WorldWideScience

Sample records for corrosion effects observed

  1. Some observations on phosphate based corrosion inhibitors in preventing carbon steel corrosion

    International Nuclear Information System (INIS)

    Anupkumar, B.; Satpathy, K.K.

    2000-01-01

    Among the various types of phosphonic acid based inhibitors assayed, namely HEDP, ATMP and a commercial corrosion inhibitor (code named Betz), it was found that Betz has the maximum amount of organic phosphate followed by HEDP and ATMP. The corrosion rate studies show that Betz gives the highest inhibition efficiency followed by HEDP and ATMP. This shows that organic phosphate plays a significant role in corrosion protection. However, it was observed that due to synergestic effect, HEDP in the presence of Zn 2+ gave a better corrosion protection than Betz. The results are discussed in the light of available literature. (author)

  2. Some observations about the Incoloy 800 corrosion

    International Nuclear Information System (INIS)

    Baptista, W.; Sathler, L.; Mattos, O.R.

    1985-01-01

    The chemical and electrochemical characteristics of synthetic solutions similar to those inside the occluded cell corrosion - OCC (pitting, cracks from stress corrosion) of incoloy 800, 25 0 C are studied. (E.G.) [pt

  3. The effect of recasting on corrosion of DUCINOX prosthetic alloy

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2009-07-01

    Full Text Available The effect of recasting, up to two times, Ni-Cr (DUCINOX prosthetic alloy on its corrosion properties was carried out. The corrosion measurements were done in deoxygenated Fusayama Meyer artificial saliva solution at temperature of 37°C. In the study following electrochemical methods were used: measurement of free corrosion potential Ecor in open circuit, measurement of polarization resistance according to Stern-Geary's method and measurement of potentiodynamic characteristic in wide range of anodic polarization. In general, it can be stated that casting number weakly influence on corrosion properties of investigated alloy. At free corrosion potential there is no monotonic dependence of corrosion parameters versus casting number. However, at extreme anodic potentials monotonic changes of corrosion parameters with increasing casting number is observed. Obtained results and drawn conclusions are partially compatible with literature data.

  4. Assessing Level and Effectiveness of Corrosion Education in the UAE

    Directory of Open Access Journals (Sweden)

    Hwee Ling Lim

    2012-01-01

    Full Text Available The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates had insufficient knowledge of corrosion engineering and superficial understanding of corrosion in real-life design contexts. The effectiveness of corrosion education is determined by both competence in corrosion knowledge/skills and availability of resources (faculty and research. Though most departments would not hire new corrosion-specialist faculty, department research efforts and industry partnerships in corrosion research were present. The paper concluded with recommendations for improving knowledge and skills of future engineers in corrosion and enhancing corrosion instruction to better meet industry needs.

  5. Corrosion effects on soda lime glass

    NARCIS (Netherlands)

    Veer, F.A.; Rodichev, Y.M.

    2010-01-01

    Although soda lime glass is the most common used transparent material in architecture, little is known about the corrosion effects on long term strength and the interaction between corrosion and defects. Extensive testing on soda lime bars under different environmental conditions and different

  6. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  7. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  8. An Experimental Investigation of the Effect of Corrosion on Dry Friction Noise

    International Nuclear Information System (INIS)

    Baek, Jongsu; Kang, Jaeyoung

    2015-01-01

    This study investigates the friction noise characteristic in relation to the corrosion of metal by using the frictional reciprocating and pin-on-disk system. From the experiments, it is found that the corrosion of metal advances the onset time and increases the magnitude of friction noise. Further, it is observed that the effect of corrosion on friction noise stems from the alteration of tribo-surface during repetitive frictional motion. The alteration of the corrosive contact surface induces a negative friction-velocity slope, by which the corrosion of metal can generate dynamic instability faster than non-corrosion of metal

  9. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.S., E-mail: yinwenfeng2010@163.com [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Yin, W.F. [College of Mechatronic Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China); Sang, D.H. [Sheng Li Construction Group International Engineering Department, Shandong, Dongying, 257000 (China); Jiang, Z.Y. [College of Materials Science and Engineering, Southwest Petroleum University, Sichuan, Chengdu, 610500 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The corrosion of a carbon-manganese steel and a stainless steel in sulfur and/or naphthenic acid media was investigated. Black-Right-Pointing-Pointer The corrosion rate of the carbon-manganese steel increased with the increase of the acid value and sulfur content. Black-Right-Pointing-Pointer The critical values of the concentration of sulfur and acid for corrosion rate of the stainless steel were ascertained respectively. Black-Right-Pointing-Pointer The stainless steel is superior to the carbon-manganese steel in corrosion resistance because of the presence of stable Cr{sub 5}S{sub 8} phases. - Abstract: The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 Degree-Sign C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr{sub 5}S{sub 8} phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  10. The Effect of Homogenization on the Corrosion Behavior of Al-Mg Alloy

    Science.gov (United States)

    Li, Yin; Hung, Yuanchun; Du, Zhiyong; Xiao, Zhengbing; Jia, Guangze

    2018-04-01

    The effect of homogenization on the corrosion behavior of 5083-O aluminum alloy is presented in this paper. The intergranular corrosion and exfoliation corrosion were used to characterize the discussed corrosion behavior of 5083-O aluminum alloy. The variations in the morphology, the kind and distribution of the precipitates, and the dislocation configurations in the samples after the homogenization were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effects of the highly active grain boundary character distribution and the types of constituent particles on the corrosion are discussed on the basis of experimental observations. The results indicated that the corrosion behavior of 5083-O alloy was closely related to the microstructure obtained by the heat treatment. Homogenization carried out after casting had the optimal effect on the overall corrosion resistance of the material. Nevertheless, all samples could satisfy the requirements of corrosion resistance in marine applications.

  11. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  12. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  13. Effect of aging on the corrosion of aluminum alloy 6061

    International Nuclear Information System (INIS)

    EL-Bedawy, M.E.M.

    2010-01-01

    Not only alloying additions may affect the corrosion resistance of aluminum alloys, but also practices that result in a nonuniform microstructure may introduce susceptibility to some forms of corrosion, especially if the microstructural effect is localized. This work was intended to study the effect of aging time at 225, 185 and 140 degree C and the effect of constant aging time ( 24 hrs ) in the temperature range 100 - 450 degree C as well as the influence of the solution ph on the corrosion characteristics of 6061 aluminum alloy, (Al-Mg-Si alloy) containing 0.22 wt% Cu. The investigation was performed by standard immersion corrosion test according to the British Standard BS 11846 method B and by applying potentiodynamic polarization technique in neutral deaerated 0.5 % M NaCl solution as well as in alkaline NaOH solution (ph = 10). The susceptibility to corrosion and the dominant corrosion type was evaluated by examination of transverse cross sections of corroded samples after the immersion test and examination of the corroded surfaces after potentiodynamic polarization using optical microscope. Analysis of the polarization curves was used to determine the effect of different aging parameters on corrosion characteristics such as the corrosion current density I (corr), the corrosion potential E (corr), the cathodic current densities and the passivation behavior.Results of the immersion test showed susceptibility to intergranular corrosion in the under aged tempers while pitting was the dominant corrosion mode for the over aged tempers after aging at 225 and 185 degree C.Analysis of the potentiodynamic polarization curves showed similar dependence of I (corr) and cathodic current densities on the aging treatment in the neutral 0.5 %M NaCl solution and in the alkaline NaOH solution. It was observed that E(corr) values in the NaCl solution were shifted in the more noble direction for the specimens aged before peak aging while it decreased again with aging time for

  14. Intergranular attack observed in radiation-enhanced corrosion of mild steel

    International Nuclear Information System (INIS)

    Reda, R.J.; Kelly, J.L.; Harna, S.L.A.

    1988-01-01

    Experiments were conducted to determine the effects of gamma radiation on the corrosion of AISI 1018 mild steel in deaerated brine solutions of various sodium, magnesium, and chloride ion concentrations. Immersed metal specimens were irradiated at an exposure rate of 3 x 10/sup 5/ R/h (0.3 MR/h) for up to 1250 h at a temperature of --25 C. The corrosion rates of the irradiated specimens were found to be roughly a factor of 10 greater than the rates for the non-irradiated specimens. The radiation-enhanced corrosion rate was also found to have increased with the chloride concentration. Electron micrographs revealed that the surface morphology of the specimens exposed to irradiated brines differed greatly from the non-irradiated specimens. The non-irradiated specimens had undergone uniform corrosion, while the irradiated specimens exhibited intergranular corrosion (IGC), a phenomenon not yet observed in mild steel. An explanation for this observation is offered in terms of the relative rates of formation and recombination of radiolytic species

  15. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  16. Effect of Flow Velocity on Corrosion Rate and Corrosion Protection Current of Marine Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Jong [Kunsan National University, Kunsan (Korea, Republic of); Han, Min Su; Jang, Seok Ki; Kim, Seong Jong [Mokpo National Maritime University, Mokpo (Korea, Republic of)

    2015-10-15

    In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

  17. Effect of Bi on the corrosion resistance of zirconium alloys

    International Nuclear Information System (INIS)

    Yao Meiyi; Zhou Bangxin; Li Qiang; Zhang Weipeng; Zhu Li; Zou Linghong; Zhang Jinlong; Peng Jianchao

    2014-01-01

    In order to investigate systematically the effect of Bi addition on the corrosion resistance of zirconium alloys, different zirconium-based alloys, including Zr-4 (Zr-l.5Sn-0.2Fe-0.1Cr), S5 (Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr), T5 (Zr-0.7Sn-l.0Nb-0.3Fe-0.1Cr) and Zr-1Nb, were adopted to prepare the zirconium alloys containing Bi of 0∼0.5% in mass fraction. These alloys were denoted as Zr-4 + xBi, S5 + xBi, T5 + xBi and Zr-1Nb + xBi, respectively. The corrosion behavior of these specimens was investigated by autoclave testing in lithiated water with 0.01 M LiOH or deionized water at 360 ℃/18.6 MPa and in superheated steam at 400 ℃/10.3 MPa. The microstructure of the alloys was examined by TEM and the second phase particles (SPPs) were analyzed by EDS. Microstructure observation shows that the addition of Bi promotes the precipitation of Sn as second phase particles (SPPs) because Sn is in solid solution in α-Zr matrix in Zr-4, S5 and T5 alloys. The concentration of Bi dissolved in α-Zr matrix increase with the increase of Nb in the alloys, and the excess Bi precipitates as Bi-containing SPPs. The corrosion results show that the effect of Bi addition on the corrosion behavior of different zirconium-based alloys is very complicated, depending on their compositions and corrosion conditions. In the case of higher Bi concentration in α-Zr, the zirconium alloys exhibit better corrosion resistance. However, in the case of precipitation of Bi-containing SPPs, the corrosion resistance gets worse. This indicates that the solid solution of Bi in α-Zr matrix can improve the corrosion resistance, while the precipitation of the Bi-containing SPPs is harmful to the corrosion resistance. (authors)

  18. Galvanic corrosion -- Effect of environmental and experimental variables

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Lum, B.Y.

    1999-01-01

    Galvanic corrosion behavior of A 516 steel (UNS K01800) coupled to UNS N06022 and UNS R53400, respectively was evaluated in an acidic brine (pH ∼ 2.75) at 30 C, 60 C and 80 C using zero resistance ammeter method. A limited number of experiments were also performed in a neutral brine involving A 516 steel/UNS N06022 couple. The steady-state galvanic current and galvanic potential were measured as functions of anode-to-cathode (A/C) area ratio and electrode distance. Results indicate that the galvanic current was gradually reduced as the A/C area ratio was increased. No systematic trend on the effect of A/C area ratio on the galvanic potential was observed. Also, no significant effect of electrode distance on the galvanic current and galvanic potential was evident. In general, increased galvanic current was noticed with increasing temperature. The limited data obtained in the neutral brine indicate that the galvanic current was reduced in this environment compared to that in the acidic brine. Optical microscopic examination was performed on all tested specimens to evaluate the extent of surface damage resulting from galvanic interaction. A 516 steel suffered from general corrosion and crevice corrosion in all environments tested. Very light crevice corrosion mark was observed with UNS N06022 and R53400 in the acidic brine at 60 C and 80 C. However, this mark appears to be a surface discoloration and no actual crevice was detected

  19. Effects of chemical composition on the corrosion of dental alloys.

    Science.gov (United States)

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  20. Effect of radiation on anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.

    2005-01-01

    To ensure the safe encapsulation of spent nuclear fuel elements for geological disposal, SKB of Sweden are considering using the Advanced Cold Process Canister, which consists of an outer copper canister and a cast iron insert. A programme of work has been carried out to investigate a range of corrosion issues associated with the canister, including measurements of gas generation due to the anaerobic corrosion of ferrous materials (carbon steel and cast iron) over a range of conditions. To date, all this work has been conducted in the absence of a radiation field. SKB asked Serco Assurance to carry out a set of experiments designed to investigate the effect of radiation on the corrosion of steel in repository environments. This report describes the experimental programme and presents the results that were obtained. The measurements were carried out in the type of gas cell used previously, in which the change in gas pressure was measured using a liquid-filled manometer. The test cells were placed in a radiation cell and positioned so that the received radiation dose was equivalent to that expected in the repository. Control cells were used to allow for any gas generation caused by radiolytic breakdown of the construction materials and the water. Tests were carried out at two temperatures (30 deg C and 50 deg C), two dose rates (11 Gray/hr and 300 Gray/hr), and in two different artificial groundwaters. A total of four tests were carried out, using carbon steel wires as the test material. The cells were exposed for a period of several months, after which they were dismantled and the corrosion product on one wire from each test cell was analysed using Raman spectroscopy. The report presents the results from the gas generation tests and compares the results obtained under irradiated conditions to results obtained previously in the absence of radiation. Radiation was found to enhance the corrosion rate at both dose rates but the greatest enhancement occurred at the

  1. Effect of chloride concentration and pH on pitting corrosion of waste package container materials

    International Nuclear Information System (INIS)

    Roy, A.K.; Fleming, D.L.; Gordon, S.R.

    1996-12-01

    Electrochemical cyclic potentiodynamic polarization experiments were performed on several candidate waste package container materials to evaluate their susceptibility to pitting corrosion at 90 degrees C in aqueous environments relevant to the potential underground high-level nuclear waste repository. Results indicate that of all the materials tested, Alloy C-22 and Ti Grade-12 exhibited the maximum corrosion resistance, showing no pitting or observable corrosion in any environment tested. Efforts were also made to study the effect of chloride ion concentration and pH on the measured corrosion potential (Ecorr), critical pitting and protection potential values

  2. Effect of mechanical treatment on intergranular corrosion of 6064 alloy bars

    Science.gov (United States)

    Sláma, P.; Nacházel, J.

    2017-02-01

    Aluminium Al-Mg-Si-type alloys (6xxx-series) exhibit good mechanical properties, formability, weldability and good corrosion resistance in various environments. They often find use in automotive industry and other applications. Some alloys, however, particularly those with higher copper levels, show increased susceptibility to intergranular corrosion. Intergranular corrosion (IGC) is typically related to the formation of microgalvanic cells between cathodic, more noble phases and depleted (precipitate-free) zones along grain boundaries. It is encountered mainly in AlMgSi alloys containing Cu, where it is thought to be related to the formation Q-phase precipitates (Al4Mg8Si7Cu2) along grain boundaries. The present paper describes the effects of mechanical working (extrusion, drawing and straightening) and artificial aging on intergranular corrosion in rods of the 6064 alloy. The resistance to intergranular corrosion was mapped using corrosion tests according to EN ISO 11846, method B. Corrosion tests showed dependence of corrosion type on mechanical processing of the material. Intergranular, pitting and transgranular corrosion was observed. Artificial ageing influenced mainly the depth of the corrosion.

  3. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  4. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  5. Evaluation of the flow-accelerated corrosion downstream of an orifice. 2. Measurement of corrosion rate and evaluation on the effects of the flow field

    International Nuclear Information System (INIS)

    Nagaya, Yukinori; Utanohara, Yoichi; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), a corrosion rate downstream of an orifice was measured using the electric resistance method. The diameter of the pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity of the experimental loop was set at 5m/s, and the temperature of water was controlled within ±1 at 150deg-C. There were no significant circumferential difference in measured corrosion rate, and the maximum corrosion rate was observed at 1D or 2D downstream from the orifice. The ratios of the measured corrosion rate and the calculated wall shear stress at the 1D downstream from the orifice to the value at upstream under well developed flow agreed well. (author)

  6. The effects of corrosion conditions and cold work on the nodular corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    You, Gil Sung

    1992-02-01

    The nodular corrosion of Zircaloy-4 was investigated on the effects of corrosion conditions and cold work. Variation of steam pressures, heat-up environments and prefilms were considered and cold work effects were also studied. The corrosion rate of Zircaloy-4 was dependent on pressure between 1 and 100 atm and it followed the cubic law as W=16.85 x P 0.31 for plate specimens and W=12.69 x P 0.27 for tube specimens, where W is weight gain (mg/dm 2 ) and P is the steam pressure (atm). The environment variation in autoclave during heat-up period did not affect the early stage of nodular corrosion. The prefilm, which was formed at 500 .deg. C under 1 atm steam for 4 hours, restrained the formation of the initial small nodules. The oxide film formed under 1 atm steam showed no difference of electrical resistivity from the oxides formed under 100 atm steam pressure. Cold work specimens showed the higher resistivity against nodular corrosion than as-received specimens. The corrosion resistance arising from cold work seems to be due to the texture changes by the cold work. The results showed that cold work can affect the later stage of uniform corrosion and the early stage of nodular corrosion, namely, the nodule initiation stage

  7. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  8. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Wagh, A.B.

    The corrosion of mild steel immersed at various depths (0-100 m) from three stations of the Arabian Sea was investigated. The corrosion of mild steel decreased with increasing immersion depth. Significant positive relationships were observed between...

  9. The Secant Rate of Corrosion: Correlating Observations of the USS Arizona Submerged in Pearl Harbor

    Science.gov (United States)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Johnson, Jon E.; Carr, James D.; Conlin, David L.

    2018-03-01

    Contrary to previous linear projections of steel corrosion in seawater, analysis of an inert marker embedded in USS Arizona concretion since the 7 December 1941 attack on Pearl Harbor reveals evidence that the effective corrosion rate decreases with time. The secant rate of corrosion, or SRC correlation, derived from this discovery could have a significant impact on failure analysis investigations for concreted shipwrecks or underwater structures. The correlation yields a lower rate of metal thinning than predicted. Development of the correlation is described.

  10. Effects of Chemical Treatments on Microbiologically Influenced Corrosion

    Science.gov (United States)

    Friedman, E. S.; Strom, M.; Dexter, S. C.

    2008-12-01

    Biofilms are known to have an effect on galvanic corrosion of alloys in seawater systems. In the Delaware Bay, biofilm formation on surface of cathodes has been shown to cause galvanic corrosion to occur up to 100 times more rapidly. Given the impacts that corrosion can have on structures, it is important to study how we can affect corrosion rates. One way of doing this is the application of chemical treatments to biofilms on metal samples. To investigate this, natural marine biofilms were grown on alloy 6XN stainless steel samples, and various chemical treatments were applied to discover their effects on open circuit potentials and corrosion currents. Another objective of this study was to determine if there was a threshold molecular weight above which molecules were unable to penetrate the biofilm. It was discovered that chemicals with molecular weights as high as 741.6 g/mol were able to penetrate at least some parts of the heterogeneous biofilm and reach the metal surface. No upper threshold value was found in this study. It was found that the reducing agents sodium L-ascorbate and NADH as well as the chelate ferizene caused a drop in open circuit potential of biofilmed 6XN samples. Also, glutaraldahyde, which is used as a fixative for bacteria, shifted the open circuit potential of biofilm samples in the noble direction but had no effect on the corrosion current. Sodium L- ascorbate was found to reach the metal surface, but in concentrations lower than those present in the bulk fluid. It was not determined in this study whether this was due to physical or chemical processes within the biofilm. A synergistic effect was observed when applying a mixture of ferizene and glutaraldahyde. It is thought that this was due to the death of the bacteria as well as the disruption of iron cycling in the biofilm. Finally, it was observed that NADH caused a reduction in current at potentials associated with iron reduction, leading us to believe that the iron was being reduced

  11. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  12. Observations of crud deposits, corrosion and erosion of BWR and PWR fuel

    International Nuclear Information System (INIS)

    Bairiot, H.

    1983-01-01

    The BWR experience is limited to one reactor but the PWR experience covers a wide range of successive generations of power plants (7 in total). The systems are described and their water chemistry briefly commented. Some R and D performed on the effects of the operating regimes (steady state and transients) are summarized. Observations made by pool-side inspections and postirradiation examinations of fuel are outlined concerning water chemistry effects (crud deposits and corrosion) and ''mechanical'' coolant-cladding interaction (chip deposits and baffle jetting). (author)

  13. Corrosion of X65 Pipeline Steel Under Deposit and Effect of Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    XU Yun-ze

    2016-10-01

    Full Text Available Effect of the deposit on the electrochemical parameters of X65 pipeline steel in oxygen contained sodium chloride solution was studied by EIS and PDS methods. The galvanic corrosion behavior under deposit and effect of different concentration of corrosion inhibitor PBTCA were studied by electrical resistance (ER method combined with ZRA. The results show that the corrosion potential of X65 steel shifts negatively as SiO2 covering its surface and the corrosion rate becomes lower. When the galvanic couple specimen with deposit is electrically connected with the specimen without deposit, anodic polarization occurs on X65 steel under deposit and the galvanic current density decreases from 120μA/cm2 to 50μA/cm2 and keeps stable. As 5×10-5, 8×10-5 and 3×10-4 PBTCA were introduced into the solution, the galvanic current density reaches the highest 1300μA/cm2 and then decreases to 610μA/cm2 keeping stable around 610μA/cm2, corrosion rate of X65 steel under deposit reaches 6.11mm/a. PBTCA accelerates the corrosion of X65 steel under deposit in oxygen contained solution. Through the investigation on the surface of the specimens, serious local corrosion occurs on the X65 steel surface under deposit.

  14. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  15. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  16. Adsorption and corrosion inhibiting effect of riboflavin on Q235 mild steel corrosion in acidic environments

    Energy Technology Data Exchange (ETDEWEB)

    Chidiebere, Maduabuchi A. [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology Owerri, PMB 1526 Owerri (Nigeria); Liu, Li [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Li, Ying, E-mail: liying@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China); Wang, Fuhui [Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Rd, Shenyang 110016 (China)

    2015-04-15

    The inhibiting effect of Riboflavin (RF) on Q235 mild steel corrosion in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} at 30 °C temperature was investigated using electrochemical techniques (electrochemical impedance spectroscopy and potentiodynamic polarization). The obtained results revealed that RF inhibited the corrosion reaction in both acidic solutions. Maximum inhibition efficiency values in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} were 83.9% and 71.4%, respectively, obtained for 0.0012 M RF. Polarization data showed RF to be a mixed-type inhibitor, while EIS results revealed that the RF species adsorbed on the metal surface. The adsorption of RF followed Langmuir adsorption isotherm. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies confirmed the formation of a protective layer adsorbed on the steel surface. Quantum chemical calculations were used to correlate the inhibition ability of RF with its electronic structural parameters. - Highlights: • The inhibitory mechanism was influenced by the nature of acid anions. • RF has reasonable inhibition effect especially in 1 M HCl solution. • Polarization studies showed that RF functioned as a mixed type inhibitor. • Improved surface morphology was observed in the presence of RF.

  17. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  18. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiwei [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Gao, Bo, E-mail: surfgao@aliyun.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Yin, Shaohua [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-12-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  19. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, G.S.; Chen, K.H.; Fang, H.C.; Chen, S.Y.; Chao, H. [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2011-01-15

    By weight loss, potentiodynamic polarization, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS) techniques complemented by optical and scanning electron microscopy observations, the effect of recrystallization on the corrosion, and electrochemical behavior of 7150 Al alloy was studied. The results indicated that the high recrystallization fraction 7150-1 was worse than the low recrystallization fraction 7150-2 on corrosion resistance. The analysis of EIS indicated that 7150-1 exhibited obvious pitting corrosion at 5 h immersion time, whereas 7150-2 showed no obvious pitting corrosion even at 33 h. The corrosion route developed along the grain boundary of recrystallization grains, not along the grain boundary of unrecrystallization grains. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)

    2009-07-01

    In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)

  1. Effect of Sensitization on Corrosion-Fatigue Cracking in Al 5083 Alloy

    Science.gov (United States)

    2015-01-21

    immediately ahead of the fatigue precrack in 0.001 and 0.01% NaCl solutions are transgranular ductile void coalescences. This observation suggests the 9...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6355--15-9581 Effect of Sensitization on Corrosion- Fatigue Cracking in Al 5083 Alloy...area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Effect of Sensitization on Corrosion- Fatigue Cracking in Al 5083

  2. Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy

    Science.gov (United States)

    Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing

    2018-05-01

    The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.

  3. Effect of Acidic Water on Strength, Durability and Corrosion of ...

    African Journals Online (AJOL)

    In this study, specimens of 108 cubes (150 mm x 150 mm x 150 mm), 36 cylinders (300 mm x 150 mm), and 72 cylinders (102 mm x 51 mm) were cast and cured in percentages of NaCl added water to find the workability, strength, durability and corrosion resistance characteristics concrete. The effect of corrosion of steel in ...

  4. Economic effects of full corrosion surveys for aging concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Raupach, M.; Reichling, K.

    2013-01-01

    This paper investigates the economic effects of full corrosion surveys of concrete structures. The background is that the existing concrete infrastructure is aging, while being exposed to aggressive influences, which increases the occurrence of corrosion and related concrete damage over time. The

  5. Effect of municipal liquid waste on corrosion susceptibility of ...

    African Journals Online (AJOL)

    This investigation studied the effect of municipal liquid waste discharged into the environment within Kano municipal area on the corrosion susceptibility of galvanized steel pipe burial underground. Six stagnant and six moving municipal liquid waste samples were used for the investigation. The corrosion rate of the ...

  6. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  7. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  8. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  9. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  10. Temperature effect on Zircaloy-4 stress corrosion cracking

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    1999-01-01

    Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)

  11. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    Science.gov (United States)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  12. Effect of menthol coated craft paper on corrosion of copper in HCl ...

    Indian Academy of Sciences (India)

    Administrator

    The effect of menthol on copper corrosion was studied by gravimetric and ... lable for temporary protection of metals and alloys from corrosion, the use of volatile .... The corrosion kinetic parameters were obtained from the anodic and cathodic.

  13. Corrosion in marine atmospheres. Effect of distance from the coast

    International Nuclear Information System (INIS)

    Chico, B.; Otero, E.; Morcillos, M.; Mariaca, L.

    1998-01-01

    In marine atmospheres the deposition of saline particles on the surface of metals intensifies the metallic corrosion process. However, quantitative information about the effect of atmospheric salinity on metallic corrosion is very scarce. This paper reports the relationship between salinity and metallic corrosion, where a clear linear relation (r=0.97) has been found for a broad interval of salinities (4-500 mg Cl''-/m''2.d), as well as the relationship between salinity (or metallic corrosion) and distance from the coast. A hyperbolic function seems to be established both variables; there is an exponential drop in salinity (or corrosion) as shoreline distance increases tending towards and asymptotic value. The study has been based on information obtained from field research conducted at a marine atmosphere in Tarragona (Spain) and data compiled from the literature. (Author) 14 refs

  14. Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tsuyoshi, Nakajima; Mitsuhiro, Mori; Vinay, Gupta; Yoshimi, Ohzawa [Aichi Institute of Technology, Dept. of Applied Chemistry, Toyota-shi (Japan); Hiroyuki, Iwata [Aichi Institute of Technology, Technical Research Center, Toyata-shi (Japan)

    2002-12-01

    Effect of fluoride additives was investigated in organic solvents containing LiCF{sub 3}SO{sub 3} to prevent the corrosion of aluminum current collector for lithium ion batteries. LiClO{sub 4} was also examined for comparison. Among examined LiBF{sub 4}, LiPF{sub 6}, LiAsF{sub 6}, LiSbF{sub 6} and LiClO{sub 4}, LiBF{sub 4} was the best additive to suppress the corrosion of aluminum because its oxidation potential is close to that of CF{sub 3}SO{sub 3}{sup -} anion. Corrosion currents for aluminum in a complex fluoride- or LiClO{sub 4}-added solvents became smaller in the order, LiSbF{sub 6}>LiAsF{sub 6}>LiClO{sub 4}>LiPF{sub 6}>LiBF{sub 4}. Oxidation potential of ClO{sub 4}{sup -} is nearly the same as that of CF{sub 3}SO{sub 3}{sup -}. However, the corrosion currents were similar to or slightly larger than those observed in LiPF{sub 6}-added solvents. SEM images of electrochemically oxidized aluminum samples indicated that the level of corrosion well coincided with the observed corrosion currents. The corrosion mechanism of aluminum was also proposed. (authors)

  15. Effects of climate and corrosion on concrete behaviour

    Science.gov (United States)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  16. Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys

    Directory of Open Access Journals (Sweden)

    Yingwei Song

    2014-09-01

    Full Text Available Hydrogen evolution reaction is inevitable during the corrosion of Mg alloys. The effect of hydrogen on the corrosion behavior of the Mg–2Zn and Mg–5Zn alloys is investigated by charging hydrogen treatment. The surface morphologies of the samples after charging hydrogen were observed using a scanning electron microscopy (SEM and the corrosion resistance was evaluated by polarization curves. It is found that there are oxide films formed on the surface of the charged hydrogen samples. The low hydrogen evolution rate is helpful to improve the corrosion resistance of Mg alloys, while the high hydrogen evolution rate can increases the defects in the films and further deteriorates their protection ability. Also, the charging hydrogen effect is greatly associated with the microstructure of Mg substrate.

  17. Effect of microstructure on corrosion behavior of Ag-30Cu-27Sn alloy in vitro media

    International Nuclear Information System (INIS)

    Salehisaki, Mehdi; Aryana, Maryam

    2014-01-01

    Highlights: • High cooling rates decrease the number of Ag intermetallic particles in Cu-rich phase. • Increasing cooling rate improves corrosion behavior of Ag-30Cu-27Sn dental alloy. • Cathode/anode ratio in Cu-rich phases determines the corrosion behavior of alloy. - Abstract: In the present work, three simple heat treatment cycles were used to study the effects of microstructure on electrochemical corrosion behavior of Ag-30Cu-27Sn dental alloy. The electrochemical impedance spectroscopy (EIS) measurements and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of as-cast and heat treated samples in synthetic saliva solution. The presence of intermetallic compounds were studied by X-ray diffraction method (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray detector (EDAX). The microstructural observations and electrochemical corrosion results revealed that, increasing the cooling rate improves the corrosion behavior of under investigation samples. Improvement of the corrosion behavior is attributed to reducing the area of fine distributed Ag 3 Sn islands in the Cu-rich matrix which decrease the cathode/anode ratio of microgalvanic cells

  18. Effect of noble metals on the corrosion of AISI 316L stainless steel in nitric acid

    International Nuclear Information System (INIS)

    Robin, R.; Andreoletti, G.; Fauvet, P.; Terlain, A.

    2004-01-01

    In the spent fuel treatment, the solutions of fission products contain dissolution fines, in particular platinoids. These solutions are stored into AISI 316L stainless steel tanks, and the contact of noble metallic particles such as platinoids with austenitic stainless steels may induce a shift of the steel corrosion potential towards the trans-passive domain by galvanic coupling. In that case, the steel may be polarized up to a potential value above the range of passive domain, that induces an increase of the corrosion current. The galvanic corrosion of AISI 316L stainless steel in contact with different platinoids has been investigated by electrochemical and gravimetric techniques. Two types of tests were conducted in 1 mol/L nitric acid media at 80 deg C: (1) polarization curves and (2) immersion tests with either platinoid powders (Ru, Rh, Pd) or true insoluble dissolution fines (radioactive laboratory test). The results of the study have shown that even if galvanic coupling enhances the corrosion rate by about a factor 10 in these conditions, the corrosion behavior of AISI 316L remains low (a corrosion rate below 6 μm/year, few small intergranular indentations). No specific effect of irradiation and of elements contained in radioactive fines (other than Ru, Rh and Pd) was observed on corrosion behavior. A platinoids-ranking has also been established according to their coupling potential: Ru > Pd > Rh. (authors)

  19. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  20. Observations on the influence of tube manufacturing technique on iodine stress corrosion cracking of unirradiated Zircaloy

    International Nuclear Information System (INIS)

    Syrett, B.C.; Cubicciotti, D.; Jones, R.L.

    1979-01-01

    Closed-end tube pressurization tests at 593 K were used to compare the susceptibilities to iodine stress corrosion cracking (SCC) of two lots of Zircaloy-2 tubing manufactured by different suppliers. Although both tubings were produced to exactly the same specifications in terms of dimensions, chemical composition, burst strength, and certain other properties, as-received specimens from the two lots exhibited markedly different behavior in iodine SCC tests. The tubing from one supplier had a lower SCC threshold stress and failed about 30 times more quickly than the tubing from the other supplier. However, it was found that this difference in SCC susceptibility was eliminated if the internal surfaces of the specimens were polished to a 3 μm finish prior to testing. These observations are discussed in terms of possible effects of surface or near-surface chacteristics of the tubing on SCC susceptibility

  1. Investigation of Non-Uniform Rust Distribution and Its Effects on Corrosion Induced Cracking in Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Sutrisno Wahyuniarsih

    2017-01-01

    Full Text Available Uniform corrosion still widely used by a lot of researchers and engineers to analyze the corrosion induced cracking. However, in practice, corrosion process occurred non-uniformly. The part nearest to the exposed surface is more likely to have faster corrosion initiation compared with other regions. This research is mainly focused on investigating the effect of non-uniform rust distribution to cover cracking in reinforced concrete. An experimental test performed using accelerated corrosion test by using 5% NaCl solution and applied a constant electric current to the concrete samples. The rust distribution and measurement were observed by using a digital microscope. Based on the experimental result, it was found that the rust was distributed in a non-uniform pattern. As a result, the cracks also formed non-uniformly along the perimeter of steel bar. At the last part of this paper, a simulation result of concrete cracking induced by non-uniform corrosion is presented. The result compared with a simulation using uniform corrosion assumption to investigate the damage pattern of each model. The simulation result reveals stress evolution due to rust expansion which leads to concrete cracking. Furthermore, a comparison of stresses induced by non-uniform corrosion and uniform corrosion indicates that non-uniform corrosion could lead to earlier damage to the structure which is specified by the formation and propagation of the crack.

  2. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  3. Effect of load deflection on corrosion behavior of NiTi wire.

    Science.gov (United States)

    Liu, I H; Lee, T M; Chang, C Y; Liu, C K

    2007-06-01

    For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.

  4. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  5. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-02-15

    A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

  6. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy

    International Nuclear Information System (INIS)

    Harandi, Shervin Eslami; Hasbullah Idris, Mohd; Jafari, Hassan

    2011-01-01

    Research highlights: → Forging temperature demonstrates more pronounced effect compared to forging speed. → Precipitation of Mg 2 Ca phase at grain boundaries accelerates corrosion rate. → Forging process doesn't provide the corrosion resistance required for bone healing. -- Abstract: The performance of Mg-1Ca alloy, a biodegradable metallic material, may be improved by hot working in order that it may be of use in bone implant applications. In this study, Mg-1Ca cast alloy was preheated to different temperatures before undergoing forging process with various forging speeds. Macro- and microstructure of the samples were examined by stereo and scanning electron microscopes (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), respectively. To determine the mechanical properties of the alloy, hardness value and plastic deformation ability of the samples were measured. To investigate the corrosion behaviour of the alloy, immersion and electrochemical tests were performed on the samples in simulated body fluid and the corrosion products were characterized by SEM/EDS. The results showed that increasing forging temperature decreased grain size led to improved hardness value and plastic deformation ability of the alloy, whereas no significant effect was observed by changing forging speed. Moreover, forging at higher temperatures led to an increase in the amount of Mg 2 Ca phase at grain boundaries resulted in higher corrosion rates. It can be concluded that although forging process improved the mechanical properties of the alloy, it does not satisfy the corrosion resistance criteria required for bone healing.

  7. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  8. The effects of water radiolysis on the corrosion and stress corrosion behavior of type 316 stainless steel in pure water

    International Nuclear Information System (INIS)

    Wyllie, W.E. II; Duquette, D.J.; Steiner, D.

    1994-11-01

    In the ITER Conceptual Design Activity, water will be used as coolant for the major reactor components, which will be made of solution-annealed 316 SS. A concern is that the radiolysis products may increase the stress corrosion cracking (SCC) susceptibility of 316 SS. The corrosion and stress corrosion of 316 SS was observed under irradiated and nonirradiated conditions. Gamma irradiation produced a 100 mV potential shift in the active direction, probably from the polarizing effect of reducing radiolysis products. The irradiation also resulted in nearly an order of magnitude increase in the passive current density of 316 SS, probably from increased surface reaction rates involving radiolysis products as well as increased corrosion rates; however the latter was considered insignificant. Computer simulations of pure water radiolysis at 50, 90, and 130 C and dose rates of 10 18 -10 24 were performed; effects of hydrogen, argon, and argon + 20% oxygen deaeration were also studied. Slow strain rate suggest that annealed and sensitized 316 SS was not suscepible to SCC in hydrogen- or argon-deaerated water at 50 C. Modeling of irradiated water chemistry was performed. Open circuit potential of senstizied and annealed 316 SS had a shift of 800 mV in the noble (positive) direction. Steady-state potentials of -0.180 V for sensitized 316 SS wire and -0.096 V vs Hg/HgSO 4 for annealed 316 SS wire were independent of oxygen presence. The -0.180 V shift is likely to promote SCC

  9. The corrosion effect on the conduit systems

    International Nuclear Information System (INIS)

    Laaidi, Naouar; Belattar, Sougratti

    2009-01-01

    The conduits in the buildings require a regular and permanent control, in order to avoid the risks of deterioration caused by the corrosion or the escape of water. In this work, we present a thermal nondestructive testing method of concrete structures containing water conduits, based on numerical modeling in three dimensions. The goal is to study the detectability of these conduits in different situations and to give a thermal characterization of the rust behaviour in the steel conduits. (author)

  10. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  11. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  12. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  13. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  14. The effect lead impurities on the corrosion resistance of alloy 600 and alloy 690 in high temperature water

    International Nuclear Information System (INIS)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-01-01

    Degradation of nickel-based alloy steam generator (SG) tubing caused by lead-induced corrosion has been reported recently in some PWR plants. Several laboratory studies also have shown that lead causes intergranular or transgranular stress corrosion cracking (IGSCC or TGSCC) of the tubing materials. Information from previous studies suggests two possible explanations for the mechanism of lead-induced corrosion. One is selective dissolution of tube metal elements, resulting in formation of a lead-containing nickel-depleted oxide film as observed in mildly acidic environments. The other explanation is an increase in potential, as has been observed in lead-contaminated caustic environments, although not in all volatile treatment (AVT) water such as the ammonium-hydrazine water chemistry. These observation suggest that an electrochemical reaction between metal elements and dissolved lead might be the cause of lead-induced corrosion. The present work was undertaken to clarify the lead-induced corrosion mechanism of nickel-based alloys from an electrochemical viewpoint, focusing on mildly acidic and basic environments. These are the probable pH conditions in the crevice region between the tube and tube support plate of the SG where corrosion damage could occur. Measurements of corrosion potential and electrochemical polarization of nickel-based alloys were performed to investigate the effect of lead on electrochemical behavior of the alloys. Then, constant extension rate tests (CERT) were carried out to determine the corrosion susceptibility of the alloys in a lead-contaminated environment. (J.P.N.)

  15. Laboratory testing of waste glass aqueous corrosion; effects of experimental parameters

    International Nuclear Information System (INIS)

    Ebert, W.L.; Mazer, J.J.

