples are compared. The green rusts are found to be much more abundant in corrosion scales than it has been assumed so far. The characteristic and crystallographic composition of corrosion scales and deposits suspended in steady waters were analyzed by X-ray diffraction (XRD). The necessity of the examination of corrosion products in the wet conditions is indicated. The drying of the samples before analysis is shown to substantially change the crystallographic phases originally present in corrosion products. On sample drying the unstable green rusts is converted into more stable phases such as goethite and lepidocrocite, while the content of magnetite and siderite decreases. Three types of green rusts in wet materials sampled from tubercles are identified. Unexpectedly, in almost all corrosion scale samples significant amounts of the least stable green rust in chloride form was detected. Analysis of corrosion products suspended in steady water, which remained between tubercles and possibly in their interiors, revealed complex crystallographic composition of the sampled material. Goethite, lepidocrocite and magnetite as well as low amounts of siderite and quartz were present in all samples. Six different forms of green rusts were identified in the deposits separated from steady waters and the most abundant was carbonate green rust GR(CO(3)(2-))(I).

  10. Study on influencing factors of Carbon Steel Corrosion in Anhydrous Hydrogen Fluoride Production%AHF生产混合段腐蚀影响因素的研究

    Institute of Scientific and Technical Information of China (English)

    蔡荣秋; 林整

    2011-01-01

    The main factors influencing corrosion of carbon steel are studied by weight loss, linear polarization and polarization curves methods in this study. The results show that the corrosion rate of specimen decreased with reducing temperature and the impurity content. The carbon steel can passivate in some proportion between fluorite and sulfuric acid. The corrosion rate of carbon steel is more serious in the first 4 minutes of reaction.%本文分别采用挂片失重法、线性极化法、极化曲线法研究了反应温度、物料配比、反应时间、萤石中所含杂质等因素对碳钢在萤石-硫酸体系中的腐蚀影响,结果表明:降低反应温度、控制杂质含量在一个较低水平都可以有效的降低碳钢的腐蚀速率;增加物料配比中硫酸的比例,会导致碳钢出现某种程度的钝化;碳钢在萤石-硫酸体系中的腐蚀存在着一个严重腐蚀阶段,在本文的实验条件下,该阶段为物料开始反应的前4分钟。

  11. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  12. XPS Analysis of Corrosion Product Scale on Surface of 29Cr Super Duplex Stainless Cast Steel%29Cr超级双相不锈铸钢表面腐蚀XPS分析

    Institute of Scientific and Technical Information of China (English)

    向红亮; 黄伟林; 刘东; 何福善

    2011-01-01

    用x射线光电子能谱(XPS)技术研究29Cr超级双相不锈铸钢在人工海水中经电化学极化后表面腐蚀产物.结果表明,材料的腐蚀是以点蚀为主的局部腐蚀;MoO4^2-,NH+和少量Noi吸附在钝化膜表面,从而提升钝化膜的保护作用.材料在人工海水中极化后的钝化膜表层主要由氢氧化物Cr(OH)3,FeOOH等和氧化物Cr2O3,Fe3O4,FeO,Fe2O3,MOo2,MoO3,NiO等组成;在膜的里层有大量的金属单质Fe,Cr,Ni,Mo等和氧化物Cr2O3,Fe3O4,FeO,MoO2,NiO等及金属氮化物Cr2%The chemical constituent of corrosion product scale on 29Cr super duplex stainless cast steel after electrochemical polarization in artificial seawater was studied by X-ray photoelectron spectroscopy in this paper. The results indicate that the corrosion is mainly pitting corrosion; MoO42-, NH+ and a small amount of NO3 absorbed on the surface of the passive film so that to enhance the protectiveness of the layer. The outer portion of passive film of 29Cr super duplex stainless steel is mainly composed of hydroxide type compounds such as Cr(OH)3, FeOOH and oxides such as Cr2O3, Fe3O4, FeO, Fe2O3, MOO2, MoO3 and NiO, but its inner portion is mainly composed of abundant metallic elements of Fe, Cr, Ni, Mo and oxides including Cr2O3, Fe3O4, FeO, MOO2, NiO and some nitride such as Cr2N. During the passivation process, Cr2N tends to enrich at the passive film surface, thereby its pitting corrosion resistance may be enhanced.

  13. Handbook of corrosion data, 2nd edition

    Energy Technology Data Exchange (ETDEWEB)

    Craig, B.; Anderson, D. [eds.

    1995-12-31

    As in the prior edition, in one convenient volume this book makes it easy to find what effect environment has on the corrosion of metals and alloys. Coverage on all the environments in the first edition has been updated and expanded and some 80 or more environments have been added, including food products (chocolate, milk, cider, beer, etc.), fruit juices (grape, pineapple, lemon, etc.), soil, blood, gasoline, fertilizers, etc. Presentation of the tabular information for all environments has been standardized throughout the book. The environments are listed alphabetically. Each listing includes a general description of the conditions, a comment on the corrosion characteristics of various alloys in such a situation, a bibliography of recent articles specific to the environment, tables consolidating and comparing corrosion rates at various temperatures and concentrations for various alloys, and graphical information. also included are summaries on the general corrosion characteristics of major metals and alloys. This separate section of the book considers each material group, such as aluminum, stainless steel, zinc and so forth. Additional tables are presented here to give the corrosion characteristics of various alloys in hundreds of environments.

  14. Microbial Corrosion and Cracking in Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1998-01-01

    and for recommendations in regards to electrochemical monitoring of MIC. The work presented here and further studies are also planned to lead to a Ph.D. thesis on "MIC monitoring based on mechanisms of corrosion".The results of laboratory experiments conducted in the period 1995 to 1997 are summarised. Conclusions...... will be based on results from the entire 3 year period, but only selected experimental data primarily from the latest experiments will be presented in detail here.Microbial corrosion of carbon steel under influence of sulphate-reducing bacteria (SRB) is characterised by the formation of both biofilm...... and corrosion products (ferrous sulphides) on the metal surface. Experiments have been conducted on carbon steel exposed in near neutral (pH 6 to 8.5) saline hydrogen sulphide environment (0 to 100 mg/l total dissolved sulphide) for a period of 14 days. Furthermore coupons have been exposed in a bioreactor...

  15. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...... is reached causing the formation of anodic and cathodic regions along the reinforcement. Critical chloride thresholds, randomly distributed along the reinforcement sur-face, link the initiation and propagation phase of reinforcement corrosion. To demonstrate the potential use of the developed model......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  16. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen-yao; MA Teng; HAN Wei; YU Guo-cai

    2007-01-01

    The corrosion behavior of typical high-strength aluminum alloy LY12 was studied by accelerated corrosion tests of cyclic wet-dry-immersion containing media of NaHSO3 and NaCl to simulate the corrosion process in different atmosphere environment, and the corrosion mechanism was also discussed. The main experimental techniques include mass loss, morphological check, analysis of corrosion products and electrochemical measurement. The result shows that the mass loss of LY12, with or without cladding, has linear relationship with test time in the three kinds of chemical media, 0.02 mol/L NaHSO3, 0.006 mol/L NaCl and 0.02 mol/L NaHSO3+0.006 mol/L NaCl, respectively. A layer of cladding on high-strength aluminum alloy can raise evidently the resistance of atmospheric corrosion. Cl- can promote pitting generation on the oxide film of LY12 when HOS3- exists, LY12 can react much intensely with HOS3- derived from anions.

  17. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  18. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release.

  19. Corrosion and Corrosion Control in Light Water Reactors

    Science.gov (United States)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  20. Corrosion electrochemical behavior of brass tubes in circulating cooling seawater

    Institute of Scientific and Technical Information of China (English)

    LU Yu-zhuo; SONG Shi-zhe; YIN Li-hui

    2005-01-01

    Electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were used to study the corrosion electrochemical behavior of brass tubes in circulating cooling seawater using the developed sensor. EIS study shows that the inhibitor can lead to the formation of corrosion products on metal surface, which will then inhibit the corrosion process. When the flow rate of the seawater increases, the diffusion of oxygen speeds up and the action of filming on HAl77-2 tube accelerates, resulting in decrease of corrosion rate. EN analysis shows that the flow rate of the seawater has little effect on pitting susceptivity of HSn70-1 tube; however the pitting susceptivity of HAl77-2 tube increases with increasing flow rate. Good agreement is observed between the spectral noise resistance Rsn (f) calculated from EN data and the modulus of impedance. It is shown that the electrochemical noise technique can be used in corrosion monitoring.

  1. Towards Long-Term Corrosion Resistance in FE Service Environments

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb and P. Wang

    2010-10-01

    The push for carbon capture and sequestration for fossil fuel energy production has materials performance challenges in terms of high temperature oxidation and corrosion resistance. Such challenges will be illustrated with examples from several current technologies that are close to being realized. These include cases where existing technologies are being modified—for example fireside corrosion resulting from increased corrosivity of flue gas in coal boilers refit for oxy-fuel combustion, or steam corrosion resulting from increased temperatures in advanced ultra supercritical steam boilers. New technology concepts also push the high temperature corrosion and oxidation limits—for example the effects of multiple oxidants during the use of high CO2 and water flue gas used as turbine working fluids.

  2. Microbiologically influenced corrosion (MIC) in stainless steel heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen-Saarivirta, E., E-mail: elina.huttunen-saarivirta@tut.fi [Laboratory of Materials Characterization, Department of Materials Science, Tampere University of Technology, P.O.B. 589, FI-33101 Tampere (Finland); Honkanen, M.; Lepistoe, T.; Kuokkala, V.-T. [Laboratory of Materials Characterization, Department of Materials Science, Tampere University of Technology, P.O.B. 589, FI-33101 Tampere (Finland); Koivisto, L. [Andritz Oy, Recovery and Power Division, P.O. Box 184, FI-78201 Varkaus (Finland); Berg, C.-G. [Andritz Pulp and Paper, Tammasaarenkatu 1, FI-00180 Helsinki (Finland)

    2012-06-15

    Corrosion attack in the form of corrosion product tubercles was observed in an AISI 304 (EN 1.4301) stainless steel heat exchanger only after 36 months of service. Failure analyses revealed that in one of the attacked areas corrosion had penetrated the entire wall thickness of 6.2 mm, but in most of the cases it reached the depth of 2-4 mm. In this paper, we report the results from a thorough microstructural characterization of the corroded heat exchanger carried out with optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). Microstructural studies by OM, SEM and XRD revealed a two-phase structure of austenite and ferrite in the bulk material, as well as the preferential attack of the ferrite phase. SEM surface studies disclosed bacteria in and close to the attacked areas. Cross-sectional SEM examinations showed the distribution and composition of corrosion products within and underneath the tubercles. TEM and XRD studies gave information about the amorphous and/or nanocrystalline nature of some of the formed corrosion products. These results are discussed in this paper and, based on them, the main corrosion mechanism for the observed attack is suggested. Further, explanations for the propagation of corrosion along the ferrite phase are presented.

  3. Corrosion resistance of zinc-magnesium coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, N.C. [Ford Motor Company Ltd., Dunton Engineering Centre, Room GB15/GM-D01, Laindon, Basildon, Essex SS15 6EE (United Kingdom) and School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)]. E-mail: niamh.hosking@gmail.com; Stroem, M.A. [Volvo Car Corporation, Building VCPC, Maildrop PV 1B, Volvo Jacobs vag, Goeteborg SE-405 31 (Sweden); Shipway, P.H. [School of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Rudd, C.D. [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2007-09-15

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn{sub 5}Cl{sub 2}(OH){sub 8} . H{sub 2}O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH){sub 2}) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH){sub 2}, which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature.

  4. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  5. Influence of Direct Current Electric Field on Corrosion Behavior of Tin Under a Thin Electrolyte Layer

    Science.gov (United States)

    Huang, H. L.; Bu, F. R.; Tian, J.; Liu, D.

    2017-08-01

    The influence of a direct current electric field (DCEF) on corrosion behavior of tin under a thin electrolyte layer was investigated based on an array electrode technology by polarization, electrochemical impedance spectroscopy and surface analysis. The experimental results indicate that the corrosion rate of tin near the positive plate of DCEF increases with increased electric field intensity, which could be attributed to the acceleration of the migration of ions, the removal of corrosion products under DCEF and the damage of tin surface oxide film. Furthermore, tin at different positions in a DCEF exhibits different corrosion behavior, which could be ascribed to the difference of the local corrosion environment caused by the DCEF.

