WorldWideScience

Sample records for correlative light-electron microscopy

  1. Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps.

    Science.gov (United States)

    Wrede, Christoph; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2008-05-01

    In several fields of cell biology, correlative microscopy is applied to compare the structure of objects at high resolution under the electron microscope with low resolution light microscopy images of the same sample. It is, however, difficult to prepare samples and marker systems that are applicable for both microscopic techniques for the same specimen at the same time. In our studies, we used microbial mats from Cold Seep communities for a simple and rapid correlative microscopy method. The mats consist of bacterial and archaeal microorganisms, coupling reverse methanogenesis to the reduction of sulfate. The reverse methanogenic pathway also generates carbonates that precipitate inside the mat and may be the main reason for the formation of a microbial reef. The mat shows highly differentiated aggregates of various organisms, tightly interconnected by extracellular polysaccharides. In order to investigate the role of EPS as adhesive mucilage for the biofilm and as a precipitation matrix for carbonate minerals, samples were embedded in a hydrophilic resin (Lowicryl K4 M). Sections were suitable for light as well as electron microscopy in combination with lectins, either labeled with a fluorescent marker or with colloidal gold. This allows lectin mapping at low resolution for light microscopy in direct comparison with a highly resolved electron microscopic image.

  2. Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy

    Science.gov (United States)

    Miles, Benjamin T.; Greenwood, Alexander B.; Benito-Alifonso, David; Tanner, Hugh; Galan, M. Carmen; Verkade, Paul; Gersen, Henkjan

    2017-01-01

    Fluorescently labelled nanoparticles are routinely used in Correlative Light Electron Microscopy (CLEM) to combine the capabilities of two separate microscope platforms: fluorescent light microscopy (LM) and electron microscopy (EM). The inherent assumption is that the fluorescent label observed under LM colocalises well with the electron dense nanoparticle observed in EM. Herein we show, by combining single molecule fluorescent imaging with optical detection of the scattering from single gold nanoparticles, that for a commercially produced sample of 10 nm gold nanoparticles tagged to Alexa-633 there is in fact no colocalisation between the fluorescent signatures of Alexa-633 and the scattering associated with the gold nanoparticle. This shows that the attached gold nanoparticle quenches the fluorescent signal by ~95%, or less likely that the complex has dissociated. In either scenario, the observed fluorescent signal in fact arises from a large population of untagged fluorophores; rendering these labels potentially ineffective and misleading to the field. PMID:28317888

  3. Analysis of acute brain slices by electron microscopy: a correlative light-electron microscopy workflow based on Tokuyasu cryo-sectioning.

    Science.gov (United States)

    Loussert Fonta, Celine; Leis, Andrew; Mathisen, Cliff; Bouvier, David S; Blanchard, Willy; Volterra, Andrea; Lich, Ben; Humbel, Bruno M

    2015-01-01

    Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of

  4. Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and nanosims microscopies.

    Science.gov (United States)

    Quintana, Carmen; Wu, Ting-Di; Delatour, Benoit; Dhenain, Marc; Guerquin-Kern, Jean Luc; Croisy, Alain

    2007-04-01

    Neurodegenerative diseases induce morphological and chemical alterations in well-characterized regions of the brain. Understanding their pathological processes requires the use of methods that assess both morphological and chemical alterations in the tissues. In the past, microprobe approaches such as scanning electron microscopy combined with an X-ray spectrometer, Proton induced X-ray emission, secondary ion mass spectrometry (SIMS), and laser microprobe mass analysis have been used for the study of pathological human brain with limited success. At the present, new SIMS instruments have been developed, such as the NanoSIMS-50 ion microprobe, that allow the simultaneous identification of five elements with high sensitivity, at subcellular spatial resolution (about 50-100 nm with the Cs(+) source and about 150-200 nm with O(-) source). Working in scanning mode, 2D distribution of five elements (elemental maps) can be obtained, thus providing their exact colocalization. The analysis can be performed on semithin or ultrathin embedded sections. The possibility of using transmission electron microscopy and SIMS on the same ultrathin sections allows the correlation between structural and analytical observations at subcellular and ultrastructural level to be established. Our observations on pathological brain areas allow us to establish that the NanoSIMS-50 ion microprobe is a highly useful instrument for the imaging of the morphological and chemical alterations that take place in these brain areas. In the human brain our results put forward the subcellular distribution of iron-ferritin-hemosiderin in the hippocampus of Alzheimer disease patients. In the thalamus of transgenic mice, our results have shown the presence of Ca-Fe mineralized amyloid deposits.

  5. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity

    KAUST Repository

    Othman, Basmah A.

    2016-04-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies.

  6. Correlative fluorescence and electron microscopy.

    Science.gov (United States)

    Schirra, Randall T; Zhang, Peijun

    2014-10-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associated with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology has led to rapid improvement in the protocols and has ushered in a new generation of instruments to reach the next level of correlation--integration.

  7. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  8. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals sel

  9. Correlative microscopy of detergent granules.

    Science.gov (United States)

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries).

  10. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    OpenAIRE

    Doory Kim; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Xiaowei Zhuang

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and ima...

  11. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  12. Correlative stochastic optical reconstruction microscopy and electron microscopy.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.

  13. Image Correlation Microscopy for Uniform Illumination

    Science.gov (United States)

    Gaborski, Thomas R.; Sealander, Michael N.; Ehrenberg, Morton; Waugh, Richard E.; McGrath, James L.

    2011-01-01

    Image cross-correlation microscopy (ICM) is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. ICM has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy (FCS). In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy (UI-ICM). Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning ICM, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function (SACF). Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function (TACF) depends strongly on particle size and not particle shape. In this report, we establish the relationships between the SACF feature size, TACF characteristic time and the diffusion coefficient for UI-ICM using analytical, Monte-Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate UI-ICM analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils. PMID:20055917

  14. Correlative photoactivated localization and scanning electron microscopy.

    Directory of Open Access Journals (Sweden)

    Benjamin G Kopek

    Full Text Available The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM and scanning electron microscope (SEM system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.

  15. Correlative photoactivated localization and scanning electron microscopy.

    Science.gov (United States)

    Kopek, Benjamin G; Shtengel, Gleb; Grimm, Jonathan B; Clayton, David A; Hess, Harald F

    2013-01-01

    The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM)) and scanning electron microscope (SEM) system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.

  16. Metallothioneins for correlative light and electron microscopy.

    Science.gov (United States)

    Fernández de Castro, Isabel; Sanz-Sánchez, Laura; Risco, Cristina

    2014-01-01

    Structural biologists have been working for decades on new strategies to identify proteins in cells unambiguously. We recently explored the possibilities of using the small metal-binding protein, metallothionein (MT), as a tag to detect proteins in transmission electron microscopy. It had been reported that, when fused with a protein of interest and treated in vitro with gold salts, a single MT tag will build an electron-dense gold cluster ~1 nm in diameter; we provided proof of this principle by demonstrating that MT can be used to detect intracellular proteins in bacteria and eukaryotic cells. The method, which is compatible with a variety of sample processing techniques, allows specific detection of proteins in cells with exceptional sensitivity. We illustrated the applicability of the technique in a series of studies to visualize the intracellular distribution of bacterial and viral proteins. Immunogold labeling was fundamental to confirm the specificity of the MT-gold method. When proteins were double-tagged with green fluorescent protein and MT, direct correlative light and electron microscopy allowed visualization of the same macromolecular complexes with different spatial resolutions. MT-gold tagging might also become a useful tool for mapping proteins into the 3D-density maps produced by (cryo)-electron tomography. New protocols will be needed for double or multiple labeling of proteins, using different versions of MT with fluorophores of different colors. Further research is also necessary to render the MT-gold labeling procedure compatible with immunogold labeling on Tokuyasu cryosections and with cryo-electron microscopy of vitreous sections.

  17. Correlative light and electron microscopy : strategies and applications

    NARCIS (Netherlands)

    Driel, Linda Francina van

    2011-01-01

    Correlative light and electron microscopy (CLEM) refers to the observation of the same structures or ultrastructures with both light microscopy (LM) and electron microscopy (EM). LM provides an overview of the studied material, and enables the quick localization of structures that are fluorescently

  18. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  19. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  20. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  1. Contributed Review: Review of integrated correlative light and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, F. J.; Otto, C. [Medical Cell Biophysics Group, MIRA Institute, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-01-15

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  2. Multi-modal registration for correlative microscopy using image analogies.

    Science.gov (United States)

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-08-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Correlative Microscopy of Bone in Implant Osteointegration Studies

    Directory of Open Access Journals (Sweden)

    Alessandra Triré

    2010-01-01

    Full Text Available Routine morphological analyses usually include investigations by light microscopy (LM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Each of these techniques provides specific information on tissue morphology and all the obtained results are then combined to give an in-depth morphological overview of the examined sample. The limitations of this traditional comparative microscopy lie in the fact that each technique requires a different experimental sample, so that many specimens are necessary and the combined results come from different samples. The present study describes a technical procedure of correlative microscopy, which allows us to examine the same bone section first by LM and then, after appropriate processing, by SEM or TEM. Thanks to the possibility of analyzing the same undecalcified bone sections both by LM and SEM, the approach described in the present study allows us to make very accurate evaluations of old/new bone morphology at the bone-implant interface.

  4. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    Science.gov (United States)

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM.

  5. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    Science.gov (United States)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  6. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    Science.gov (United States)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-01-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673

  7. Correlative microscopy of a carbide-free bainitic steel.

    Science.gov (United States)

    Hofer, Christina; Bliznuk, Vitaliy; Verdiere, An; Petrov, Roumen; Winkelhofer, Florian; Clemens, Helmut; Primig, Sophie

    2016-02-01

    In this work a carbide-free bainitic steel was examined by a novel correlative microscopy approach using transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The individual microstructural constituents could be identified by TKD based on their different crystal structure for bainitic ferrite and retained austenite and by image quality for the martensite-austenite (M-A) constituent. Subsequently, the same area was investigated in the TEM and a good match of these two techniques regarding the identification of the area position and crystal orientation could be proven. Additionally, the M-A constituent was examined in the TEM for the first time after preceded unambiguous identification using a correlative microscopy approach. The selected area diffraction pattern showed satellites around the main reflexes which might indicate a structural modulation.

  8. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.

  9. Confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    CERN Document Server

    Jun, Brian; Yang, Haisheng; Main, Russell; Vlachos, Pavlos

    2016-01-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC) based velocimetry are (1) the use of diffusion dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross correlation, and develop an SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nano...

  10. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts.

    Science.gov (United States)

    Monserrate, Aitor; Casado, Santiago; Flors, Cristina

    2014-03-17

    Hybrid microscopy: A correlative microscopy tool that combines in situ super-resolution fluorescence microscopy based on single-molecule localization and atomic force microscopy is presented. Direct comparison with high- resolution topography allows the authors to improve fluorescence labeling and image analysis in super-resolution imaging.

  11. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    Science.gov (United States)

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  12. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy.

    Science.gov (United States)

    Russell, Matthew R G; Lerner, Thomas R; Burden, Jemima J; Nkwe, David O; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L; Peddie, Christopher J; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G; Collinson, Lucy M

    2017-01-01

    The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. © 2017. Published by The Company of Biologists Ltd.

  13. THz Microscopy of Anisotropy and Correlated Motions in Protein Crystals

    Science.gov (United States)

    Niessen, Katherine; Acbas, Gheorghe; Snell, Edward; Markelz, Andrea

    2013-03-01

    We introduce a new technique, Crystal Anisotropy Terahertz Microscopy (CATM) which can directly measure correlated intra-molecular protein vibrations. The terahertz (THz) frequency range (5-100 cm-1) corresponds to global correlated protein motions, proposed to be essential to protein function [1, 2]. CATM accesses these motions by removal of the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for hen egg-white lysozyme (HEWL) single crystals as well as HEWL with triacetylglucosamine (HEWL-3NAG) inhibitor single crystals. The most prominent features for the HEWL crystals appear at 45 cm-1, 69 cm-1, and 78 cm-1 and the strength of the absorption varies with crystal orientation relative to the THz polarization. Calculations show similar anisotropic features, suggesting specific correlated mode identification is possible. 1. Hammes-Schiffer, S. and S.J. Benkovic, Relating Protein Motion to Catalysis. Annu. Rev. Biochem., 2006. 75: p. 519-41. 2. Henzler-Wildman, K.A., et al., Intrinsic motions along an enzymatic reaction trajectory. Nature, 2007. 450(7171): p. 838-U13. This work supported by NSF MRI2 grant DBI295998.

  14. Quantum correlation enhanced super-resolution localization microscopy

    CERN Document Server

    Israel, Yonatan; Oron, Dan; Silberberg, Yaron

    2016-01-01

    In standard localization microscopy methods a small number of emitters are sparsely photoswitched, typically not more than one flourophore per diffraction limited spot, limiting the temporal resolution of super-resolved images. Localization of a non-sparse scene requires a precise estimate for the number of active emitters. Quantum correlations in the emitted fluorescence can probe the number of activated emitters, exploiting the fact that a single fluorophore emits a single photon at a time. To obtain this additional information, which is not provided by conventional cameras, we employ a new imaging configuration based on single-photon avalanche detectors (SPAD). Here we demonstrate a 20nm resolution localization and single-particle tracking (SPT) of non-sparsely activated emitters, which may facilitate super-resolved imaging at enhanced temporal resolution.

  15. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points.

    Directory of Open Access Journals (Sweden)

    Matthia A Karreman

    Full Text Available Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis.

  16. Correlative Microscopy of Lamellar Hole-Associated Epiretinal Proliferation

    Directory of Open Access Journals (Sweden)

    Denise Compera

    2015-01-01

    Full Text Available Purpose. To describe morphology of lamellar hole-associated epiretinal proliferation (LHEP removed from eyes with lamellar macular holes (LMH. Methods. Based on optical coherence tomography data, 10 specimens of LHEP were removed from 10 eyes with LMH during standard vitrectomy. Specimens were prepared for correlative light and electron microscopy (CLEM using an immunonanogold particle of 1.4 nm diameter that was combined with a fluorescein moiety, both having been attached to a single antibody fragment. As primary antibodies, we used antiglial fibrillary acidic protein (GFAP, anti-CD45, anti-CD64, anti-α-smooth muscle actin (α-SMA, and anticollagen type I and type II. Results. In LHEP, GFAP-positive cells possess ultrastructural characteristics of fibroblasts and hyalocytes. They represent the major cell types and were densely packed in cell agglomerations on vitreous collagen strands. Epiretinal cells of LHEP rarely demonstrated contractive properties as α-SMA-positive myofibroblasts were an infrequent finding. Conclusion. CLEM indicates that epiretinal cells in LHEP might originate from the vitreous and that remodelling processes of vitreous collagen may play an important role in pathogenesis of eyes with LMH.

  17. Simultaneous Correlative Light and Electron Microscopy of Samples in Liquid

    NARCIS (Netherlands)

    Liv, N.

    2014-01-01

    A combined use of fluorescence and light microscopy is a powerful approach to further increase our understanding in biological systems of structure-function relations at cellular and sub-cellular levels. The power of fluorescence microscopy (FM) is to spectrally resolve and visualize individual

  18. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  19. Confocal microscopy through a multimode fiber using optical correlation

    CERN Document Server

    Loterie, Damien; Psaltis, Demetri; Moser, Christophe

    2015-01-01

    We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber's transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light coming back from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

  20. Confocal microscopy through a multimode fiber using optical correlation

    Science.gov (United States)

    Loterie, Damien; Goorden, Sebastianus A.; Psaltis, Demetri; Moser, Christophe

    2015-12-01

    We report on a method to obtain confocal imaging through multimode fibers using optical correlation. First, we measure the fiber's transmission matrix in a calibration step. This allows us to create focused spots at one end of the fiber by shaping the wavefront sent into it from the opposite end. These spots are scanned over a sample, and the light coming back from the sample via the fiber is optically correlated with the input pattern. We show that this achieves spatial selectivity in the detection. The technique is demonstrated on microbeads, a dried epithelial cell, and a cover glass.

  1. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    Science.gov (United States)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  2. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  3. Correlative microscopy of densely labeled projection neurons using neural tracers.

    Science.gov (United States)

    Oberti, Daniele; Kirschmann, Moritz A; Hahnloser, Richard H R

    2010-01-01

    Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007), in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM) and then in the electron microscope (EM). We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide). Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

  4. Correlative microscopy of densely labeled projection neurons using neural tracers

    Directory of Open Access Journals (Sweden)

    Daniele Oberti

    2010-06-01

    Full Text Available Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007, in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM and then in the electron microscope (EM. We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide. Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

  5. Bleed-through correction for rendering and correlation analysis in multi-colour localization microscopy.

    Science.gov (United States)

    Kim, Dahan; Curthoys, Nikki M; Parent, Matthew T; Hess, Samuel T

    2013-09-01

    Multi-colour localization microscopy has enabled sub-diffraction studies of colocalization between multiple biological species and quantification of their correlation at length scales previously inaccessible with conventional fluorescence microscopy. However, bleed-through, or misidentification of probe species, creates false colocalization and artificially increases certain types of correlation between two imaged species, affecting the reliability of information provided by colocalization and quantified correlation. Despite the potential risk of these artefacts of bleed-through, neither the effect of bleed-through on correlation nor methods of its correction in correlation analyses has been systematically studied at typical rates of bleed-through reported to affect multi-colour imaging. Here, we present a reliable method of bleed-through correction applicable to image rendering and correlation analysis of multi-colour localization microscopy. Application of our bleed-through correction shows our method accurately corrects the artificial increase in both types of correlations studied (Pearson coefficient and pair correlation), at all rates of bleed-through tested, in all types of correlations examined. In particular, anti-correlation could not be quantified without our bleed-through correction, even at rates of bleed-through as low as 2%. Demonstrated with dichroic-based multi-colour FPALM here, our presented method of bleed-through correction can be applied to all types of localization microscopy (PALM, STORM, dSTORM, GSDIM, etc.), including both simultaneous and sequential multi-colour modalities, provided the rate of bleed-through can be reliably determined.

  6. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  7. Polarization-correlation optical microscopy of anisotropic biological layers

    Science.gov (United States)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.

    2016-09-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  8. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    Science.gov (United States)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. © 2013 Published by Elsevier B.V.

  9. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments

    OpenAIRE

    Gaël Latour; Laurianne Robinet; Alexandre Dazzi; François Portier; Ariane Deniset-Besseau; Marie-Claire Schanne-Klein

    2016-01-01

    International audience; This paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corre...

  10. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described.

  11. Correlative analysis of immunoreactivity in confocal laser-scanning microscopy and scanning electron microscopy with focused ion beam milling.

    Science.gov (United States)

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Unzai, Tomo; Matsuda, Wakoto; Iwai, Haruki; Yamanaka, Atsushi; Uemura, Masanori; Kaneko, Takeshi

    2013-01-01

    Recently, three-dimensional reconstruction of ultrastructure of the brain has been realized with minimal effort by using scanning electron microscopy (SEM) combined with focused ion beam (FIB) milling (FIB-SEM). Application of immunohistochemical staining in electron microscopy (EM) provides a great advantage in that molecules of interest are specifically localized in ultrastructures. Thus, we applied immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in confocal laser-scanning microcopy (CF-LSM). Dendrites of medium-sized spiny neurons in the rat neostriatum were visualized using a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively. In contrast-inverted FIB-SEM images, silver precipitations and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were as easily recognizable as those in the transmission electron microscopy (TEM) images. Furthermore, in the sites of interest, some appositions displayed synaptic specializations of an asymmetric type. Thus, the present method was useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connections in the central neural circuit.

  12. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  13. Exploiting speckle correlations to improve the resolution of wide-field fluorescence microscopy

    CERN Document Server

    Yilmaz, Hasan; Bertolotti, Jacopo; Lagendijk, Ad; Vos, Willem L; Mosk, Allard P

    2014-01-01

    Fluorescence microscopy is indispensable in nanoscience and biological sciences. The versatility of labeling target structures with fluorescent dyes permits to visualize structure and function at a subcellular resolution with a wide field of view. Due to the diffraction limit, conventional optical microscopes are limited to resolving structures larger than 200 nm. The resolution can be enhanced by near-field and far-field super-resolution microscopy methods. Near-field methods typically have a limited field of view and far-field methods are limited by the involved conventional optics. Here, we introduce a combined high-resolution and wide-field fluorescence microscopy method that improves the resolution of a conventional optical microscope by exploiting correlations in speckle illumination through a randomly scattering high-index medium: Speckle correlation resolution enhancement (SCORE). As a test, we collect two-dimensional fluorescence images of 100-nm diameter dye-doped nanospheres. We demonstrate a decon...

  14. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution.

    Science.gov (United States)

    Löschberger, Anna; Franke, Christian; Krohne, Georg; van de Linde, Sebastian; Sauer, Markus

    2014-10-15

    Here, we combine super-resolution fluorescence localization microscopy with scanning electron microscopy to map the position of proteins of nuclear pore complexes in isolated Xenopus laevis oocyte nuclear envelopes with molecular resolution in both imaging modes. We use the periodic molecular structure of the nuclear pore complex to superimpose direct stochastic optical reconstruction microscopy images with a precision of <20 nm on electron micrographs. The correlative images demonstrate quantitative molecular labeling and localization of nuclear pore complex proteins by standard immunocytochemistry with primary and secondary antibodies and reveal that the nuclear pore complex is composed of eight gp210 (also known as NUP210) protein homodimers. In addition, we find subpopulations of nuclear pore complexes with ninefold symmetry, which are found occasionally among the more typical eightfold symmetrical structures.

  15. Correlation of live-cell imaging with volume scanning electron microscopy.

    Science.gov (United States)

    Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger

    2017-01-01

    Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    Science.gov (United States)

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  17. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  18. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Johnny Tam

    Full Text Available Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  19. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Science.gov (United States)

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  20. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    Science.gov (United States)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  1. Fourier ring correlation as a resolution criterion for super-resolution microscopy.

    Science.gov (United States)

    Banterle, Niccolò; Bui, Khanh Huy; Lemke, Edward A; Beck, Martin

    2013-09-01

    Optical nanoscopy techniques using localization based image reconstruction, also termed super-resolution microscopy (SRM), have become a standard tool to bypass the diffraction limit in fluorescence light microscopy. The localization precision measured for the detected fluorophores is commonly used to describe the maximal attainable resolution. However, this measure takes not all experimental factors, which impact onto the finally achieved resolution, into account. Several other methods to measure the resolution of super-resolved images were previously suggested, typically relying on intrinsic standards, such as molecular rulers, or on a priori knowledge about the specimen, e.g. its spatial frequency content. Here we show that Fourier ring correlation provides an easy-to-use, laboratory consistent standard for measuring the resolution of SRM images. We provide a freely available software tool that combines resolution measurement with image reconstruction.

  2. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography.

  3. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments.

    Science.gov (United States)

    Latour, Gaël; Robinet, Laurianne; Dazzi, Alexandre; Portier, François; Deniset-Besseau, Ariane; Schanne-Klein, Marie-Claire

    2016-05-19

    This paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corresponding to collagen denaturation to gelatin, which may also occur in biological tissues. Key information about collagen and gelatin signatures is obtained in parchments and assessed by characterizing the denaturation of pure collagen reference samples. A new absorbing band is observed near the amide I band in the IR spectra, correlated to the onset of fluorescence signals in NLO images. Meanwhile, a strong decrease is observed in Second Harmonic signals, which are a structural probe of the fibrillar organization of the collagen at the micrometer scale. NLO microscopy therefore appears as a powerful tool to reveal collagen degradation in a non-invasive way. It should provide a relevant method to assess or monitor the condition of collagen-based materials in museum and archival collections and opens avenues for a broad range of applications regarding this widespread biological material.

  4. Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology.

    Science.gov (United States)

    Narayan, Kedar; Danielson, Cindy M; Lagarec, Ken; Lowekamp, Bradley C; Coffman, Phil; Laquerre, Alexandre; Phaneuf, Michael W; Hope, Thomas J; Subramaniam, Sriram

    2014-03-01

    Efficient correlative imaging of small targets within large fields is a central problem in cell biology. Here, we demonstrate a series of technical advances in focused ion beam scanning electron microscopy (FIB-SEM) to address this issue. We report increases in the speed, robustness and automation of the process, and achieve consistent z slice thickness of ∼3 nm. We introduce "keyframe imaging" as a new approach to simultaneously image large fields of view and obtain high-resolution 3D images of targeted sub-volumes. We demonstrate application of these advances to image post-fusion cytoplasmic intermediates of the HIV core. Using fluorescently labeled cell membranes, proteins and HIV cores, we first produce a "target map" of an HIV infected cell by fluorescence microscopy. We then generate a correlated 3D EM volume of the entire cell as well as high-resolution 3D images of individual HIV cores, achieving correlative imaging across a volume scale of 10(9) in a single automated experimental run.

  5. Correlated micro-photoluminescence and electron microscopy studies of the same individual heterostructured semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, J; Van Helvoort, A T J [Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim (Norway); Moses, A F; Karlberg, T; Olk, P; Dheeraj, D L; Fimland, B O; Weman, H, E-mail: a.helvoort@ntnu.no [Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491, Trondheim (Norway)

    2011-08-12

    To correlate optical properties to structural characteristics, we developed a robust strategy for characterizing the same individual heterostructured semiconductor nanowires (NWs) by alternating low temperature micro-photoluminescence ({mu}-PL), low voltage scanning (transmission) electron microscopy and conventional transmission electron microscopy. The NWs used in this work were wurtzite GaAs core with zinc blende GaAsSb axial insert and AlGaAs radial shell grown by molecular beam epitaxy. The series of experiments demonstrated that high energy (200 kV) electrons are detrimental for the optical properties, whereas medium energy (5-30 kV) electrons do not affect the PL response. Thus, such medium energy electrons can be used to select NWs for correlated optical-structural studies prior to {mu}-PL or in NW device processing. The correlation between the three main {mu}-PL bands and crystal phases of different compositions, present in this heterostructure, is demonstrated for selected NWs. The positions where a NW fractures during specimen preparation can considerably affect the PL spectra of the NW. The effects of crystal-phase variations and lattice defects on the optical properties are discussed. The established strategy can be applied to other nanosized electro-optical materials, and other characterization tools can be incorporated into this routine.

  6. Nanoparticle flow velocimetry with image phase correlation for confocal laser scanning microscopy

    Science.gov (United States)

    Jun, Brian H.; Giarra, Matthew; Yang, Haisheng; Main, Russell; Vlachos, Pavlos P.

    2016-10-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC)-based velocimetry are (1) the use of diffusion-dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross-correlation, and develop a SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nanoparticles. Secondly, we developed an analytical model of the SLIC measurement bias error due to image scanning of diffusion-dominated tracer particles. We show that the bias error depends only on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use this model to correct the induced errors. We validated our technique using synthetic images and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the images tested in this study. Moreover, our optimized RPC filter reduces the number of image pairs required for the convergence of the ensemble correlation by two orders of magnitude compared to the standard cross correlation. This feature has broader implications to ensemble correlation methods and should be further explored in depth in the future.

  7. Correlation between polarization sensitive optical coherence tomography and SHG microscopy in articular cartilage

    Science.gov (United States)

    Zhou, Xin; Ju, Myeong Jin; Huang, Lin; Tang, Shuo

    2017-02-01

    Polarization-sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are two imaging modalities with different resolutions, field-of-views (FOV), and contrasts, while they both have the capability of imaging collagen fibers in biological tissues. PS-OCT can measure the tissue birefringence which is induced by highly organized fibers while SHG can image the collagen fiber organization with high resolution. Articular cartilage, with abundant structural collagen fibers, is a suitable sample to study the correlation between PS-OCT and SHG microscopy. Qualitative conjecture has been made that the phase retardation measured by PS-OCT is affected by the relationship between the collagen fiber orientation and the illumination direction. Anatomical studies show that the multilayered architecture of articular cartilage can be divided into four zones from its natural surface to the subchondral bone: the superficial zone, the middle zone, the deep zone, and the calcified zone. The different zones have different collagen fiber orientations, which can be studied by the different slopes in the cumulative phase retardation in PS-OCT. An algorithm is developed based on the quantitative analysis of PS-OCT phase retardation images to analyze the microstructural features in swine articular cartilage tissues. This algorithm utilizes the depth-dependent slope changing of phase retardation A-lines to segment structural layers. The results show good consistency with the knowledge of cartilage morphology and correlation with the SHG images measured at selected depth locations. The correlation between PS-OCT and SHG microscopy shows that PS-OCT has the potential to analyze both the macro and micro characteristics of biological tissues with abundant collagen fibers and other materials that may cause birefringence.

  8. Zebrafish Caudal Fin Angiogenesis Assay-Advanced Quantitative Assessment Including 3-Way Correlative Microscopy.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics.To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way.Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level.The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.

  9. Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons

    Science.gov (United States)

    Maco, Bohumil; Holtmaat, Anthony; Cantoni, Marco; Kreshuk, Anna; Straehle, Christoph N.; Hamprecht, Fred A.; Knott, Graham W.

    2013-01-01

    Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis. PMID:23468982

  10. Correlation of Biomicroscopic Findings with Confocal Microscopy in Eyes with Amiodarone-Induced Cornea Verticillata

    Directory of Open Access Journals (Sweden)

    Emine Kaya

    2014-01-01

    Full Text Available Objectives: To investigate the correlation between biomicroscopic and confocal microscopic findings in eyes with amiodarone-induced cornea verticillata. Materials and Methods: Sixteen eyes of 8 patients with amiodarone-induced cornea verticillata were evaluated. Eyes with keratopathy were staged according to Orlando slit-lamp microscopy classification. Confocal laser-scanning microscopy was performed by Rostock cornea modulated to HRT II (Heidelberg Engineering GmbH, Heidelberg, Germany, and staging was done according to Falke’s classification that is based on the degree of epithelial basal cell deposit accumulation. The relation between biomicroscopic staging and corneal involvement detected on confocal microscopy was assessed by Spearman correlation analysis. Results: The mean age of the 8 patients (5 male, 3 female was 63.1±7.2 (50 to 69 years. The mean duration of drug treatment was 12.1±11.8 (3 to 36 months, and the mean drug treatment dose was 312.5±223.2 (100 to 800 mg/day. At the time of examination, 50% of the patients had already given up the treatment at a mean of 29.5±15.8 (6 to 40 months ago, whereas the other 50% were still on amiodarone therapy. Hyper-reflecting deposits were observed in the basal epithelium, anterior-, mid-and deep-stroma, and in the endothelium on confocal microscopic examination. Correlation was detected between biomicroscopic and confocal microscopic stages (r=0.770, p<0.001. Frequency of detecting deposits in the stroma and endothelium was found to be increasing as the biomicroscopic stage increased (r=0.844; p<0.001 and r=0.551; p<0.01, respectively. Conclusion: In amiodarone-induced cornea verticillata, correlated results were detected between biomicroscopic and confocal microscopic staging. Therefore, in clinics where confocal microscopy is not available, biomicroscopic staging can be used as a guiding parameter in eyes with amiodarone-induced cornea verticillata. (Turk J Ophthalmol 2014; 44: 63-67

  11. Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Bohumil Maco

    Full Text Available Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis.

  12. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms.

    Directory of Open Access Journals (Sweden)

    Xiaokun Shu

    2011-04-01

    Full Text Available Electron microscopy (EM achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce "miniSOG" (for mini Singlet Oxygen Generator, a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.

  13. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    Science.gov (United States)

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  14. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    NARCIS (Netherlands)

    Pluk, H.; Stokes, D.J.; Lich, B.; Wieringa, B.; Fransen, J.A.M.

    2009-01-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary elect

  15. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    Science.gov (United States)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  16. Correlative scanning-transmission electron microscopy reveals that a chimeric flavivirus is released as individual particles in secretory vesicles.

    Science.gov (United States)

    Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe

    2014-01-01

    The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.

  17. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  18. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    Science.gov (United States)

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers.

  19. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera.

    Science.gov (United States)

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-03-13

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics.