    1993-01-01

    A literature survey has been performed to assess the effects of the temperature, glass surface area/leachate volume ratio, leachant composition, leachant flow rate, and glass composition (actual radioactive vs. simulated glass) used in laboratory tests on the measured glass reaction rate. The effects of these parameters must be accounted for in mechanistic models used to project glass durability over long times. Test parameters can also be utilized to highlight particular processes in laboratory tests. Waste glass corrosion results as water diffusion, ion-exchange, and hydrolysis reactions occur simultaneously to devitrify the glass and release soluble glass components into solution. The rates of these processes are interrelated by the affects of the solution chemistry and glass alteration phases on each process, and the dominant (fastest) process may change as the reaction progresses. Transport of components from the release sites into solution may also affect the observed corrosion rate. The reaction temperature will affect the rate of each process, while other parameters will affect the solution chemistry and which processes are observed during the test. The early stages of corrosion will be observed under test conditions which maintain dilute leachates and the later stages will be observed under conditions that generate more concentrated leachate solutions. Typically, water diffusion and ion-exchange reactions dominate the observed glass corrosion in dilute solutions while hydrolysis reactions dominant in more concentrated solutions. Which process(es) controls the long-term glass corrosion is not fully understood, and the long-term corrosion rate may be either transport- or reaction-limited

  16. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  17. Effect of water chemistry on corrosion of stainless steel and deposition of corrosion products in high temperature pressurised water

    International Nuclear Information System (INIS)

    Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Banks, Andrew

    2012-09-01

    In any water-cooled nuclear reactor, the corrosion of the structural materials in contact with the coolant and the deposition of the resulting oxidised species has long been an operational concern within the power generation industry. Corrosion of the structural materials at all points in the reactor leads to low concentrations of oxidised metal species in the coolant water. The oxidised metal species can subsequently be deposited out as CRUD deposits at various points around the reactor's primary and secondary loops. The deposition of soluble oxidised material at any location in the reactor cooling system is undesirable due to several effects; deposits have a porous structure, capable of incorporating radiologically active material (forming out of core radiation fields) and concentrating aggressively corrosive chemicals, which exacerbate environmental degradation of structural and fuel-cladding materials. Deposits on heat transfer surfaces also limit efficiency of the system as a whole. The work in this programme is an attempt to determine and understand the fundamental corrosion and deposition behaviour under controlled, simulated reactor conditions. The rates of corrosion of structural materials within pressurised water reactors are heavily dependent on the condition of the exposed surface. The effect of mechanical grinding and of electropolishing on the corrosion rate and structure of the resultant oxide film formed on grade 316L stainless steel exposed to high purity water, modified to pH 9.5 and 10.5 at temperatures between 200 and 300 deg. C and pressures of up to 100 bar will be investigated. The corrosion of stainless steel in water via electrochemical oxidation leads to the formation of surface iron, nickel and chromium based spinels. Low concentrations of these spinels can be found dissolved in the coolant water. The solubility of magnetite, stainless steels' major corrosion product, in high purity water will be studied at pH 9.5 to 10.5 at

  18. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure

    International Nuclear Information System (INIS)

    Sagawa, Wataru; Aoki, Takayuki; Itou, Takashi; Enomoto, Kunio; Hayashi, Eisaku; Ishikawa, Tetsuya

    2009-01-01

    The effect of hydrostatic test on the residual stress re-distribution was simulated by experiment to confirm the residual stress behavior of the cone-shaped shroud support to reactor pressure vessel (RPV) weld, where a number of cracks due to stress corrosion cracking (SCC) were observed on the inner side only. Test specimen with tensile residual stress was loaded and unloaded with axial plus bending load, which simulates the hydrostatic test load, and the strain change was measured during the test to observe the residual stress behavior. The results verify that the residual stresses of the shroud support to the RPV weld were reduced and the stresses on inner and outer sides were reversed by the hydrostatic test. As the SCC countermeasure, the shot peening (SP) technology was applied. Residual stress reduction by SP on the complicated configuration, and improvement of SCC resistance and endurance of the compressive residual stress were experimentally confirmed. Then, SP treatment procedures on the actual structure were confirmed and a field application technique was established

  19. Effects of porosity in a model of corrosion and passive layer growth

    Directory of Open Access Journals (Sweden)

    F.D.A. Aarão Reis

    2017-12-01

    Full Text Available We introduce a stochastic lattice model to investigate the effects of pore formation in a passive layer grown with products of metal corrosion. It considers that an anionic species diffuses across that layer and reacts at the corrosion front (metal-oxide interface, producing a random distribution of compact regions and large pores, respectively represented by O (oxide and P (pore sites. O sites are assumed to have very small pores, so that the fraction Φ of P sites is an estimate of the porosity, and the ratio between anion diffusion coefficients in those regions is D_r0 and D_r≪1, significant changes are observed in passive layer growth and corrosion front roughness. For small Φ, a slowdown of the growth rate is observed, which is interpreted as a consequence of the confinement of anions in isolated pores for long times. However, the presence of large pores near the corrosion front increases the frequency of reactions at those regions, which leads to an increase in the roughness of that front. This model may be a first step to represent defects in a passive layer which favor pitting corrosion.

  20. Effects of cold work, sensitization treatment, and the combination on corrosion behavior of stainless steels in nitric acid

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Ohta, J.; Arai, T.

    1998-01-01

    In a reprocessing process, spent nuclear fuels from light-water reactors are dissolved in nitric acid (HNO 3 ) to separate and recover the fissile materials such as uranium and plutonium from the radioactive fission products. Corrosion behavior of two stainless steels (SS) was investigated in nitric acid (HNO 3 ) for the effect of cold work (CW), sensitization heat treatment (Sens.), and a combination (CW + Sens.). The corrosion rate of the solution-treated type 304 SS (UNS S30400) with extra-low carbon (type 304ELC SS (UNS S30403)) increased with time and reached constant values after 1,000 h of immersion. However, constant corrosion rates were obtained for 25% Cr-20% Ni-Nb (type 310Nb SS [UNS S31040]) from the initial stage of immersion. CW mitigated corrosion of the solution-treated SS. The effect of CW was different on the two types of SS, with the sensitization heat-treated type 304 ELC SS showing higher corrosion rates and type 310Nb SS lower corrosion rates by CW. Corrosion resistance of type 310Nb SS was superior to type 304 ELC SS after all treatments. Chromium concentration of the sensitization-treated type 304 ELC SS was lower in the grain-boundary region than of the solution-treated one, although no chromium carbide precipitation was observed. This may have been the cause of intergranular corrosion enhancement by sensitization treatment

  1. Effect of microcrystallization on pitting corrosion of pure aluminium

    International Nuclear Information System (INIS)

    Meng Guozhe; Wei Liyan; Zhang Tao; Shao Yawei; Wang Fuhui; Dong Chaofang; Li Xiaogang

    2009-01-01

    A microcrystalline aluminium film with grain size of about 400 nm was prepared by magnetron sputtering technique. Its corrosion behaviour was investigated in NaCl containing acidic solution by means of potentiodynamic polarization curves and electrochemical noise (EN). The polarization results indicated that the corrosion potential of the sample shifted towards more positive direction, while its corrosion current density decreased compared with that of pure coarse-grain Al. The EN analysis based on stochastic model demonstrated that there existed two kinds of effect of microcrystallization on the pitting behaviour of pure aluminium: (1) the rate of pit initiation is accelerated, (2) the pit growth process was impeded. This leads to the enhancement of pitting resistance for the microcrystallized aluminium.

  2. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs

  3. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  4. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  5. Effect of temperature on structure and corrosion resistance for ...

    Indian Academy of Sciences (India)

    The effect of plating temperatures between 60 and 90◦C on structure and corrosion resistance for elec- troless NiWP coatings ..... which helps to form fine grain. At 80 .... [23] Zhang W X, Jiang Z H, Li G Y and Jiang Q 2008 Surf. Coat. Technol.

  6. Effects of glacial meltwater on corrosion of copper canisters

    International Nuclear Information System (INIS)

    Ahonen, L.; Vieno, T.

    1994-08-01

    The composition of glacial meltwater and its reactions in the bedrock are examined. The evidences that there are or should be from past intrusions of glacial meltwater and oxygen deep in the bedrock are also considered. The study is concluded with an evaluation of the potential effects of oxygenated meltwater on the corrosion of copper canisters. (46 refs., 3 figs., 2 tabs.)

  7. Synergetic effect of sulphur and nitrogen oxides on corrosion of ...

    African Journals Online (AJOL)

    The synergetic effect of nitrogen dioxide (NO2) and sulphur dioxide (SO2) on corrosion of galvanized iron roofing sheets has been investigated. The field studies were conducted in Ibeno and Ebocha (Niger Delta, Nigeria). Specimens of the roofing sheets were exposed for one year to outdoor environment to record the ...

  8. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... speed of 58 mm/min. The liquid CO2 was sprayed onto the weld centre line immediately after the toolpiece. The microstructures of welds in different regions were observed using Field Emission Gun Scanning Electron Microscope (FEG-SEM). The effect on the corrosion susceptibility was investigated using...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...

  9. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  10. Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.T., E-mail: jiasqq1225@126.com [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Chen, J.F.; Zhou, J.Y.; Ge, M.Z.; Lu, Y.L.; Li, X.L. [School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001 (China)

    2015-10-28

    7075 aluminum alloy weldments were processed by an intensive process known as laser shock peening (LSP), meanwhile its stress corrosion behaviors were observed by scanning electron microscopy (SEM) and slow strain rate tensile (SSRT) tests. Results showed that the effect of LSP on corrosion behavior of the joint was fairly useful and obvious. With LSP, the elongation, time of fracture and static toughness after the SSRT test were improved by 11.13%, 20% and 100%, respectively. At the same time, the location of the fracture also changed. LSP led to a transition of the fracture type from transgranular to intergranular The reasons for these enhancements of the joint on corrosion behavior were caused by microstructure, residual stress, micro-hardness, and fracture appearance.

  11. The effect of zinc thickness on corrosion film breakdown of Colombian galvanized steel

    Science.gov (United States)

    Sandoval-Amador, A.; E Torres Ramirez, J.; Cabrales-Villamizar, P. A.; Laverde Cataño, D.; Y Peña-Ballesteros, D.

    2017-12-01

    This work studies the corrosion behaviour of Colombian galvanized steel in solutions of chloride and sulphate ions. The effect of the thickness and exposure time on the film’s breakdown susceptibility and protectiveness of the corrosion products were studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The corrosion products were analysed using SEM-EDS and XRD. The samples with a higher thickness level in the zinc film (Z180) have the lowest corrosion rate. In this case, one of the products that was formed by the chemical reactions that occurred was Zinc hydroxide, which exhibits a passive behaviour as observed in the Pourbaix curves of the obtained potentials and in how the different Ph levels of the solutions worked. The sheets with the highest thickness (Z180) had the best performance, since at the end of the study they showed the least amount of damage on the surface of the zinc layer. This is because the thickness of the zinc layer favours the formation of simonkolleite, which is the corrosion product that protects the material under the conditions of the study.

  12. Effect of elevated lithium on the waterside corrosion of zircaloy-4: Experimental and predictive studies

    International Nuclear Information System (INIS)

    Pecheur, D.; Giordano, A.; Picard, E.; Billot, P.; Thomazet, J.

    1997-01-01

    Lithium and boron content in the coolant are known to influence the oxidation behaviour of the fuel cladding. Since new PWR operating conditions could consist in an increase of the lithium and the boron concentration in the coolant early in the cycle, a specific study has been conducted to analyze and to predict the effect of such new water chemistry conditions on the oxidation kinetics of the Zircaloy-4 material. Experimental studies have been performed in out-of-pile loop tests, under one and two phase flow heat transfer in various water chemistry conditions (0≤Li≤350 ppm, 0≤B≤1000 ppm, 0≤K≤56 ppm). A simulation of the effect of elevated lithium on the corrosion has been made using the semi-empirical COCHISE corrosion code. Under one phase flow heat transfer conditions, the addition of lithium hydroxide in the coolant increases the oxidation rate, essentially in the post-transition regime for low lithium levels (≤ 75 ppm) and immediately in the pre-transition phase for very high lithium level (350 ppm). Under two phase flow heat transfer, an enhancement of the corrosion is observed in the area of the rod submitted to boiling. Based on the out-of-pile loop test performed in presence of KOH instead of LiOH, such an enhancement of the corrosion appears to be due to a lithium enrichment in the oxide layer induced by boiling and not to a pH effect. The simulation of the increase of lithium content in the coolant from 2.2 to 3.5 ppm leads to an enhancement in corrosion rates which becomes only significant at high burn up. This predictive result of elevated lithium effect on corrosion is then compared with oxidation data derived from reactors operating under an elevated lithium regime. (author). 14 refs, 9 figs, 3 tabs

  13. Effect of elevated lithium on the waterside corrosion of zircaloy-4: Experimental and predictive studies

    Energy Technology Data Exchange (ETDEWEB)

    Pecheur, D; Giordano, A; Picard, E; Billot, P [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France); Thomazet, J [FRAMATOME, Nuclear Fuel Div., Lyon (France)

    1997-02-01

    Lithium and boron content in the coolant are known to influence the oxidation behaviour of the fuel cladding. Since new PWR operating conditions could consist in an increase of the lithium and the boron concentration in the coolant early in the cycle, a specific study has been conducted to analyze and to predict the effect of such new water chemistry conditions on the oxidation kinetics of the Zircaloy-4 material. Experimental studies have been performed in out-of-pile loop tests, under one and two phase flow heat transfer in various water chemistry conditions (0{<=}Li{<=}350 ppm, 0{<=}B{<=}1000 ppm, 0{<=}K{<=}56 ppm). A simulation of the effect of elevated lithium on the corrosion has been made using the semi-empirical COCHISE corrosion code. Under one phase flow heat transfer conditions, the addition of lithium hydroxide in the coolant increases the oxidation rate, essentially in the post-transition regime for low lithium levels ({<=} 75 ppm) and immediately in the pre-transition phase for very high lithium level (350 ppm). Under two phase flow heat transfer, an enhancement of the corrosion is observed in the area of the rod submitted to boiling. Based on the out-of-pile loop test performed in presence of KOH instead of LiOH, such an enhancement of the corrosion appears to be due to a lithium enrichment in the oxide layer induced by boiling and not to a pH effect. The simulation of the increase of lithium content in the coolant from 2.2 to 3.5 ppm leads to an enhancement in corrosion rates which becomes only significant at high burn up. This predictive result of elevated lithium effect on corrosion is then compared with oxidation data derived from reactors operating under an elevated lithium regime. (author). 14 refs, 9 figs, 3 tabs.

  14. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: II. Swamp Sludges

    Directory of Open Access Journals (Sweden)

    Henki Ashadi

    2010-10-01

    Full Text Available A polluted environment will influence the building age. The objective of this research was to find out the influence of corrosive chemicals within the sludge swamp area with the corrosion rate of steel concrete. Corrosion in steel concrete usually occur in acid area which contain of SO42-, Cl- and NO3-. The research treatment used by emerging ST 37 andST 60 within 60 days in 'polluted' sludge swamp area. Three variation of 'polluted' swamp sludge were made by increasing the concentration a corrosive unsure up to 1X, 5X and 10X. The corrosion rate measured by using an Immersion Method. The result of Immersion test showed that sulphate had a greatest influence to corrosion rate of ST 37 and ST 60 and followed by chloride and nitrate. Corrosion rate value for ST 37 was 17.58 mpy and for ST 60 was 12.47 mpy.

  15. Radionuclide decay effects on waste glass corrosion and weathering

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.

    1993-01-01

    The release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as ·OH and O 2 - . Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions. Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects

  16. Observation and measurement of erosion-corrosion in nuclear plants influence of chemical conditioning

    International Nuclear Information System (INIS)

    Bodmer, M.; Svoboda, R.; Ziffermayer, G.

    1984-01-01

    The erosion-corrosion caused by wet steam leads to considerable damage of certain components of the thermal cycle and, the metallic oxides which are formed are carried by the circulating fluid and form deposits particularly on heat exchangers. This paper describes the measurements and the observations techniques that were used. The experimental data permits to quantify the material resistance as well as the transportation of oxydes during the successive periodes during which a modification of both the conception and the material were introduced. The analysis of trace quantities of Fe, Cr, Ni, CO... permit to determine the attack of various materials as well as the transportation of the respective oxides. The analysis of the circulating fluid and the measurements of the respective quantities of deposits allows to evaluate the calculations of transport, deposit and oxides removal. The erosion-corrosion phenomenon is dependent upon the environment. A modification of the conditioning (higher pH in PWR, use of oxidizing agents in BWR) permits only a limited reduction of erosion-corrosion and may even present some disadvantages [fr

  17. Assessing Level and Effectiveness of Corrosion Education in the UAE

    OpenAIRE

    Lim, Hwee Ling

    2012-01-01

    The consequences of corrosion can be minimized by an engineering workforce well trained in corrosion fundamentals and management. Since the United Arab Emirates incurs the second highest cost of corrosion after Saudi Arabia, this paper examined the quality of corrosion education in the UAE. Surveys with academia and industry respondents showed that dedicated corrosion courses and engineering courses that integrated corrosion into the curricula were available in UAE universities, but graduates...

  18. The effects of Nitinol phases on corrosion and fatigue behavior

    Science.gov (United States)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  19. A study of the effect of clinical washing decontamination process on corrosion resistance of Martensitic Stainless Steel 420.

    Science.gov (United States)

    Xu, Yunwei; Huang, Zhihong; Corner, George

    2016-09-28

    Corrosion of surgical instruments provides a seat for contamination and prevents proper sterilisation, placing both patients and medical staff at risk of infection. Corrosion can also compromise the structural integrity of instruments and lead to mechanical failure in use. It is essential to understand the various factors affecting corrosion resistance of surgical instruments and how it can be minimised.This paper investigates the effect on corrosion resistance from the clinical washing decontamination (WD) process, specifically by studying the changes in surface roughness and Cr/Fe ratio. Results indicate that the WD process provides a positive effect on smooth polished samples, while a lesser positive effect was observed on rough reflection reduced samples.

  20. The effect of notches and pits on corrosion fatigue strength

    Science.gov (United States)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed

  1. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  2. Effect of LiOH, NaOH and KOH on corrosion and oxide microstructure of Zr-based alloys

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Kim, H.G.; Jung, Y.H.; Ruhmann, H.

    1999-01-01

    Long-term corrosion test, SIMS analysis, and TEM microstructural study were carried out to investigate the corrosion characteristics and mechanism of Zr alloys in alkali hydroxides. The corrosion tests were performed in solutions of LiOH, NaOH, KOH, RbOH, and CsOH at 350 deg. C for 500 days. SIMS analysis was performed for the specimens prepared to have an equal oxide thickness. TEM studies on the specimens with an equal oxide thickness in various solutions in both pre- and post-transition regimes were also conducted. The corrosion rate in alkali hydroxide solutions was observed to decrease as the ionic radius of alkali cation was increased. The penetration depth of cation into the oxide decreases with increasing the ionic radius of cation. Even though the oxide thickness was equal, the different oxide morphologies were observed in specimens. Namely, in LiOH solution the oxide morphology was transformed early from columnar to equiaxed structure. However, in KOH solution the columnar structure was maintained up to post-transition regime. Based on the corrosion test, SIMS analysis, and microstructural study, the cation is considered to control the corrosion in a alkali hydroxide solution and its effect is dependent on the concentration of alkali and the oxide thickness. The slight acceleration of the corrosion rate at a low concentration is thought to be caused by cation incorporation into oxide while the significant acceleration at a high concentration is due to the transformation of oxide microstructure that would be induced by cation incorporation. KOH was shown not to affect significantly the corrosion and the hydrogen pickup of Zircaloy. Therefore, it has a potential for PWR application only from the point of view of Zircaloy corrosion. (author)

  3. The precious metal effect in high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J.H.W. de (Lab. for Materials Science, Delft Univ. of Technology (Netherlands)); Manen, P.A. van (Lab. for Materials Science, Delft Univ. of Technology (Netherlands))

    1994-01-01

    Additions of platinum and to a smaller extent rhodium, to aluminium oxide forming alloys are known to improve the high temperature corrosion resistance of the alloys. This effect is known as the ''precious metal effect''. The expensive Pt-additions are used because of the increased lifetime of turbine-vanes especially in marine environments. Only a limited number of coating systems is commercially available, as JML-1, LDC-2 and RT22. Normally Pt is deposited electrochemically or by a fused salt method. After deposition the high or low activity pack-cementation-process is applied to obtain a PtNiAl-coating. In this paper the effect of platinum on the oxidation mechanism is discussed by comparing the oxidation mechanism of [beta]-NiAl and Pt20Ni30Al50. This composition agrees with the average composition of a platinum modified aluminide coating. The alloys were oxidized at temperatures from 1000 to 1200 C. The growth of the oxide scale on the NiAl alloy proceeds both by aluminium and by oxygen diffusion through the scale resulting in growth within the scale. On Pt20Ni30Al50 the growth of the scale is limited to the oxide/gas interface due to a predominant aluminium transport through the scale. The morphology of the oxide scales did not show large differences. However, the extensive void formation at the [beta]-NiAl/oxide interface was not observed on the Pt20Ni30Al50 samples. The absence of voids at the interface and the reduction of growth stresses, as a result of the outward growth of the scale, are the two likely reasons for the improved oxide scale adherence and can thus be considered, to be two elements of the ''precious metal effect''. (orig.)

  4. Effect of aging time on intergranular corrosion behavior of a newly developed LDX 2404 lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Ziying, E-mail: zzying@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Huizhen [School of Management, University of Shanghai for Science and Technology, Shanghai 200093 (China); Hu, Jun [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Li, Jin [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2016-07-05

    The effect of aging at 700 °C for various times on the intergranular corrosion behavior of LDX 2404 duplex stainless steel is investigated by morphological observation and electrochemical detection. Scanning electronic microscopy and transmission electronic microscopy analysis reveal that Cr{sub 2}N, M{sub 23}C{sub 6} and the sigma and chi phases nucleate simultaneously at the initial stages of aging. The granular particles of sigma phase grow larger but fewer with the increase of aging time. The electrochemical detection results show that intergranular corrosion become more severe and the corrosion type evolves from intergranular corrosion into general corrosion as the holding time extends to 48 h. - Highlights: • The IGC behavior of aged LDX 2404 is investigated. • Cr{sub 2}N, M{sub 23}C{sub 6} and the σ and χ phases nucleate simultaneously at the initial stages of aging. • IGC resistance decreases with the increase of aging time. • The corrosion type evolves from IGC into general corrosion for longer aging times.

  5. Effects of metallurgical factors on stress corrosion cracking of Ni-base alloys in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, T.; Sasaguri, N.; Onimura, K.

    1988-01-01

    Nickel-base Alloy 600 is the principal material used for the steam generator tubes of PWRs. Generally, this alloy has been proven to be satisfactory for this application, however when it is subjected to extremely high stress level in PWR primary water, it may suffer from stress corrosion cracking. The authors have systematically studied the effects of test temperature and such metallurgical factors as cold working, chemical composition and heat treatment on the stress corrosion cracking of Alloy 600 in high temperature water, and also on that of Alloy 690 which is a promising material for the tubes and may provide improved crrosion resistance for steam generators. The test materials, the stress corrosion cracking test and the test results are reported. When the test temperature was raise, the stress corrosion cracking of the nickel-base alloys was accelerated. The time of stress corrosion cracking occurrence decreased with increasing applied stress, and it occurred at the stress level higher than the 0.2 % offset proof stress of Alloy 600. In Alloy 690, stress corrosion cracking was not observed at such stress level. Cold worked Alloy 600 showed higher resistance to stress corrosion cracking than the annealed alloy. (Kako, I.)

  6. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  7. Effect of temperature on corrosion of steels in high purity water

    International Nuclear Information System (INIS)

    Honda, Takashi; Kashimura, Eiji; Ohashi, Kenya; Furutani, Yasumasa; Ohsumi, Katsumi; Aizawa, Motohiro; Matsubayashi, Hideo.

    1987-01-01

    Effect of temperature on corrosion behavior of steels was evaluated in the range of 150 - 300 deg C in high purity water containing about 200 ppb oxygen. The exposure tests were carried out in actual and simulated reactor water of BWR plants. Through X-ray diffractometry, SIMS, XPS and chemical analyses, it was clarified that the chemical composition and morphology of oxide films formed on austenitic stainless steel changed above about 250 deg C. Chromium dissolved easily through corrosion above this temperature, and the oxide films primarily consisted of spinel type oxides containing high concentration of nickel. Further, as the protectivety of oxide films increased with temperature, the corrosion rate had a peak around 250 deg C after a long exposure period. A major phase of oxide films on carbon steel was magnetite in the whole temperature range. However, as the oxide films formed at high temperatures had very compact structures, the effect of temperature on the corrosion rate was similar to that observed on stainless steel. (author)

  8. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1991-11-01

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  9. Effects of amalgam corrosion products on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P R; Cogen, R B; Taubman, S B [Departments of Periodontics and Pathology, University of Connecticut Health Center, Farmington, Connecticut, U.S.A.

    1976-01-01

    Using three independent criteria, we have found that 10/sup -4/,10/sup -6/M concentrations of ions presumably liberated from the corrosion of dental amalgam produce injurious effects on either human gingival fibroblasts or HeLa cells when the cells are grown in culture. Release of /sup 51/Cr and uptake of trypan blue dye were seen with 10/sup -5/M Hg/sup + +/ and Ag/sup +/. Inhibition of amino acid incorporation into protein-like material was seen with eluates of amalgam and with ionic solutions of most metals comprising dental amalgam. Stannous ion showed little if any cytotoxic potential. These results suggest that corrosion products of amalgam are capable of causing cellular injury or destruction.

  10. Some observations on use of siliceous mineral waters in reduction of corrosion in RCC structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venugopal, C.

    The corrosion-resisting characteristics of reinforcement in cement blended with siliceous mineral wastes viz. gold tailing and flyash have been evaluated by using an accelerated corrosion technique. The additions of these mineral admixtures...

  11. Corrosion and inhibition of stainless steel pitting corrosion in alkaline medium and the effect of Cl- and Br- anions

    International Nuclear Information System (INIS)

    Refaey, S.A.M.; Taha, F.; El-Malak, A.M. Abd

    2005-01-01

    The effect of carbonate anion on the pitting corrosion and inhibition behavior of stainless steel samples (304L SS and 316L SS) has been studied using potentiodynamic and scanning electron microscope (SEM) techniques. The effect of concentration of CO 3 2- ions, pH, potential scanning rate and the composition of stainless steel are discussed. Additions of Cl - and Br - ions into the carbonate solution increase the anodic dissolution of stainless steel and decrease its pitting corrosion resistance. The effect of CO 3 2- anion on the inhibition of chloride and bromide pitting corrosion of the two stainless steel types has been studied also. Pitting corrosion decrease with the increasing of sodium carbonate concentration, i.e. increases the resistance of stainless steels towards the chloride and bromide pitting corrosion. This inhibition effect argued to formation of [Fe,Cr]CO 3 film caused by preferential adsorption of the CO 3 2- ion, leading to instantaneous repair of weak sites for pit nucleation

  12. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion

    International Nuclear Information System (INIS)

    Zhang, L.; Zhang, Y.K.; Lu, J.Z.; Dai, F.Z.; Feng, A.X.; Luo, K.Y.; Zhong, J.S.; Wang, Q.W.; Luo, M.; Qi, H.

    2013-01-01

    Highlights: ► Weldments were done with laser shock processing impacts after cavitation erosion. ► Laser shock processing enhanced the erosion and corrosion resistance of weldments. ► Tensile residual stress and surface roughness decreased by laser shock processing. ► Microstructure was observed to explain the improvement by laser shock processing. ► Obvious passivation areas occurred with laser shock processing impacts. - Abstract: Effects of laser shock processing (LSP) on electrochemical corrosion resistance of weldments after cavitation erosion were investigated by X-ray diffraction (XRD) technology, scanning electron microscope (SEM), roughness tester and optical microscope (OM). Some main factors to influence erosion and corrosion of weldments, residual stresses, surface roughness, grain refinements and slip, were discussed in detail. Results show that LSP impacts can induce compressive residual stresses, decrease surface roughness, refine grains and generate the slip. Thus, the erosion and corrosion resistance with LSP impacts is improved.

  13. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  14. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2016-01-01

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  15. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik University, Sejong (Korea, Republic of)

    2016-02-15

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  16. Corrosion rate transients observed by linear polarization techniques at Zr-1%Nb alloy

    International Nuclear Information System (INIS)

    Beran, J.; Cerny, K.

    1997-01-01

    Momentary corrosion rate of Zr-1%Nb alloy during nonisothermal autoclave experiments at temperature up to 328 deg. C in various solutions was determined by T/R p values (T - absolute temperature, R p - polarization resistance), multiplied by temperature independent conversion factor. This factor was found by comparison of conventional corrosion loss evaluation with electrochemical measurements. Corrosion rate transients in boric acid solutions and in lithium hydroxide differed significantly. Great differences were also found in stabilized corrosion rates at the end of experiments. Temperature irregularities caused considerable changes in corrosion rate. (author). 5 refs, 5 figs, 1 tab

  17. Corrosion rate transients observed by linear polarization techniques at Zr-1%Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Beran, J; Cerny, K [ZJS SKODA plc., Pelzen (Czech Republic)

    1997-02-01

    Momentary corrosion rate of Zr-1%Nb alloy during nonisothermal autoclave experiments at temperature up to 328 deg. C in various solutions was determined by T/R{sub p} values (T - absolute temperature, R{sub p}- polarization resistance), multiplied by temperature independent conversion factor. This factor was found by comparison of conventional corrosion loss evaluation with electrochemical measurements. Corrosion rate transients in boric acid solutions and in lithium hydroxide differed significantly. Great differences were also found in stabilized corrosion rates at the end of experiments. Temperature irregularities caused considerable changes in corrosion rate. (author). 5 refs, 5 figs, 1 tab.

  18. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, Y. S.; Chang, H. Y.; Lim, B. T.; Park, H. B.

    2016-01-01

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  19. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  20. Effect of molybdate on phosphating of Nd-Fe-B magnets for corrosion protection

    Directory of Open Access Journals (Sweden)

    Adonis Marcelo Saliba-Silva

    2005-06-01

    Full Text Available Nd-Fe-B magnets are highly susceptible to corrosion and need protection against environment attack. The use of organic coatings is one of the main methods of corrosion protection of these materials. Data related to the effect of conversion coatings, such as phosphating, on corrosion performance of these magnets is still scarce. Studies about the effect of phosphating on the corrosion resistance of a commercial Nd-Fe-B sintered magnet indicated that it increases the corrosion resistance of these magnets, compared to non-phosphated magnets. In this study, the solution chemistry of a phosphating bath was altered with the addition of molybdate and its effect on the corrosion resistance of magnets investigated. Sintered magnet specimens were phosphated in solutions of 10 g/L NaH2PO4 (pH 3.8, either with or without molybdate [10-3 M MoO4(2-], to improve their corrosion resistance. The effect of phosphating time was also evaluated, and specimens were phosphated for 4 and 18 hours. To evaluate the corrosion performance of phosphated and unphosphated specimens, a corrosion test based on monitoring hydrogen evolution on the surface of the magnets was used. This technique revealed that the addition of molybdate to the phosphating solution improved the corrosion resistance of the magnets phosphated by immersion for short periods but had no beneficial effect if phosphated by immersion for longer periods.

  1. Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions

    International Nuclear Information System (INIS)

    Qi Kai; Qiu Yubing; Chen Zhenyu; Guo Xingpeng

    2012-01-01

    Highlights: ► Corrosive galvanic cells form on PPy film with the electrochemical reduction of O 2. ► Suitable electrochemical stimulation can inhibit the PPy’s corrosion. ► PPy film doped with larger sized anions has better corrosion resistance performance. - Abstract: The effects of environmental factors, electrochemical stimulation, and doping anions on the corrosion behaviour of conductive polypyrrole (PPy) films in alkaline aqueous media were studied with cyclic voltammetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. High concentrations of electrolyte, low dissolved oxygen and low temperatures enhance the stability of PPy. Polarising PPy at a negative potential inhibits its corrosion obviously. PPy doped with large counter anions shows better corrosion resistance than PPy doped with small counter ions. The possible mechanism involved in PPy corrosion process is discussed.

  2. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  3. Effect of Al and Ce oxide layers electrodeposited on OC4004 stainless steel on its corrosion characteristics in acid media

    International Nuclear Information System (INIS)

    Stoyanova, E.; Nikolova, D.; Stoychev, D.; Stefanov, P.; Marinova, T.

    2006-01-01

    The changes in the corrosion characteristics of stainless steel OC4004 in 0.1 M HNO 3 after electrodeposition of thin Al and Ce oxide films on it has been investigated. The Ce 2 O 3 -CeO 2 layers have been found to possess a pronounced stabilizing effect on the steel passive state and on its corrosion resistance, respectively, whereas the Al 2 O 3 layers do not improve considerably the corrosion behaviour of the SS/Al 2 O 3 system. A twice-lower corrosion current was observed with a ternary SS/Al 2 O 3 /Ce 2 O 3 -CeO 2 system in the passive region, while the zones of potentials, where the steel is in a stable passive state, are not changed. The obtained results permit the assumption that the cerium oxides layer acts as an effective cathode playing a determining role with respect to the improvement of the corrosion behavior of the steel. It has been concluded that when the SS/Al 2 O 3 /Ce 2 O 3 -CeO 2 system is used in media containing nitric acid, the corrosion will proceed at potentials where the passive state of steel would not be disturbed

  4. On the Effects of Atmospheric Particles Contamination and Humidity on Tin Corrosion

    DEFF Research Database (Denmark)

    D’Angelo, L.; Verdingovas, V.; Ferrero, L.

    2017-01-01

    The effects of hygroscopic atmospheric particles are investigated in relation to the corrosion of tin. Surface insulation resistance test boards were directly contaminated both with ambient particles sampled in the field at Milan, Italy, and with pure saline particles generated in the laboratory....... An innovative particle deposition device was used to uniformly coat circular spots on to the test board surfaces. Deliquescence and crystallization of the water-soluble compounds were detected by observing the impedance response to varying relative humidity (RH) conditions with a gradual and continuous ramps....... The effects of the adsorption/desorption kinetics and of the temperature on the deliquescence and crystallization RH values were also investigated. Leakage current measurements at 5-V dc highlighted the ability of atmospheric particles to promote corrosion and electrochemical migration at RH levels far below...

  5. Effects of crystalline growth on corrosion behaviour of ...

    Indian Academy of Sciences (India)

    tron microscopy and transmission electron microscopy. The corrosion behaviours ... sity and high melting point.7,8 This compound often shows good corrosion and .... Figure 4. TEM image of as-deposited nanocrystalline NiAl coating. Figure 5.

  6. The Effects of Corrosive Chemicals on Corrosion Rate of Steel Reinforcement Bars: I. Swamp Water

    Directory of Open Access Journals (Sweden)

    Sulistyoweni Widanarko

    2010-10-01

    Full Text Available Most of infrastructures using steel concrete to reinforce the strength of concrete. Steel concrete is so vulnerable to chemical compounds that can cause corrosion. It can happen due to the presence of chemical compounds in acid environment in low pH level. These chemical compounds are SO42-, Cl-, NO3-. There are many swamp area in Indonesia. The acid contents and the concentration of ion sulphate, chlorides, and nitrate are higher in the swamp water than in the ground water .The objective of this research was to find out the influence of corrosive chemicals in the swamp water to the steel concrete corrosion rate. There were two treatment used: (1 emerging ST 37 and ST 60 within 60 days in the 'polluted' swamp water, (2 moving the ST 37 up and down periodically in the ' polluted' swamp water. Three variation of 'polluted' swamp water were made by increasing the concentration of corrosive chemical up to 1X, 5X and 10X respectively. The corrosion rate was measured by using an Immersion Method. The result of Immersion test showed that chloride had the greatest influence to corrosion rate of ST 37 and ST 60 and followed by sulphate and Nitrate. Corrosion rate value for ST 37 is 24.29 mpy and for ST 60 is 22.76 mpy. By moving the sample up and down, the corrosion rate of ST 37 increase up to 37.59 mpy, and chloride still having the greatest influence, followed by sulphate and nitrate.

  7. Synergistic Effect of Potassium Iodide on Corrosion Inhibition of Mild ...

    African Journals Online (AJOL)

    MICHAEL

    fruticans' wurmb extract on corrosion of mild steel in 0.1M and 0.5M HCl have been investigated using weight loss methods. ... efficient ways of combating the corrosion of metals. Among other ..... chloride ion on cold rolled steel corrosion.

  8. Effect of Adenine Concentration on the Corrosion Inhibition of Aisi ...

    African Journals Online (AJOL)

    This gave a surface coverage of 0.8956 and corrosion penetration rate of 0.022132mm/yr. Hence, the best adenine concentration for the corrosion inhibition of alloys 304L in 1.0M sulphuric acid solution to obtain optimum inhibition efficiency is 0.011M. Keywords: Corrosion, AISI 304L Steel, Inhibition efficiency, Degree of ...

  9. Observations and insights into Pb-assisted stress corrosion cracking of alloy 600 steam generator tubes

    International Nuclear Information System (INIS)

    Thomas, L.; Bruemmer, Stephen M.

    2005-01-01

    Pb-assisted stress-corrosion cracking (PbSCC) of Alloy 600 steam-generator tubing in high-temperature-water service and laboratory tests were studied by analytical transmission electron microscopy of cross-sectioned samples. Examinations of pulled tubes from many pressurized water reactors revealed lead in cracks from 11 of 17 samples. Comparisons of the degraded intergranular structures with ones produced in simple laboratory tests with PbO in near-neutral AVT water showed that the PbSCC characteristics in service tubing could be reproduced without complex chemistries and heat-flow conditions that can occur during plant operation. Observations of intergranular and transgranular cracks promoted by Pb in the test samples also provided new insights into the mechanisms of PbSCC in mill-annealed and thermally treated Alloy 600

  10. Atmospheric corrosion of metals in industrial city environment

    OpenAIRE

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the s...

  11. Corrosion rate of API 5L Gr. X60 multipurpose steel pipeline under combined effect of water and crude oil

    Science.gov (United States)

    Miao, Jian; Wang, Qiang

    2016-09-01

    Multipurpose pipeline is often seriously corroded during its service life, and the phenomenon is more prominent once the transportation medium is changed. Electrochemical polarization curves and impedance spectroscopy of the API 5L Gr. X60 steel pipeline's corrosion process in sedimentary water with different ion types and their concentrations have been studied in this work. The results showed that the corrosion rates were found to be 0.00418 and 0.00232 mm/a for pure water and crude oil, respectively. However, for the mixtures of water and crude oil (with water content increased from 0.2 vol% to 10 vol%), the corrosion rate increased consistently and reached a maximum value of 0.15557 mm/a for 10 vol% water in crude oil. The effect of the concentration of various ions, namely, chloride, bicarbonate and sulfate in (oil/water) mixtures on the corrosion rate was characterized by weight-loss method. The results showed that with increasing the ions' concentrations, the corresponding exchange current density increased significantly. The results were further supported by the observations of corrosion morphology using scanning electron microscopy and are helpful in devising guidelines which would help in reducing corrosion in multipurpose transport pipelines involving a change of transported medium during their service life.

  12. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel

    International Nuclear Information System (INIS)

    Liu, Chao; Revilla, Reynier I.; Liu, Zhiyong; Zhang, Dawei; Li, Xiaogang; Terryn, Herman

    2017-01-01

    Highlights: •The initial stages of the pitting corrosion of Q460NH steel in a marine environment was studied. •Two different types of inclusions formed in the Q460NH steel after adding rare earth. •Both types of inclusions showed a lower Volta potential than the matrix. •Pitting corrosion was induced by the dissolution of inclusions rather than the matrix. •Inclusions containing (RE)AlO 3 dissolved completely as a result of the acidic solution formed in the pits. -- Abstract: In this work the initial stages of the pitting corrosion in Q460NH weathering steel in a marine environment was studied. To elucidate the effects of inclusions modified by rare earth (RE) elements on pitting corrosion, field emission-scanning electron microscopy-energy dispersive spectrometry (FE-SEM-EDS) analyses, scanning Kelvin probe force microscopy (SKPFM) tests, and a series of immersion tests were conducted. Two main types of inclusions were formed in the steel, and different pit morphologies were observed. The pitting corrosion was initiated by the dissolution of (RE) 2 O 2 S-(RE)xSy in both types of inclusions due to the lower potential of this phase compared to the matrix, which indicated that the inclusions in the Q460NH weathering steel had a lower pitting corrosion resistance than the matrix.

  13. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...... that had been subsequently annealed to promote precipitation of Al3Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron...

  14. Corrosion evaluation technology

    International Nuclear Information System (INIS)

    Kim, Uh Chul; Han, Jeong Ho; Nho, Kye Ho; Lee, Eun Hee; Kim, Hong Pyo; Hwang, Seong Sik; Lee, Deok Hyun; Hur, Do Haeng; Kim, Kyung Mo.

    1997-09-01

    A multifrequency ACPD system was assembled which can measure very small crack. Stress corrosion cracking test system with SSRT operating high temperature was installed. Stress corrosion cracking test of newly developed alloy 600 and existing alloy 600 was carried out in steam atmosphere of 400 deg C. No crack was observed in both materials within a test period of 2,000 hrs. Corrosion fatigue test system operating at high temperature was installed in which fatigue crack was measured by CDPD. Lead enhanced the SCC of the Alloy 600 in high temperature water, had a tendency to modify a cracking morphology from intergranular to transgranular. Pit initiation preferentially occurred at Ti-rich carbide. Resistance to pit initiation decreased with increasing temperature up to 300 deg C. Test loop for erosion corrosion was designed and fabricated. Thin layer activation technique was very effective in measuring erosion corrosion. Erosion corrosion of a part of secondary side pipe was evaluated by the Check Family Codes of EPRI. Calculated values of pipe thickness by Check Family Codes coincided with the pipe thickness measured by UT with an error of ± 20%. Literature review on turbine failure showed that failure usually occurred in low pressure turbine rotor disc and causes of failure are stress corrosion cracking and corrosion fatigue. (author). 12 refs., 20 tabs., 77 figs

  15. Atmospheric corrosion of metals in industrial city environment

    Directory of Open Access Journals (Sweden)

    Elzbieta Kusmierek

    2015-06-01

    Full Text Available Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  16. Atmospheric corrosion of metals in industrial city environment.