  6. In vitro corrosion of Mg-Ca alloy — The influence of glucose content

    Science.gov (United States)

    Cui, Lan-Yue; Li, Xiao-Ting; Zeng, Rong-Chang; Li, Shuo-Qi; Han, En-Hou; Song, Liang

    2017-09-01

    Influence of glucose on corrosion of biomedical Mg-1.35Ca alloy was made using hydrogen evolution, pH and electrochemical polarization in isotonic saline solution. The corrosion morphologies, compositions and structures were probed by virtue of SEM, EDS, FTIR, XRD and XPS. Results indicate that the glucose accelerated the corrosion of the alloy. The elemental Ca has no visible effect on the corrosion mechanism of glucose for the Mg-1.35Ca alloy in comparison with pure Mg. In addition, the presence of CO2 has beneficial effect against corrosion due to the formation of a layer of carbonatecontaining products.

  7. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    Science.gov (United States)

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  8. Effect of silty sand in formation water on CO{sub 2} corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei, E-mail: weiliu@ustb.edu.cn; Dou, Juanjuan; Lu, Songle; Zhang, Peng; Zhao, Qinghe

    2016-03-30

    Graphical abstract: Silty sand (SiO{sub 2}) promoted the rapid heterogeneous nucleation of corrosion product (FeCO{sub 3}) and simultaneously decreased its grains growth. Silty sand mixed with corrosion product to form the outer layer of corrosion scale with high compactness, blocking the transport of ferrous ions and leading to the formation of the inner layer of corrosion scale without silty sand. The corrosion rate of carbon steel was obviously reduced due to the existence of silty sand in the outer layer by inhibiting anodic and cathodic currents. - Highlights: • CO{sub 2} corrosion rate of carbon steel was obviously reduced due to the existence of silty sand. • The corrosion scale containing silty sand inhibited anodic and cathodic currents, contributing to low corrosion rate. • A development mechanism of corrosion scale in silty sand containing CO{sub 2} environment was proposed. - Abstract: Corrosion behavior of carbon steel in CO{sub 2} aqueous environment containing silty sand was investigated using corrosion mass loss method, scanning electron microscopy (SEM), energy diffraction spectrum (EDS), and various electrochemical measurements. The results show that the corrosion rate of carbon steel was obviously reduced due to the existence of silty sand. Silty sand promoted the rapid heterogeneous nucleation of corrosion product FeCO{sub 3} and simultaneously decreased its grains growth. Silty sand mixed with corrosion product to form the outer layer of corrosion scale with high compactness, blocking the transport of ferrous ions and leading to the formation of the inner layer of corrosion scale without silty sand. The existence of silty sand in the outer layer of corrosion scale inhibited anodic and cathodic currents.

  9. Corrosion testing using isotopes

    Science.gov (United States)

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  10. Study of corrosion behaviour in saturated bentonite barrier Corroben; Estudio de los productos de corrosion de la capsula y su interaccion con la berrar arcillosa de bentonita Corroben

    Energy Technology Data Exchange (ETDEWEB)

    Azkarate, I.; Insausti, M.; Medina, V.

    2004-07-01

    The corrosion behavior in saturated bentonite of various candidate metallic materials, to be used in the fabrication of containers of high level radioactive waste granite repositories, has been studied in this project. Due to the multi-barrier concept in which the canisters are surrounded by a clay barrier of compacted bentonite blocks, special attention has been paid to the characterization of corrosion products and the interaction between these and the repository sealing bentonite. The following metallic materials have been studied: S355 carbon steel, AISI 316L stainless steel, Cu-ETP electrolytic copper and Cu30Ni alloy. Samples of the alloys have been embedded in saturated bentonite to a water content of 25%, and compacted. The obtained pastilles have been introduced in autoclaves and tested at different temperatures and times ranging from one to 18 months. Once tests have concluded, several parameters have been evaluated: corrosion morphology, general corrosion rates calculated by gravimetric methods, nature and composition of the corrosion products and penetration of the corrosion products into the bentonite. Experimental data obtained are used to developed models of the corrosion behavior of canisters under disposal conditions. Results show that S355 carbon steel has suffered the highest general corrosion attack, with average corrosion rates of 10 per year and maximum penetration of 100 measured in specimens tested at 75C during 18 months. The most common analyzed corrosion product has been siderite, FeCO3. Formation of siderite, in the test conditions, effectively passivated the steel because of its stable and adherent feature. In test carried out at 25 and 5 C, sulfur rich corrosion products are observed, thus indicating a microbiologically corrosion phenomena due to the metabolic activity of bacteria present in the bentonite. No appreciable general corrosion rates, nor sensitivity to localized corrosion, has been observed in the AISI 316L stainless steel

  11. Severe Environmental Corrosion Erosion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Severe Environment Corrosion Erosion Facility in Albany, OR, allows researchers to safely examine the performance of materials in highly corrosive or erosive...

  12. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  13. Corrosion-resistant metallic coatings

    OpenAIRE

    F. Presuel-Moreno; M.A. Jakab; N. Tailleart; Goldman, M.; J. R. Scully

    2008-01-01

    We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned) to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic i...

  14. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  15. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  16. Solving A Corrosion Problem

    Science.gov (United States)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  17. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  18. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  19. Research Progress on Natural Products as Corrosion Inhibitor in Acid, Neutral and Alkaline Mediums%酸性、中性、碱性介质中植物型缓蚀剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    郑杰; 王亚娜; 章柏林; 杨婷; 焦学敏; 何勇

    2011-01-01

    Plant extracts have become important as an environmentally acceptable, readily available and renewable source for wide range of inhibitors. In general, the plant extracts are of inhibitors with high inhibition efficiency and of non toxicant. This article summarizes the reaction mechanism and gives a vivid account of natural products which are used as corrosion inhibitors in acid, neutral and alkaline mediums. The prospects of the development trend are also discussed.%植物型缓蚀剂具有成本低,来源广,无毒,高效等特点,是未来缓蚀剂的发展方向.本文概括介绍了植物型缓蚀剂的作用机理,总结了植物型缓蚀剂在酸性、中性和碱性介质中的研究进展,并对今后的研究提出了展望.

  20. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  1. Copper corrosion experiments under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, Kaija [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-06-15

    This report gives results from the corrosion experiments with copper under anoxic conditions. The objective was to study whether hydrogen-evolving corrosion reaction could occur. Copper foil samples were exposed in deaerated deionized water in Erlenmeyer flasks in the glove box with inert atmosphere. Four corrosion experiments (Cu1, Cu2, Cu3 and Cu4) were started, as well as a reference test standing in air. Cu1 and Cu2 had gas tight seals, whereas Cu3 and Cu4 had palladium foils as hydrogen permeable enclosure. The test vessels were stored during the experiments in a closed stainless steel vessel to protect them from the trace oxygen of the gas atmosphere and light. After the reaction time of three and a half years, there were no visible changes in the copper surfaces in any of the tests in the glove box, in contrast the Cu surfaces looked shiny and unaltered. The Cu3 test was terminated after the reaction time of 746 days. The analysis of the Pd-membrane showed the presence of H2 in the test system. If the measured amount of 7.2{center_dot}10{sup 5} mol H{sub 2} was the result of formation of Cu{sub 2}O this would correspond to a 200 nm thick corrosion layer. This was not in agreement with the measured layer thickness with SIMS, which was 6{+-}1 nm. A clear weight loss observed for the Cu3 test vessel throughout the test period suggests the evaporation of water through the epoxy sealing to the closed steel vessel. If this occurred, the anaerobic corrosion of steel surface in humid oxygen-free atmosphere could be a source of hydrogen. A similar weight loss was not observed for the parallel test (Cu4). The reference test standing in air showed visible development of corrosion products.

  2. Impact of Aluminum on Anticipated Corrosion in a Flooded SNF Multi Canister Overpack (MCO)

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    1999-07-06

    Corrosion reactions in a flooded MCO are examined to determine the impact of aluminum corrosion products (from aluminum basket grids and spacers) on bound water estimates and subsequent fuel/environment reactions during storage. The mass and impact of corrosion products were determined to be insignificant, validating the choice of aluminum as an MCO component and confirming expectations that no changes to the Technical Databook or particulate mass or water content are necessary.

  3. Modeling pore corrosion in normally open gold- plated copper connectors.

    Energy Technology Data Exchange (ETDEWEB)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

  4. Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release.

    Science.gov (United States)

    Cui, Yong; Liu, Shuming; Smith, Kate; Hu, Hongying; Tang, Fusheng; Li, Yuhong; Yu, Kanghua

    2016-10-01

    Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl(-) and SO4(2-) ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales. Copyright © 2016. Published by Elsevier B.V.

  5. Interaction of sulfuric acid corrosion and mechanical wear of iron

    Science.gov (United States)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  6. Atmospheric corrosion of carbon steel resulting from short term exposures

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R.; Cook, D.C.; Perez, T.; Reyes, J. [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States)

    1998-12-31

    The study of corrosion products from short term atmospheric exposures of carbon steel, is very important to understand the processes that lead to corrosion of steels, and ultimately improve the performance of such steel in highly corrosive environments. Many regions along the Gulf of Mexico have extremely corrosive environments due to high mean annual temperature, humidity, time-of-wetness and every high atmospheric pollutants. The process the formation of corrosion products resulting from short term exposure of carbon steel, both as a function of environmental conditions and exposure time, has been investigated. Two sets of coupons were exposed at marine and marine locations, in Campeche, Mexico. Each set was exposed between 1 and 12 months to study the corrosion as a function of time. During the exposure periods, the relative humidity, rainfall, mean temperature, wind speed and wind direction were monitored along with the chloride and sulfur dioxide concentrations in the air. The corroded coupons were analyzed by Moessbauer, Raman, Infrared spectroscopies and X-ray diffraction in order to completely identify the oxides and map their location in the corrosion coating. Scattering and transmission Moessbauer analysis showed some layering of the oxides with lepidocrocite and akaganeite closer to the surface. The fraction of akaganeite phase increased at sites with higher chloride concentrations. A detailed analysis on the development of the oxide phases as a function of exposure time and environmental conditions will be presented. (Author)

  7. Pitting and galvanic corrosion behavior of stainless steel with weld in wet-dry environment containing Cl-

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Accelerated corrosion test of stainless steel with weld was carried out to investigate the corrosion behavior under the wetdry cyclic condition in the atmosphere containing Cl-. In the surface morphology, corrosion products were analyzed by metallographic observation, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the damage to stainless steel with weld in the atmosphere containing Cl- is due to localized corrosion, especially pitting and galvanic corrosion.Weld acts as the anode, whereas matrix acts as the cathode in the corrosion process. The pitting corrosion, including the nucleation and growth of a stable pit, is promoted by the presence of wet-dry cycles, especially during the drying stage. Pits centralizing in weld are found to be grouped together like colonies, with a number of smaller pits surrounding a larger pit. The composition of the corrosion products is Fe2O3, Cr2O3, Fe3O4, NiCrO4, etc.

  8. Development of tubings 3 percent of CR with higher CO{sub 2} corrosion resistance for exploration and production of oil and gas; Desenvolvimento de 'tubings' 3 % cromo com maior resistencia a corrosao por CO{sub 2} para exploracao e producao de petroleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ricardo Nolasco de; Loureiro, Flavio Guerra; Ferreira, Marcelo Almeida Cunha [V e M do Brasil, Belo Horizonte, MG (Brazil); Coelho, Sonia Maria [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Quimica; Baptista, Ilson Palmieri [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    On of the most important issues of petroleum and gas industries is the corrosion of equipment for exploitation and production, due to its implications in the depreciation and operational costs, besides environmental, health and safety concerns. The CO{sub 2} corrosion is one of the main causes of failures in oil wells and one of available technological alternatives to its control is the increase in the steel chromium content. This work presents the development of tubings with chromium contents close to 3 %, for application in CO{sub 2} containing wells. The chemical analysis was designed in order to maximize chromium in solid solution meeting, at the same time, the mechanical properties of a API L 80. The evaluation of corrosion resistance was done through static and dynamic tests with p CO{sub 2} of 1b ar, pH of 4,0 and 5,0 and temperatures of 25, 50 and 70 deg C. In general, the steel with 3 % of chromium showed uniform corrosion approximately 3 times lower, besides crevice corrosion, pitting and polarization resistance were superior than that form reference steel, API L 80 type 1. The good results coming from laboratory incentives even more the run field tests, which started recently in Campos Basin PETROBRAS wells. (author)

  9. 16 CFR 23.10 - Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant...