  20. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera

    Science.gov (United States)

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-03-01

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics.

  1. Correlative Microscopy of alpha' Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Science.gov (United States)

    Briggs, Samuel A.

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. However, precipitation of the Cr-rich alpha' phase during exposure to LWR operational environments can result in application-limiting hardening and embrittlement. To study this effect, four Fe-Cr-Al model alloys with compositions between 10-18 at.% Cr and 5.8-9.3 at.% Al have been neutron-irradiated in the High Flux Isotope Reactor at a target temperature of 320°C to nominal damage doses of up to 7 dpa in order to emulate typical LWR exposure conditions. A correlative microscopy approach involving atom probe tomography, small-angle neutron scattering, and scanning transmission electron microscopy coupled with energy dispersive x-ray spectroscopy was employed to study the resulting precipitate microstructure. This approach necessitated the development of various analysis techniques to allow for cross-comparison between experimental techniques, including a novel method for correcting for trajectory aberration artifacts in atom probe data sets through phase density comparison. Successful correlation of results from these techniques allows for the individual limitations of each to be overcome and enables the detailed microstructural information gleaned from highly localized atom probe tomography analyses to be extrapolated to bulk alloy behavior. Precipitation response was found to increase with Cr content, while Al additions appeared to partially destabilized the alpha' phase, resulting in precipitate compositions with reduced Cr content compared to binary Fe-Cr systems. Observed precipitate evolution with radiation dose indicates a diffusion-limited coarsening mechanism that is similar to what is observed in the thermally aged system. This work represents the current state-of-the-art on both techniques for analysis of alpha' precipitate

  2. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    Science.gov (United States)

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  3. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy

    Science.gov (United States)

    Skaug, Michael J.; Faller, Roland; Longo, Marjorie L.

    2011-06-01

    Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension, and correlation length. To accurately measure an anomalous diffusion exponent, we derived an expression to account for the time-averaging inherent to all single molecule tracking experiments. We show that the length of the single molecule trajectories is critical to the determination of the anomalous diffusion exponent. We further discuss our results in the context of confinement models and the generating stochastic process.

  4. New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography.

    Science.gov (United States)

    Schorb, Martin; Gaechter, Leander; Avinoam, Ori; Sieckmann, Frank; Clarke, Mairi; Bebeacua, Cecilia; Bykov, Yury S; Sonnen, Andreas F-P; Lihl, Reinhard; Briggs, John A G

    2017-02-01

    Correlative light and electron microscopy allows features of interest defined by fluorescence signals to be located in an electron micrograph of the same sample. Rare dynamic events or specific objects can be identified, targeted and imaged by electron microscopy or tomography. To combine it with structural studies using cryo-electron microscopy or tomography, fluorescence microscopy must be performed while maintaining the specimen vitrified at liquid-nitrogen temperatures and in a dry environment during imaging and transfer. Here we present instrumentation, software and an experimental workflow that improves the ease of use, throughput and performance of correlated cryo-fluorescence and cryo-electron microscopy. The new cryo-stage incorporates a specially modified high-numerical aperture objective lens and provides a stable and clean imaging environment. It is combined with a transfer shuttle for contamination-free loading of the specimen. Optimized microscope control software allows automated acquisition of the entire specimen area by cryo-fluorescence microscopy. The software also facilitates direct transfer of the fluorescence image and associated coordinates to the cryo-electron microscope for subsequent fluorescence-guided automated imaging. Here we describe these technological developments and present a detailed workflow, which we applied for automated cryo-electron microscopy and tomography of various specimens. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Confocal/TEM overlay microscopy: a simple method for correlating confocal and electron microscopy of cells expressing GFP/YFP fusion proteins.

    Science.gov (United States)

    Keene, Douglas R; Tufa, Sara F; Lunstrum, Gregory P; Holden, Paul; Horton, William A

    2008-08-01

    Genetic manipulation allows simultaneous expression of green fluorescent protein (GFP) and its derivatives with a wide variety of cellular proteins in a variety of living systems. Epifluorescent and confocal laser scanning microscopy (confocal) localization of GFP constructs within living tissue and cell cultures has become routine, but correlation of light microscopy and high resolution transmission electron microscopy (TEM) on components within identical cells has been problematic. In this study, we describe an approach that specifically localizes the position of GFP/yellow fluorescent protein (YFP) constructs within the same cultured cell imaged in the confocal and transmission electron microscopes. We present a simplified method for delivering cell cultures expressing fluorescent fusion proteins into LR White embedding media, which allows excellent GFP/YFP detection and also high-resolution imaging in the TEM. Confocal images from 0.5-microm-thick sections are overlaid atop TEM images of the same cells collected from the next serial ultrathin section. The overlay is achieved in Adobe Photoshop by making the confocal image somewhat transparent, then carefully aligning features within the confocal image over the same features visible in the TEM image. The method requires no specialized specimen preparation equipment; specimens are taken from live cultures to embedding within 8 h, and confocal transmission overlay microscopy can be completed within a few hours.

  6. Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation.

    Science.gov (United States)

    Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P

    2017-05-08

    The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.

  7. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    Science.gov (United States)

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and

  8. Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid.

    Science.gov (United States)

    Peckys, Diana B; Bandmann, Vera; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment.

  9. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    Science.gov (United States)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-01-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy. PMID:27350565

  10. Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)

    Science.gov (United States)

    Basché, Thomas; Hinze, Gerald; Stöttinger, Sven

    2016-09-01

    A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply compressive stress to single molecules adsorbed on a surface and follow the effect of the impact on the electronic states of the molecule by fluorescence spectroscopy.[3] Quantum mechanical calculations corroborate that the spectral changes induced by the localized force can be associated to transitions among the different possible conformers of the adsorbed molecule.

  11. CHROMATIN TEXTURE OF MELANOCYTIC NUCLEI - CORRELATION BETWEEN LIGHT AND ELECTRON-MICROSCOPY

    NARCIS (Netherlands)

    ABMAYR, W; STOLZ, W; KORHERR, S; WILD, W; SCHMOECKEL, C

    1987-01-01

    Cells of a benign pigmented mole and a malignant melanoma were used to compare electron microscopy (EM) and light microscopy (LM) with high-resolution TV-scanning and multivariate analysis methods. Special emphasis was placed on different kinds of chromatin texture features and their discriminating

  12. Measuring skin penetration by confocal Raman microscopy (CRM): correlation to results from conventional experiments

    Science.gov (United States)

    Lunter, Dominique; Daniels, Rolf

    2016-03-01

    Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.

  13. In Depth Analyses of LEDs by a Combination of X-ray Computed Tomography (CT) and Light Microscopy (LM) Correlated with Scanning Electron Microscopy (SEM).

    Science.gov (United States)

    Meyer, Jörg; Thomas, Christian; Tappe, Frank; Ogbazghi, Tekie

    2016-06-16

    In failure analysis, device characterization and reverse engineering of light emitting diodes (LEDs), and similar electronic components of micro-characterization, plays an important role. Commonly, different techniques like X-ray computed tomography (CT), light microscopy (LM) and scanning electron microscopy (SEM) are used separately. Similarly, the results have to be treated for each technique independently. Here a comprehensive study is shown which demonstrates the potentials leveraged by linking CT, LM and SEM. In depth characterization is performed on a white emitting LED, which can be operated throughout all characterization steps. Major advantages are: planned preparation of defined cross sections, correlation of optical properties to structural and compositional information, as well as reliable identification of different functional regions. This results from the breadth of information available from identical regions of interest (ROIs): polarization contrast, bright and dark-field LM images, as well as optical images of the LED cross section in operation. This is supplemented by SEM imaging techniques and micro-analysis using energy dispersive X-ray spectroscopy.

  14. A Review of Correlative Light and Electron Microscopy (CLEM) Methods, Markers, and Instrument Set Ups to Study Infectious Disease

    Science.gov (United States)

    2016-12-12

    with the oxidation reaction [43], and limited penetration [43, 72]. In fixed and non-fixed cells mitochondria generate reactive oxygen species (ROS... mitochondria during apoptosis. Nat Cell Biol, 2007. 9(9): p. 1057-65. 22. Kong, D. and J. Loncarek, Correlative light and electron microscopy analysis...there is need to study, at nanoscale, objects of interest which are commonly part of rare transient events or afflict a particular cell among a

  15. Exploiting speckle correlations to improve the resolution of wide-field fluorescence microscopy

    NARCIS (Netherlands)

    Yilmaz, H.; Putten, van E.G.; Bertolotti, J.; Lagendijk, A.; Vos, W.L.; Mosk, A.P.

    2014-01-01

    Fluorescence microscopy is indispensable in nanoscience and biological sciences. The versatility of labeling target structures with fluorescent dyes permits to visualize structure and function at a subcellular resolution with a wide field of view. Due to the diffraction limit, conventional optical m

  16. Integrated Raman and electron microscopy : correlative chemical specificity and nanoscale resolution

    NARCIS (Netherlands)

    Timmermans, Frank Jan

    2017-01-01

    This thesis describes the integration of a Raman microscope in a focused ion beam - scanning electron microscope (FIB-SEM). Raman micro-spectroscopy enables chemical specific characterization, while electron microscopy enables high resolution imaging. The Raman - SEM combination thus enables the

  17. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data.

    Science.gov (United States)

    Sikora, Andrzej; Rodak, Aleksander; Unold, Olgierd; Klapetek, Petr

    2016-12-01

    In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Handheld reflectance confocal microscopy for the diagnosis of molluscum contagiosum: Histopathology and dermoscopy correlation.

    Science.gov (United States)

    Lacarrubba, Francesco; Verzì, Anna Elisa; Ardigò, Marco; Micali, Giuseppe

    2017-08-01

    Handheld reflectance confocal microscopy may represent an adjunctive, fast, non-invasive tool for the diagnosis of molluscum contagiosum, revealing microscopic details closely related to histopathology, as demonstrated by this study evaluating 19 molluscum lesions in 11 patients. It permits the rapid examination of one or multiple skin lesions in real time and it is perfectly suitable for children. © 2016 The Australasian College of Dermatologists.

  19. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    OpenAIRE

    Giannini, C.; D. Siliqi; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon res...

  20. Correlations between Photovoltaic Characteristics, Adsorption Number, and Regeneration Kinetics in Dye-Sensitized Solar Cells Revealed by Scanning Photocurrent Microscopy.

    Science.gov (United States)

    Mitsui, Masaaki; Kawano, Yuya; Mori, Kyosuke; Wakabayashi, Naoto

    2015-06-30

    Newly developed simultaneous scanning photocurrent and luminescence microscopy was applied to ruthenium-based dye-sensitized solar cells (DSCs) comprising a cover glass photoanode with a 100 nm thick TiO2 layer. Using this, we have investigated the lateral variations of several parameters of these DSCs under short-circuit conditions. Simultaneous measurement of photocurrent and luminescence images for the same area of the DSC demonstrated submicrometric lateral resolution of our photocurrent microscopy, which is approximately 10 times better than the resolution of photocurrent microscopy used in past studies. The photovoltaic parameters, such as short-circuit current density, open-circuit voltage, and charge-collection efficiency, were thus evaluated for local (or submicrometric) regions of the DSCs. Furthermore, the photocurrent saturation behavior of the DSCs was examined as a function of the excitation rate and analyzed on the basis of a three-state kinetic model. This protocol allowed for quantification of the dye-adsorption number and dye-regeneration rate constant for any local area of the DSCs. Consequently, the correlations between the dye adsorption number, photovoltaic parameters, and regeneration rate constant, which are difficult to address through examination of the entire cell, were revealed by the "zoom-in" approach utilizing this high-resolution photocurrent microscopy.

  1. Correlation of morphological alterations of light and electron microscopy in chronic type B and C hepatitis.

    Science.gov (United States)

    Kasprzak, A; Biczysko, W; Adamek, A; Zabel, M; Surdyk-Zasada, J

    2001-05-01

    Chronic type B and C hepatitis involves inflammatory lesions of a variable intensity and variably advanced fibrosis. Considering current, progressively growing requirements for correct evaluation of lesions in liver biopsies, an attempt was made to appraise suitability of selected techniques for a broadened histopathological diagnosis. The lesions were evaluated at the level of light and electron microscopy. Material for the study consisted of liver biopsies obtained from adults and children (n = 60) with serological markers of chronic type B or type C hepatitis. Routine techniques of staining for light and electron microscopy, as well as the techniques of Brachet and Feulgen, were applied. HBcAg expression and HBV-DNA detection in children with chronic type B hepatitis were studied employing the avidin-biotin peroxidase complex (ABC) technique and in situ hybridisation with the ImmunoMax signal amplification. Slight or moderately intense inflammatory lesions (grading of 1 to 2 points) and a low level of fibrosis advancement (staging of 1 to 2 points) prevailed in the material, independently of the etiologic agent involved and age of the patient. Both in children and in adults, extensive lesions in the nuclear chromatin represented the common trait of chronic type B and type C hepatitis examined by light microscopy. Ultrastructural patterns confirmed the lesions and demonstrated virus-resembling particles in the cell nuclei. In HCV infection, hepatocyte cytoplasm contained tubular and horseshoe-shaped structures with lesions of mitochondria, while in HBV infection Dane's particles and tubular forms of HBsAg were detected. For cognitive reasons and due to frequently equivocal literature data, our data on ultrastructural lesions in chronic type C hepatitis seem to be of particular interest. Using the ImmunoMax signal amplification, we were able to diagnose HBV infection under light microscope and to define stage of the infection. Their sensitivity, specificity and

  2. Correlative Light and Scanning X-Ray Scattering Microscopy of Healthy and Pathologic Human Bone Sections

    Science.gov (United States)

    Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.

    2012-01-01

    Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538

  3. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    Directory of Open Access Journals (Sweden)

    Tjakko J. van Ham

    2014-07-01

    Full Text Available Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.

  4. Correlated Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.

    2008-02-18

    Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.

  5. Fluorescence colocalization microscopy analysis can be improved by combining object‐recognition with pixel‐intensity‐correlation

    Science.gov (United States)

    Moser, Bernhard; Hochreiter, Bernhard; Herbst, Ruth

    2016-01-01

    Abstract The question whether two proteins interact with each other or whether a protein localizes to a certain region of the cell is often addressed with fluorescence microscopy and analysis of a potential colocalization of fluorescence markers. Since a mere visual estimation does not allow quantification of the degree of colocalization, different statistical methods of pixel‐intensity correlation are commonly used to score it. We observed that these correlation coefficients are prone to false positive results and tend to show high values even for molecules that reside in different organelles. Our aim was to improve this type of analysis and we developed a novel method combining object‐recognition based colocalization analysis with pixel‐intensity correlation to calculate an object‐corrected Pearson coefficient. We designed a macro for the Fiji‐version of the software ImageJ and tested the performance systematically with various organelle markers revealing an improved robustness of our approach over classical methods. In order to prove that colocalization does not necessarily mean a physical interaction, we performed FRET (fluorescence resonance energy transfer) microscopy. This confirmed that non‐interacting molecules can exhibit a nearly complete colocalization, but that they do not show any significant FRET signal in contrast to proteins that are bound to each other. PMID:27420480

  6. Correlation of diffuse scattering with nanocrystallite size in porous silicon using transmission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yamani, Z.; Gurdal, O.; Alaql, A.; Nayfeh, M.H. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St. Urbana, Illinois 61801 (United States)

    1999-06-01

    We use high resolution cross sectional transmission electron microscopy to image the nanostructure of (100) {ital p}-type porous Si. A network of pore tracks subdivide the material into nano-islands and nanocrystallites are resolved throughout the material. With distance from the substrate, electron diffraction develops noncrystalline-like diffuse patterns that dominate the coherent scattering in the topmost luminescent layer. Also, with distance from the substrate, crystalline islands evolve such that their size drops to as small as 1 nm in the topmost luminescence material. Although the topmost luminescent layer is very rich in nanocrystallites, it has the strongest diffuse scattering of all regions. This confirms that diffuse scattering is due to size reduction effects rather than to an amorphous state. {copyright} {ital 1999 American Institute of Physics.}

  7. In vivo reactive neural plasticity investigation by means of correlative two photon: electron microscopy

    Science.gov (United States)

    Allegra Mascaro, A. L.; Cesare, P.; Sacconi, L.; Grasselli, G.; Mandolesi, G.; Maco, B.; Knott, G.; Huang, L.; De Paola, V.; Strata, P.; Pavone, F. S.

    2013-02-01

    In the adult nervous system, different populations of neurons correspond to different regenerative behavior. Although previous works showed that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We set up a model of singularly axotomized climbing fibers (CF) to investigate their reparative properties in the adult central nervous system (CNS) in vivo. Time lapse two-photon imaging has been combined to laser nanosurgery2, 3 to define a temporal pattern of the degenerative event and to follow the structural rearrangement after injury. To characterize the damage and to elucidate the possible formation of new synaptic contacts on the sprouted branches of the lesioned CF, we combined two-photon in vivo imaging with block face scanning electron microscopy (FIB-SEM). Here we describe the approach followed to characterize the reactive plasticity after injury.

  8. Integration of Correlative Raman microscopy in a dual beam FIB-SEM J. of Raman Spectroscopy

    NARCIS (Netherlands)

    Timmermans, Frank Jan; Liszka, B.; Lenferink, Aufrid T.M.; van Wolferen, Hendricus A.G.M.; Otto, Cornelis

    2016-01-01

    We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new

  9. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    Science.gov (United States)

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm‑1, associated with weaker bands at 1655, 1438 and 1297 cm‑1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

  10. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    Science.gov (United States)

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons. PMID:28098185

  11. Laboratory-Based Cryogenic Soft X-ray Tomography with Correlative Cryo-Light and Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, David B.; Gelb, Jeff; Palshin, Vadim; Evans, James E.

    2013-02-01

    Here we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal sub-cellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 micrometers thick. Structures as small as 90 nm can be detected in tomographic reconstructions at roughly 70 nm spatial resolution following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft x-ray microscopy and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft x-ray microscope will therefore enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning.

  12. Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy

    Science.gov (United States)

    McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2012-05-01

    Living cells are structured to create a range of microenvironments that support specific chemical reactions and processes. Understanding how cells function therefore requires detailed knowledge of both the subcellular architecture and the location of specific molecules within this framework. Here we review the development of two correlated cellular imaging techniques that fulfill this need. Cells are first imaged using cryogenic fluorescence microscopy to determine the location of molecules of interest that have been labeled with fluorescent tags. The same specimen is then imaged using soft X-ray tomography to generate a high-contrast, 3D reconstruction of the cells. Data from the two modalities are then combined to produce a composite, information-rich view of the cell. This correlated imaging approach can be applied across the spectrum of problems encountered in cell biology, from basic research to biotechnological and biomedical applications such as the optimization of biofuels and the development of new pharmaceuticals.

  13. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release

    Science.gov (United States)

    Hinde, Elizabeth; Thammasiraphop, Kitiphume; Duong, Hien T. T.; Yeow, Jonathan; Karagoz, Bunyamin; Boyer, Cyrille; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.

  14. Correlated fluorescence-atomic force microscopy studies of the clathrin mediated endocytosis in SKMEL cells

    Science.gov (United States)

    Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam; Smith, Steve

    2017-02-01

    Clathrin-mediated endocytosis (CME) is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. Currently, there are two models describing membrane bending during the formation of clathrin cages: the first involves the deposition of all clathrin molecules to the plasma membrane, forming a flat lattice prior to membrane bending, whereas in the second model, membrane bending happens simultaneously as the clathrin arrives to the site to form a clathrin-coated cage. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorophores (actin filaments labeled with green phalloidin and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. An extensive statistical survey of many hundreds of CME events, at various stages of progression, are observed via this method, allowing inferences about the dominant mechanisms active in CME in SKMEL cells. Results indicate a mixed model incorporating aspects of both the aforementioned mechanisms for CME.

  15. Correlating properties and microstructure of YBCO thin films by magnetic X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany)

    2016-07-01

    The magnetic flux distribution in high-temperature superconductors namely YBCO has been observed using a novel high-resolution technique based on the X-ray magnetic circular dichroism (XMCD). Therefore, a CoFeB layer is deposited on the superconductor which exhibits a strong XMCD-effect. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the soft-magnetic sensor layer [3,4]. In the total electron yield (TEY) mode of the scanning X-ray microscope (SXM) the surface structure and the magnetic domains can be imaged at the same time. Having obtained such high resolution images, the correlation of magnetic flux penetration and defect structure of YBCO thin films can be analyzed. The measurements have been performed at the scanning X-ray microscope MAXYMUS at Bessy II, HZB Berlin.

  16. Proteasome particle-rich structures are widely present in human epithelial neoplasms: correlative light, confocal and electron microscopy study.

    Directory of Open Access Journals (Sweden)

    Vittorio Necchi

    Full Text Available A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS, a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to play a role in H. pylori-mediated gastric carcinogenesis. However, no information is available on its occurrence in neoplastic growths. In this study, surgical specimens of gastric cancer and various other human epithelial neoplasms have been investigated for PaCSs by light, confocal and electron microscopy including correlative confocal and electron microscopy (CCEM. PaCSs were detected in gastric cohesive, pulmonary large cell and bronchioloalveolar, thyroid papillary, parotid gland, hepatocellular, ovarian serous papillary, uterine cervix and colon adenocarcinomas, as well as in pancreatic serous microcystic adenoma. H. pylori bodies, their virulence factors (VacA, CagA, urease, and outer membrane proteins and the NOD1 bacterial proteoglycan receptor were selectively concentrated inside gastric cancer PaCSs, but not in PaCSs from other neoplasms which did, however, retain proteasome and polyubiquitinated proteins reactivity. No evidence of actual microbial infection was obtained in most PaCS-positive neoplasms, except for H. pylori in gastric cancer and capsulated bacteria in a colon cancer case. Particle lysis and loss of proteasome distinctive immunoreactivities were seen in some tumour cell PaCSs, possibly ending in sequestosomes or autophagic bodies. It is concluded that PaCSs are widely represented in human neoplasms and that both non-infectious and infectious factors activating the ubiquitin-proteasome system are likely to be involved in their origin

  17. Proteasome particle-rich structures are widely present in human epithelial neoplasms: correlative light, confocal and electron microscopy study.

    Science.gov (United States)

    Necchi, Vittorio; Sommi, Patrizia; Vanoli, Alessandro; Manca, Rachele; Ricci, Vittorio; Solcia, Enrico

    2011-01-01

    A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS), a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to play a role in H. pylori-mediated gastric carcinogenesis. However, no information is available on its occurrence in neoplastic growths. In this study, surgical specimens of gastric cancer and various other human epithelial neoplasms have been investigated for PaCSs by light, confocal and electron microscopy including correlative confocal and electron microscopy (CCEM). PaCSs were detected in gastric cohesive, pulmonary large cell and bronchioloalveolar, thyroid papillary, parotid gland, hepatocellular, ovarian serous papillary, uterine cervix and colon adenocarcinomas, as well as in pancreatic serous microcystic adenoma. H. pylori bodies, their virulence factors (VacA, CagA, urease, and outer membrane proteins) and the NOD1 bacterial proteoglycan receptor were selectively concentrated inside gastric cancer PaCSs, but not in PaCSs from other neoplasms which did, however, retain proteasome and polyubiquitinated proteins reactivity. No evidence of actual microbial infection was obtained in most PaCS-positive neoplasms, except for H. pylori in gastric cancer and capsulated bacteria in a colon cancer case. Particle lysis and loss of proteasome distinctive immunoreactivities were seen in some tumour cell PaCSs, possibly ending in sequestosomes or autophagic bodies. It is concluded that PaCSs are widely represented in human neoplasms and that both non-infectious and infectious factors activating the ubiquitin-proteasome system are likely to be involved in their origin. PaCS detection

  18. Correlated light and electron microscopy observations of the uterine epithelial cell actin cytoskeleton using fluorescently labeled resin-embedded sections.

    Science.gov (United States)

    Moore, Chad L; Cheng, Delfine; Shami, Gerald J; Murphy, Christopher R

    2016-05-01

    In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol which provides a precise correlation accuracy using accessible techniques in biological specimen preparation. By combining a pre-embedding uranyl acetate staining step with the progressive lowering of temperature (PLT) technique, a methacrylate embedded tissue specimen is ultrathin sectioned and mounted onto a TEM finder grid for immediate viewing in the confocal and electron microscope. In this study, the protocol is applied to rat uterine epithelial cells in vivo during early pregnancy. Correlative overlay data was used to track changes in filamentous actin that occurs in these cells from fertilization (Day 1) to implantation on Day 6 as part of the plasma membrane transformation, a process essential in the development of uterine receptivity in the rat. CLEM confirmed that the actin cytoskeleton is disrupted as apical microvilli are progressively lost toward implantation, and revealed the thick and continuous terminal web is replaced by a thinner and irregular actin band, with individually distinguishable filaments connecting actin meshworks which correspond with remaining plasma membrane protrusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy

    Science.gov (United States)

    Gelb, Jeff; Finegan, Donal P.; Brett, Dan J. L.; Shearing, Paul R.

    2017-07-01

    In the present study, a commercial 18650 Li-ion cylindrical cell is investigated with non-destructive 3D X-ray microscopy across a range of length scales, beginning with a survey of the entire cell and non-destructively enlarging a smaller section. Active materials are extracted from a disassembled cell and imaging performed using a combination of sub-micron X-ray microscopy and 2D scanning-electron microscopy, which point toward the need for multi-scale analysis in order to accurately characterize the cell. Furthermore, a small section is physically isolated for 3D nano-scale X-ray microscopy, which provides a measurement of porosity and enables the effective diffusivity and 3-dimensional tortuosities to be calculated via computer simulation. Finally, the 3D X-ray microscopy data is loaded into a correlative microscopy environment, where a representative sub-surface region is identified and, subsequently, analyzed using electron microscopy and energy-dispersive X-ray spectroscopy. The results of this study elucidate the microstructural characteristics and potential degradation mechanisms of a commercial NCA battery and, further, establish a technique for extracting the Bruggeman exponent for a real-world microstructure using correlative microscopy.

  20. A correlation between the virulence and the adhesion of Listeria monocytogenes to silicon nitride: an atomic force microscopy study.

    Science.gov (United States)

    Park, Bong-Jae; Haines, Travis; Abu-Lail, Nehal I

    2009-10-15

    Listeria monocytogenes is a facultative intracellular Gram-positive bacterium that is widely distributed in the environment. Despite being pathogenic at the species level, L. monocytogenes in fact comprises a diversity of strains from pathogenic ones that can result in disease and/or mortality to others that are relatively avirulent. The main goal of the current study was to answer the question on whether enhanced binding or attachment of L. monocytogenes to inert surfaces bears any relationship to pathogenicity in food-borne isolates. To answer this question, the nanoscale adhesion forces of eight L. monocytogenes strains that vary in their pathogenicity levels to a model surface of silicon nitride were quantified using atomic force microscopy. The strains used were the highly pathogenic (EGDe, 874, 1002, ATCC 19115), the intermediate pathogenic (ATCC 19112, ATCC 19118), and the non pathogenic (ATCC 15313 and HCC25). Our results indicate that the average nanoscale adhesion (in nN) and the 50% lethal dose (LD50) of strain virulence quantified in mice are logarithmically correlated according to: (nN)=-0.032ln(LD50)+1.040, r(2)=0.96. Such correlation indicates that nanoscale adhesion could potentially be used as a design criterion to distinguish between virulent and avirulent L. monocytogenes strains. Finally, stronger adhesion of virulent strains to inert surfaces modeled by silicon nitride might be a way for pathogenic strains to survive better in the environment and thus increase their likelihood of infecting animals or humans.

  1. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy

    Science.gov (United States)

    Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.

    2016-01-01

    ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357

  2. Laser-initiated magnetization reversal and correlated morphological effects visualized with in situ Fresnel transmission electron microscopy

    Science.gov (United States)

    Schliep, Karl B.; Chen, Jun-Yang; Li, Mo; Wang, Jian-Ping; Flannigan, David J.

    2016-09-01

    Laser-initiated switching of magnetization direction in ferrimagnetic rare-earth-transition-metal (RE-TM) alloys—whether laser induced or photothermal via compensation point—is being vigorously pursued owing to the promise of extending operating frequencies of magnetic devices into the terahertz regime. Despite intense interest, however, the effects of repeated laser exposure on the film structure and subsequent switching behavior have yet to be investigated. In order to better understand the correlated effects of femtosecond-laser irradiation on both the magnetic response and photoinduced morphological variations of RE-TM alloys, we performed in situ Fresnel transmission electron microscopy (TEM) on T b23C o77 thin films with Ta protecting layers. Via optical access to the specimen in a modified TEM, we irradiated the thin films in situ with both individual and series of femtosecond optical pulses, and correlated laser-induced changes in magnetic domain-wall formation and growth with photothermal crystal formation and accompanying pinned magnetic sites. We find that, for a range of applied laser fluences and numbers of individual pulses, several distinct regions are formed displaying varied magnetic behavior (switchable, nonswitchable, demagnetized) and morphological features (small-to-large crystal-grain variations). Through a series of systematic studies, we quantified these linked magnetic and morphological properties as a function of laser fluence, number of pulse-train cycles, and number of individual femtosecond-laser pulses and the duration between each. Our results show how the sensitive connection between magnetic behavior and morphological structure can emerge in magneto-optic experiments across several parameters, thus illustrating the need for rigorous characterization so that potential operating regimes may be universally identified.

  3. Correlative transmission electron microscopy examination of nondemineralized and demineralized resin-dentin interfaces formed by two dentin adhesive systems.

    Science.gov (United States)

    Van Meerbeek, B; Conn, L J; Duke, E S; Eick, J D; Robinson, S J; Guerrero, D

    1996-03-01

    The resin-dentin interface formed by two dentin adhesives, Optibond (OPTI, Kerr) and Scotchbond Multi-Purpose (SBMP, 3M), was ultramorphologically examined by transmission electron microscopy (TEM). Ultrastructural information from nondemineralized and demineralized sections was correlated. It was hypothesized that the different chemical formulations of the two adhesives would result in a different morphological appearance of the hybrid layer. Ultrastructural TEM examination proved that each of the two dentin adhesive systems was able to establish a micromechanical bond between dentin and resin with the formation of a hybrid layer. However, the interfacial hybridization process that took place to produce this resin-dentin bond appeared to be specifically related to the chemical composition and application modes of both systems. OPTI consistently presented with a hybrid layer with a relatively uniform ultrastructure, electron density, and acid resistance. These three parameters were found to be more variable for the hybrid layer formed by SBMP. Characteristic of SBMP was the identification of an amorphous phase deposited at the outer surface of the hybrid layer. Although both adhesive systems investigated follow a total-etch concept, their specific chemical formulations result in different interfacial ultrastructures that are probably related to different underlying bonding mechanisms. The clinical significance of these morphological findings, however, is still unknown.

  4. High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron.

    Science.gov (United States)

    Antharam, Vijay; Collingwood, Joanna F; Bullivant, John-Paul; Davidson, Mark R; Chandra, Saurav; Mikhaylova, Albina; Finnegan, Mary E; Batich, Christopher; Forder, John R; Dobson, Jon

    2012-01-16

    We report R(2) and R(2) in human hippocampus from five unfixed post-mortem Alzheimer's disease (AD) and three age-matched control cases. Formalin-fixed tissues from opposing hemispheres in a matched AD and control were included for comparison. Imaging was performed in a 600MHz (14T) vertical bore magnet at MR microscopy resolution to obtain R(2) and R(2) (62 μm×62 μm in-plane, 80 μm slice thickness), and R(1) at 250 μm isotropic resolution. R(1), R(2) and R(2) maps were computed for individual slices in each case, and used to compare subfields between AD and controls. The magnitudes of R(2) and R(2) changed very little between AD and control, but their variances in the Cornu Ammonis and dentate gyrus were significantly higher in AD compared for controls (piron and MRI parameters, each tissue block was cryosectioned at 30 μm in the imaging plane, and iron distribution was mapped using synchrotron microfocus X-ray fluorescence spectroscopy. A positive correlation of R(2) and R(2)* with iron was demonstrated. While studies with fixed tissues are more straightforward to conduct, fixation can alter iron status in tissues, making measurement of unfixed tissue relevant. To our knowledge, these data represent an advance in quantitative imaging of hippocampal subfields in unfixed tissue, and the methods facilitate direct analysis of the relationship between MRI parameters and iron. The significantly increased variance in AD compared for controls warrants investigation at lower fields and in-vivo, to determine if this parameter is clinically relevant.