    Science.gov (United States)

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  17. Effect of sulfide on the corrosion behavior of pure copper under anaerobic condition and possibility of super long lifetime for copper overpacks

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Naitou, Morimasa; Kawasaki, Manabu

    2007-03-01

    In general, copper is thermodynamically stable under anaerobic condition, so that corrosion due to water reduction can not be occurred on copper. In the presence of sulfide, however, this property of immunity to corrosion is lost and corrosion as copper sulfide is occurred. Therefore, it is necessary to understand the effect of sulfide on the corrosion behavior of copper for using the copper as a material for overpacks. In this study, immersion tests and stress corrosion cracking tests were carried out using synthetic seawater containing sodium sulfide. Based on the experimental results, the possibility of super long lifetime for copper overpacks was discussed. The results were summarized as follows; 1) As the results of the immersion tests of copper in buffer material for 2 years, the corrosion rates became large with increase in the concentration of sodium sulfide. The corrosion rates of copper in sodium sulfide of 0.001M, 0.005M and 0.1M were estimated to be 0.55μm/y, 2.2μm/y, 15μm/y respectively. 2) Corrosion product film with black or dark-gray was formed on the surface of copper specimens, and it was identified as Cu 2 S(Chalcocite) by the X-ray diffraction. 3) As the results of stress corrosion cracking experiments by means of slow strain rate technique, copper has little susceptibility to crack initiation for the specimen of the experiment under 0.001M-Na 2 S condition. Obvious cracks were observed for the specimens of the experiment over 0.005M Na 2 S condition. 4) According to the results of immersion tests and stress corrosion cracking tests, copper overpacks have a potential to accomplish super long lifetime far over 1000 years owing to very low corrosion rate and no stress corrosion cracking if the sulfide concentration in repository environment is promised to be less than 0.001M. (author)

  18. Corrosion/95 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge

  19. Effects of alpha-decay on spent fuel corrosion behaviour

    International Nuclear Information System (INIS)

    Wiss, T.; Rondinella, V.V.; Cobos, J.; Wegen, D.H.; Amme, M.; Ronchi, C.

    2004-01-01

    An overview of results in the area of spent fuel characterization as nuclear waste is presented. These studies are focused on primary aspects of spent fuel corrosion, by considering different fuel compositions and burn ups, as well as a wide set of environmental conditions. The key parameter is the storage time of the fuel e.g. in view of spent fuel retrieval or in view of its final disposal. To extrapolate data obtainable from a laboratory-acceptable timescale to those expected after storage periods of interest have elapsed (amounting in the extreme case to geological ages) is a tough challenge. Emphasis is put on key aspects of fuel corrosion related to fuel properties at a given age and environmental conditions expected in the repository: e.g. the fuel activity (radiolysis effects), the effects of helium build-up and of groundwater composition. A wide range of techniques, from traditional leaching experiments to advanced electrochemistry, and of materials, including spent fuel with different compositions/burnups and analogues like the so-called alpha-doped UO 2 , are employed for these studies. The results confirm the safety of European underground repository concepts. (authors)

  20. Effect of hydrazine on general corrosion of carbon and low-alloyed steels in pressurized water reactor secondary side water

    Energy Technology Data Exchange (ETDEWEB)

    Järvimäki, Sari [Fortum Ltd, Loviisa Power Plant, Loviisa (Finland); Saario, Timo; Sipilä, Konsta [VTT Technical Research Centre of Finland Ltd., Nuclear Safety, P.O. Box 1000, FIN-02044 VTT (Finland); Bojinov, Martin, E-mail: martin@uctm.edu [Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia (Bulgaria)

    2015-12-15

    Highlights: • The effect of hydrazine on the corrosion of steel in secondary side water investigated by in situ and ex situ techniques. • Oxide grown on steel in 100 ppb hydrazine shows weaker protective properties – higher corrosion rates. • Possible explanation of the accelerating effect of higher concentrations of hydrazine on flow assisted corrosion offered. - Abstract: The effect of hydrazine on corrosion rate of low-alloyed steel (LAS) and carbon steel (CS) was studied by in situ and ex situ techniques under pressurized water reactor secondary side water chemistry conditions at T = 228 °C and pH{sub RT} = 9.2 (adjusted by NH{sub 3}). It is found that hydrazine injection to a maximum level of 5.06 μmol l{sup −1} onto surfaces previously oxidized in ammonia does not affect the corrosion rate of LAS or CS. This is confirmed also by plant measurements at Loviisa NPP. On the other hand, hydrazine at the level of 3.1 μmol l{sup −1} decreases markedly the amount and the size of deposited oxide crystals on LAS and CS surface. In addition, the oxide grown in the presence of 3.1 μmol l{sup −1} hydrazine is somewhat less protective and sustains a higher corrosion rate compared to an oxide film grown without hydrazine. These observations could explain the accelerating effect of higher concentrations of hydrazine found in corrosion studies of LAS and CS.

  1. The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Silva, A.B.; Agostinho, S.M.L.; Barcia, O.E.; Cordeiro, G.G.O.; D'Elia, E.

    2006-01-01

    The effect of cysteine on the corrosion of 304L stainless steel in 1 mol l -1 H 2 SO 4 was studied using open-circuit potential measurements, anodic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). All the electrochemical measurements obtained in the presence of low cysteine concentration (10 -6 -10 -5 mol l -1 ) presented the same behaviour as those obtained in the absence of cysteine, a passivated steel surface. However, for higher cysteine concentrations (10 -4 -10 -2 mol l -1 ), a different behaviour was observed: the corrosion potential stabilized at a more negative value; an active region was observed in the anodic polarization curves and the electrochemical impedance diagrams showed an inductive loop at lower frequencies and a much lower polarization resistance. These results show that the presence of cysteine at high concentration turns the surface of 304L stainless steel electrochemically active, probably dissolving the passivation layer and promoting the stainless steel anodic dissolution. SEM experiments performed after immersion experiments at corrosion potential were in good agreement with the electrochemical results

  2. Investigations on the corrosion resistance of metallic bipolar plates (BPP) in proton exchange membrane fuel cells (PEMFC) - understanding the effects of material, coating and manufacturing

    Science.gov (United States)

    Dur, Ender

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples

  3. Effect of Inhibitors on Weld Corrosion under Sweet Conditions Using Flow Channel

    OpenAIRE

    Khaled Alawadhi; Abdulkareem Aloraier; Suraj Joshi; Jalal Alsarraf

    2014-01-01

    The aim of this paper is to compare the effectiveness and electrochemical behavior of typical oilfield corrosion inhibitors with previous oilfield corrosion inhibitors under the same electrochemical techniques to control preferential weld corrosion of X65 pipeline steel in artificial seawater saturated with carbon dioxide at a pressure of one bar. A secondary aim is to investigate the conditions under which current reversal takes place. A flow channel apparatus was used in the laboratory to s...

  4. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  5. Mobile evaporator corrosion test results

    International Nuclear Information System (INIS)

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80 degrees C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either open-quotes satisfactoryclose quotes (2-20 mpy) or open-quotes excellentclose quotes (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment

  6. Effect of chlorides on the corrosion behaviour of mild steel

    International Nuclear Information System (INIS)

    Harada, Kazuyuki; Shimada, Minoru

    1980-01-01

    In PWR's steam generators, ''denting'' resulted from corrosion of support plate material, carbon steel is an important problem. The role of chlorides in corrosion acceleration of mild steel was studied. Corrosion tests were conducted at temperature from 100 0 C to 280 0 C in deaerated solutions of NaCl and MgCl 2 which are main content of sea water. 1) Solution of MgCl 2 was more corrosive than that of NaCl. The more increased in concentration of each chloride solution, the more corrosive in MgCl 2 soln. but the less corrosive in NaCl soln. 2) The rate of corrosion in the mixed solution of NaCl and MgCl 2 was governed by the concentration of MgCl 2 soln. The corrosion behaviour in sea water was suggested to be not controlled by NaCl but by MgCl 2 . 3) Acidification of MgCl 2 soln. could be evaluated by experiment at 100 0 C, the degree of acidification increased with increasing the concentration. However, the value of pH during corrosion was kept constant by the concentration of dissolved Fe 2+ ions. 4) The corrosion acceleration by MgCl 2 soln. was arised not only from acidification by the solution itself but from continuous supplementation of H + ions with the hydrolysis of dissolved Fe 2+ ions. This autocatalytic corrosion process not exhausting acid was characterized with the corrosion in closed system such as in crevice. In addition to acidification of MgCl 2 soln., the formation of non-protective magnetite film by Mg 2+ ion was estimated to be a reason of accelerated corrosion. (author)

  7. The Effect of Corrosive Environment on Geopolymer Concrete Tensile Strength

    Directory of Open Access Journals (Sweden)

    Bayuaji Ridho

    2017-01-01

    Full Text Available This study has the purpose to explore the potential of geopolymer concrete tensile strength in particular on the effects of corrosive environments. Geopolymer concrete, concrete technology used no OPC that has advantages, one of which is durability, especially for corrosive seawater environment. In addition, geopolymer concrete with polymerization mechanism does not require large energy consumption or an environmentally friendly concept. Geopolymer concrete in this study is using a type C fly ash from PT. International Power Mitsui Operation & Maintenence Indonesia (IPMOMI Paiton. The type of alkaline activator used NaOH (14 molar and Na2SiO3. Coarse and fine aggregate used are local aggregate. Geopolymer concrete molded test specimen with dimensions of (10 × 20 cm cylinder, further heating and without heating, then maintained at room temperature and seawater up to 28 days. Then to determine the mechanical properties, the tensile strength testing is done with reference. This result of study indicates the curing of geopolymer concrete at 60 ° C for 24 hours to raise the tensile strength of geopolymer concrete.

  8. Effect of mechanical pre-loadings on corrosion resistance of chromium-electroplated steel rods in marine environment

    Science.gov (United States)

    Shubina Helbert, Varvara; Dhondt, Matthieu; Homette, Remi; Arbab Chirani, Shabnam; Calloch, Sylvain

    2018-03-01

    Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings (∼20 μm) are widely used for steel cylinder rods in marine environment. However, the standardized corrosion test method (ISO 9227, NSS) used to evaluate efficiency of this type of coatings does not take into account in-service mechanical loadings on cylinder rods. Nevertheless, the uniform initial network of microcracks in chromium coating is changing under mechanical loadings. Propagation of these microcracks explains premature corrosion of the steel substrate. The aim of the study was to evaluate relationship between mechanical loadings, propagation of microcracks network and corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagation started at stress levels higher than the substrate yield stress (520 MPa). The microcracks become effective, i.e. they have instantly undergone through the whole coating thickness to reach the steel substrate. The density of effective microcracks increases with the total macroscopic level, i.e. the intercrack distance goes from 60 ± 5 μm at 1% of total strain to approximately 27 ± 2 μm at 10%. Electrochemical measurements have shown that the higher the plastic strain level applied during mechanical loading, the more the corrosion potential of the sample decreased until reaching the steel substrate value of approximately ‑0.65 V/SCE after 2 h of immersion. The polarization curves have also highligthed an increase in the corrosion current density with the strain level. Therefore, electrochemical measurements could be used to realize quick and comprehensive assesment of the effect of monotonic pre-loadings on corrosion properties of the chromium coating.

  9. Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rubio, M. [Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Department of Surface Technologies, Engineering of Materials and Processes, Airbus Spain, Av. John Lennon s/n 28906 Getafe (Spain); Lara, M.P. de [Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Ocon, P. [Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, 28049 Madrid (Spain)], E-mail: pilar.ocon@uam.es; Diekhoff, S. [Fraunhofer-IFAM, Lesumer Heerstrasse 36, 28717 Bremen (Germany); Beneke, M. [Department of Surface Technologies, Engineering of Materials and Processes, Airbus Deutschland, GmbH Hunefeldstr. 1-5, 28199 Bremen (Germany); Lavia, A.; Garcia, I. [Department of Surface Technologies, Engineering of Materials and Processes, Airbus Spain, Av. John Lennon s/n 28906 Getafe (Spain)

    2009-08-30

    Unclad and clad AA2024 T3 specimens were anodised in a chromium-free tartaric-sulphuric acid bath (TSA) and subsequently postreated by different processes including impregnation in a cold, concentrated chromate solution, Cr-free hot-water sealing, and dichromate hot-water sealing. The purpose of this work is to evaluate the effectiveness of the classical postreatments used in the aircraft industry on the TSA-anodic films and their corrosion resistance behaviour. TSA-anodic films were characterised by scanning electron microscopy (SEM) and their thicknesses were measured by SEM and the eddy current method. Electrochemical impedance spectroscopy (EIS) was used to characterise the barrier and porous layers, and jointly with potentiodynamic polarisation allowed the evaluation of corrosion resistance parameters with immersion time in NaCl solution for anodised and postreated specimens. In all cases the postreatments increased the resistance of the barrier layer against degradation. However, the NaCl electrolyte easily penetrated TSA-anodised porous layers when they were not postreated, while penetration was slightly more difficult in cold-postreated specimens. The effective pore plugging was observed in the sealed TSA specimens resulting in an improved corrosion resistance. On the other hand, unsealed clad AA2024 specimens showed a self-sealing process of the TSA-anodic layer, which was slower for the cold chromate solution-postreated specimens.

  10. Effect of postreatment on the corrosion behaviour of tartaric-sulphuric anodic films

    International Nuclear Information System (INIS)

    Garcia-Rubio, M.; Lara, M.P. de; Ocon, P.; Diekhoff, S.; Beneke, M.; Lavia, A.; Garcia, I.

    2009-01-01

    Unclad and clad AA2024 T3 specimens were anodised in a chromium-free tartaric-sulphuric acid bath (TSA) and subsequently postreated by different processes including impregnation in a cold, concentrated chromate solution, Cr-free hot-water sealing, and dichromate hot-water sealing. The purpose of this work is to evaluate the effectiveness of the classical postreatments used in the aircraft industry on the TSA-anodic films and their corrosion resistance behaviour. TSA-anodic films were characterised by scanning electron microscopy (SEM) and their thicknesses were measured by SEM and the eddy current method. Electrochemical impedance spectroscopy (EIS) was used to characterise the barrier and porous layers, and jointly with potentiodynamic polarisation allowed the evaluation of corrosion resistance parameters with immersion time in NaCl solution for anodised and postreated specimens. In all cases the postreatments increased the resistance of the barrier layer against degradation. However, the NaCl electrolyte easily penetrated TSA-anodised porous layers when they were not postreated, while penetration was slightly more difficult in cold-postreated specimens. The effective pore plugging was observed in the sealed TSA specimens resulting in an improved corrosion resistance. On the other hand, unsealed clad AA2024 specimens showed a self-sealing process of the TSA-anodic layer, which was slower for the cold chromate solution-postreated specimens.

  11. The effect of second-phase particles on the corrosion and struture of Zircaloy-4

    International Nuclear Information System (INIS)

    Cortie, M.B.

    1982-10-01

    The effect of heat treatment and second-phase particles on the corrosion resistance and microstructure of Zircaloy-4 has been examined. In particular the effect of precipitates on the rate and mechanism of high-temperature, high-pressure water or steam corrosion is discussed. Measurements of corrosion rate are presented for specimens which have received various heat treatments. The heat treatments studied included a fast cool from the beta field, prolonged annealing at temperatures ranging from 500 degrees Celsius to 1 100 degrees Celsius as well as combinations of the above. The fabrication of a small quantity of Zircaloy-4 strip was undertaken and the methods used and observations made are recorded. The wide range of microstructures produced in Zircaloy-4 by the heat treatments and fabrication procedures utilized are described and discussed with optical or electron microscope photographs showing the important features. Qualitative and semi-quantitative chemical analyses of the second-phase particles were carried out by both the scanning electron microscope and Auger spectroscopy. Evidence for the existence of a tin-rich precipitate in Zircaloy-4 is presented and discussed

  12. Effect of Copper on Passivity and Corrosion Behavior of Fe-xC-5Cu ...

    African Journals Online (AJOL)

    ... copper/microstructure is discussed. Alloying Cu showed a beneficial effect on hypoeutectoid steel and harmful effect on hypereutectoid steel. The improved corrosion resistance is related to cementite morphology and by a copper dissolution/re-deposition process. Keywords: Corrosion; Copper; cementite; EIS; Passivation ...

  13. Effects of annealing on tensile property and corrosion behavior of Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae-Kyu; Choi, Byung-Seon; Jeong, Yong-Hwan; Lee, Doo-Jeong; Chang, Moon-Hee

    2002-01-01

    The effects of annealing on the tensile property and corrosion behavior of Ti-Al-Zr alloy were evaluated. The annealing in the temperature range from 500 to 800 deg. C for 1 h induced the growth of the grain and the precipitate sizes. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. However, the results of corrosion test in an ammonia aqueous solution of pH 9.98 at 360 deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 220 days also increased with the annealing temperature. It could be attributed to the growth of Fe-rich precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  14. Effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy

    International Nuclear Information System (INIS)

    Kim, T. K.; Choi, B. S.; Baek, J. H.; Choi, B. K.; Jeong, Y. H.; Lee, D. J.; Jang, M. H.; Jeong, Y. H.

    2002-01-01

    In order to determine the annealing condition after cold rolling, the effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy were evaluated. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. The results of hardness test also revealed that the hardness was independent of the annealing, However, the results of corrosion test in an ammoniated water of pH 9.98 at 360 .deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 120 days also increased with the annealing temperature. It may be attributed to the growth of α' precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  15. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  16. Effect of Surface Precipitate on the Crevice Corrosion in HYBRID and Oxalic Acid Solution

    International Nuclear Information System (INIS)

    Park, S. Y.; Jung, J. Y.; Won, H. J.; Kim, S. B.; Choi, W. K.; Moon, J. K.; Park, S. J.

    2015-01-01

    In this study, we investigated the characteristics of the crevice corrosion for Inconel-600 and 304SS in OA solution according to the change in pH. The evaluation of the crevice corrosion with the chemical thermodynamic analysis identified the effect of the residual chemicals such as iron-oxalate and nickeloxalate to the crevice corrosion behavior. Test results were compared with those of HYBRID (HYdrizine Base Reductive metal Ion Decontamination). The crevice corrosion properties of 304 SS and Inconel-600 in HYBRID and oxalic acid solution were evaluated. In case of oxalic acid solution, the corrosion rate on 304SS was rapidly increased with a pH decrease of around 2, but there was no increase in the corrosion rate on Inconel-600

  17. The effect of urea on the corrosion behavior of different dental alloys.

    Science.gov (United States)

    Geckili, Onur; Bilhan, Hakan; Bilgin, Tayfun; Anthony von Fraunhofer, J

    2012-01-01

    Intraoral corrosion of dental alloys has biological, functional, and esthetic consequences. Since it is well known that the salivary urea concentrations undergo changes with various diseases, the present study was undertaken to determine the effect of salivary urea concentrations on the corrosion behavior of commonly used dental casting alloys. Three casting alloys were subjected to polarization scans in synthetic saliva with three different urea concentrations. Cyclic polarization clearly showed that urea levels above 20 mg/100 ml decreased corrosion current densities, increased the corrosion potentials and, at much higher urea levels, the breakdown potentials. The data indicate that elevated urea levels reduced the corrosion susceptibility of all alloys, possibly through adsorption of organics onto the metal surface. This study indicates that corrosion testing performed in sterile saline or synthetic saliva without organic components could be misleading.

  18. Effect of nitrogen alloying of stainless steels on their corrosion stability

    International Nuclear Information System (INIS)

    Chigal, V.; Knyazheva, V.M.; Pitter, Ya.; Babich, S.G.; Bogolyubskij, S.D.

    1986-01-01

    Results of corrosion tests and structural investigations of 03Cr18Ni10 and 03Cr18Ni10Mo3 steels without nitrogen and with nitrogen content of 0.15-0.3% are presented. Corrosion-electrochemical behaviour of Cr20Ni20 steel with ultralow carbon content (0.004-0.006%) and nitrogen content with 0-0.5% as well as Cr 2 N nitride behaviour are investigated. A conclusion is made on nitrogen and excessive nitride phase effect on corrosion stability of steel in corrosive media with different reduction-oxidation properties

  19. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  20. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    Walters, W.S.; Page, J.D.; Gaffka, A.P.; Kingsbury, A.F.; Foster, J.; Anderson, A.; Wickenden, D.; Henshaw, J.; Zmitko, M.; Masarik, V.; Svarc, V.

    2002-01-01

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  1. Inhibiting effects of imidazole on copper corrosion in 1 M HNO3 solution

    International Nuclear Information System (INIS)

    Lee, Woo-Jin

    2003-01-01

    The present work deals with the inhibiting effects of imidazole on the pure copper (Cu) corrosion in 1 M HNO 3 solution analysing potentiodynamic polarisation curves, potentiostatic anodic current transient, AC impedance spectra and X-ray photoelectron spectra (XPS). By adding imidazole to HNO 3 solution, the polarisation curves showed decrease in the corrosion current and the cathodic current, suggesting that imidazole acts as an effective cathodic inhibitor to Cu corrosion. From the measured anodic current transients, it is inferred that the protective Cu-imidazole complex film is simultaneously formed with the Cu oxide in the presence of imidazole during the early stage of the anodic polarisation. Analysis of the AC impedance spectra revealed that the values of the charge transfer resistance R ct obtained in imidazole-containing HNO 3 solution were greater than that value in imidazole-free one and at the same time steadily increased with immersion time to the constant value. Contrarily, the capacitance value was abruptly lowered from the double layer capacitance C dl to the complex film capacitance C cf in the progress of immersion time. Furthermore, the Warburg coefficient σ value for the ion diffusion through the complex film was observed to increase with immersion time. This means that the Cu(N-OH) complex film becomes thicker during immersion in the HNO 3 solution with imidazole through the inward growth of the N-rich outer layer to the O-rich inner layer, as well validated by XPS. Based upon the experimental results, it is suggested that the Cu corrosion in 1 M HNO 3 solution is efficiently inhibited with the addition of imidazole by retarding both the charge transfer on cathodic sites of the Cu surface in the early stage of immersion time and the subsequent ion diffusion through the steadily growing complex film

  2. Microbial exopolysaccharides: Effect on corrosion and partial chemical characterization

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, I; DeSouza, F.P.; Bhosle, N.B.

    gas chromatograph MICROBIAL EXOPOLYSACCHARIDES 543 Fig. I. Changes in the biofilm organic carbon (a) and EPS (b) associated with corrosion products and corrosion rate (c) of mild steel. Fig. 2. Linear correlation coeffiient (r) between EPS and organic... carbon (a), corrosion rate and organic carbon (b). and corrosion rate and EPS (c). (Chrompack model CP-9002) equipped with a fused silica capillary column coated with CP Sil-88 (25 m, i.d. = 0.32 mm) and flame ionization detector (FID) was used...

  3. Effect of irradiation on corrosion of low-activation austenite Cr-Mn steel in technological liquid mediums of nuclear power plant

    International Nuclear Information System (INIS)

    Demina, E.V.; Prusakova, M.D.; Vinogradova, N.A.; Orlova, G.D.; Nechaev, A.F.; Doil'nitsyn, V.A.

    2008-01-01

    Effect of γ-radiation on corrosion rate in cold-worked and annealed low-activation austenite 12Cr-20Mn steel has been studied. Corrosion tests were carried out in water solutions which simulate the coolant medium in the primary coolant circuit of WWER power reactor and in the circuit of multiple forced circulation of RBMK-1000 reactor as well as an aquatic environment in cooling pond for spent fuel. The worst radiation effect was observed in the cooling pond environment where the value of corrosion rate is increased by tens or hundreds times

  4. Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O{sub 2}/Cl{sub 2} mixed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seolhye; Roh, Hyun-Joon; Jang, Yunchang; Jeong, Sangmin; Ryu, Sangwon; Choe, Jae-Myung; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-03-31

    Vacuum pumps of different ages were used to prepare Cl{sub 2} based plasmas for use in Cr etching. The effects of the vacuum pump age on the etching results were investigated using optical emission spectroscopy analysis. The composition of gas at the base pressure was mainly nitrogen and oxygen, although the ratio depended on the vacuum pump age and therefore, modulated the etch rate in a manner that was difficult to monitor. The effects of the pump age on the etch rate were clearly observed in the Cl{sub 2} plasma-assisted chromium film etching process, in which oxygen and chlorine radicals were responsible for the etching process. The electron energy distribution function (EEDF), which provided a proxy for the thermal equilibrium properties of the etching plasmas, was monitored. The shape of EEDF was derived from an analysis of the optical emission spectral data using an analysis model described previously. Because molecular nitrogen has a higher threshold energy and a larger cross-section of inelastic collisional processes than oxygen, the tail of the EEDF depends on the mixing ratio between nitrogen and oxygen. The various mechanisms that contribute to the chromium etch rate varied with subtle differences in the vacuum conditions, which were determined by age of the turbo molecular pump. The rates at which oxygen and chlorine radicals were generated were estimated using the measured EEDF, and the estimated oxygen radical and etching product contents were verified by comparing the residual gas analyzer data. The results revealed that the residual nitrogen partial pressures in two etchers equipped with either a new or an aged pump differed by 0.18%, and the EEDF tail areas differed by 10{sup −4}. Importantly, the chromium etch rates in these two instruments differed by 30%. These results suggest that the chamber-to-chamber mismatch should be monitored during plasma-assisted device fabrication processes. - Highlights: • We observed the vacuum pump age effect

  5. Effect of grain size on corrosion of nanocrystalline copper in NaOH solution

    International Nuclear Information System (INIS)

    Luo Wei; Xu Yimin; Wang Qiming; Shi Peizhen; Yan Mi

    2010-01-01

    Research highlights: → Coppers display an active-passive-transpassive behaviour with duplex passive film. → Grain size variation has little effect on the overall corrosion behaviour of Cu. → Little effect on corrosion may be due to duplex passivation in NaOH solution. → Bulk nanocrystalline Cu show bamboo-like flake corrosion structure. - Abstract: Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.

  6. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  7. Area effect on galvanic corrosion of condenser materials with titanium tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Uh Chul

    1993-01-01

    Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, of this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R 1 (surface area of carbon steel/surface area of Ti) and R 2 (surface area of carbon steel/surface area of Cu) are very improtant for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when this ratio is 10 -2 . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R 1 and R 2 on the polarization curve. (Author)

  8. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  9. Effectiveness of resins/exudates of trees in corrosion prevention of ...

    African Journals Online (AJOL)

    Corrosion of steel reinforcement is one of the important factors that are responsible for the short service life of reinforced concrete members, in marine structures like bridges, piers and jetties. This study, investigated the effectiveness of resin/exuda tes in corrosion prevention of reinforcement in reinforced concrete cubes.

  10. Evaluation of austenitic stainless steels for transpassive corrosion by metal purification technology. Synergistic effect of Si and P on intergranular corrosion of Fe-18Cr-14Ni alloys

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Joji; Kako, Kenji; Kawakami, Eishi

    2001-01-01

    The synergistic effect of Si, Mn, C, P, and S on the transpassive corrosion of HP18Cr-14Ni alloys was studied in 13N nitric acid. The specimens were fabricated using a cold crucible method in a high-vacuum chamber to reduce contamination. The additions of Si<1% and Mn<2% had no effect on the corrosion behavior of HP18Cr-14Ni alloys, and the addition of Si<1% also had no effect on the corrosion behavior of HP18Cr-14Ni-1Mn alloys, although 1% Si induced intergranular corrosion in both the alloys. Thus, HP18Cr-14Ni-1Mn-0.5Si alloys were selected to evaluate the effects of C, P and S (100 ppm each). The addition of P, and the co-addition of C, P, and S to HP18Cr-14Ni-1Mn-0.5Si induced intergranular corrosion of the same degree in the solution annealed condition. This result suggests the synergistic effect of Si and P to induce intergranular corrosion, since the single addition of Si or P to this level did not lead to intergranular corrosion of HP18Cr-14Ni alloys. HP18Cr-14Ni-1Mn-0.5Si alloys containing C, P, and S at the 100 ppm level each showed superior corrosion resistance compared to a commercial Type 304L in 13N nitric acid. (author)

  11. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  12. Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2

    KAUST Repository

    Ly, Thuc Hue

    2017-01-18

    Whether and how fracture mechanics needs to be modified for small length scales and in systems of reduced dimensionality remains an open debate. Here, employing in situ transmission electron microscopy, atomic structures and dislocation dynamics in the crack tip zone of a propagating crack in two-dimensional (2D) monolayer MoS2 membrane are observed, and atom-to-atom displacement mapping is obtained. The electron beam is used to initiate the crack; during in situ observation of crack propagation the electron beam effect is minimized. The observed high-frequency emission of dislocations is beyond previous understanding of the fracture of brittle MoS2. Strain analysis reveals dislocation emission to be closely associated with the crack propagation path in nanoscale. The critical crack tip plastic zone size of nearly perfect 2D MoS2 is between 2 and 5 nm, although it can grow to 10 nm under corrosive conditions such as ultraviolet light exposure, showing enhanced dislocation activity via defect generation.

  13. Moessbauer effect study on the corrosion of an oil refinery

    International Nuclear Information System (INIS)

    Da Costa, M.I. Jr.; Kunrath, J.I.; Moro, J.T.; Englert, G.; Comparsi, L.U.; Mueller, I.L.

    1994-01-01

    Metallic coupons are placed in strategical points of an oil refining plant in order to control the amount of corrosion produced by amine stripping of H 2 S from liquefied oil and combustible gases. This paper reports some of the results obtained by CEMS and transmission Moessbauer spectroscopy for the corrosion products formed on such coupons. (orig.)

  14. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    Kogo, A. A.. Department of Integrated Science, Federal College of Education, Kano, Nigeria. ... The corrosion rate of the galvanized steel pipe was measured using the gravimetric ... Key words: Liquid waste, galvanized steel, weight loss, gravimetric, corrosion, leaking ... the side of the test tubes, so that each side would be.

  15. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium ... the formation of a complex precipitate of protective film, which ... silicon carbide abrasive papers of 80, 120, 220, 800 and 1000 grit ...... ions in sulphuric acid on the corrosion behaviour of stainless steel,.

  16. The relationship between observed stress corrosion cracking fracture morphology and microstructure in Alloy 600

    International Nuclear Information System (INIS)

    Symons, D.M.; Burke, M.G.; Foster, J.P.

    1997-01-01

    Microstructure is known to influence the stress corrosion cracking (SCC) behavior of Alloy 600 in both hydrogenated water and steam environments. This study evaluated the relative SCC response of a single heat of Alloy 600 as a function of microstructure in a hydrogenated doped-steam environment. The 400 C doped-steam environment was selected for the SCC tests to accelerate cracking. The material was evaluated in three conditions: (1) as-received (2) as-annealed, and (3) as-annealed + 26% deformation. Microstructural characterization was performed using analytical electron microscopy (AEM) techniques for the evaluation of carbide type and morphology, and general structure. Constant displacement (bolt-loaded) compact tension specimens were used to induce SCC. The as-annealed and as-annealed plus cold worked samples had two fracture morphologies: a rough intergranular SCC fracture morphology and a smooth intergranular fracture morphology. The SCC fracture in the as-received specimens was characterized by a classic intergranular morphology at low magnification, consistent with the microstructural evaluation of cross-sectional metallographic samples. More detailed examination revealed a pseudo-intergranular fracture morphology. This pseudo-intergranular morphology appears to be comprised of very fine cleavage-like microfacets. These observations may assist in understanding the difference in SCC fracture morphologies as reported in the open literature

  17. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    International Nuclear Information System (INIS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-01-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  18. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongwei; Yan, Yu, E-mail: yanyu@ustb.edu.cn; Su, Yanjing; Qiao, Lijie

    2017-06-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  19. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of Ti3+ ion on the Corrosion Behavior of Alloy 600

    International Nuclear Information System (INIS)

    Lee, Chang Bong; Lim, Han Gwi; Kim, Bok Hee; Kim, Ki Ju

    1999-01-01

    Alloy 600 has been widely used as a steam generator tubing material in pressurized water reactors(PWRs) nuclear power plants. Corrosion of steam generator tubing mainly occurs on the secondary water side. The purpose of this work is primarily concerned with examining the effect of Ti 3+ ion concentrations on the corrosion behavior of the Alloy 600 steam generator tubing material. Corrosion behavior of the Alloy 600 steam generator tubing material was studied in aqueous solutions with varying Ti 3+ ion concentration at room temperature. Potentiodynamic and potentiostatic polarization techniques were used to determine the corrosion and pitting potentials for the Alloy 600 test material. The addition of Ti 3+ ion to 1000ppm, showed inhibition effect on the corrosion of Alloy 600. But the corrosion of Alloy 600 was accelerated when the concentration of Ti 3+ ion exceeded 1000ppm, it is assumed that the effect of general corrosion of Alloy 600 is more sensitive than pitting corrosion. It is considered that the passive film which was formed on the Alloy 600 surface in the 100ppm Ti 3+ ion containing solution is mainly consisted of TiO 2

  1. Corrosion of alloy 22 in phosphate ions effect and chloride containing solutions

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.

    2009-01-01

    Alloy 22 belongs to Ni-Cr-Mo family. This alloy resists the most aggressive environments for industrial applications, in oxidizing as well as reducing conditions, because exhibits an excellent uniform and localized corrosion resistance in aqueous solution. Because of its outstanding corrosion resistant, this alloy is one of the candidate to be considered for the outer shell of the canister that would contain high level radioactive nuclear wastes in a geological repository. The aim of this work is to study ion phosphate influence over Alloy 22 corrosion behavior under aggressive conditions, such as high temperature and high ion chloride concentration, where this material might be susceptible to crevice corrosion. Two different types of samples were used: cylinder specimens for uniform corrosion behavior studies and Prismatic Crevice Assembly (PCA) specimens for localized corrosion studies. Electrochemical tests were performed in deaerated aqueous solution of 1 M NaCl and 1 M NaCl with different phosphate additions at 90 C degrees and pH near neutral. The anodic film and corrosion products obtained were studied by SEM/EDS. Cyclic Potentiodynamic Polarization (CPP) curves obtained for uniform corrosion studies, showed an increase of the passivity range in phosphate containing solutions. The passive current value was 1 μA/cm 2 approximately in all the tests. PCA electrochemical tests, that combined a CPP with a potentiostatic polarization step for 2 hours in between the forward and reverse scan, showed crevice corrosion development in some cases. The repassivation potential value, determined by the intersection of the forward and the reverse scan, increased with phosphate addition. A complete crevice corrosion inhibition effect was found for phosphate concentration higher than 0.3 M. These results indicate that the passivity potential range depend on phosphate presence and might be related with the incorporation of the anion in the passive film. Results of the tests

  2. Effects of Friction Stir Welding on Corrosion Behaviors of AA2024-T4 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ales Steve Korakan

    2017-01-01

    Full Text Available In this work, the corrosion behavior of welded joints of AA2024-T4 Al alloy produced by friction stir welding process has been investigated. Tests were performed in an aerated 3.5% NaCl aqueous solution with pH = 7 at 20±2°C. Corrosion rate and corrosion morphology of weld regions were evaluated and compared to those of the parent metal. The microstructure of weld nugget, thermomechanical affected zone, heated affected zone, and parent metal were analyzed using scanning electron microscopy and energy dispersive spectroscopy. It was observed that corrosion initiated at FSW related spots and the sizes of local corrosion increased with time.

  3. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  4. Effect of Cu addition on microstructure and corrosion behavior of spray-deposited Zn–30Al alloy

    International Nuclear Information System (INIS)

    Wang Feng; Xiong Baiqing; Zhang Yongan; Liu Hongwei; Li Zhihui; Li Xiwu; Qu Chu

    2012-01-01

    Highlights: ► Zn–30Al–xCu alloys were synthesized by the spray atomization and deposition technique. ► Immersion test and electrochemical measurements have been used to estimate the corrosion rate and the behavior. ► The result indicates that the 1 wt.% Cu addition displays superior corrosion resistance. - Abstract: In this study, one binary Zn–30Al and three ternary Zn–30Al–Cu alloys were synthesized by the spray atomization and deposition technique. The microstructures of the spray-deposited alloys were investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD). Immersion test, potentiodynamic polarization and electrochemical impedance measurements have been used to estimate the corrosion rate and the behavior. The results indicate that the 1 wt.% Cu addition to spray-deposited Zn–30Al alloy does not make significant change in microstructure. However, with the 2, 4 wt.% Cu additions to the alloy, some ε-CuZn 4 compounds with particle or irregular shapes were observed on the grain boundaries in the microstructures. Immersion test and electrochemical measurements confirmed that the 1 wt.% Cu addition displays superior corrosion resistance, whereas the 2, 4 wt.% Cu additions have a baneful effect on the corrosion behavior.

  5. The effects of heat treatment and environment on corrosion fatigue

    International Nuclear Information System (INIS)

    Ballinger, R.G.; Hwang, I.S.; Elliott, C.K.

    1993-05-01

    Alloy X-750 is a nickel-base alloy used extensively in Light Water Reactor (LWR) nuclear power systems due to its excellent corrosion resistance and high temperature strength. In spite of alloy X-750's exceptional high temperature properties, it has been found to be susceptible to environmentally assisted fatigue and stress corrosion cracking in relatively low temperature aqueous environments such as those that exist in LWR systems. In order to develop a better understanding of the role that microstructure plays in the fatigue behavior of alloy X-750, three thermal treatments were studied. The treatments used were as hot worked + : (1) 24 h at 885 degree C + 20 h at 704 degree C (AH), (2) lh at 982 degree C + 20 h at 704 degree C (BH), and (3) 1 h at 1093 degree C + 20 h at 704 degree C (HTH). Fatigue crack growth tests were conducted at frequencies of 0.1 and 10 Hz in the following aqueous environments: (1) high purity, air saturated water (8 ppM O 2 ) at 93 degree C and 288 degree C, (2) high purity, deoxygenated water (5 ppb O 2 ) at 93 degree C, and (3) simulated BWR water chemistry with hydrogen additions at 288 degree C. Crack growth rate data was collected at constant values of stress intensity factor range (ΔK). The results show that crack growth rates and morphology are a function of ΔK, frequency, thermal treatment and environment. Frequency effects were most significant for the AH material. Crack growth rates generally decrease, for a given value of ΔK, in the BH and HTH materials with the HTH material showing the lowest growth rate

  6. Effect of Plasma Nitriding Process Conditions on Corrosion Resistance of 440B Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łępicka Magdalena

    2014-09-01

    Full Text Available Martensitic stainless steels are used in a large number of various industrial applications, e.g. molds for plastic injections and glass moldings, automotive components, cutting tools, surgical and dental instruments. The improvement of their tribological and corrosion properties is a problem of high interest especially in medical applications, where patient safety becomes a priority. The paper covers findings from plasma nitrided AISI 440B (PN-EN or DIN X90CrMoV18 stainless steel corrosion resistance studies. Conventionally heat treated and plasma nitrided in N2:H2 reaction gas mixture (50:50, 65:35 and 80:20, respectively in two different temperature ranges (380 or 450°C specimens groups were examined. Microscopic observations and electrochemical corrosion tests were performed using a variety of analytical techniques. As obtained findings show, plasma nitriding of AISI 440B stainless steel, regardless of the process temperature, results in reduction of corrosion current density. Nevertheless, applying thermo-chemical process which requires exceeding temperature of about 400°C is not recommended due to increased risk of steel sensitization to intergranular and stress corrosion. According to the results, material ion nitrided in 450°C underwent leaching corrosion processes, which led to significant disproportion in chemical composition of the corroded and corrosion-free areas. The authors suggest further research into corrosion process of plasma nitrided materials and its degradation products.

  7. The effect of corrosion on the structural reliability of steel offshore structures

    International Nuclear Information System (INIS)

    Melchers, Robert E.

    2005-01-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions

  8. The effect of corrosion on the structural reliability of steel offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, Robert E. [Centre for Infrastructure Performance and Reliability, Department of Civil, Surveying and Environmental Engineering, School of Engineering, University of Newcastle, University Drive, Callaghan NSW 2300 (Australia)]. E-mail: rob.melchers@newcastle.edu.au

    2005-10-01

    This paper considers essential theoretical concepts and data requirements for engineering structural reliability assessment suitable for the estimation of the safety and reliability of corroding ships, offshore structures and pipelines. Such infrastructure operates in a harsh environment. Allowance must be made for structural deterioration since protective measures such as paint coatings, galvanizing or cathodic protection may be ineffective. Reliability analysis requires accurate engineering models for the description and prediction of material corrosion loss and for the maximum depth of pitting. New probability-based models for both these forms of corrosion have been proposed recently and calibrated against a wide range of data. The effects of water velocity and of water pollution are reviewed and compared with recently reported field data for a corrosion at an offshore oil platform. The data interpreted according to the model show good correlation when allowance is made for the season of first immersion and the adverse effects of seawater velocity and of water pollution. An example is given to illustrate the application of reliability analysis to a pipeline subject to pitting corrosion. An important outcome is that good quality estimation of the longer-term probability of loss of structural integrity requires good modelling of the longer-term corrosion behaviour. This is usually associated with anaerobic corrosion. As a result, it cannot be extrapolated from data for short-term corrosion as this is associated with aerobic corrosion conditions.