    Science.gov (United States)

    2010-01-01

    ... INDUSTRIES § 23.10 Misuse of “corrosion proof,” “noncorrosive,” “corrosion resistant,” “rust proof,” “rust resistant,” etc. (a) It is unfair or deceptive to: (1) Use the terms “corrosion proof,” “noncorrosive... the product will be immune from rust and other forms of corrosion during the life expectancy of the...

  10. Corrosion Behavior of 110S Tube Steel in Environments of High H2S and CO2 Content

    Institute of Scientific and Technical Information of China (English)

    LI W en-fei; ZHOU Yan-jun; XUE Yan

    2012-01-01

    The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.

  11. Waste incineration corrosion processes: Oxidation mechanisms by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.J.; Hierro, M.P.; Nieto, J. [Departamento de Ciencia de los Materiales. Facultad de Ciencias Quimicas, Grupo de Investigacion de Ingenieria de Superficies, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2008-07-15

    Molten chloride mixtures are formed in waste incineration plants during waste firing and energy production. These mixtures are responsible for degradation processes like hot corrosion. In order to evaluate the damage of molten salt mixtures in waste incineration environments, the alloys 625 and 617 were exposed beneath a molten KCl-ZnCl{sub 2} mixture at 650 C in air. The corrosion process was monitored by electrochemical impedance spectroscopy (EIS). An extensive microscopy analysis has been done in order to correlate the electrochemical results, and to establish an electrochemical mechanism for such high temperature corrosion processes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. EVALUATION OF THE FLOW ACCELERATED CORROSION OF COPPER PIPES

    OpenAIRE

    Tatiana Liptáková; Pavol Fajnor; Alexander Dodek

    2010-01-01

    Corrosion behavior of the Cu pipe system has been investigated by long term experiment. The two identical experimental systems were made and fulfilled by the solution of 3 % NaCl. The work medium in the first system was flowing eight hour in day and in the second the medium was stagnant. The systems were subjected eight hour in day to temperature of 80°C. After eleven month the experiment was finished and the corrosion attack and character of corrosion products in the systems have been invest...

  13. EVALUATION OF THE FLOW ACCELERATED CORROSION OF COPPER PIPES

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2010-12-01

    Full Text Available Corrosion behavior of the Cu pipe system has been investigated by long term experiment. The two identical experimental systems were made and fulfilled by the solution of 3 % NaCl. The work medium in the first system was flowing eight hour in day and in the second the medium was stagnant. The systems were subjected eight hour in day to temperature of 80°C. After eleven month the experiment was finished and the corrosion attack and character of corrosion products in the systems have been investigated by light and SEM microscopy, EIS tests and visually too.

  14. Corrosion behaviour of aluminium-magnesium alloys in molten sodium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The corrosion behaviour of the Al-1% Mg, A1-3% Mg, A1-5% Mg and A1-3% Mg-0.15%Zr alloys in moltensodium was investigated. The morphology of the corrosion products and the alloying element distribution of the specimenswere analyzed by using OM, SEM and EDS. The results showed that the effects of the magnesium content and the im-mersion temperature on the corrosion of the specimens are related to β phase (Mg5Al8).

  15. Novel accelerated corrosion test for LY12CZ and LC4CS aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CAI Jian-ping; LIU Ming

    2006-01-01

    A new accelerated corrosion test-comprehensive environmental test (CET) was developed in order to estimate the outdoor corrosion of aluminum alloys in marine environment. The environmental characteristics in CET were studied by atmospheric corrosion monitor (ACM), and the morphology of corrosion product was observed by SEM. The correlation between the accelerated corrosion tests and outdoor exposure was discussed. The results show that the anti-corrosion ranking for LY12CZ, LC4CS, clad LY12CZ, and clad LC4CS in CET is the same as that of the alloys exposed outdoor, and ACM study shows that CET demonstrates the same environmental characteristics as that exposed outdoor. CET is a more accurate accelerated corrosion test, and a mathematical relation was obtained to describe the relation between CET and outdoor test.

  16. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-10-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  17. Roles of Radiolytic and Externally Generated H2 in the Corrosion of Fractured Spent Nuclear Fuel.

    Science.gov (United States)

    Liu, Nazhen; Wu, Linda; Qin, Zack; Shoesmith, David W

    2016-11-15

    A 2-D model for the corrosion of spent nuclear fuel inside a failed nuclear waste container has been modified to determine the influence of various redox processes occurring within fractures in the fuel. The corrosion process is driven by reaction of the fuel with the dominant α radiolysis product, H2O2. A number of reactions are shown to moderate or suppress the corrosion rate, including H2O2 decomposition and a number of reactions involving dissolved H2 produced either by α radiolysis or by the corrosion of the steel container vessel. Both sources of H2 lead to the suppression of fuel corrosion, with their relative importance being determined by the radiation dose rate, the steel corrosion rate, and the dimensions of the fractures in the fuel. The combination of H2 from these two sources can effectively prevent corrosion when only micromolar quantities of H2 are present.

  18. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    Energy Technology Data Exchange (ETDEWEB)

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

  19. Corrosion protection by anaerobiosis.

    Science.gov (United States)

    Volkland, H P; Harms, H; Wanner; Zehnder, A J

    2001-01-01

    Biofilm-forming bacteria can protect mild (unalloyed) steel from corrosion. Mild steel coupons incubated with Rhodoccocus sp. strain C125 and Pseudomonas putida mt2 in an aerobic phosphate-buffered medium containing benzoate as carbon and energy source, underwent a surface reaction leading to the formation of a corrosion-inhibiting vivianite layer [Fe3(PO4)2]. Electrochemical potential (E) measurements allowed us to follow the buildup of the vivianite cover. The presence of sufficient metabolically active bacteria at the steel surface resulted in an E decrease to -510 mV, the potential of free iron, and a continuous release of ferrous iron. Part of the dissolved iron precipitated as vivianite in a compact layer of two to three microns in thickness. This layer prevented corrosion of mild steel for over two weeks, even in a highly corrosive medium. A concentration of 20 mM phosphate in the medium was found to be a prerequisite for the formation of the vivianite layer.

  20. Initial atmospheric corrosion of Zinc sprayed with NaCl

    Institute of Scientific and Technical Information of China (English)

    屈庆; 严川伟; 张蕾; 刘光恒; 曹楚南

    2003-01-01

    Regularities of the initial atmospheric corrosion of zinc sprayed with different amount of NaCl exposed to air at 80% relative humidity and 25 ℃ were investigated via quartz crystal microbalance in laboratory. The results show that NaCl can accelerate the corrosion of zinc. Mass gain of zinc increases with the exposure time increasing, which can be correlated by using exponential decay function. The relationship between mass gain and amount of NaCl sprayed at a certain exposure time follows a quadratic function. Meanwhile, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and electron dispersion X-ray analysis were used to characterize the corrosion surface and products. Zn5(OH)8Cl2*H2O and ZnO are the dominant corrosion products, which unevenly distribute on the surface of zinc in the presence of NaCl. A probable mechanism is simply presented to explain the experimental results.

  1. Smart Coatings for Corrosion Protection

    Science.gov (United States)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  2. Corrosion Rate of Hydrogenation to C110 Casing in High H2S Environment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi; LI Changjin; ZHANG Jiyin; SHI Taihe

    2012-01-01

    The corrosion behavior of C110 bushing at high temperature and high pressure with a high H2S / CO2 was studied,and a basis for the materials selection of sour gas well bushing was provided in H2S,CO2 and saline coexisting environment.Under acidic condiction,hydrogen atoms greatly entered into the material and caused the material properties changed.Weight loss method was used to study the corrosion rate of hydrogen charging samples and original untreated samples in simulated oil field environment.PAR2273 electrochemical workstation was used to examine the electrochemical performance of samples untreated,hydrogen charging after reacting in autoclave.The corrosion product film was observed through SEM.The experimental results show that sample with hydrogen charging has a much more obvious partial corrosion and pitting corrosion than the untreated blank sample even the downhole corrosion speed of bushing is increased after being used for a period of time.Polarization curve shows the corrosion tendency is the same between sample with or without hydrogen charging and corrosion tendency is reduced by corrosion product film.A layer of dense product film formed on the surface of samples provides a certain protective effect to the matrix,but cracked holes which will accelerate partial corrosion of the sample were also observed.

  3. Initial corrosion behaviors of AZ91 magnesium alloy in the presence of SO2

    Institute of Scientific and Technical Information of China (English)

    Cui Lin; Xiaogang Li

    2004-01-01

    The effects of SO2 on the initial atmospheric corrosion of AZ91D magnesium alloy were investigated in laboratory. Metallographic observation, SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction) and XPS (X-ray Proton Spectrograph) were used to analyze and discuss the initial surface morphology of corrosion layers and corrosion products. The corrosion rate of the alloy increases with increasing the content of SO2. The initial attack has the characteristics of localized corrosion and preferentially concentrates on α phase. MgO and Mg(OH)2 form at first, which provide a protective layer, then the existence of SO2 decreases the pH of the thin solution on the alloy, accelerates dissolution process, and promotes the formation of MgSO3·6H20 and MgSO4·6H20,meanwhile cracks were found on the corrosion products with corrosion continuation. These soluble corrosion products and the cracks provide the paths for filtering oxygen and corrosion pollutants into the matrix, which results in severe localized corrosion and the loss of protective function of film.

  4. Corrosion potential analysis system

    Science.gov (United States)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  5. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem.

    Science.gov (United States)

    Enning, Dennis; Garrelfs, Julia

    2014-02-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen ("chemical microbially influenced corrosion"; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons ("electrical microbially influenced corrosion"; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments.

  6. Sealing and anti-corrosive action of tannin rust converters

    Energy Technology Data Exchange (ETDEWEB)

    Gust, J.; Bobrowicz, J. (Building Research Inst., Warsaw (Poland))

    1993-01-01

    A possibility of the application of mercury porosimetry in the investigation on porosity in corrosion products of the carbon steel along with the degree of sealing by the use of tannin rust converters is presented. The effect of the atmospheric humidity on the rust conversion including the time of that conversion on the degree of rust sealing is discussed. The results of the corrosion investigation of carbon steel covered with a layer of the rust converted with tannin-containing agents are presented.

  7. Electrochemical study of corrosion inhibition of stainless steel in phosphoric medium

    Energy Technology Data Exchange (ETDEWEB)

    Hnini, K.; Chtaini, A. [Laboratoire d' Electrochimie et de Bio Corrosion, Faculte des Sciences et Techniques, Beni-Mellal (Morocco); Khouili, M.; Elbouadili, A. [Laboratoire de Chimie Organique et Analytique, Faculte des Sciences et Techniques, Beni-Mellal (Morocco)

    2004-07-01

    The corrosion of metals represents a terrible waste of both natural resources and money, the failure of some stainless steel resulting from pitting corrosion is some times considered a technological problem, consequently, much effort has been expended in attempting to understand and overcome the corrosion therefore, many stainless steel/ environment combinations have been studied. The use of heterocyclic compounds as inhibitors is one of the most practical methods for protection against corrosion in acidic media. In continuation of our work on development of macrocyclic compounds as corrosion inhibitors we report in our study the corrosion inhibiting behaviour of organic compound Methoxy-2-Allyl-4 Phenol (MAP) containing coordinating and conjugation groups, at three forms (natural, polymerized and chemically treated) on the corrosion of stainless steel in phosphoric acid. This study focused on the comparison for corrosion inhibition proprieties of these different applications using potentiodynamic polarization, electrochemical impedance spectroscopy and SEM. The specimen was evaluated to determine change in his corrosion potential and resistance polarization; These MAP products have exhibited corrosion inhibition by maintaining a high resistance polarization (low corrosion rate) in each application. These results reveal that this compound is efficient inhibitor in all forms; the most inhibition efficiency is obtained with polymerized form. To further evaluate the test data, the steel surfaces were analyzed using scanning electron microscopy, SEM observations of surface treated concrete confirmed presence of inhibitor on the steel surfaces. (authors)

  8. The corrosive nature of manganese in drinking water.

    Science.gov (United States)

    Alvarez-Bastida, C; Martínez-Miranda, V; Vázquez-Mejía, G; Solache-Ríos, M; Fonseca-Montes de Oca, G; Trujillo-Flores, E

    2013-03-01

    Corrosion problems having to do with drinking water distribution systems are related to many processes and factors and two of them are ionic acidity and carbon dioxide, which were considered in this work. The corrosion character of water is determined by the corrosion indexes of Langelier, Ryznar, Larson, and Mojmir. The results show that pipes made of different materials, such as plastics or metals, are affected by corrosion, causing manganese to be deposited on materials and dissolved in water. The deterioration of the materials, the degree of corrosion, and the deposited corrosion products were determined by X-ray diffraction and Scanning Electron Microscopy. High levels of manganese and nitrate ions in water may cause serious damage to the health of consumers of water. Three wells were examined, one of them presented a high content of manganese; the others had high levels of nitrate ions, which increased the acidity of the water and, therefore, the amount of corrosion of the materials in the distribution systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Corrosion and conservation of weapons and military equipment

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdić

    2012-01-01

    Full Text Available This paper analyzed the conditions for the occurrence of corrosion processes on historically important weapons and military equipment made of steel during the period in outdoor environment. A considerable attention has been given to the characteristics of the most important corrosion products formed on the steel surface. The formation of akaganite, β-FeOOH is a sign of active corrosion under a layer of corrosion products. The conditions that cause the formation and regeneration of hydrochloric and sulphuric acid during the exposure to the elements were analyzed. The most often applied methods of diagnostics and procedures of removing active corrosion anions (desalination were described as well. The NaOH solution of certain pH values still has the most important application for the desalination process. The procedures for cleaning the surface before the application of protective coatings and the application of chemicals that transform rust into stable compounds were discussed. As protective coatings, different types of organic coatings plated on well-prepared steel surfaces were used and sometimes special types of waxes as well. This paper presents the results of the tests of corrosion products taken from the exhibits of weapons and military equipment from the Military Museum in Belgrade.