  5. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules.

    Science.gov (United States)

    de Assis, Danielle Nogueira; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Cardoso, Valbert Nascimento

    2008-02-12

    Several classes of antifungal have been employed in candidiasis treatment, but patients with advanced immunodeficiency can present unsatisfactory results after therapy. In these cases, high doses of drugs or the use of multiple agents are sometimes used, and hence increasing the risk of serious side effects. Considering theses difficulties, the encapsulation of antifungal agents in nanoparticulate carriers has been used with the objective of modifying the pharmacokinetic of drugs resulting in more efficient treatments with less side effects. The purpose of this work was the preparation, characterization and the investigation of the release profiles of radiolabeled fluconazole nanocapsules. The size, homogeneity and zeta potential of NC preparations were determined with a Zetasizer 3000HS. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The release study in vitro of NC was evaluated in physiologic solution with or without 70% mouse plasma. The labeling yield of fluconazole with 99mTc was 94% and the radiolabeled drug was stable within 24h period. The encapsulation percentage of 99mTc-fluconazole in PLA-POLOX NC and PLA-PEG NC was approximately of 30%. The average diameter calculated by photon correlation spectroscopy (PCS) varied from 236 to 356 nm, while the average diameter determined by AFM varied from 238 to 411 nm. The diameter/height relation decreased significantly when 25% glutaraldehyde was used for NC fixation on mica. The zeta potential varied from -55 to -69 nm and surface-modified NC showed lower absolute values than conventional NC. The in vitro release of 99mTc-fluconazole in plasma medium of the conventional and surface-modified NC was greater than in saline. The drug release in plasma medium from conventional NC was faster than for surface-modified NC. The results obtained in this work suggest that the nanocapsules containing fluconazole could be used to identify infectious foci, due to the properties

  6. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    Science.gov (United States)

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Correlating metal poisoning with zeolite deactivation in an individual catalyst particle by chemical and phase sensitive X-ray microscopy

    NARCIS (Netherlands)

    Ruiz-Martinez, J.; Beale, A.M.; Deka, U.; O'Brien, M.G.; Quinn, P.D.; Mosselmans, J.F.W.; Weckhuysen, B.M.

    2013-01-01

    Fluid catalytic cracking (FCC) is the main conversion process used in oil refineries. An X-ray microscopy method is used to show that metal poisoning and related structural changes in the zeolite active material lead to a non-uniform core–shell deactivation of FCC catalyst particles. The study links

  8. Visualization of HIV T Cell Virological Synapses and Virus-Containing Compartments by Three-Dimensional Correlative Light and Electron Microscopy.

    Science.gov (United States)

    Wang, Lili; Eng, Edward T; Law, Kenneth; Gordon, Ronald E; Rice, William J; Chen, Benjamin K

    2017-01-15

    Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells.

  9. Correlation between Fe-Zn Interdiffusion Observed by Scanning Capacitance Microscopy and Device Characteristics of Electro-Absorption Modulators

    Science.gov (United States)

    Ogasawara, Matsuyuki; Iga, Ryuzo; Yamanaka, Takayuki; Kondo, Susumu; Kondo, Yasuhiro

    2003-04-01

    The advantages of scanning capacitance microscopy (SCM) in observing Fe-Zn interdiffusion of an electro-absorption (EA) modulator and the relationship between the interdiffusion and device characteristics are discussed. SCM images show that there is a Zn diffusion region, in which the semi-insulating region is converted into p-type due to Zn diffusion, on both sides of the mesa and the Zn diffusion region becomes smaller as the Fe doping concentration is reduced. By comparison, scanning electron microscopy (SEM) images captured after stain etching of EA modulators did not clearly delineate the Zn diffusion front. The influence of a ruthenium (Ru)-doped InP burying layer on the interdiffusion has also been investigated by SCM. These results indicate that in order to improve the performance of EA modulators, it is important to prevent Zn diffusion into the semi-insulating layers.

  10. Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy.

    Science.gov (United States)

    Sonnefraud, Yannick; Cuche, Aurélien; Faklaris, Orestis; Boudou, Jean-Paul; Sauvage, Thierry; Roch, Jean-François; Treussart, François; Huant, Serge

    2008-03-15

    Diamond nanocrystals containing highly photoluminescent color centers are attractive, nonclassical, and near-field light sources. For near-field applications, the size of the nanocrystal is crucial, since it defines the optical resolution. Nitrogen-vacancy (NV) color centers are efficiently created by proton irradiation and annealing of a nanodiamond powder. Using near-field microscopy and photon statistics measurements, we show that nanodiamonds with sizes down to 25 nm can hold a single NV color center with bright and stable photoluminescence.

  11. Proteasome Particle-Rich Structures Are Widely Present in Human Epithelial Neoplasms: Correlative Light, Confocal and Electron Microscopy Study

    OpenAIRE

    2011-01-01

    A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS), a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to ...

  12. Investigation of biodistribution behavior of platinum particles in mice: Correlation between inductively coupled plasma-atomic emission spectroscopy and X-ray scanning analytical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Shigeaki, E-mail: sabe@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Koyama, Chika; Mutoh, Mami [Faculty of Dental Medicine, Hokkaido University, Sapporo (Japan); Akasaka, Tsukasa [Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Uo, Motohiro [Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Watari, Fumio [Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer We investigated the biodistribution of platinum microparticles in mice. Black-Right-Pointing-Pointer The biodistribution behavior was observed using inductively coupled plasma-atomic emission spectroscopy (ICP) and scanning X-ray analytical microscopy (XSAM). Black-Right-Pointing-Pointer The administered particles quickly reached in spleen, liver and lung with constant ration. Black-Right-Pointing-Pointer We also estimated the correlation ship between XSAM and ICP measurement. Black-Right-Pointing-Pointer The relative ratio of XSAM intensity showed highly correlation with the relative ratio of Pt concentration in organs. - Abstract: In this study, we investigated the biodistribution of platinum (Pt) microparticles in mice. The particles were administered through the tail vein, and then the biodistribution behavior was observed using inductively coupled plasma-atomic emission spectroscopy (ICP) and scanning X-ray analytical microscopy (XSAM). The administered particles quickly reached the spleen, liver, and lung at a constant ratio, and the ratio remained constant for four weeks. We also estimated the correlation between XSAM and ICP measurement. The relative ratio of XSAM intensity showed strong correlation with the relative ratio of Pt concentration in organs.

  13. Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vaupel, Matthias, E-mail: Matthias.vaupel@zeiss.com; Dutschke, Anke [Training Application Support Center, Carl Zeiss Microscopy GmbH, Königsallee 9-21, 37081 Göttingen (Germany); Wurstbauer, Ulrich; Pasupathy, Abhay [Department of Physics, Columbia University New York, 538 West 120th Street, New York, New York 10027 (United States); Hitzel, Frank [DME Nanotechnologie GmbH, Geysostr. 13, D-38106 Braunschweig (Germany)

    2013-11-14

    The optical phase shift by reflection on graphene is measured by interference contrast microscopy. The height profile across graphene layers on 300 nm thick SiO{sub 2} on silicon is derived from the phase profile. The complex refractive index and conductivity of graphene layers on silicon with 2 nm thin SiO{sub 2} are evaluated from a phase profile, while the height profile of the layers is measured by atomic force microscopy. It is observed that the conductivity measured on thin SiO{sub 2} is significantly greater than on thick SiO{sub 2}. Back scattered electron contrast of graphene layers is correlated to the height of graphene layers.

  14. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Melia, Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Department of Molecular Cell Biology, Leiden University Medical Centre, 2300 RC Leiden (Netherlands); Marrison, Jo [Department of Biology, The University of York, Heslington, York (United Kingdom); Carzaniga, Raffaella [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Domart, Marie-Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); O' Toole, Peter [Department of Biology, The University of York, Heslington, York (United Kingdom); Larijani, Banafshe [Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, Unidad de Biofísica (CSIC-UPV/EHU),Sarriena s/n, 48940 Leioa (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Collinson, Lucy M. [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol.

  15. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  16. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  17. Correlative Light and Scanning Electron Microscopy for Observing the Three-Dimensional Ultrastructure of Membranous Cell Organelles in Relation to Their Molecular Components.

    Science.gov (United States)

    Koga, Daisuke; Kusumi, Satoshi; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Ushiki, Tatsuo

    2015-12-01

    Although the osmium maceration method has been used to observe three-dimensional (3D) structures of membranous cell organelles with scanning electron microscopy (SEM), the use of osmium tetroxide for membrane fixation and the removal of cytosolic soluble proteins largely impairs the antigenicity of molecules in the specimens. In the present study, we developed a novel method to combine cryosectioning with the maceration method for correlative immunocytochemical analysis. We first immunocytochemically stained a semi-thin cryosection cut from a pituitary tissue block with a cryo-ultramicrotome, according to the Tokuyasu method, before preparing an osmium-macerated specimen from the remaining tissue block. Correlative microscopy was performed by observing the same area between the immunostained section and the adjacent face of the tissue block. Using this correlative method, we could accurately identify the gonadotropes of pituitary glands in various experimental conditions with SEM. At 4 weeks after castration, dilated cisternae of rough endoplasmic reticulum (RER) were distributed throughout the cytoplasm. On the other hand, an extremely dilated cisterna of the RER occupied the large region of the cytoplasm at 12 weeks after castration. This novel method has the potential to analyze the relationship between the distribution of functional molecules and the 3D ultrastructure in different composite tissues.

  18. A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell

    CERN Document Server

    Ferrand, P; Kress, A; Aillaud, A; Rigneault, H; Marguet, D

    2009-01-01

    A fluorescence correlation spectroscopy (FCS) system based on two independent measurement volumes is presented. The optical setup and data acquisition hardware are detailed, as well as a complete protocol to control the location, size and shape of the measurement volumes. A method that allows to monitor independently the excitation and collection efficiency distribution is proposed. Finally, a few examples of measurements that exploit the two spots in static and/or scanning schemes, are reported.

  19. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells.

    Science.gov (United States)

    Peddie, Christopher J; Blight, Ken; Wilson, Emma; Melia, Charlotte; Marrison, Jo; Carzaniga, Raffaella; Domart, Marie-Charlotte; O'Toole, Peter; Larijani, Banafshe; Collinson, Lucy M

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    Energy Technology Data Exchange (ETDEWEB)

    Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl [Zernike Institute for Advanced Materials and Materials innovation institute M2i, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Voogt, F. C.; Attenborough, K. [NXP, Gerstweg 2, 6534 AE Nijmegen (Netherlands); Verheijen, M. A. [Department of Applied Physics, Eindhoven University of Technology, NL-5600 MB Eindhoven (Netherlands); Philips Innovation Services Eindhoven, High Tech Campus 11, NL-5656 AE Eindhoven (Netherlands); Hurkx, G. A. M. [NXP Semiconductors, High Tech Campus 60, 5656 AE Eindhoven (Netherlands); Gravesteijn, D. J. [NXP Semiconductors, Kapeldreef 75, B 3001 Leuven (Belgium)

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  1. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging

    Science.gov (United States)

    Fukushima, S.; Furukawa, T.; Niioka, H.; Ichimiya, M.; Sannomiya, T.; Tanaka, N.; Onoshima, D.; Yukawa, H.; Baba, Y.; Ashida, M.; Miyake, J.; Araki, T.; Hashimoto, M.

    2016-05-01

    This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy.

  2. Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christoph, E-mail: christoph@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN (United Kingdom); Werner, Stephan, E-mail: stephan.werner@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin (Germany); Carregal-Romero, Susana, E-mail: susana.carregal@physik.uni-marburg.de [Fachbereich Physik, Philipps Universität Marburg, Marburg 35043 (Germany); Malhas, Ashraf N., E-mail: ashraf.malhas@path.ox.ac.uk [Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE (United Kingdom); Klupp, Barbara G., E-mail: barbara.klupp@fli.bund.de [Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems (Germany); Guttmann, Peter, E-mail: peter.guttmann@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin (Germany); Rehbein, Stefan, E-mail: stefan.rehbein@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin (Germany); Henzler, Katja, E-mail: katja.henzler@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, 12489 Berlin (Germany); Mettenleiter, Thomas C., E-mail: thomas.mettenleiter@fli.bund.de [Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems (Germany); and others

    2014-11-15

    Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after chemical induction were investigated as a potentially more easily accessible model system. For example, anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes. With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e. high absorption contrast information not relying on labeled cellular components, at a 3D resolution of approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular ultrastructure in its completeness. - Highlights: • Nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated cells. • New polyelectrolyte-Qdot{sup ®} 605 coated gold beads were employed as fiducials. • Saquinavir can induce a strong apoptotic phenotype in the nucleus. • CryoXT is an auspicious imaging technique in apoptosis research.

  3. Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method

    Science.gov (United States)

    Huynh, Toan; Daddysman, Matthew K.; Bao, Ying; Selewa, Alan; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2017-05-01

    Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science

  4. Comparative study of erythritol and lactose monohydrate as carriers for inhalation: atomic force microscopy and in vitro correlation.

    Science.gov (United States)

    Traini, Daniela; Young, Paul M; Jones, Matthew; Edge, Stephen; Price, Robert

    2006-02-01

    The adhesion of micronised salbutamol sulphate to two carrier excipients, lactose monohydrate and erythritol, was investigated using the atomic force microscope (AFM) colloid probe technique and correlated with their respective physico-mechanical properties and aerosolisation performance. The particle size, morphology and moisture sorption properties of the carriers were similar thereby allowing direct comparison of functionality. AFM force measurements (n = 1024 force curves) were obtained between salbutamol sulphate drug probes (n = 4) and the excipients, as 63-90 microm sieve fractions and atomically smooth crystals. In general, significant differences in drug adhesion to lactose monohydrate and erythritol were observed (ANOVA, plactose monohydrate and drug probe adhesion to erythritol was established with salbutamol sulphate-lactose monohydrate adhesion being 60-70% of that of the erythritol system. In vitro analysis suggested good correlation with the adhesion measurements. The aerosolisation of salbutamol sulphate from erythritol carrier particles was significantly less (ANOVA, plactose monohydrate, with a fine particle dose (lactose monohydrate and erythritol carriers, respectively (n = 3).

  5. Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, A.; Barnes, J. P.; Serra, R.; Audoit, G.; Cooper, D. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Duguay, S.; Rolland, N.; Blavette, D.; Vurpillot, F. [GPM UMR 6634 CNRS, Avenue de l' Université, 76801 Saint Etienne du Rouvray (France); Morin, P.; Gouraud, P. [STMicroelectronics, 850 Rue Jean Monnet, 38920 Crolles (France)

    2015-05-25

    The analysis of a same sample using nanometre or atomic-scale techniques is fundamental to fully understand device properties. This is especially true for the dopant distribution within last generation nano-transistors such as MOSFET or FINFETs. In this work, the spatial distribution of boron in a nano-transistor at the atomic scale has been investigated using a correlative approach combining electron and atom probe tomography. The distortions present in the reconstructed volume using atom probe tomography have been discussed by simulations of surface atoms using a cylindrical symmetry taking into account the evaporation fields. Electron tomography combined with correction of atomic density was used so that to correct image distortions observed in atom probe tomography reconstructions. These corrected atom probe tomography reconstructions then enable a detailed boron doping analysis of the device.

  6. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Science.gov (United States)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  7. Diacritical study of light, electrons and sound scattering by particles and holes

    Energy Technology Data Exchange (ETDEWEB)

    Javier Garcia de Abajo, F [Instituto de Optica-CSIC, Serrano 121, 28006 Madrid (Spain); Estrada, Hector; Meseguer, Francisco [Unidad Asociada ICMM-CSIC/Universidad Politecnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia (Spain)], E-mail: jga@cfmac.csic.es

    2009-09-15

    We discuss the differences and similarities in the interaction of scalar and vector wave fields with particles and holes. Analytical results are provided for the transmission of isolated and arrayed small holes as well as surface modes in hole arrays for light, electrons and sound. In contrast to the optical case, small-hole arrays in perforated perfect screens cannot produce acoustic or electronic surface-bound states. However, unlike electrons and light, sound is transmitted through individual holes approximately in proportion to their area, regardless of their size. We discuss these issues with a systematic analysis that allows one to explore both common properties and unique behavior in wave phenomena for different material realizations.

  8. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem.

    Science.gov (United States)

    Burian, Agata; Ludynia, Michal; Uyttewaal, Magalie; Traas, Jan; Boudaoud, Arezki; Hamant, Olivier; Kwiatkowska, Dorota

    2013-12-01

    Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered.

  9. Microcoil-based MR phase imaging and manganese enhanced microscopy of glial tumor neurospheres with direct optical correlation.

    Science.gov (United States)

    Baxan, Nicoleta; Kahlert, Ulf; Maciaczyk, Jaroslaw; Nikkhah, Guido; Hennig, Jürgen; von Elverfeldt, Dominik

    2012-07-01

    Susceptibility differences among tissues were recently used for highlighting complementary contrast in MRI different from the conventional T(1), T(2), or spin density contrasts. This method, based on the signal phase, previously showed improved image contrast of human or rodent neuroarchitecture in vivo, although direct MR phase imaging of cellular architecture was not available until recently. In this study, we present for the first time the ability of microcoil-based phase MRI to resolve the structure of human glioma neurospheres at significantly improved resolutions (10 × 10 μm(2)) with direct optical image correlation. The manganese chloride property to function as a T(1) contrast agent enabled a closer examination of cell physiology with MRI. Specifically the temporal changes of manganese chloride uptake, retention and release time within and from individual clusters were assessed. The optimal manganese chloride concentration for improved MR signal enhancement was determined while keeping the cellular viability unaffected. The presented results demonstrate the possibilities to reveal structural and functional observation of living glioblastoma human-derived cells. This was achieved through the combination of highly sensitive microcoils, high magnetic field, and methods designed to maximize contrast to noise ratio. The presented approach may provide a powerful multimodal tool that merges structural and functional information of submilimeter biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  10. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson's disease pathogenesis.

    Science.gov (United States)

    Boassa, Daniela; Berlanga, Monica L; Yang, Mary Ann; Terada, Masako; Hu, Junru; Bushong, Eric A; Hwang, Minju; Masliah, Eliezer; George, Julia M; Ellisman, Mark H

    2013-02-06

    Modifications to the gene encoding human α-synuclein have been linked to the development of Parkinson's disease. The highly conserved structure of α-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human α-synuclein, including new genetic tags developed for correlated light microscopy and electron microscopy (the tetracysteine-biarsenical labeling system or the new fluorescent protein for electron microscopy, MiniSOG), we determined the distribution of α-synuclein when overexpressed in primary neurons at supramolecular and cellular scales in three dimensions (3D). We observed specific association of α-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, α-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice overexpressing human α-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. Three-dimensional electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulovesicular structures similar to what we observed in vitro. We propose that α-synuclein overexpression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that α-synuclein is involved in processes associated with the sorting, channeling, packaging, and transport of synaptic material destined for degradation.

  11. Microscopic study of dental hard tissues in primary teeth with Dentinogenesis Imperfecta Type II: Correlation of 3D imaging using X-ray microtomography and polarising microscopy.

    Science.gov (United States)

    Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G

    2015-07-01

    The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In Vivo Noninvasive Imaging of Healthy Lower Lip Mucosa: A Correlation Study between High-Definition Optical Coherence Tomography, Reflectance Confocal Microscopy, and Histology

    Directory of Open Access Journals (Sweden)

    Alejandra García-Hernández

    2013-01-01

    Full Text Available In recent years, technology has allowed the development of new diagnostic techniques which allow real-time, in vivo, noninvasive evaluation of morphological changes in tissue. This study compares and correlates the images and findings obtained by high-definition optical coherence tomography (HD-OCT and reflectance confocal microscopy (RCM with histology in normal healthy oral mucosa. The healthy lip mucosa of ten adult volunteers was imaged with HD-OCT and RCM. Each volunteer was systematically evaluated by RCM starting in the uppermost part of the epithelium down to the lamina propia. Afterwards, volunteers were examined with a commercially available full-field HD-OCT system using both the “slice” and the “en-face” mode. A “punch” biopsy of the lower lip mucosa was obtained and prepared for conventional histology. The architectural overview offered by “slice” mode HD-OCT correlates with histologic findings at low magnification. In the superficial uppermost layers of the epithelium, RCM imaging provided greater cellular detail than histology. As we deepened into the suprabasal layers, the findings are in accordance with physiological cellular differentiation and correlate with the images obtained from conventional histology. The combined use of these two novel non-invasive imaging techniques provides morphological imaging with sufficient resolution and penetration depth, resulting in quasihistological images.

  13. Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response.

    Science.gov (United States)

    Stylianou, Andreas; Yova, Dido

    2015-12-01

    Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.

  14. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties

    Directory of Open Access Journals (Sweden)

    Kevin eTakasaki

    2014-05-01

    Full Text Available The structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques. Morphological determinants of fluorescence recovery time were identified and evaluated within the context of a simple compartmental model describing diffusive transfer between spine and dendrite. Correlations between the neck geometry and the amplitude of synapse potentials and calcium transients evoked by 2-photon glutamate uncaging were also investigated.

  15. Two-dimensional correlation spectroscopy (2D-COS) variable selection for near-infrared microscopy discrimination of meat and bone meal in compound feed.

    Science.gov (United States)

    Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia

    2014-01-01

    This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.

  16. Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Mukund Seshadri

    2007-02-01

    Full Text Available The acute effects of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA were investigated in vivo using intravital microscopy (IVM and magnetic resonance imaging (MRI. Changes in vascular permeability and blood flow of syngeneic CT-26 murine colon adenocarcinomas were assessed at 4 and 24 hours after DMXAA treatment (30 mg/kg, i.p. and correlated with induction of tumor necrosis factor-α (TNF-α, endothelial damage [CD31/terminal deoxynucleotidyl transferase (TdT], and treatment outcome. Intravital imaging revealed a marked increase in vascular permeability 4 hours after treatment, consistent with increases in intratumoral mRNA and protein levels of TNF-α. Parallel contrast-enhanced MRI studies showed a ~ 4-fold increase in longitudinal relaxation rates (ΔR1, indicative of increased contrast agent accumulation within the tumor. Dualimmunostained tumor sections (CD31/TdT revealed evidence of endothelial apoptosis at this time point. Twenty-four hours after treatment, extensive hemorrhage and complete disruption of vascular architecture were observed with IVM, along with a significant reduction in ΔR1 and virtual absence of CD31 immunostaining. DMXAA-induced tumor vascular damage resulted in significant long-term (60-day cures compared to untreated controls. Multimodality imaging approaches are useful in visualizing the effects of antivascular therapy in vivo. Such approaches allow cross validation and correlation of findings with underlying molecular changes contributing to treatment outcome.

  17. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Elizabeth M.H. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Razi, Minoo [Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Weston, Anne [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Soft Matter and Functional Materials, 12489 Berlin (Germany); Tooze, Sharon A. [Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Collinson, Lucy M., E-mail: lucy.collinson@cancer.org.uk [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum.

  18. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius; Myers, Thomas H.; Barnes, Teresa M.; Jensen, Søren A.; Allende Motz, Alyssa M.

    2017-02-20

    From time- and spatially resolved optical measurements, we show that extended defects can have a large effect on the charge-carrier recombination in II-VI semiconductors. In CdTe double heterostructures grown by molecular beam epitaxy on the InSb (100)-orientation substrates, we characterized the extended defects and found that near stacking faults the space-charge field extends by 2-5 um. Charge carriers drift (with the space-charge field strength of 730-1,360 V cm-1) and diffuse (with the mobility of 260 +/- 30 cm2 V-1 s-1) toward the extended defects, where the minority-carrier lifetime is reduced from 560 ns to 0.25 ns. Therefore, the extended defects are nonradiative recombination sinks that affect areas significantly larger than the typical crystalline grains in II-VI solar cells. From the correlative time-resolved photoluminescence and second-harmonic generation microscopy data, we developed a band-diagram model that can be used to analyze the impact of extended defects on solar cells and other electronic devices.

  19. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    Science.gov (United States)

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  20. 基于时间相关单光子计数的离线式g-STED超分辨显微术%Super Resolution Microscopy of Offline g-STED Microscopy Based on Time-Correlated Single Photon Counting

    Institute of Scientific and Technical Information of China (English)

    郝翔; 匡翠方; 顾兆泰; 李帅; 刘旭

    2013-01-01

    提出了一种离线式基于时间门的荧光受激发射损耗(g-STED)显微方法.基于在强光照条件下荧光寿命缩短的理论模型,在常规STED架构基础上,使用时间相关单光子记数(TCSPC)算法获取图像的荧光寿命信息,离线设置合理的时间门阈值,丢弃短寿命信号数据,对荧光信号有效点扩展函数(PSF)进行压缩,达到超分辨显微的目的.与传统STED显微术相比,此方法所需光功率大幅度降低,减少了荧光漂白及光毒性;离线式处理则同时增加了时间门设置的灵活性.在实验中,使用45 rnW的连续STED光,最终获取了约80 nm的图像空间分辨率.进一步对时间门的设置对获取图像信号的分辨率和信噪比的影响进行了讨论.%The offline time-gated stimulated emission depletion (g-STED) microscopy, which is based on time-correlated single photon counting (TCSPC) algorithm, is proposed. As STED beam can eliminate the ratio of spontaneous fluorescent emission while reducing the fluorescence lifetime, the lifetime of fluorescent signals in the center of excitation focal spot and that in the surrounding doughnut area which are overlap by the STED focal spot are significant different. Based on this principle, in a general continuous wave STED (CW-STED), the fluorescent lifetimes of the whole imaging region are calculated by TCSPC, and the signals with shorter lifetime are discarded after all data recorded. The effective point spread function (PSF) of each fluorescent labels are shrinked in order to enhance the resolution. Compared with traditional ones, this offline g-STED not only decreases the incident intensity of laser to avoid the risk of fluorescence photobleaching and optical toxicity, but also increases the flexibility of time-gate manipulation. A spatial resolution of 80 nm is obtained in the experiment when only 45 mW STED beam is introduced. The potential influences of time-gate selection to the resolution and signal-to-noise ratio

  1. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  2. Electron Microscopy.

    Science.gov (United States)

    Beer, Michael

    1980-01-01

    Reviews technical aspects of structure determination in biological electron microscopy (EM). Discusses low dose EM, low temperature microscopy, electron energy loss spectra, determination of mass or molecular weight, and EM of labeled systems. Cites 34 references. (CS)

  3. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy.

    Science.gov (United States)

    Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert Nascimento

    2008-01-01

    The present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99m Tc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99m Tc-HMPAO, from 24.4 to 49.8% in PLA NC and 22.37 to 52.93% in the case of PLA-PEG NC (P<0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLA-PEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99m Tc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99m Tc-HMPAO-PLA-PEG NC was more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.

  4. Analytical Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    2006-06-01

    In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

  5. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles

    NARCIS (Netherlands)

    J. Kuipers (Jeroen); T.J. van Ham (Tjakko); R.D. Kalicharan (Ruby); A. Veenstra-Algra (Anneke); K.A. Sjollema (Klaas A.); F.N. Dijk (Nicole); U. Schnell (Ulrike); B.N.G. Giepmans (Ben)

    2015-01-01

    textabstractUltrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections

  6. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles

    NARCIS (Netherlands)

    Kuipers, Jeroen; van Ham, Tjakko J.; Kalicharan, Ruby D.; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Dijk, Freerk; Schnell, Ulrike; Giepmans, Ben N. G.

    Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely

  7. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles

    NARCIS (Netherlands)

    Kuipers, Jeroen; van Ham, Tjakko J.; Kalicharan, Ruby D.; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Dijk, Freerk; Schnell, Ulrike; Giepmans, Ben N. G.

    2015-01-01

    Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely diffic

  8. Contrast Enhanced Microscopy Digital Image Correlation: A General Method to Contact-Free Coefficient of Thermal Expansion Measurement of Polymer Films

    Science.gov (United States)

    Jairo A. Diaz; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Thermal expansion represents a vital indicator of the processing history and dimensional stability of materials. Solvent-sensitive, thin, and compliant samples are particularly challenging to test. Here we describe how textures highlighted by contrast enhanced optical microscopy modes (i.e., polarized light (PL), phase contrast (PC)) and bright field (BF) can be used...

  9. A correlative study of hydrogen peroxide accumulation after mercury or copper treatment observed in root nodules of Medicago truncatula under light, confocal and electron microscopy.

    Science.gov (United States)

    Górska-Czekaj, Magdalena; Borucki, Wojciech

    2013-01-01

    Heavy metal stress affects both, nodulation and nitrogen fixation of legumes. Mercury triggers disturbances in cellular structure and metabolism but its influence on ROS generation is poorly understood. Copper is redox active metal which in opposition to mercury is an essential micronutrient for plants. Excess of copper is cytotoxic, as it participates in ROS generation via Fenton-type reaction. The present work describes changes in hydrogen peroxide (H₂O₂) accumulation in response to monthly stress caused by mercury (6 mg/L HgCl₂) or copper (60 mg/L CuCl₂) in root nodules. H₂O₂ accumulation viewed with a light microscopy was detected by the use of diaminobenzidine (DAB). 2',7'-Dichlorofluorescein diacetate (H2DCF-DA) was used as a probe for the intracellular localization of H₂O₂ with a confocal laser scanning system. H₂O₂ detection under transmission electron microscopy was performed by the use of cerium method. Histochemical localization and light and confocal microscopy investigations revealed that under Hg or Cu treatments distinct amount of H₂O₂ accumulated mainly in the interzone and nitrogen-fixing zone. Under normal conditions H₂O₂ accumulated predominantly in the interzone. Electron microscopy observations showed H₂O₂ accumulation under Hg or Cu- treatments around peribacteroid membranes of mature symbiosomes located within nitrogen-fixing zone. It should be underlined that under normal conditions H₂O₂ was not detected at the peribacteroid membranes. The main result of our observations is increased accumulation of H₂O₂ in response to mercury and copper treatments at the peribacteroidal membranes, to our knowledge shown for the first time. Therefore, our results revealed that an overproduction of H₂O₂ in response to copper or mercury-treatment may account for lowering of nitrogen fixation rates in heavy-metal affected root nodules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The correlation between malaria RDT (Paracheck pf.®) faint test bands and microscopy in the diagnosis of malaria in Malawi.

    Science.gov (United States)

    Makuuchi, Ryoko; Jere, Sandy; Hasejima, Nobuchika; Chigeda, Thoms; Gausi, January

    2017-05-02

    Faint test bands of Paracheck Pf.® are interpreted as malaria positive according to world health organization (WHO) guideline. However if there are conspicuous number of faint test bands, a performance of Paracheck Pf.® could be influenced depending on whether interpreting faint test bands as malaria positive or negative. Finding out the frequency and accurate interpretation of faint test bands are important to prevent the overdiagnosis and drug resistance. A cross-sectional, descriptive study was conducted to find out the frequency of faint test bands and evaluate the performance of Paracheck Pf.® by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of diagnosis of Paracheck Pf.® using microscopy as the gold standard. 388 suspected patients with malaria in Malawi were recruited in this study. Malaria rapid diagnostic tests (RDTs) and microscopy were used and patients' information which includes age, sex, body temperature and signs or symptoms of malaria were recorded. Among all patients involved in the study, 29.1% (113/388) were found malaria positive by RDT. Overall 5.4% (21/388) of all Paracheck Pf.® tests resulted in a "faint test band" and 85.7% (18/21) corresponded with malaria negative by microscopy. Faint test bands which corresponded with malaria positive by microscopy were lower parasite density and there are no patients who showed definitive symptom of malaria, such as fever. When Paracheck Pf.® "faint test bands" were classified as positive, accuracy of diagnosis was 76.5% (95% CI 72%-80.7%) as compared to 80.4% (95% CI 76.1%-84.2%) when Paracheck Pf.® "faint test bands" were classified as negative. This study shows that frequency of faint test bands is 5.4% in all malaria RDTs. The accuracy of diagnosis was improved when faint test bands were interpreted as malaria negative. However information and data obtained in this study may not be enough and more intensive research including a

  11. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    Science.gov (United States)

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  12. Inspection of chemically roughened copper surfaces using optical interferometry and scanning electron microscopy: Establishing a correlation between surface morphology and solderability

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.O.; Hosking, F.M.; Guilinger, T.R.; Yost, F.G.; Sorensen, N.R.