  9. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  10. Effect of heat treatments and minor elements on caustic stress corrosion cracking of type 304 stainless steel

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Kowaka, Masamichi

    1983-01-01

    The effect of heat treatments and minor elements (C, S, P, N) on caustic stress corrosion cracking of Type 304 stainless steel in boiling 34% NaOH solution at 393 K was studied. The results obtained as follows: (1) Susceptibility to IGSCC (intergranular stress corrosion cracking) in NaOH solution was increased with the intergranular precipitation of chromium carbides by the sensitizing heat treatments, but was not completely consistent with the susceptibility to IGC (intergranular corrosion) by Strauss test in H 2 SO 4 + CuSO 4 solution. (2) SCC in NaOH solution took place in three potential ranges of about -100 to +150 mV (vs SCE), -600 to -300 mV and -1100 to -900 mV. Transglanular cracking predominantly occurred in the first region and intergranular cracking occurred in the latter two regions. IGC occurred in the potential range of about -400 to 0 mV. No IGC was observed at corrosion potential. (3) Among minor elements carbon and sulfur had a detrimental effect on SCC, but no effect of phosphorus and nitrogen was almost observed on SCC in NaOH solution. (author)

  11. Vehicle accelerated corrosion test procedures for automotive in Malaysia

    Directory of Open Access Journals (Sweden)

    Anuar Liza

    2017-01-01

    Full Text Available An accelerated corrosion test, known as proving ground accelerated test, is commonly performed by automotive manufacturers to evaluate the corrosion performance of a vehicle. The test combines corrosion and durability inputs to detect potential failures that may occur during in-service conditions. Currently, the test is conducted at an external test center overseas. Such test is aimed to simulate the effects of one year accelerated corrosion in severe corrosive environment of the north-east and south east of America. However, the test results obtained do not correlate with the actual corrosion conditions observed in the Malaysian market, which is likely attributed to the different test environment of the tropical climate of vehicles in service. Therefore, a vehicle accelerated corrosion test procedure that suits the Malaysian market is proposed and benchmarked with other global car manufacturers that have their own dedicated corrosion test procedure. In the present work, a test track is used as the corrosion test ground and consists of various types of roads for structural durability exposures. Corrosion related facilities like salt trough, mud trough and gravel road are constructed as addition to the existing facilities. The establishment of accelerated corrosion test facilities has contributed to the development of initial accelerated corrosion test procedure for the national car manufacturer. The corrosion exposure is monitored by fitting test coupons at the underbody of test vehicle using mass loss technique so that the desired corrosion rate capable of simulating the real time corrosion effects for its target market.

  12. TEM characterisation of stress corrosion cracks in nickel based alloys: effect of chromium content and chemistry of environment

    International Nuclear Information System (INIS)

    Delabrouille, F.

    2004-11-01

    Stress corrosion cracking (SCC) is a damaging mode of alloys used in pressurized water reactors, particularly of nickel based alloys constituting the vapour generator tubes. Cracks appear on both primary and secondary sides of the tubes, and more frequently in locations where the environment is not well defined. SCC sensitivity of nickel based alloys depends of their chromium content, which lead to the replacement of alloy 600 (15 % Cr) by alloy 690 (30 % Cr) but this phenomenon is not yet very well understood. The goal of this thesis is two fold: i) observe the effect of chromium content on corrosion and ii) characterize the effect of environment on the damaging process of GV tubes. For this purpose, one industrial tube and several synthetic alloys - with controlled chromium content - have been studied. Various characterisation techniques were used to study the corrosion products on the surface and within the SCC cracks: SIMS; TEM - FEG: thin foil preparation, HAADF, EELS, EDX. The effect of chromium content and surface preparation on the generalised corrosion was evidenced for synthetic alloys. Moreover, we observed the penetration of oxygen along triple junctions of grain boundaries few micrometers under the free surface. SCC tests show the positive effect of chromium for contents varying from 5 to 30 % wt. Plastic deformation induces a modification of the structure, and thus of the protective character, of the internal chromium rich oxide layer. SCC cracks which developed in different chemical environments were characterised by TEM. The oxides which are formed within the cracks are different from what is observed on the free surface, which reveals a modification of medium and electrochemical conditions in the crack. Finally we were able to evidence some structural characteristics of the corrosion products (in the cracks and on the surface) which turn to be a signature of the chemical environment. (author)

  13. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    International Nuclear Information System (INIS)

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-01-01

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  14. Mechanism and degree of chemical elements effect on atmosphere corrosion resistance of steels

    International Nuclear Information System (INIS)

    Vu Din' Vuj

    1991-01-01

    It follows from the proposed regression equations that falourable effect of chemical elements on steel resistance to atmospheric corrosion is determined by their ability to increase interatom bond stability in iron crystal lattice and form corrosion products with high protection properties. Element positive influence on steel corrosion resistance decreases in the following order: S, P, Si, Mn, Cu, Cr, Ni, C in semiurban tropical atmosphere and S, Mn, Sr, Cu, Ni, Cr in coastal atmosphere. In the latter case C increases corrosion in a greater degree as compared to P. Small ammounts of Mo decrease steel resistance in semiurban atmosphere and almost do not influence it in the coastal one. Possible mechanisms of individual element influence on steel corrosion resistance are considered

  15. Effect of ion implantation on the corrosion behavior of lead and a lead-antimony alloy

    International Nuclear Information System (INIS)

    Zhang, S.T.; Kong, F.P.; Muller, R.H.

    1994-01-01

    Ion implantation of different metals in Pb and Pb-4% Sb has been found to improve the open-circuit corrosion resistance of the two metals in 5M H 2 SO 4 . Titanium ions were implanted under different conditions of ion dose and ion energy. Optimum implantation conditions resulted in an up to 72-fold reduction of corrosion currents. The implantation of V, Cr, Ni, and W has been investigated for one implantation condition and has also resulted in decreased corrosion currents. The corrosion behavior was characterized by the current response to small anodic potential steps. Surface analysis and depth profiles have shown the importance of the spatial distribution of the implanted ions for their effects on the anodic and cathodic parts of the corrosion reactions

  16. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  17. The effect of heat treatments on the corrosion behavior of Zircaloy-4

    International Nuclear Information System (INIS)

    Zhou Bangxin; Zhao Wenjin; Miao Zhi; Pan Shufang; Li Cong; Jiang Yourong

    1996-06-01

    The effect of penultimate annealing temperature and cooling rate on the corrosion behavior of Zircaloy-4 cladding tube has been investigated. Both nodular corrosion and uniform corrosion resistance can be improved obviously after changing the heat treatment from the original annealing at 650 degree C to quenching from 830 degree C (upper temperature of alpha phase region or lower temperature of beta phase region). Although the nodular corrosion resistance can be improved obviously after quenching from beta phase, there was a second transition in the variation between weight gain and exposure time, which shows a poor uniform corrosion resistance after a long exposure time during the autoclave tests. The main factor of affecting corrosion behavior is the solid solution contents of Fe and Cr in alpha zirconium rather than the size of second phase particles. About 200 μg/g Fe and Cr super saturated solid solution in alpha zirconium could get good uniform and nodular corrosion resistance, but much more solid solution contents of Fe and Cr in alpha zirconium could bring about a trend toward poor uniform corrosion resistance for long-term exposure time. (14 refs., 10 figs., 1 tab.)

  18. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    International Nuclear Information System (INIS)

    Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S.

    2008-01-01

    Effects of pH solution and chloride (Cl - ) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E pit and corrosion E cor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  19. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  20. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang [KAIST, Daejon (Korea, Republic of)

    2015-12-15

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys.

  1. Effects of cold working on the pitting corrosion behavior s of AISI 304 stainless steels

    International Nuclear Information System (INIS)

    Jung, Kee Min; Kim, Jong Soo; Kim, Young Jun; Kwon, Houk Sang

    2015-01-01

    These microstructural changes by cold working can lead improvement of mechanical properties, however from a corrosion resistant point of view, the effects of cold working on the corrosion resistance of stainless steel have been argued. Several studies has been focused on the influence of cold working on the localized corrosion resistance of stainless steels. However, the opinions about the role of cold working on the localized corrosion resistance are highly in consistence. Some studies report that the pitting potential of austenitic stainless steels decreased with cold working level, on the other hands, other studies claimed that the pitting resistance was increased by cold working. Therefore it is necessary to verify how cold working affects pitting corrosion behavior of austenitic stainless steels. In the present work, the influence of cold working on the localized corrosion of AISI 304stainless steel in the neutral chloride solution was studied based on point defect model (PDM). The fraction of deformation-induced martensite was linearly increased with cold rolling level. Through cold rolling, the pitting potential was decreased, the metastable pitting event density was significantly increased and the repassivation potential was decreased. The overall localized corrosion resistance was decreased with cold working, however cold working level increased from 30 % to 50 %, localized corrosion resistance was recovered. The accumulated cation vacancy generates a void at metal/film interface, therefore film breakdown accelerates for cold worked alloys

  2. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    Science.gov (United States)

    Minárik, P.; Král, R.; Janeček, M.

    2013-09-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  3. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Minárik, P., E-mail: peter.minarik@mff.cuni.cz [Charles University, Department of Physics of Materials, Prague (Czech Republic); Král, R.; Janeček, M. [Charles University, Department of Physics of Materials, Prague (Czech Republic)

    2013-09-15

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  4. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    International Nuclear Information System (INIS)

    Minárik, P.; Král, R.; Janeček, M.

    2013-01-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  5. Effect of radioactive chromate on the corrosion and polarisation of mild steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Subramanyan, N.; Ramakrishnaiah, K.; Iyer, S.V.; Kapali, V.

    1980-01-01

    Corrosion tests of mild steel in 0.01% sodium chloride containing radioactive chromate and non-radioactive chromate have been carried out. It has been observed that the labelled sodium chromate has a deleterious effect on the inhibitive action of non-radioactive chromate. The effect of radioactive chromate on the potentiostatic polarization of m.s. in sodium chloride solution containing non-radioactive sodium chromate has also been studied. It is observed that both the cathodic and the anodic polarisation of the metal is diminished in the presence of radioactive chromate. The behaviour of the system in the presence of radioactive chromate is attributed both to the action of depolarisers produced by radiolysis of water and to the effect of gamma radiation on the metal. (author)

  6. Effect of cold-rolling on pitting corrosion of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Peguet, L.; Malki, B.; Baroux, B.

    2004-01-01

    Full text of publication follows: This paper deals with a not very often investigated topic on relation between cold-working and stainless steels localized corrosion resistance. It is devoted to the study of the cold-rolling effects on the pitting corrosion behavior of a 304 stainless steel grade in chloride containing aqueous electrolytes. It focus particularly on the analysis of metastable pitting transients observed at Open Circuit Potential using an experimental protocol including two identical working electrodes connected through a zero-impedance. As received the used specimens were heat-treated at 1100 C for 30 s and cold-rolled at 10%, 20%, 30% up to a final reduction pass of 70% inducing a large amount of α'-martensite. Then, current-potential fluctuations measurements were performed at OCP in NaCl 0.1 M + FeCl 3 2.10 -4 M containing aqueous solution during 24 h from the immersion time. As expected, a detrimental effect on corrosion behavior induced by cold rolling has been confirmed. Surprisingly, this is a nonlinear effect as a function of cold-rolling rate which controverts the hypothesis that strain induced martensite is the principal factor to explain this kind of sensibilizing. In particular, the results show a maximum of the metastable pits initiation frequency at 20% of cold-rolling rate. Moreover, the passive film/electrochemical double layer resistance and capacity deduced from the transients study show an analog nonlinear behavior. So, the transfer resistance show a minimum around 10-20% of cold-rolling rate where one can assume an increase of the electrons transfer kinetics through the interface. Conversely, the interfacial capacity is the highest at 20% of cold-rolling rate. Finally, It is expected a combined effect of the cold-rolled induced martensite and the dislocations arrangement via the mechano-chemical theory discussed by Gutman. (authors)

  7. Overview of Corrosion, Erosion, and Synergistic Effects of Erosion and Corrosion in the WTP Pre-treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-27

    Corrosion is an extremely complex process that is affected by numerous factors. Addition of a flowing multi-phase solution further complicates the analysis. The synergistic effects of the multiple corrosive species as well as the flow-induced synergistic effects from erosion and corrosion must be thoroughly evaluated in order to predict material degradation responses. Public domain data can help guide the analysis, but cannot reliably provide the design basis especially when the process is one-of-a-kind, designed for 40 plus years of service, and has no viable means for repair or replacement. Testing in representative simulants and environmental conditions with prototypic components will provide a stronger technical basis for design. This philosophy was exemplified by the Defense Waste Processing Facility (DWPF) at the Savannah River Site and only after 15 plus years of successful operation has it been validated. There have been “hiccups”, some identified during the cold commissioning phase and some during radioactive operations, but they were minor and overcome. In addition, the system is robust enough to tolerate most flowsheet changes and the DWPF design allows minor modifications and replacements – approaches not available with the Hanford Waste Treatment Plant (WTP) “Black Cell” design methodology. Based on the available data, the synergistic effect between erosion and corrosion is a credible – virtually certain – degradation mechanism and must be considered for the design of the WTP process systems. Testing is recommended due to the number of variables (e.g., material properties, process parameters, and component design) that can affect synergy between erosion and corrosion and because the available literature is of limited applicability for the complex process chemistries anticipated in the WTP. Applicable testing will provide a reasonable and defensible path forward for design of the WTP Black Cell and Hard-to-Reach process equipment. These

  8. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa

    2002-01-01

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index(α) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61∼71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  9. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... allows for extensive use as the material of construction in petro- leum industries .... steel specimens was investigated after mass-loss analysis ..... Ogbuliec, Inhibition of pseudo-anaerobic corrosion of oil pipeline steel in ...

  10. Effect of corrosion on the buckling capacity of tubular members

    Science.gov (United States)

    Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.

    2017-12-01

    Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.

  11. Effect of tempering on corrosion resistance of cast aluminium bronzes

    International Nuclear Information System (INIS)

    Aaltonen, P.; Klemetti, K.; Haenninen, H.

    1985-01-01

    The subject of this study is corrosion resistance of aluminium bronzes, which are copper base alloys containing aluminium up to 12% with additions of nickel, iron and manganese. The main conclutions that can be drawn are: (1) The dealloying corrosion resistance of nickel-aluminium bronze is much better than that of aluminium bronze with iron and manganese additions, but it is not immune; (2) The dealloying corrosion resistance of aluminium bronzes can be improved by appropiate heat treatments. The best properties were obtained by temperering between 600 and 800 deg C, depending on the initial microstructure; (3) In crevice conditions, where local acidification can occur, dealloying of aluminium bronzes is a consequence of the preferential attack of aluminium-rich phases. By appropriate tempering, a uniform distribution of aluminium-rich phases is obtained and the continous path for selective corrosion is not formed

  12. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  13. AC-Induced Bias Potential Effect on Corrosion of Steels

    Science.gov (United States)

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  14. Water vapor effects on the corrosion of steel

    International Nuclear Information System (INIS)

    Estill, J.C.; Gdowski, G.E.

    1995-01-01

    Critical relative humidity for AISI 1020 carbon steel is 75-85% RH at 65 C. Aggressive electrochemical corrosion occurs above 85% RH, while dry oxidation occurs below 75% RH. The reddish-brown product is probably Fe2O3 or its hydrate; the black oxide layer, Fe3O4. The face surfaces had little or no corrosion, while the mill-machined edges were corroded with nonuniform reddish-brown areas

  15. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  16. Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment.

  17. Multilayer graphene as an effective corrosion protection coating for copper

    Science.gov (United States)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  18. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.

    Science.gov (United States)

    Spark, Amy J; Law, David W; Ward, Liam P; Cole, Ivan S; Best, Adam S

    2017-08-01

    Buried steel infrastructure can be a source of iron ions for bacterial species, leading to microbiologically influenced corrosion (MIC). Localized corrosion of pipelines due to MIC is one of the key failure mechanisms of buried steel pipelines. In order to better understand the mechanisms of localized corrosion in soil, semisolid agar has been developed as an analogue for soil. Here, Pseudomonas fluorescens has been introduced to the system to understand how bacteria interact with steel. Through electrochemical testing including open circuit potentials, potentiodynamic scans, anodic potential holds, and electrochemical impedance spectroscopy it has been shown that P. fluorescens increases the rate of corrosion. Time for oxide and biofilms to develop was shown to not impact on the rate of corrosion but did alter the consistency of biofilm present and the viability of P. fluorescens following electrochemical testing. The proposed mechanism for increased corrosion rates of carbon steel involves the interactions of pyoverdine with the steel, preventing the formation of a cohesive passive layer, after initial cell attachment, followed by the formation of a metal concentration gradient on the steel surface.

  19. Effect of yttrium chromite doping on its resistance to high-temperature salt and gas corrosions

    International Nuclear Information System (INIS)

    Oryshich, I.V.; Poryadchenko, N.E.; Rakitskij, A.N.; Bega, N.D.

    1996-01-01

    Effect of yttrium chromite doping with 2-4 group metal oxides on the corrosion resistance in the air at 1300 C during 5 hours and in sodium chloride and sulfate melts at 900 C during 20 hours is investigated. A notable increase of corrosion resistance is achieved under complex doping with zirconium and magnesium oxides in a quantity, close to solubility in yttrium oxide and solubility by aluminium oxide. Doping with calcium and strontium oxides in the quantities, dose to solubility in yttrium oxide does not produce any notable effect, and at higher concentrations it reduces the corrosion resistance in media indicated. Refs. 8, refs. 2, tabs. 1

  20. Zinc Addition Effects on General Corrosion of Austenitic Stainless Steels in PWR Primary Conditions

    International Nuclear Information System (INIS)

    Qiao Peipeng; Zhang Lefu; Liu Ruiqin; Jiang Suqing; Zhu Fawen

    2010-01-01

    Zinc addition effects on general corrosion of austenitic stainless steel 316 and 304 were investigated in simulated PWR primary coolant without zinc or with 50 ppb zinc addition at 315 degree C for 500 h. The results show that with the addition of zinc, the corrosion rate of austenitic stainless steel is effectively reduced, the surface oxide film is thinner, the morphology and chemical composition of surface oxide scales are evidently different from those without zinc. There are needle-like corrosion products on the surface of stainless steel 304. (authors)

  1. Some observations on use of siliceous mineral waters in reduction of corrosion in RCC structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venugopal, C.

    to cement varied between 0 and 20% with difference of every 5% results of the test show that the blending of gold tailing and flyash to cement significantly improves the corrosion resistance performance of concrete exposed to sea water. Maximum reduction...

  2. Effects of Specimen Diameters on the Distribution of Corrosion Fatigue Cracks

    OpenAIRE

    石原, 外美; 塩澤, 和章; 宮尾, 嘉寿

    1988-01-01

    The distribution of corrosion fatigue cracks observed on the un-notched round specimen surface differs with specimen diameter, especially in the low stress amplitude region. At a constant fatigue life ratio, many long cracks are initiated on the larger specimen, 12 mm (diameter), in comparison with the smaller specimen, 6 mm (diameter). On the other hand, in the high stress amplitude region of corrosion fatigue and fatigue in laboratory air, the distribution of cracks during the fatigue proce...

  3. Effects of partial crystallinity and quenched-in defects on corrosion of ...

    Indian Academy of Sciences (India)

    Unknown

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. ... alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly ... Partial crystallinity (Dutta et al 1995; Savalia et al 1996),.

  4. Effect of niobium element on the electrochemical corrosion behavior of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanping, E-mail: wuyanping-2@126.com; Wu, Quanwen; Zhu, Shengfa, E-mail: zhushf-306@163.com; Pu, Zhen; Zhang, Yanzhi; Wang, Qinguo; Lang, Dingmu; Zhang, Yuping

    2016-09-15

    Depleted uranium (DU) has many military and civilian uses. However, its high chemical reactivity limits its application. The effect of Nb content on corrosion behavior of DU is evaluated by scanning Kelvin probe and electrochemical corrosion measurements. The Volta potential value of DU and U-2.5 wt% Nb is about the same level, the Volta potential value of U-5.7 wt% Nb has a rise of 370mV{sub SHE} in comparison with DU. The polarization current of U-5.7 wt% Nb alloy is about an order of magnitude of that of DU. The Nb{sub 2}O{sub 5} is the protective layer for the U-Nb alloys. The negative potential of Nb-depleted α phase is the main reason of the poor corrosion resistance of DU and U-2.5 wt% Nb alloy. - Highlights: • New method (scanning Kelvin probe) was used to study the corrosion property. • Three types of corrosion morphologies were found after potentiodynamic polarization. • The effect of impurity elements on corrosion property was mentioned. • The corrosion mechanism of DU and U-Nb alloys was discussed.

  5. Effect of layerwise structural inhomogeneity on stress- corrosion cracking of steel tubes

    Science.gov (United States)

    Perlovich, Yu A.; Krymskaya, O. A.; Isaenkova, M. G.; Morozov, N. S.; Fesenko, V. A.; Ryakhovskikh, I. V.; Esiev, T. S.

    2016-04-01

    Based on X-ray texture and structure analysis data of the material of main gas pipelines it was shown that the layerwise inhomogeneity of tubes is formed during their manufacturing. The degree of this inhomogeneity affects on the tendency of tubes to stress- corrosion cracking under exploitation. Samples of tubes were cut out from gas pipelines located under various operating conditions. Herewith the study was conducted both for sections with detected stress-corrosion defects and without them. Distributions along tube wall thickness for lattice parameters and half-width of X-ray lines were constructed. Crystallographic texture analysis of external and internal tube layers was also carried out. Obtained data testifies about considerable layerwise inhomogeneity of all samples. Despite the different nature of the texture inhomogeneity of gas pipeline tubes, the more inhomogeneous distribution of texture or structure features causes the increasing of resistance to stress- corrosion. The observed effect can be explained by saturation with interstitial impurities of the surface layer of the hot-rolled sheet and obtained therefrom tube. This results in rising of lattice parameters in the external layer of tube as compared to those in underlying metal. Thus, internal layers have a compressive effect on external layers in the rolling plane that prevents cracks opening at the tube surface. Moreover, the high mutual misorientation of grains within external and internal layers of tube results in the necessity to change the moving crack plane, so that the crack growth can be inhibited when reaching the layer with a modified texture.

  6. Environmental effects on corrosion in the Tuff repository

    International Nuclear Information System (INIS)

    Beavers, J.A.; Thompson, N.G.

    1990-02-01

    Cortest Columbus is investigating the long-term performance of container materials used for high-level waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy's application to construct a geologic repository for high-level radioactive waste. The scope of work consists of employing short-term techniques, to examine a wide range of possible failure modes. Long-term tests are being used to verify and further examine specific failure modes identified as important by the short-term studies. The original focus of the program was on the salt repository but the emphasis was shifted to the Tuff repository. This report summarizes the results of a literature survey performed under Task 1 of the program. The survey focuses on the influence of environmental variables on the corrosion behavior of candidate container materials for the Tuff repository. Environmental variables considered include: radiation, thermal and microbial effects. 80 refs., 44 figs., 44 tabs

  7. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    Science.gov (United States)

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  9. Evaluation of microstructural effects on the corrosion behaviour of AZ91D magnesium alloy

    DEFF Research Database (Denmark)

    Ambat, Rajan; Aung, Naing Naing; Zhou, W.

    2000-01-01

    The effect of microconstituents on the corrosion and electrochemical behaviour of AZ91D alloy prepared by die-casting and ingot casting route has been investigated in 3.5% NaCl solution at pH 7.25. The experimental techniques used include constant immersion technique, in-situ corrosion monitoring....... The corrosion products for ingot consisted of Mg(OH)(2) with small amounts beta phase, magnesium-aluminum oxide and MgH2 while for die-cast, the product showed a highly amorphous structure. (C) 2000 Elsevier Science Ltd. All rights reserved....

  10. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    mu m of the contaminated surface was required to reach corrosion rates less than 1 mm/year in salt spray condition. Among the three organic acids examined, acetic acid is the best choice. Oxalic acid can be an alternative while citric acid is not suitable for cleaning AZ31 sheet, because......Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  11. The effect of ion implantation on the resistance of 316L stainless steel to crevice corrosion

    International Nuclear Information System (INIS)

    Bombara, G.; Cavallini, M.

    1983-01-01

    The results of an investigation of the influence of aluminium, titanium and scandium implantation on the electrochemical and chemical crevice corrosion behaviour of 316L stainless steel are presented and discussed. Ion implantation, in addition to improving markedly the protective quality of the passive film at the free corrosion potential, greatly increases the resistance of 316L stainless steel to crevice corrosion in both neutral NaCl and acidic FeCl 3 solutions. A moderate decrease in pitting resistance is possibly due to coverage effect of implanted species on the surface molybdenum constituent. (Auth.)

  12. Effects of nitrogen and nitrogen getters in lithium on the corrosion of type 316 stainless steel

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.; Selle, J.E.

    1979-01-01

    This paper presents preliminary results on the corrosion of type 316 stainless steel in nitrogen-contaminated lithium. Nitrogen is a principal interstitial impurity in lithium and has a significant detrimental effect on compatibility, while O, H, and C in lithium do not enhance corrosion of type 316 stainless steel. Because of this, there is a need to understand the corrosion mechanisms and kinetics associated with nitrogen-induced attack in lithium. Results from experiments with getters in nitrogen-contaminated lithium are also reported

  13. Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2015-01-01

    Full Text Available The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.

  14. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  15. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Lapena, J.; Blazquez, F. [Ciemat, Madrid (Spain)

    2000-07-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigree. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs.

  16. Corrosion of High Chromium Ferritic/Martensitic Steels in High Temperature Water. a Literature Review

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Blazquez, F.

    2000-01-01

    Available literature concerning corrosion of high-chromium ferritic/martensitic steels in high temperature water has been reviewed. The subjects considered are general corrosion, effect of irradiation on corrosion, stress corrosion cracking (SCC) and irradiation-assisted stress corrosion cracking (IASCC). In addition some investigations about radiation induced segregation (RIS) are shown in order to know the compositional changes at grain boundaries of these alloys and their influence on corrosion properties. The data on general corrosion indicate moderate corrosion rates in high temperature water up to 350 degree centigrade. Considerably larger corrosion rates were observed under neutron irradiation. The works concerning to the behaviour of these alloys to stress corrosion cracking seem to conclude that in these materials is necessary to optimize the temper temperature and to carry out the post-weld heat treatments properly in order to avoid stress corrosion cracking. (Author) 40 refs

  17. Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

    Science.gov (United States)

    Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang

    2017-11-01

    The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.

  18. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  19. The composition effect on the long-term corrosion of high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, P. [Pacific Northwest National Laboratory, Richland, Washington (United States)

    1997-07-01

    Waste glass can be optimized for long-term corrosion behavior if the key parameters that control the rate of corrosion are identified, measured, and modeled as functions of glass composition. Second-order polynomial models have been used to optimize glass with respect to a set of requirements on glass properties, such as viscosity and outcomes of standard corrosion tests. Extensive databases exist for the 7-day Product Consistency Test and the 28-day Materials Characterization Center tests, which have been used for nuclear waste glasses in the United States. Models based on these tests are reviewed and discussed to demonstrate the compositional effects on the extent of corrosion under specified conditions. However, modeling the rate of corrosion is potentially more useful for predicting long-term behavior than modeling the extent of corrosion measured by standard tests. Based on an experimental study of two glasses, it is shown that the rate of corrosion can be characterized by simple functions with physically meaningful coefficients. (author)

  20. Quantitative assessment of the effect of corrosion product buildup on occupational exposure

    International Nuclear Information System (INIS)

    Divine, J.R.

    1982-10-01

    The program was developed to provide a method for predicting occupational exposures caused by the deposition of radioactive corrosion products outside the core of the primary system of an operating power reactor. This predictive capability will be useful in forecasting total occupational doses during maintenance, inspection, decontamination, waste treatment, and disposal. In developing a reliable predictive model, a better understanding of the parameters important to corrosion product film formation, corrosion product transport, and corrosion product film removal will be developed. This understanding can lead to new concepts in reactor design to minimize the buildup and transport of radioactive corrosion products or to improve methods of operation. To achieve this goal, three objectives were established to provide: (1) criteria for acceptable coolant sampling procedures and sampling equipment that will provide data which will be used in the model development; (2) a quantitative assessment of the effect of corrosion product deposits on occupational exposure; and (3) a model which describes the influence of flow, temperature, coolant chemistry, construction materials, radiation, and other operating parameters on the transport and buildup of corrosion products

  1. Effect of nanograin-boundary networks generation on corrosion of carburized martensitic stainless steel.

    Science.gov (United States)

    Boonruang, Chatdanai; Thong-On, Atcharawadi; Kidkhunthod, Pinit

    2018-02-02

    Martensitic stainless steel parts used in carbonaceous atmosphere at high temperature are subject to corrosion which results in a large amount of lost energy and high repair and maintenance costs. This work therefore proposes a model for surface development and corrosion mechanism as a solution to reduce corrosion costs. The morphology, phase, and corrosion behavior of steel are investigated using GIXRD, XANES, and EIS. The results show formation of nanograin-boundary networks in the protective layer of martensitic stainless steel. This Cr 2 O 3 -Cr 7 C 3 nanograin mixture on the FeCr 2 O 4 layer causes ion transport which is the main reason for the corrosion reaction during carburizing of the steel. The results reveal the rate determining steps in the corrosion mechanism during carburizing of steel. These steps are the diffusion of uncharged active gases in the stagnant-gas layer over the steel surface followed by the conversion of C into C 4- and O into O 2- at the gas-oxide interface simultaneously with the migration of Cr 3+ from the metal-oxide interface to the gas-oxide interface. It is proposed that previous research on Al 2 O 3 coatings may be the solution to producing effective coatings that overcome the corrosion challenges discussed in this work.

  2. Effect of Heat treatment on Hardness and Corrosion Resistance of Super Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roun; Kim, Young Sik [Andong National University, Andong (Korea, Republic of)

    2014-07-15

    In fossil-fuel-fired power plants, a variety of pollutants are produced from the combustion of conventional fuels such as coal, oil and gas. Major component of such pollution are ash and corrosive chemicals, which also destroy pumps and piping; by causing erosion/corrosion, pitting, and wear. In order to over come such damage, materials with high hardness and high corrosion resistance are needed. In this work, we melted super-cast-iron with excellent corrosion resistance and high hardness. To elucidate the effect of heat treatment, microstructural analysis, hardness measurement, and corrosion tests were performed. Test results revealed that the super-cast-iron had several tens better corrosion resistance than 316 L stainless steel, and it also had a high surface hardness (> HRC45). High hardness, in spite of its low carbon content (0.74%C), could resulted from a hardening heat treatment to precipitate sufficient Cr{sub 7}C{sub 3} and Cr{sub 2}3C{sub 6}. Also, it was concluded that the excellent corrosion resistance of the super-cast-iron was due to the increase of the relative chromium content by minimizing the carbon content, and by the enhancement of passive film by the addition of Cr, Mo, Cu, and W.

  3. The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys.

    Science.gov (United States)

    Ntasi, Argyro; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros

    2010-12-01

    The aim of the present study was to evaluate the effect of Electro Discharge Machining (EDM) on the corrosion resistance of two types of dental alloys used for fabrication of implant retained superstructures. Two groups of specimens were prepared from a Co-Cr (Okta-C) and a grade II cpTi (Biotan) alloys respectively. Half of the specimens were subjected to EDM with Cu electrodes and the rest were conventionally finished (CF). The corrosion resistance of the alloys was evaluated by anodic polarization in Ringer's solution. Morphological and elemental alterations before and after corrosion testing were studied by SEM/EDX. Six regions were analyzed on each surface before and after corrosion testing and the results were statistically analyzed by paired t-test (a=0.05). EDM demonstrated inferior corrosion resistance compared to CF surfaces, the latter being passive in a wider range of potential demonstrating higher polarization resistance and lower I(corr) values. Morphological alterations were found before and after corrosion testing for both materials tested after SEM analysis. EDX showed a significant decrease in Mo, Cr, Co, Cu (Co-Cr) and Ti, Cu (cpTi) after electrochemical testing plus an increase in C. According to the results of this study the EDM procedure decreases the corrosion resistance of both the alloys tested, increasing thus the risk of possible adverse biological reactions. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Improvement of corrosion resistance of Ni−Mo alloy coatings: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, R., E-mail: mousavi@scu.ac.ir [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Deflorian, F.; Ecco, L. [Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Conjunction between SEM, EIS, and Tafel measurements to obtain a coat with dense morphology and without crack. • An inverse Hall-Petch effect is observed after annealing the coatings, i.e. the coatings get harder as the grain size is increased by increasing annealing temperature up to 600 {sup o}C. • Heat treatment can improve the mechanical and corrosion properties of coatings. - Abstract: In this paper, Ni−Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 {sup o}C, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 {sup o}C for 25 min. The results showed that the coatings obtained at temperature 40 {sup o}C, pH 9, and annealing at 600 {sup o}C has the highest corrosion resistance and microhardness.

  5. The Effect of Adding Corrosion Inhibitors into an Electroless Nickel Plating Bath for Magnesium Alloys

    Science.gov (United States)

    Hu, Rong; Su, Yongyao; Liu, Hongdong; Cheng, Jiang; Yang, Xin; Shao, Zhongcai

    2016-10-01

    In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH4HF2) and ammonium molybdate ((NH4)2MoO4) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH4HF2 and (NH4)2MoO4, the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.

  6. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  7. The Effect of Fly Ash on the Corrosion Behaviour of Galvanised Steel Rebarsin Concrete

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The effect of fly ash on the corrosion behaviour of galvanised steel rebars in cracked concrete specimens exposed to wet-dry cycles in a chloride solution has been investigated. The obtained results show that the use of fly ash, replacing either cement or aggregate, always improves the corrosion behaviour of galvanised steel reinforcements. In particular, the addition of fly ash, even in the presence of concrete cracks, decreases the corrosion rate monitored in very porous concretes, as those with w/c = 0.80, to values comparable with those obtained in good quality concretes, as those with w/c = 0.45. Therefore, fly ash cancels the negative effect, at least from the corrosion point of view, of a great porosity of the cement matrix.

  8. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr–Sn–Nb alloys

    International Nuclear Information System (INIS)

    Wei, J.; Frankel, P.; Polatidis, E.; Blat, M.; Ambard, A.; Comstock, R.J.; Hallstadius, L.; Hudson, D.; Smith, G.D.W.; Grovenor, C.R.M.; Klaus, M.; Cottis, R.A.; Lyon, S.; Preuss, M.

    2013-01-01

    The desire to improve the corrosion resistance of Zr cladding material for high burn-up has resulted in a general trend among fuel manufacturers to develop alloys with reduced levels of Sn. While commonly accepted, the reason for the improved corrosion performance observed for low-tin zirconium alloys in high-temperature aqueous environments remains unclear. High-energy synchrotron X-ray diffraction was used to characterize the oxides formed by autoclave exposure on Zr–Sn–Nb alloys with tin concentration ranging from 0.01 to 0.92 wt.%. The alloys studied included the commercial alloy ZIRLO® (ZIRLO® is a registered trademark of Westinghouse Electric Company LLC in the USA and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited.) and two variants of ZIRLO with significantly lower tin levels, referred to here as A-0.6Sn and A-0.0Sn. The nature of the oxide grown on tube samples from each alloy was investigated via cross-sectional scanning electron microscopy. Atom probe analysis of ZIRLO demonstrated that the tin present in the alloy passes into the oxide as it forms, with no significant difference in the Sn/Zr ratio between the two. Synchrotron X-ray diffraction measurements on the oxides formed on each alloy revealed that the monoclinic and tetragonal oxide phases display highly compressive in-plane residual stresses with the magnitudes dependent on the phase and alloy. The amount of tetragonal phase present and, more importantly, the level of tetragonal-to-monoclinic phase transformation both decrease with decreasing tin levels, suggesting that tin is a tetragonal oxide phase stabilizing element. It is proposed that in Zr–Nb–Sn alloys with low Sn, the tetragonal phase is mainly stabilized by very small grain size and therefore remains stable throughout the corrosion process. In contrast, alloys with higher tin levels can in addition grow larger, stress stabilized, tetragonal grains that

  10. Fundamental studies of aluminum corrosion in acidic and basic environments: Theoretical predictions and experimental observations

    International Nuclear Information System (INIS)

    Lashgari, Mohsen; Malek, Ali M.

    2010-01-01

    Using quantum electrochemical approaches based on density functional theory and cluster/polarized continuum model, we investigated the corrosion behavior of aluminum in HCl and NaOH media containing phenol inhibitor. In this regard, we determined the geometry and electronic structure of the species at metal/solution interface. The investigations revealed that the interaction energies of hydroxide corrosive agents with aluminum surface should be more negative than those of chloride ones. The inhibitor adsorption in acid is more likely to have a physical nature while it appears as though to be chemical in basic media. To verify these predictions, using Tafel plots, we studied the phenomena from experimental viewpoint. The studies confirmed that the rate of corrosion in alkaline solution is substantially greater than in HCl media. Moreover, phenol is a potential-molecule having mixed-type inhibition mechanism. The relationship between inhibitory action and molecular parameters was discussed and the activity in alkaline media was also theoretically anticipated. This prediction was in accord with experiment.

  11. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Hoh; Kim, In Sub; Noh, Sung Kee

    1995-01-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. In acid and alkaline media, the corrosion potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively. 13 figs., 1 tabs., 17 refs. (Author)

  12. Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment

    Science.gov (United States)

    Li, Wei; Xu, Lining; Qiao, Lijie; Li, Jinxu

    2017-12-01

    The corrosion behavior of 3Cr steels with three microstructures (martensite, bainite, combined ferrite and pearlite) in simulated oil field formation water with a CO2 partial pressure of 0.8 MPa was investigated. The relationships between Cr concentrations in corrosion scales and corrosion rates were studied. The precipitated phases that contained Cr were observed in steels of different microstructures, and free Cr content levels were compared. The results showed that steel with the martensite microstructure had the highest free Cr content, and thus had the highest corrosion resistance. The free Cr content of bainite steel was lower than that of martensite steel, and the corrosion rate of bainite steel was higher than that of martensite steel. Because large masses of Cr were combined in ferrite and pearlite steel, the corrosion rates of ferrite and pearlite steel were the highest. Free Cr content in steel affects its corrosion behavior greatly.

  13. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    OpenAIRE

    I. B. Obot; N. O. Obi-Egbedi

    2010-01-01

    The effect of nizoral (NZR) on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The ad...

  14. Radiometric investigation of effect of decontamination agents on corrosion behavior of structural materials for nuclear power engineering

    International Nuclear Information System (INIS)

    Silber, R.; Ecksteinova, A.

    1987-01-01

    The tracer technique is used in monitoring corrosion behaviour of high-alloy steels used as structural materials in nuclear power engineering. Radioisotopes 59 Fe, 51 Cr, 58 Co and 60 Co produced by neutron irradiation of steel are mainly used for labelling steel components. The actual corrosion test proceeds in a facility whose description is given. The facility allows automatic sampling of corrosion medium fractions in preset intervals. The fractions are evaluated using a multi-channel analyzer with a Ge(Li) detector. The method can be applied in, e.g., monitoring extraction corrosion, the effect of decontamination agents on the corrosion of alloy steels and the effect of heat treatment of steels of their corrosion resistance in a model corrosion environment. (Z.M.). 2 fig., 1 tab., 5 refs

  15. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    Science.gov (United States)

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  16. Investigations into the corrosion resistance of copper aluminium alloys. Effect of phosphorus as corrosion resistant third alloying element in the ternary system CuAl20P1

    International Nuclear Information System (INIS)

    Allwardt, A.