  10. Pitting Corrosion of 13Cr Steel in Oxygen-free Completion Fluids of Organic Salt

    Institute of Scientific and Technical Information of China (English)

    Lining XU; Yao MENG; Yunguang SHI; Yan LIU

    2013-01-01

    Corrosion behavior of 13Cr steel in oxygen-free completion fluids of the organic salt at 180 ℃ was studied.Cross-sectional morphologies of the corrosion products were observed by scanning electron microscopy.Energy dispersive spectrum (EDS) was used to study the element distribution of the corrosion product inside and outside the pits.The results show that the organic salt causes severe pitting corrosion of 13Cr steel.The width and depth of the pits increase simultaneously when the test duration prolongs,and potassium enriches inside the pits.

  11. Scanning reference electrode techniques in localized corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H.S.; Vyas, B.

    1979-04-01

    The principles, advantages, and implementations of scanning reference electrode techniques are reviewed. Data related to pitting, intergranular corrosion, welds and stress corrosion cracking are presented. The technique locates the position of localized corrosion and can be used to monitor the development of corrosion and changes in the corrosion rate under a wide range of conditions.

  12. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  13. Initial corrosion behavior of AZ91 magnesium alloy in simulating acid rain under wet-dry cyclic condition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Corrosion behavior of AZ91 magnesium alloy in simulating acid rain under wet-dry cyclic condition was investigated.The results show that corrosion potential shifts positively and the corrosion current density decreases at low wet-dry cyclic time.Further increase of the cyclic time results in the negative movement of corrosion potential and the increase of current density.SEM observation indicates that corrosion Occurs only in αphase,βphase is inert in corrosive medium,and the corrosion of AZ91 magnesium appears in uniform characteristic.XPS analysis suggests that the corrosion product is mainly composed of oxide and hydroxide of magnesium and aluminum,and a small amount of sulfate is also contained in the film.

  14. Kinetics of Atmospheric Corrosion of Mild Steel in Marine and Rural Environments

    Institute of Scientific and Technical Information of China (English)

    S. Palraj; M.Selvaraj; K.Maruthan; M.Natesan

    2015-01-01

    In continuation of the extensive studies carried out to update the corrosion map of India, in this study, the degradation of mild steel by air pollutants was studied at 16 different locations from Nagore to Ammanichatram along the east coast of Tamilnadu, India over a period of two years. The weight loss study showed that the mild steel corrosion was more at Nagapattinam site, when compared to Ammanichatram and Maravakadu sites. A linear regression analysis of the experimental data was attempted to predict the mechanism of the corrosion. The composition of the corrosion products formed on the mild steel surfaces was identified by XRD technique. The corrosion rate values obtained are discussed in the light of the weathering parameters, atmospheric pollutants such as salt content & SO2 levels in the atmosphere, corrosion products formed on the mild steel surfaces.

  15. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  16. Working with miraculous microbes against corrosion

    Institute of Scientific and Technical Information of China (English)

    XIN Ling

    2009-01-01

    @@ Microorganisms, despite of their simple structure and tiny size, are often vital to humans and the environment. You might know about their contributions to the Earth's carbon cycle and amazing ability to decompose waste products. But have you ever heard of microbes that eat away undersea metal, or those who protect iron from corrosion? Some may even wow you with the feat to generate electricity and clean up polluted water!

  17. Corrosion-resistant metallic coatings

    Directory of Open Access Journals (Sweden)

    F. Presuel-Moreno

    2008-10-01

    Full Text Available We describe recent computational and experimental studies on the corrosion properties of metallic coatings that can be tailored (tuned to deliver up to three corrosion-inhibiting functions to an underlying substrate. Attributes are tuned by a selection of alloy compositions and nanostructures, ideally in alloy systems that offer flexibility of choice to optimize the corrosion-resisting properties. An amorphous Al-based coating is tuned for corrosion protection by on-demand release of ionic inhibitors to protect defects in the coating, by formation of an optimized barrier to local corrosion in Cl− containing environments, as well as by sacrificial cathodic prevention. Further progress in this field could lead to the design of the next generation of adaptive or tunable coatings that inhibit corrosion of underlying substrates.

  18. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  19. Corrosion inhibitors from expired drugs.

    Science.gov (United States)

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  20. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  1. Nuclear corrosion science and engineering

    CERN Document Server

    2012-01-01

    Understanding corrosion mechanisms, the systems and materials they affect, and the methods necessary for accurately measuring their incidence is of critical importance to the nuclear industry for the safe, economic and competitive running of its plants. This book reviews the fundamentals of nuclear corrosion. Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation. This book critically reviews the fundamental corrosion mechani...

  2. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2009-01-01

    in each dimen- sion than bacteria and archaea. Fungi are eukaryotic organisms. Yeasts , molds, and mushrooms are examples of fungi. The majority of...occurs widely in natural waters and can be carried out by a variety of organisms including bacteria, yeast , and fungi (42). Ghiorse (43) prepared a...and its alloys is due to an aluminum oxide passive film. Anodizing produces thicker insulating films and better corrosion resistance. The natural

  3. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  4. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  5. Flow accelerated preferential weld corrosion of X65 steel in brine

    OpenAIRE

    Adegbite, Michael Adedokun

    2014-01-01

    Preferential weld corrosion (PWC) remains a major operational challenge that jeopardizes the integrity of oil and gas production facilities. It is the selective dissolution of metal associated with welds, such that the weld metal (WM) and / or the adjacent heat-affected zone (HAZ) corrode rather than the parent metal (PM). Corrosion inhibition is conventionally used to mitigate this problem however several indications suggest that some corrosion inhibitors may increase PWC. Fur...

  6. Corrosion of bio implants

    Indian Academy of Sciences (India)

    U Kamachi Mudali; T M Sridhar; Baldev Raj

    2003-06-01

    Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co–Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

  7. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  8. Corrosion detection by induction

    Science.gov (United States)

    Roddenberry, Joshua L.

    Bridges in Florida are exposed to high amounts of humidity due to the state's geography. This excess moisture results in a high incidence of corrosion on the bridge's steel support cables. Also, the inclusion of ineffective waterproofing has resulted in additional corrosion. As this corrosion increases, the steel cables, responsible for maintaining bridge integrity, deteriorate and eventually break. If enough of these cables break, the bridge will experience a catastrophic failure resulting in collapse. Repairing and replacing these cables is very expensive and only increases with further damage. As each of the cables is steel, they have strong conductive properties. By inducing a current along each group of cables and measuring its dissipation over distance, a picture of structural integrity can be determined. The purpose of this thesis is to prove the effectiveness of using electromagnetic techniques to determine cable integrity. By comparing known conductive values (determined in a lab setting) to actual bridge values, the tester will be able to determine the location and severity of any damage, if present.

  9. Effect of Chloride on the Atmospheric Corrosion of Cast Iron in Sulphur or Nitrogen-Bearing Pollutant Environment%氯离子在含硫氮污染物的环境中对模拟铁器文物的大气腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    曹霞; 许淳淳

    2005-01-01

    The effect of chloride on the atmospheric corrosion of cast iron in sulphur or nitrogen-bearing pollutant was investigated by using periodic wet-dry test, electrochemical experiment and surface tension test. Scanning electron microscopy coupled with energy dispersive atomic (EDAX) and stereoscopic microscopy was used to identify the corrosion processes and products. Cl- and NO-3 were shown accelerating effects during the whole corrosion process but depression effects were observed in Cl- and HSO-3 bearing pollutant at the initial corrosion stage.However, with the corrosion going on, the depression effects was less obviously and the initial corrosion process was investigated from the viewpoint of surface activity. At the initial corrosion stage, the corrosion rate was proportional to the adsorptivity of anions, but as corrosion went on, the penetration effect of anions and different characteristics of the corrosion products began to dominate the corrosion process, which led to changes on the corrosion rate.

  10. Isothermal corrosion Fe3Si alloy in liquid zinc

    Institute of Scientific and Technical Information of China (English)

    Wen jun Wang; Junping Lin; Yanli Wang; Guoliang Chen

    2007-01-01

    The isothermal corrosion testing,microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied.The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially.Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc,although aluminum contents in the molten zinc were very low.The phase of reaction product was thought to be Fe2Al5.The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10-3 mm/h,therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak.

  11. Standard guide for corrosion-related failure analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers key issues to be considered when examining metallic failures when corrosion is suspected as either a major or minor causative factor. 1.2 Corrosion-related failures could include one or more of the following: change in surface appearance (for example, tarnish, rust, color change), pin hole leak, catastrophic structural failure (for example, collapse, explosive rupture, implosive rupture, cracking), weld failure, loss of electrical continuity, and loss of functionality (for example, seizure, galling, spalling, swelling). 1.3 Issues covered include overall failure site conditions, operating conditions at the time of failure, history of equipment and its operation, corrosion product sampling, environmental sampling, metallurgical and electrochemical factors, morphology (mode) or failure, and by considering the preceding, deducing the cause(s) of corrosion failure. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibili...

  12. Corrosion of titanium in supercritical water oxidation environments

    Institute of Scientific and Technical Information of China (English)

    卢建树; 毛志远; 张九渊; 马淳安; 毛信表; 李肖华

    2002-01-01

    Supercritical water oxidation (SCWO) can effectively destroy many kinds of civilian and military wastes. The high temperature and high pressure SCWO operation conditions generate very corrosive environment that many engineering materials fail to withstand. Preliminary test shows that titanium may be a promising material in most of SCWO conditions. Commercially pure titanium is tested in four kinds of SCWO environments. Phenol, sodium dodecyl-benzosulfonate, n-amine phenol, and chlorpyrifos were chosen as typical target pollutants. The results show that titanium is only superficially attacked in the first three SCWO environments while in chlorpyrifos SCWO medium titanium is corroded. The corrosion is temperature dependent, with heavier corrosion occurring at near critical temperature. X-ray diffraction analysis shows that the corrosion products consist of titanium oxy- phosphates and titanium oxide, in which Ti5O4(PO4)4 is the main phase.

  13. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  14. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    electrochemical measurements as well as elemental analysis look very promising for elucidating corrosion reaction mechanisms. The study of initial surface reactions at the atomic or submicron level is becoming an important field of research in the understanding of corrosion processes. At present, mainly two...... scanning microscope techniques are employed investigating corrosion processes, and usually in situ: in situ scanning tunneling microscopy (in situ STM) and in situ scanning force microscopy (in situ AFM). It is these techniques to which attention is directed here....

  15. Panel report on corrosion in energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    Corrosion problems in high-temperature (non aqueous) energy systems, corrosion in aqueous energy systems and institutional problems inhibiting the development of corrosion science and engineering are discussed. (FS)

  16. Panel report on corrosion in energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    Corrosion problems in high-temperature (non aqueous) energy systems, corrosion in aqueous energy systems and institutional problems inhibiting the development of corrosion science and engineering are discussed. (FS)

  17. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting....... Consequently, a combination of carburizing and oxidizing conditions has a strong mutual catalyzing effect on the metal dusting corrosion....