    1995-08-01

    Sandia National Laboratories has established a Cooperative Research and Development Agreement with consortium members of the National Center for Manufacturing Sciences (NCMS) to develop fundamental generic technology in printed wiring board materials and surface finishes. We are investigating the effects of surface roughness on the wettability and solderability behavior of several types of copper board finishes to gain insight into surface morphologies that lead to improved solderability. In this paper, we present optical interterometry and scanning electron microscopy results for a variety of chemically-etched copper substrates. Initial testing on six chemical etches demonstrate that surface roughness can be greatly enhanced through chemical etching. Noticeable movements in solder wettability were observed to company increases in roughness.

  13. Correlating whisker growth and grain structure on Sn-Cu samples by real-time scanning electron microscopy and backscattering diffraction characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pei Fei; Jadhav, Nitin; Chason, Eric [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2012-05-28

    Whiskers/hillocks grow out of Pb-free Sn coatings used in electronics manufacturing. To determine which grains form whiskers/hillocks, we use scanning electron microscopy and backscattering diffraction to simultaneously monitor the surface morphology and grain structure. To reduce surface roughness, we developed a ''peel-off'' method to prepare ultra-flat samples that were measured repeatedly while whiskers/hillocks formed. We find grains that form into whiskers/hillocks are present in the as-deposited film (i.e., not re-nucleated) and many have horizontal grain boundaries beneath them. Grain rotation during whisker/hillock formation means that measurements performed after the features grow do not indicate their initial grain orientations.

  14. Endoscopic Microscopy

    Science.gov (United States)

    Sokolov, Konstantin; Sung, Kung-Bin; Collier, Tom; Clark, Anne; Arifler, Dizem; Lacy, Alicia; Descour, Michael; Richards-Kortum, Rebecca

    2002-01-01

    In vivo endoscopic optical microscopy provides a tool to assess tissue architecture and morphology with contrast and resolution similar to that provided by standard histopathology – without need for physical tissue removal. In this article, we focus on optical imaging technologies that have the potential to dramatically improve the detection, prevention, and therapy of epithelial cancers. Epithelial pre-cancers and cancers are associated with a variety of morphologic, architectural, and molecular changes, which currently can be assessed only through invasive, painful biopsy. Optical imaging is ideally suited to detecting cancer-related alterations because it can detect biochemical and morphologic alterations with sub-cellular resolution throughout the entire epithelial thickness. Optical techniques can be implemented non-invasively, in real time, and at low cost to survey the tissue surface at risk. Our manuscript focuses primarily on modalities that currently are the most developed: reflectance confocal microscopy (RCM) and optical coherence tomography (OCT). However, recent advances in fluorescence-based endoscopic microscopy also are reviewed briefly. We discuss the basic principles of these emerging technologies and their current and potential applications in early cancer detection. We also present research activities focused on development of exogenous contrast agents that can enhance the morphological features important for cancer detection and that have the potential to allow vital molecular imaging of cancer-related biomarkers. In conclusion, we discuss future improvements to the technology needed to develop robust clinical devices. PMID:14646041

  15. A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Johann Charwat-Pessler

    2015-06-01

    Full Text Available The ability of bone graft substitutes to promote new bone formation has been increasingly used in the medical field to repair skeletal defects or to replace missing bone in a broad range of applications in dentistry and orthopedics. A common way to assess such materials is via micro computed tomography (µ-CT, through the density information content provided by the absorption of X-rays. Information on the chemical composition of a material can be obtained via Raman spectroscopy. By investigating a bone sample from miniature pigs containing the bone graft substitute Bio Oss®, we pursued the target of assessing to what extent the density information gained by µ-CT imaging matches the chemical information content provided by Raman spectroscopic imaging. Raman images and Raman correlation maps of the investigated sample were used in order to generate a Raman based segmented image by means of an agglomerative, hierarchical cluster analysis. The resulting segments, showing chemically related areas, were subsequently compared with the µ-CT image by means of a one-way ANOVA. We found out that to a certain extent typical gray-level values (and the related histograms in the µ-CT image can be reliably related to specific segments within the image resulting from the cluster analysis.

  16. Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: Implications for Parkinson’s disease pathogenesis

    Science.gov (United States)

    Boassa, D.; Berlanga, M.L.; Yang, M.-L.; Terada, M.; Hu, J.; Bushong, E.A.; Hwang, M.; Masliah, E.; George, J.M.; Ellisman, M.H.

    2013-01-01

    Modifications to the gene encoding human alpha-synuclein have been linked to development of Parkinson’s disease. The highly conserved structure of alpha-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human alpha-synuclein including new genetic tags developed for correlated LM and EM (the tetracysteine-biarsenical labeling system or the new fluorescent protein for EM, MiniSOG), we determined the distribution of alpha-synuclein when over-expressed in primary neurons at supramolecular and cellular scales, in three dimensions (3D). We observed specific association of alpha-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, alpha-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice over-expressing human alpha-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. 3D electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulo-vesicular structures similar to what observed in vitro. We propose that alpha-synuclein over-expression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that alpha- synuclein is involved in processes associated with the sorting, channeling, packaging and transport of synaptic material destined for degradation. PMID:23392688

  17. Photoelectron Microscopy

    Science.gov (United States)

    King, Paul Lawrence

    1992-01-01

    GaAs (110) are mapped with the microscope and correlated with cleavage damage. The surface of barium impregnated dispenser cathodes (IDCs) are also studied at operating temperature.

  18. Microscopy techniques in flavivirus research.

    Science.gov (United States)

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.

  19. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP s

  20. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  1. Twin-Photon Confocal Microscopy

    CERN Document Server

    Simon, D S

    2010-01-01

    A recently introduced two-channel confocal microscope with correlated detection promises up to 50% improvement in transverse spatial resolution [Simon, Sergienko, Optics Express {\\bf 18}, 9765 (2010)]. Here we move further by introducing a triple-confocal correlated microscope, exploiting the correlations present in optical parametric amplifiers. It is based on tight focusing of pump radiation onto a thin sample positioned in front of a nonlinear crystal, followed by coincidence detection of signal and idler photons, each focused onto a pinhole. This approach offers further resolution enhancement in microscopy.

  2. Multi-pass microscopy

    Science.gov (United States)

    Juffmann, Thomas; Klopfer, Brannon B.; Frankort, Timmo L. I.; Haslinger, Philipp; Kasevich, Mark A.

    2016-09-01

    Microscopy of biological specimens often requires low light levels to avoid damage. This yields images impaired by shot noise. An improved measurement accuracy at the Heisenberg limit can be achieved exploiting quantum correlations. If sample damage is the limiting resource, an equivalent limit can be reached by passing photons through a specimen multiple times sequentially. Here we use self-imaging cavities and employ a temporal post-selection scheme to present full-field multi-pass polarization and transmission micrographs with variance reductions of 4.4+/-0.8 dB (11.6+/-0.8 dB in a lossless setup) and 4.8+/-0.8 dB, respectively, compared with the single-pass shot-noise limit. If the accuracy is limited by the number of detected probe particles, our measurements show a variance reduction of 25.9+/-0.9 dB. The contrast enhancement capabilities in imaging and in diffraction studies are demonstrated with nanostructured samples and with embryonic kidney 293T cells. This approach to Heisenberg-limited microscopy does not rely on quantum state engineering.

  3. Insights into complexation of dissolved organic matter and Al(III) and nanominerals formation in soils under contrasting fertilizations using two-dimensional correlation spectroscopy and high resolution-transmission electron microscopy techniques.

    Science.gov (United States)

    Wen, Yongli; Li, Huan; Xiao, Jian; Wang, Chang; Shen, Qirong; Ran, Wei; He, Xinhua; Zhou, Quansuo; Yu, Guanghui

    2014-09-01

    Understanding the organomineral associations in soils is of great importance. Using two-dimensional correlation spectroscopy (2DCOS) and high resolution-transmission electron microscopy (HRTEM) techniques, this study compared the binding characteristics of organic ligands to Al(III) in dissolved organic matter (DOM) from soils under short-term (3-years) and long-term (22-years) fertilizations. Three fertilization treatments were examined: (i) no fertilization (Control), (ii) chemical nitrogen, phosphorus and potassium (NPK), and (iii) NPK plus swine manure (NPKM). Soil spectra detected by the 2DCOS Fourier transform infrared (FTIR) spectroscopy showed that fertilization modified the binding characteristics of organic ligands to Al(III) in soil DOM at both short- and long- term location sites. The CH deformations in aliphatic groups played an important role in binding to Al(III) but with minor differences among the Control, NPK and NPKM at the short-term site. While at the long-term site both C-O stretching of polysaccharides or polysaccharide-like substances and aliphatic O-H were bound to Al(III) under the Control, whereas only aliphatic O-H, and only polysaccharides and silicates, were bound to Al(III) under NPK and NPKM, respectively. Images from HRTEM demonstrated that crystalline nanominerals, composed of Fe and O, were predominant in soil DOM under NPK, while amorphous nanominerals, predominant in Al, Si, and O, were dominant in soil DOM under Control and NPKM. In conclusion, fertilization strategies, especially under long-term, could affect the binding of organic ligands to Al(III) in soil DOM, which resulted in alterations in the turnover, reactivity, and bioavailability of soil organic matter. Our results demonstrated that the FTIR-2DCOS combined with HRTEM techniques could enhance our understanding in the binding characteristics of DOM to Al(III) and the resulted nanominerals in soils.

  4. Domain structures and correlated out-of-plane and in-plane polarization reorientations in Pb(Zr0.96Ti0.04O3 single crystal via piezoresponse force microscopy

    Directory of Open Access Journals (Sweden)

    N. V. Andreeva

    2016-09-01

    Full Text Available Pb(Zr1-xTixO3 single crystal with a low titanium content (x = 4% was studied by the piezoresponse force microscopy (PFM and X-ray diffraction (XRD. The XRD studies showed that the crystal faces are orthogonal to the principal cubic axes and confirmed the existence of an intermediate phase between the high-temperature paraelectric (PE phase and the low-temperature antiferroelectric (AFE one. A significant temperature hysteresis of phase transitions was observed by the XRD: On heating, the AFE state transforms into the intermediate one at about 373 K and the PE phase appears at 508 K, whereas on cooling the intermediate phase forms at 503 K and persists down to at least 313 K. The PFM investigation was focused on the intermediate phase and involved measurements of both out-of-plane and in-plane electromechanical responses of the (001-oriented crystal face. The PFM images revealed the presence of polarization patterns switchable by an applied electric field, which confirms the ferroelectric character of the intermediate phase. Importantly, two types of regular domain structures were found, which differ by the spatial orientation of domain walls. The reconstruction of polarization configurations in the observed domain structures showed that one of them is a purely ferroelectric 180° structure with domain walls orthogonal to the crystal surface and parallel to one of the ⟨111⟩ pseudocubic directions. Another one is a ferroelectric-ferroelastic domain structure with the 71° walls parallel to the {101} or {011} crystallographic planes. Remarkably, this domain structure shows correlated out-of-plane and in-plane polarization reorientations after the poling with the aid of the microscope tip.

  5. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction...

  6. Mechanics in Steels through Microscopy

    OpenAIRE

    Tirumalasetty, G. K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP steels, highlighting the importance of microstructure - mechanical properties - applications relationships. In Chapter 2 the material properties and material processing are described into more detai...

  7. Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

    2008-09-03

    In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

  8. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  9. Photothermal Single Particle Microscopy

    OpenAIRE

    Selmke, Markus; Braun, Marco; Cichos, Frank

    2011-01-01

    Photothermal microscopy has recently complemented single molecule fluorescence microscopy by the detection of individual nano-objects in absorption. Photothermal techniques gain their superior sensitivity by exploiting a heat induced refractive index change around the absorbing nano-object. Numerous new applications to nanoparticles, nanorods and even single molecules have been reported all refering to the fact that photothermal microscopy is an extinction measurement on a heat induced refrac...

  10. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  11. [Artefacts of confocal microscopy].

    Science.gov (United States)

    Vekshin, N L; Frolov, M S

    2014-01-01

    Typical artefacts caused by using confocal fluorescent microscopy while studying living cells are considered. The role of light scattering, mobility, staining, local concentrations, etc. is discussed.

  12. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  13. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  14. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    2008-01-01

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major breakth

  15. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  16. Lasers for nonlinear microscopy.

    Science.gov (United States)

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  17. Fluorescence antibunching microscopy

    CERN Document Server

    Schwartz, Osip

    2011-01-01

    Breaking the diffraction limit in microscopy by utilizing quantum properties of light has been the goal of intense research in the recent years. We propose a quantum superresolution technique based on non-classical emission statistics of fluorescent markers, routinely used as contrast labels for bio-imaging. The technique can be readily implemented using standard fluorescence microscopy equipment.

  18. LEDs for fluorescence microscopy

    NARCIS (Netherlands)

    Young, I.T.; Garini, Y.; Dietrich, H.R.C.; Van Oel, W.; Liqui Lung, G.

    2004-01-01

    Traditional light sources for fluorescence microscopy have been mercury lamps, xenon lamps, and lasers. These sources have been essential in the development of fluorescence microscopy but each can have serious disadvantages: lack of near monochromaticity, heat generation, cost, lifetime of the light

  19. Photothermal Single Particle Microscopy

    CERN Document Server

    Selmke, Markus; Cichos, Frank

    2011-01-01

    Photothermal microscopy has recently complemented single molecule fluorescence microscopy by the detection of individual nano-objects in absorption. Photothermal techniques gain their superior sensitivity by exploiting a heat induced refractive index change around the absorbing nano-object. Numerous new applications to nanoparticles, nanorods and even single molecules have been reported all refering to the fact that photothermal microscopy is an extinction measurement on a heat induced refractive index profile. Here, we show that the actual physical mechanism generating a photothermal signal from a single molecule/particle is fundamentally different from the assumed extinction measurement. Combining photothermal microscopy, light scattering microscopy as well as accurate Mie scattering calculations to single gold nanoparticles, we reveal that the detection mechanism is quantitatively explained by a nanolensing effect of the long range refractive index profile. Our results lay the foundation for future develop...

  20. Diagnostic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dickersin, G.R.

    1988-01-01

    In this book the author presents a comprehensive reference text on diagnostic electron microscopy. Throughout the book he illustrates how ultrastructural identification can be helpful for the recognition of cell type and the identification of mechanisms of pathogenesis in various diseases. In addition to electron microscopy photographs, there are also numerous light microscopy photographs for comparison. This text presents the classification of neoplasms in the order and arrangement most familiar to the pathologist. Contents: Introduction; Diagram of a Normal Cell; Normal Cell Function; Embryology; Neoplasms; Infectious Agents; Metabolic Diseases; Renal Diseases; Skeletal Muscle and Peripheral Nerve Diseases; Index.

  1. Photothermal imaging scanning microscopy

    Science.gov (United States)

    Chinn, Diane; Stolz, Christopher J.; Wu, Zhouling; Huber, Robert; Weinzapfel, Carolyn

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  2. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  3. Clinical specular microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, L.W.; Laing, R.A.

    1987-01-01

    This book provides the general ophthalmologist with a guide to the clinical applications of specular microscopy. Important material is included on laser injury, cataract surgery, corneal transplants, glaucoma, uveitis, and trauma.

  4. Tour de force microscopy

    OpenAIRE

    Mervyn Miles; Massimo Antognozzi; Heiko Haschke; Jamie Hobbs; Andrew Humphris; Terence McMaster

    2003-01-01

    Scanning probe microscopy (SPM) is capable of imaging synthetic polymers and biomolecular systems at sub-molecular resolution, without the need for staining or coating, in a range of environments including gas and liquid, so offering major advantages over other forms of microscopy. However, there are some limitations, which could be alleviated by (i) reducing the force interaction between the probe and specimen and (ii) increasing the rate of imaging. New developments in instrumentation from ...

  5. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  6. Optical imaging. Expansion microscopy.

    Science.gov (United States)

    Chen, Fei; Tillberg, Paul W; Boyden, Edward S

    2015-01-30

    In optical microscopy, fine structural details are resolved by using refraction to magnify images of a specimen. We discovered that by synthesizing a swellable polymer network within a specimen, it can be physically expanded, resulting in physical magnification. By covalently anchoring specific labels located within the specimen directly to the polymer network, labels spaced closer than the optical diffraction limit can be isotropically separated and optically resolved, a process we call expansion microscopy (ExM). Thus, this process can be used to perform scalable superresolution microscopy with diffraction-limited microscopes. We demonstrate ExM with apparent ~70-nanometer lateral resolution in both cultured cells and brain tissue, performing three-color superresolution imaging of ~10(7) cubic micrometers of the mouse hippocampus with a conventional confocal microscope.

  7. Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy.

    Science.gov (United States)

    Liss, Viktoria; Barlag, Britta; Nietschke, Monika; Hensel, Michael

    2015-12-08

    Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To correlate both data sets, markers functional in FM, SRM and TEM are required. Genetically encoded markers such as fluorescent proteins or self-labelling enzyme tags allow observations in living cells. Various genetically encoded tags are available for FM and SRM, but only few tags are suitable for CLEM. Here, we describe the red fluorescent dye tetramethylrhodamine (TMR) as a multimodal marker for CLEM. TMR is used as fluorochrome coupled to ligands of genetically encoded self-labelling enzyme tags HaloTag, SNAP-tag and CLIP-tag in FM and SRM. We demonstrate that TMR can additionally photooxidize diaminobenzidine (DAB) to an osmiophilic polymer visible on TEM sections, thus being a marker suitable for FM, SRM and TEM. We evaluated various organelle markers with enzymatic tags in mammalian cells labelled with TMR-coupled ligands and demonstrate the use as efficient and versatile DAB photooxidizer for CLEM approaches.

  8. Conventional transmission electron microscopy.

    Science.gov (United States)

    Winey, Mark; Meehl, Janet B; O'Toole, Eileen T; Giddings, Thomas H

    2014-02-01

    Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.

  9. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  10. Basic confocal microscopy

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2012-03-01

    Full Text Available This is an eleven chapter’s effort done by a bunch of Authors coordinated by Prof. R.L. Price and W.G. Jerome (who have personally written almost half of the book that with great skills are revealing us the secrets of confocal microscopy. Considering the significant progresses in different fields of biology, confocal microscopy is extremely important to dynamically see all the different molecules involved in the controlling networks build up by gene expressions in time and space. Necessary prerequisites to accomplish such goals are some fundamental microscopic technologies well and clearly presented in the first chapters....

  11. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  12. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  13. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  14. Scanning ultrafast electron microscopy.

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H

    2010-08-24

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.

  15. Single particle electron microscopy

    NARCIS (Netherlands)

    Boekema, Egbert J.; Folea, Mihaela; Kouril, Roman; Kouřil, Roman

    2009-01-01

    Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structures at low, medium, and high resolution. Since electron micrographs of biological objects are very noisy, improvement of the signal-to-noise ratio by image processing is an integral part of EM

  16. Scanning ultrafast electron microscopy

    Science.gov (United States)

    Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.

    2010-01-01

    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933

  17. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs. Spin-dependen

  18. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  19. High-aperture cryogenic light microscopy

    Science.gov (United States)

    LE GROS, M.A.; McDERMOTT, G.; UCHIDA, M.; KNOECHEL, C.G.; LARABELL, C.A.

    2012-01-01

    Summary We report here the development of instruments and protocols for carrying out high numerical aperture immersion light microscopy on cryogenic specimens. Imaging by this modality greatly increases the lifetimes of fluorescence probes, including those commonly used for protein localization studies, while retaining the ability to image the specimen with high fidelity and spatial resolution. The novel use of a cryogenic immersion fluid also minimizes the refractive index mismatch between the sample and lens, leading to a more efficient coupling of the light from the sample to the image forming system. This enhancement is applicable to both fluorescence and transmitted light microscopy techniques. The design concepts used for the cryogenic microscope can be applied to virtually any existing light-based microscopy technique. This prospect is particularly exciting in the context of ‘super-resolution’ techniques, where enhanced fluorescence lifetime probes are especially useful. Thus, using this new modality it is now possible to observe dynamic events in a live cell, and then rapidly vitrify the specimen at a specific time point prior to carrying out high-resolution imaging. The techniques described can be used in conjunction with other imaging modalities in correlated studies. We have also developed instrumentation to perform cryo-light imaging together with soft X-ray tomography on the same cryo-fixed specimen as a means of carrying out high content, quantifiable correlated imaging analyses. These methods are equally applicable to correlated light and electron microscopy of frozen biological objects. PMID:19566622

  20. Analysis of cytokinesis by electron microscopy.

    Science.gov (United States)

    König, J; Borrego-Pinto, J; Streichert, D; Munzig, M; Lenart, P; Müller-Reichert, T

    2017-01-01

    Following up on a chapter on the Correlative Light and Electron Microscopy of Early Caenorhabditis elegans Embryos in Mitosis (MCB 79, 101-119), we present an adaptation of our established protocol for the ultrastructural analysis of either permeabilized or injected embryonic systems. We prepared both drug-treated early C. elegans embryos and fluorescently labeled sea urchin embryos of Lytechinus pictus for ultrastructural studies on animal cytokinesis. Here we focus on the initial preparation steps of postmitotic embryos for high-pressure freezing and subsequent electron microscopy with an emphasis on electron tomography. The advantages and limitations of our extended protocol will be discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. SysmexXE-5000血液分析仪与人工显微镜镜检白细胞分类相关性研究%Study on the correlation between SysmexXE-5000 Hematology Analyzer and artificial microscopy of white blood cell differential count

    Institute of Scientific and Technical Information of China (English)

    蒋叙川; 陈雅萍

    2015-01-01

    Objective To study the correlation between the Sysmex XE-5000 Automatic Hematology Analyzer and microscopy of white blood cell differential count.Methods A total of 100 blood samples were collected from Jianyang People′s Hospital,Sys-mex XE-5000 Automatic Hematology Analyzer was used to do white blood cell differential count,and the inter-batch precision,be-tween-run precision were calculated,and the correlation of the blood cell differential count detected by Sysmex XE-5000 Automatic Hematology Analyzer and artificial microscopy were analyzed.Results The inter-batch precision and between-run precision of Sys-mex XE-5000 Automatic Hematology Analyzer were within the allowable ranges,and these results had good correlation between SysmexXE-5000 Hematology Analyzer and artificial microscopy,the correlation coefficients of Neutrophils,Lymphocytes,Mono-cytes,Eosinophil were 0.978 2,0.909 5,0.827 0,0.868 6 (P 0.05).Conclusion Sysmex XE-5000 Automatic Hematology Analyzer for white blood cell differential is rapid,accurate and had better repeatability,and is suitable for detecting the quantity of samples differential,but it is not able to replace the manual micros-copy completely,when the samples have instrument flag,we will be required to perform artificial microscopy in order to improve the accuracy of white blood cell differential count.%目的:研究Sysmex XE-5000全自动血液分析仪与人工显微镜镜检白细胞分类的相关性。方法收集该院100份住院及体检者全血标本,采用 SysmexXE-5000全自动血液分析仪对高、中、低浓度白细胞标本进行白细胞分类,计算仪器法的批内、批间精密度,并与人工显微镜镜检白细胞分类结果进行相关性分析。结果SysmexXE-5000全自动血液分析仪白细胞分类批内及批间精密度均在允许范围内,且其白细胞分类结果与人工显微镜镜检结果具有良好的相关性,中性粒细胞、淋巴细胞、单核细胞、嗜酸粒

  2. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  3. Quantitative deconvolution microscopy.

    Science.gov (United States)

    Goodwin, Paul C

    2014-01-01

    The light microscope is an essential tool for the study of cells, organelles, biomolecules, and subcellular dynamics. A paradox exists in microscopy whereby the higher the needed lateral resolution, the more the image is degraded by out-of-focus information. This creates a significant need to generate axial contrast whenever high lateral resolution is required. One strategy for generating contrast is to measure or model the optical properties of the microscope and to use that model to algorithmically reverse some of the consequences of high-resolution imaging. Deconvolution microscopy implements model-based methods to enable the full diffraction-limited resolution of the microscope to be exploited even in complex and living specimens. © 2014 Elsevier Inc. All rights reserved.

  4. MAVIS: An integrated system for live microscopy and vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Roman I., E-mail: r.i.koning@lumc.nl [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Faas, Frank G. [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Boonekamp, Michael; Visser, Bram de; Janse, Jan [Department of Instrumental Development, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Wiegant, Joop C. [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Breij, Anna de [Department of Infectious Diseases, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Willemse, Joost [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Nibbering, Peter H. [Department of Infectious Diseases, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands); Tanke, Hans J.; Koster, Abraham J. [Department of Molecular Cell Biology, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden University Medical Center, Leiden (Netherlands)

    2014-08-01

    Cryo-electron microscopy of vitrified biological samples can provide three-dimensional reconstructions of macromolecules and organelles within bacteria and cells at nanometer scale resolution, even in native conditions. Localization of specific structures and imaging of cellular dynamics in cellular cryo-electron microscopy is limited by (i) the use of cryo-fixation to preserve cellular structures, (ii) the restricted availability of electron dense markers to label molecules inside cells and (iii) the inherent low contrast of cryo electron microscopy. These limitations can be mitigated to a large extend by correlative light and electron microscopy, where the sample is imaged by both light and electron microscopy. Here we present a Microscopy and Vitrification Integrated System (MAVIS) that combines a light microscope with a plunger to vitrify thin specimens. MAVIS provides the capability for fluorescence light microscopic imaging of living cells and bacteria that are adhered to an electron microscopy grid and subsequent vitrification within a time frame of seconds. The instrument allows targeting of dynamic biological events in time and space by fluorescence microscopy for subsequent cryo light and electron microscopy. Here we describe the design and performance of the MAVIS, illustrated with biological examples. - Highlights: • We developed new plunger: a Microscopy and Vitrification Integrated System (MAVIS). • The MAVIS is a new tool for integrating of live microscopy and vitrification. • The MAVIS allows fluorescence LM of living cells and vitrification within seconds. • Here we describe the MAVIS design and performance, and show biological examples.

  5. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    Science.gov (United States)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  6. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  7. Photoacoustic microscopy of ceramic turbine blades

    Science.gov (United States)

    Khandelwal, P. K.; Kinnick, R. R.; Heitman, P. W.

    1985-01-01

    Scanning photoacoustic microscopy (SPAM) is evaluated as a nondestructive technique for the detection of both surface and subsurface flaws in polycrystalline ceramics, such as those currently under consideration for the high temperature components of small vehicular and industrial gas turbine engines; the fracture strength of these brittle materials is controlled by small, 25-200 micron flaws. Attention is given to the correlation of SPAM-detected flaws with actual, fracture-controlling flaws in ceramic turbine blades.

  8. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy......Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...

  9. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  10. What is superresolution microscopy?

    CERN Document Server

    Bechhoefer, John

    2014-01-01

    I explain what is, is not, and is only sort of superresolution microscopy. I discuss optical resolution, first in terms of diffraction theory, then in terms of linear systems theory, and finally in terms of techniques that use prior information, nonlinearity, and other tricks to improve performance. The discussion reveals two classes of superresolution: Pseudo superresolution techniques improve images up to the diffraction limit but not much beyond. True superresolution techniques allow substantial, useful improvements beyond the diffraction limit. The two classes are distinguished by their scaling of resolution with photon counts. Understanding the limits to imaging resolution involves concepts that pertain to almost any measurement problem, implying that the framework given here has broad application beyond optics.

  11. [Confocal laser scanning microscopy].

    Science.gov (United States)

    Ulrich, M

    2015-07-01

    Reflectance confocal microscopy (RCM) allows the in vivo evaluation of melanocytic and nonmelanocytic skin tumours with high sensitivity and specificity. RCM represents an optical imaging technique, which enables us to examine the skin at high resolution. Today, RCM represents not only an interesting tool for dermatologic research but has also been introduced as a diagnostic tool in every day clinical practice. As such, RCM is applied for improvement of skin cancer diagnosis adjunct to clinical and dermatoscopic examination. In combination with dermatoscopy RCM has shown an increased specificity with similar sensitivity. In this regard RCM helps to decrease the rate of unnecessary biopsies of benign lesions. Despite its use in dermatooncology RCM may also be used for diagnosis and monitoring of inflammatory diseases. Future developments include technical improvements, teledermatology solutions and the application of ex vivo RCM in Moh's micrographic surgery.

  12. Confocal microscopy of colloids

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, V; Semwogerere, D; Weeks, Eric R [Department of Physics, Emory University, Atlanta, GA 30322 (United States)

    2007-03-21

    Colloids have increasingly been used to characterize or mimic many aspects of atomic and molecular systems. With confocal microscopy these colloidal particles can be tracked spatially in three dimensions with great precision over large time scales. This review discusses equilibrium phases such as crystals and liquids, and non-equilibrium phases such as glasses and gels. The phases that form depend strongly on the type of particle interaction that dominates. Hard-sphere-like colloids are the simplest, and interactions such as the attractive depletion force and electrostatic repulsion result in more non-trivial phases which can better model molecular materials. Furthermore, shearing or otherwise externally forcing these colloids while under microscopic observation helps connect the microscopic particle dynamics to the macroscopic flow behaviour. Finally, directions of future research in this field are discussed. (topical review)

  13. Ultrasonic Force Microscopies

    Science.gov (United States)

    Kolosov, Oleg; Briggs, Andrew

    Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as "mechanical diode" detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as

  14. Electron Microscopy to Correlate Cell Structure and Biochemical Activity

    Science.gov (United States)

    1993-03-10

    Plasmodium coatneyi-infected rhesus monkeys: a primate model for human cerebral malaria. Memorias do Instituto Osvald Cruz (In Press). 24. Sim, K.L...P. coatney1 and found th.’t cvtoadherence of PRBC to ei.dothelial cells is a consistent feature of infections with this primate parasite. Cerebral ...Malaria; iaraunoe loct ror.-micros.’opy ; Chemotherapy; DFO; Cerebral malaria; HA 1 17 SECURITY CLASSIFICATION Of REPORT Unclass1 fled 1

  15. Grueneisen relaxation photoacoustic microscopy

    Science.gov (United States)

    Wang, Lidai; Zhang, Chi; Wang, Lihong V.

    2014-01-01

    The temperature-dependent property of the Grueneisen parameter has been employed in photoacoustic imaging mainly to measure tissue temperature. Here we explore this property using a different approach and develop Grueneisen-relaxation photoacoustic microscopy (GR-PAM), a technique that images non-radiative absorption with confocal optical resolution. GR-PAM sequentially delivers two identical laser pulses with a micro-second-scale time delay. The first laser pulse generates a photoacoustic signal and thermally tags the in-focus absorbers. Owing to the temperature dependence of the Grueneisen parameter, when the second laser pulse excites the tagged absorbers within the thermal relaxation time, a photoacoustic signal stronger than the first one is produced. GR-PAM detects the amplitude difference between the two co-located photoacoustic signals, confocally imaging the non-radiative absorption. We greatly improved axial resolution from 45 µm to 2.3 µm and at the same time slightly improved lateral resolution from 0.63 µm to 0.41 µm. In addition, the optical sectioning capability facilitates the measurement of the absolute absorption coefficient without fluence calibration. PMID:25379919

  16. In vivo microscopy.

    Science.gov (United States)

    Peti-Peterdi, János

    2016-04-01

    This article summarizes the past, present, and future promise of multiphoton excitation fluorescence microscopy for intravital kidney imaging. During the past 15years, several high-power visual research approaches have been developed using multiphoton imaging to study the normal functions of the healthy, intact, living kidney, and the various molecular and cellular mechanisms of the development of kidney diseases. In this review, the main focus will be on intravital multiphoton imaging of the glomerulus, the structure and function of the glomerular filtration barrier, especially the podocyte. Examples will be given for the combination of two powerful research tools, in vivo multiphoton imaging and mouse genetics using commercially available whole animal models for the detailed characterization of glomerular cell types, their function and fate, and for the better understanding of the molecular mechanisms of glomerular pathologies. One of the new modalities of multiphoton imaging, serial imaging of the same glomerulus in the same animal over several days will be emphasized for its potential for further advancing the field of nephrology research.