    1997-01-01

    The effect of phosphorus on the corrosion resistance of Al-bronzes is studied in detail in this work. A literature review showed that there are a lot of things known about the microstructure and the mechanical properties of Al-bronzes. In spite of their corrosion resistance the corrosion properties and the structure of the protective oxide films of Al-bronzes were seldom a matter of interest. Systematic studies of the influence of different alloying elements on the oxide film and the corrosion properties are rare. Therefore, it is not possible to predict the corrosion resistance of Al-bronzes, made by alloying particular elements. The high corrosion resistance of the new alloy CuAl 20 P 1 was the reason to investigate the influence of phosphorus on the corrosion properties of Al-bronzes in more detail. A systematic study of the microstructure and the corrosion properties of Cu, CuP x , CuAl 20 and CuAl 20 P x offers an insight into the effect of aluminium and phosphorus on the formation of the oxide film on Al-bronzes. It was found that there exists a critical amount of 1 at.-% of phosphorus. Above and below this amount the corrosion resistance becomes worse. This behaviour could be explained by XPS-and electrochemical measurements. Although there are still some questions about the influence of phosphorus on the corrosion resistance of Al-bronzes, this work has produced some important results, which in the future may be helpful to develop new high corrosion resistant Al-bronzes more efficiently: - on clean surface Al-bronze, the oxidation of Al and Cu takes place simultaneously, - Al promotes the formation of Cu 2 O but impedes the formation of Cu(II)-oxide/-hydride in neutral solutions, - P impedes the formation of Cu 2 O and as a consequence promotes the formation of aluminium oxide. This results in a higher amount of Al in the oxide film on the surface of the alloy, which leads to a better corrosion resistance. (author) figs., tabs., 106 refs

  17. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    Energy Technology Data Exchange (ETDEWEB)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  18. Physico-chemical analyses and corrosion effect of produced water ...

    African Journals Online (AJOL)

    Physico-chemical characteristics of the composite produced water sample used for the study has a higher concentration compared with DPR standard for discharge of produced formation water into surface environment. It was assumed that the corrosion of the coupons was due to presence of high chemical matters in the ...

  19. effect of municipal liquid waste on corrosion susceptibility

    African Journals Online (AJOL)

    DR. AMINU

    categories: complete immersion in seawater or exposure to an environment charged with salts particles or solutions, both categories are subjected to many variables and pollutants (Kareem, 2006). Also the corrosion behaviour of galvanized steel in industrial effluents discharged into the environment, was found to corrode ...

  20. Effect of acid corrosion on crack propagation of concrete beams

    Indian Academy of Sciences (India)

    HU SHAOWEI

    2018-03-10

    Mar 10, 2018 ... sive strength, low price, convenient construction modelling and workability, as well as corrosion ... These test results showed that the elastic modulus and fracture parameters of concrete structures reduced ... due to nonlinear characteristics of concrete materials, the classical linear elastic fracture mechanics.

  1. Effect of piperidones on hydrogen permeation and corrosion ...

    Indian Academy of Sciences (India)

    corrosion inhibition. 3.5 Hydrogen permeation measurements. Hydrogen can enter into the metal during various industrial operations like melting, heat treatment, or pickling and electrochemical processes such as cathodic cleaning and electrolytic machining. Of the various sources of entry of hydrogen into the metal,.

  2. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium chloride addition was studied by means of mass-loss, potentiodynamic polarization, electrode potential monitoring, scanning electron microscopy and statistical analysis. Results show that deanol performed excellently with ...

  3. Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget

    International Nuclear Information System (INIS)

    Dhondt, Matthieu; Aubert, Isabelle; Saintier, Nicolas; Olive, Jean Marc

    2014-01-01

    Highlights: • Applied stress changes the corrosion mode from pitting to intergranular cracking. • Residual stresses are sufficient to induce intergranular stress corrosion cracking. • Effect of crystallographic texture on the development of IGSCC evidenced by EBSD. • Cubic elasticity drives the local orientation of the intergranular cracking. • Tomography observations show the 3D nature of the corrosion development. - Abstract: The effects of the microstructure and mechanical fields on intergranular stress corrosion cracking (IGSCC) of the nugget zone of heat treated welds obtained by friction stir welding in the AA2050 aluminum alloy have been investigated at different scales. At low strain rate, in 1.0 NaCl aqueous solution, IGSCC develops in the microstructure, whereas only pitting corrosion is observed without any mechanical stress. Based on surface observations, EBSD analysis and X-ray tomography, the key role of sub-millimetric textured bands (induced by the welding process) on the IGSCC is demonstrated. Analyses at a more local scale show the grain boundary (low angle boundary, special coincident site lattice boundary or high angle boundary) do not have a significant effect on crack initiation. Crystal plasticity finite element calculations show that the threshold normal stress at grain boundaries for IGSCC development is about 80% of the macroscopic stress. It is also highlighted by crystal plasticity calculations that there is a drastic effect of the local stress field on the shape of cracks. Finally, it is shown that plasticity induced residual stresses are sufficient for the formation of IGSCC

  4. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment

    International Nuclear Information System (INIS)

    Zelinka, Samuel L.; Glass, Samuel V.; Derome, Dominique

    2014-01-01

    Highlights: • We examine the dependence of metal corrosion on wood moisture content. • Corrosion of steel and galvanized steel in treated wood were measured. • Corrosion products were analyzed across moisture contents using X-ray diffraction. • The corrosion rate has a sigmoidal dependence on moisture content. • The data herein can be used to improve combined hygrothermal–corrosion models. - Abstract: This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent with previous work. Uniform corrosion was observed for all fasteners and all conditions except steel fasteners embedded in water-saturated wood. Data of dependence of corrosion rate on moisture content, presented herein, are necessary to ensure the accuracy of combined hygrothermal/corrosion models used to predict durability of wood structures

  5. Effect of friction stir processing on erosion–corrosion behavior of nickel–aluminum bronze

    International Nuclear Information System (INIS)

    Lotfollahi, M.; Shamanian, M.; Saatchi, A.

    2014-01-01

    Highlights: • The average hardness value of the FSP samples was higher than cast sample. • Erosion–corrosion rate of the FSP samples was higher than cast sample. • The gravimetric analysis showed a negative synergy. - Abstract: In the present investigation, effects of Friction Stir Processing (FSP) on Erosion–Corrosion (E–C) behavior of Nickel–Aluminum Bronze (NAB) were studied by weight-loss measurements and surface characterization using an impingement jet test system. After FSP, the initial coarse microstructure of the cast NAB was transformed to a fine structure, and the porosity defects were eliminated. In addition, different FSP structures were produced by each rotation rate. Microhardness measurements showed a marked increase in FSP samples depending upon the FSP parameters. E–C tests were carried out by erodent at kinetic energies about 0.45 μJ and in 30°, 60° and 90° impact angles to simulate actual service conditions. The maximum weight-loss was observed in FSP samples and Scanning Electron Microscopy (SEM) results showed signs of brittle fracture mechanism in FSP samples. By gravimetric analysis, the degree of synergy was evaluated at 0.45 μJ kinetic energy at normal impact angle and negative synergy result implies the presence of a protective film on all sample surfaces

  6. Effect of corrosive marine atmosphere on construction materials in Tanzania: Exposure sites and preliminary results

    International Nuclear Information System (INIS)

    Mmari, A.G.; Uiso, C.B.S.; Makundi, I.N.; Potgieter-Vermaak, S.S.; Potgieter, J.H.; Van Grieken, R.

    2007-01-01

    Air pollution studies in Africa are limited and the influence of ambient air quality on buildings and constructions have not been investigated in the larger part of Sub-Saharan Africa. The increasing burden of emission from industry, traffic and coal power plants on ambient air pollution in Sub-Saharan Africa necessitated reviewing previous and current studies. In South Africa a 20-year exposure program, focusing on the effect of ambient exposure on various metals and alloys, showed that the amount of rainfall, relative humidity, atmospheric pollution, wind speed, solar radiation and structural design are some of the factors controlling atmospheric corrosion. Tanzania, being among the Sub-Saharan African countries and partly bordered by Indian ocean, the main source of marine atmosphere, experiences corrosive degradation on metal roofing and cementitious materials. This paper describes the exposure site set-up and will report on some preliminary results of air quality and its relation with the meteorological conditions, as well as surface changes observed, for the year one of exposure. These will thereafter be compared to the completed European and Asian studies, as reported by CLRTAP and RAPIDC respectively. (author)

  7. Effect of Aging Treatment on Impact Toughness and Corrosion Resistance of Super Duplex Stainless Steel

    Science.gov (United States)

    Kim, Jae-Hwan; Oh, Eun-Ji; Lee, Byung-Chan; Kang, Chang-Yong

    2016-01-01

    The effect of aging time on impact toughness and corrosion resistance of 25%Cr-7%Ni-2%Mo-4%W-0.2%N super duplex stainless steel from the viewpoint of intermetallic secondary phase variation was investigated with scanning electron microscopic observation with energy-dispersive x-ray spectroscopic analysis and transmission electron microscopy. The results clarified that R-phase is precipitated not only at the interface of ferrite and austenite but inside the ferrite at an initial stage of aging and then transformed into σ-phase from an aging time of 1 h, while the ferrite phase decomposed into γ2 and σ-phase with increase of aging time. This variation of the phases led to decrease of its impact toughness, and specifically, the R-phase was proved to be predominant in the degradation of the impact toughness at the initial stage of the aging. Additionally, these secondary phases led to deterioration of corrosion resistance because of Cr depletion.

  8. The effect of flow and chemical corrosion in reverse osmosis over desalinated water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jae [Chunnam National Univ., Gwangju (Korea, Republic of); Pak, Byung Gu [Doosan Heavy Industry Co., Tongyoung (Korea, Republic of)

    2015-12-15

    Desalinated water produced by a reverse osmosis (RO) filtering method forms about 22% of total production of desalinated water in the world. However, the RO environment is very corrosive due to the presence of various chemicals for water treatment and the flow of sand particles leading to corrosion. Recently, there has been much effort to substitute cheaper and more corrosion resistant stainless steels for copper based alloys as a valve material in RO. Nevertheless, the effects of chemicals and particles on the corrosion of stainless steels have rarely been studied. Erosion phenomenon was detected under the condition with the flow rate of more than 8ms{sup -1} in spite of the absence of sand particles. In seawater containing sand particles, the erosion in stainless steels was accelerated further.

  9. Effect of Zr on the Corrosion Properties of Mg-Li-Al Alloy

    International Nuclear Information System (INIS)

    Kim, Soon Ho; Choi, Sang Hyun; Kim, In Bae; Kim, Kyung Hyun

    1994-01-01

    Effect of Zr on the electrochemical corrosion characteristics of Mg-Li-Al alloy has been investigated by means of potentiodynamic polarization study. The electrochemical behaviors were evaluated in 0.03% NaCl solution and the solution buffered with KH 2 PO 5 · NaOH at room temperature. It was found that the addition of very small quantity of Zr (0.03wt%) in Mg-Li-Al alloy increased corrosion rates and amount of corrosion products and decreased the pitting resistance of the alloy. From the results it was concluded that Zr which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy

  10. Radiolysis effects on fuel corrosion within a failed nuclear waste container

    International Nuclear Information System (INIS)

    Sunder, S.; Shoeshmith, D.W.; Christensen, H.C.

    2003-01-01

    The concept of geological disposal of used nuclear fuel in corrosion resistant containers is being investigated in several countries. In the Canadian Nuclear Fuel Waste Management Program (CNFWMP), it is assumed that the used fuel will be disposed of in copper containers. Since the predicted lifetimes of these containers are very long (>106 years), only those containers emplaced with an undetected defect will fail within the period for which radionuclide release from the fuel must be considered. Early failure could lead to the entry of water into the container and subsequent release of radionuclides. The release rate of radionuclides from the used fuel will depend upon its dissolution rate. The primary mechanism for release will be the corrosion of the fuel driven by radiolytically-produced oxidants. The studies carried out to determine the effects of water radiolysis on fuel corrosion are reviewed, and some of the procedures used to predict corrosion rates of used fuel in failed nuclear waste containers described. (author)

  11. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress

    International Nuclear Information System (INIS)

    Amirat, A.; Mohamed-Chateauneuf, A.; Chaoui, K.

    2006-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. Reliability analysis is recognized as a powerful decision-making tool for risk-based design and maintenance. Both the residual stresses generated during the manufacturing process and in-service corrosion reduce the ability to resist internal and external loading. In this study, the residual stress distribution in large diameter pipes has been characterized experimentally in order to be coupled with the corrosion model. During the pipe lifetime, residual stress relaxation occurs due to the loss of pipe thickness as material layers are consumed by corrosion. The reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. It has been found that the residual stress greatly increases the failure probability, especially in the early stage of the pipe lifetime

  12. Effect of red mud addition on the corrosion parameters of reinforced concrete evaluated by electrochemical methods

    Directory of Open Access Journals (Sweden)

    D.V. Ribeiro

    Full Text Available Red mud, the main waste generated in aluminum and alumina production from bauxite ore by the Bayer process, is considered "hazardous" due to its high pH. The high pH also provides greater protection of rebars, which is reflected in the low corrosion potential and high electrical resistivity (filler effect of concrete. The corrosion potential was monitored by electrochemical measurements and the electrical resistivity was evaluated using sensors embedded in concrete test specimens. The results showed that the addition of red mud is beneficial to concrete, reducing its corrosion potential and increasing its electrical resistivity. Red mud proved to be a promising additive for concrete to inhibit the corrosion process.

  13. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  14. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-07-22

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700-900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350-550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  15. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.

    2012-01-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO 2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  16. Effects of Si as alloying element on corrosion resistance of weathering steel

    International Nuclear Information System (INIS)

    Mejía Gómez, J.A.; Antonissen, J.; Palacio, C.A.; De Grave, E.

    2012-01-01

    Highlights: ► Weathering steels with different concentrations of Si as alloying element were exposed to laboratory atmospheric conditions. ► The iron oxides formed as corrosion products were characterized and analyzed by XRD, TEM and Mössbauer spectroscopy. ► Silicon affects the corrosion resistance of weathering steels. ► Silicon promotes the formation of goethite as corrosion product with small particle size. - Abstract: The corrosion resistance in saline conditions of weathering steel with different concentrations of Si (1, 2 and 3 wt.%) exposed to dip dry tests (simulating wet/dry cycles of atmospheric corrosion) was studied by weight loss, X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. The results showed that the steels exhibit better corrosion performance with increasing Si concentration. The formation of Fe-oxides such as goethite, lepidocrocite and magnetite was observed. Superparamagnetic goethite is the dominant phase in the rust developed on the Si steels, indicating that Si favors the formation of goethite with small particle size.

  17. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  18. Corrosion behaviour of non-ferrous metals in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Birn, Jerzy; Skalski, Igor [Ship Design and Research Centre, Al. Rzeczypospolitej 8, 80-369 Gdansk (Poland)

    2004-07-01

    caused by a significant difference of corrosion potentials of aluminium alloy and most of metals used in technical applications. Exfoliation is observed mainly in case of Al-Zn-Mg alloys after welding. Corrosion in the presence of OH- ions occurs usually as an effect of application of cathodic protection of aluminium alloys in the over-protected zone. For most of the above mentioned alloys models of corrosion phenomena are presented. Furthermore, the long term prediction of applied alloys life in sea water is discussed. At the end of the paper areas of future studies are presented. (authors)

  19. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    Science.gov (United States)

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2017-07-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1169-1177, 2017. © 2016 Wiley Periodicals, Inc.

  20. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  1. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  2. The effect of corrosion on stained glass windows

    Directory of Open Access Journals (Sweden)

    Laissner, Johanna

    1996-06-01

    Full Text Available Stained glass windows belong to the most important cultural heritage of Europe. Within the last decades a disastrous deterioration took place. The wonderful stained glass windows and their glass paintings as pieces of art are acutely menaced by environmental corrosive influences. This corrosion process is a very complex reaction which is not only influenced by temperature and humidity changes but also by gaseous pollutants like sulfur dioxide, nitrogen oxides or ozone, by dust and air, microorganisms as well as synergetic interactions. Strongly affected by these environmental attacks are medieval stained glasses due to their chemical composition. They have a low content in silica and high contents of modifier ions (e.g. potassium and calcium. The corrosion phenomena can range from predominantly pitting on the surface to the formation of thick corrosion crusts which are turning the panel opaque and thus reducing strongly the transparency of the windows. In order to set up a conservation and restoration concept, it is necessary to know about the environmental conditions to which the stained glass windows are exposed. For this purpose very corrosion sensitive model glasses (so called glass sensors were developed which have a similar chemical composition as historic stained glasses. They exhibit the same corrosion reactions but react much faster, and are now widely used to estimate corrosive stresses on stained glass windows to give basic information about the corrosive impacts which work on the historic glasses. In this paper principle corrosion mechanisms of stained glass windows and their enhancing factors are discussed. For the evaluation of the environmental impact, the application of glass sensors is demonstrated.

    Las vidrieras coloreadas pertenecen al legado cultural más importante de Europa. En las últimas décadas se ha producido en ellas un desastroso deterioro. Las maravillosas vidrieras coloreadas y sus policromías est

  3. Humidity Build-Up in a Typical Electronic Enclosure Exposed to Cycling Conditions and Effect on Corrosion Reliability

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The design of electronic device enclosures plays a major role in determining the humidity build-up inside the device as a response to the varying external humidity. Therefore, the corrosion reliability of electronic devices has direct connection to the enclosure design. This paper describes......, thermal mass, and port/opening size. The effect of the internal humidity build-up on corrosion reliability has been evaluated by measuring the leakage current (LC) on interdigitated test comb patterns, which are precontaminated with sodium chloride and placed inside the enclosure. The results showed...... that the exposure to cycling temperature causes significant change of internal water vapor concentration. The maximum value of humidity reached was a function of the opening size and the presence of thermal mass inside the enclosure. A pumping effect was observed due to cycling temperature, and the increase...

  4. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  5. Effect of acidity upon attrition-corrosion of human dental enamel.

    Science.gov (United States)

    Wu, Yun-Qi; Arsecularatne, Joseph A; Hoffman, Mark

    2015-04-01

    Attrition-corrosion is a synthesized human enamel wear process combined mechanical effects (attrition) with corrosion. With the rising consumption of acidic food and beverages, attrition-corrosion is becoming increasingly common. Yet, research is limited and the underlying mechanism remains unclear. In this study, in vitro wear loss of human enamel was investigated and the attrition-corrosion process and wear mechanism were elucidated by the analysis of the wear scar and its subsurface using focused ion beam (FIB) sectioning and scanning electron microscopy (SEM). Human enamel flat-surface samples were prepared with enamel cusps as the wear antagonists. Reciprocating wear testing was undertaken under load of 5N at the speed of 66 cycle/min for 2250 cycles with lubricants including citric acid (at pH 3.2 and 5.5), acetic acid (at pH 3.2 and 5.5) and distilled water. All lubricants were used at 37°C. Similar human enamel flat-surface samples were also exposed to the same solutions as a control group. The substance loss of enamel during wear can be linked to the corrosion potential of a lubricant used. Using a lubricant with very low corrosion potential (such as distilled water), the wear mechanism was dominated by delamination with high wear loss. Conversely, the wear mechanism changed to shaving of the softened layer with less material loss in an environment with medium corrosion potential such as citric acid at pH 3.2 and 5.5 and acetic acid at pH 5.5. However, a highly corrosive environment (e.g., acetic acid at pH 3.2) caused the greatest loss of substance during wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of Copper and Sulfur Additions on Corrosion Resistance and Machinability of Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Kim, Soon Tae; Park, Yong Soo; Kim, Hyung Joon

    1999-01-01

    Effects of Cu and S on corrosion resistance and machinability of austenitic stainless steel were investigated using immersion test, metallographic examination, Auger surface analysis and tool life test with single point turning tools. Corrosion resistance of the experimental Cu containing alloys in 18.4N H 2 SO 4 at 80 ∼ 120 .deg. C and 3N HCl at 40 .deg. C decreased as S content increased. However, one of the experimental alloys (Fe- 18%Cr- 21%Ni-3.2%Mo- 1.6%W- 0.2%N- 3.1%Cu- 0.091%S) showed general and pitting corrosion resistance equivalent to that of CW12MW in highly concentrated SO 4 2- environment. The alloy also showed pitting corrosion resistance superior to super stainless steel such as 654SMO in Cl - environment. The reasons why the increase in S content deteriorated the corrosion resistance were first, that the number and size of (Mn, Cr)S sulfides having corrosion resistance lower than that of matrix increased, leading to pitting corrosion and second, that rapid dissolution of the matrix around the pits was caused by adsorbed S. However, the alloy containing 3.1 %Cu and 0.091 % S maintained high general and pitting corrosion resistance due to heavily enriched noble Cu through selective dissolution of active Fe and Ni. The tool life for 3.1 % Cu + 0.091 % S added alloy was about four times that of 0.06%Cu + 0.005% S added alloy due to high shear strain rate generated by Cu addition giving easy cross slip of dislocation, lubrication of ductile (Mn, Cr)S sulfides adhering to tool crater surface and low cutting force resulting from thin continuous sulfides formed in chips during machining

  7. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    International Nuclear Information System (INIS)

    Subramanian, Ananth Kumar; Arumugam, Sankar; Mallaiya, Kumaravel; Subramaniam, Rameshkumar

    2013-01-01

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H 2 SO 4 was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H 2 SO 4 medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface

  8. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  9. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nadine

    2017-04-28

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the

  10. Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys

    Directory of Open Access Journals (Sweden)

    Xiumin Ma

    2016-01-01

    Full Text Available Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM and energy dispersive spectrometer (EDS. The weight loss rates of different samples were arranged as T6-24 h>T6-6 h>T6-14 h>as-cast>T4. The open circuit potential (OCP showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μA·cm−2, whereas the T4 sample had the lowest at 52.164 μA·cm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.

  11. Shadow corrosion phenomenon. An out-of-pile study on electrochemical effects

    International Nuclear Information System (INIS)

    Weber, Nadine

    2017-01-01

    The focus of the present thesis was the study of the enhanced corrosion phenomenon named ''Shadow Corrosion''. Within the context of researching based on the corrosion mechanism as well as the influencing parameters and driving forces, which cause or even intensify the corrosion, a variety of electrochemical characterization and surface analysis techniques were used. The first part of this thesis gives a short introduction with the definition of the term Shadow Corrosion and of the specific type called ''Enhanced Spacer Shadow Corrosion'' (ESSC). This is followed by a description of the involved materials being Zircaloy and Inconel 718. Chapter 2 introduces the background knowledge including fundamentals about environ-mental conditions under which Shadow Corrosion occurs as well as the oxidation behavior of Zircaloy and Inconel 718. Furthermore, the state of the art about the Shadow Corrosion mechanism is presented and a description of the influencing effects on the enhanced corrosion phenomenon, like galvanic corrosion, water radiolysis, and photo-effect, is given. Further information and parameters on the part of AREVA GmbH concerning water impurities and a used coating layer on Inconel 718 are listed, which are of interest for the issue concerning the phenomenon Shadow Corrosion. The last part of this chapter contains the experimental conditions and parameters for the laboratory experiments with focus on water chemistry, specimen geometry, and UV-light exposure for photoexcitation and water radiolysis. Three different working hypotheses of this thesis are described in chapter 3. One hypothesis regarding the Shadow Corrosion Phenomenon is based on a galvanic corrosion mechanism between Zircaloy and Inconel 718. In addition, it is supposed that the galvanic corrosion could be influenced by the deposition of silver on Zircaloy and Inconel 718 in the form of an increased galvanic current. A further assumption is that the galvanic current could be decreased by a Cr

  12. The effect of Ti(CN/TiNb(CN coating on erosion–corrosion resistance

    Directory of Open Access Journals (Sweden)

    William Aperador Chaparro

    2012-05-01

    Full Text Available The goal of this work was to study electrochemical behaviour in corrosion-erosion conditions for Ti(CN/TiNb(CN multilayer coatings having 1, 50, 100, 150 and 200 bilayer periods on AISI 4140 steel substrates by using a multi-target magnetron reactive sputtering device, with an r.f. source (13.56 MHz, two cylindrical magnetron cathodes and two stoichiometric TiC and Nb targets. The multi-layers were evaluated by comparing them to corrosion, erosion and erosion corrosion for a 30º impact angle in a solution of 0.5 M NaCl and silica, analysing the effect of impact angle and the number of bilayers on these coatings’ corrosion resistance. The electrochemical characterisation was performed using electrochemical impedance spectroscopy for analysing corrosion surface; surface morphology was characterised by using a high-resolution scanning electron microscope (SEM. The results showed a de-creased corrosion rate for multilayer systems tested at 30°.

  13. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    International Nuclear Information System (INIS)

    Zeng, F. W.; Lane, M. W.; Gates, S. M.

    2014-01-01

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, this work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G TH , were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species

  14. Effects of noble-metal ion implantation on corrosion inhibition and charge injection capability of surgical Ti and Ti-6Al-4V

    International Nuclear Information System (INIS)

    Lee, I.S.

    1989-01-01

    Studies are described involving effects of noble-metal ion implantation on corrosion inhibition and charge injection capabilities of surgical Ti and Ti-6Al-4V. With surgical alloys, harmful biological responses are principally due to the type and quantity of metal ions released by the corrosion process. One approach to improve long-term biological performance involves surface modifications to significantly reduce degradation rates. With regard to surface-modifications, one of the most effective methods is through ion implantation. Results are presented for ion-implanted Au, Rh, and Ir. For the static in vitro corrosion properties, the noble-metal ion implanted Ti-6Al-4V and commercially-pure (CP) Ti were investigated in non-passivating acid and passivating saline solutions. It was postulated that during the early stages of corrosion (or during a corrosion pretreatment) the implanted noble-metal would enrich at the surface and significantly reduce subsequent corrosion rates. The observed behavior for the Ir and Rh implanted materials appeared to follow the postulated mechanism, with both initial and time-dependent improvements in corrosion resistance. However, the Au implanted material yielded early benefits, but the enhanced corrosion resistance deteriorated with time. X-ray photoelectron spectroscopy (XPS) analysis indicated that the implanted Au atoms remained as pure metallic Au, while the Ir and Rh atoms were in some oxide state, which gave the good adhesion of the Ir or Rh enriched surface to the Ti substrate. For a stimulating neural electrode, the charge density should be as large as possible to provide adequate stimulation of the nervous system while allowing for miniaturization of the electrode. Activated Ir has been known as having the highest charge injection capability of any material known

  15. Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions: Effect of Temperature

    Directory of Open Access Journals (Sweden)

    Farina S.B.

    2002-01-01

    Full Text Available Zircaloy-4 was found to be susceptible to stress corrosion cracking in 1 M NaCl, 1 M KBr and 1 M KI aqueous solutions at potentials above the pitting potential. In all the solutions tested crack propagation was initially intergranular and then changed to transgranular. The effect of strain rate and temperature on the SCC propagation was investigated. An increase in the strain rate was found to lead to an increase in the crack propagation rate. The crack propagation rate increases in the three solutions tested as the temperatures increases between 20 and 90 °C. The Surface-Mobility SCC mechanism accounts for the observation made in the present work, and the activation energy predicted in iodide solutions is similar to that found in the literature.

  16. The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-01-01

    Full Text Available The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. The inhibition effect of potassium iodide on the corrosion of pure iron in 0.5 M H2SO4 has been studied by weight loss. It has been observed from the results that the inhibition efficiency (IE% of KI increases from 82.17% to 97.51% with the increase in inhibitor concentration from 1·10−4 to 2·10−3 M. The apparent activation energy (Ea and the equilibrium constant of adsorption (Kads were calculated. The adsorption of the inhibitor on the pure iron surface is in agreement with Langmuir adsorption isotherm.

  17. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  18. Effect of Different Welding Processes on Electrochemical and Corrosion Behavior of Pure Nickel in 1 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Xijing Wang

    2017-11-01

    Full Text Available A plasma arc welding (PAW-tungsten inert gas (TIG hybrid welding process is proposed to weld pure nickel. In PAW-TIG welding, the arc of the PAW was first to be ignited, then TIG was ignited, while in PAW welding, only the PAW arc was launched. This paper investigated the effect of different welding processes on electrochemical and corrosion performance of between a pure nickel joint and a base metal in an aerated 1 M NaCl solution, respectively. The average grain size of the joint fabricated by PAW welding (denoted as JP joint is 463.57 μm, the joint fabricated by PAW-TIG welding(denoted as JP-T joint is 547.32 μm, and the base metal (BM is 47.32 μm. In this work, the passivity behaviors of samples were characterized for two welding processes by electrochemical impedance spectroscopy (EIS, open circuit potential versus immersion time (OCP-t, and the potentiodynamic polarization plots. EIS spectra, attained with different immersion times, were analyzed and fitted by an equivalent electrical circuit. Photomicrographs of BM, JP, and JP-T were also taken with a scanning electron microscope (SEM to reveal the morphological structure of the pit surfaces. Electrochemical tests show that the sequence of the corrosion resistance is BM > JP > JP-T. The size and quantity of the hemispherical corrosion pits of all samples are different. The corrosion morphology observations found a consistency with the consequence of the electrochemical measurements. The results show that an increase of the grain dimensions due to different heat treatments decreased the pure nickel stability to pitting corrosion.

  19. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    International Nuclear Information System (INIS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-01-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO 2 phase to t-ZrO 2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO 2 to t-ZrO 2 . • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  20. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiaoxi, E-mail: yangjiaoxi@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Xin; Wen, Qiang; Wang, Xibing [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Rongshan; Zhang, Yanwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Xue, Wenbin [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-15

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO{sub 2} phase to t-ZrO{sub 2} phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO{sub 2} to t-ZrO{sub 2}. • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  1. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  2. Astrakhan-Mangyshlak water main (pipeline): corrosion state of the inner surface, and methods for its corrosion protection. Part III. The effects of KW2353 inhibitor. Part IV. Microbiological corrosion

    International Nuclear Information System (INIS)

    Reformatskaya, I.I.; Ashcheulova, I.I.; Barinova, M.A.; Kostin, D.V.; Prutchenko, S.G.; Ivleva, G.A.; Taubaldiev, T.S.; Murinov, K.S.; Tastanov, K.Kh.

    2003-01-01

    The effect of the KW2353 corrosion inhibitor, applied on the Astrakhan-Mangyshlak water main (pipeline) since 1997, on the corrosion processes, occurring on the 17G1S steel surface, is considered. The properties of the surface sediments are also considered. The role of the microbiological processes in the corrosion behavior of the water main (pipeline) inner surface is studied. It is shown, that application of the polyphosphate-type inhibitors, including the KW2353 one, for the anticorrosive protection of the inner surface of the extended water main (pipelines) is inadmissible: at the temperature of ∼20 deg C this corrosion inhibitor facilitates the development of the local corrosion processes on the water main (pipeline) inner surface. At the temperature of ∼8 deg C the above inhibitor discontinues to effect the corrosive stability of the 17G1S steel. The optimal way of the anticorrosive protection of the steel equipment, contacting with the water media, is the increase in the oxygen content therein [ru

  3. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    Science.gov (United States)

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pdextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (pdextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.

  4. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel

    International Nuclear Information System (INIS)

    Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus

    2012-01-01

    Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.

  5. Current state of knowledge in radiolysis effects on spent fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    1998-09-01

    Literature data on the effect of water radiolysis products on spent fuel oxidation and dissolution have been reviewed. Effects of γ-radiolysis, α-radiolysis and dissolved O 2 or H 2 O 2 in unirradiated solutions have been discussed separately. Also the effect of carbonate in γ-irradiated solutions and radiolysis effects on leaching of spent fuels have been reviewed. In addition a radiolysis model for calculation of corrosion rates of UO 2 , presented previously, has been discussed. The model has been shown to give a good agreement between calculated and measured corrosion rates in the case of γ-radiolysis and in unirradiated solutions of dissolved oxygen or hydrogen peroxide. The model has failed to predict the results of α-radiolysis. In a recent study it was shown that the model gave a good agreement with measured corrosion rates of spent fuel exposed in deionized water

  6. Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion

    International Nuclear Information System (INIS)

    Christensen, H.; Sunder, S.

    2000-07-01

    Literature data on the effect of water radiolysis products on spent-fuel oxidation and dissolution are reviewed. Effects of gamma radiolysis, alpha radiolysis, and dissolved O 2 or H 2 O 2 in unirradiated solutions are discussed separately. Also, the effect of carbonate in gamma-irradiated solutions and radiolysis effects on leaching of spent fuel are reviewed. In addition, a kinetic model for calculating the corrosion rates of UO 2 in solutions undergoing radiolysis is discussed. The model gives good agreement between calculated and measured corrosion rates in the case of gamma radiolysis and in unirradiated solutions containing dissolved oxygen or hydrogen peroxide. However, the model fails to predict the results of alpha radiolysis. In a recent study , it was shown that the model gave good agreement with measured corrosion rates of spent fuel exposed in deionized water. The applications of radiolysis studies for geologic disposal of used nuclear fuel are discussed. (author)

  7. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Ho

    1994-02-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H 2 O 2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  8. Effect Of Age And Concrete Cover Thickness On Steel Reinforcement Corrosion At Splash Zone In Reinforced Concrete Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Nada M. Al- Galawi

    2015-08-01

    Full Text Available Corrosion of reinforcing steel bars in reinforced concrete is considered as one of the biggest problems that face countries overlooking to the Arabian Gulf including Iraq. The research aims to study the effect of the corrosion of steel bars in concrete structures that are exposed to wetting and drying via waves. Reinforced concrete samples were exposed to marine simulated environment for 90 days using prepared system for this purpose. At the end of exposure period polarization test was implemented to measure the actual corrosion rate in each sample. After that the corrosion process was accelerated using impressed current technique by applying a constant electric current DC to the reinforcing bars. Depending on the corrosion current in natural conditions which was measured in polarization test periods of exposing samples to accelerated corrosion current so as to maintain virtual exposure ages of 5 and 25 years of exposure to natural corrosion were calculated. The results showed a remarkable increase in the corrosion current of steel bars in samples that had lower concrete cover thickness. The increase in the cover thickness from 20mm to 40 and 65 mm had a significant effect on reducing the corrosion current at the age of 90 days to about 70 of its original value in both cases. At the virtual exposure age of 5 years the reduction percentage in the corrosion current resulted from increasing cover thickness from 20mm to 40 and 65 mm were 43 and 79 respectively.

  9. Effects of surface chromium depletion on localized corrosion of alloy 825 as a high-level nuclear waste container material

    International Nuclear Information System (INIS)

    Dunn, D.S.; Sridhar, N.; Cragnolino, G.A.

    1995-01-01

    Effects of the chromium-depleted, mill-finished surface on the localized corrosion resistance of alloy 825 (UNS N08825) were investigated. Tests were conducted in solutions based on the ground water at Yucca mountain, Nevada, but with a higher concentration of chloride. Results indicated that breakdown (E p ) and repassivation (E rp ) potentials for mill-finished surfaces were more active than those for polished surfaces. Potentiodynamic polarization tests indicated pits could be initiated on the chromium-depleted surface at potentials of 220 mV SCE in a solution containing 1,000 ppm Cl - at 95 C. Potentiostatic tests identified a similar pit initiation potential for the mill-finished surface. However, under longterm potentiostatic tests, a higher potential of 300 mV SCE was needed to sustain stable pit growth beyond the chromium-depleted layer. An increase in surface roughness also was observed to decrease localized corrosion resistance of the material

  10. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351

    DEFF Research Database (Denmark)

    Jariyaboon, M; Davenport, A.J.; Ambat, Rajan

    2007-01-01

    The effect of welding parameters (rotation speed and travel speed) on the corrosion behaviour of friction stir welds in the high strength aluminium alloy AA2024-T351 was investigated. It was found that rotation speed plays a major role in controlling the location of corrosion attack. Localised...... intergranular attack was observed in the nugget region for low rotation speed welds, whereas for higher rotation speed welds, attack occurred predominantly in the heat-affected zone. The increase in anodic reactivity in the weld zone was due to the sensitisation of the grain boundaries leading to intergranular...... attack. Enhancement of cathodic reactivity was also found in the nugget as a result of the precipitation of S-phase. The results were compared with samples of AA2024-T351 that had been heat treated to simulate the thermal cycle associated with welding, and with samples that had been exposed to high...

  11. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  12. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie

    2017-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre......-oxidised Al and Ti-containing alloys (Kanthal APM and Nimonic 80A, respectively) was investigated under laboratory conditions mimicking biomass firing. The alloys were pre-oxidised at 900°C for 1 week. Afterwards, pre-oxidised samples, and virgin non-pre-oxidised samples as reference, were coated...... with a synthetic deposit of KCl and exposed at 560°C for 1 week to a gas mixture typical of biomass firing. Results show that pre-oxidation could hinder the corrosion attack; however, the relative success was different for the two alloys. While corrosion attack was observed on the pre-oxidised Kanthal APM, the pre...

  13. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  14. The size effect in corrosion greatly influences the predicted life span of concrete infrastructures.

    Science.gov (United States)

    Angst, Ueli M; Elsener, Bernhard

    2017-08-01

    Forecasting the life of concrete infrastructures in corrosive environments presents a long-standing and socially relevant challenge in science and engineering. Chloride-induced corrosion of reinforcing steel in concrete is the main cause for premature degradation of concrete infrastructures worldwide. Since the middle of the past century, this challenge has been tackled by using a conceptual approach relying on a threshold chloride concentration for corrosion initiation ( C crit ). All state-of-the-art models for forecasting chloride-induced steel corrosion in concrete are based on this concept. We present an experiment that shows that C crit depends strongly on the exposed steel surface area. The smaller the tested specimen is, the higher and the more variable C crit becomes. This size effect in the ability of reinforced concrete to withstand corrosion can be explained by the local conditions at the steel-concrete interface, which exhibit pronounced spatial variability. The size effect has major implications for the future use of the common concept of C crit . It questions the applicability of laboratory results to engineering structures and the reproducibility of typically small-scale laboratory testing. Finally, we show that the weakest link theory is suitable to transform C crit from small to large dimensions, which lays the basis for taking the size effect into account in the science and engineering of forecasting the durability of infrastructures.

  15. Corrosion/96 conference papers

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO 2 corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base

  16. Effects of ion implantation on corrosion of zirconium and zirconium base alloys

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Petel'guzov, I.A.; Rekova, L.P.; Rodak, A.G.

    1989-01-01

    The influence of He and Ar ion bombardment on the corrosion of Zr and Zr-1%Nb and Zr-2.5%Nb alloys is investigated with the aims of finding the irradiation influence laws, obtaining the dependences of the effect of increasing the corrosiuon resistance on the type and dose of bombarding ions and of finding the conditions for the maximum effect. The prolonged corrosion test of specimens (3500 hours) have shown that the strongest effect is obtained for the irradiation with Ar ions up to the dose 1x10 16 ion/cm 2 . The kinetics of ion thermosorption after corrosion of irradiated materials is studied, the temperature threshold of implanted ion stability in zirconium and its alloys is found to be 400 deg C

  17. The effect of laser treatment on the wear resistance of steel in corrosive media

    International Nuclear Information System (INIS)

    Plyatsko, G.V.; Porter, A.I.; Prejs, G.A.; Mojsa, M.I.

    1975-01-01

    The corrosion mechanical wearing properties of steel 45 treated with a laser beam (H 100 =7800 Mn/sq.m) under friction with nitrated steel 40KhNMA (HV=7000 Mn/sq.m), chrome cast iron Kh15M (hardened and low-temperature tempered, modified), perlite cast iron and bronze are studied. The aqueous buffers with pH=6 and 11 are used as a corrosion active media. In a weakly acid medium the most intensive wearing of steel 40KhNMA is observed at P=8 Mn/sq.m. Its wearing reduces due to increase of pressure to 12 Mn/sq.m. Extent of steel 45 wearing increases with pressure increase from 8 to 12 Mn/sg.m. Friction coefficient of this pair changes by jumps at an increase of normal pressure and its variation range is smaller than that observed in an alkaline medium. The maximum value of friction coefficient is shifted to the higher pressure. The wearing of cast iron Kh15M-steel 45 pair has an alternative pattern. In an alkaline medium the cast iron wearing intensity shows a linear increase with the normal contact pressure but that of the steel changes jumpwise attaining extreme at 8 and 12 Mn/sq.m. In a weak acid medium the intensity of grasping and graphitization at the friction surface of cast iron Kh15M-steel 45 pair is higher than that in the alkaline medium. Experiments demonstrate an effectiveness of the laser beam treatment of steel 45 for its friction in the alkaline medium with nitrated steel 40KhNMA and with hardened low-temperature tempered cast iron 45 under friction contact pressure as high as 8 Mn/sq.m, and in acid medium at 12 and 8 Mn/sq.m respectively. The laser treatment provides high corrosion-mechanical stability of steel 45 and the counterbodies described, as well as the low friction coefficient of these pairs

  18. Synergistic Effect of L-Methionine and KI on Copper Corrosion Inhibition in HNO3 (1M

    Directory of Open Access Journals (Sweden)

    Amel SEDIK

    2014-05-01

    Full Text Available L-Methionine (L-Met efficiency as a non-toxic corrosion inhibitor for copper in 1M HNO3 has been studied by using electrochemical impedance spectroscopy (EIS and potentiodynamic polarization. Copper corrosion rate significant decrease was observed in the presence of L-Met at 10-4M. The Obtained Results from potentiodynamic polarization and impedance measurements are in good agreement. L-Methionine adsorption on copper surface follows Langmuir isotherm. L-Met free energy adsorption on copper (-30 KJ mol-1 reveals an inhibition strong physical adsorption on copper surface. In order to evaluate the L-Met effect, L-Met and iodide ion’synergistic effect was used to prevent copper corrosion in nitric acid. It was found that inhibitor efficiency (IE reached 98.27 % in 1M solution containing 10-4M L-Met and 10- 3 M KI. The synergistic effect was attributed to iodide ions adsorption on copper surface, which facilitated the L-Met adsorption and an inhibitive film formation.