  18. Study of biofuels corrosiveness; Estudo da corrosividade de biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Rafaela da Conceicao; Branco, Lucas da Paz Nogueira; Guimaraes, Maria Jose de Oliveria Cavalcanti; Seidl, Peter Rudolf [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2012-07-01

    The replacement of crude oil derivatives with biofuels is part of an energy strategy, in which efficiency and conservation should play a leading role. The renewable nature of biodiesel is based in the fact that it is derived from raw materials from agricultural activities, instead of petroleum. Thinking about the increasingly production of biodiesel and its storage to make the proper mixtures, the corrosion of biodiesel tanks can occur over time. The copper corrosion test is used as the standard method for biodiesel corrosivity, however it is designed for diesel fuel from petroleum. Petrodiesel contains sulfur, which attacks the copper alloys. Since biodiesel is free of this element, it should be characterized in a different way. This work intends to analyze existing methodologies in order to evaluate the corrosivity of biodiesel. A literature search was performed in Web of Science database, selecting keywords for a comprehensive search. For the final analysis, a selection of papers classified according to publication year, country and main subject covered was used. Research on biofuels corrosivity is recent and major countries where published (USA, Malaysia and Brazil) which have advantages in terms of size and production of oil seeds. Biodiesel is more corrosive than petroleum diesel, but there is no sufficient evidences as to verify if the level of corrosion found in biodiesel is within acceptable limits for automotive components. Ferrous alloys are more resistant to biodiesel attack than non-ferrous alloys. Among non-ferrous alloys, copper and lead alloys are the most vulnerable, followed by aluminum. It is necessary to develop appropriate methodologies to determine and characterize the corrosivity of biodiesel on engine parts and alloys used in its manufacture and storage. (author)

  19. Evaluation of steel corrosion by numerical analysis

    OpenAIRE

    Kawahigashi, Tatsuo

    2017-01-01

    Recently, various non-destructive and numerical methods have been used and many cases of steel corrosion are examined. For example, methods of evaluating corrosion through various numerical methods and evaluating macrocell corrosion and micro-cell corrosion using measurements have been proposed. However, there are few reports on estimating of corrosion loss with distinguishing the macro-cell and micro-cell corrosion and with resembling an actuality phenomenon. In this study, for distinguishin...

  20. Boiler corrosion. Corrosion of boilers at low boiler water temperatures. Heizkessel-Korrosion. Korrosion von Heizkesseln bei tiefen Kesselwassertemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-02-01

    Thermostatic cast iron and steel 35.8 specimens were inserted between the fire tubes of a test boiler and exposed to flue gases for a period of three weeks. The corrosion rates at material temperatures between 20 and 60deg C as well as the effects of continuous and intermittent boiler operation were determined. Details are given on the specimens alloying constituents, the testing and test conditions (schematic representation of the experimental set-up). Diagrams and tables facilitate access to test results informing about corrosion rates and corrosion product structure analyses for continuous burner operation. While low boiler water temperatures (below 60deg C in the case of extra light heating oils) are found to necessarily involve higher risks and shorter boiler service lives, low flue gas temperatures alone are considered not to be increasing the risk of boiler corrosion. (HWJ).

  1. Archaeological analogs and corrosion; Analogues archeologiques et corrosion

    Energy Technology Data Exchange (ETDEWEB)

    David, D

    2008-07-01

    In the framework of the high level and long life radioactive wastes disposal deep underground, the ANDRA built a research program on the material corrosion. In particular they aim to design containers for a very long time storage. Laboratory experiments are in progress and can be completed by the analysis of metallic archaeological objects and their corrosion after hundred years. (A.L.B.)

  2. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    Energy Technology Data Exchange (ETDEWEB)

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33½ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  3. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.F. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Chang, J.X., E-mail: jxchang11s@imr.ac.cn [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, H.; Lou, L.H. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, J. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2015-01-15

    Highlights: • Three nickel-base superalloys containing different Ta content were subjected to Na{sub 2}SO{sub 4}-induced hot corrosion. • Ta improved the hot corrosion resistance. • Ta decreased the diffusion rate of alloying elements. • Ta promoted the formation of (Cr, Ti)TaO{sub 4} layer. - Abstract: Hot corrosion behaviour of a directionally solidified nickel base superalloy with different tantalum (Ta) addition in fused sodium sulphate (Na{sub 2}SO{sub 4}) under an oxidizing atmosphere at 900 °C has been studied. It was shown that the hot corrosion resistance was improved by increasing of Ta content. The hot corrosion kinetics of the alloy with lower Ta content deviated from parabolic law after 60 h corrosion test, whereas the corrosion kinetics of the alloy with high Ta content followed the parabolic law before 60 h and with less mass change afterwards. A detailed microstructure study using scanning electron microscopy (SEM) equipped with an energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) was performed to investigate the corrosion products and mechanisms. The beneficial effect of Ta was found to be resulted from a Ta-enriched (Cr, Ti)TaO{sub 4} layer inside the corrosion scale, which led to the retarding of the element diffusion so as to decrease the hot corrosion kinetics.

  4. On Corrosion of Ferrous Metals in Typical Indian Soils Part I : Cast Iron

    Directory of Open Access Journals (Sweden)

    Brajendra Nath Tripathi

    1965-01-01

    Full Text Available Corrodibility of cast iron in ten typical Indian soils, employing Schwerdtfeger's soil corrosion cell procedure and the physico-chemical properties of the soils responsible for their corrosivity have been determined. The results have been statistically analysed, interpreted and correlated with various factors. Corrosion of cast iron in non acidic soils (p/supH4-10 proceeds through electro-chemical mechanism. Usually the rate of corrosion is maximum at the beginning and with development of the film of corrosion products, the rate gradually decrease with time until it becomes more or less constant, 'Even' general corrosion is observed on most of the cases. The maximum penetration is directly proportional corrodibility. The corrosivity of soils in situ is directly poroportional to the moisture equivalent or, in turn, to the clay content. The corrosivity of soils increases with the concentration at soluble electrolytes. Ferric oxide present in a laterite soil functions as a cathodic depolariser and hence increases its corrosivity. In an acidic soil, the corrosion mainly proceeds through the mechanism of direct chemical reaction.

  5. Microbial Corrosion and Cracking in Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1998-01-01

    and corrosion products (ferrous sulphides) on the metal surface. Experiments have been conducted on carbon steel exposed in near neutral (pH 6 to 8.5) saline hydrogen sulphide environment (0 to 100 mg/l total dissolved sulphide) for a period of 14 days. Furthermore coupons have been exposed in a bioreactor...... for a period of up to 120 days in sulphide-producing environment controlled by biological activity of (SRB).Electrochemical studies have been conducted in order to characterise the electrochemical response of the biofilm / ferrous sulphide / metal interface and clarify whether the tested electrochemical...... and not electrochemically active film. The polarisation resistance increases with the film resistance and an small underestimation of corrosion rate is possible, if film resistance is large.· An electrochemically reactive film (ferrous sulphides) results in current contributions that will be added to the metal dissolution...

  6. Corrosion induced strain monitoring through fibre optic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Grattan, S K T [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Belfast, BT9 5AG (United Kingdom); Basheer, P A M [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Belfast, BT9 5AG (United Kingdom); Taylor, S E [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, David Keir Building, Belfast, BT9 5AG (United Kingdom); Zhao, W [School of Engineering and Mathematical Sciences, City University, Northampton Square, London, EC1V 0HB (United Kingdom); Sun, T [School of Engineering and Mathematical Sciences, City University, Northampton Square, London, EC1V 0HB (United Kingdom); Grattan, K T V [School of Engineering and Mathematical Sciences, City University, Northampton Square, London, EC1V 0HB (United Kingdom)

    2007-10-15

    The use of strain sensors is commonplace within civil engineering. Fibre optic strain sensors offer a number of advantages over the current electrical resistance type gauges. In this paper the use of fibre optic strain sensors and electrical resistance gauges to monitor the production of corrosion by-products has been investigated and reported.

  7. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  8. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    , the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pellets + heavy fuel oil + gas. Some reaction products due to the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates. However, the most...... significant corrosion attack was due to sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed....

  9. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    in this environment, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pelletsþheavy fuel oilþgas. Some reaction products resulting from the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...

  10. Mechanism of protective film formation during CO2 corrosion of X65 pipeline steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Electrochemical techniques,X-ray diffraction (XRD),and scanning electron microscopy (SEM) were applied to study the corrosion behaviors of X65 steel in static solution with carbon dioxide (CO2 at 65℃.The results show that iron carbonate (FeCO3deposits on the steel surface as a corrosion product scale.This iron carbonate scale acts as a barrier to CO2 corrosion,and can reduce the general corrosion rate.The protection ability of the scale is closely related to the scale morphological characteristics.

  11. Optical-Based Sensors for Monitoring Corrosion of Reinforcement Rebar via an Etched Cladding Bragg Grating

    Directory of Open Access Journals (Sweden)

    Faisal Rafiq Mahamd Adikan

    2012-11-01

    Full Text Available In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed.

  12. A Review of CO2 Corrosion Inhibition by Imidazoline-based Inhibitor

    Directory of Open Access Journals (Sweden)

    Jaal Rafida Ahmad

    2014-07-01

    Full Text Available Carbon dioxide (CO2 corrosion is one of the most significant forms of attack in the oil and gas production and transportation systems. Corrosion inhibitors have been widely used in an effort to reduce the detrimental effect of the corrosion process. Different types of corrosion inhibitors have been applied for this purpose. The most frequent is the imidazoline-based inhibitors (IM, owing to their good adsorption characteristics and film-forming capability. Albeit their extensive use, their inhibition mechanism is not fully understood. This paper highlights the inhibition mechanism of IM and also the factors that contribute to its inhibition mechanism.

  13. An overview of the corrosion aspect of dental implants (titanium and its alloys

    Directory of Open Access Journals (Sweden)

    Chaturvedi T

    2009-01-01

    Full Text Available Titanium and its alloys are used in dentistry for implants because of its unique combination of chemical, physical, and biological properties. They are used in dentistry in cast and wrought form. The long term presence of corrosion reaction products and ongoing corrosion lead to fractures of the alloy-abutment interface, abutment, or implant body. The combination of stress, corrosion, and bacteria contribute to implant failure. This article highlights a review of the various aspects of corrosion and biocompatibility of dental titanium implants as well as suprastructures. This knowledge will also be helpful in exploring possible research strategies for probing the biological properties of materials.

  14. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    Science.gov (United States)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  15. An investigation of the corrosive wear of steel balls in grinding of sulphide ores

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2015-06-01

    Full Text Available Ball mills are common grinding equipment in mineral processing industries. Ball wear results from three mechanisms namely impact, abrasion and corrosion. Of these, the corrosion mechanism is the least investigated, due to its chemical-electrochemical nature. Therefore, the aims of this research were to investigate the grinding chemistry influence (slurry pH, solid percentage, water chemistry and gas purging on corrosive wear of steel balls and to determine the contribution of corrosion mechanism to total wear of steel balls. The results indicated that the mass losses of steel balls could be reduced considerably by controlling the pulp chemistry inside the mill. In addition, the results showed that 73.51% of the corrosion products are generated from the oxidation of steel balls. It was also estimated that the corrosion mechanism accounts for 26.68% of the total wear of steel balls.

  16. Corrosion of Carbon Steel under Epoxy-varnish Coating Studied by Scanning Kelvin Probe

    Institute of Scientific and Technical Information of China (English)

    XIAO Kui; DONG Chaofang; ZHANG Xin; WU Junsheng; XU Longjiao; LI Xiaogang

    2012-01-01

    The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment.The localized corrosion was accurately characterized by SKP in both coated and uncoated regions.The SKP results showed that Volta potential varied with the test time,and the more the corrosion products,the more positive the potential.The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time.The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP.The corrosion mechanism of partly coated steel in NaC1 salt spray was discussed according to the potential maps and corrosion morphologies.

  17. Recent developments in wear- and corrosion-resistant alloys for the oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Raghu, D. [Deloro Stellite Inc., Goshen, IN (United States). Stellite Coatings Div.; Wu, J.B.C. [Stoody Deloro Stellite, Inc., St. Louis, MO (United States)

    1997-11-01

    Oil production and refining pose very severe wear and corrosion environments. Material designers are challenged with the need to design and develop materials that combine high corrosion resistance with good wear resistance. Coupled with that is the need for these materials to meet requirements such as fracture toughness and resistance to sulfide and chloride stress corrosion cracking. Often, increasing wear resistance compromises the corrosion and welding characteristics. This article covers a variety of material developments that address the problems of wear and corrosion, including alloy design fundamentals and pertinent wear properties and general corrosion resistance compared to traditional wear-resistant materials. Proven applications, with particular reference to petroleum and petrochemical areas, are discussed. Potential applications are also cited.