  17. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  18. Mueller polarimetric microscopy

    Science.gov (United States)

    Laude-Boulesteix, Blandine; De Martino, Antonello; Le Naour, Gilles; Genestie, Catherine; Schwartz, Laurent; Garcia-Caurel, Enric; Drevillon, Bernard

    2004-07-01

    We present a multispectral polarimetric imaging system well suited for complete Mueller matrix microscopy. The source is a spectrally filtered halogen light bulb, and the image is formed on a fast CCD camera The light polarization is modulated before the sample and analyzed after the sample by using nematic liquid crystal modulators.. The whole Mueller matrix image of the sample is typically measured over 5 seconds for a good signal-to-noise ratio. The instrument design, together with an original and easy-to-operate calibration procedure provides a high polarimetric accuracy over wide ranges of wavelengths and magnifications. Mueller polarimetry provides separate images of scalar and vector retardation and dichroism of the sample, together with its depolarizing power, while all these effects do contribute simultaneously to the contrasts observed in standard polarized microsopy. Polarimetric images of several samples, namely an unstained rabbit cornea, a picrosirius red stained hepatic biopsy, and a rat artery specifically stained for collagen III are shown and discussed

  19. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  20. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  1. Fundamentals of fluorescence and fluorescence microscopy.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    This chapter discusses the fundamental physics of fluorescence. The application of fluorescence to microscopy represents an important transition in the development of microscopy, particularly as it applies to biology. It enables quantitating the amounts of specific molecules within a cell, determining whether molecules are complexing on a molecular level, measuring changes in ionic concentrations within cells and organelles, and measuring molecular dynamics. This chapter also discusses the issues important to quantitative measurement of fluorescence and focuses on four of quantitative measurements of fluorescence--boxcar-gated detection, streak cameras, photon correlation, and phase modulation. Although quantitative measurement presents many pitfalls to the beginner, it also presents significant opportunities to one skilled in the art. This chapter also examines how fluorescence is measured in the steady state and time domain and how fluorescence is applied in the modern epifluorescence microscope.

  2. Three-Dimensional Reflectance Traction Microscopy.

    Directory of Open Access Journals (Sweden)

    Jihan Kim

    Full Text Available Cells in three-dimensional (3D environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix.

  3. In situ transmission electron microscopy for magnetic nanostructures

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Kuhn, Luise Theil

    2016-01-01

    Nanomagnetism is a subject of great interest because of both application and fundamental aspects in which understanding of the physical and electromagnetic structure of magnetic nanostructures is essential to explore the magnetic properties. Transmission electron microscopy (TEM) is a powerful tool......-structure correlation. This paper aims at reviewing and discussing in situ TEM magnetic imaging studies, including Lorentz microscopy and electron holography in TEM, applied to the research of magnetic nanostructures....

  4. Where Do We Stand with Super-Resolution Optical Microscopy?

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G Ulrich

    2016-01-29

    Super-resolution fluorescence microscopy has become an invaluable, powerful approach to study biomolecular dynamics and interactions via selective labeling and observation of specific molecules in living cells, tissues and even entire organisms. In this perspective, we present a brief overview of the main techniques and their application to cellular biophysics. We place special emphasis on super-resolution imaging via single-molecule localization microscopy and stimulated emission depletion/reversible saturable optical fluorescence transitions microscopy, and we also briefly address fluorescence fluctuation approaches, notably raster image correlation spectroscopy, as tools to record fast diffusion and transport.

  5. Advanced computing in electron microscopy

    CERN Document Server

    Kirkland, Earl J

    2010-01-01

    This book features numerical computation of electron microscopy images as well as multislice methods High resolution CTEM and STEM image interpretation are included in the text This newly updated second edition will bring the reader up to date on new developments in the field since the 1990's The only book that specifically addresses computer simulation methods in electron microscopy

  6. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  7. Optical correlation

    NARCIS (Netherlands)

    Boden, J.A.

    1974-01-01

    A survey is given of the most common types of coherent optical correlators, which are classified as spatial plane correlators, frequency plane correlators and special reference correlators. Only the spatial plane correlators are dealt with rather thoroughly. Basic principles, some special features,

  8. Spatial light interference microscopy (SLIM).

    Science.gov (United States)

    Wang, Zhuo; Millet, Larry; Mir, Mustafa; Ding, Huafeng; Unarunotai, Sakulsuk; Rogers, John; Gillette, Martha U; Popescu, Gabriel

    2011-01-17

    We present spatial light interference microscopy (SLIM) as a new optical microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry. SLIM combines two classic ideas in light imaging: Zernike's phase contrast microscopy, which renders high contrast intensity images of transparent specimens, and Gabor's holography, where the phase information from the object is recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-length maps across the sample. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher. We illustrate the novel insight into cell dynamics via SLIM by experiments on primary cell cultures from the rat brain. SLIM is implemented as an add-on module to an existing phase contrast microscope, which may prove instrumental in impacting the light microscopy field at a large scale.

  9. Low temperature friction force microscopy

    Science.gov (United States)

    Dunckle, Christopher Gregory

    The application of friction force techniques within atomic force microscopy (AFM) allows for direct measurements of friction forces at a sliding, single-asperity interface. The temperature dependence of such single-asperity contacts provides key insight into the comparative importance of dissipative mechanisms that result in dry sliding friction. A variable temperature (VT), ultrahigh vacuum (UHV) AFM was used with an interface consisting of a diamond coated AFM tip and diamond-like carbon sample in a nominal sample temperature range of 90 to 275K. The results show that the coefficient of kinetic friction, mu k, has a linear dependence that is monotonically increasing with temperature varying from 0.28 to 0.38. To analyze this data it is necessary to correlate the sample temperature to the interface temperature. A detailed thermal model shows that the sample temperature measured by a macroscopic device can be very different from the temperature at the contact point. Temperature gradients intrinsic to the design of VT, UHV AFMs result in extreme, non-equilibrium conditions with heat fluxes on the order of gigawatts per squared meter through the interface, which produce a discontinuous step in the temperature profile due to thermal boundary impedance. The conclusion from this model is that measurements acquired by VT, UHV AFM, including those presented in this thesis, do not provide meaningful data on the temperature dependence of friction for single-asperities. Plans for future work developing an isothermal AFM capable of the same measurements without the introduction of temperature gradients are described. The experimental results and thermal analysis described in this thesis have been published in the Journal of Applied Physics, "Temperature dependence of single-asperity friction for a diamond on diamondlike carbon interface", J. App. Phys., 107(11):114903, 2010.

  10. Soil microstructure and electron microscopy

    Science.gov (United States)

    Smart, P.; Fryer, J. R.

    1988-01-01

    As part of the process of comparing Martian soils with terrestial soils, high resolution electron microscopy and associated techniques should be used to examine the finer soil particles, and various techniques of electron and optical microscopy should be used to examine the undisturbed structure of Martian soils. To examine the structure of fine grained portions of the soil, transmission electron microscopy may be required. A striking feature of many Martian soils is their red color. Although the present-day Martian climate appears to be cold, this color is reminiscent of terrestial tropical red clays. Their chemical contents are broadly similar.

  11. Light Microscopy and Polarized Microscopy: A Dermatological Tool to Diagnose Gray Hair Syndromes.

    Science.gov (United States)

    Chandravathi, P L; Karani, Hetal Deepak; Siddaiahgari, Sirisha Rani; Lingappa, Lokesh

    2017-01-01

    Gray hair syndromes are rare syndromes which have an autosomal recessive inheritance and are characterized by pigmentary dilution of skin and hair, defects in immunological function, and nervous system defects. They comprise three disorders namely Chediak-Higashi syndrome (CHS), Griscelli syndrome (GPS), and Elejalde syndrome. Clinically, it is difficult to distinguish these disorders as their clinical features may overlap. Hence, to make a correct diagnosis and differentiate between CHS and GPS light microscopic examination of skin and hair shafts as well as peripheral blood smear evaluations should be done. In cases where the diagnosis is not possible chromosomal analysis for specific mutations can be done. In resource-poor settings where chromosomal analysis is not possible, and light microscopy findings are inconclusive, polarized microscopy can serve as a useful tool to distinguish between CHS and GPS. We report three cases with gray hair syndromes where the diagnosis on light microscopy and polarized microscopy of hair shaft correlated with the bone marrow examination findings and chromosomal analysis, thus emphasizing the importance of a noninvasive, cost-effective, and time-saving alternative in the diagnosis of these syndromes.

  12. New resolving power for light microscopy: applications to neurobiology.

    Science.gov (United States)

    Dani, Adish; Huang, Bo

    2010-10-01

    The recent invention of super-resolution fluorescence microscopy brings more than an order of magnitude gain in the spatial resolution of light microscopy. New opportunities keep emerging with the multicolor, three-dimensional, and live imaging functionalities gained in the past three years. The power of this technology has been demonstrated by imaging the organization of organelles and molecular complexes, with recent applications increasingly showing its potential in neurobiology. These developments are exemplified by the visualization of components inside dendritic spines to fine morphologies of neurons. In combination with correlative electron microscopy, functional imaging, and electrical/optogenetic stimulation tools, super-resolution fluorescence microscopy has the potential to provide further insights ranging from the molecular details of neurons up to the functional mechanisms of neuronal circuits.

  13. Differential localization of SAP102 and PSD-95 is revealed in hippocampal spines using super-resolution light microscopy.

    Science.gov (United States)

    Zheng, Chan-Ying; Wang, Ya-Xia; Kachar, Bechara; Petralia, Ronald S

    2011-01-01

    Synapse-associated protein 102 (SAP102) and postsynaptic density 95 (PSD-95) are two major cytoskeleton proteins in the postsynaptic density (PSD). Both of them belong to the membrane-associated guanylate kinase (MAGUK) family, which clusters and anchors glutamate receptors and other proteins at synapses. In our previous study, we found that SAP102 and PSD-95 have different distributions, using combined light/electron microscopy (LM/EM) methods.1 Here, we double labeled endogenous SAP102 and PSD-95 in mature hippocampal neurons, and then took images by two different kinds of super resolution microscopy-Stimulated Emission Depletion microscopy (STED) and DeltaVision OMX 3D super resolution microscopy. We found that our 2D and 3D super resolution data were consistent with our previous LM/EM data, showing significant differences in the localization of SAP102 and PSD-95 in spines: SAP102 is distributed in both the PSD and cytoplasm of spines, while PSD-95 is concentrated only in the PSD area. These results indicate functional differences between SAP102 and PSD-95 in synaptic organization and plasticity.

  14. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    Science.gov (United States)

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  15. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    Science.gov (United States)

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  16. Light microscopy - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available The first part of the book (six chapters is devoted to some selected applications of bright-field microscopy while the second part (eight chapters to some fluorescence microscopy studies. Both animal and plant biology investigations are presented covering multiple fields like immunology, cell signaling, cancer biology and, surprisingly to me, ecology. This chapter is titled: Light microscopy in aquatic ecology: Methods for plankton communities studies and it is due to Maria Carolina S. Soares and colleagues from the Laboratory of Aquatic Ecology, Dept. of Biology, Federal University of Juiz de Fora (Brazil. Here they present methods to quantify the different component of planktonic communities in a step-by-step manner so that virus, bacteria, algae and animals pertaining to different taxa can be recognized and the contribution they made to the plankton composition evaluated. It descends that even how the plankton composition is changing due to environmental variations can be accurately determined....

  17. Confocal microscopy and exfoliative cytology.

    Science.gov (United States)

    Reddy, Shyam Prasad; Ramani, Pratibha; Nainani, Purshotam

    2013-05-01

    Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Confocal microscope, acridine orange (AO) stain, PAP (Papanicolaou) stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected) oral squamous cell carcinoma as well as those of controls (normal people) were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. The study had shown nuclear changes (malignant cells) in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93%) in identifying malignant cells in exfoliative cytological smears. Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant) cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and screening a specimen resulted in saving of time. It added a certain amount of objectivity to the

  18. Confocal microscopy and exfoliative cytology

    Directory of Open Access Journals (Sweden)

    Shyam Prasad Reddy

    2013-01-01

    Full Text Available Context: Early detection of potentially malignant lesions and invasive squamous-cell carcinoma in the oral cavity could be greatly improved through techniques that permit visualization of subtle cellular changes indicative of the neoplastic transformation process. One such technique is confocal microscopy. Combining rapidity with reliability, an innovative idea has been put forward using confocal microscope in exfoliative cytology. Aims: The main objective of this study was to assess confocal microscopy for cytological diagnosis and the results were compared with that of the standard PAP stain. Settings and Design: Confocal microscope, acridine orange (AO stain, PAP (Papanicolaou stain. The study was designed to assess confocal microscopy for cytological diagnosis. In the process, smears of patients with (clinically diagnosed and/or suspected oral squamous cell carcinoma as well as those of controls (normal people were stained with acridine orange and observed under confocal microscope. The results were compared with those of the standard PAP method. Materials and Methods: Samples of buccal mucosa smears from normal patients and squamous cell carcinoma patients were made, fixed in 100% alcohol, followed by AO staining. The corresponding set of smears was stained with PAP stain using rapid PAP stain kit. The results obtained were compared with those obtained with AO confocal microscopy. Results: The study had shown nuclear changes (malignant cells in the smears of squamous cell carcinoma patients as increased intensity of fluorescence of the nucleus, when observed under confocal microscope. Acridine orange confocal microscopy showed good amount of sensitivity and specificity (93% in identifying malignant cells in exfoliative cytological smears. Conclusion: Confocal microscopy was found to have good sensitivity in the identification of cancer (malignant cells in exfoliative cytology, at par with the PAP method. The rapidity of processing and

  19. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  20. DHMI: dynamic holographic microscopy interface

    Science.gov (United States)

    He, Xuefei; Zheng, Yujie; Lee, Woei Ming

    2016-12-01

    Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.

  1. Exploring the third dimension: volume electron microscopy comes of age.

    Science.gov (United States)

    Peddie, Christopher J; Collinson, Lucy M

    2014-06-01

    Groundbreaking advances in volume electron microscopy and specimen preparation are enabling the 3-dimensional visualisation of specimens with unprecedented detail, and driving a gratifying resurgence of interest in the ultrastructural examination of cellular systems. Serial section techniques, previously the domain of specialists, are becoming increasingly automated with the development of systems such as the automatic tape-collecting ultramicrotome, and serial blockface and focused ion beam scanning electron microscopes. These changes are rapidly broadening the scope of biomedical studies to which volume electron microscopy techniques can be applied beyond the brain. Further innovations in microscope design are also in the pipeline, which have the potential to enhance the speed and quality of data collection. The recent introduction of integrated light and electron microscopy systems will revolutionise correlative light and volume electron microscopy studies, by enabling the sequential collection of data from light and electron imaging modalities without intermediate specimen manipulation. In doing so, the acquisition of comprehensive functional information and direct correlation with ultrastructural details within a 3-dimensional reference space will become routine. The prospects for volume electron microscopy are therefore bright, and the stage is set for a challenging and exciting future.

  2. Spectro-Microscopy of Living Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Klaus Harter; Alfred J. Meixner; Frank Schleifenbaum

    2012-01-01

    Spectro-microscopy,a combination of fluorescence microscopy with spatially resolved spectroscopic techniques,provides new and exciting tools for functional cell biology in living organisms.This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context.The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells.Moreover,the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT).Furthermore,a new spectro-microscopic technique,fluorescence intensity decay shape analysis microscopy (FIDSAM),has been developed.FIDSAM is capable of imaging lowexpressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts.In addition,FIDSAM provides a very effective and sensitive tool on the basis of F(o)rster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction.Finally,we report on the quantitative analysis of the photosystem Ⅰ and Ⅱ (PSⅠ/PSⅡ) ratio in the chloroplasts of living Arabidopsis plants at room temperature,using high-resolution,spatially resolved fluorescence spectroscopy.With this technique,it was not only possible to measure PSⅠ/PSⅡ ratios,but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSⅠ/PSⅡ ratio to different light conditions.In summary,the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches.Therefore,novel cell physiological and molecular topics can be addressed and valuable insights into molecular and

  3. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I d

  4. Four-dimensional electron microscopy.

    Science.gov (United States)

    Zewail, Ahmed H

    2010-04-09

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  5. Electron Microscopy of Intracellular Protozoa.

    Science.gov (United States)

    1983-08-01

    described by Casero et al.(1). For electron microscopy, 50 x 106 organisms in 5 ml of incubation medium (1) were treated with 10 0 DMSO(control cultures... Casero , R.A., Klayman, D.L., Childs, G.E., Scoville, J.P., and Desjardins, R.E. 1980. Activity of 2-acetylpyridine thiosemicarbazones against

  6. [History of microscopy in Spain].

    Science.gov (United States)

    Fernández-Galiano, D

    1994-12-01

    Nowadays, many Spanish research centers have excellent electronic microscopy services. The current situation, however, should not allow us to forget that the initial steps of microscopy in Spain were very difficult. The construction of excellent optical microscopies in the late XIX century, and their almost immediate introduction in Spain, coincides with a period of thriving scientific activity in our country. Both micrography and histology saw the highlights of their development in Spain, with scientists such as Ramón y Cajal, Río Hortega, Ferrán, Simarro, among others, all of them widely known at present. This article evokes briefly the vicissitudes of Spanish microscopy, from its very beginning in 1843, when the Allgemeine Anatomie by Jacob Henle was translated into Spanish, to present. Scientific historical facts in this article are often accompanied with anecdotes, which show the human aspect of those great scientists. The persevering task carried out by researchers whose names have been recorded in the history of Spanish science and technology, have established the grounds in which our current development is based.

  7. 3D -Ray Diffraction Microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Schmidt, Søren; Juul Jensen, Dorte

    2014-01-01

    Three-dimensional X-ray diffraction (3DXRD) microscopy is a fast and non-destructive structural characterization technique aimed at the study of individual crystalline elements (grains or subgrains) within mm-sized polycrystalline specimens. It is based on two principles: the use of highly penetr...

  8. Re-scan confocal microscopy

    NARCIS (Netherlands)

    De Luca, G.M.R.

    2016-01-01

    One of the instruments that gave insight in the morphology and function of cellular components is the optical microscope. Nowadays, optical microscopy in biomedical applications is commonly combined with fluorescence. One fundamental limit in the possibility to distinguish small structures in the sa

  9. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different s

  10. Advanced microscopy of microbial cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal microsc...

  11. Near-field Optical Microscopy

    NARCIS (Netherlands)

    Ruiter, A.G.T.

    1997-01-01

    Near-field scanning optical microscopy (NSOM) is one of the most recent scanning probe techniques. In this technique, an optical probe is brought in the vicinity of the sample surface, in the near-field zone. The microscope can either work in illumination mode, in which the probe consists of a

  12. Contrast enhancement in light microscopy.

    Science.gov (United States)

    Ernst Keller, H; Watkins, Simon

    2013-01-01

    The optical microscope is a fundamental component of an image cytometry system. This unit covers the basic concepts of light microscopy, including Köhler illumination, resolution, contrast, and numerical aperture, and reviews the many types of instruments and techniques for contrast enhancement.

  13. Near-field Optical Microscopy

    NARCIS (Netherlands)

    Ruiter, Anthonius Gerardus Theodorus

    1997-01-01

    Near-field scanning optical microscopy (NSOM) is one of the most recent scanning probe techniques. In this technique, an optical probe is brought in the vicinity of the sample surface, in the near-field zone. The microscope can either work in illumination mode, in which the probe consists of a sub-w

  14. Turning Microscopy in the Medical Curriculum Digital

    DEFF Research Database (Denmark)

    Vainer, Ben; Mortensen, Niels Werner; Poulsen, Steen Seier

    2017-01-01

    an administrative, an economic, and a teaching perspective. This fully automatic digital microscopy system has been received positively by both teachers and students, and a decision was made to convert all courses involving microscopy to the virtual microscopy format. As a result, conventional analog microscopy...

  15. MR microscopy as a research modality

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Sik; Kim, Seung Hyup; Han, Man Chung; Lee, Sang Hoon; Lee, Yoon Seong [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yi, Jung Han; Cho, Zang Hee [Korea Advanced insititute of Science, Taejon (Korea, Republic of)

    1988-02-15

    A combination of high gradient (0.46mT/cm) and small radiofrequency coils (8cm diameter) was used to obtain images with effective thickness of 2.0mm and pixel dimensions as small as 196 {mu} in the live chick embryo and surgically resected human femoral head with avascular necrosis. The signal-to-noise ratio was sufficient to allow identification of major anatomical structures of live chick embryo and delineation of osteonecrotic segment in femoral head. The changes of signal intensity in necrotic femoral head was well correlated with histopathologic findings. MR microscopy is considered as a good research modality in the field of embryology, teratology and MR tissue characterization.

  16. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy.

    Science.gov (United States)

    Liv, Nalan; van Oosten Slingeland, Daan S B; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W; Hoogenboom, Jacob P

    2016-01-26

    We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization.

  17. Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy

    Directory of Open Access Journals (Sweden)

    Stephen A. Boppart

    2008-06-01

    Full Text Available Three-dimensional image formation in microscopy is greatly enhanced by the use of computed imaging techniques. In particular, Interferometric Synthetic Aperture Microscopy (ISAM allows the removal of out-of-focus blur in broadband, coherent microscopy. Earlier methods, such as optical coherence tomography (OCT, utilize interferometric ranging, but do not apply computed imaging methods and therefore must scan the focal depth to acquire extended volumetric images. ISAM removes the need to scan the focus by allowing volumetric image reconstruction from data collected at a single focal depth. ISAM signal processing techniques are similar to the Fourier migration methods of seismology and the Fourier reconstruction methods of Synthetic Aperture Radar (SAR. In this article ISAM is described and the close ties between ISAM and SAR are explored. ISAM and a simple strip-map SAR system are placed in a common mathematical framework and compared to OCT and radar respectively. This article is intended to serve as a review of ISAM, and will be especially useful to readers with a background in SAR.

  18. Lights Will Guide You : Sample Preparation and Applications for Integrated Laser and Electron Microscopy

    NARCIS (Netherlands)

    Karreman, M.A.

    2013-01-01

    Correlative microscopy is the combined use of two different forms of microscopy in the study of a specimen, allowing for the exploitation of the advantages of both imaging tools. The integrated Laser and Electron Microscope (iLEM), developed at Utrecht University, combines a fluorescence microscope

  19. Score Correlation

    OpenAIRE

    Fabián, Z. (Zdeněk)

    2010-01-01

    In this paper, we study a distribution-dependent correlation coefficient based on the concept of scalar score. This new measure of association of continuous random variables is compared by means of simulation experiments with the Pearson, Kendall and Spearman correlation coefficients.

  20. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  1. Advances in transmission electron microscopy : in situ nanoindentation and in situ straining experiments

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Luysberg, M.; Tillmann, K.; Weirich, T.

    2008-01-01

    Undisputedly microscopy plays a predominant role in unraveling the underpinning mechanisms in plastic deformation of materials. There are at least two reasons that hamper a straightforward correlation between microscopic structural information and mechanical properties: one fundamental and one pract

  2. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  3. All-optical photoacoustic microscopy

    Directory of Open Access Journals (Sweden)

    Sung-Liang Chen

    2015-12-01

    Full Text Available Three-dimensional photoacoustic microscopy (PAM has gained considerable attention within the biomedical imaging community during the past decade. Detecting laser-induced photoacoustic waves by optical sensing techniques facilitates the idea of all-optical PAM (AOPAM, which is of particular interest as it provides unique advantages for achieving high spatial resolution using miniaturized embodiments of the imaging system. The review presents the technology aspects of optical-sensing techniques for ultrasound detection, such as those based on optical resonators, as well as system developments of all-optical photoacoustic systems including PAM, photoacoustic endoscopy, and multi-modality microscopy. The progress of different AOPAM systems and their representative applications are summarized.

  4. Hyperspectral holographic Fourier-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalenkov, G S [Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kalenkov, S G [Moscow State University of Mechanical Engineering, Moscow (Russian Federation); Shtan' ko, A E [Moscow State University of Technology ' Stankin' , Moscow (Russian Federation)

    2015-04-30

    A detailed theory of the method of holographic recording of hyperspectral wave fields is developed. New experimentally obtained hyperspectral holographic images of microscopic objects are presented. The possibilities of the method are demonstrated experimentally using the examples of urgent microscopy problems: speckle noise suppression, obtaining hyperspectral image of a microscopic object, as well as synthesis of a colour image and obtaining an optical profile of a phase object. (holography)

  5. A history of urine microscopy.

    Science.gov (United States)

    Cameron, J Stewart

    2015-11-01

    The naked-eye appearance of the urine must have been studied by shamans and healers since the Stone Age, and an elaborate interpretation of so-called Uroscopy began around 600 AD as a form of divination. A 1000 years later, the first primitive monocular and compound microscopes appeared in the Netherlands, and along with many other objects and liquids, urine was studied from around 1680 onwards as the enlightenment evolved. However, the crude early instruments did not permit fine study because of chromatic and linear/spherical blurring. Only after complex multi-glass lenses which avoided these problems had been made and used in the 1820s in London by Lister, and in Paris by Chevalier and Amici, could urinary microscopy become a practical, clinically useful tool in the 1830s. Clinical urinary microscopy was pioneered by Rayer and his pupils in Paris (especially Vigla), in the late 1830s, and spread to UK and Germany in the 1840s, with detailed descriptions and interpretations of cells and formed elements of the urinary sediment by Nasse, Henle, Robinson and Golding Bird. Classes were held, most notably by Donné in Paris. After another 50 years, optical microscopy had reached its apogee, with magnifications of over 1000 times obtainable free of aberration, using immersion techniques. Atlases of the urinary sediment were published in all major European countries and in the US. Polarised light and phase contrast was used also after 1900 to study urine, and by the early 20th century, photomicroscopy (pioneered by Donné and Daguerre 50 years previously, but then ignored) became usual for teaching and recording. In the 1940s electron microscopy began, followed by detection of specific proteins and cells using immunofluorescent antibodies. All this had been using handheld methodology. Around 1980, machine-assisted observations began, and have dominated progress since.

  6. ImageJ for microscopy.

    Science.gov (United States)

    Collins, Tony J

    2007-07-01

    ImageJ is an essential tool for us that fulfills most of our routine image processing and analysis requirements. The near-comprehensive range of import filters that allow easy access to image and meta-data, a broad suite processing and analysis routine, and enthusiastic support from a friendly mailing list are invaluable for all microscopy labs and facilities-not just those on a budget.

  7. Comparative study of electron microscopy and scanning probe microscopy in photosynthetic research

    OpenAIRE

    MATĚNOVÁ, Martina

    2009-01-01

    The aim of this study is to compare the ability of transmission electron microscopy, scanning electron microscopy and atomic force microscopy to visualize individual protein complexes. The principle of electron microscopy and atomic force microscopy is explained. For comparision of these methods well characterized photosynthetic complexes LH1, LH2, PSI and PSII were selected.

  8. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    Science.gov (United States)

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    to extend a model sample prepared for the microscopies towards a microscale sample while keeping the intrinsic properties found by the microscopies.In this study we present our trial of developing microscopic combined instruments among FIM, field emission microscopy (FEM), STM, AFM and scanning electron microscopy (SEM), in which we prepared and characterized the tips for the SPM, and in addition, the sample preparation to take a correlation between nanoscale and microscale properties of functional materials. Recently, we developed a simple sample preparation method of a rutile single crystal TiO2 covered with an epitaxially-grown monolayer of SiO2 by annealing the crystals in a furnace at high temperatures in air; the crystal samples were placed into a quartz container in the furnace [1]. The vapor of SiO evaporated from the quartz container were adsorbed on the crystal while the crystal surfaces being fully oxidized in air. The SiO2-TiO2 composite systems are promising to protect catalytic TiO2 performance; the photo-catalytic activity is kept by coating with hard and stable SiO2 layers and to extend the lifetime of water super-hydrophilicity even in dark, though understanding of their properties is insufficient due to the lack of techniques to fabricate a well-characterized system on a nanoscale to conduct control experiments. The SiO2 overlayers were observed by low energy electron diffraction (LEED) in vacuum and frequency-modulation (FM) AFM in water [1,2], and water contact angles (WCA) were measured [2]. Although the WCA measurement seems a classic characterization, this method possesses a high potential to make a bridge by controlling the environmental conditions. We will discuss the details. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Combining fluorescence and bioluminescence microscopy.

    Science.gov (United States)

    Goda, Kazuhito; Hatta-Ohashi, Yoko; Akiyoshi, Ryutaro; Sugiyama, Takashi; Sakai, Ikuko; Takahashi, Takeo; Suzuki, Hirobumi

    2015-08-01

    Bioluminescence microscopy has revealed that gene expression in individual cells can respond differently to the same stimulus. To understand this phenomenon, it is important to sequentially observe the series of events from cellular signal transduction to gene expression regulated by specific transcription factors derived from signaling cascades in individual cells. However, these processes have been separately analyzed with fluorescence and bioluminescence microscopy. Furthermore, in culture medium, the background fluorescence of luciferin-a substrate of luciferase in promoter assays of gene expression in cultured cells-confounds the simultaneous observation of fluorescence and bioluminescence. Therefore, we optimized conditions for optical filter sets based on spectral properties and the luciferin concentration based on cell permeability for fluorescence observation combined with bioluminescence microscopy. An excitation and emission filter set (492-506 nm and 524-578 nm) was suitable for green fluorescent protein and yellow fluorescent protein imaging of cells, and >100 μM luciferin was acceptable in culture medium based on kinetic constants and the estimated intracellular concentration. Using these parameters, we present an example of sequential fluorescence and bioluminescence microscopic observation of signal transduction (translocation of protein kinase C alpha from the cytoplasm to the plasma membrane) coupled with activation of gene expression by nuclear factor of kappa light polypeptide B in individual cells and show that the gene expression response is not completely concordant with upstream signaling following stimulation with phorbol-12-myristate-13-acetate. Our technique is a powerful imaging tool for analysis of heterogeneous gene expression together with upstream signaling in live single cells.

  10. Aperture scanning Fourier ptychographic microscopy

    Science.gov (United States)

    Ou, Xiaoze; Chung, Jaebum; Horstmeyer, Roarke; Yang, Changhuei

    2016-01-01

    Fourier ptychographic microscopy (FPM) is implemented through aperture scanning by an LCOS spatial light modulator at the back focal plane of the objective lens. This FPM configuration enables the capturing of the complex scattered field for a 3D sample both in the transmissive mode and the reflective mode. We further show that by combining with the compressive sensing theory, the reconstructed 2D complex scattered field can be used to recover the 3D sample scattering density. This implementation expands the scope of application for FPM and can be beneficial for areas such as tissue imaging and wafer inspection. PMID:27570705

  11. Visual-servoing optical microscopy

    Science.gov (United States)

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  12. Synthetic incoherence for electron microscopy.

    Science.gov (United States)

    Levine, Zachary H; Dunstan, Robyn M

    2007-08-01

    Tomographic studies of submicrometer samples in materials science using electron microscopy have been inhibited by diffraction effects. In the present work, we describe a practical method for ameliorating these effects. First, we find an analytic expression for the mutual coherence function for hollow-cone illumination. Then, we use this analytic expression to propose a Gaussian weighting of hollow-cone illumination, which we name tapered solid-cone illumination, and present an analytic expression for its mutual coherence function. Finally, we investigate numerically an n-ring approximation to tapered solid-cone illumination. The results suggest a method for removing diffraction effects and hence enabling tomography.