  19. The effect of surface treatment and gaseous rust protection paper on the atmospheric corrosion stability of aluminium alloy

    International Nuclear Information System (INIS)

    Gao Guizhong

    1992-03-01

    The experimental results of atmospheric corrosion of 166 aluminium alloy of Al-Mg-Si-Cu system and 167 aluminium alloy of Al-Mg-Si-Cu-Fe-Ni system for different surface treatment and different wrapping papers used are introduced. The results show: 1. The composition of aluminium alloy has some effect on the performance of atmospheric corrosion stability and the local corrosion depth for 167 aluminium alloy specimen is considerable. 2. After 8 years storage, the 167 aluminium alloy tubular specimen, which was treated with surface treatment in deionized water at 100 ∼ 230 C degree, has no spot of atmospheric corrosion found. 3. Within the test period, the performance of atmospheric corrosion stability by sulphuric-acid anodization film is remarkable. 4. The No. 19 gaseous rust protection paper has no effect of atmospheric corrosion stability on the 166 and 167 aluminium alloys which were treated with quenching and natural ageing method

  20. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    Science.gov (United States)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  1. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    International Nuclear Information System (INIS)

    Okafor, A. C.; Natarajan, S.

    2007-01-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented

  2. The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Altun, Hikmet; Sen, Sadri

    2006-01-01

    In this study, multilayered AlN (AlN + AlN + AlN) and AlN + TiN were coated on AZ91 magnesium alloy using physical vapour deposition (PVD) technique of DC magnetron sputtering, and the influence of the coatings on the corrosion behaviour of the AZ91 alloy was examined. A PVD system for coating processes, a potentiostat for electrochemical corrosion tests, X-ray difractometer for compositional analysis of the coatings, and scanning electron microscopy for surface examinations were used. It was determined that PVD coatings deposited on AZ91 magnesium alloy increased the corrosion resistance of the alloy, and AlN + AlN + AlN coating increased the corrosion resistance much more than AlN + TiN coating. However, it was observed that, in the coating layers, small structural defects e.g., pores, pinholes, cracks that could arise from the coating process or substrate and get the ability of protection from corrosion worsened were present

  3. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.

    Science.gov (United States)

    Wan, Hongxia; Song, Dongdong; Zhang, Dawei; Du, Cuiwei; Xu, Dake; Liu, Zhiyong; Ding, De; Li, Xiaogang

    2018-06-01

    The corrosion of X80 pipeline steel in the presence of Bacillus cereus (B. cereus) was studied through electrochemical and surface analyses and live/dead staining. Scanning electron microscopy and live/dead straining results showed that a number of B. cereus adhered to the X80 steel. Electrochemical impedance spectroscopy showed that B. cereus could accelerate the corrosion of X80 steel. In addition, surface morphology observations indicated that B. cereus could accelerate pitting corrosion in X80 steel. The depth of the largest pits due to B. cereus was approximately 11.23μm. Many pits were found on the U-shaped bents and cracks formed under stress after 60days of immersion in the presence of B. cereus. These indicate that pitting corrosion can be accelerated by B. cereus. X-ray photoelectron spectroscopy results revealed that NH 4 + existed on the surface of X80 steel. B. cereus is a type of nitrate-reducing bacteria and hence the corrosion mechanism of B. cereus may involve nitrate reduction on the X80 steel. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effect of Mo contents on corrosion behaviors of welded duplex stainless steel

    Science.gov (United States)

    Bae, Seong Han; Lee, Hae Woo

    2013-05-01

    The corrosion behaviour and change of the phase fraction in welded 24Cr Duplex stainless steel was investigated for different chemical composition ranges of Mo contents. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 0.5, 1.4, 2.5, 3.5 wt%. The δ-ferrite fraction was observed to increase as the content of Mo increased. A polarisation test conducted in a salt solution, indicated the pitting corrosion potential increased continuously to 3.5 wt% Mo, while the corrosion potential changed most between 0.5 and 1.41 wt% Mo. The location of the pitting corrosion in 0.5 wt% Mo steel was randomly distributed, but it occurred selectively at the grain boundary between the γ- and δ-ferrite phases in 1.4, 2.5 and 3.5 wt% Mo steel. Energy dispersive X-ray spectroscopy mapping analysis showed that areas deficient in Cr, Mo, and Ni occurred around the grain boundary of the γ- and δ-ferrite phases. Non-metallic inclusions are thought to act as initiation points for the pitting corrosion that occurs in the salt solution initially as a result of the potential difference between the matrix structure and the incoherent inclusions.

  5. Effect of Post Weld Heat Treatment on Corrosion Behavior of AA2014 Aluminum – Copper Alloy Electron Beam Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work pertains to the study of corrosion behavior of aluminum alloy electron beam welds. The aluminium alloy used in the present study is copper containing AA2014 alloy. Electron Beam Welding (EBW) was used to weld the alloys in annealed (O) condition. Microstructural changes across the welds were recorded and the effect of post weld heat treatment (PWHT) in T4 (Solutionized and naturally aged) condition on pitting corrosion resistance was studied. A software based PAR basic electrochemical system was used for potentio-dynamic polarization tests. From the study it is observed that weld in O condition is prone to more liquation than that of PWHT condition. This may be attributed to re-melting and solidification of excess eutectic present in the O condition of the base metal. It was also observed that slightly higher hardness values are recorded in O condition than that of PWHT condition. The pitting corrosion resistance of the PMZ/HAZ in PWHT condition is better than that of O condition. This is attributed to copper segregation at the grain boundaries of PMZ in O condition.

  6. Effects of Additives on the Corrosion Resistance of Iron Aluminides(Fe-38at.%AI-5at.%Cr)

    International Nuclear Information System (INIS)

    Choi, H. C.; Kim, C. W.; Joo, S. M.; Choi, D. C.; Kim, K. H.

    2001-01-01

    The effects of additives on the corrosion resistance of iron aluminides(Fe-38at.%AI-5at.%Cr) were investigated using potentiostat. The specimens were cast by vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at 1000 .deg. C for 7 days. The corroded surfaces of the tested specimens were observed using an optical microscope and a scanning electron microscope(SEM) after electrochemical tests were carried out in various solutions. While the Hf addition to Fe-38at.%AI-5at.%Cr resulted in equiaxial microstructure, the Zr addition resulted in dendritic microstructure. However, no change in microstructure was observed when Mo was added. The addition of Mo to Fe-38at.%AI-5at.%Cr intermetallic compound was found to increase the pitting potential, which improved the resistance against the pitting corrosion attack. The addition of Hf and Zr resulted in a higher activation current density and a lower pitting potential. These results may indicate that the dendrite structure played a major role in decreasing the pitting corrosion resistance of Fe-38at.%AI-5at%Cr intermetallic compound. The Mo addition to Fe-38at.%AI-5at.%Cr decreased the number and size of pits. In the case of Zr addition, the pits nucleated and grew remarkably at dendritic branches

  7. In-situ observation of intergranular stress corrosion cracking in AA2024-T3 under constant load conditions

    International Nuclear Information System (INIS)

    Liu Xiaodong; Frankel, G.S.; Zoofan, B.; Rokhlin, S.I.

    2007-01-01

    A specially designed setup was used to apply a constant load to a thin sheet sample of AA2024-T3 and, using microfocal X-ray radiography, to observe in situ the resulting intergranular stress corrosion cracking (IGSCC) from the exposed edge of the sample. The growth of and competition between multiple IGSCC sites was monitored. In many experiments twin cracks initiated close to each other. Furthermore, the deepest crack at the beginning of every experiment was found to slow or stop growing, and was then surpassed by another crack that eventually penetrated through the sample. These observations cannot be explained by the theory of fracture mechanics in inert environments. The possible mechanisms underlying the competition between cracks are discussed

  8. The effect of Co-firing with Straw and Coal on High Temperature Corrosion

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Larsen, OH

    2001-01-01

    As a part of ELSAMS development programme into alternative energy sources, various concepts of straw-firing have been investigated. This paper concerns co-firing of straw with coal to reduce the corrosion rate observed in straw-fired power plants. Co-firing with coal reduces the amount of potassium......: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature region of 520-580°C. The flue gas temperature ranged from 925-1100°C....... The corrosion products for the various steel types were investigated using light optical and scanning electron microscopy. Corrosion mechanisms for the austenitic and ferritic steels are presented. These are discussed in relation to temperature and deposit composition. Co-firing with coal has removed potassium...

  9. Effect of Calcium Nitrate and Sodium Nitrite on the Rebar Corrosion of Medium Carbon Steel in Seawater and Cassava Fluid

    OpenAIRE

    Adamu, M; Umoru, LE; Ige, OO

    2014-01-01

    Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of differ...

  10. Possible effects of external electrical fields on the corrosion of copper in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, Claes (Swerea KIMAB (Sweden))

    2011-12-15

    External potentials that develop across a repository may interact with the copper canister. A study was undertaken to investigate the potential corrosion effects of voltage differences in a repository. A set of experiments was performed to study the tendency of copper in bentonite to corrode under influence of an externally applied electrical field. A model study was made to estimate possible corrosion effects of an external electrical field on a full-scale canister in the KBS-3 concept. The interaction between the repository represented by a copper canister in bentonite, and an external electrical field is illustrated with an example

  11. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  12. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.

    2008-01-01

    The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 deg. C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast ('high-sulphur') to slow ('low-sulphur') CF crack growth, which appeared as critical frequencies ν crit = f(ΔK, R, ECP) and ΔK-thresholds ΔK EAC f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dt Air,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔK EAC -thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the 'high-sulphur' CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ≥ 0 mV SHE ) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes

  13. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  14. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-12-01

    It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged (T6 condition but the welds showed poor corrosion resistance. The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment. The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.

  15. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  16. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1992-01-01

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption R d values of ≥ 5 x 10 6 ml g -1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  17. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel

    International Nuclear Information System (INIS)

    Yang, Yange; Zhang, Tao; Shao, Yawei; Meng, Guozhe; Wang, Fuhui

    2013-01-01

    Highlights: •Stress distributions of pits under different hydrostatic pressures are simulated. •Corrosion model of Ni–Cr–Mo–V steel under hydrostatic pressure is established. •A novel understanding of the effect of hydrostatic pressure is proposed. -- Abstract: Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress

  18. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  19. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  20. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  1. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

    International Nuclear Information System (INIS)

    Brown, M.H.

    2008-01-01

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program

  2. Synergistic Effect on Corrosion Inhibition Efficiency of Ginger Affinale Extract in Controlling Corrosion of Mild Steel in Acid Medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ananth Kumar; Arumugam, Sankar [Kandaswami Kandar' s College, Namakkal (India); Mallaiya, Kumaravel; Subramaniam, Rameshkumar [PSG College of Technology Peelamedu, Coimbatore (India)

    2013-12-15

    The corrosion inhibition nature of Ginger affinale extract for the corrosion of mild steel in 0.5N H{sub 2}SO{sub 4} was investigated using weight loss, electrochemical impedance and potentiodynamic polarization methods. The results revealed that Ginger affinale extract acts as a good corrosion inhibitor in 0.5N H{sub 2}SO{sub 4} medium. The inhibition efficiency increased with an increase in inhibitor concentration. The inhibition could be attributed to the adsorption of the inhibitor on the steel surface.

  3. Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2013-01-01

    Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine

  4. Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum

    Directory of Open Access Journals (Sweden)

    Injoon Son

    2012-01-01

    Full Text Available The effect of equal-channel angular pressing (ECAP on the pitting corrosion of pure Al was investigated using electrochemical techniques in solutions containing 0.1 m mol·dm−3 of Na2SO4 and 8.46 mol·dm−3 of NaCl (300 ppm Cl− and followed by surface analysis. The potential for pitting corrosion of pure Al was clearly shifted in the noble direction by the ECAP process indicating that this process improves resistance to pitting corrosion. The time dependence of corrosion potential and the anodic potential at 1 A·m−2 revealed that the rate of formation of Al oxide films increased due to a decrease in the grain size of the Al after ECAP. Since there exists a negligible amount of impurity precipitates in pure Al, the improvement in pitting corrosion resistance of pure Al by ECAP appears to be attributable to an increase in the rate of formation of Al oxide films.

  5. Effects of molybdenum additions on the corrosion resistance of stainless steels in inorganic aqueous solutions and organic media (A review)

    International Nuclear Information System (INIS)

    Charbonnier, J.-C.

    1975-01-01

    The effects of molybdenum additions on the corrosion resistance of austenitic and ferritic stainless steels are reviewed. The following types of corrosion are considered: uniform attack in inorganic and organic acids, pitting and crevice corrosion in chloride media. The survey has been conducted with particular emphasis on the recent works. The different hypotheses which have been suggested in order to clarify the role of the molybdenum additions on the improvement of the corrosion resistance of stainless steels are analyzed and discussed. A synthesis is given [fr

  6. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  7. Solubility of oxygen in liquid sodium: effect on interpretation of corrosion data

    International Nuclear Information System (INIS)

    Claxton, K.T.

    1976-01-01

    No solubility correlation relating the equilibrium oxygen concentration with the sodium saturation temperature has yet been derived which has gained general acceptance. A statistical analysis of all the available data which directly or indirectly may be taken as representing a measurement of solubility has been made. The results indicate that a real and seemingly permanent difference is apparent between the assumed equilibrium levels of oxygen measured at different saturation temperatures as reported by UK and US workers. Data analysis procedures producing sub-sets of culled data which are then used to derive a compromise solubility function are considered less than adequate. It is considered preferable and more realistic to distinguish data sub-sets by the analytical technique employed. The established vacuum distillation method is shown to yield results differing among themselves by up to a factor of four at cold trap temperatures of relevance to fast reactor operation. The vanadium wire and electrochemical cell techniques are shown to give the lowest solubility values. Appropriate factors relating UK oxygen levels to values derived from alternative methods are presented. The divergent positions prevailing for oxygen-in-sodium analysis can lead to apparent anomalies when comparisons of corrosion rates from different sources have to be made. It is shown that this situation is, in part, apparently resolved by effecting comparisons at the equivalent cold trap temperature instead of the equivalent oxygen level. It is recognised that the approach presumes equilibrium of the oxygen in the sodium with the cold trap and reference is made to alternative ''sinks'' for oxygen. It is demonstrated, by comparison of a number of recommended and observed corrosion rates from US and European sources, that, in spite of the above and other qualifications, the approach is reasonable

  8. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, J. Ishwara [Mangalore Univ., Karnataka (India); Alva, Vijaya D. P. [Shree Devi Institute of Technology, Karnataka (India)

    2014-02-15

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum.

  10. Annealing Effect on Corrosion Behavior of the Beta-Quenched HANA Alloy

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Kim, Il Hyun; Choi, Byung Kwan; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2009-01-01

    The advanced fuel cladding materials named as HANA cladding have been developed at KAERI for application of high burn-up and that cladding showed an improved performance in both in-pile and out-of-pile conditions. However, the cladding performance could be changed by the annealing conditions during the tube manufacturing process. Especially, the corrosion resistance is considerably sensitive to their microstructure which is determined by a manufacturing process in the high Nb-containing zirconium alloys. They reported that the corrosion properties of the Nb-containing Zr alloys were considerably affected by the microstructure conditions such as the Nb concentration in the matrix and the second phase types. Therefore, the corrosion behavior of HANA cladding having the high Nb could be considerably affected by the annealing time and temperatures. The purpose of this study is focused on the annealing effect of the beta quenched HANA alloy to obtain the optimum annealing conditions

  11. Effect of some pyrimidinic Schiff bases on the corrosion of mild steel in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Shaabani, B.; Seifzadeh, D.

    2005-01-01

    The efficiency of benzylidene-pyrimidin-2-yl-amine (A) (4-methyl-benzylidene)-pyrimidine-2-yl-amine (B) and (4-chloro-benzylidene)-pyrimidine-2-yl-amine, as corrosion inhibitors for mild steel in 1 M HCl have been determined by weight loss measurements and electrochemical polarization method. The results showed that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Polarization curves indicate that all compounds are mixed type inhibitors. The effect of various parameters such as temperature and inhibitor concentration on the efficiency of the inhibitors has been studied. Activation energies of corrosion reaction in the presence and absence of inhibitors have been calculated. The adsorption of used compounds on the steel surface obeys Langmuir's isotherm. It appears that an efficient inhibition is characterized by a relatively greater decrease in free energy of adsorption. Significant correlations are obtained between inhibition efficiency and quantum chemical parameters using quantitative structure-activity relationship (QSAR) method

  12. Boron effect on fabrication properties and service behaviour of complex corrosion-resistant steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Piskunova, A.I.; Shmatko, M.N.

    1978-01-01

    In order to determine the optimum boron admixtures for the improvement of the technological plasticity without the considerable reduction in the corrosion resistance of the complex alloy Cr-Ni-Mo steels, industrial heats of the 03KH16N15M3, 03KH17N14M3 and other steels, containing 0.0005-0.003% boron, have been researched. The plasticity, corrosion resistance and microstructure of certain steels have been determined. It is shown that small additions of boron enhance the technological plasticity during the ingot rolling. In order to prevent a sharp reduction in the corrosion resistance, the boron content should be confined to 0.0015% and the quenching temperature raised to 1,120-1,150 deg C. The positive effect of the quenching temperature increase is accounted for by the solution of the excess phases and by the reduction of the dislocation density in the near-the-boundary zones

  13. Inhibiting Effect of Nicotinic Acid Hydrazide on Corrosion of Aluminum and Mild Steel in Acidic Medium

    International Nuclear Information System (INIS)

    Bhat, J. Ishwara; Alva, Vijaya D. P.

    2014-01-01

    The corrosion behavior of aluminum and mild steel in hydrochloric acid medium was studied using a nicotinic acid hydrazide as inhibitor by potentiodynamic polarization, electrochemical impedance spectroscopy technique and gravimetric methods. The effects of inhibitor concentration and temperature were investigated. The experimental results suggested, nicotinic acid hydrazide is a good corrosion inhibitor for both aluminum and mild steel in hydrochloric acid medium and the inhibition efficiency increased with increase in the inhibitor concentration. The polarization studies revealed that nicotinic acid hydrazide exhibits mixed type of inhibition. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the aluminum and mild steel surface and inhibits corrosion by blocking the reaction sites on the surface of aluminum

  14. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sherar, B.W.A. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Power, I.M. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Keech, P.G.; Mitlin, S. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Southam, G. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2011-03-15

    Research highlights: Compares inorganic sulfide and sulfate reducing bacteria (SRB) on steel corrosion. Mackinawite was the dominant iron sulfide phase. SRBs can form nanowires, presumably grown to acquire energy. - Abstract: This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel - a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS{sub 1-x}) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.

  15. Electrochemical analysis of the corrosion inhibition effect of trypsin complex on the pitting corrosion of 420 martensitic stainless steel in 2M H2SO4 solution.

    Science.gov (United States)

    Loto, Roland Tolulope

    2018-01-01

    Inhibition effect of trypsin complex (TC) on the pitting corrosion of martensitic stainless steel (type 420) in 1M H2SO4 solution was studied with potentiodynamic polarization, open circuit potential measurement and optical microscopy. TC reduced the corrosion rate of the steel with maximum inhibition efficiency of 80.75%. Corrosion potential shifted anodically due to the electrochemical action of TC. The pitting potential increased from 1.088VAg/AgCl (3M) at 0% TC to 1.365VAg/AgCl(3M) at 4% TC. TC shifts the open circuit corrosion potential from -0.270s at 0% TC concentration to -0.255V at 5% TC. The compound completely adsorbed onto the steel according to Langmuir, Frumkin and Temkin isotherms. ATF-FTIR spectroscopy confirmed the inhibition mode to be through surface coverage. Thermodynamic calculations showed physisorption molecular interaction. Corrosion pits are present on the uninhibited 420 morphology in comparison to TC inhibited surface which slightly deteriorated.

  16. Effect of iron ions on corrosion of lithium in a thionyl chloride electrolytes

    International Nuclear Information System (INIS)

    Shirokov, A.V.; Churikov, A.V.

    1999-01-01

    The effect of the iron electrolyte addition on the growth rate of the passivating layer on lithium in the LiAlCl 4 1 M solution in thionyl chloride is experimentally studied. It is established, that kinetic curved in the first 10 hours of the Li-electrode contact with electrolyte are described by the equation, assuming mixed diffusion kinetic control over the corrosion process. It is shown that introduction of Fe 3+ into electrolyte causes increase in both ionic and electron conductivity constituents. Increase in the electron carrier concentration is the cause of lithium corrosion in the iron-containing thionyl chloride solutions [ru

  17. The effects of strain induced martensite on stress corrosion cracking in AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Lee, W. S.; Kwon, S. I.

    1989-01-01

    The effects of strain induced martensite on stress corrosion cracking behavior in AISI 304 stainless steel in boiling 42 wt% MgCl 2 solution were investigated using monotonic SSRT and cyclic SSRT with R=0.1 stress ratio. As the amount of pre-strain increased, the failure time of the specimens in monotonic SSRT test decreased independent of the existence of strain induced martensite. The strain induced martensite seems to promote the crack initiation but to retard the crack propagation during stress corrosion cracking

  18. Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

    Directory of Open Access Journals (Sweden)

    I. B. Obot

    2010-01-01

    Full Text Available The effect of nizoral (NZR on the corrosion inhibition of aluminium alloy AA 1060 in 2 M HCl solution was investigated using the mylius thermometric technique. Results of the study revealed that nizoral acts as corrosion inhibitor for aluminium in the acidic medium. In general, at constant acid concentration, the inhibition efficiency increases with increase in the inhibitor concentration. The addition of KI to the inhibitor enhanced the inhibition efficiency to a considerable extent. The adsorption of nizoral onto the aluminium surface was found to obey the Fruendlich adsorption isotherm. The value of the free energy for the adsorption process shows that the process is spontaneous.

  19. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  20. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Effect of Host Media on Microbial Influenced Corrosion due to Desulfotomaculum nigrificans

    Science.gov (United States)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay K.

    2013-04-01

    This article reports about the tests carried to investigate microbial-induced corrosion on stainless steels due to sulfate-reducing bacteria sp. Desulfotomaculum nigrificans in different host media. Stainless steel 304L, 316L, and 2205 were selected for the test. Modified Baar's media (BM), sodium chloride solution, and artificial sea water (SW) were used as test solutions in anaerobic conditions. Electrochemical polarization and immersion test were performed to estimate the extent of corrosion rate and pitting on stainless steels. SEM/EDS were used to study the details inside/outside pits formed on the corroded samples. Biofilm formed on corroded coupons was analyzed for its components by UV/Visible spectroscopy. Corrosion attack on the test samples was observed maximum in case of exposure to SW followed by NaCl solution, both having sulfide and chloride whereas stainless steel exposed to BM, having sulfide, showed minimum attack. Tendency of extracellular polymeric substances to bind metal ions is observed to be responsible for governing the extent of corrosion attack.

  2. New Mechanism on Synergistic Effect of Nitrite and Triethanolamine Addition on the Corrosion of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2016-01-01

    Full Text Available In general, we compared the different inhibition mechanisms of organic inhibitor with that of anodic inhibitor. When triethanolamine or nitrite was added separately to tap water for inhibiting the corrosion of ductile cast iron, large amounts of inhibitor were needed. This is because the corrosion inhibitors had to overcome the galvanic corrosion that occurs between graphite and matrix. In this work, we investigated the corrosion of ductile cast iron in tap water with/without inhibitors. The corrosion rate was measured using chemical immersion test and electrochemical methods, including anodic polarization test. The inhibited surface was analyzed using EPMA and XPS. Test solutions were analyzed by performing FT-IR measurement. When triethanolamine and nitrite coexisted in tap water, synergistic effect built up, and the inhibition effect was ca. 30 times more effective than witnessed with single addition. This work focused on the synergistic effect brought about by nitrite and triethanolamine and its novel mechanism was also proposed.

  3. Local effects in flow-accelerated corrosion wall thinning

    International Nuclear Information System (INIS)

    Pietralik, J.

    2006-01-01

    'Full text:' There is enough evidence that flow conditions play the dominant role locally in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, which can be low or high, flow conditions determine the local distribution of wall thinning. This relationship is not new and recent accurate measurements of FAC rate of a plant feeder bend confirm that the relationship between flow local conditions expressed by local mass transfer coefficient and FAC rate in CANDU feeder bends is close. There is also a lot of other direct and indirect, experimental and laboratory evidence about this relationship. This knowledge can be useful for minimizing inspection, predicting new locations for inspection, predicting the location with the highest FAC rate for a given piping component, e.g., feeder element, and determining what components or feeders and to what extent they should be replaced. It applies also to heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local flow parameters. For FAC, the most important flow parameter is mass transfer coefficient. The mass transfer coefficient describes the intensity of the transport of corrosion products from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate. It could also be used in planning experiments because time-varying surface roughness can explain the time-dependence of FAC rates. The paper presents plant and laboratory evidence about the relationship. In addition, it shows correlations for mass transfer coefficient in components that are highly susceptible to FAC. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)

  4. Magnetocaloric effect and corrosion resistance of La(Fe, Si)13 composite plates bonded by different fraction of phenolic resin

    Science.gov (United States)

    Zhang, K. S.; Xue, J. N.; Wang, Y. X.; Sun, H.; Long, Y.

    2018-04-01

    La(Fe, Si)13-based composite plates were successfully fabricated using different amount of phenolic resin. The introduction of phenolic resin as binder increased the corrosion resistance and maintained giant magnetocaloric effect for La(Fe, Si)13-based composite plates. It was found that corroded spots were firstly observed on the boundaries between resin and La(Fe, Si)13 particles, rather than in La(Fe, Si)13-based particles, after being immersed in static distilled water. The corrosion rate decreased significantly with the increase of resin content. And the increase of the content of phenolic resin leads to the reduction of corrosion current density. Meanwhile, the volumetric magnetic entropy change ΔSM decreases slightly as the content of phenolic resin increases. The ΔSM of the plates with 3 wt.%, 5 wt.% and 8 wt.% resin are 63.1, 61.2 and 59.8 mJ/cm3 K under a low magnetic field change of 1 T, respectively.

  5. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium

    International Nuclear Information System (INIS)

    Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A.

    2009-01-01

    The effect of iodide ions on the inhibitive performance of 2,3-diaminonaphthalene (2,3-DAN) in 1 M HCl for aluminium corrosion has been studied using hydrogen evolution (gasometry) measurements at 30 and 40 deg. C. Results obtained showed that the presence of 2,3-DAN molecules in the corrosive medium (1 M HCl solution) inhibits the corrosion process of aluminium and as the concentration of 2,3-DAN increases the inhibition efficiency also increased at the studied temperatures. A synergistic effect was observed between KI and 2,3-DAN. The experimental results suggest that the presence of iodide ions in the solutions stabilized the adsorption of 2,3-DAN molecules on the metal surfaces and, therefore improve the inhibition efficiency of 2,3-DAN. Phenomenon of physical adsorption is proposed for the inhibition and the process followed the Freundlich adsorption isotherm. The activation energy (E a ), heat of adsorption (Q ads ) and free energy of adsorption for the corrosion process (ΔG ads ) have been evaluated at the different temperatures and the values support the results obtained. Some quantum chemical parameters and the Mulliken charge densities for 2,3-diaminonaphthalene were calculated by the AM1 Semi-empirical method to provide further insight into the mechanism of inhibition of the corrosion process

  6. The effects of zirconium and beryllium on microstructure evolution, mechanical properties and corrosion behaviour of as-cast AZ63 alloy

    International Nuclear Information System (INIS)

    Jafari, Hassan; Amiryavari, Peyman

    2016-01-01

    Alloying elements are able to strongly modify the microstructure characteristics of Mg–Al–Zn alloys which dominate mechanical and corrosion properties of the alloys. In this research, the individual effects of Zr and Be additions on the microstructure, mechanical and corrosion properties of as-cast AZ63 alloy were explored. The results revealed that the addition of Zr leads to microstructure refinement in as-cast AZ63 alloy, resulting in improved tensile and hardness properties. 0.0001 and 0.001 wt% Be containing cast AZ63 alloy exhibited microstructure coarsening, while morphological alteration from sixford symmetrical to irregular shape grain was observed for the alloy containing 0.01 and 0.1 wt% Be. No specific Be compound was detected. In addition, mechanical properties of AZ63 alloy containing Zr was improved due to the microstructure modification, while Be containing alloy responded reverse behaviour. The corrosion resistance of AZ63 alloy was improved after the addition of Zr and Be due to the grain refinement and passivation effects, respectively. However, when the Zr content exceeds 0.5 wt%, the formation of Al 2 Zr affected the corrosion resistance. In other words, AZ63–0.5Zr alloy provided the lowest corrosion rate.

  7. A High-Performance Corrosion-Resistant Iron-Based Amorphous Metal - The Effects of Composition, Structure and Environment on Corrosion Resistance

    International Nuclear Information System (INIS)

    Farmer, J.; Haslam, J.; Day, D.; Lian, T.; Saw, C.; Hailey, P.; Choi, J.S.; Rebak, R.; Yang, N.; Bayles, R.; Aprigliano, L.; Payer, J.; Perepezko, J.; Hildal, K.; Lavernia, E.; Ajdelsztajn, L.; Branagan, D.; Beardsley, B.

    2007-01-01

    The passive film stability of several Fe-based amorphous metal formulations have been found to be comparable to that of high-performance Ni-based alloys, and superior to that of stainless steels, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. Chromium (Cr), molybdenum (Mo) and tungsten (W) provide corrosion resistance; boron (B) enables glass formation; and rare earths such as yttrium (Y) lower critical cooling rate (CCR). The high boron content of this particular amorphous metal also makes it an effective neutron absorber, and suitable for criticality control applications, as discussed in companion publications. Corrosion data for SAM2X5 (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 ) is discussed here. (authors)

  8. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  9. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  10. Catastrophes caused by corrosion

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    For many years, huge attention has been paid to the problem of corrosion damage and destruction of metallic materials. Experience shows that failures due to corrosion problems are very important, and statistics at the world level shows that the damage resulting from the effects of various forms of corrosion is substantial and that, for example, in industrialized countries it reaches 4-5% of national incomes. Significant funds are determined annually for the prevention and control of corrosion...

  11. Effects of alloy composition and flow condition on the flow accelerated corrosion in neutral water condition

    International Nuclear Information System (INIS)

    Satoh, Tomonori; Ugachi, Hirokazu; Tsukada, Takashi; Uchida, Shunsuke

    2008-01-01

    The major mechanism of Flow accelerated corrosion (FAC) is the dissolution of the protective oxide on carbon steel, which is enhanced by mass transfer and erosion under high flow velocity conditions. In this study, the effects of alloy composition and flow velocity on FAC of carbon steel were evaluated by measuring FAC rate of tube type carbon steel specimens in the neutral water condition at 150degC. Obtained results are summarized in follows. 1) High FAC rate was depended upon the v 1.2 in the tube type specimen made of the standard alloy. 2) FAC was mitigated for the carbon steel with more than 0.03% of Cr content. 3) FAC rate decreased as Ni content increased in more than 0.1% of Ni content. 4) The difference in chemical composition of oxide film between Ni added carbon steel and Cr added one was confirmed. The hematite rich oxide was observed for Ni added carbon steel. 5) The effects of Cu on FAC rate was not observed up to 0.1% of Cu content. (author)

  12. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  13. Effects of Cr, Mo, and W on Na2SO4 induced high temperature corrosion of Ni

    International Nuclear Information System (INIS)

    Reising, R.F.

    1975-01-01

    Operating gas turbine engines are susceptible to a phenomenon called hot corrosion. Hot corrosion is generally attributed to the interaction of nickel-base turbine blade alloys with ingested sodium sulfate. Two mechanism were presented previously to account for the surface and grain boundary corrosion of nickel metal. The effects of chromium, molybdenum, or tungsten, or their corrosion products on the corrosion of nickel metal were studied. The corrosion products considered are the oxides and sodium-oxygen compounds. The corrosion products of molybdenum and tungsten enhance the sodium sulfate-induced corrosion of nickel to the same degree as the metals themselves while those of chromium do not. The enhanced corrosion caused by sodium molybdate or tungstate suggests that more than a simple acid-base phenomenon is involved. The formation of a triable, porous film caused by the presence of nickel molybdate or tungstate is proposed as the mechanism responsible for this enhancement. This mechanism is consistent with that proposed by Lashka and Glezer who associated the intensified oxidation of molybdenum-containing nickel alloys with a sub-layer oxide scale containing nickel molybdate. (U.S.)

  14. Effects of partial crystallinity and quenched-in defects on corrosion of ...

    Indian Academy of Sciences (India)

    Rapid solidification by planar flow casting has been found to have introduced deficiencies, viz. partial crystallinity, air pockets and compositional difference in the ribbons of rapidly solidified Ti42.9-Cu57.1 alloy. In order to investigate the effects of these deficiencies on the corrosion of rapidly solidified Ti42.9-Cu57.1 alloy ...

  15. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part III. Immersion time effects and theoretical studies

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Ahmed, M.A.; Arida, H.A.; Kandemirli, Fatma; Saracoglu, Murat; Arslan, Taner; Basaran, Murat A.

    2011-01-01

    Graphical abstract: . Display Omitted Research highlights: → The inhibition effect of TX-100, TX-165 and TX-305 on iron corrosion in 1.0 M HCl was studied. → TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. → In most cases, inhibition efficiency increased with time during the first 60 min of immersion, then decreased. → Calculated quantum chemical parameters confirmed the experimental inhibition efficiencies of the tested surfactants. - Abstract: The inhibition performance of three selected non-ionic surfactants of the TRITON-X series, namely TRITONX-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.01-0.20 g L -1 ) and immersion time (0.0-8 h) at 298 K. Measurements were conducted based on Tafel polarization, LPR and impedance studies. At high frequencies, the impedance spectrum showed a depressed capacitive loop in the complex impedance plane, whose diameter is a function of the immersion time and the type and concentration of the introduced surfactant. In all cases, an inductive loop was observed in the low frequency and this could be attributed to the adsorption behavior. The inhibition efficiency increased with immersion time, reached a maximum and then decreased. This was attributed to the orientation change of adsorbed surfactant molecules. TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. The frontier orbital energies, the energy gap between frontier orbitals, dipole moments (μ), charges on the C and O atoms, the polarizabilities, and the quantum chemical descriptors were calculated. The quantum chemical calculation results inferred that for the HOMO representing the condensed Fukui function for an electrophilic attack (f k + ), the contributions belong to the phenyl group and the oxygen atom attached to the phenyl group for each tested surfactant. Quantitative structure

  16. Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Syung-Yul; Won, Jong-Pil; Park, Dong-Hyun; Moon, Kyung-Man; Lee, Myeong-Hoon; Jeong, Jin-A [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2014-02-15

    Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of 500 .deg. C was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The α, β and γ{sub 2} phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, β and γ{sub 2} phases decreased gradually with increasing the holding time at a constant temperature of 500 .deg. C. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that γ{sub 2} phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the γ{sub 2} phase with heat treatment

  17. A Study on the Effect of Electrolyte Thickness on Atmospheric Corrosion of Carbon Steel

    International Nuclear Information System (INIS)

    Chung, Kyeong Woo; Kim, Kwang Bum

    1998-01-01

    Effect of electrolyte layer thickness and increase in concentration of electrolyte during electrolyte thining on the atmospheric corrosion of carbon steel were investigated using EIS and cathodic polarization technique. The electrolyte layer thickness was controlled via two methods : one is mechanical method with microsyringe applying a different amount of electrolyte onto the metal surface to give different electrolyte thickness with the same electrolyte concentration. The other is drying method in which water layer thickness decreases through drying, causing increase in concentration of electrolyte during electrolyte thinning. In the region whose corrosion rate is controlled by cathodic reaction, corrosion rate for mechanical method is larger than that for drying method. However, for the electrolyte layers thinner than 20 ∼ 30 m, increase in concentration of electrolyte cause a higher corrosion rate for the case of the mechanical method compared with that of drying method. For a carbon steel covered with 0.1M Na 2 SO 4 , maximum corrosion rate is found at an electrolyte thickness of 45 ∼ 55 μm for mechanical method. However, maximum corrosion rate is found at an electrolyte thickness of 20 ∼ 35 μm for drying method. The limiting current is inversely proportional to electrolyte thickness for electrolyte thicker than 20 ∼ 30 μm. However, further decrease of the electrolyte thickness leads to an electrolyte thickness-independent limiting current reagion, where the oxygen rate is controlled by the solvation of oxygen at the electrolyte/gas interface. Diffusion limiting current for drying method is smaller compared with that for mechanica control. This can be attributed to decreasing in O 2 solubility caused by increase in concentration of electrolyte during electrolyte thining

  18. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  19. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    Energy Technology Data Exchange (ETDEWEB)

    Hilca, B. R., E-mail: bangkithilca@yahoo.com; Triyono, E-mail: triyonomesin@uns.ac.id [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57126 (Indonesia)

    2016-03-29

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO{sub 3}) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  20. Corrosion of carbon steel in the [P_1_4_6_6_6][Br] ionic liquid: The effects of γ-radiation and cover gas

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Musa, Ahmed Y.; Momeni, Mojtaba; Wren, J.C.

    2016-01-01

    Highlights: • Carbon steel corrosion in non-aqueous ionic liquid ([P_1_4_6_6_6] [Br]) electrolyte. • Gamma-irradiation results to less corrosion, forming protective oxides. • Substantial corrosion is seen in the absence of gamma-radiation. • A corrosion mechanism is proposed for the observed results. - Abstract: The corrosion of carbon steel in the ionic liquid (IL) [P_1_4_6_6_6] [Br] was studied with the IL in contact with an inert (Ar) or oxidizing (air) cover gas in the presence and absence of γ-radiation. Significant corrosion was observed for the tests performed in the absence of γ-radiation while a protective oxide layer is formed in the presence of γ-radiation. The corrosion is attributed to the presence of impurity H_2O and O_2 dissolved in the IL, and a corrosion mechanism is proposed.

  1. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lijin [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China); Peng, Qunjia, E-mail: qunjiapeng@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Zhang, Zhiming [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Shoji, Tetsuo [Frontier Research Initiative, New Industry Creation Hatchery Center, Tohoku University, 6-6-10, Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Han, En-Hou; Ke, Wei [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang City 110016 (China); Wang, Lei [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang City 110819 (China)

    2015-12-15

    Highlights: • Dissolved hydrogen (DH) effect on corrosion of stainless steel in high temperature water. • Increasing DH caused decrease of Cr- but increase of Fe-concentrations in the inner oxide layer. • Concentration gradient of Cr and Fe in the inner oxide layer. • DH effect was attributed to the accelerated diffusion of Fe ion in the inner oxide layer. - Abstract: Characterizations of oxide films formed on 316 stainless steel in high temperature, hydrogenated water were conducted. The results show the oxide film consists of an outer layer with oxide particles of Fe–Ni spinel and hematite, and an inner continuous layer of Fe–Cr–Ni spinel. Increasing dissolved hydrogen (DH) concentrations causes decrease of Cr- and increase of Fe-concentrations in the inner layer. A continuous decrease of Cr- and increase of Fe-concentrations was observed from the surface of the inner layer to the oxide/substrate interface. The DH effect is attributed to the enhanced diffusion of Fe ions in the oxide film by hydrogen.

  2. Effect of Thermal Shock During Legionella Bacteria Removal on the Corrosion Properties of Zinc-Coated Steel Pipes

    Science.gov (United States)

    Orlikowski, Juliusz; Ryl, Jacek; Jazdzewska, Agata; Krakowiak, Stefan

    2016-07-01

    The purpose of this investigation was to conduct the failure analysis of a water-supply system made from zinc-coated steel. The observed corrosion process had an intense and complex character. The brownish deposits and perforations were present after 2-3 years of exploitation. The electrochemical study based on the Tafel polarization, corrosion potential monitoring, and electrochemical impedance spectroscopy together with microscopic analysis via SEM and EDX were performed in order to identify the cause of such intense corrosion. The performed measurements allowed us to determine that thermal shock was the source of polarity-reversal phenomenon. This process had begun the corrosion of steel which later led to the formation of deposits and perforations in the pipes. The work includes appropriate action in order to efficiently identify the described corrosion threat.

  3. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution

    Science.gov (United States)

    Fazayel, A. S.; Khorasani, M.; Sarabi, A. A.