  18. Corrosion Behaviors of PI 10 Steel and Chromium Coating in CO2-saturated Simulated Oilfield Brine

    Institute of Scientific and Technical Information of China (English)

    LIN Naiming; XIE Faqin; ZHOU Jun; WU Xiangqing; TIAN Wei

    2011-01-01

    The protective chromium coating was prepared on P110 steel by employing pack cementation. The corrosion behaviors of P110 steel and the obtained coating in CO2-saturated simulated oilfield brine were studied by static complete immersion tests and electrochemical measurements.The corrosion attacks of the samples were determined by mass loss, corroded surface morphologies,corrosion products, and results of electrochemical measurements. The experimental results showed that the coating was uniform, continuous and compact. The chromium coating was slightly corroded,and the mass loss and corrosion rate of the coating were far lower than those of P110 steel. Chromium coating has higher self-corroding potential and lower corrosion current density than P110 steel in accordance with the electrochemical tests results. Taken as a whole, chromizing treatment has significantly improved the corrosion resistance of P110 steel.

  19. Agricultural Polymers as Corrosion Inhibitors

    Science.gov (United States)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  20. Pitting corrosion of Al2024-T3 in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pitting corrosion behavior of Al2024-T3 in sodium chloride solution was investigated by using potentiodynamic scanning (PDS) measurements and electrochemical impedance spectroscopy (EIS) technique. When pitting corrosion of the alloy occurs, there exists a passive region in the anodic branch of PDS polarization curve, which is enlarged with the increasing of immersion time due to the competition of the halide ions with OH- ions to adsorb on the oxide film to form the corrosion products film and the increase of pitting corrosion area. Two capacitive semicircles were observed in complex plane plot. For more extensive pitting and general corrosion of Al2024-T3, the passive region in PDS disappeared, while another depressed semicircle was observed in Nyquist plot because of the formation of corrosion products film. On the other hand, the low frequency inductive loop, which had often been regarded as a manifestation of pitting or formation and precipitation of a salt film, was not observed, which indicates that the low frequency inductive loop can not be the characteristic of pitting corrosion or the formation of salt film. The results also show that higher reactant CPE exponent values will correspond to more extensive transformation of a metal surface by very localized corrosion, while general corrosion can result in a smaller CPE exponent value.

  1. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Bill W. Bogan; Brigid M. Lamb; John J. Kilbane II

    2004-10-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed to determine if chemical compounds other than pepper extracts could inhibit the growth of corrosion-associated microbes and to determine if pepper extracts and other compounds can inhibit corrosion when mature biofilms are present. Several chemical compounds were shown to be capable of inhibiting the growth of corrosion-associated microorganisms, and all of these compounds limited the amount of corrosion caused by mature biofilms to a similar extent. It is difficult to control corrosion caused by mature biofilms, but any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion.

  2. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  3. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响%COMPOSITION OF BACTERIA IN CORROSION PRODUCT OF CARBON STEEL WITH DIFFERENT CARBON CONTENT IMMERSED IN SEAWATER FOR DIFFERENT TIME

    Institute of Scientific and Technical Information of China (English)

    杨雨辉; 肖伟龙; 柴柯; 吴进怡

    2011-01-01

    Bacterial adhesion and biofilm formation on the surface of carbon steel are common in seawater. The heterogeneous biofilm and the associated bacteria form complex biological systems that impact the physical and chemical characters of the metal/biofilm interface, such as pH, dissolved oxygen, chloride and sulfate, etc., and change the corrosion mechanism of carbon steel. Accordingly, it is important to investigate the bacteria composition in the corrosion product of carbon steel. In this work, the bacteria compositions in the corrosion product of different carbon steel emerged in seawater for different periods were researched by bacteria isolating and identifying methods. The results show that the contents of aerobe and facultative anaerobe reach the maximum value when the corrosion time is 91 d. However, the content of sulfate reducing bacteria reaches the maximum value when the corrosion time is 184 d. The contents of iron bacteria and sulfur bacteria change irregularly. For different carbon steel, except 7 d corrosion time, the contents of aerobe and facultative anaer- obe in biofilm increase with increasing the content of carbon, but that of sulfate reducing bacteria descends. Aerobe and facultative anaerobe mainly compose pseudomonas and vibrio. When the corrosion time is 365 d, fiavobacterium also exists in the corrosion product. The aerobe is predominant in the initial stage of experi- ment and facultative anaerobe is predominant in later stage. The major composition of iron bacteria includes naumanniella and siderocapsa. The different bacteria produce the different metabolic products that influence corrosion process of carbon steel.%为了深入探讨海洋微生物对碳钢的腐蚀机理,通过细菌的分离鉴定方法,研究了不同碳含量碳钢在自然海水中浸泡不同时间后腐蚀产物中的细菌组成。结果表明不同碳钢每克表面刮取物中需氧菌及兼性厌氧菌的数量均在浸泡时间为91d时达最大值,而硫

  4. INHIBITION OF CORROSION

    Science.gov (United States)

    Atherton, J.E. Jr.; Gurinsky, D.H.

    1958-06-24

    A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.

  5. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    Science.gov (United States)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  6. Development of Novel Corrosion Techniques for a Green Environment

    Directory of Open Access Journals (Sweden)

    Zaki Ahmad

    2012-01-01

    Full Text Available The synergistic effect of air pollution, brown clouds and greenhouse gasses is deleterious to human health and industrial products. The use of toxic inhibitors, chemicals in water treatment plants, and anti-fouling agents in desalination plants has contributed to the greenhouse effect. Conventional anti-corrosion techniques such as paints, coatings, inhibitor treatments, and cathodic protection paid no regard to greenhouse effect. Work on eco-friendly anti-corrosion techniques is scanty and largely proprietary. The use of nano-TiO2 particles introduced in alkyds and polyurethane-based coatings showed a higher corrosion resistance compared to conventional TiO2 coatings with significant photocatalytic activity to kill bacteria. The use of UV radiations for photo-inhibition of stainless steel in chloride solution can replace toxic inhibitors. Corrosion inhibition has also been achieved by using natural materials such as polymers instead of toxic chemical inhibitors, without adverse environmental impact. TiO2 films exposed to UV radiation have shown the capability to protect the steel without sacrificing the film. Self-healing materials with encapsulated nanoparticles in paints and coatings have shown to heal the defects caused by corrosion. These innovative techniques provide a direction to the corrosion scientists, engineers, and environmentalists who are concerned about the increasing contamination of the planet and maintaining a green environment.

  7. A Review on Dental Amalgam Corrosion and Its Consequences

    Directory of Open Access Journals (Sweden)

    M Fathi

    2004-02-01

    Full Text Available Dental amalgam is still the most useful restorative material for posterior teeth and has been successfully used for over a century. Dental amalgam has been widely used as a direct filling material due to its favorable mechanical properties as well as low cost and easy placement. However, the mercury it contains raises concerns about its biological toxicity and environmental hazard. Although in use for more than 150 years, dental amalgam has always been suspected more or less vigorously due to its alleged health hazard. Amalgam restorations often tarnish and corrode in oral environment. Corrosion of dental amalgam can cause galvanic action. Ion release as a result of corrosion is most important. Humans are exposed to mercury and other main dental metals via vapor or corrosion products in swallowed saliva and also direct absorption into blood from oral mucosa. During recent decades the use of dental amalgam has been discussed with respect to potential toxic effects of mercury components. In this article, the mechanisms of dental amalgam corrosion are described and results of researches are reviewed. It finally covers the corrosion of amalgams since this is the means by which metals, including mercury, can be released within oral cavity. Keywords: Dental amalgam, Amalgam corrosion, Biocompatibility, Mercury release, Amalgam restoration

  8. Marine bacteria and localized corrosion on polymer coated steel: Cause and effect

    Energy Technology Data Exchange (ETDEWEB)

    Little, B.J.; Ray, R.; Ray, P. [Naval Research Lab., Stennis Space Center, MS (United States); Jones-Meehan, J. [Naval Research Lab., Washington, DC (United States); Lee, C.C.; Mansfeld, F.; Wagner, A. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Materials Science

    1999-11-01

    Diagnosis of microbiologically influenced corrosion on iron-containing substrata exposed in marine environments cannot be based solely on spatial relationships between large accumulations of bacterial cells and iron corrosion products. Field experiments were designed to evaluate the relationship between marine bacteria and localized corrosion on coated mild steel. In all cases, the distribution of bacteria was strongly influenced by the presence of iron corrosion products independent of coating combinations. In the presence of cathodic protection, coating defects were filled with calcareous deposits and few bacterial cells. Results demonstrate that bacteria are preferentially attracted to iron corrosion products in coating defects and that attraction is more influential than topography in determining the spatial distribution of bacterial cells.

  9. Fatigue and Corrosion in Metals

    CERN Document Server

    Milella, Pietro Paolo

    2013-01-01

    This textbook, suitable for students, researchers and engineers, gathers the experience of more than 20 years of teaching fracture mechanics, fatigue and corrosion to professional engineers and running experimental tests and verifications to solve practical problems in engineering applications. As such, it is a comprehensive blend of fundamental knowledge and technical tools to address the issues of fatigue and corrosion. The book initiates with a systematic description of fatigue from a phenomenological point of view, since the early signs of submicroscopic damage in few surface grains and continues describing, step by step, how these precursors develop to become mechanically small cracks and, eventually, macrocracks whose growth is governed by fracture mechanics. But fracture mechanics is also introduced to analyze stress corrosion and corrosion assisted fatigue in a rather advanced fashion. The author dedicates a particular attention to corrosion starting with an electrochemical treatment that mechanical e...

  10. Laboratory and field tests of corrosion inhibitors for an offshore application

    Energy Technology Data Exchange (ETDEWEB)

    Skjerve, Sofie; Fuhr, Geir Gundersen; Haldogaard, Geir

    2006-03-15

    Statoil started a R and D-project in 2002 where the goal was to implement environmental friendly corrosion control at a Statoil operated oil producing field. In this project the following tasks have been addressed: 1) Reduction of the chemical consumption. 2) Documentation of the discharge level of the corrosion inhibitor. 3) Documentation of the environmental impact. 4) Development of new environmentally friendly acceptable corrosion inhibitors. 5) Laboratory and field testing of new corrosion inhibitors. This paper describes laboratory and field tests of corrosion inhibitors for this project. The field tests were carried out on an offshore oil producing installation in the North Sea. Five corrosion inhibitor suppliers with totally eleven products were taking part in this test. All the products were tested in the laboratory. The four most promising products from the laboratory tests were tested in the field during a fourteen days offshore test. Only one of the tested products gave satisfactory results from the corrosion field test. Corrosion measurements were performed both with a Zero Resistance Ammetry (ZRA) probe installed directly into a flow line and with two side streams units. One side stream unit was connected upstream the test separator and the other unit was connected downstream the test separator. (author) (tk)

  11. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo

    2005-01-01

    in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates...

  12. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system...

  13. Corrosion Prevention and Control Applications Guide

    Science.gov (United States)

    1987-03-31

    Money, Manpower Called Keys to Progress, Aviation Week & Space Technology, October 6, 1980. 12. Reboul , M. C., Galvanic Corrosion of Aluminum, National...PA, April 1980. 25. Reboul , M.C., Galvanic Corrosion of Aluminum, National Association of Corrosion Engineers, Corrosion, V. 35#9, September 1979. 146

  14. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  15. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  16. Effects of laser heat treatment on the fracture morphologies of X80 pipeline steel welded joints by stress corrosion

    Institute of Scientific and Technical Information of China (English)

    De-jun Kong; Cun-dong Ye

    2014-01-01

    The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The frac-ture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydro-gen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2%to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.

  17. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  18. Defects Mediated Corrosion in Graphene Coating Layer.

    Science.gov (United States)

    Lei, Jincheng; Hu, Yaowu; Liu, Zishun; Cheng, Gary J; Zhao, Kejie

    2017-04-05

    Mixed results were reported on the anticorrosion of graphene-coated metal surfaces-while graphene serves as an effective short-term barrier against corrosion and oxidation due to its low permeability to gases, the galvanic cell between graphene and the metal substrate facilitates extensive corrosion in the long run. Defects in the graphene layer provide pathways for the permeation of oxidizing species. We study the role of defects in graphene in the anticorrosion using first-principles theoretical modeling. Experiments in the highly reactive environment indicate that the oxidized products primarily distribute along the grain boundaries of graphene. We analyze the thermodynamics of the absorption of S and O on the grain boundaries of graphene on the basis of density functional theory. The insertion of S and O at the vacancy sites is energetically favorable. The interstitial impurities facilitate structural transformation of graphene and significantly decrease the mechanical strength of the graphene layer. Furthermore, the presence of the interstitial S and O reduces the chemical stability of graphene by enhancing the formation of vacancies and promoting dispersive growth of corrosive reactants along the grain boundaries.