  13. Polyethyleneimine as tracer for electron microscopy

    NARCIS (Netherlands)

    Schurer, Jacob Willem

    1980-01-01

    In this thesis the development of a tracer particle for use in electron microscopy is described. Attempts were made to use this tracer particle in immuno-electron microscopy and to trace negatively charged tissue components. ... Zie: Summary

  14. NICHD Microscopy and Imaging Core (MIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Microscopy and Imaging Core (MIC) is designed as a multi-user research facility providing training and instrumentation for high resolution microscopy and...

  15. Image scanning microscopy with radially polarized light

    Science.gov (United States)

    Xiao, Yun; Zhang, Yunhai; Wei, Tongda; Huang, Wei; Shi, Yaqin

    2017-03-01

    In order to improve the resolution of image scanning microscopy, we present a method based on image scanning microscopy and radially polarized light. According to the theory of image scanning microscopy, we get the effective point spread function of image scanning microscopy with the longitudinal component of radially polarized light and a 1 AU detection area, and obtain imaging results of the analyzed samples using this method. Results show that the resolution can be enhanced by 7% compared with that in image scanning microscopy with circularly polarized light, and is 1.54-fold higher than that in confocal microscopy with a pinhole of 1 AU. Additionally, the peak intensity of ISM is 1.54-fold higher than that of a confocal microscopy with a pinhole of 1 AU. In conclusion, the combination of the image scanning microscopy and the radially polarized light could improve the resolution, and it could realize high-resolution and high SNR imaging at the same time.

  16. SCANNING ELECTRON MICROSCOPY STUDY OF FILLED SILICONE RUBBER

    Institute of Scientific and Technical Information of China (English)

    LI Yufu; YANG Qiyun; LI Guangliang

    1988-01-01

    The fracture surfaces of a number of silicone vulcanizates were investigated by the use of scanning electron microscopy (SEM). It was found that the difference in the presence and absence of filler, the variation of its surface modification as well as the history of thermal aging of the vulcanizates, all of these factors made difference in surface morphology of the fractured surface. This was correlated with the strength of the vulcanizates. The reinforcing effect of filler and the process of fracture were discussed.

  17. Nanocharacterization: Atomic Scale Visualization with Microscopy

    Science.gov (United States)

    Broadbridge, Christine

    2007-10-01

    This workshop will include an overview presentation of nanotechnology and nanocharacterization tools (electron microscopy and atomic force microscopy) as well as examples of curricular components for middle and high school teachers. Tours/demonstrations of microscopy facilities in the IMS facility at UConn will be provided.

  18. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  19. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  20. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  1. Correlator technology

    NARCIS (Netherlands)

    Schooneveld, C. van

    1968-01-01

    The paper reviews a number of designs of cross-correlation receivers for the detection of active underwater transmissions. Particular attention is given to the various structures of phase insensitive receivers, and to the problems concerned with clipping of the input signal and the reference functio

  2. Multiphoton microscopy in life sciences.

    Science.gov (United States)

    König, K

    2000-11-01

    Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three-dimensional fluorescence imaging based on non-resonant two-photon or three-photon fluorophor excitation requires light intensities in the range of MW cm(-2) to GW cm(-2), which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi-gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non-invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth-resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non-invasive fluorophore loading into single living plant cells. Non-destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis-like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two-photon excitation process rather than a one-photon or three-photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two-photon vital cell studies. In labelled cells, additional phototoxic effects may occur via

  3. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Knittel, Peter; Mizaikoff, Boris; Kranz, Christine

    2016-06-21

    Soft electronic devices play a crucial role in, e.g., neural implants as stimulating electrodes, transducers for biosensors, or selective drug-delivery. Because of their elasticity, they can easily adapt to their environment and prevent immunoreactions leading to an overall improved long-term performance. In addition, flexible electronic devices such as stretchable displays will be increasingly used in everyday life, e.g., for so-called electronic wearables. Atomic force microscopy (AFM) is a versatile tool to characterize these micro- and nanostructured devices in terms of their topography. Using advanced imaging techniques such as peak force tapping (PFT), nanomechanical properties including adhesion, deformation, and Young's modulus can be simultaneously mapped along with surface features. However, conventional AFM provides limited laterally resolved information on electrical or electrochemical properties such as the activity of an electrode array. In this study, we present the first combination of AFM with scanning electrochemical microscopy (SECM) in PFT mode, thereby offering spatially correlated electrochemical and nanomechanical information paired with high-resolution topographical data under force control (QNM-AFM-SECM). The versatility of this combined scanning probe approach is demonstrated by mapping topographical, electrochemical, and nanomechanical properties of gold microelectrodes and of gold electrodes patterned onto polydimethylsiloxane.

  4. Phase Aberrations in Diffraction Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  5. Note: Direct piezoelectric effect microscopy.

    Science.gov (United States)

    Mori, T J A; Stamenov, P; Dorneles, L S

    2015-07-01

    An alternative method for investigating piezoelectric surfaces is suggested, exploiting the direct piezoeffect. The technique relies on acoustic (ultrasonic) excitation of the imaged surface and mapping of the resulting oscillatory electric potential. The main advantages arise from the spatial resolution of the conductive scanning probe microscopy in combination with the relatively large magnitude of the forward piezo signal Upf, which can be of the order of tens of mV even for non-ferroelectric piezoelectric materials. The potency of this experimental strategy is illustrated with measurements on well-crystallized quartz surfaces, where Upf ∼ 50 mV, for a piezoelectric coefficient of d33 = - 2.27  ×  10(-12) m/V, and applied stress of about T3 ∼ 5.7 kPa.

  6. Optical Photon Reassignment Microscopy (OPRA)

    CERN Document Server

    Roth, Stephan; Wicker, Kai; Heintzmann, Rainer

    2013-01-01

    To enhance the resolution of a confocal laser scanning microscope the additional information of a pinhole plane image taken at every excitation scan position can be used [C. J. R. Sheppard, Super-resolution in confocal imaging, Optik 80, 5354 (1988)]. This photon reassignment principle is based on the fact that the most probable position of an emitter is at half way between the nominal focus of the excitation laser and the position corresponding to the (off centre) detection position. Therefore, by reassigning the detected photons to this place, an image with enhanced detection efficiency and resolution is obtained. Here we present optical photon reassignment microscopy (OPRA) which realises this concept in an all-optical way obviating the need for image-processing. With the help of an additional intermediate optical beam expansion between descanning and a further rescanning of the detected light, an image with the advantages of photon reassignment can be acquired. Due to its simplicity and flexibility this m...

  7. Photoacoustic microscopy in tissue engineering

    Directory of Open Access Journals (Sweden)

    Xin Cai

    2013-03-01

    Full Text Available Photoacoustic tomography (PAT is an attractive modality for noninvasive, volumetric imaging of scattering media such as biological tissues. By choosing the ultrasonic detection frequency, PAT enables scalable spatial resolution with an imaging depth of up to ∼7 cm while maintaining a high depth-to-resolution ratio of ∼200 and consistent optical absorption contrasts. Photoacoustic microscopy (PAM, the microscopic embodiment of PAT, aims to image at millimeter depth and micrometer-scale resolution. PAM is well-suited for characterizing three-dimensional scaffold-based samples, including scaffolds themselves, cells, and blood vessels, both qualitatively and quantitatively. Here we review our previous work on applications of PAM in tissue engineering and then discuss its future developments.

  8. Magnetic microscopy of layered structures

    CERN Document Server

    Kuch, Wolfgang; Fischer, Peter; Hillebrecht, Franz Ulrich

    2015-01-01

    This book presents the important analytical technique of magnetic microscopy. This method is applied to analyze layered structures with high resolution. This book presents a number of layer-resolving magnetic imaging techniques that have evolved recently. Many exciting new developments in magnetism rely on the ability to independently control the magnetization in two or more magnetic layers in micro- or nanostructures. This in turn requires techniques with the appropriate spatial resolution and magnetic sensitivity. The book begins with an introductory overview, explains then the principles of the various techniques and gives guidance to their use. Selected examples demonstrate the specific strengths of each method. Thus the book is a valuable resource for all scientists and practitioners investigating and applying magnetic layered structures.

  9. Electronic detectors for electron microscopy.

    Science.gov (United States)

    Faruqi, A R; McMullan, G

    2011-08-01

    Electron microscopy (EM) is an important tool for high-resolution structure determination in applications ranging from condensed matter to biology. Electronic detectors are now used in most applications in EM as they offer convenience and immediate feedback that is not possible with film or image plates. The earliest forms of electronic detector used routinely in transmission electron microscopy (TEM) were charge coupled devices (CCDs) and for many applications these remain perfectly adequate. There are however applications, such as the study of radiation-sensitive biological samples, where film is still used and improved detectors would be of great value. The emphasis in this review is therefore on detectors for use in such applications. Two of the most promising candidates for improved detection are: monolithic active pixel sensors (MAPS) and hybrid pixel detectors (of which Medipix2 was chosen for this study). From the studies described in this review, a back-thinned MAPS detector appears well suited to replace film in for the study of radiation-sensitive samples at 300 keV, while Medipix2 is suited to use at lower energies and especially in situations with very low count rates. The performance of a detector depends on the energy of electrons to be recorded, which in turn is dependent on the application it is being used for; results are described for a wide range of electron energies ranging from 40 to 300 keV. The basic properties of detectors are discussed in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE) as a function of spatial frequency.

  10. Compressed sensing traction force microscopy.

    Science.gov (United States)

    Brask, Jonatan Bohr; Singla-Buxarrais, Guillem; Uroz, Marina; Vincent, Romaric; Trepat, Xavier

    2015-10-01

    Adherent cells exert traction forces on their substrate, and these forces play important roles in biological functions such as mechanosensing, cell differentiation and cancer invasion. The method of choice to assess these active forces is traction force microscopy (TFM). Despite recent advances, TFM remains highly sensitive to measurement noise and exhibits limited spatial resolution. To improve the resolution and noise robustness of TFM, here we adapt techniques from compressed sensing (CS) to the reconstruction of the traction field from the substrate displacement field. CS enables the recovery of sparse signals at higher resolution from lower resolution data. Focal adhesions (FAs) of adherent cells are spatially sparse implying that traction fields are also sparse. Here we show, by simulation and by experiment, that the CS approach enables circumventing the Nyquist-Shannon sampling theorem to faithfully reconstruct the traction field at a higher resolution than that of the displacement field. This allows reaching state-of-the-art resolution using only a medium magnification objective. We also find that CS improves reconstruction quality in the presence of noise. A great scientific advance of the past decade is the recognition that physical forces determine an increasing list of biological processes. Traction force microscopy which measures the forces that cells exert on their surroundings has seen significant recent improvements, however the technique remains sensitive to measurement noise and severely limited in spatial resolution. We exploit the fact that the force fields are sparse to boost the spatial resolution and noise robustness by applying ideas from compressed sensing. The novel method allows high resolution on a larger field of view. This may in turn allow better understanding of the cell forces at the multicellular level, which are known to be important in wound healing and cancer invasion. Copyright © 2015 Acta Materialia Inc. Published by Elsevier

  11. Resolution enhancement techniques in microscopy

    Science.gov (United States)

    Cremer, Christoph; Masters, Barry R.

    2013-05-01

    We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe's theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

  12. Nanoscale chemical imaging by photoinduced force microscopy

    Science.gov (United States)

    Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung

    2016-01-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  13. Imaging Cytoskeleton Components by Electron Microscopy

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers—actin filaments, microtubules, and intermediate filaments—are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell. PMID:26498781

  14. The Electron Microscopy eXchange (EMX) initiative

    Science.gov (United States)

    Marabini, Roberto; Ludtke, Steven J.; Murray, Stephen C.; Chiu, Wah; de la Rosa-Trevín, Jose M.; Patwardhan, Ardan; Heymann, J. Bernard; Carazo, Jose M.

    2016-01-01

    Three-dimensional electron microscopy (3DEM) of ice-embedded samples allows the structural analysis of large biological macromolecules close to their native state. Different techniques have been developed during the last forty years to process cryo-electron microscopy (cryo-EM) data. Not surprisingly, success in analysis and interpretation is highly correlated with the continuous development of image processing packages. The field has matured to the point where further progress in data and methods sharing depends on an agreement between the packages on how to describe common image processing tasks. Such standardization will facilitate the use of software as well as seamless collaboration, allowing the sharing of rich information between different platforms. Our aim here is to describe the Electron Microscopy eXchange (EMX) initiative, launched at the 2012 Instruct Image Processing Center Developer Workshop, with the intention of developing a first set of standard conventions for the interchange of information for single-particle analysis (EMX version 1.0). These conventions cover the specification of the metadata for micrograph and particle images, including contrast transfer function (CTF) parameters and particle orientations. EMX v1.0 has already been implemented in the Bsoft, EMAN, Xmipp and Scipion image processing packages. It has been and will be used in the CTF and EMDataBank Validation Challenges respectively. It is also being used in EMPIAR, the Electron Microscopy Pilot Image Archive, which stores raw image data related to the 3DEM reconstructions in EMDB. PMID:26873784

  15. The Electron Microscopy eXchange (EMX) initiative.

    Science.gov (United States)

    Marabini, Roberto; Ludtke, Steven J; Murray, Stephen C; Chiu, Wah; de la Rosa-Trevín, Jose M; Patwardhan, Ardan; Heymann, J Bernard; Carazo, Jose M

    2016-05-01

    Three-dimensional electron microscopy (3DEM) of ice-embedded samples allows the structural analysis of large biological macromolecules close to their native state. Different techniques have been developed during the last forty years to process cryo-electron microscopy (cryo-EM) data. Not surprisingly, success in analysis and interpretation is highly correlated with the continuous development of image processing packages. The field has matured to the point where further progress in data and methods sharing depends on an agreement between the packages on how to describe common image processing tasks. Such standardization will facilitate the use of software as well as seamless collaboration, allowing the sharing of rich information between different platforms. Our aim here is to describe the Electron Microscopy eXchange (EMX) initiative, launched at the 2012 Instruct Image Processing Center Developer Workshop, with the intention of developing a first set of standard conventions for the interchange of information for single-particle analysis (EMX version 1.0). These conventions cover the specification of the metadata for micrograph and particle images, including contrast transfer function (CTF) parameters and particle orientations. EMX v1.0 has already been implemented in the Bsoft, EMAN, Xmipp and Scipion image processing packages. It has been and will be used in the CTF and EMDataBank Validation Challenges respectively. It is also being used in EMPIAR, the Electron Microscopy Pilot Image Archive, which stores raw image data related to the 3DEM reconstructions in EMDB.

  16. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    Science.gov (United States)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  17. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  18. Correlation spectrometer

    Science.gov (United States)

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  19. Four-dimensional ultrafast electron microscopy.

    Science.gov (United States)

    Lobastov, Vladimir A; Srinivasan, Ramesh; Zewail, Ahmed H

    2005-05-17

    Electron microscopy is arguably the most powerful tool for spatial imaging of structures. As such, 2D and 3D microscopies provide static structures with subnanometer and increasingly with angstrom-scale spatial resolution. Here we report the development of 4D ultrafast electron microscopy, whose capability imparts another dimension to imaging in general and to dynamics in particular. We demonstrate its versatility by recording images and diffraction patterns of crystalline and amorphous materials and images of biological cells. The electron packets, which were generated with femtosecond laser pulses, have a de Broglie wavelength of 0.0335 angstroms at 120 keV and have as low as one electron per pulse. With such few particles, doses of few electrons per square ångstrom, and ultrafast temporal duration, the long sought after but hitherto unrealized quest for ultrafast electron microscopy has been realized. Ultrafast electron microscopy should have an impact on all areas of microscopy, including biological imaging.

  20. Holographic microscopy in low coherence

    Science.gov (United States)

    Chmelík, Radim; Petráček, Jiří; Slabá, Michala; Kollárová, Věra; Slabý, Tomáš; Čolláková, Jana; Komrska, Jiří; Dostál, Zbyněk.; Veselý, Pavel

    2016-03-01

    Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.

  1. Advances in quantitative Kerr microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-01-01

    An advanced wide-field Kerr microscopy approach to the vector imaging of magnetic domains is demonstrated. Utilizing the light from eight monochrome light emitting diodes, guided to the microscope by glass fibers, and being properly switched in synchronization with the camera exposure, domain images with orthogonal in-plane sensitivity are obtained simultaneously at real time. After calibrating the Kerr contrast under the same orthogonal sensitivity conditions, the magnetization vector field of complete magnetization cycles along the hysteresis loop can be calculated and plotted as a coded color or vector image. In the pulsed mode also parasitic, magnetic field-dependent Faraday rotations in the microscope optics are eliminated, thus increasing the accuracy of the measured magnetization angles to better than 5∘. The method is applied to the investigation of the magnetization process in a patterned Permalloy film element. Furthermore it is shown that the effective magnetic anisotropy axes in a GaMnAs semiconducting film can be quantitatively measured by vectorial analysis of the domain structure.

  2. Liquid Cell Transmission Electron Microscopy

    Science.gov (United States)

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-01

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  3. Disposable optics for microscopy diagnostics.

    Science.gov (United States)

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-20

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  4. Electron microscopy and forensic practice

    Science.gov (United States)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  5. Disposable optics for microscopy diagnostics

    Science.gov (United States)

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-01

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  6. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  7. SIMS ion microscopy as a novel, practical tool for subcellular chemical imaging in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S

    2003-01-15

    The development of cryogenic sample preparations, subcellular image quantification schemes, and correlative confocal laser scanning microscopy and ion microscopy have made dynamic SIMS a versatile tool in biology and medicine. For example, ion microscopy can provide much needed, novel information on calcium influx and intracellular calcium stores at organelle resolution in normal and transformed cells in order to better understand the altered calcium signaling in malignant cells. 3-D SIMS imaging of cells revealed dynamic gradients of calcium in cells undergoing mitosis and cytokinesis. Studies of subcellular localization of anticancer drugs is another area of research where ion microscopy can provide novel observations in many types of cancers. Ion microscopy is already an essential tool in boron neutron capture therapy (BNCT) of brain cancer as it can be used to quantitatively image the subcellular location of boron in cells and tissues. This information is critically needed for testing the efficacy of boronated agents and for calculations of radiation dosimetry.

  8. 显微镜下乳突根治术并 I期骨室成形术与听力重建的相关性分析%Radical mastoidectomy and primary tympanoplasty under microscopy correlation analysis of therapeutic efficiency of hearing reconstruction

    Institute of Scientific and Technical Information of China (English)

    王学林; 谢朝峰; 林怀洁; 余怀生; 黄娥贞; 陈影芳; 邱素辉; 许碧如

    2001-01-01

    Objective The aim of this article is to research the radical mastoidectomy and primary tympanoplasty to attain radical cure of the mastoid focus as well as rebuilding the sound- conducting structure of the tympanic cavity to improve the audition. Method The autobone and temporal fascia were taken as the transplants after the radical mastoidectomy under microscopy, and then to carry out the operation of Portmann` s tempanoplasty of 2nd and 3rd types of 2nd class.Result Non of the cholesteatoma was relapsed after follow- up for 1~ 4 years.The efficiency rate of tympanoplasty is of 89.47% .The average audition increased was 19 dB HL. Conclussion Radical operation for cholesteatoma should be associated with tympanoplasty if having condition. We recommend that the opening tympanoplasty should be used, and use autobone as a artificial auditory ossicles.

  9. High-speed spectral tuning CARS microscopy using AOTF laser

    Science.gov (United States)

    Hashimoto, Mamoru; Iwatsuka, Junichi; Niioka, Hirohiko; Araki, Tsutomu

    2012-03-01

    We have developed a high speed spectral tuning CARS microscopy system using a mode-locked Ti:Sapphire laser with an acousto-optic tunable filter (AOTF) in the cavity. Since the wavelength of the laser is tunable with the applied radio frequency to the AOTF, the wavelength is electrically tunable.The pulse duration of the laser is about 10 ps, tunable range is 800 nm to 930 nm, and the tuning speed is ms order. The laser is synchronized with another mode-locked Ti:Sapphire laser laser our own method using a balance cross-correlator and phase lock loop technique. The synchronized lasers are used for light source of multi-focus CARS microscopy system using a microlens array scanner, and the hyperspectral imaging of adipocyte cells is demonstrated.

  10. Electrical mapping of microtubular structures by surface potential microscopy

    Science.gov (United States)

    Zhang, Peng; Cantiello, Horacio F.

    2009-09-01

    Microtubules (MTs) are important cytoskeletal polymers that play an essential role in cell division and transport in all eukaryotes and information processing in neurons. MTs are highly charged polyelectrolytes, composed of hollow cylindrical arrangements of αβ-tubulin dimers. To date, there is little information about electrical properties of MTs. Here, we deposited and dried MTs onto a gold-plated surface to image their topology by atomic force microscopy (AFM), and determined their electrical mapping with surface potential microscopy (SPM). We found a strong linear correlation between the magnitude of relative surface potential and MT parameters, including diameter and height. AFM images confirmed the cylindrical topology of microtubular structures, and the presence of topological discontinuities along their surface, which may contribute to their unique electrical properties.

  11. Digital holographic microscopy for the evaluation of human sperm structure

    CERN Document Server

    Coppola, Gianluca; Wilding, Martin; Ferraro, Pietro; Esposito, Giusy; Di Matteo, Loredana; Dale, Roberta; Coppola, Giuseppe; Dale, Brian

    2013-01-01

    The morphology of the sperm head has often been correlated with the outcome of in vitro fertilization (IVF), and has been shown to be the sole parameter in semen of value in predicting the success of intracytoplasmic sperm injection (ICSI) and intracytoplasmic morphologically selected sperm injection (IMSI). In this paper, we have studied whether Digital Holographic (DH) microscopy may be useful to obtain quantitative data on human sperm head structure and compared this technique to high power digitally enhanced Nomarski microscope. The main advantage of DH is that a high resolution 3-D quantitative sample imaging may be obtained thorugh numerical refocusing at different object planes without any mechanical scanning. We show that DH can furnish useful information on the dimensions and structure of human spermatozoo, that cannot be revealed by conventional phase contrast microscopy. In fact, in this paper DH has been used to evaluate volume and indicate precise location of vacuoles, thus suggesting its use as ...

  12. In vivo reflectance confocal microscopy in a typical case of melasma

    OpenAIRE

    Costa,Mariana Carvalho; Eljaiek,Hernando Vega; Abraham,Leonardo Spagnol; Azulay-Abulafia,Luna; Ardigo, Marco

    2012-01-01

    Melasma is a common disorder of hypermelanosis that affects mainly young and middle-aged women of Fitzpatrick's phototypes III-V. The disease significantly impacts their lives. In vivo reflectance confocal microscopy, a spreading technology for the noninvasive evaluation of the skin up to the papillary dermis, provides real-time en face images with cellular resolution. We present a case of melasma with in vivo reflectance confocal microscopy findings closely correlated to the histopathologica...

  13. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  14. Impact of virtual microscopy with conventional microscopy on student learning in dental histology.

    Science.gov (United States)

    Hande, Alka Harish; Lohe, Vidya K; Chaudhary, Minal S; Gawande, Madhuri N; Patil, Swati K; Zade, Prajakta R

    2017-01-01

    In dental histology, the assimilation of histological features of different dental hard and soft tissues is done by conventional microscopy. This traditional method of learning prevents the students from screening the entire slide and change of magnification. To address these drawbacks, modification in conventional microscopy has evolved and become motivation for changing the learning tool. Virtual microscopy is the technique in which there is complete digitization of the microscopic glass slide, which can be analyzed on a computer. This research is designed to evaluate the effectiveness of virtual microscopy with conventional microscopy on student learning in dental histology. A cohort of 105 students were included and randomized into three groups: A, B, and C. Group A students studied the microscopic features of oral histologic lesions by conventional microscopy, Group B by virtual microscopy, and Group C by both conventional and virtual microscopy. The students' understanding of the subject was evaluated by a prepared questionnaire. The effectiveness of the study designs on knowledge gains and satisfaction levels was assessed by statistical assessment of differences in mean test scores. The difference in score between Groups A, B, and C at pre- and post-test was highly significant. This enhanced understanding of the subject may be due to benefits of using virtual microscopy in teaching histology. The augmentation of conventional microscopy with virtual microscopy shows enhancement of the understanding of the subject as compared to the use of conventional microscopy and virtual microscopy alone.

  15. The 2015 super-resolution microscopy roadmap

    Science.gov (United States)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  16. Advanced electron microscopy characterization of multimetallic nanoparticles

    Science.gov (United States)

    Khanal, Subarna Raj

    Research in noble metal nanoparticles has led to exciting progress in a versatile array of applications. For the purpose of better tailoring of nanoparticles activities and understanding the correlation between their structures and properties, control over the composition, shape, size and architecture of bimetallic and multimetallic nanomaterials plays an important role on revealing their new or enhanced functions for potentials application. Advance electron microscopy techniques were used to provide atomic scale insights into the structure-properties of different materials: PtPd, Au-Au3Cu, Cu-Pt, AgPd/Pt and AuCu/Pt nanoparticles. The objective of this work is to understand the physical and chemical properties of nanomaterials and describe synthesis, characterization, surface properties and growth mechanism of various bimetallic and multimetallic nanoparticles. The findings have provided us with novel and significant insights into the physical and chemical properties of noble metal nanoparticles. Different synthesis routes allowed us to synthesize bimetallic: Pt-Pd, Au-Au3Cu, Cu-Pt and trimetallic: AgPd/Pt, AuCu/Pt, core-shell and alloyed nanoparticles with monodispersed sizes, controlled shapes and tunable surface properties. For example, we have synthesized the polyhedral PtPd core-shell nanoparticles with octahedral, decahedral, and triangular plates. Decahedral PtPd core-shell structures are novel morphologies for this system. For the first time we fabricated that the Au core and Au3Cu alloyed shell nanoparticles passivated with CuS2 surface layers and characterized by Cs-corrected scanning transmission electron microscopy. The analysis of the high-resolution micrographs reveals that these nanoparticles have decahedral structure with shell periodicity, and that each of the particles is composed by Au core and Au3Cu ordered superlattice alloyed shell surrounded by CuS 2 surface layer. Additionally, we have described both experimental and theoretical methods of

  17. Recent developments in fluorescence-based microscopy applied in biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The present short review aims to give an overview of the most recent de velopments in fluorescence microscopy and its applications in biomedical science s. Apart from improvements in well-established methods based on conventional fl u orescence microscopy and confocal microscopy (fluorescence in situ hybridisa tion (FISH), tyramide signal amplification (TSA) in immunocytochemistry, new fluorop hores), more recently introduced techniques like fluorescence resonance energy t ransfer (FRET), fluorescence recovery after photobleaching (FRAP), multiphoton m icroscopy and fluorescence correlation spectroscopy (FCS) will be discussed.

  18. Magnetic force microscopy: Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  19. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  20. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  1. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  2. Structured illumination microscopy and its new developments

    Directory of Open Access Journals (Sweden)

    Jianling Chen

    2016-05-01

    Full Text Available Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM, a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.

  3. Optical super-resolution microscopy in neurobiology.

    Science.gov (United States)

    Sigrist, Stephan J; Sabatini, Bernardo L

    2012-02-01

    Understanding the highly plastic nature of neurons requires the dynamic visualization of their molecular and cellular organization in a native context. However, due to the limited resolution of standard light microscopy, many of the structural specializations of neurons cannot be resolved. A recent revolution in light microscopy has given rise to several super-resolution light microscopy methods yielding 2-10-fold higher resolution than conventional microscopy. We here describe the principles behind these techniques as well as their application to the analysis of the molecular architecture of the synapse. Furthermore, we discuss the potential for continued development of super-resolution microscopy as necessary for live imaging of neuronal structure and function in the brain.

  4. Microscopy of a scalable superatom

    CERN Document Server

    Zeiher, Johannes; Hild, Sebastian; Macrì, Tommaso; Bloch, Immanuel; Gross, Christian

    2015-01-01

    Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions which lead to extreme nonlinearities in laser coupled atomic ensembles. As a result, multiple excitation of a Micrometer sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called "superatom", is a valuable resource for quantum information, providing a collective Qubit. Here we report on the preparation of two orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub shot noise precision by local manipulation of a two-dimensional Mott ins...

  5. Magnetic force microscopy of atherosclerotic plaque

    Directory of Open Access Journals (Sweden)

    Alexeeva T.A.

    2014-03-01

    Full Text Available In this work by methods of scanning probe microscopy, namely by atomic force microscopy and magnetic force microscopy the fragments of atherosclerotic plaque section of different nature were investigated. The fragments of atherosclerotic vessels with elements of immature plaque were taken during the coiled artery bypass surgery by alloprosthesis. As the result of investigation we found magnetically ordered phase of endogenous origin in the fragment of solid plaque of mixed structure. This phase is presents biogenic magnetic nanoparticles and their clusters with average size characteristic of 200-400 nm.

  6. Introduction to Modern Methods in Light Microscopy.

    Science.gov (United States)

    Ryan, Joel; Gerhold, Abby R; Boudreau, Vincent; Smith, Lydia; Maddox, Paul S

    2017-01-01

    For centuries, light microscopy has been a key method in biological research, from the early work of Robert Hooke describing biological organisms as cells, to the latest in live-cell and single-molecule systems. Here, we introduce some of the key concepts related to the development and implementation of modern microscopy techniques. We briefly discuss the basics of optics in the microscope, super-resolution imaging, quantitative image analysis, live-cell imaging, and provide an outlook on active research areas pertaining to light microscopy.

  7. Off-axis self-interference incoherent digital holographic microscopy

    Science.gov (United States)

    Jeon, Philjun; Lee, Heejung; So, Byunghwy; Hwang, Wonsang; Bae, Yoonsung; Kim, Dugyoung

    2017-03-01

    3D imaging is demanding technology required in fluorescence microscopy. Even though holography is a powerful technique, it could not be used easily in fluorescence microscopy because of low coherence of fluorescence light. Lately, several incoherent holographic methods such as scanning holography, Fresnel in coherent correlation holography (FINCH), and self-interference incoherent digital holography (SIDH) have been proposed. However, these methods have many problems to be overcome for practical applications. For example, DC term removal, twin image ambiguity, and phase unwrapping problems need to be resolved. Off-axis holography is a straightforward solution which can solve most of these problems. We built an off-axis SIDH system for fluorescence imaging, and investigated various conditions and requirements for practical holographic fluorescence microscopy. Our system is based on a modified Michelson interferometer with a flat mirror at one arm and a curved mirror at the other arm of the interferometer. We made a phantom 3D fluorescence object made of 2 single-mode fibers coupled to a single red LED source to mimic 2 fluorescence point sources distributed by a few tens of micrometers apart. A cooled EM-CCD was used to take holograms of these fiber ends which emit only around 180 nW power.

  8. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    Science.gov (United States)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  9. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  10. Robust image alignment for cryogenic transmission electron microscopy.

    Science.gov (United States)

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Detection of stimulants in hair by laser microscopy.

    Science.gov (United States)

    Kimura, H; Mukaida, M; Mori, A

    1999-01-01

    In order to detect methamphetamine, a common stimulant, laser microscopy and immuno-histochemical staining, which uses anti-methamphetamine labeled with colloidal gold, were employed. The intensity of reflection of colloidal gold at a 488- and 514-nm line of Ar laser was measured with a laser microscope equipped with a computerized image processing system. Microtomed hair samples from five drug users who died from methamphetamine intoxication were used. The drug distribution in the hair was quite different in these five cases, but the levels of drug concentration in two different hair samples from the same abuser were correlated. The results from two hair samples with roots showed a correlation between drug concentration in hair roots and plasma samples. The proposed method needs no melanin bleaching and is simple and sensitive enough to estimate the drug concentration using only a segment of hair.