    2018-05-01

    In this study, the effects of polycarboxylate derivatives with different comonomers and functional groups on the control or reduction of corrosion in steel specimens were evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic analysis. A highly alkaline contaminated concrete pore solution (CPS) containing chlorides was used to simulate the pitting corrosion, and according to the results, the mechanism of inhibitive action was determined. Both the inhibition efficiency and pitting corrosion inhibition of methacrylate-copolymers were in the order of poly methacrylate-co acrylamide > poly methacrylate-co-2-acrylamido-2 methylpropane sulfonic acid > poly methacrylate-co-hydroxyethyl methacrylate. In addition, the corrosion potential of steel specimens in all studied concentrations of NaCl with different concentrations of polymethacrylate-co acrylamide (as the best inhibitor in this study) in saturated Ca(OH)2 solution showed almost an identical trend. Polymethacrylic acid-co-acrylamide showed a 92.35% inhibitor efficiency in the saturated Ca(OH)2 solution containing 1.8 wt.% chlorides and could effectively reduce the corrosion rate. Even at 3.5 wt.% of NaCl, this inhibitor could remarkably reduce the destructive effect of chloride ion attacks on the steel surface and passive film. The inhibition effect of these polymeric inhibitors seemed to be due to the formation of a barrier layer on the metal surface, approved by the well-known adsorption mechanism of organic molecules at the metal/solution interface. The results of SEM, EDS and AFM investigations were also in agreement with the outcomes of electrochemical studies.

  4. Effect of sulfur on the SCC and corrosion fatigue performance of stainless steel

    International Nuclear Information System (INIS)

    West, E.; Nolan, T.; Lucente, A.; Morton, D.; Lewis, N.; Morris, R.; Mullen, J.; Newsome, G.

    2015-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted on model heats of 304/304L stainless steel with systematically controlled sulfur content to isolate the influence of sulfur on crack growth behavior. The results of the SCC experiments conducted in 338 C. degrees deaerated water on 20% cold worked model heats with 0.006 and 0.012 wt% sulfur showed an order of magnitude or more reduction in the crack growth rate relative to a model heat with <0.001 wt% sulfur. Corrosion fatigue crack growth rates revealed a reduction in the crack growth rates of the elevated sulfur heats relative to model predicted steady state crack growth rates with increasing rise time for nominal loading conditions of a stress ratio of 0.7 and a stress intensity factor range of 6.6 MPa√m. At the longest rise time of 5.330 sec, the corrosion fatigue crack growth rate of the 0.006 wt% sulfur model heat was only 13% of model predictions and the crack growth of the 0.012 wt% sulfur heat completely stalled. Experiments conducted in anion faulted aerated water on stainless steel heats with moderate to high sulfur and variable carbon and boron contents showed that any detrimental effect of sulfur in this environment was secondary to the effect of sensitization in promoting SCC growth. (authors)

  5. Effects of iron content on microstructure and crevice corrosion of titanium Grade-2

    International Nuclear Information System (INIS)

    He, X.; Noel, J.J.; Shoesmith, D.W.

    2003-01-01

    The effects of iron content on microstructure and crevice corrosion of titanium Grade-2 (Ti-2) were studied using a galvanic coupling technique combined with optical microscopy and secondary ion mass spectrometry (SIMS) imaging. The study reveals that iron content has a significant effect on the microstructure and crevice corrosion behavior of Ti-2. The grain size decreases significantly with the increasing iron content. For Ti-2 material of medium iron content, crevice corrosion was readily initiated and exhibited extensive intergranular attack which could be associated with the more reactive iron-stabilized β-phase within the α-phase matrix as revealed by SIMS imaging. By contrast, Ti-2 materials with low and high iron content showed suppressed crevice attack. The small surface area of available grain boundaries in Ti-2 of low iron content accounted for this limited attack. For the material with high iron content, SIMS imaging suggest that some Ti x Fe intermetallic particles were formed. These particles may act as proton reduction catalysts and enhance crevice corrosion resistance. (author)

  6. Effect of the anodization variables in the corrosion resistence of the zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Figueiredo, M.E.

    1981-02-01

    The anodization effect in the oxidation of the zircaloy-4 in steam atmosphere at 10,06MPa was investigated. It was also studied how the voltage and the types of electrolytes at several values of pH affect the growing of the anodic oxide film and the performance of the zircaloy-4 in relation to corrosion. Anodizations of zircaloy-4 tubes have been made with voltages ranging from zero to 280V and using electrolytic solutions of Na 2 B 4 O 7 , CH 3 COOH and NaOH in the concentrations of 1,0N, 0,1N and 0,01N. After anodization, the tubes were oxidized in autoclave under steam at 400 0 C and 10,06 MPa during 3 and 14 days. The results show that the anodization inhibit the oxidation process of zircaloy-4, and that this protection increases with the voltage applied for film formation. The relationship between the weight gain after oxidation in autoclave and the anodization voltage is of the exponential type: (σM/A) sub(AC) = Ce sup(-DV). The observed relationship between the applied voltage and the weight gain due to anodization is of the linear type: (σM/A) sub(AN) = aV. Concerning the influence of different electrolytes, it was observed a similar behaviour between them with respect to the thickness of the anodic oxide and the weight gain of zircaloy-4 after the autoclave test. (Author) [pt

  7. Effect of antimony, bismuth and calcium addition on corrosion and electrochemical behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Zhou Wei; Aung, Naing Naing; Sun Yangshan

    2009-01-01

    This study investigated the effect of antimony, bismuth and calcium addition on the corrosion and electrochemical behaviour of AZ91 magnesium alloy in 3.5% NaCl solution. Techniques including constant immersion, electrochemical potentiodynamic polarisation, scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterise electrochemical and corrosion properties and surface topography. It was found that corrosion attack occurred preferentially on Mg 3 Bi 2 and Mg 3 Sb 2 particles while Mg 17 Al 8 Ca 0.5 and Mg 2 Ca phases showed no detrimental effect on corrosion. Combined addition of small amounts of bismuth and antimony to the AZ91 alloy resulted in significant increase in corrosion rate

  8. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  9. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  10. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  11. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  12. Effect of cerium addition on the corrosion behaviour of carbon-alloyed iron aluminides

    International Nuclear Information System (INIS)

    Sriram, S.; Balasubramaniam, R.; Mungole, M.N.; Bharagava, S.; Baligidad, R.G.

    2006-01-01

    The effect of Ce addition on the microstructure and corrosion behavior of carbon-alloyed iron aluminides Fe-20.0Al-2.0C, Fe-18.5Al-3.6C and Fe-19.2Al-3.3C-0.07Ce (in at.%) has been studied. The potentiodynamic polarization behaviour of the alloys was evaluated in freely aerated 0.25 mol/l H 2 SO 4 . A 0.05% C steel was used for comparison purposes. All the alloys exhibited active-passive behaviour in the acidic solution. The addition of Ce destroyed passivity as indicated by lower breakdown potentials in polarization studies. This has been related to the finer distribution of the carbides in the microstructure. Corrosion rates were evaluated by immersion testing. The iron aluminide with Ce addition exhibited a lower corrosion rate compared to the aluminides without Ce addition. This has been attributed to modifications in surface film with Ce addition. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to localized galvanic corrosion due to the presence of carbides in the microstructure

  13. Effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels

    International Nuclear Information System (INIS)

    Kim, Jae Young; Park, Yong Soo; Kim, Young Sik

    1998-01-01

    This paper dealt with the effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels. The experimental alloys were made by vacuum induction melting and then hot rolled. The alloys were designed by controlling Cr eq /Ni eq ratio. Two alloys had austenitic phase and one alloy showed (austenite+ferrite) du-plex phase. High nitrogen addition in austenitic alloys stabilized the austenitic structure and then suppressed the formations of ferrite and α martensite, but martensite was formed in the case of large Cr eq /Ni eq ratio and low nitrogen addition. Pitting initiation site was grain boundary in austenitic alloys and was ferrite/austenite phase boundary in duplex alloy in the HCl solution. In sulfuric acids, austenitic alloys showed uniform corrosion, but ferrite phase was preferentially corroded in duplex alloy. The preferential dissolution seems to be related with the distribution of alloying elements between ferrite and austenite. Intergranular corrosion test showed that corrosion rate by immersion Huey test had a linear relation with degree of sensitization by EPR test

  14. Effect of Plastic Deformation on the Corrosion Behavior of a Super-Duplex Stainless Steel

    Science.gov (United States)

    Renton, Neill C.; Elhoud, Abdu M.; Deans, William F.

    2011-04-01

    The role of plastic deformation on the corrosion behavior of a 25Cr-7Ni super-duplex stainless steel (SDSS) in a 3.5 wt.% sodium chloride solution at 90 °C was investigated. Different levels of plastic strain between 4 and 16% were applied to solution annealed tensile specimens and the effect on the pitting potential measured using potentiodynamic electrochemical techniques. A nonlinear relationship between the pitting potential and the plastic strain was recorded, with 8 and 16% causing a significant reduction in average E p, but 4 and 12% causing no significant change when compared with the solution-annealed specimens. The corrosion morphology revealed galvanic interaction between the anodic ferrite and the cathodic austenite causing preferential dissolution of the ferrite. Mixed potential theory and the changing surface areas of the two phases caused by the plastic deformation structures explain the reductions in pitting potential at certain critical plastic strain levels. End-users and manufacturers should evaluate the corrosion behavior of specific cold-worked duplex and SDSSs using their as-produced surface finishes assessing in-service corrosion performance.

  15. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  16. Protective effect of KhOSP-10 inhibitor during corrosion, hydrogenadsorption and corrosion cracking of a steel in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mindyuk, A K; Svist, E I; Savitskaya, O P; Goyan, E B; Gopanenko, A N [AN Ukrainskoj SSR, Lvov. Fiziko-Mekhanicheskij Inst.

    1975-01-01

    The protective propeties of inhibitor KhOSP-10 in the time of corrosion and corrosive cracking of steel 40Kh are higher then those of inhibitors KPI-1, KI-1, I-I-V etc. Its ability to reduce steel hydrogenation is the same as in the case of KPI-1 inhibitor i.e. below that of KI-1. HCl additives enhance the efficiency of inhibitors KPI-1, KI-1, I-1-V etc. up to the protective ability of KhOSP-10. Kinetics of the electrode processes was estimated from polarization curves.

  17. Effect of Water Chemistry Variations on Corrosion of Zr-Alloys for BWR Applications

    International Nuclear Information System (INIS)

    Kim, Young-Jin; Yang- Lin, Pi; Lutz, Dan; Kucuk, Aylin; Cheng, Bo

    2012-09-01

    Two reference water chemistry conditions (60 ppb Zn and 60 μg/cm 2 Pt/Rh with either 500 ppb O 2 and 500 ppb H 2 O 2 , or 150 ppb H 2 ) were chosen for testing at 300 deg. C in refreshed autoclaves. For each reference water chemistry, the potential effects due to three chemical impurities of interest to BWRs (33 ppm Na, 10 ppm Li, and 10 ppm EHC fluid) were evaluated. Zircaloy-2 and GNF-Ziron (a Zr-based alloy with higher Fe additions than Zircaloy-2) cladding tubes were tested and the effects of tubing process variation and pre-filming were investigated. Tested channel materials included Zircaloy-2, Zircaloy-4, GNF-Ziron and NSF (a Zr-based alloy with Sn, Nb and Fe additions). The corrosion weight gain and hydrogen absorption were measured up to 12 months of exposure for a given water chemistry condition. Tests under 150 ppb H 2 based water chemistry, with or without chemical impurities, generally resulted in greater amounts of corrosion after 12 month exposure compared with 500 ppb O 2 and 500 ppb H 2 O 2 based water chemistries. Of the added chemical impurities, only 33 ppm Na addition produced slightly increased corrosion. Under various test conditions, the presence of a thin pre-film resulted in some initial corrosion benefits, but the benefits were no longer evident after 12 months exposure; however, slight hydrogen benefits remained. For GNF-Ziron cladding, hydrogen absorption was generally lower compared with similarly processed Zircaloy-2 under 150 ppb H 2 based water chemistry, when corrosion was generally higher. Of the channel material tested, NSF developed the lowest level of hydrogen absorption, particularly under 150 ppb H 2 based water chemistries. (authors)

  18. Effect of the Type of Surface Treatment and Cement on the Chloride Induced Corrosion of Galvanized Reinforcements

    Science.gov (United States)

    Tittarelli, Francesca; Mobili, Alessandra; Vicerè, Anna Maria; Roventi, Gabriella; Bellezze, Tiziano

    2017-10-01

    The effect of a new passivation treatment, obtained by immersion of the galvanized reinforcements in a trivalent chromium salts based solution, on the chlorides induced corrosion has been investigated. To investigate also the effect of cement alkalinity on corrosion behaviour of reinforcements, concretes manufactured with three different European cements were compared. The obtained results show that the alternative treatment based on hexavalent chromium-free baths forms effective protection layers on the galvanized rebar surfaces. The higher corrosion rates of zinc coating in concrete manufactured with Portland cement compared to those recorded for bars in concrete manufactured with pozzolanic cement depends strongly on the higher chloride content at the steel concrete interface.

  19. Effects of grain size on the corrosion resistance of pure magnesium by cooling rate-controlled solidification

    Science.gov (United States)

    Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang

    2015-09-01

    The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.

  20. The Effect of Deep Cryogenic Treatment on the Corrosion Behavior of Mg-7Y-1.5Nd Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Quantong Jiang

    2017-10-01

    Full Text Available The effect of quenching on the corrosion resistance of Mg-7Y-1.5Nd alloy was investigated. The as-cast alloy was homogenized at 535 °C for 24 h, followed by quenching in air, water, and liquid nitrogen. Then, all of the samples were peak-aged at 225 °C for 14 h. The microstructures were studied by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction. Corrosion behavior was analyzed by using weight loss rate and gas collection. Electrochemical characterizations revealed that the T4-deep cryogenic sample displayed the strongest corrosion resistance among all of the samples. A new square phase was discovered in the microstructure of the T6-deep cryogenic sample; this phase was hugely responsible for the corrosion property. Cryogenic treatment significantly improved the corrosion resistance of Mg-7Y-1.5Nd alloy.

  1. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Mechanical Engineering, Maamallan Institute of Technology, Anna University, Sriperumpudur 602 105 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected.

  2. Effect of pulsed gas tungsten arc welding on corrosion behavior of Ti-6Al-4V titanium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Due to the excellent combination of properties such as elevated strength-to-weight ratio, high toughness and excellent resistance to corrosion, make titanium alloys attractive for many industrial applications. Advantages of pulsed current welding frequently reported in literature include refinement of fusion zone grain size, etc. Hence, in this investigation an attempt has been made to study the effect of pulsed current Gas Tungsten Arc (GTA) welding parameters on corrosion behavior of Ti-6Al-4V titanium alloy. Pulsed current gas tungsten arc welding was used to fabricate the joints. To optimize the number of experiments to be performed, central composite design was used. The investigation revealed increase in corrosion resistance with increase in peak current and pulse frequency up to an optimum value of the same and decrease in corrosion resistance beyond that optimum point. An increase in corrosion resistance with grain refinement was also detected

  3. An investigation on the effect of bleaching environment on pitting corrosion and trans-passive dissolution of 316 stainless steel

    International Nuclear Information System (INIS)

    Moayed, M.H.; Golestanipour, M.

    2004-01-01

    Pitting corrosion and trans-passive dissolution of 316 stainless steel in solution containing five percent of commercial bleaching liquid was investigated by employing potentiodynamic polarization method and recording corrosion potential during immersion. Today commercial bleaching liquids are widely used as cleaner additives, therefore, those house appliances made from stainless steels are in contact with aqueous solution containing bleaching liquid. This may cause sever localized corrosion and trans-passive dissolution. In order to investigate the possibility of trans-passive dissolution of stainless steel by bleaching liquid, potentiodynamic polarization and recording variation of corrosion potential of specimens were carried out in 0.2 M Na 2 SO 4 solution containing 5 %wt. commercial bleaching liquid. A 500 mV drop in trans-passive potential and also instantaneously ennobling corrosion potential revealed the possibility of trans-passive dissolution due to oxidizing effect of the species such as free chlorine and its derivatives in bleaching liquid. Evaluation of the occurrence of localized corrosion at the presence of Cl - and bleaching liquid was investigated by similar electrochemical experiments in 0.2 M Na 2 SO 4 + 0.4M NaCl containing 5%wt. bleaching solution. Initiation of stable pitting at potentials lower than trans-passive potential as well as sharp increasing of corrosion potential in this environment demonstrates the possibility of pitting corrosion. (authors)

  4. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Lu, Y; Bradshaw, A R; Chiu, Y L; Jones, I P

    2015-03-01

    The bio-corrosion behaviour of Mg-3Zn-0.3Ca (wt.%) alloy in simulated body fluid (SBF) at 37°C has been investigated using immersion testing and electrochemical measurements. Heat treatment has been used to alter the grain size and secondary phase volume fraction; the effects of these on the bio-corrosion behaviour of the alloy were then determined. The as-cast sample has the highest bio-corrosion rate due to micro-galvanic corrosion between the eutectic product (Mg+Ca2Mg6Zn3) and the surrounding magnesium matrix. The bio-corrosion resistance of the alloy can be improved by heat treatment. The volume fraction of secondary phases and grain size are both key factors controlling the bio-corrosion rate of the alloy. The bio-corrosion rate increases with volume fraction of secondary phase. When this is lower than 0.8%, the dependence of bio-corrosion rate becomes noticeable: large grains corrode more quickly. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  6. Some observations on the mechanism of corrosion to be encountered in nuclear waste repositories located in tuffaceous rock

    International Nuclear Information System (INIS)

    Wilde, M.H.; Wilde, B.E.

    1993-01-01

    Potentiostatic anodic polarization studies have been conducted in a J-13 simulated nuclear waste repository environment, which was allowed to evaporate to dryness followed by rehydration prior to polarization. The behavior of Type 316L stainless steel, AISI 1020 carbon steel, Hastelloy C22 and platinum was compared with that noted previously for a non-baked simulate. The anodic dissolution characteristics of Type 316L stainless steel in environments containing 1000X Cl - J-13 depend markedly on whether the solution is merely a mixture of virgin chemicals or a mixture that has been evaporated to dryness, baked and rehydrated to the same volume. In the non-evaporated environment Type 316L stainless steel pitted severely, and in the evaporated/rehydrated environment a non-corroding type of behavior was observed along with the precipitation of a dense scale. Similar behavior was observed for Hastelloy C22. The polarization curves for carbon steel and platinum were the same as those noted for 316L and Hastelloy C22, when conducted in the evaporated/rehydrated environment. X-ray diffraction studies indicated that the scale produced in all tests conducted on evaporated/rehydrated solutions was calcium carbonate. Based on the qualitatively similar polarization characteristics of materials having such widely differing corrosion properties, it is concluded that the major factor controlling the anodic charge transfer reaction under these conditions is the formation of a calcium carbonate scale. (Author)

  7. Effects of combined organic and inorganic corrosion inhibitors on the nanostructure cerium based conversion coating performance on AZ31 magnesium alloy: Morphological and corrosion studies

    International Nuclear Information System (INIS)

    Saei, E.; Ramezanzadeh, B.; Amini, R.; Kalajahi, M. Salami

    2017-01-01

    Highlights: •Cn-Mn-polyvinyl alcohol conversion coating led to more uniform and crack free film deposition. •The corrosion resistance of Ce film was noticeably improved by using combination of polyvinyl alchol and Mn2+ cations. •A synergistic effect between polyvinyl alchol-Mn2+ resulted in Ce film with enhanced morphology and corrosion resistance. -- Abstract: Magnesium (Mg) AZ31 samples were chemically treated by a series of room temperature nanostructure cerium based conversion coatings containing Mn(NO 3 ) 2 ·4H 2 O, Co(NO 3 ) 2 ·6H 2 O, and polyvinyl alcohol (PVA). The microstructure and corrosion protection properties of different samples were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and polarization test in 3.5 wt.% NaCl solution. Results demonstrated that the AZ31 Mg alloy sample treated by Ce-Mn-PVA showed the highest corrosion resistance. A denser Ce film with lower crack was precipitated on the sample treated by Ce-Mn-PVA conversion coating.

  8. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    International Nuclear Information System (INIS)

    Rebak, R B

    2005-01-01

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni

  9. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation

    Directory of Open Access Journals (Sweden)

    Cem Örnek

    2016-07-01

    Full Text Available The effect of 475 °C embrittlement and microstructure process orientation on atmospheric-induced stress corrosion cracking (AISCC of grade 2205 duplex stainless steel has been investigated. AISCC tests were carried out under salt-laden, chloride-containing deposits, on U-bend samples manufactured in rolling (RD and transverse directions (TD. The occurrence of selective corrosion and stress corrosion cracking was observed, with samples in TD displaying higher propensity towards AISCC. Strains and tensile stresses were observed in both ferrite and austenite, with similar magnitudes in TD, whereas, larger strains and stresses in austenite in RD. The occurrence of 475 °C embrittlement was related to microstructural changes in the ferrite. Exposure to 475 °C heat treatment for 5 to 10 h resulted in better AISCC resistance, with spinodal decomposition believed to enhance the corrosion properties of the ferrite. The austenite was more susceptible to ageing treatments up to 50 h, with the ferrite becoming more susceptible with ageing in excess of 50 h. Increased susceptibility of the ferrite may be related to the formation of additional precipitates, such as R-phase. The implications of heat treatment at 475 °C and the effect of process orientation are discussed in light of microstructure development and propensity to AISCC.

  10. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhiming, Lu; Laimin, Shi; Shenjin, Zhu; Zhidong, Tang; Yazhou, Jiang

    2015-01-01

    The weld joint of 304 stainless steel is treated using high energy shot peening(HESP) with various shot peening pressures. The grain size and metallographic microstructure of the specimen surface layer are analyzed using the X-ray diffraction method, and the surface hardness is measured. Slow strain rate tension tests are then performed to investigate the effect of shot peening pressure on the stress corrosion sensitivity. The results show that in the surface layer of the specimen, the grain refinement, hardness and the strain-induced plastic deformation all increase with the increasing shot peening pressure. Martensitic transformation is observed in the surface layer after being treated with HESP. The martensite phase ratio is found to increase with increasing shot peening pressure. The result also shows that the effects of the shot peening treatment on the stress corrosion sensitivity index depend on the shot peening pressure. When the shot peening pressure is less than 0.4 MPa, the grain refinement effect plays the main role, and the stress corrosion sensitivity index decreases with the increasing shot peening pressure. In contrast, when the shot peening pressure is higher than 0.4 MPa, the martensite transformation effect plays the main role, the stress corrosion sensitivity index increases with increasing shot peening pressure

  11. On Microstructure and Microhardness of Isothermally Aged UNS S32760 and the Effect on Toughness and Corrosion Behavior

    Science.gov (United States)

    Elsabbagh, Fady M.; Hamouda, Rawia M.; Taha, Mohamed A.

    2014-01-01

    This paper investigates the microstructure and secondary phase precipitations obtained in UNS S32760 super duplex stainless steel and their effect on impact toughness and corrosion resistance. The heat treatment included first solution annealing at 1150 °C followed by water quenching, then isothermal heating at different temperatures from 350 to 950 °C for different times, ranging from less than 1 min to 600 min, followed by water quenching again. Microscopic investigation, microhardness tests, and x-ray diffraction (XRD) analysis were used to identify the microstructure and secondary phase precipitations formed by heat treatment. The study indicates a fair correlation between the microscopic observations and microhardness results, while XRD analysis defined the phase's chemistry and confirmed the microscopic and hardness results. In addition to the austenite (γ) and ferrite (α) phases of the duplex structure, secondary phases of (σ, χ, and chromium nitrides) are observed at a high temperature range, while (ά) and (aged ά) are observed at a lower temperature range. It is concluded that the microhardness test can be used to identify the phases appearing in the microstructure, which results in fair prediction for the TTT diagram and σ-phase range. The variation of toughness and corrosion resistance by heat treatment differs depending on the secondary phase formation.

  12. Effect of Metakaolin and Slag blended Cement on Corrosion Behaviour of Concrete

    Science.gov (United States)

    Borade, Anita N.; Kondraivendhan, B.

    2017-06-01

    The present paper is aimed to investigate the influence of Metakaolin (MK) and Portland slag Cement (PSC) on corrosion behaviour of concrete. For this purpose, Ordinary Portland Cement (OPC) was replaced by 15% MK by weight and readymade available PSC were used. The standard concrete specimens were prepared for both compressive strength and half- cell potential measurement. For the aforesaid experiments, the specimens were cast with varying water to binder ratios (w/b) such as 0.45, 0.5 and 0.55 and exposed to 0%, 3%, 5% and 7.5% of sodium chloride (NaCl) solution. The specimens were tested at wide range of curing ages namely 7, 28, 56, 90 and 180 days. The effects of MK, w/b ratio, age, and NaCl exposure upon concrete were demonstrated in this investigation along with the comparison of results of both MK and PSC concrete were done. It was also observed that concrete with MK shows improved performance as compared to concrete with PSC.

  13. Trampoline Effect: Observations and Modeling

    Science.gov (United States)

    Guyer, R.; Larmat, C. S.; Ulrich, T. J.

    2009-12-01

    The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].

  14. The Effect of Low-Quantity Cr Addition on the Corrosion Behaviour of Dual-Phase High Carbon Steel

    Directory of Open Access Journals (Sweden)

    Wilson Handoko

    2018-03-01

    Full Text Available Industrial application of high carbon low alloy steel with the dual-phase structure of martensite and austenite has increased drastically in recent years. Due to its excellent compression strength and its high abrasion resistance, this grade of steel has used as a high performance cutting tool and in press machinery applications. By increasing the usage of more corrosive media in industrial practice and increasing the demand for reducing the production cost, it is crucial to understand the effect of the small addition of Cr on the corrosion behaviour of this grade of steel. In this study, this effect was investigated using Secondary Electron Microscopy (SEM and in-situ Atomic Force Microscopy (AFM in the sodium chloride solution. Also, the corrosion rate was measured using the Tafel polarisation curve. It has been found that the small addition of Cr increased the stability of retained austenite, thus improving its corrosion resistance and reducing its corrosion rate. This effect has been acquired through in-situ high resolution topography images in which the samples were submerged in a corrosive solution. It has been demonstrated that the corrosion rate was reduced when the stability of austenite enhanced.

  15. The effect of magnetite on corrosion of stainless steel (SUS309S) in deaerated synthetic sea water

    International Nuclear Information System (INIS)

    Taniguchi, N.; Honda, A.

    1999-10-01

    The assessment of lifetime of carbon steel overpack needs to clear the effects of corrosion products on the corrosion rate of carbon steel. It is reported that the corrosion of carbon steel was accelerated under the presence of magnetite as simulated corrosion products. Therefore, it is important to clear the mechanism of the acceleration of corrosion under the presence of magnetite. If carbon steel overpack will not be able to avoid the acceleration of corrosion under repository condition, some countermeasures have to be taken. One of the countermeasures against the effect of magnetite is considered to be the addition of alloying elements to a steel. The immersion test of stainless steel (SUS309S) as the extreme case of alloying was conducted under the presence of magnetite on the metal surface in synthetic sea water. As the result of this test, the corrosion of stainless steel (SUS309S) was not accelerated by the presence of magnetite. Therefore, it is expected that the susceptibility to the effect of magnetite is able to be reduced by addition of alloying elements to a steel. (author)

  16. The Spread of Corrosion in Cast Iron and its Effect on the Life Cycle of Transportation Vehicles

    Directory of Open Access Journals (Sweden)

    Tomáš Binar

    2017-01-01

    Full Text Available This article deals with the spread of corrosion in material at different exposure times, and its effect on the measured brittle fracture and notch impact strength under different temperature conditions. To assess the degradational effect of corrosion on the material characteristics represented by the measured impact strength, we conducted a fractographic analysis of fracture surfaces, the aim of which was to evaluate the spread of corrosion in the material. In the first part of the experiment, two corrosion tests are simulated with a duration time of 432 and 648 hours, to compare the degradation effect of corrosion on the notch impact strength, depending on the duration of the corrosion tests. The following part shows the results of the impact bending test, where the experiment was conducted in an area of reduced and increased temperatures. The final part summarizes the results of the fractographic analysis of sample fracture surfaces from the impact bending tests. Based on the measured the length of the corrosion cracks, we analyzed the sample at the notch and from the material surface after the impact bending test.

  17. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  18. Model of physico-chemical effect on flow accelerated corrosion in power plant

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Domae, Masafumi; Yoneda, Kimitoshi; Inada, Fumio

    2011-01-01

    Highlights: → Model of chemical effect on FAC was developed. → Equation to evaluate the dissolved oxygen concentration for FAC suppression was derived. → The model explains the qualitatively the effect of parameters on FAC rate. → Diffusion of soluble species well reproduces the unique FAC behavior. - Abstract: Flow accelerated corrosion (FAC) is caused by the accelerated dissolution of protective oxide film under the condition of high flow rate and has been one of the most important subjects in fossil and nuclear power plants. The dominant factors of FAC are water chemistry, material, and fluid dynamics. Understanding of the thinning mechanism is very important to estimate the quantitative effects of the dominant factors on FAC. In this study, a novel model of chemical effect on FAC under the steady-state condition was developed in consideration of the diffusion of soluble iron and chromium species, dissolved hydrogen, and dissolved oxygen. The formula to evaluate the critical concentration of dissolved oxygen for FAC suppression was derived. The present model reproduced qualitatively the effect of major environmental parameters on FAC rate. The model could explain the following facts. (1) The FAC rate shows a peak around 413 K. (2) The FAC rate decreases with an increase in Cr content. (3) The FAC rate decreases with an increase in pH. (4) The FAC rate decreases with an increase in dissolved oxygen concentration. (5) The maximum of critical dissolved oxygen concentration is observed around 353 K. (6) The critical dissolved oxygen concentration decreases with an increase in pH. We conclude that the diffusion of soluble species from the saturated layer under the steady-state condition well reproduces the unique FAC behavior with variation of water chemistry parameters.

  19. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions

    International Nuclear Information System (INIS)

    Ghanem, Wafaa A.

    2004-01-01

    The effect of partial replacement of nickel with nitrogen on the mechanism of localized corrosion resistance and re-passivation for nitrogen-bearing stainless steel was investigated using anodic potentiodynamic polarization technique. The solutions used for this study contained 0.0, 0.05 and 0.33 M Fe 3+ for solutions I, II and III respectively, in a total Cl - ion concentration 1 M. The pitting attack was found to be retarded by nitrogen addition and the samples were able to passivate as the nitrogen increase. Addition of nitrogen allows decreasing the percentage of Ni, but to a certain limit. Nitrogen is adsorbed on the interface of the metal oxide and results in repulsion of Cl - ions. Moreover, it reacts with H + ions in the solution leading to higher pH, which explains the retardation effect of nitrogen to corrosion. (author)

  1. The Effect of Multiple Shot Peening on the Corrosion Behavior of Duplex Stainless Steel

    Science.gov (United States)

    Feng, Qiang; She, Jia; Wu, Xueyan; Wang, Chengxi; Jiang, Chuanhai

    2018-03-01

    Various types of shot peening treatments were applied to duplex stainless steel. The effects of shot peening intensity and working procedures on the microstructure were investigated. The domain size and microstrain evolution in the surface layer were characterized utilizing the Rietveld method. As the shot peening intensity increased, the surface roughness increased in the surface layer; however, it decreased after multiple (dual and triple) shot peening. The mole fraction of strain-induced martensite as a function of the intensity of shot peening was evaluated by XRD measurements. Both potentiodynamic polarization curves and salt spray tests of shot-peened samples in NaCl solution were investigated. The results indicate that traditional shot peening has negative effects on corrosion resistance with increasing shot peening intensity; however, the corrosion rate can be reduced by means of multiple shot peening.

  2. Redox conditions effect on flow accelerated corrosion: Influence of hydrazine and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, O. de [EDF, R and D Div., Moret sur Loing (France); Bouchacourt, M. [EDF, Engineering and Service Div., Villeurbanne (France); Fruzzetti, K. [EPRI, Science and Technology Div., Palo Alto, CA (United States)

    2002-07-01

    Flow accelerated corrosion (FAC) of carbon steels has been studied world-wide for more than twenty years and is now fairly well understood. The influence of several parameters like water chemistry (i.e. pH and oxygen content), temperature, hydrodynamic or mass transfer conditions (i.e. flow velocity, geometry, steam quality..) and steel composition on the corrosion kinetics has been demonstrated both theoretically and experimentally. However, the effect of a reducing environment and variable redox conditions have not yet been fully explored. It's well known that a reducing environment is effective in increasing the resistance of steam generator tubing to intergranular attack / stress corrosion cracking (IGA/SCC) and pitting. In that way, secondary water chemistry specifications have been modified from low hydrazine to high hydrazine chemistry in the steam-water circuit. Nevertheless, increasing hydrazine levels up to 200 {mu}g/kg could have a detrimental effect by potentially enhancing the FAC process. Moreover, in order to have a complete understanding of the possible impact of the water chemistry environment it is also important to consider the impact of redox conditions during shutdowns (cold and/or hot shutdowns) and start up periods when aerated water injections are made to maintain a constant water level in the Steam Generators from the auxiliary feedwater circuit. Therefore, a common EDF and EPRI R and D effort has been recently carried out to study the effects of hydrazine and oxygen on FAC. The results are presented as follows. (authors)

  3. Summary of erosion-corrosion observations made in power stations on damp-steam circuits

    International Nuclear Information System (INIS)

    Lacaille, L.

    1981-01-01

    The development of the light-water system has profoundly modified the operating conditions of the turbines, in which expansion now takes place from the first saturated-steam stages. In addition to the traditional phenomena of mechanical erosion there are now problems of a chemical nature, linked to the temperatures of the liquid phase, which cause destruction in the HP stages of the turbines, the drier-feed heaters, and the linking piping. Systematic observations have been made in the PWR stations at Chooz, Doel, Tihange, Fessenheim, and Le Bugey, followed by trials of materials, improvements in the flow, chemical treatment of the secondary circuit, and reduction of the liquid phase in the steam emerging from the HP turbine [fr

  4. Effects of 1000 C oxide surfaces on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Results of electrochemical aqueous-corrosion studies at room temperature indicate that retained in-service-type high-temperature surface oxides (1000 C in air for 24 hours) on FA-129, FAL and FAL-Mo iron aluminides cause major reductions in pitting corrosion resistance in a mild acid-chloride solution designed to simulate aggressive atmospheric corrosion. Removal of the oxides by mechanical grinding restores the corrosion resistance. In a more aggressive sodium tetrathionate solution, designed to simulate an aqueous environment contaminated by sulfur-bearing combustion products, only active corrosion occurs for both the 1000 C oxide and mechanically cleaned surfaces at FAL. Results of slow-strain-rate stress-corrosion-cracking tests on FA-129, FAL and FAL-Mo at free-corrosion and hydrogen-charging potentials in the mild acid chloride solution indicate somewhat higher ductilities (on the order of 50%) for the 1000 C oxides retard the penetration of hydrogen into the metal substrates and, consequently, are beneficial in terms of improving resistance to environmental embrittlement. In the aggressive sodium tetrathionate solution, no differences are observed in the ductilities produced by the 1000 C oxide and mechanically cleaned surfaces for FAL.

  5. Predicting Effects of Corrosion Erosion of High Strength Steel Pipelines Elbow on CO2-Acetic Acid (HAc) Solution

    International Nuclear Information System (INIS)

    Asmara, Y. P.; Ismail, M. F.; Chui, L. Giok; Halimi, Jamiludin

    2016-01-01

    Simultaneously effect of erosion combined with corrosion becomes the most concern in oil and gas industries. It is due to the fast deterioration of metal as effects of solid particles mixed with corrosive environment. There are many corrosion software to investigate possible degradation mechanisms developed by researchers. They are using many combination factors of chemical reactions and physical process. However effects of CO 2 and acid on pipelines orientations are still remain uncovered in their simulation. This research will investigate combination effects of CO 2 and HAc on corrosion and erosion artificial environmental containing sands particles in 45°, 90° and 180° elbow pipelines. The research used theoretical calculations combined with experiments for verification. The main concerns are to investigate the maximum erosion corrosion rate and maximum shear stress at the surface. Methodology used to calculate corrosion rate are Linear Polarization Resistance (LPR) and weight loss. The results showed that at 45°, erosion rate is the more significant effects in contributing degradation of the metal. The effects of CO 2 and HAc gave significant effects when flow rate of the solution are high which reflect synergism effects of solid particles and those chemical compositions. (paper)

  6. Study of the Effect of Swelling on Irradiation Assisted Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Teysseyre, Sebastien Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the methodology used to study the effect of swelling on the crack growth rate of an irradiation-assisted stress corrosion crack that is propagating in highly irradiated stainless steel 304 material irradiated to 33 dpa in the Experimental Breeder Reactor-II. The material selection, specimens design, experimental apparatus and processes are described. The results of the current test are presented.

  7. EFFECTIVENESS OF INHIBITORS OF METAL CORROSION IN AQUEOUS ENVIRONMENTS WITH VARYING SALINITY

    OpenAIRE

    Носачова, Юлія Вікторівна; Макаренко, Ірина Миколаївна; Шаблій, Тетяна Олександрівна

    2015-01-01

    EFFECTIVENESS OF INHIBITORS OF METAL CORROSION IN AQUEOUS ENVIRONMENTS WITH VARYING SALINITYThe main reason for the growing problem of water quality in Ukraine is the increase of anthropogenic impacts on water resources caused by intense chemical, biological and radiation contamination of existing and potential sources for industrial and communal water supply. Especially polluted rivers in Donbass and Krivbas area, that turned into collectors of saline wastewater. Especially hard environment...

  8. The effect of the PWR secondary circuit water chemistry on erosion corrosion

    International Nuclear Information System (INIS)

    Kaplan, J.

    1993-07-01

    The secondary circuit of WWER-440 and WWER-1000 reactors is described. The causes of erosion corrosion are outlined, and the effects of the physical properties and chemical composition of water are discussed with emphasis on specific conductivity and concentrations of oxygen, ammonia, iron, sodium, silicon and organics. Described are corrective actions to eliminate the deviations from the normal state during reactor power reduction or reactor shutdown. (J.B.)

  9. Effects of Aging and W Addition on the Corrosion Resistance and Mechanical Properties of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The characteristics of the mechanical properties and sensitization behaviors in Fe-Cr-Mn stainless steels by W addition and aging treatment were studied. Yield strength, tensile strength, elongation and impact energy decreased, and hardness increased slightly by aging treatment. W-containing alloys showed especially a larger degree of brittle characteristics due to the hard chi(χ) phase formed from the decomposition of ferrite. Carbides precipitated in grain boundary had a bad effect on impact energy rather than on strength and hardness. Ni addition suppressed the formation of ferrite and resulted in some improvement of mechanical properties. Anodic polarization tests showed that the corrosion resistance of aged alloys decreased by the formation of carbides and secondary austenite. It was observed that W addition made no improvement of the pitting potential and passive current density of aged alloys in the HCI solution. But Ni and W decreased critical current density in the sulfuric acid and made easier formation of passive film, contributing to corrosion resistance. From the results of EPR (Electrochemical Potentiokinetic Reactivation). DOS (Degree of Sensitization) increased with aging time and carbides and ferrite were preferentially attacked. It was observed that Ni delayed the sensitization. It can be concluded from the previous results that the selective dissolution of ferrite is due to the ferrite decomposition to chi (χ) phase and secondary austenite. In the secondary austenite. Cr and W which are known to improve the corrosion resistance were depleted. Therefore, it seems that ferrite phase became sensitive to corrosion

  10. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  11. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants

    International Nuclear Information System (INIS)

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-01-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37 ± 1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. - Highlights: • Cold rolling markedly increases the hardness of SS 316Ti from 125 to 460 HV10. • Higher deformation degrees lead to lower corrosion resistance. • Application of HA-coating leads to significant improvement of the corrosion resistance

  12. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  13. Electrochemical noise based corrosion monitoring: FY 2001 final report

    International Nuclear Information System (INIS)

    EDGAR, C.

    2001-01-01

    Underground storage tanks made of mild steel are used to contain radioactive waste generated by plutonium production at the Hanford Site. Corrosion of the walls of these tanks is a major issue. Corrosion monitoring and control are currently provided at the Hanford Site through a waste chemistry sampling and analysis program. In this process, tank waste is sampled, analyzed and compared to a selection of laboratory exposures of coupons in simulated waste. Tank wall corrosion is inferred by matching measured tank chemistries to the results of the laboratory simulant testing. This method is expensive, time consuming, and does not yield real-time data. Corrosion can be monitored through coupon exposure studies and a variety of electrochemical techniques. A small number of these techniques have been tried at Hanford and elsewhere within the DOE complex to determine the corrosivity of nuclear waste stored in underground tanks [1]. Coupon exposure programs, linear polarization resistance (LPR), and electrical resistance techniques have all been tried with limited degrees of success. These techniques are most effective for monitoring uniform corrosion, but are not well suited for early detection of localized forms of corrosion such as pitting and stress corrosion cracking (SCC). Pitting and SCC have been identified as the most likely modes of corrosion failure for Hanford Double Shell Tanks (DST'S) [2-3]. Over the last 20 years, a new corrosion monitoring system has shown promise in detecting localized corrosion and measuring uniform corrosion rates in process industries [4-20]. The system measures electrochemical noise (EN) generated by corrosion. The term EN is used to describe low frequency fluctuations in current and voltage associated with corrosion. In their most basic form, EN-based corrosion monitoring systems monitor and record fluctuations in current and voltage over time from electrodes immersed in an environment of interest. Laboratory studies and field

  14. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-03-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  15. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  16. Effect of boric acid on intergranular corrosion in tube support plate crevices

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campan, J.L.