  19. Microbiologically influenced corrosion: looking to the future.

    Science.gov (United States)

    Videla, Héctor A; Herrera, Liz K

    2005-09-01

    This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).

  20. Marine Atmospheric Corrosion of Carbon Steel: A Review

    Science.gov (United States)

    Alcántara, Jenifer; de la Fuente, Daniel; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl−-rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors’ opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary. PMID:28772766

  1. Some peculiarities of corrosion of wheel steel

    Directory of Open Access Journals (Sweden)

    Alexander SHRAMKO

    2009-01-01

    Full Text Available Corrosion mechanism and rate of different chemical composition and structural condition of wheel steel were investigated. It was shown that “white layers”, variation in grain size and banding of wheel steel structure results in corrosion rate. Microstructure of steel from different elements of railway wheels after operation with corrosion was investigated. Wheel steel with addition of vanadium corroded more quickly than steel without vanadium. Non-metallic inclusions are the centre of corrosion nucleation and their influence on corrosion depends on type of inclusion. Mechanism of corrosion of wheel steel corrosion was discussed.

  2. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  3. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  4. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    Science.gov (United States)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  5. Corrosion at system chimneys made of CrNi-steels

    Energy Technology Data Exchange (ETDEWEB)

    Pajonk, Gunther [Institute of Materials Testing of Northrhine-Westfalia, D-44285 Dortmund (Germany)

    2004-07-01

    Names like 'chimney' und 'funnel' usually identify flue gas devices made of bricks. Much less known is the fact that chimney elements are still manufactured from alloys. The following article describes the particular demands ruled by legislation on building pro-ducts, just as the consequences resulting from corrosion loads by flue gas condensates. Difficulties caused by manufacturing and construction are primarily discussed. Furthermore a test procedure is introduced that allows to catch and correlate corrosion loads and technical designs systematically to corrosion behaviour and service life of flue gas devices. For the first time a tool for active quality assurance has been given by this test rig allowing to recognize construction errors systematically. This way, manufacturers of system chimneys and flue liners are enabled to optimize their products applications going ahead to the respective requests of the market. (authors)

  6. Corrosion Protection of Electrically Conductive Surfaces

    OpenAIRE

    Jian Song; Liangliang Wang; Andre Zibart; Christian Koch

    2012-01-01

    The basic function of the electrically conductive surface of electrical contacts is electrical conduction. The electrical conductivity of contact materials can be largely reduced by corrosion and in order to avoid corrosion, protective coatings must be used. Another phenomenon that leads to increasing contact resistance is fretting corrosion. Fretting corrosion is the degradation mechanism of surface material, which causes increasing contact resistance. Fretting corrosion occurs when there is...

  7. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  8. Shutdown corrosion in geothermal energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Peter F.

    1982-10-08

    Experience has shown that corrosion occurring during geothermal energy utilization system downtime--shutdown corrosion--can pose a serious threat to successful operations. Shutdown corrosion in geothermal plants appears more severe than would be expected in their nongeothermal analogs, and its mitigation may pose a severe challenge to corrosion engineering personnel. This paper presents four case histories of geothermal shutdown corrosion problems. General methods of mitigation are explored.

  9. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  10. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  11. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  12. Review on Stress Corrosion and Corrosion Fatigue Failure of Centrifugal Compressor Impeller

    Institute of Scientific and Technical Information of China (English)

    SUN Jiao; CHEN Songying; QU Yanpeng; LI Jianfeng

    2015-01-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  13. ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Paterek; G. Husmillo; V. Trbovic

    2003-01-01

    The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verify the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.

  14. Application of Moessbauer Spectroscopy to the Study of Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Desmond C. [Old Dominion University, Department of Physics (United States)

    2004-03-15

    Corrosion research, and the need to fully understand the effects that environmental conditions have on the performance of structural steels, is one area in which Moessbauer spectroscopy has become a required analytical technique. This is in part due to the need to identify and quantify the nanophase iron oxides that form on and protect certain structural steels, and that are nearly transparent to most other spectroscopic techniques. A review is given of the most recent Moessbauer characterization of rusts that have formed on structural steels exposed to different environments. Moessbauer spectroscopy is playing an important role in a new corrosion program in the United States in which steel bridges, old and new, are being evaluated for corrosion problems that may reduce their serviceable lifetimes. Moessbauer spectroscopy has been used to characterize the corrosion products that form the protective patina on weathering steel, as well those that form in adverse environments in which the oxide coating is not adherent or protective to the steel. Moessbauer spectroscopy has also become an important analytical technique for investigating the corrosion products that have formed on archeological artifacts, and it is providing guidance to aid in the removal of the oxides necessary for their preservation.

  15. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  16. Corrosion Resistance of Cordierite-Modified Light MMCs

    Science.gov (United States)

    Szewczyk-Nykiel, A.; Długosz, P.; Darłak, P.; Hebda, M.

    2017-05-01

    Composites are one of the fastest developing materials. Research is particularly intensive in case of light metal alloys due to i.a. economic and environmental aspects. One of the innovative solutions is production of the metal matrix composites (MMC) by adding the cordierite ceramics obtained from fly ashes to magnesium alloys. In addition to obtaining new-generation materials with improved mechanical properties, also the waste is utilized which has a significant environmental and economic importance. In order to select the suitable operating conditions for such alloys, their corrosion resistance must be determined. This paper presents the results of corrosion resistance tests of AM60 magnesium alloy matrix composites reinforced with cordierite ceramics. The following issues were examined: (1) impact of the volume fraction of cordierite ceramics, 2 or 4 wt.%; (2) impact of surface roughness (two variants of surface treatment); and (3) impact of heat treatment on corrosion resistance of obtained composites. The results were compared with data recorded for the base AM60 alloy (which surface treatment was identical as of the composites). Moreover, the XRD and microanalysis of the chemical compositions by EDS method were applied to determine phases occurring in the investigated composites. Furthermore, the XRD was also performed in order to identify the corrosion products on the surface of the material. The test results indicate that the alloy reinforced with 2 wt.% addition of cordierite ceramics had the best corrosion resistance. It was also presented that surface and heat treatment affect the obtained results.

  17. Corrosion behaviors of arc spraying single and double layer coatings in simulated Dagang soil solution

    Institute of Scientific and Technical Information of China (English)

    LIN Bi-lan; LU Xin-ying; LI Long

    2009-01-01

    Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against soil corrosion.The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization,electrochemical impedance spectroscopy (EIS) and natural immersion tests.The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn,Zn15Al,Zn+316L and Zn15Al+316L coatings.The corrosion rate value of Zn15Al coated samples is negative.The corrosion products on Zn and Zn15Al coated samples are compact and firm.The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time,and the latter are more outstanding than the former.But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time.When the coatings are sealed with epoxy resin,the corrosion resistance of the coatings will be enhanced significantly.

  18. Corrosion Behavior of Pure Cr, Ni, and Fe Exposed to Molten Salts at High Temperature

    Directory of Open Access Journals (Sweden)

    O. Sotelo-Mazón

    2014-01-01

    Full Text Available Corrosion resistance of pure Fe, Cr, and Ni materials exposed in NaVO3 molten salt at 700°C was evaluated in static air during 100 hours. The corrosion resistance was determined using potentiodynamic polarization, open circuit potential, and lineal polarization resistance. The conventional weight loss method (WLM was also used during 100 hours. The electrochemical results showed that Fe and Cr have a poor corrosion resistance, whereas pure Ni showed the best corrosion performance, which was supported by the passive layer of NiO formed on the metallic surface and the formation of Ni3V2O8 during the corrosion processes, which is a refractory compound with a higher melting point than that of NaVO3, which reduces the corrosivity of the molten salt. Also, the behavior of these materials was associated with the way in which their corresponding oxides were dissolved together with their type of corrosion attack. Through this study, it was confirmed that when materials suffer corrosion by a localized processes such as pitting, the WLM is not reliable, since a certain amount of corrosion products can be kept inside the pits. The corroded samples were analyzed through scanning electron microscopy.

  19. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.

    Science.gov (United States)

    Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent

    2013-08-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.

  20. Numerical simulation and factor analysis of petrochemical pipe erosion-corrosion failure

    Science.gov (United States)

    XU, G. F.; OU, G. F.; Chen, T.; Li, P. X.; JIN, H. Z.

    2016-05-01

    Based on the behavior of carbon steel outlet tube in REAC pipes of Zhenhai Refining & Chemical Company, the mathematical model of fluid-solid interaction was established according to the mechanism of erosion-corrosion damage. The interaction between corrosion products protecting film and multiphase liquid was analyzed by numerical simulation method. The distribution of shearing stress on the inwall of elbow bend, and the distribution of principal displacement, stress and strain of corrosion products protecting film were disclosed, while the erosion-corrosion failure processes was studied. The simulation result coincides with that of the positioned thickness gauging which validated the reliability and feasibility of the finite element analysis software simulation method. The obtained results can be used in the erosion-corrosion failure analysis, structural optimization, in-service testing positioning, life prediction, risk assessment, safety and other security projects for multiphase flow pipeline.

  1. INITIAL ATMOSPHERIC CORROSION OF ZINC IN THE PRESENCE OF NH4Cl

    Institute of Scientific and Technical Information of China (English)

    Q.Qu; C.W.Yan; L.Li; L.Zhang; G.H.Liu; C.N.Cao

    2004-01-01

    Influence of NH4 Cl on the initial atmospheric corrosion of zinc was investigated via quartz crystal microbalance(QCM)in laboratory at 80%RH and 25℃.The results show that NH4 Cl can accelerate the initial corrosion of zinc.Mass gain increase with the exposure time,but mass gain in the later doesn't change obviously due to the formation of the insoluble simonkolleite on zinc surface in the presence of NH4 Cl.Fourier transform infrared spectroscopy(FTIR)and X-ray diffraction(XRD)was used to characterize the corrosion products.Zn5 Cl2(OH)s.H2 O,(NH4)2ZnCl4 and ZnO are the corrosion products on zinc.Brief discussion on the mechanisms of atmospheric corrosion of zinc in the presence of NH4 Cl was introduced.

  2. Corrosion Behavior of Carbon Steel in Synthetically Produced Oil Field Seawater

    Directory of Open Access Journals (Sweden)

    Subir Paul

    2014-01-01

    Full Text Available The life of offshore steel structure in the oil production units is decided by the huge corrosive degradation due to SO42-, S2−, and Cl−, which normally present in the oil field seawater. Variation in pH and temperature further adds to the rate of degradation on steel. Corrosion behavior of mild steel is investigated through polarization, EIS, XRD, and optical and SEM microscopy. The effect of all 3 species is huge material degradation with FeSx and FeCl3 and their complex as corrosion products. EIS data match the model of Randle circuit with Warburg resistance. Addition of more corrosion species decreases impedance and increases capacitance values of the Randle circuit at the interface. The attack is found to be at the grain boundary as well as grain body with very prominent sulphide corrosion crack.

  3. Erosion--Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, B.

    1978-01-01

    The deterioration of materials by corrosion or erosion by itself presents a formidable problem and for this reason investigators have studied these two phenomena independently. In fact, there are very few systematic studies on E-C and the majority of references mention it only in passing. In most real systems, however, the two destructive processes take place simultaneously, hence the purpose of this review is to present the various interactions between the chemical and mechanical agents leading to accelerated degradation of the material. The papers cited in the review are those that lead to a better understanding of the process involved in the accelerated rate of material loss under E-C conditions.