  12. Atomic resolution 3D electron diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O' Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  13. Light Microscopy: An ongoing contemporary revolution

    CERN Document Server

    Weisenburger, Siegfried

    2014-01-01

    Optical microscopy is one of the oldest scientific instruments that is still used in forefront research. Ernst Abbe's nineteenth century formulation of the resolution limit in microscopy let generations of scientists believe that optical studies of individual molecules and resolving sub-wavelength structures were not feasible. The Nobel Prize in 2014 for super-resolution fluorescence microscopy marks a clear recognition that the old beliefs have to be revisited. In this article, we present a critical overview of various recent developments in optical microscopy. In addition to the popular super-resolution fluorescence methods, we discuss the prospects of various other techniques and imaging contrasts and consider some of the fundamental and practical challenges that lie ahead.

  14. Multiphoton microscopy in defining liver function

    Science.gov (United States)

    Thorling, Camilla A.; Crawford, Darrell; Burczynski, Frank J.; Liu, Xin; Liau, Ian; Roberts, Michael S.

    2014-09-01

    Multiphoton microscopy is the preferred method when in vivo deep-tissue imaging is required. This review presents the application of multiphoton microscopy in defining liver function. In particular, multiphoton microscopy is useful in imaging intracellular events, such as mitochondrial depolarization and cellular metabolism in terms of NAD(P)H changes with fluorescence lifetime imaging microscopy. The morphology of hepatocytes can be visualized without exogenously administered fluorescent dyes by utilizing their autofluorescence and second harmonic generation signal of collagen, which is useful in diagnosing liver disease. More specific imaging, such as studying drug transport in normal and diseased livers are achievable, but require exogenously administered fluorescent dyes. If these techniques can be translated into clinical use to assess liver function, it would greatly improve early diagnosis of organ viability, fibrosis, and cancer.

  15. Saturated pattern-illuminated Fourier ptychography microscopy

    Science.gov (United States)

    Fang, Yue; Chen, Youhua; Kuang, Cuifang; Xiu, Peng; Liu, Qiulan; Ge, Baoliang; Liu, Xu

    2017-01-01

    We report a series of simulation studies which extends pattern-illuminated Fourier ptychography microscopy by integrating with the nonlinearity arising from saturation of the fluorophore excited state for super-resolution fluorescence imaging. This extended technique, termed Saturated pattern-illuminated Fourier ptychography (SpiFP) microscopy, could achieve a resolution four times that of wide field when the illuminating light intensity approaches the saturation threshold in simulations. Increasing light intensity leads to further resolution enhancement. In order to demonstrate the performance of SpiFP, we make a comparison between SpiFP and saturated structure illumination microscopy in simulations, and prove that the SpiFP exhibits superior robustness to noise, aberration correcting ability, and pattern’s flexibility. Introducing the saturation of the fluorescent emission brings in notable improvements in imaging performance, implying its potential in nanoscale-sized biological observations by wide-field microscopy.

  16. Proximity Scanning Transmission Electron Microscopy/Spectroscopy

    CERN Document Server

    Hwang, Ing-Shouh

    2016-01-01

    Here a new microscopic method is proposed to image and characterize very thin samples like few-layer materials, organic molecules, and nanostructures with nanometer or sub-nanometer resolution using electron beams of energies lower than 20 eV. The microscopic technique achieves high resolution through the proximity (or near-field) effect, as in scanning tunneling microscopy (STM), while it also allows detection of transmitted electrons for imaging and spectroscopy, as in scanning transmission electron microscopy (STEM). This proximity transmission electron microscopy (PSTEM) does not require any lens to focus the electron beam. It also allows detailed characterization of the interaction of low-energy electron with materials. PSTEM can operate in a way very similar to scanning tunneling microscopy, which provides high-resolution imaging of geometric and electronic structures of the sample surface. In addition, it allows imaging and characterization of the interior structures of the sample based on the detected...

  17. Rotary-scanning optical resolution photoacoustic microscopy

    Science.gov (United States)

    Qi, Weizhi; Xi, Lei

    2016-10-01

    Optical resolution photoacoustic microscopy (ORPAM) is currently one of the fastest evolving photoacoustic imaging modalities. It has a comparable spatial resolution to pure optical microscopic techniques such as epifluorescence microscopy, confocal microscopy, and two-photon microscopy, but also owns a deeper penetration depth. In this paper, we report a rotary-scanning (RS)-ORPAM that utilizes a galvanometer scanner integrated with objective to achieve rotary laser scanning. A 15 MHz cylindrically focused ultrasonic transducer is mounted onto a motorized rotation stage to follow optical scanning traces synchronously. To minimize the loss of signal to noise ratio, the acoustic focus is precisely adjusted to reach confocal with optical focus. Black tapes and carbon fibers are firstly imaged to evaluate the performance of the system, and then in vivo imaging of vasculature networks inside the ears and brains of mice is demonstrated using this system.

  18. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1989-01-01

    Monoclonal antibodies (MAb) specific for Chlamydia trachomatis lipopolysaccharide (LPS) and major outer membrane protein (MOMP) were used for immunoelectron microscopy analysis. MAb specific for MOMP showed strong reaction with the chlamydial surface, whereas MAb specific for LPS showed strong...

  19. Using hydrogels in microscopy: A tutorial.

    Science.gov (United States)

    Flood, Peter; Page, Henry; Reynaud, Emmanuel G

    2016-05-01

    Sample preparation for microscopy is a crucial step to ensure the best experimental outcome. It often requires the use of specific mounting media that have to be tailored to not just the sample but the chosen microscopy technique. The media must not damage the sample or impair the optical path, and may also have to support the correct physiological function/development of the sample. For decades, researchers have used embedding media such as hydrogels to maintain samples in place. Their ease of use and transparency has promoted them as mainstream mounting media. However, they are not as straightforward to implement as assumed. They can contain contaminants, generate forces on the sample, have complex diffusion and structural properties that are influenced by multiple factors and are generally not designed for microscopy in mind. This short review will discuss the advantages and disadvantages of using hydrogels for microscopy sample preparation and highlight some of the less obvious problems associated with the area.

  20. Multiphoton microscopy: An introduction to gastroenterologists

    Institute of Scientific and Technical Information of China (English)

    Hye Jin Cho; Hoon Jai Chun; Eun Sun Kim; Bong Rae Cho

    2011-01-01

    Multiphoton microscopy, relying on the simultaneous absorption of two or more photons by a fluorophore, has come to occupy a prominent place in modern biomedical research with its ability to allow real-time observation of a single cell and molecules in intact tissues. Multiphoton microscopy exhibits nonlinear optical contrast properties, which can make it possible to provide an exceptionally large depth penetration with less phototoxicity. This system becomes more and more an inspiring tool for a non-invasive imaging system to realize "optical biopsy" and to examine the functions of living cells. In this review, we briefly present the physical principles and properties of multiphoton microscopy as well as the current applications in biological fields. In addition, we address what we see as the future potential of multiphoton microscopy for gastroenterologic research.

  1. Comparison of reflectance confocal microscopy and two-photon second harmonic generation microscopy in fungal keratitis rabbit model ex vivo

    Science.gov (United States)

    Lee, Jun Ho; Lee, Seunghun; Yoon, Calvin J.; Park, Jin Hyoung; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Fungal keratitis is an infection of the cornea by fungal pathogens. Diagnosis methods based on optical microscopy could be beneficial over the conventional microbiology method by allowing rapid and non-invasive examination. Reflectance confocal microscopy (RCM) and two-photon second harmonic generation microscopy (TPSHGM) have been applied to pre-clinical or clinical studies of fungal keratitis. In this report, RCM and TPSHGM were characterized and compared in the imaging of a fungal keratitis rabbit model ex vivo. Fungal infection was induced by using two strains of fungi: aspergillus fumigatus and candida albicans. The infected corneas were imaged in fresh condition by both modalities sequentially and their images were analyzed. Both RCM and TPSHGM could detect both fungal strains within the cornea based on morphology: aspergillus fumigatus had distinctive filamentous structures, and candida albicans had round structures superficially and elongated structures in the corneal stroma. These imaging results were confirmed by histology. Comparison between RCM and TPSHGM showed several characteristics. Although RCM and TPSHGM images had good correlation each other, their images were slightly different due to difference in contrast mechanism. RCM had relatively low image contrast with the infected turbid corneas due to high background signal. TPSHGM visualized cells and collagen in the cornea clearly compared to RCM, but used higher laser power to compensate low autofluorescence. Since these two modalities provide complementary information, combination of RCM and TPSHGM would be useful for fungal keratitis detection by compensating their weaknesses each other. PMID:26977371

  2. Advanced electron microscopy for advanced materials.

    Science.gov (United States)

    Van Tendeloo, Gustaaf; Bals, Sara; Van Aert, Sandra; Verbeeck, Jo; Van Dyck, Dirk

    2012-11-08

    The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.

  3. Mirror-enhanced super-resolution microscopy

    OpenAIRE

    2016-01-01

    Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell a...

  4. Multimodal CARS microscopy of structured carbohydrate biopolymers

    OpenAIRE

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the comm...

  5. Scanning probe microscopy on new dental alloys

    Science.gov (United States)

    Reusch, B.; Geis-Gerstorfer, J.; Ziegler, C.

    Surface analytical methods such as scanning force microscopy (SFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to determine the surface properties of amalgam substitutes as tooth filling materials. In particular the corrosion and the passivation behavior of new gallium restorative materials were studied. To give relevant practical data, the measurements were performed with and without the alloys being stored in artificial saliva to simulate physiological oral conditions.

  6. A Reflected Terahertz-Emission Microscopy

    Institute of Scientific and Technical Information of China (English)

    YANG Yu-Ping; YAN Wei; WANG Li

    2007-01-01

    @@ A novel reflected terahertz-emission microscopy is proposed and developed for improving the spatial resolution of THz imaging. When attaching a bow-tie antenna directly onto a thin generation crystal, the reflected THz waves can be collected and detected by a photoconductive antenna, and the spatial resolution is decided by the diameter of focused pump beam. In this way, the detected resolution can be largely improved and tunable. The configuration and characteristics of this microscopy are described in detail.

  7. Imaging DNA Structure by Atomic Force Microscopy.

    Science.gov (United States)

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  8. Sample preparation method for scanning force microscopy

    CERN Document Server

    Jankov, I R; Szente, R N; Carreno, M N P; Swart, J W; Landers, R

    2001-01-01

    We present a method of sample preparation for studies of ion implantation on metal surfaces. The method, employing a mechanical mask, is specially adapted for samples analysed by Scanning Force Microscopy. It was successfully tested on polycrystalline copper substrates implanted with phosphorus ions at an acceleration voltage of 39 keV. The changes of the electrical properties of the surface were measured by Kelvin Probe Force Microscopy and the surface composition was analysed by Auger Electron Spectroscopy.

  9. Cell reactions with biomaterials: the microscopies

    Directory of Open Access Journals (Sweden)

    Curtis A. S.G.

    2001-01-01

    Full Text Available The methods and results of optical microscopy that can be used to observe cell reactions to biomaterials are Interference Reflection Microscopy (IRM, Total Internal Reflection Fluorescence Microscopy (TIRFM, Surface Plasmon Resonance Microscopy (SPRM and Forster Resonance Energy Transfer Microscopy (FRETM and Standing Wave Fluorescence Microscopy. The last three are new developments, which have not yet been fully perfected. TIRFM and SPRM are evanescent wave methods. The physics of these methods depend upon optical phenomena at interfaces. All these methods give information on the dimensions of the gap between cell and the substratum to which it is adhering and thus are especially suited to work with biomaterials. IRM and FRETM can be used on opaque surfaces though image interpretation is especially difficult for IRM on a reflecting opaque surface. These methods are compared with several electron microscopical methods for studying cell adhesion to substrata. These methods all yield fairly consistent results and show that the cell to substratum distance on many materials is in the range 5 to 30 nm. The area of contact relative to the total projected area of the cell may vary from a few per cent to close to 100% depending on the cell type and substratum. These methods show that those discrete contact areas well known as focal contacts are frequently present. The results of FRETM suggest that the separation from the substratum even in a focal contact is about 5 nm.

  10. Aptamer Stainings for Super-resolution Microscopy.

    Science.gov (United States)

    de Castro, Maria Angela Gomes; Rammner, Burkhard; Opazo, Felipe

    2016-01-01

    Fluorescence microscopy is an invaluable tool to visualize molecules in their biological context with ease and flexibility. However, studies using conventional light microscopy have been limited to the resolution that light diffraction allows (i.e., ~200 nm). This limitation has been recently circumvented by several types of advanced fluorescence microscopy techniques, which have achieved resolutions of up to ~10 nm. The resulting enhanced imaging precision has helped to find important cellular details that were not visible using diffraction-limited instruments. However, it has also revealed that conventional stainings using large affinity tags, such as antibodies, are not accurate enough for these imaging techniques. Since aptamers are substantially smaller than antibodies, they could provide a real advantage in super-resolution imaging. Here we compare the live staining of transferrin receptors (TfnR) obtained with different fluorescently labeled affinity probes: aptamers, specific monoclonal antibodies, or the natural receptor ligand transferrin. We observed negligible differences between these staining strategies when imaging is performed with conventional light microscopy (i.e., laser scanning confocal microscopy). However, a clear superiority of the aptamer tag over antibodies became apparent in super-resolved images obtained with stimulated emission depletion (STED) microscopy.

  11. Combined microscopies study of the C-contamination induced by extreme-ultraviolet radiation: A surface-dependent secondary-electron-based model

    Science.gov (United States)

    Prezioso, S.; Donarelli, M.; Bisti, F.; Palladino, L.; Santucci, S.; Spadoni, S.; Avaro, L.; Liscio, A.; Palermo, V.; Ottaviano, L.

    2012-05-01

    SiO2 and Al2O3 surfaces exposed to periodically modulated extreme ultraviolet (EUV) light (λ = 46.9 nm) have been investigated at the μm scale by optical microscopy, scanning electron microscopy, scanning Auger microscopy, atomic force microscopy, and Kelvin probe force microscopy. The formation of a carbon contamination layer preserving the same periodical modulation of the EUV dose has been observed. The mechanisms of hydrocarbon molecules deposition have been studied with the help of correlation plots between the modulated Auger signal and the corresponding EUV dose. A surface-dependent secondary-electron-based model has been proposed.

  12. Combined microscopies study of the C-contamination induced by extreme-ultraviolet radiation: A surface-dependent secondary-electron-based model

    Energy Technology Data Exchange (ETDEWEB)

    Prezioso, S.; Donarelli, M.; Bisti, F.; Palladino, L.; Santucci, S.; Ottaviano, L. [Dip. di Fisica, Universita dell' Aquila, Via Vetoio, 67100 L' Aquila (Italy); Spadoni, S.; Avaro, L. [Micron, Process R and D, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Liscio, A.; Palermo, V. [CNR-ISOF, Via Gobetti 101, 40129 Bologna (Italy)

    2012-05-14

    SiO{sub 2} and Al{sub 2}O{sub 3} surfaces exposed to periodically modulated extreme ultraviolet (EUV) light ({lambda} = 46.9 nm) have been investigated at the {mu}m scale by optical microscopy, scanning electron microscopy, scanning Auger microscopy, atomic force microscopy, and Kelvin probe force microscopy. The formation of a carbon contamination layer preserving the same periodical modulation of the EUV dose has been observed. The mechanisms of hydrocarbon molecules deposition have been studied with the help of correlation plots between the modulated Auger signal and the corresponding EUV dose. A surface-dependent secondary-electron-based model has been proposed.

  13. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the met

  14. Advances in Transmission Electron Microscopy : In Situ Straining and In Situ Compression Experiments on Metallic Glasses

    NARCIS (Netherlands)

    De Hosson, Jeff Th. M.

    In the field of transmission electron microscopy (TEM), fundamental and practical reasons still remain that hamper a straightforward correlation between microscopic structural information and deformation mechanisms in materials. In this article, it is argued that one should focus in particular on in

  15. Advances in Transmission Electron Microscopy : Self Healing or is Prevention better than Cure?

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Yasuda, Hiroyuki Y.; Zwaag, S. van der

    2007-01-01

    In the field of transmission electron microscopy fundamental and practical reasons still remain that hamper a straightforward correlation between microscopic structural information and self healing mechanisms in materials. We argue that one should focus in particular on in situ rather than on postmo

  16. Nano-contact microscopy of supracrystals

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2015-05-01

    Full Text Available Background: Highly ordered three-dimensional colloidal crystals (supracrystals comprised of 7.4 nm diameter Au nanocrystals (with a 5% size dispersion have been imaged and analysed using a combination of scanning tunnelling microscopy and dynamic force microscopy.Results: By exploring the evolution of both the force and tunnel current with respect to tip–sample separation, we arrive at the surprising finding that single nanocrystal resolution is readily obtained in tunnelling microscopy images acquired more than 1 nm into the repulsive (i.e., positive force regime of the probe–nanocrystal interaction potential. Constant height force microscopy has been used to map tip–sample interactions in this regime, revealing inhomogeneities which arise from the convolution of the tip structure with the ligand distribution at the nanocrystal surface.Conclusion: Our combined STM–AFM measurements show that the contrast mechanism underpinning high resolution imaging of nanoparticle supracrystals involves a form of nanoscale contact imaging, rather than the through-vacuum tunnelling which underpins traditional tunnelling microscopy and spectroscopy.

  17. [Pili annulati. A scanning electron microscopy study].

    Science.gov (United States)

    Lalević-Vasić, B; Polić, D

    1988-01-01

    A case of ringed hair studied by light and electron microscopy is reported. The patient, a 20-year old girl, had been presenting with the hair abnormality since birth. At naked eye examination the hairs were dry, 6 to 7 cm long, and they showed dull and shining areas giving the scalp hair a scintillating appearance (fig. 1). Several samples of hair were taken and examined by light microscopy under white and polarized light. Hair shafts and cryo-fractured surfaces were examined by scanning electron microscopy. RESULTS. 1. Light microscopy. Lesions were found in every hair examined. There were abnormal, opaque and fusiform areas alternating with normal areas all along the hair shaft (fig. 2). The abnormal areas resulted from intracortical air-filled cavities. Fractures similar to those of trichorrhexis nodosa were found in the opaque areas of the distal parts of the hairs. 2. Scanning electron microscopy. A. Hair shaft surface. The abnormal areas showed a longitudinal, "curtain-like" folding of the cuticular cells which had punctiform depressions on their surface and worn free edges (fig. 4, 5, 6); trichorrhexis-type fractures were seen in the distal parts of the hair shafts (fig. 7, 8). Normal areas regularly presented with longitudinal, superficial, short and non-systematized depressions (fig. 9); the cuticular cells were worn, and there were places where the denuded cortex showed dissociated cortical fibres (fig. 10).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Photoacoustic microscopy: superdepth, superresolution, and superb contrast.

    Science.gov (United States)

    Yao, Junjie; Song, Liang; Wang, Lihing V

    2015-01-01

    Since its invention in the 17th century, optical microscopy has revolutionized biomedical studies by scrutinizing the biological realm on cellular levels, taking advantage of its excellent light-focusing capability. However, most biological tissues scatter light highly. As light travels in tissue, cumulative scattering events cause the photons to lose their original propagation direction and, thus, their ability to be focused, which has largely limited the penetration depth of optical microscopy. Conventional planar optical microscopy can provide penetration of only ~100 ?m before photons begin to be scattered. The penetration of modern optical microcopy, such as confocal microscopy and multiphoton microscopy, is still limited to approximately the optical diffusion limit (~1 mm in the skin as approximated by one optical transport mean free path), where scattered photons retain a strong memory of the original propagation direction. So far, it still remains a challenge for pure optical methods to achieve high-resolution in vivo imaging beyond the diffusion limit (i.e., superdepth imaging).

  19. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  20. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  1. Near-infrared hyperspectral reflective confocal microscopy

    Science.gov (United States)

    Huang, Wei; Zhang, Yunhai; Miao, Xin; Xue, Xiaojun; Xiao, Yun

    2016-10-01

    A Near-Infrared HyperSpectral Reflective Confocal Microscopy (NIHS-RCM) is proposed in order to get high resolution images of deep biological tissues such as skin. The microscopy system uses a super-continuum laser for illumination, an acousto-optic tunable filter (AOTF) for rapid selection of near-infrared spectrum, a resonant galvanometer scanner for high speed imaging (15f/s) and near-infrared avalanche diode as detector. Porcine skin and other experiments show that the microscopy system could get deep tissue images (180 μm), and show the different ingredients of tissue with different wavelength of illumination. The system has the ability of selectively imaging of multiple ingredients at deep tissue which can be used in skin diseases diagnosis and other fields.

  2. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  3. Environmental scanning electron microscopy in cell biology.

    Science.gov (United States)

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  4. Gigapixel microscopy using a flatbed scanner

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei

    2012-01-01

    Microscopy imaging systems with a very wide field-of-view (FOV) are highly sought in biomedical applications. In this paper, we report a wide FOV microscopy imaging system that uses a low-cost scanner and a closed-circuit-television (CCTV) lens. We show that such an imaging system is capable to capture a 10 mm * 7.5 mm FOV image with 0.77 micron resolution, resulting in 0.54 gigapixels (109 pixels) across the entire image (26400 pixels * 20400 pixels). The resolution and field curve of the proposed system were characterized by imaging a USAF resolution target and a hole-array target. A 1.6 gigapixel microscopy image (0.54 gigapixel with 3 colors) of a pathology slide was acquired by using such a system for application demonstration.

  5. Infrared Microscopy In An Industrial Analytical Laboratory

    Science.gov (United States)

    Strawn, A. W.

    1989-12-01

    This paper describes the chemical identification of solid samples in the size range of 8-250um in diameter. The samples are usually inhomogeneous and range from polymer inclusions to fibres. While scanning electron and optical microscopy are usually the first line of analysis for such samples, they cannot yield chemical identification when the sample is organic. A combination of infrared microscopy and spectral library searching provides a powerful technique in the industrial laboratory and examples are shown of polymer inclusions, laminates, fibres and filter deposits. The spectra were obtained using a Spectra-Tech IR Plan Microscope coupled to the external port of a Nicolet 5DXC FTIR spectrometer whose main compartment houses an MTEC Photoacoustic (PAS) Cell. The complementary facets of PAS and infrared microscopy are also highlighted.

  6. A near-field optical microscopy nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Semin, D.J.; Ambrose, W.P.; Goodwin, P.M.; Kwller, A. [Los Alamos National Lab., NM (United States); Wendt, J.R. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    Multiplexing near-field scanning optical microscopy (NSOM) by the use of a nanoarray with parallel imaging is studied. The fabrication, characterization, and utilization of nanoarrays with {approximately} 100 nm diameter apertures spaced 500 nm center-to- center is presented. Extremely uniform nanoarrays with {approximately} 10{sup 8} apertures were fabricated by electron beam lithography and reactive ion etching. The nanoarrays were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In this paper we utilize these nanoarrays in a laser-illuminated microscope with parallel detection on a charge- coupled device (CCD). Detection of B-phycoerythrin (B-PE) molecules using near-field illumination is presented. In principle, our system can be used to obtain high lateral resolution NSOM images over a wide-field of view (e.g. 50-100 {mu}m) within seconds.

  7. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  8. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  9. Space station microscopy: Beyond the box

    Science.gov (United States)

    Hunter, N. R.; Pierson, Duane L.; Mishra, S. K.

    Microscopy aboard Space Station Freedom poses many unique challenges for in-flight investigations. Disciplines such as material processing, plant and animal research, human reseach, enviromental monitoring, health care, and biological processing have diverse microscope requirements. The typical microscope not only does not meet the comprehensive needs of these varied users, but also tends to require excessive crew time. To assess user requirements, a comprehensive survey was conducted among investigators with experiments requiring microscopy. The survey examined requirements such as light sources, objectives, stages, focusing systems, eye pieces, video accessories, etc. The results of this survey and the application of an Intelligent Microscope Imaging System (IMIS) may address these demands for efficient microscopy service in space. The proposed IMIS can accommodate multiple users with varied requirements, operate in several modes, reduce crew time needed for experiments, and take maximum advantage of the restrictive data/ instruction transmission environment on Freedom.

  10. Fluorescence microscopy: A tool to study autophagy

    Science.gov (United States)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  11. Confocal Microscopy in Biopsy Proven Argyrosis

    Directory of Open Access Journals (Sweden)

    Melis Palamar

    2013-01-01

    Full Text Available Purpose. To evaluate the confocal microscopy findings of a 46-year-old male with bilateral biopsy proven argyrosis. Materials and Methods. Besides routine ophthalmologic examination, anterior segment photography and confocal microscopy with cornea Rostoch module attached to HRT II (Heidelberg Engineering GmbH, Heidelberg, Germany were performed. Findings. Squamous metaplastic changes on conjunctival epithelium and intense highly reflective extracellular punctiform deposits in conjunctival substantia propria were detected. Corneal epithelium was normal. Highly reflective punctiform deposits starting from anterior to mid-stroma and increasing through Descemet’s membrane were evident. Corneal endothelium could not be evaluated due to intense stromal deposits. Conclusion. Confocal microscopy not only supports diagnosis in ocular argyrosis, but also demonstrates the intensity of the deposition in these patients.

  12. Applications of microscopy in Salmonella research.

    Science.gov (United States)

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  13. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  14. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  15. Pseudoexfoliation syndrome: in vivo confocal microscopy analysis.

    Science.gov (United States)

    Martone, Gianluca; Casprini, Fabrizio; Traversi, Claudio; Lepri, Francesca; Pichierri, Patrizia; Caporossi, Aldo

    2007-08-01

    Pseudoexfoliation (PEX) syndrome is a common ocular disease that also affects the cornea. A case of clinical PEX syndrome, studied by in vivo corneal confocal microscopy is reported. The morphological analysis of the confocal images demonstrated hyper-reflective deposits and several dendritic cells in the basal epithelial layer. A fibrillar subepithelial structure was also found. The endothelial layer showed cell anomalies (polymegathism and pleomorphism) and hyper-reflective small endothelial deposits. Confocal microscopy is an in vivo imaging method that may provide new information on corneal alterations in PEX, and detect early corneal features.

  16. Super-resolution optical microscopy: multiple choices.

    Science.gov (United States)

    Huang, Bo

    2010-02-01

    The recent invention of super-resolution optical microscopy enables the visualization of fine features in biological samples with unprecedented clarity. It creates numerous opportunities in biology because vast amount of previously obscured subcellular processes now can be directly observed. Rapid development in this field in the past two years offers many imaging modalities that address different needs but they also complicates the choice of the 'perfect' method for answering a specific question. Here I will briefly describe the principles of super-resolution optical microscopy techniques and then focus on comparing their characteristics in various aspects of practical applications.

  17. Multimodal CARS microscopy of structured carbohydrate biopolymers

    Science.gov (United States)

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the commonly-measured C-H stretch (2750 cm−1–2970 cm−1) and SHG provide potentially important structural information and contrast in these materials. PMID:21258555

  18. Electron Microscopy of Natural and Epitaxial Diamond

    Science.gov (United States)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  19. Noncontact atomic force microscopy v.3

    CERN Document Server

    Morita, Seizo; Meyer, Ernst

    2015-01-01

    This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combine

  20. Multimodal CARS microscopy of structured carbohydrate biopolymers.

    Science.gov (United States)

    Slepkov, Aaron D; Ridsdale, Andrew; Pegoraro, Adrian F; Moffatt, Douglas J; Stolow, Albert

    2010-11-08

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm(-1)-3400 cm(-1)), together with the commonly-measured C-H stretch (2750 cm(-1)-2970 cm(-1)) and SHG provide potentially important structural information and contrast in these materials.

  1. Super-Resolved Traction Force Microscopy (STFM).

    Science.gov (United States)

    Colin-York, Huw; Shrestha, Dilip; Felce, James H; Waithe, Dominic; Moeendarbary, Emad; Davis, Simon J; Eggeling, Christian; Fritzsche, Marco

    2016-04-13

    Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing the nano instead of the micron scale. This improvement is highlighted by computer simulations and an activating RBL cell model system.

  2. Improved Interference configuration for structured illumination microscopy

    Science.gov (United States)

    Chen, Houkai; Wei, Shibiao; Wu, Xiaojing; Yang, Yong; Zhang, Yuquan; Du, Luping; Liu, Jun; Zhu, Siwei; Yuan, Xiaocong

    2017-02-01

    We present an improved structured illumination configuration for structured illumination microscopy (SIM) based on spatial light modulator. Precise phase shifts and rotation of illumination fringes can be dynamically controlled using a spatial light modulator. The method is different from the conventional illumination configuration that are based on interference of ±1 diffractive order light. The experimental setup requires less optical elements making it compact, reliable, and suitable for integration. The method has been applied in the standing-wave total internal reflection fluorescent microscopy. High lateral resolution of sub-100 nm was achieved in single directional resolution enhancement experiments.

  3. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan;

    2012-01-01

    . The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution.......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy...

  4. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging

    Science.gov (United States)

    Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2016-12-01

    Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.

  5. Electron microscopy investigations of nanoparticles for cancer diagnostic applications

    Science.gov (United States)

    Koh, Ai Leen

    This dissertation concerns electron microscopy characterization of magnetic (MNP) and surface enhanced Raman scattering (SERS) nanoparticles for in-vitro cancer diagnostic applications. Electron microscopy is an essential characterization tool owing to its (sub) nanometer spatial resolution. Structural information about the nanoparticles can be obtained using transmission electron microscopy (TEM), which can in turn be correlated to their physical characteristics. The scanning electron microscope (SEM) has excellent depth of field and can be effectively utilized to obtain high resolution information about nanoparticles binding onto cell surfaces. Part One of this thesis focuses on MNPs for bio-sensing and detection applications. As a preliminary study, chemically-synthesized, commercially-available iron oxide nanoparticles were compared against their laboratory-synthesized counterparts to assess their suitability for this application. The motivation for this initial study came about due to the lack of published data on commercially available iron oxide nanoparticles. TEM studies show that the latter are "beads" composed of multiple iron oxide cores encapsulated by a polymer shell, with large standard deviations in core diameter. Laboratory-synthesized iron oxide nanoparticles, on the other hand, are single core particles with small variations in diameter and therefore are expected to be better candidates for the required application. A key limitation in iron oxide nanoparticles is their relatively weak magnetic signals. The development of high moment Synthetic Anti-Ferromagnetic (SAF) nanoparticles aims to overcome this issue. SAFs are a novel class of MNPs fabricated using nanoimprint lithography, direct deposition of multilayer structure and final suspension into liquid medium (water). TEM analyses of cross-section specimens reveal that the SAFs possess characteristics similar to those of sputtered magnetic multilayer thin films. Their layered structure is

  6. Resolution Versus Error for Computational Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Luzi, Lorenzo; Stevens, Andrew; Yang, Hao; Browning, Nigel D.

    2017-07-01

    Images that are collected via scanning transmission electron microscopy (STEM) can be undersampled to avoid damage to the specimen while maintaining resolution [1, 2]. We have used BPFA to impute missing data and reduce noise [3]. The reconstruction is typically evaluated using the peak signal-to-noise ratio (PSNR). This measure is too conservative for STEM images and we propose that the Fourier ring correlation (FRC) is used instead to evaluate the reconstruction. We are not concerned with exact reconstruction of the truth image, and therefore PSNR is a conservative estimation of the quality of the reconstruction. Instead, we are concerned with the visual resolution of the image and whether atoms can be distinguished. We have evaluated the reconstruction of a simulated STEM image using the FRC and compared the results with the PSNR measurements. The FRC captures the resolution of the image and is not affected by a large MSE if the atom peaks are still distinguishable. The noisy and reconstructed images are shown in Figure 1. The simulated STEM image was sampled at 100%, 80%, 40%, and 20% of the original pixels to simulate an undersampled scan. The reconstruction was done using BPFA with a patch size of 10 x 10 and no overlapping patches. Not having overlapping patches produces inferior results but they are still acceptable. The dictionary size is 64 and 30 iterations were completed during each reconstruction. The 100% image was denoised instead of reconstructed. Poisson noise was applied to the simulated image with λ values of 500, 50, and 5 to simulate lower imaging dose. The original simulated STEM image was also included in our calculations and was generated using a dose of 1000. The simulated STEM image is 100 by 100 pixels and has essentially no high frequency components. The image reconstruction tends to smooth the data, also resulting in no high frequency components. This causes the FRC of the two images to be large at higher resolutions and may be

  7. The future of high resolution electron microscopy

    Institute of Scientific and Technical Information of China (English)

    D Van Dyck

    2000-01-01

    The state of the art and the future in quantitative high resolution electron microscopy are discussed in the framework of parameter estimation. Reconstruction methods are then to be considered as direct methods to yield a starting structure for further refinement. With the increasing flexibility of the instruments, computer aided experimental strategy will become important.