    1993-10-01

    Intergranular attack on steam generator tubing is one important phenomenon involved in availability of Pressurized Water Reactors. Boric acid appears to be a possible candidate for inhibiting the corrosion process. The program performed in Cadarache was supposed to give statistical informations on the boric acid effect. It was based on a large number of samples initially attacked during a program performed by BABCOCK ampersand WILCOX. These samples were sleeved onto Alloy 690 tubes, in order to prevent premature cracking. Unfortunately it was not possible to find chemical conditions able to produce significant additional corrosion; we postulated mainly due to a drastic reduction of the thermal flux resulting from the increase of the tube wall thickness under the tube support plates (TSP). The tests demonstrate that such sleeve could be a possible remedy of the corrosion when introduced under the TSP. The tests show indications of a possible beneficial effect of the boric acid, a large variability of the heats sensitivity to the IGA and a predominant effect of Na 2 CO 3 on IGA production

  17. Study of Rust Effect on the Corrosion Behavior of Reinforcement Steel Using Impedance Spectroscopy

    Science.gov (United States)

    Bensabra, Hakim; Azzouz, Noureddine

    2013-12-01

    Most studies on corrosion of steel reinforcement in concrete are conducted on steel samples with polished surface (free of all oxides) in order to reproduce the same experimental conditions. However, before embedding in concrete, the steel bars are often covered with natural oxides (rust), which are formed during exposure to the atmosphere. The presence of this rust may affect the electrochemical behavior of steel rebar in concrete. In order to understand the effect of rust on the corrosion behavior of reinforcement steel, potentiodynamic and electrochemical impedance spectroscopy (EIS) tests were carried out in a simulated concrete pore solution using steel samples with two different surface conditions: polished and rusted samples. The obtained results have shown that the presence of rust on the steel bar has a negative effect on its corrosion behavior, with or without the presence of chlorides. This detrimental effect can be explained by the fact that the rust provokes a decrease of the electrolyte resistance at the metal-concrete interface and reduces the repassivating ability. In addition, the rust layer acts as a barrier against the hydroxyl ion diffusion, which prevents the realkalinization phenomenon.

  18. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    Science.gov (United States)

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior.

  19. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  20. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  1. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel - Part 1

    International Nuclear Information System (INIS)

    Kim, Soon-Tae; Jeon, Soon-Hyeok; Lee, In-Sung; Park, Yong-Soo

    2010-01-01

    To elucidate the effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel, a metallographic examination, potentiodynamic and potentiostatic polarization tests, a SEM-EDS and a SAM analysis of inclusion, austenite phase and ferrite phase were conducted. The addition of rare earth metals to the base alloy led to the formation of (Mn, Cr, Si, Al, Ce) oxides and (Mn, Cr, Si, Ce) oxides, which improved the resistance to pitting corrosion and caused a decrease in the preferential interface areas for the initiation of the pitting corrosion.

  2. Effect of aging on the general corrosion and stress corrosion cracking of uranium--6 wt % niobium alloy

    International Nuclear Information System (INIS)

    Koger, J.W.; Ammons, A.M.; Ferguson, J.E.

    1975-11-01

    Mechanical properties of the uranium-6 wt percent niobium alloy change with aging time and temperature. In general, the ultimate tensile strength and hardness reach a peak, while elongation becomes a minimum at aging temperatures between 400 and 500 0 C. The first optical evidence of a second phase was in the 400 0 C-aged alloy, while complete transformation to a two-phase structure was seen in the 600 0 C-aged alloy. The maximum-strength conditions correlate with the minimum stress corrosion cracking (SCC) resistance. The maximum SCC resistance is found in the as-quenched and 150, 200, and 600 0 C-aged specimens. The as-quenched and 300 0 C-aged specimens had the greatest resistance to general corrosion in aqueous chloride solutions; the 600 0 C-aged specimen had the least resistance

  3. Effects of Impurity on the Corrosion Behavior of Alloy 617 in the Helium Environment

    International Nuclear Information System (INIS)

    Jung, Sujin; Kim, Dong Jin; Lee, Gyeong Geun

    2013-01-01

    The helium coolant in the primary circuit inevitably includes minor impurities such as H 2 , CO, CH 4 , and H 2 O under operating condition. Material degradation is aggravated through oxidation, carburization, and decarburization under the impure helium environment. In this study, high-temperature corrosion tests were carried out at 850-950 .deg. C in the impure helium environment. The mass changes of the specimens were measured and the microstructures were analyzed quantitatively. In addition, all corrosion tests were conducted in the pure helium environment and the results were compared to the results under the impure helium. Alloy 617 specimens showed a parabolic oxidation behavior at all temperatures under the impure helium environment. All specimens had similar microstructure in the outer Cr-oxide layers, internal Al-oxides, and carbide-depleted zone. The weight increase of the corroded specimens in the pure helium was relatively reduced. Microstructure result, oxide layer and carbide depleted zone were hardly ever observed. The impurity in helium affected the corrosion behavior of Alloy 617 and may cause a decrease in the mechanical properties. Therefore, the control of minor impurities in VHTR helium is necessary for the application of Alloy 617 to the IHX material of a VHTR

  4. Effect of welding processes on corrosion resistance of UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    Chiu, Liu Ho; Hsieh, Wen Chin

    2003-01-01

    An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to 250 .deg. C is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as σ, γ 2 and Cr 2 N may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% FeCl 3 solution at 47.5 .deg. C for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of σ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution

  5. The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour

    Directory of Open Access Journals (Sweden)

    Sh. Khandanjou

    Full Text Available In the present paper our aim is to investigate the effect of the spray time of the aluminium coated layers on the microstructure and corrosion behaviour. For this purpose we use the self-generated atmospheric plasma spray system for coating of aluminium on the carbon steel substrate. The different thicknesses of coating are created. To evaluate this effect we use the several analyses such as X-ray diffraction, scanning electron microscope, Micro hardness analysis by Vickers method, Adhesion strength analysis and electrochemical polarization test. The results are very interesting and show that due to low porosity, thicker layers are more homogeneous. The nanoparticles are observed in the thicker layers. The micro hardness tests show that the thicker layers have the better micro hardness value. Next, the adhesion strength tests illustrate that the highest adhesion strength are for longer spray times. On the other hand, the corrosion resistance behaviour of the coating is investigated by electrochemical polarization test. It is shown that the corrosion resistance increases by increasing the thickness due to low percentage of porosity. Keywords: Plasma spray, Thickness, Aluminium, Micro hardness, Corrosion resistance

  6. Effect of alternating voltage treatment on corrosion resistance of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); Zhang, T.; Shao, Y.; Meng, G.; Wang, F. [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China)

    2012-06-15

    AZ91D magnesium alloy was treated by the alternating voltage (AV) treatment technique. The optimal AV-treatment parameters of the alloy were determined by orthogonal experiments. Polarization curve, electrochemical impedance spectroscopy (EIS), and scanning electrochemical microscopy (SECM) were used to understand the effect of AV-treatment on the corrosion resistance of the alloy. AFM, contact angle, and XPS were employed to investigate further the influence of AV-treatment on the properties of the surface film formed on the alloy after AV-treatment. The results showed that a uniform and stable film was formed and the corrosion resistance of AZ91D magnesium alloy was significantly improved after AV-treatment. This was caused by the noticeable change of the chemical structure and semi-conducting properties of the surface film after AV-treatment. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  8. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface.

    Science.gov (United States)

    Wan, Hongxia; Song, Dongdong; Li, Xiaogang; Zhang, Dawei; Gao, Jin; Du, Cuiwei

    2017-06-14

    Waterborne coating has recently been paid much attention. However, it cannot be used widely due to its performance limitations. Under the specified conditions of the selected resin, selecting the function pigment is key to improving the anticorrosive properties of the coating. Zinc phosphate is an environmentally protective and efficient anticorrosion pigment. In this work, zinc phosphate was used in modifying waterborne acrylic coatings. Moreover, the disbonding resistance of the coating was studied. Results showed that adding zinc phosphate can effectively inhibit the anode process of metal corrosion and enhance the wet adhesion of the coating, and consequently prevent the horizontal diffusion of the corrosive medium into the coating/metal interface and slow down the disbonding of the coating.

  9. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution

    International Nuclear Information System (INIS)

    Zhang Daquan; Xie Bin; Gao Lixin; Cai Qirui; Joo, Hyung Goun; Lee, Kang Yong

    2011-01-01

    The corrosion protection of copper by glutamic acid, cysteine, glycine and their derivative (glutathione) in 0.5 M hydrochloric acid solution has been studied by the electrochemical impedance spectroscopy and cyclic voltammetry. The inhibition efficiency of the organic inhibitors on copper corrosion increases in the order: glutathione > cysteine > cysteine + glutamic acid + glycine > glutamic acid > glycine. Maximum inhibition efficiency for cysteine reaches about 92.9% at 15 mM concentration level. The glutathione can give 96.4% inhibition efficiency at a concentration of 10 mM. The molecular structure parameters were obtained by PM3 (Parametric Method 3) semi-empirical calculation. The intramolecular synergistic effect of glutamic acid, cysteine and glycine moieties in glutathione is attributed to the lower energy of the lowest unoccupied molecular orbital (E LUMO ) level and to the excess hetero-atom adsorption centers and the bigger coverage on the copper surface.

  10. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    Science.gov (United States)

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  11. Effects of heat input on pitting corrosion in super duplex stainless steel weld metals

    Science.gov (United States)

    Shin, Yong taek; Shin, Hak soo; Lee, Hae woo

    2012-12-01

    Due to the difference in reheating effects depending on the heat input of subsequent weld passes, the microstructure of the weld metal varies between acicular type austenite and a mixture of polygonal type and grain boundary mixed austenite. These microstructural changes may affect the corrosion properties of duplex stainless steel welds. This result indicates that the pitting resistance of the weld can be strongly influenced by the morphology of the secondary austenite phase. In particular, the ferrite phase adjacent to the acicular type austenite phase shows a lower Pitting Resistance Equivalent (PRE) value of 25.3, due to its lower chromium and molybdenum contents, whereas the secondary austenite phase maintains a higher PRE value of more than 38. Therefore, it can be inferred that the pitting corrosion is mainly due to the formation of ferrite phase with a much lower PRE value.

  12. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Effects of Peracetic Acid on the Corrosion Resistance of Commercially Pure Titanium (grade 4).

    Science.gov (United States)

    Raimundo, Lariça B; Orsi, Iara A; Kuri, Sebastião E; Rovere, Carlos Alberto D; Busquim, Thaís P; Borie, Eduardo

    2015-01-01

    The aim of this study was to evaluate the corrosion resistance of pure titanium grade 4 (cp-Ti-4), subjected to disinfection with 0.2% and 2% peracetic acid during different immersion periods using anodic potentiodynamic polarization test in acid and neutral artificial saliva. Cylindrical samples of cp-Ti-4 (5 mm x 5 mm) were used to fabricate 24 working electrodes, which were mechanically polished and divided into eight groups (n=3) for disinfection in 2% and 0.2% peracetic acid for 30 and 120 min. After disinfection, anodic polarization was performed in artificial saliva with pH 4.8 and 6.8 to assess the electrochemical behavior of the electrodes. A conventional electrochemical cell, constituting a reference electrode, a platinum counter electrode, and the working electrode (cp-Ti specimens) were used with a scanning rate of 1 mV/s. Three curves were obtained for each working electrode, and corrosion was characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS). Data of corrosion potential (Ecorr) and passive current (Ipass) obtained by the polarization curves were analyzed statistically by Student's t-test (a=0.05). The statistical analysis showed no significant differences (p>0.05) between artificial saliva types at different concentrations and periods of disinfection, as well as between control and experimental groups. No surface changes were observed in all groups evaluated. In conclusion, disinfection with 0.2% and 2% peracetic acid concentrations did not cause corrosion in samples manufactured with cp-Ti-4.

  14. Some aspects of the role of inhibitors in the corrosion of copper in tap water as observed by cyclic voltammetry

    International Nuclear Information System (INIS)

    Bi, H.; Burstein, G.T.; Rodriguez, B.B.; Kawaley, G.

    2016-01-01

    Highlights: • The presence of Fernox ® inhibits both the anodic and cathodic reactions of copper in tap water, with the anodic reaction more heavily supressed. • Fernox ® is more inhibitive than the individual components, BTA or TEA, and also more inhibitive than a mixture of the two. • BTA is the dominant inhibitive component of Fernox ® . TEA also inhibits the reaction, but less effectively. • The inhibitors show the same degree of inhibition and the same mechanism of inhibition in hard and soft tap water. • A mechanism of inhibition is proposed whereby the inhibitor forms a film on the surface, which is reactive: surface polymerization of the reactive inhibitor is proposed. - Abstract: Cyclic voltammetric examination of the corrosion and inhibition of copper in hard and soft tap-waters in the presence of a commercial inhibitor containing benzotriazole (BTA) and triethanolamine (TEA), or its separate components, is presented. The anodic and cathodic reactions are both strongly inhibited, although the anodic reaction more so. BTA is by far the dominant inhibiting component. The inhibitor forms a polymerized reactive adsorbed surface film. Inhibition of the cathodic reaction (oxygen reduction) is not due to electron resistivity of the inhibitor, but rather, by heavily reduced surface coverage of adsorbed oxygen over a wide range of oxygen reduction overpotential.

  15. The Effect of pH on Slurry Erosion-Corrosion of Tungsten Carbide Overlays Alloyed with Ru

    Science.gov (United States)

    Nelwalani, Ndivhuwo B.; van der Merwe, Josias W.

    2018-02-01

    The aim of the study was to determine the effect of Ru additions to WC-Fe overlays when exposed to low pH slurry erosion conditions. These overlays were applied through Plasma Transferred Arc, and the original bulk Ru powder concentrations varied from 0.5 to 5 wt.%. A slurry jet impingement erosion-corrosion test rig was used to evaluate wear, and electrochemical measurements were performed to characterize the corrosion properties. The slurry mixtures contained silica sand and synthetic mine water. The pH was varied between 3 and 6.5 for the slurry erosion tests and lowered further for the corrosion characterization. Samples were examined optically and with a scanning electron microscope using energy-dispersive x-ray spectroscopy. X-ray diffraction analysis was used to determine the phases present. For the slurry erosion-corrosion results at the pH of 6.5, addition of Ru did not show a decrease in erosion-corrosion rates. However, when the pH was decreased to 3, by the addition of HCl, Ru improved the resistance. From the electrochemistry, it was also clear that Ru additions improved the corrosion resistance, but more than 1 wt.% Ru was required. At very low pH levels, the presence of Ru was not able to prevent corrosion.

  16. Effect of cerium conversion of A3xx.x/SiCp composites surfaces on salt fog corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Carboneras, M.; Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2004-07-01

    A study of the effect of cerium conversion treatment on surface of four composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) on their salt fog corrosion behaviour was performed. The conversion treatment was carried out using thermal activated full immersion in Ce(III) aqueous solutions. The matrix of A360/SiC/xxp composites is virtually free of Cu while the A380/SiC/xxp matrix contains 1.39-1.44 wt.%Ni and 3.13-3.45 wt.%Cu. Conversion performance was evaluated in neutral salt fog environment according to ASTM B117. The kinetics of the corrosion process were studied on the basis of gravimetric tests. The influence of SiCp proportion and matrix composition was evaluated and the nature of corrosion products was analysed by SEM and low angle XRD before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The Ce(III) precipitates on the cathodic sites, mainly on the intermetallic compounds, decreased both the cathodic current density and the corrosion rate of the composites tested. The presence of Cu in the matrix composition increased the corrosion rate, due to the galvanic couple Al/Cu. (authors)

  17. Effect of composition on corrosion resistance of high-alloy austenitic stainless steel weld metals

    International Nuclear Information System (INIS)

    Marshall, P.I.; Gooch, T.G.

    1993-01-01

    The corrosion resistance of stainless steel weld metal in the ranges of 17 to 28% chromium (Cr), 6 to 60% nickel (Ni), 0 to 9% molybdenum (Mo), and 0.0 to 0.37% nitrogen (N) was examined. Critical pitting temperatures were determined in ferric chloride (FeCl 3 ). Passive film breakdown potentials were assessed from potentiodynamic scans in 3% sodium chloride (NaCl) at 50 C. Potentiodynamic and potentiostatic tests were carried out in 30% sulfuric acid (H 2 SO 4 ) ar 25 C, which was representative of chloride-free acid media of low redox potential. Metallographic examination and microanalysis were conducted on the test welds. Because of segregation of alloying elements, weld metal pitting resistance always was lower than that of matching composition base steel. The difference increased with higher Cr, Mo, and N contents. Segregation also reduced resistance to general corrosion in H 2 SO 4 , but the effect relative to the base steel was less marked than with chloride pitting. Segregation of Cr, Mo, and N in fully austenitic deposits decreased as the Ni' eq- Cr' eq ratio increased. Over the compositional range studied, weld metal pitting resistance was dependent mainly on Mo content and segregation. N had less effect than in wrought alloys. Both Mo and N enhanced weld metal corrosion resistance in H 2 SO 4

  18. The effectiveness of sucralfate against stricture formation in experimental corrosive esophageal burns.

    Science.gov (United States)

    Temir, Z Günyüz; Karkiner, Aytaç; Karaca, Irfan; Ortaç, Ragip; Ozdamar, Aykut

    2005-01-01

    In this study, the effectiveness of sucralfate against stricture formation in experimental corrosive esophageal burn is reported. Sixty-four Swiss albino adult male rats were divided into three groups, group A (control; n, 7), group B (esophageal burn induced but not treated; n, 25), and group C (esophageal burn induced and treated with sucralfate, n, 32). Groups B and C were further subdivided into subgroups for evaluation on days 2, 7, and 28. A standard esophageal burn was performed by the method of Gehanno, using 50% NaOH. Oral sucralfate treatment was given to group C at a dosage of 50 mg/100 g twice daily. The rats were then killed after 2, 7, or 28 days. Levels of tissue hydroxyproline were measured in excised abdominal esophageal segments, and a histopathological evaluation was performed with hematoxylin-eosin and Masson's trichrome staining. The tissue hydroxyproline levels were significantly lower in group C than in group B (P = 0.017). There was a significant difference in the stenosis index between groups B and C (P = 0.016). When compared with group B, the collagen deposition in the submucosa and tunica muscularis was significantly lower in group C (P = 0.02). Sucralfate has an inhibitory effect on stricture formation in experimental corrosive burns and can be used in the treatment of corrosive esophageal burns to enhance mucosal healing and suppress stricture formation.

  19. Effect of surface modification on the corrosion resistivity in supercritical water

    International Nuclear Information System (INIS)

    Penttila, S.; Horvath, A.; Toivonen, A.; Zolnai, Z.

    2011-01-01

    This paper summarizes the results of high temperature corrosion studies of the candidate austenitic alloys at relevant operating conditions for SCWR. The high temperature and pressure above the thermodynamic critical point of water result in higher oxidation rate which might be critical for thin-wall components like fuel cladding. The goal of this work was to study the effect of surface preparation on the oxidation rate on Ti-stabilized austenitic alloy 1.4970. Surfaces were prepared with ion implantation using He"+- and N"+-ions. Samples were immersed in supercritical water at 650"oC/25 MPa, for up to 2000 hours. Added to this, conventional surface treatments were conducted for austenitic alloy 316L tube samples in order to study the effect of cold work in sample surface on corrosion resistance. The corrosion rate was evaluated by measuring the weight change of the samples. The compositions of the oxide layers were analyzed using scanning electron microscope (SEM) in conjunction with Energy Dispersive Spectroscopy (EDS). (author)

  20. Effect of composition on the corrosion behavior of 316 stainless steel in flowing sodium

    International Nuclear Information System (INIS)

    Bates, J.F.; Brehm, W.F.

    1976-03-01

    Type 316 stainless steel specimens irradiated and non-irradiated, with minor variations in C, N, Cr, Ni, Si, and Mn content, were exposed to flowing sodium in the Source Term Control Loop-1 facility. Test conditions of 604 0 C, a sodium velocity of 6.7 m/s, and an oxygen content of 0.5 and 2.5 ppM were used to ascertain the effect of these compositional variations on the corrosion rate and on the 54 Mn release rate. Variations in C, N, and Mn had no significant effect on the corrosion rate. The corrosion rate increased somewhat as the Ni and Si content of the steel was increased, and decreased with an increase in Cr content. Microprobe examination showed preferential leaching of Mn, Si, Cr, and Ni to depths of up to 10 μm (0.4 mil) after exposure times ranging from 5000 to 8000 hours. Variations in natural ( 55 Mn) content did not affect release rates of 54 Mn generated by 54 Fe(n,p) 54 Mn. 10 fig, 4 tables

  1. Effect of Multipass Friction Stir Processing on Mechanical and Corrosion Behavior of 2507 Super Duplex Stainless Steel

    Science.gov (United States)

    Mishra, M. K.; Gunasekaran, G.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    The microstructure, mechanical properties, and corrosion behavior of 2507 super duplex stainless steel after multipass friction stir processing (FSP) were examined. A significant refinement in grain size of both ferrite and austenite was observed in stir zone resulting in improved yield and tensile strength. Electrochemical impedance spectroscopy and anodic polarization studies in 3.5 wt.% NaCl solution showed nobler corrosion characteristics with increasing number of FSP passes. This was evident from the decrease in corrosion current density, decrease in passive current density, and increase in polarization resistance. Also, the decrease in density of defects, based on Mott-Schottky analysis, further confirms the improvement in corrosion resistance of 2507 super duplex stainless steel after multipass FSP.

  2. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laleh, M., E-mail: laleh.m.1992@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Kargar, Farzad, E-mail: farzad.kargar@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: > Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. > Thickness of the deformed layer increased with increasing of the balls size. > Top surface microhardness for all of the SMATed samples increased significantly. > SMAT increased the surface roughness; increase in balls diameter increased the roughness. > SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 {mu}m, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 {mu}m for 2 mm balls to 150 {mu}m for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  3. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Laleh, M.; Kargar, Farzad

    2011-01-01

    Highlights: → Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. → Thickness of the deformed layer increased with increasing of the balls size. → Top surface microhardness for all of the SMATed samples increased significantly. → SMAT increased the surface roughness; increase in balls diameter increased the roughness. → SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 μm, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 μm for 2 mm balls to 150 μm for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  4. Effect of heat treatment and composition on stress corrosion cracking of steam generation tubing materials

    International Nuclear Information System (INIS)

    Kim, H. P.; Hwang, S. S.; Kuk, I. H.; Kim, J. S.; Oh, C. Y.

    1998-01-01

    Effects of heat treatment and alloy composition on stress corrosion cracking (SCC) of steam generator tubing materials have been studied in 40% NaOH at 315.deg.C at potential of +200mV above corrosion potential using C-ring specimen and reverse U bend specimen. The tubing materials used were commercial Alloy 600, Alloy 690 and laboratory alloys, Ni-χCr-10Fe. Commercial Alloy 600, Alloy 690 were mill annealed or thermally treated.Laboratory alloy Ni-χCr-10Fe, and some of Alloy 600 and Alloy 690 were solution annealed. Polarization curves were measured to find out any relationship between SCC susceptibility and electrochemical behaviour. The variation in thermal treatment of Alloy 600 and Alloy 690 had no effect on polarization behaviour probably due to small area fraction of carbide and Cr depletion zone near grain boundary. In anodic polarization curves, the first and second anodic peaks at about 170mV and about at 260mV, respectively, above corrosion potential were independent of Cr content, whereas the third peak at 750mV above corrosion potential and passive current density in-creased with Cr content. SCC susceptibility decreased with Cr content and thermal treatment producing semicontinuous grain boundary decoration. Examination of cross sectional area of C-ring specimen showed deep SCC cracks for the alloys with less than 17%Cr and many shallow attacks for alloy 690. The role of Cr content in steam generator tubing materials and grain boundary carbide on SCC were discussed

  5. Effects of potential and concentration of bicarbonate solution on stress corrosion cracking of annealed carbon steel

    International Nuclear Information System (INIS)

    Haruna, Takumi; Zhu, Liehong; Murakami, Makoto; Shibata, Toshio

    2000-01-01

    Effects of potential and concentration of bicarbonate on stress corrosion cracking (SCC) of annealed SM 400 B carbon steel has been investigated in bicarbonate solutions at 343 K. The surface of annealed specimen had decarburized layer of about 0. 5 mm thickness. A potentiostatic slow strain rate testing apparatus equipped with a charge coupled device camera system was employed to evaluate SCC susceptibility from the viewpoint of the crack behavior. In a constant bicarbonate concentration of 1 M, cracks were observed in the potential range from -800 to 600 mV Ag/ A gCl . and especially, the initiation and the propagation of the cracks were accelerated at -600 mV. At a constant potential of -600 mV, cracks were observed in the concentration range from 0.001 to 1 M, and the initiation and the propagation of the cracks were suppressed as the concentration decreased. Polarization curves for the decarburized surface were measured with two different scan rates. High SCC susceptibility may be expected in the potential range where the difference between the two current densities is large. It was found in this system that the potential with the maximum difference in the current density was -600 mV for 1 M bicarbonate solution, and the potential increased with a decrease in the concentration of bicarbonate. This means that an applied potential of -600 mV provides the highest SCC susceptibility for 1 M bicarbonate solution, and that the SCC susceptibility decreases as the concentration decreases. These findings support the dependence of the actual SCC behavior on the potential and the concentration of bicarbonate. (author)

  6. The Synergistic Effect of Iodide and Sodium Nitrite on the Corrosion Inhibition of Mild Steel in Bicarbonate–Chloride Solution

    Directory of Open Access Journals (Sweden)

    Gaius Debi Eyu

    2016-10-01

    Full Text Available The effect of potassium iodide (KI and sodium nitrite (NaNO2 inhibitor on the corrosion inhibition of mild steel in chloride bicarbonate solution has been studied using electrochemical techniques. Potentiodynamic polarisation data suggest that, when used in combination, KI and NaNO2 function together to inhibit reactions at both the anode and the cathode, but predominantly anodic. KI/NO2− concentration ratios varied from 2:1 to 2:5; inhibition efficiency was optimized for a ratio of 1:1. The surface morphology and corrosion products were analysed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The latter shows that the addition of I− to NO2 facilitates the formation of a passivating oxide (γ-Fe2O3 as compared to NO2− alone, decreasing the rate of metal dissolution observed in electrochemical testing. The synergistic effect of KI/NO2− inhibition was enhanced under the dynamic conditions associated with testing in a rotating disc electrode.

  7. Electrochemical corrosion of grinding media and effect of anions present in industrial waters; Corrosion electroquimica de medios de molienda y efecto de aniones presentes en aguas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Magne, L.; Navarro, P.; Vargas, C.; Carrasco, S.

    2001-07-01

    The steel used in the minerals processing as grinding media (balls or bars), is an important input in terms of cost of the process. Considering the importance of the steel consumption in these processes, this work is guided to evaluate to laboratory scale the effect of the anions present in the industrial waters on the electrochemical corrosion of grinding media. Tests in electrochemical cell, were accomplished measuring potential and corrosion current to four electrodes that were manufactured using sufficiently pure sample of chalcopyrite, bornite, enargite and steel ball. The ions used in the tests were chlorides, sulfates, nitrates and carbonates in concentrations from 1 to 180 ppm in individual form or in mixtures, according to the levels measurement of these in industrial waters. (Author) 10 refs.

  8. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  9. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  10. Analysis of the effects of corrosion probe on riser 241-AN-102-WST-16 during seismic event

    International Nuclear Information System (INIS)

    ZIADA, H.H.

    1998-01-01

    This analysis supports the installation activity of the corrosion probe in Tank 241-AN-102. The probe is scheduled to be installed in Riser 241-AN-102-WST-16 (formerly known as Riser 15B). The purpose of this analysis is to evaluate the potential effect of the corrosion probe on the riser during a credible seismic event. The previous analysis (HNF 1997a) considered only pump jet impingement loading

  11. Effects of solution treatment on mechanical properties and corrosion resistance of 4A duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Panpan; Wang, Aiqin; Wang, Wenyan [Henan Univ. of Science and Technology, Luoyang (China). School of Material Science and Engineering; Xie, Jingpei [Henan Univ. of Science and Technology, Luoyang (China). Collaborative Innovation Center of Nonferrous Metals

    2018-02-15

    In this study, 4A duplex stainless steels were prepared via remelting in an intermediate frequency furnace and subsequently solution treated at different temperatures. The effects of solution treatment on the mechanical properties and corrosion resistance of 4A duplex stainless steel were investigated. Microstructures were characterized via optical microscopy and scanning electron microscopy. The mechanical properties were evaluated via hardness test, tensile test, and impact test experiments. The point corrosion resistance was studied via chemical immersion and potentiodynamic anodic polarization. The results showed that with increasing solution temperature in the range of 1223 - 1423 K, the tensile strength and hardness first decreased and then increased, and minimum values were obtained at 1323 K. The σ phase precipitated at the boundaries of the α/γ phases in samples solution treated at 1223 K, decreasing both impact energy and pitting potential of the experimental steels. When experimental steels were solution treated at 1373 K for 2 h, a suitable volume fraction of α/γ was uniformly distributed throughout the microstructure, and the steels exhibited optimal mechanical properties and pitting corrosion resistance.

  12. Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

    International Nuclear Information System (INIS)

    Jeon, Jae Hong; Shon, Min Young

    2014-01-01

    Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ⅠZⅠ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior

  13. Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi; Lister, Derek H.

    2009-01-01

    Overlapping effects of flow dynamics and corrosion are important issues to determine reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) are typical phenomena due to both interactions. In order to evaluation local wall thinning due to FAC and LDI, 6 step evaluation procedures have been proposed. (1) Flow pattern along the flow path was obtained with 1D computational flow dynamics (CFD) codes, (2) Corrosive conditions, e.g., oxygen concentration along the flow path were calculated with a hydrazine oxygen reaction code for FAC evaluation, while flow pattern of liquid droplets in high velocity steam and possibility of their collision to pipe inner surface were evaluated for LDI evaluation. (3) Mass transfer coefficient at the structure surface was calculated with 3D CFD codes for FAC evaluation, while frequency of oxide film rupture due to droplet collision was calculated for LDI evaluation. (4) High risk zones for FAC/LDI occurrence were evaluated by coupling major parameters, and then, (5) Wall thinning rates were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC/LDI risk zone. (author)

  14. Effect of steam corrosion on core post strength loss: I. Low, chronic steam ingress rates

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1976-10-01

    The purpose of the study was to assess the effect of chronic, low levels of steam ingress into the primary system of the HTGR on the corrosion, and consequent strength loss of the core support posts. The assessment proceeded through the following three steps: (1) The impurity composition in the primary system was estimated as a function of a range of steady ingress rates of from 0.001 to 1.0 g/sec, both by means of an analysis of the Dragon steam ingress experiment and a computer code, TIMOX, which treats the primary system as a well-mixed pot. (2) The core post burnoffs which result from 40-year exposures to these determined impurity atmospheres were then estimated using a corrosion rate expression derived from published ATJ-graphite corrosion rate data. Burnoffs were determined for both the core posts at the nominal and the maximum sustained temperature, estimated to be 90 0 C above nominal. (3) The final step involved assessment of the degree of strength loss resulting from the estimated burnoffs. An empirical equation was developed for this purpose which compares reasonably well with strength loss data for a number of different graphites and specimen geometries

  15. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    Science.gov (United States)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  17. Effects of Dextrose and Lipopolysaccharide on the Corrosion Behavior of a Ti-6Al-4V Alloy with a Smooth Surface or Treated with Double-Acid-Etching

    Science.gov (United States)

    Faverani, Leonardo P.; Assunção, Wirley G.; de Carvalho, Paulo Sérgio P.; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T.; Barao, Valentim A.

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (pcorrosion current density) and Ipass (pcorrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections. PMID:24671257

  18. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  19. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1999-07-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  20. Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-12-01

    Full Text Available This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.

  1. Effect of water flow rate and water chemistry on corrosion environment in reactor pressure vessel bottom of BWRs

    International Nuclear Information System (INIS)

    Ichikawa, Nagayoshi; Hemmi, Yukio; Takagi, Junichi; Urata, Hidehiro

    1999-01-01

    To evaluate the corrosion environment at the bottom of the reactor pressure vessel in a BWR and the effect of hydrogen water chemistry on the corrosion of materials in the region, measurements of the corrosion potential of Type-304 stainless steel and nickel base alloy were made in a laboratory test loop. The effect of water chemistry on the corrosion potential of nickel base alloy is found to be similar to the effect on Type-304 stainless steel. Flow analysis and precise evaluations of the corrosion potential of materials in the bottom region were implemented. Corrosion potentials throughout the region were evaluated from the flow analysis results. At the jet pump outlet and shroud support leg, a rather large amount of hydrogen had to be added to reduce the potential. Conversely, a small amount of hydrogen was enough in the case of the stub tube of the control rod drive guide tubing and the ICM housings located in the center of the bottom region. (author)

  2. Regularities of transition of steel corrosion products into aqueous medium

    International Nuclear Information System (INIS)

    Nikitin, V.I.; Gvozd', A.M.; Karpova, T.Ya.

    1981-01-01

    Effect of different factors on a degree of steel corrosion product transition to a water medium has been studied. Ratio of a specific masm qsub(c) of the corrosion products transferring to the water and a specific masm q of all the steel corrosion products produced under the given conditions was used as a criterium characterizing a degree of corrosion product transition from steel surfaces to water. The transition degree to water at a high temperature of different kind steel corrosion products differs relatively few (qsub(c)/q=0.5-0.7) in the water containing oxygen and different salts on increasing temperature, the corrosion process is characterized with continuous decrease of a relative amount of the corrosion products transferring to the medium. On the contrary, in the deaerated water the transition degree of perlite steel corrosion products to water remains constant in a wide temperature range (100-320 deg C). Besides chromium, nickel being a part of austenitic steel composition affects positively decrease of the transition degree of the corrosion products to water as well as q and qsub(c) reduction. The most difference in corrosion characteristics and the transition degree to water is observed when affecting colant steels in the low-temperature zone of the steam generator [ru

  3. Chemical and structural effects of phosphorus on the corrosion behavior of ion beam mixed Fe-Cr-P alloys

    International Nuclear Information System (INIS)

    Demaree, J.D.; Was, G.S.; Sorensen, N.R.

    1992-01-01

    An experimental program was conducted to determine the mechanisms by which phosphorus affects the corrosion and passivation behavior of Fe-Cr-P alloys. To identify separately the effects of structure and chemistry on the corrosion behavior, thin films of Fe-10Cr-xP (0≤x≤35 at.%) were prepared by ion beam mixing. Films with a phosphorus content greater than approximately 20at.% were found to be entirely amorphous. Devitrification of the amorphous phase was accomplished by heating the samples to 450degC in an inert environment. Standard polarization tests of the sulfuric acid (with and without Cl - ) indicated that the films containing phosphorus were more corrosion resistant than Fe-10Cr, at both active and passive potentials. There was a monotonic relationship between the amount of phosphorus in the alloy and the corrosion resistance, with the open-circuit corrosion rate of Fe-10Cr-35P nearly four orders of magnitude lower than that of Fe-10Cr. Devitrification of the alloys had no significant effect on the corrosion rate, indicating that the primary effect of phosphorus is chemical in nature, and not structural. The passive oxides were depth-profiled using X-ray photoelectron spectroscopy, which indicated that phosphorus was a primary constituent, as phosphate. The presence of phosphate in the passive oxides reduced the overall corrosion rate directly, by suppressing anodic dissolution. The presence of phosphorus did enhance chromium enrichment in the oxide, but that was not thought to be the primary mechanism by which phosphorus increased the corrosion resistance. (orig.)

  4. Corrosion Effects on the I-V Characteristics of Electrically ...

    African Journals Online (AJOL)

    Experimental analysis on the effects of atmospheric Pollution and environmental degradation on the electrical properties of un-protected high tension cables, using copper and Aluminum wires of various diameters as case study, has been advanced. The analysis of the various data obtained in the course of the experiment, ...

  5. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Science.gov (United States)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  6. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    Science.gov (United States)

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Analysis of corrosion in petroleum pipeline by laser shearography

    International Nuclear Information System (INIS)

    Mohd Yusnisyam Yusof; Wan Saffiey Wan Abdullah; Khairul Anuar Mohd Salleh; Ahmad Nasruddin Ahmad Puad

    2008-08-01

    This paper aims at assessing of the corrosion defects in standard petroleum pipelines by using shearography method. Shearography technique reveals the stress-affected zone due to additional loading which utilized the laser speckle correlation on the subject inspected. In this study, the artificial corroded pipeline is modeled by different of corrosion depth and width. The pressure was subjected into the 7 mm thickness pipe wall to form an internal air pressure as the loading mechanism. The study shows that change of internal pressure is very effective mechanism to reveal corrosion activity in the pipe. The speckle correlation for corrosion of more than 3 mm depth with ΔP≤0.24 MPa can clearly be observed. For comparison the Radiography Technique is used to correlate the depth, size and shape of the corrosion and finally the location of corrosion area. (Author)

  8. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Baek, B. J.; Park, S. Y. and others

    1999-08-01

    The overview of corrosion and hydriding behaviors of Zr-based alloy under the conditions of the in-reactor service and in the absence of irradiation is introduced in this report. The metallurgical characteristics of Zr-based alloys and the thermo-mechanical treatments on the microstructures and the textures in the manufacturing process for fuel cladding are also introduced. The factors affecting the corrosion of Zr alloy in reactor are summarized. And the corrosion mechanism and hydrogen up-take are discussed based on the laboratory and in-reactor results. The phenomenological observations of zirconium alloy corrosion in reactors are summarized and the models of in-reactor corrosion are exclusively discussed. Finally, the effects of irradiation on the corrosion process in Zr alloy were investigated mainly based on the literature data. (author). 538 refs., 26 tabs., 105 figs

  9. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  10. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: marcogarciarenteria@uadec.edu.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: franciscocl7@yahoo.com.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); Curiel-López, F.F., E-mail: franciscocl7@yahoo.com.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico)

    2017-02-28

    Highlights: • Application of EMILI during welding 2205 Duplex stainless steel hindered the coarsening of δ grains in HTHAZ and promoted regeneration of γ. • Welds made with simultaneous EMILI presented TPI values at the HTHAZ similar to those for BM. • Welds made under 3, 12 and 15 mT presented a mass loss by anodic polarisation similar to that observed for the as-received BM. • This behaviour is due to changes in the dynamics of microstructural evolution during welding with EMILI. - Abstract: The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  11. The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U-6 Wt Pct Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.; Romiy, A.D.; Weirick, L.J.

    1984-01-01

    The effect of cooling rate on microstructure, mechanical behavior, corrosion resistance, and subsequent age hardenability is discussed. Cooling rates in excess of 20 Ks -1 cause the parent γ-phase to transform martensitically to a niobium supersaturated variant of the α-phase. This phase exhibits low hardness and strength, high ductility, good corrosion resistance, and age hardenability. As cooling rate decreases from 10 Ks -1 to 0.2 Ks -1 , microstructural changes (consistent with spinodal decomposition) occur to an increasing extent. These changes produce increases in hardness and strength and decreases in ductility, corrosion resistance, and age hardenability. At cooling rates less than 0.2 Ks -1 the parent phase undergoes cellular decomposition to a coarse two-phase lamellar microstructure which exhibits intermediate strength and ductility, reduced corrosion resistance, and no age hardenability. An analysis of the cooling rates indicates that fully martensitic microstructures can be obtained in plates as thick as 50 mm

  12. Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications.

    Science.gov (United States)

    Tsao, L C

    2015-01-01

    The aim of this study was to investigate the effects of Sn content on the microstructure and corrosion resistance of Ti7CuXSn (x=0-5 wt.%) samples. The corrosion tests were carried out in 0.9 wt.% NaCl solution at 25 °C. The electrochemical corrosion behavior of the Ti7CuXSn alloy samples was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and equivalent circuit analysis. The resulting impedance parameters and polarization curves showed that adding Sn improved the electrochemical corrosion behavior of the Ti7CuXSn alloy. The Ti7CuXSn alloy samples were composed of a dual-layer oxide consisting of an inner barrier layer and an outer porous layer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution

    International Nuclear Information System (INIS)

    Chen Jian; Dong Junhua; Wang Jianqiu; Han Enhou; Ke Wei

    2008-01-01

    The effect of magnesium hydride on the corrosion behavior of an as-cast AZ91 alloy in 3.5 wt.% NaCl solution was investigated using gas collection method and pote