  4. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  5. Environmental and alloying effects on corrosion of metals and alloys

    Science.gov (United States)

    Liang, Dong

    2009-12-01

    species could be missed in standard laboratory exposures such as ASTM B117. Initial efforts focused on the effects UV radiation, O3, relative humidity on the atmospheric corrosion of bare silver. Later work addressed the corrosion of silver samples deposited with NaCl particles. An exposure chamber that can simulate various environmental effects was built. The effects of UV radiation, O3, and relative humidity were varied separately while keeping the other factors the same level. The corrosion products were analyzed by the galvanostatic reduction method and characterization techniques such as SEM and EDS. It was found that both UV and O3 are necessary for fast corrosion on bare silver and this fast corrosion reaction results from atomic oxygen generated photodegradation of O3. In the presence of UV and O3, relative humidity has little effect on the atmospheric corrosion of bare silver in contrast to conventional atmospheric corrosion. The degree of corrosion is found to increase with O3 concentration. Moreover, a kinetic study of atmospheric corrosion of bare silver found that an incubation time for the atmospheric corrosion attack is needed. This incubation time is related to the chemisorption process of atomic oxygen. Though UV radiation can form reactive atomic oxygen which is more reactive than O3 alone as shown in the last chapter, the enhancement of corrosion by UV is limited for Ag with NaCl particles at low ozone concentration and high RH. The corrosion rate of silver with NaCl particles is found to increase with relative humidity, which is different than the case of bare silver. This indicates that different mechanisms control the atmospheric corrosion of silver. The incubation time for corrosion of silver with NaCl particles is shorter than for bare silver. This result from chemisorption of Cl 2 is favored over that of atomic oxygen. Interestingly, the total corrosion product of silver with NaCl particles is less than that of bare silver. This could be due to

  6. Corrosion Problems in Absorption Chillers

    Science.gov (United States)

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  7. Corrosion Behavior of Copper-Clad Steel Bars with Unclad Two-End Faces for Grounding Grids in the Red Clay Soil

    Science.gov (United States)

    Shao, Yupei; Mu, Miaomiao; Zhang, Bing; Nie, Kaibin; Liao, Qiangqiang

    2017-02-01

    Iron-aluminum oxides in the red soil have a significant impact on the corrosion behavior of the metal for grounding grids. Effects of iron-aluminum oxides on the corrosion behavior of the cross section of copper-clad steel in the red soil have been investigated using electrochemical impedance spectroscopy and Tafel polarization. All the data indicate that the iron-aluminum oxides can promote the corrosion of copper-clad steel in the red soil. The corrosivity of the red soil greatly increases after iron-aluminum oxides are added into the soil. Iron-aluminum oxides promote galvanic corrosion of copper-clad steel and increase the corrosion degree of the center steel layer. The iron-aluminum oxides stimulate corrosion process of copper-clad steel acting as a cathodic depolarizing agent. XRD results further validate that the corrosion products of the copper-clad steel bar mainly consist of Fe3O4 and Cu2O.

  8. Corrosion Behavior of Copper-Clad Steel Bars with Unclad Two-End Faces for Grounding Grids in the Red Clay Soil

    Science.gov (United States)

    Shao, Yupei; Mu, Miaomiao; Zhang, Bing; Nie, Kaibin; Liao, Qiangqiang

    2017-04-01

    Iron-aluminum oxides in the red soil have a significant impact on the corrosion behavior of the metal for grounding grids. Effects of iron-aluminum oxides on the corrosion behavior of the cross section of copper-clad steel in the red soil have been investigated using electrochemical impedance spectroscopy and Tafel polarization. All the data indicate that the iron-aluminum oxides can promote the corrosion of copper-clad steel in the red soil. The corrosivity of the red soil greatly increases after iron-aluminum oxides are added into the soil. Iron-aluminum oxides promote galvanic corrosion of copper-clad steel and increase the corrosion degree of the center steel layer. The iron-aluminum oxides stimulate corrosion process of copper-clad steel acting as a cathodic depolarizing agent. XRD results further validate that the corrosion products of the copper-clad steel bar mainly consist of Fe3O4 and Cu2O.

  9. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  10. Electrochemical Studies of Atmospheric Corrosion.

    Science.gov (United States)

    1979-01-01

    Todynamlc polarization curves using a mod ifiedatmospheric corrosion mon i tor (ACM). Norma l Tafel behavior was observed , the limiting current for oxygen...following a suggestion of Peter Serada, who is heading a task group on time-of-wetness measurements In ASTM GO1 .04, in which the author is participating...about 5 papers except for 1968 where a symposium on atmospheric corrosion was held which resulted in the publ ication of an ASTM Special Technical

  11. Corrosion Control Anniston Army Depot

    Science.gov (United States)

    2010-02-09

    parts. • Anodize, Chrome, and Black Oxide (et.al.) • Substrate Prep and CARC paint. Stowage • Climate controlled storage (limited). • Weather...resistant (rain, uv) stowage . • Right Material – Right Time In Process Actions Bldgs 129 and 114 • Installation of new cleaning technologies for small... Rack Dehydration Prep Area CARC Application Flash-Off Oven De-mask and Anti- Corrosion App. Planned Future Actions Survey • Perform a corrosion survey

  12. Materials selection and corrosion problems

    Energy Technology Data Exchange (ETDEWEB)

    Cornet, I.; Greif, R.; Treseder, R.S.

    1974-06-28

    Data tabulated for chemical composition of geothermal waters are presented for four areas of interest in Nevada: Beowawe steam well and Beowawe Hot Spring, Buffalo Valley Hot Springs, Kyle Hot Springs, and Leach Hot Springs. Material recommendations were prepared for the Nevada geothermal well. A detailed field corrosion test program planned for the Nevada test well is included. A progress report is presented for a laboratory research program on velocity effects in corrosion. (MHR)

  13. Maintainability Improvement Through Corrosion Prediction

    Science.gov (United States)

    1997-12-01

    potential, current, pH, and chloride ion concentration were made along a simulated corrosion fatigue crack for HY80 (UNS K31820) steel in seawater...frequency range of 0.05-50 Hz, a 7075-T6 aluminium alloy and 304 and 316L stainless steels were fatigue tested in 3.0% NaCl solution. The increments...DESCRIPTORS: Conference Paper; Aluminum base alloys- Mechanical properties; Austenitic stainless steels - Mechanical properties; Corrosion fatigue

  14. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  15. Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens

    Science.gov (United States)

    Harimawan, Ardiyan; Devianto, Hary; Kurniawan, Ignatius Chandra; Utomo, Josephine Christine

    2017-01-01

    Microbial induced corrosion (MIC) or biocorrosion is one type of corrosion, directly or indirectly influenced by microbial activities, by forming biofilm and adhering on the metal surface. When forming biofilm, the microorganisms can produce extracellular products which influence the cathodic and anodic reactions on metal surfaces. This will result in electrochemical changes in the interface between the biofilm and the metal surface, leading to corrosion and deterioration of the metal. MIC might be caused by various types of microorganism which leads to different corrosion mechanism and reaction kinetics. Furthermore, this process will also be influenced by various environmental conditions, such as pH and temperature. This research is aimed to determine the effect of incubation temperature on corrosion of carbon steel caused by Serratia marcescens in a mixture solution of synthetic seawater with Luria Bertani medium with a ratio of 4:1. The incubation was performed for 19 days with incubation temperature of 30, 37, and 50°C. The analyses of biofilm were conducted by total plate count (TPC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Biofilm was found to be evenly growth on the surface and increasing with increasing incubation temperature. It consists of functional group of alcohol, alkane, amine, nitro, sulfate, carboxylic acid, and polysulfide. The analyses of the corrosion were conducted by gravimetric and X-ray diffraction (XRD). Higher incubation temperature was found to increase the corrosion rate. However, the corrosion products were not detected by XRD analysis.

  16. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  17. Calcium carbonate corrosivity in an Alaskan inland sea

    Directory of Open Access Journals (Sweden)

    W. Evans

    2013-09-01

    Full Text Available Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3 saturation states (Ω to levels that are corrosive (i.e. Ω ≤ 1 to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacial melt. Carbonate system data collected in May and September from 2009 through 2012 in Prince William Sound (PWS, a semi-enclosed inland sea located on the south-central coast of Alaska that is ringed with fjords containing tidewater glaciers, reveal the unique impact of glacial melt on CaCO3 corrosivity. Initial limited sampling was expanded in September 2011 to span large portions of the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (pCO2 well below atmospheric levels. CaCO3 corrosivity in glacial melt plumes is poorly reflected by pCO2 or pHT, indicating that either one of these carbonate parameters alone would fail to track Ω in PWS. The unique Ω and pCO2 conditions in the glacial melt plumes enhances atmospheric CO2 uptake, which, if not offset by mixing or primary productivity, would rapidly exacerbate CaCO3 corrosivity in a positive feedback. The cumulative effects of glacial melt and air-sea gas exchange are likely responsible for the seasonal widespread reduction of Ω in PWS; making PWS highly sensitive to increasing atmospheric CO2 and amplified CaCO3 corrosivity.

  18. A corrosion study of the ferrous medieval reinforcement of the Amiens cathedral. Phase characterisation and localisation by various microprobes techniques

    Energy Technology Data Exchange (ETDEWEB)

    Monnier, J. [SIS2M/LAPA-Laboratoire Pierre Suee, UMR 9956 CNRS - CEA, Bat. 637, CEA Saclay, 91191 Gif/Yvette cedex (France); Institut de Chimie et des Materiaux Paris-Est UMR 7182 CNRS - Universite Paris 12, 2-8 rue Henri Dunant, 94320 Thiais (France)], E-mail: monnier@icmpe.cnrs.fr; Neff, D. [SIS2M/LAPA-Laboratoire Pierre Suee, UMR 9956 CNRS - CEA, Bat. 637, CEA Saclay, 91191 Gif/Yvette cedex (France); Reguer, S. [Synchrotron SOLEIL, Saint-Aubin BP 4891192 Gif-sur-Yvette (France); Dillmann, P. [SIS2M/LAPA-Laboratoire Pierre Suee, UMR 9956 CNRS - CEA, Bat. 637, CEA Saclay, 91191 Gif/Yvette cedex (France); IRAMAT/LMC UMR 5060 CNRS and Laboratoire Pierre Suee UMR 9956 CNRS - CEA, Bat. 637, CEA Saclay, 91191 Gif-sur-Yvette, Cedex (France); Bellot-Gurlet, L. [Laboratoire de Dynamique, Interaction et Reactivite (LADIR), UMR 7075 CNRS - Universite Pierre et Marie Curie - Paris 6, 2 rue Henri Dunant, 94320 Thiais (France); Leroy, E. [Institut de Chimie et des Materiaux Paris-Est UMR 7182 CNRS - Universite Paris 12, 2-8 rue Henri Dunant, 94320 Thiais (France); Foy, E. [SIS2M/LAPA-Laboratoire Pierre Suee, UMR 9956 CNRS - CEA, Bat. 637, CEA Saclay, 91191 Gif/Yvette cedex (France); Legrand, L. [Laboratoire Analyse et Modelisation pour la biologie et l' Environnement, UMR 8587, CNRS-Universite d' Evry-CEA, Universite d' Evry Val d' Essonne, rue du Pere Jarland, 91025 Evry (France); Guillot, I. [Institut de Chimie et des Materiaux Paris-Est UMR 7182 CNRS - Universite Paris 12, 2-8 rue Henri Dunant, 94320 Thiais (France)

    2010-03-15

    In this study, long term corrosion mechanisms are approached through the characterisation of corrosion products formed on ancient artefacts over 500 years. Thirty-one artefacts were sampled in the Amiens cathedral. The thick corrosion product layers have been characterised at a microscopic scale by coupling complementary microbeam analytical techniques (SEM-EDS, Raman microspectroscopy, X-ray microdiffraction and microfluorescence, X-ray absorption microspectroscopy under synchrotron radiation). The main phase of the corrosion layer is goethite but lepidocrocite and akaganeite are also present locally in the corrosion layer. In addition, the presence of low crystallinity phases (feroxyhyte and/or ferrihydrite) is showed. These phases are electrochemically reactive, thus they could play a key role in the corrosion mechanisms.

  19. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  20. Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Seth J. Price

    2017-02-01

    Full Text Available Concerns over reducing CO2 emissions associated with the burning of fossil fuels in combination with an increase in worldwide energy demands is leading to increased development of renewable energies such as wind. The installation of offshore wind power structures (OWS is one of the most promising approaches for the production of renewable energy. However, corrosion and fatigue damage in marine and offshore environments are major causes of primary steel strength degradation in OWS. Corrosion can reduce the thickness of structural components which may lead towards fatigue crack initiation and buckling. These failure mechanisms affect tower service life and may result in catastrophic structural failure. Additionally, environmental pollution stemming from corrosion’s by-products is possible. As a result, large financial investments are made yearly for both the prevention and recovery of these drawbacks. The corrosion rate of an OWS is dependent on different characteristics of attack which are influenced by access to oxygen and humidity. Structural degradation can occur due to chemical attack, abrasive action of waves, and microorganism attacks. Inspired by technological and scientific advances in recent years, the purpose of this paper is to discuss the current protective coating system technologies used to protect OWS as well as future perspectives.