  8. Atomic force microscopy of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  9. Characterization of Biopolymer Surfaces Using Scanning Microscopies

    Science.gov (United States)

    1989-11-15

    microscopic images of M’, Frommer JE, Foster JS (1989) adsorbed serum albumin on highly oriented Contrast mechanism for resolving organic pyrolyti: graphite J...Colloid Xncerface molecules with tunneling microscopy .re. 1Z:, 650-653. rature ._1, 137-139. Foster JS, Frommer JE (1938) Stemmer A, Rechelt R

  10. Magnetic contrast in threshold photoemission electron microscopy

    NARCIS (Netherlands)

    Veghel, Marinus Godefridus Adrianus van

    2004-01-01

    In threshold photoemission electron microscopy (threshold PEEM), photoelectrons are excited by UV photons with an energy just above the photoemission threshold. The lateral intensity distribution of these electrons is then imaged by an electrostatic lens system. In this thesis, the possibilities o

  11. Atomic force microscopy of biological samples.

    Science.gov (United States)

    Allison, David P; Mortensen, Ninell P; Sullivan, Claretta J; Doktycz, Mitchel J

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH). © 2010 John Wiley & Sons, Inc.

  12. Semiconductor Surface Characterization by Scanning Probe Microscopies

    Science.gov (United States)

    2001-01-01

    potentiometry (STP)8 and ballistic electron emission microscopy (BEEM)9 which allow mapping of lateral surface potential and local subsurface Schottky...A.P.Fein. "Tunneling Spectroscopy of the Si(1 1 1)2xl Surface", Surf.Sci. 181, 295- 306, 1987. 8. P.Muralt, D.W.Pohl, "Scanning tunneling potentiometry

  13. The 2015 super-resolution microscopy roadmap

    NARCIS (Netherlands)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-01-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio) physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is

  14. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  15. Transmission electron microscopy characterization of nanomaterials

    CERN Document Server

    2014-01-01

    Third volume of a 40volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Transmission electron microscopy characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  16. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  17. Low voltage transmission electron microscopy of graphene.

    Science.gov (United States)

    Bachmatiuk, Alicja; Zhao, Jiong; Gorantla, Sandeep Madhukar; Martinez, Ignacio Guillermo Gonzalez; Wiedermann, Jerzy; Lee, Changgu; Eckert, Juergen; Rummeli, Mark Hermann

    2015-02-04

    The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy. However, the one tool with the greatest prowess for characterizing and studying graphene is the transmission electron microscope. State-of-the-art (scanning) transmission electron microscopes enable one to image graphene with atomic resolution, and also to conduct various other characterizations simultaneously. The advent of aberration correctors was timely in that it allowed transmission electron microscopes to operate with reduced acceleration voltages, so that damage to graphene is avoided while still providing atomic resolution. In this comprehensive review, a brief introduction is provided to the technical aspects of transmission electron microscopes relevant to graphene. The reader is then introduced to different specimen preparation techniques for graphene. The different characterization approaches in both transmission electron microscopy and scanning transmission electron microscopy are then discussed, along with the different aspects of electron diffraction and electron energy loss spectroscopy. The use of graphene for other electron microscopy approaches such as in-situ investigations is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...

  19. Energetic materials research using scanning electron microscopy

    NARCIS (Netherlands)

    Elshout, J.J.M.H. van den; Duvalois, W.; Benedetto, G.L. Di; Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    A key-technique for the research of energetic materials is scanning electron microscopy. In this paper several examples are given of characterization studies on energetic materials, including a solid composite propellant formulation. Results of the characterization of energetic materials using scann

  20. Dark Field Microscopy for Analytical Laboratory Courses

    Science.gov (United States)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  1. Cathodoluminescence Microscopy of Nanostructures on Transparent Substrates

    NARCIS (Netherlands)

    Narváez, A.C.

    2014-01-01

    Cathodoluminescence (CL), the excitation of light by an electron beam, has gained attention as an analysis tool for investigating the optical response of a structure, at a resolution that approaches that in electron microscopy, in the nanometer range. However, the application possibilities are limit

  2. Microscopy using source and detector arrays

    Science.gov (United States)

    Sheppard, Colin J. R.; Castello, Marco; Vicidomini, Giuseppe; Duocastella, Martí; Diaspro, Alberto

    2016-03-01

    There are basically two types of microscope, which we call conventional and scanning. The former type is a full-field imaging system. In the latter type, the object is illuminated with a probe beam, and a signal detected. We can generalize the probe to a patterned illumination. Similarly we can generalize the detection to a patterned detection. Combining these we get a range of different modalities: confocal microscopy, structured illumination (with full-field imaging), spinning disk (with multiple illumination points), and so on. The combination allows the spatial frequency bandwidth of the system to be doubled. In general we can record a four dimensional (4D) image of a 2D object (or a 6D image from a 3D object, using an acoustic tuneable lens). The optimum way to directly reconstruct the resulting image is by image scanning microscopy (ISM). But the 4D image is highly redundant, so deconvolution-based approaches are also relevant. ISM can be performed in fluorescence, bright field or interference microscopy. Several different implementations have been described, with associated advantages and disadvantages. In two-photon microscopy, the illumination and detection point spread functions are very different. This is also the case when using pupil filters or when there is a large Stokes shift.

  3. Confocal microscopy imaging of solid tissue

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer acquired images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ...

  4. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  5. Phosphogypsum surface characterisation using scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2003-01-01

    Full Text Available This paper presents the results of application of Scanning Electron Microscopy (SEM to examinations of the samples of natural gypsum and phosphogypsum. Phosphogypsum has a well developed crystalline structure, and appear in two polymorphous forms, of rombic and hexagonal shape crystals. Natural gypsum has a poorly crystalline structure. The differences in crystalline structure influence the chemical behavior of these row materials.

  6. Energetic materials research using scanning electron microscopy

    NARCIS (Netherlands)

    Elshout, J.J.M.H. van den; Duvalois, W.; Benedetto, G.L. Di; Bouma, R.H.B.; Heijden, A.E.D.M. van der

    2016-01-01

    A key-technique for the research of energetic materials is scanning electron microscopy. In this paper several examples are given of characterization studies on energetic materials, including a solid composite propellant formulation. Results of the characterization of energetic materials using

  7. Quantitative Microscopy to Measure the Nuclear Architecture

    NARCIS (Netherlands)

    Righolt, C.H.

    2014-01-01

    Advances in light microscopy lead to breakthroughs in biology. To further unravel the mysteries of life and the mechanisms behind diseases, better microscope techniques are needed to validate biological hypotheses. This thesis presents how integration of optics and computing leads to better images f

  8. Cathodoluminescence Microscopy of nanostructures on glass substrates

    NARCIS (Netherlands)

    Narvaez, A.C.; Weppelman, I.G.C.; Moerland, R.J.; Liv, N.; Zonnevylle, A.C.; Kruit, P.; Hoogenboom, J.P.

    2013-01-01

    Cathodoluminescence (CL) microscopy is an emerging analysis technique in the fields of biology and photonics, where it is used for the characterization of nanometer sized structures. For these applications, the use of transparent substrates might be highly preferred, but the detection of CL from nan

  9. Colloquium: Time-resolved scanning tunneling microscopy

    NARCIS (Netherlands)

    Houselt, van Arie; Zandvliet, Harold J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes abo

  10. Confocal Microscopy Imaging of the Biofilm Matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise

    2016-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  11. Heterodyne holographic microscopy of gold particles

    CERN Document Server

    Atlan, Michael; Desbiolles, Pierre; Absil, Emilie; Tessier, Gilles; Coppey-Moisan, Maité

    2007-01-01

    We report experimental results on heterodyne holographic microscopy of subwavelength-sized gold particles. The apparatus uses continuous green laser illumination of the metal beads in a total internal reflection configuration for dark-field operation. Detection of the scattered light at the illumination wavelength on a charge-coupled device array detector enables 3D localization of brownian particles in water

  12. Quantitative localization microscopy: effects of photophysics and labeling stoichiometry.

    Directory of Open Access Journals (Sweden)

    Robert P J Nieuwenhuizen

    Full Text Available Quantification in localization microscopy with reversibly switchable fluorophores is severely hampered by the unknown number of switching cycles a fluorophore undergoes and the unknown stoichiometry of fluorophores on a marker such as an antibody. We overcome this problem by measuring the average number of localizations per fluorophore, or generally per fluorescently labeled site from the build-up of spatial image correlation during acquisition. To this end we employ a model for the interplay between the statistics of activation, bleaching, and labeling stoichiometry. We validated our method using single fluorophore labeled DNA oligomers and multiple-labeled neutravidin tetramers where we find a counting error of less than 17% without any calibration of transition rates. Furthermore, we demonstrated our quantification method on nanobody- and antibody-labeled biological specimens.

  13. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds.

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp(3) vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  14. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds

    Science.gov (United States)

    Pope, Iestyn; Payne, Lukas; Zoriniants, George; Thomas, Evan; Williams, Oliver; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-11-01

    Nanoparticles have attracted enormous attention for biomedical applications as optical labels, drug-delivery vehicles and contrast agents in vivo. In the quest for superior photostability and biocompatibility, nanodiamonds are considered one of the best choices due to their unique structural, chemical, mechanical and optical properties. So far, mainly fluorescent nanodiamonds have been utilized for cell imaging. However, their use is limited by the efficiency and costs in reliably producing fluorescent defect centres with stable optical properties. Here, we show that single non-fluorescing nanodiamonds exhibit strong coherent anti-Stokes Raman scattering (CARS) at the sp3 vibrational resonance of diamond. Using correlative light and electron microscopy, the relationship between CARS signal strength and nanodiamond size is quantified. The calibrated CARS signal in turn enables the analysis of the number and size of nanodiamonds internalized in living cells in situ, which opens the exciting prospect of following complex cellular trafficking pathways quantitatively.

  15. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    Science.gov (United States)

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  16. 3D-microscopy of hydrogen in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Peeper, K., E-mail: katrin.peeper@unibw.de [Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 München (Germany); Moser, M.; Reichart, P. [Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 München (Germany); Markina, E.; Mayer, M.; Lindig, S.; Balden, M. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Boltzmannstraße 2, D-85748 Garching (Germany); Dollinger, G. [Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 München (Germany)

    2013-07-15

    The mapping of hydrogen distributions in 3 dimensions and its correlation with structural features allow further insight into mechanisms of hydrogen trapping in tungsten. We studied hydrogen distributions in 25 μm thick polycrystalline tungsten foils by 3D hydrogen microscopy using a proton–proton-scattering method. Two types of tungsten samples were prepared: (i) at 1200 K annealed foils and using 1.8 MeV implantation energy (ii) at 2000 K annealed foils using 200 eV implantation energy. It has been found that large variations of surface hydrogen contamination occur within different samples. Nevertheless, a statistically significant variation of the hydrogen content across grain boundaries has been observed.

  17. Thermal Balloon Endometrial Ablation: Safety Aspects Evaluated by Serosal Temperature, Light Microscopy and Electron Microscopy

    DEFF Research Database (Denmark)

    Andersen, L F; Meinert, L; Junge, Jette

    1998-01-01

    subsequent hysterectomy the extent of thermal damage into the myometrium was assessed by light and electron microscopy. RESULTS: The highest temperature measured on the uterine serosa was 39.1 degrees C. Coagulation of the myometrium adjacent to the endometrium could be demonstrated by light microscopy...... in all patients, with a maximum depth of 11.5 mm. By electron microscopy no influence of heat could be demonstrated beyond 15 mm from the endometrial surface. CONCLUSION: Up to 16 min of thermal balloon endometrial ablation therapy can destroy the endometrium and the submucosal layers. The myometrium...

  18. Thermal Balloon Endometrial Ablation: Safety Aspects Evaluated by Serosal Temperature, Light Microscopy and Electron Microscopy

    DEFF Research Database (Denmark)

    Andersen, L F; Meinert, L; Junge, Jette

    1998-01-01

    subsequent hysterectomy the extent of thermal damage into the myometrium was assessed by light and electron microscopy. RESULTS: The highest temperature measured on the uterine serosa was 39.1 degrees C. Coagulation of the myometrium adjacent to the endometrium could be demonstrated by light microscopy...... in all patients, with a maximum depth of 11.5 mm. By electron microscopy no influence of heat could be demonstrated beyond 15 mm from the endometrial surface. CONCLUSION: Up to 16 min of thermal balloon endometrial ablation therapy can destroy the endometrium and the submucosal layers. The myometrium...

  19. Thermal balloon endometrial ablation: safety aspects evaluated by serosal temperature, light microscopy and electron microscopy

    DEFF Research Database (Denmark)

    Andersen, L F; Meinert, L; Rygaard, Carsten

    1998-01-01

    subsequent hysterectomy the extent of thermal damage into the myometrium was assessed by light and electron microscopy. RESULTS: The highest temperature measured on the uterine serosa was 39.1 degrees C. Coagulation of the myometrium adjacent to the endometrium could be demonstrated by light microscopy...... in all patients, with a maximum depth of 11.5 mm. By electron microscopy no influence of heat could be demonstrated beyond 15 mm from the endometrial surface. CONCLUSION: Up to 16 min of thermal balloon endometrial ablation therapy can destroy the endometrium and the submucosal layers. The myometrium...

  20. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains.

    Science.gov (United States)

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M; Westphal, Carsten

    2014-10-01

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  1. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  2. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  3. Scanning probe microscopy investigation of complex-oxide heterostructures

    Science.gov (United States)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  4. Microstructural studies of dental amalgams using analytical transmission electron microscopy

    Science.gov (United States)

    Hooghan, Tejpal Kaur

    Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (mumuD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) matrix surrounding unreacted Agsb3Sn (gamma) particles. In addition, hitherto uncharacterized reaction layers between Agsb3Sn(gamma)/Agsb2Hgsb3\\ (gammasb2)\\ and\\ Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) were observed and analyzed. An Ag-Hg-Sn (betasb1) phase was clearly identified for the first time. In Tytin, the matrix consists of Agsb2Hgsb3\\ (gammasb1) grains. Fine precipitates of Cusb6Snsb5\\ (etasp') are embedded inside the gammasb1 and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the gammasb

  5. In vivo confocal microscopy of meibomian glands in primary blepharospasm

    Science.gov (United States)

    Lin, Tong; Gong, Lan

    2016-01-01

    Abstract The aim of the study was to evaluate the morphological changes of meibomian glands (MGs) in primary blepharospasm (PBS) by in vivo laser scanning confocal microscopy (LSCM) and to investigate the correlations between clinical data of PBS and LSCM parameters of MGs. This prospective and case–control study recruited 30 consecutive PBS patients and 30 age- and gender-matched healthy controls. After questionnaire assessments of ocular surface disease index (OSDI), Jankovic rating scale, and blepharospasm disability index, all subjects underwent blink rate evaluation, tear film break-up time (TBUT), corneal fluorescein staining (CFS), Schirmer test, MG expressibility, meibum quality, MG dropout, and LSCM examination of the MGs. The main LSCM outcomes included the mean MG acinar area and density, orifice diameter, meibum secretion reflectivity, acinar irregularity, and inhomogeneity of interstice and acinar wall. The PBS patients had significantly higher blink rate, higher OSDI and CFS scores, lower TBUT and Schirmer test value, and worse MG expressibility than the controls (All P  0.05). The PBS patients showed lower values of MG acinar area, orifice diameter and meibum secretion reflectivity, and higher scores of acinar irregularity and inhomogeneity of interstices than the controls (All P JCR scale was strong correlated with MG acinar area (P < 0.001), orifice diameter (P = 0.002), meibum secretion reflectivity (P = 0.002), and MG acinar irregularity (P = 0.013). The MG expressibility was significantly correlated to MG acinar area (P = 0.039), orifice diameter (P < 0.001), and MG acinar irregularity (P = 0.014). The OSDI score was moderate correlated with MG acinar irregularity (P = 0.016), whereas the TBUT value was positively correlated with MG acinar area (P = 0.045) and negatively correlated to MG acinar irregularity (P = 0.016). The CFS score was negatively correlated to MG orifice diameter (P = 0.008). The LSCM provided a noninvasive

  6. Scanning probe microscopy at video-rate

    Directory of Open Access Journals (Sweden)

    Georg Schitter

    2008-01-01

    Full Text Available Recent results have demonstrated the feasibility of video-rate scanning tunneling microscopy and video-rate atomic force microscopy. The further development of this technology will enable the direct observation of many dynamic processes that are impossible to observe today with conventional Scanning Probe Microscopes (SPMs. Examples are atom and molecule diffusion processes, the motion of molecular motors, real-time film growth, and chemical or catalytic reactions. Video-rate scanning probe technology might also lead to the extended application of SPMs in industry, e.g. for process control. In this paper we discuss the critical aspects that have to be taken into account for improving the imaging speed of SPMs. We point out the required instrumentation efforts, give an overview of the state of the art in high-speed scanning technology and discuss the required future developments for imaging at video-rates.

  7. Understanding liver immunology using intravital microscopy.

    Science.gov (United States)

    Marques, Pedro Elias; Oliveira, André Gustavo; Chang, Lynne; Paula-Neto, Heitor Affonso; Menezes, Gustavo Batista

    2015-09-01

    The liver has come a long way since it was considered only a metabolic organ attached to the gastrointestinal tract. The simultaneous ascension of immunology and intravital microscopy evidenced the liver as a central axis in the immune system, controlling immune responses to local and systemic agents as well as disease tolerance. The multiple hepatic cell populations are organized in a vascular environment that promotes intimate cellular interactions, including initiation of innate and adaptive immune responses, rapid leukocyte recruitment, pathogen clearance and production of a variety of immune mediators. In this review, we focus on the advances in liver immunology supported by intravital microscopy in diseases such as isquemia/reperfusion, acute liver injury and infections.

  8. Single spin stochastic optical reconstruction microscopy

    CERN Document Server

    Pfender, Matthias; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer sca...

  9. CONTENT-BASED AUTOFOCUSING IN AUTOMATED MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Peter Hamm

    2010-11-01

    Full Text Available Autofocusing is the fundamental step when it comes to image acquisition and analysis with automated microscopy devices. Despite all efforts that have been put into developing a reliable autofocus system, recent methods still lack robustness towards different microscope modes and distracting artefacts. This paper presents a novel automated focusing approach that is generally applicable to different microscope modes (bright-field, phase contrast, Differential Interference Contrast (DIC and fluorescence microscopy. The main innovation consists in a Content-based focus search that makes use of a priori knowledge about the observed objects by employing local object features and Boosted Learning. Hence, this method turns away from common autofocus approaches that apply solely whole image frequency measurements to obtain the focus plane. Thus, it is possible to exclude artefacts from being brought into focus calculation as well as locating the in-focus layer of specific microscopic objects.

  10. Diffractive elements performance in chromatic confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J; Duque, D; Alean, A; Toledo, M [Grupo de Optica y EspectroscopIa, Centro de Ciencia Basica, Universidad Pontificia Bolivariana. Medellin (Colombia); Meneses, J [Laboratorio de Optica y Tratamiento de Senales, Instituto de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia); Gharbi, T, E-mail: jgarzonr10@une.net.co [Laboratoire d' Optique P. M. Duffieux, UMR-6603 CNR/Universite de Franche-Comte. 16 route de Gray, 25030 Besancon Cedex (France)

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  11. Comparative microscopy study of Vibrio cholerae flagella

    Science.gov (United States)

    Konnov, Nikolai P.; Baiburin, Vil B.; Zadnova, Svetlana P.; Volkov, Uryi P.

    1999-06-01

    A fine structure of bacteria flagella is an important problem of molecular cell biology. Bacteria flagella are the self-assembled structures that allow to use the flagellum protein in a number of biotechnological applications. However, at present, there is a little information about high resolution scanning probe microscopy study of flagellum structure, in particular, about investigation of Vibrio cholerae flagella. In our lab have been carried out the high resolution comparative investigation of V. cholerae flagella by means of various microscopes: tunneling (STM), scanning force (SFM) and electron transmission. As a scanning probe microscope is used designed in our lab versatile SPM with replaceable measuring heads. Bacteria were grown, fixed and treated according to the conventional techniques. For STM investigations samples were covered with Pt/Ir thin films by rotated vacuum evaporation, in SFM investigations were used uncovered samples. Electron microscopy of the negatively stained bacteria was used as a test procedure.

  12. Raman microscopy investigation of beryllium materials

    Science.gov (United States)

    Pardanaud, C.; Rusu, M. I.; Giacometti, G.; Martin, C.; Addab, Y.; Roubin, P.; Lungu, C. P.; Porosnicu, C.; Jepu, I.; Dinca, P.; Lungu, M.; Pompilian, O. G.; Mateus, R.; Alves, E.; Rubel, M.; contributors, JET

    2016-02-01

    We report for the first time on the ability of Raman microscopy to give information on the structure and composition of Be related samples mimicking plasma facing materials that will be found in ITER. For that purpose, we investigate two types of material. First: Be, W, Be1W9, and Be5W5 deposits containing a few percents of D or N, and second: a Mo mirror exposed to plasma in the main JET chamber (in the framework of the first mirror test in JET with ITER-like wall). We performed atomic quantifications using ion beam analysis for the first samples. We also did atomic force microscopy. We found defect induced Raman bands in Be, Be1W9, and Be5W5 deposits. Molybdenum oxide has been identified showing an enhancement due to a resonance effect in the UV domain.

  13. X-ray Fourier ptychographic microscopy

    CERN Document Server

    Simons, H; Guigay, J P; Detlefs, C

    2016-01-01

    Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide field of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.

  14. Plasmonic nanoprobes for stimulated emission depletion microscopy

    CERN Document Server

    Cortes, Emiliano; Sinclair, Hugo G; Guldbrand, Stina; Peveler, William J; Davies, Timothy; Parrinello, Simona; Görlitz, Frederik; Dunsby, Chris; Neil, Mark A A; Sivan, Yonatan; Parkin, Ivan P; French, Paul M; Maier, Stefan A

    2016-01-01

    Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved microscopy. We demonstrate stimulated emission depletion (STED) microscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm that provide an enhancement of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. These novel nanoparticle-assisted STED probes represent a ~2x10^3 reduction in probe volume compared to previously used nanoparticles and we demonstrate their application to the first plasmon-assisted STED cellular imaging. We also discuss their current limitations.

  15. Scanning Electron Microscopy Sample Preparation and Imaging.

    Science.gov (United States)

    Nguyen, Jenny Ngoc Tran; Harbison, Amanda M

    2017-01-01

    Scanning electron microscopes allow us to reach magnifications of 20-130,000× and resolve compositional and topographical images with intense detail. These images are created by bombarding a sample with electrons in a focused manner to generate a black and white image from the electrons that bounce off of the sample. The electrons are detected using positively charged detectors. Scanning electron microscopy permits three-dimensional imaging of desiccated specimens or wet cells and tissues by using variable pressure chambers. SEM ultrastructural analysis and intracellular imaging supplement light microscopy for molecular profiling of prokaryotes, plants, and mammals. This chapter demonstrates how to prepare and image samples that are (a) desiccated and conductive, (b) desiccated and nonconductive but coated with an electron conductive film using a gold sputter coater, and (c) wet and maintained in a hydrated state using a Deben Coolstage.

  16. Confocal multiview light-sheet microscopy

    Science.gov (United States)

    Medeiros, Gustavo de; Norlin, Nils; Gunther, Stefan; Albert, Marvin; Panavaite, Laura; Fiuza, Ulla-Maj; Peri, Francesca; Hiiragi, Takashi; Krzic, Uros; Hufnagel, Lars

    2015-01-01

    Selective-plane illumination microscopy has proven to be a powerful imaging technique due to its unsurpassed acquisition speed and gentle optical sectioning. However, even in the case of multiview imaging techniques that illuminate and image the sample from multiple directions, light scattering inside tissues often severely impairs image contrast. Here we combine multiview light-sheet imaging with electronic confocal slit detection implemented on modern camera sensors. In addition to improved imaging quality, the electronic confocal slit detection doubles the acquisition speed in multiview setups with two opposing illumination directions allowing simultaneous dual-sided illumination. Confocal multiview light-sheet microscopy eliminates the need for specimen-specific data fusion algorithms, streamlines image post-processing, easing data handling and storage. PMID:26602977

  17. Novel proposals in widefield 3D microscopy

    Science.gov (United States)

    Sanchez-Ortiga, E.; Doblas, A.; Saavedra, G.; Martinez-Corral, M.

    2010-04-01

    Patterned illumination is a successful set of techniques in high resolution 3D microscopy. In particular, structured illumination microscopy is based on the projection of 1D periodic patterns onto the 3D sample under study. In this research we propose the implementation of a very simple method for the flexible production of 1D structured illumination. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source. The biprism produces a pair of twin, fully coherent, virtual point sources. After imaging the virtual sources onto the objective aperture stop, the expected 1D periodic pattern is produced into the 3D sample. The main advantage of using the Fresnel biprism is that by simply varying the distance between the biprism and the point source one can tune the period of the fringes while keeping their contrast.

  18. Thiobacillus ferrooxidans detection using immunoelectron microscopy.

    Science.gov (United States)

    Coto, O; Fernández, A I; León, T; Rodríguez, D

    1992-11-01

    A specific, fast and very sensitive immunoelectron microscopy method was developed to morphologically and serologically distinguish different cultures of iron oxidizers. Bacteria isolated from the acidic waters of "Matahambre" and "Mina Delita" mines (Cuba) were characterized. An antiserum specific to Thiobacillus ferrooxidans did not react with other bacteria also present in the acidic waters of mine drainage. Our results suggest the occurrence of some strains of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans in these waters.

  19. Edge detection in microscopy images using curvelets

    OpenAIRE

    Koumoutsakos Petros; Gebäck Tobias

    2009-01-01

    Abstract Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is...

  20. Imaging acute thermal burns by photoacoustic microscopy

    OpenAIRE

    Zhang, Hao F.; Maslov, Konstantin; Stoica, George; Wang, Lihong V.

    2006-01-01

    The clinical significance of a burn depends on the percentage of total body involved and the depth of the burn. Hence a noninvasive method that is able to evaluate burn depth would be of great help in clinical evaluation. To this end, photoacoustic microscopy is used to determine the depth of acute thermal burns by imaging the total hemoglobin concentration in the blood that accumulates along the boundaries of injuries as a result of thermal damage to the vasculature. We induce acute thermal ...

  1. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  2. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  3. Application perspectives of localization microscopy in virology.

    Science.gov (United States)

    Cremer, C; Kaufmann, R; Gunkel, M; Polanski, F; Müller, P; Dierkes, R; Degenhard, S; Wege, C; Hausmann, M; Birk, U

    2014-07-01

    Localization microscopy approaches allowing an optical resolution down to the single-molecule level in fluorescence-labeled biostructures have already found a variety of applications in cell biology, as well as in virology. Here, we focus on some perspectives of a special localization microscopy embodiment, spectral precision distance/position determination microscopy (SPDM). SPDM permits the use of conventional fluorophores or fluorescent proteins together with standard sample preparation conditions employing an aqueous buffered milieu and typically monochromatic excitation. This allowed superresolution imaging and studies on the aggregation state of modified tobacco mosaic virus particles on the nanoscale with a single-molecule localization accuracy of better than 8 nm, using standard fluorescent dyes in the visible spectrum. To gain a better understanding of cell entry mechanisms during influenza A virus infection, SPDM was used in conjunction with algorithms for distance and cluster analyses to study changes in the distribution of virus particles themselves or in the distribution of infection-related proteins, the hepatocyte growth factor receptors, in the cell membrane on the single-molecule level. Not requiring TIRF (total internal reflection) illumination, SPDM was also applied to study the molecular arrangement of gp36.5/m164 glycoprotein (essentially associated with murine cytomegalovirus infection) in the endoplasmic reticulum and the nuclear membrane inside cells with single-molecule resolution. On the basis of the experimental evidence so far obtained, we finally discuss additional application perspectives of localization microscopy approaches for the fast detection and identification of viruses by multi-color SPDM and combinatorial oligonucleotide fluorescence in situ hybridization, as well as SPDM techniques for optimization of virus-based nanotools and biodetection devices.

  4. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  5. Manipulating atoms using scanning probe microscopy

    OpenAIRE

    Norris, Andrew Christopher

    2009-01-01

    Manipulating species using Scanning Probe Microscopy (SPM) is an important discipline in the field of bottom-up fabrication, which facilitates nano-mechanics and electron dynamics investigations. Previous low temperature manipulation highlights include the construction of quantum dots, nano-wires and quantum corrals, all of which began in 1989 with Don Eigler’s iconic writing of I-B-M using 35 xenon atoms. Since then, the field has developed, and we now push, pull, hop, excite, desorb, rotate...

  6. From Femtochemistry to 4D Microscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To celebrate the 10th anniversary of the Nobel Prize for Femtochemistry,the field is overviewed with several classic examples and the new extension to Femtobiology. The revolutionary breakthrough in 4D electron microscopy is briefly introduced here and a new age to structural dynamics is rising on the horizon,an exciting time and a great opportunity for China and for the world.

  7. Shaping field for deep tissue microscopy

    Science.gov (United States)

    Colon, J.; Lim, H.

    2015-05-01

    Information capacity of a lossless image-forming system is a conserved property determined by two imaging parameters - the resolution and the field of view (FOV). Adaptive optics improves the former by manipulating the phase, or wavefront, in the pupil plane. Here we describe a homologous approach, namely adaptive field microscopy, which aims to enhance the FOV by controlling the phase, or defocus, in the focal plane. In deep tissue imaging, the useful FOV can be severely limited if the region of interest is buried in a thick sample and not perpendicular to the optic axis. One must acquire many z-scans and reconstruct by post-processing, which exposes tissue to excessive radiation and is also time consuming. We demonstrate the effective FOV can be substantially enhanced by dynamic control of the image plane. Specifically, the tilt of the image plane is continuously adjusted in situ to match the oblique orientation of the sample plane within tissue. The utility of adaptive field microscopy is tested for imaging tissue with non-planar morphology. Ocular tissue of small animals was imaged by two-photon excited fluorescence. Our results show that adaptive field microscopy can utilize the full FOV. The freedom to adjust the image plane to account for the geometrical variations of sample could be extremely useful for 3D biological imaging. Furthermore, it could facilitate rapid surveillance of cellular features within deep tissue while avoiding photo damages, making it suitable for in vivo imaging.

  8. Polarized light microscopy: principles and practice.

    Science.gov (United States)

    Oldenbourg, Rudolf

    2013-11-01

    Polarized light microscopy provides unique opportunities for analyzing the molecular order in heterogeneous systems, such as living cells and tissues, without using exogenous dyes or labels. This article briefly discusses the theory of polarized light microscopy and elaborates on its practice using a traditional polarized light microscope and more specialized polarization microscopes such as the LC-PolScope, Oosight, or Abrio. The microscope components specific to analyzing the polarization of light, such as polarizer and compensator, are introduced, and quantitative techniques for measuring the birefringence of the specimen point by point using a traditional polarizing microscope are discussed. The new LC-PolScope greatly improves the analytic power of the technique, providing quantitative birefringence data simultaneously for every image point, thereby revealing molecular order with unprecedented sensitivity and at the highest resolution of the light microscope. Practical aspects discussed include the choice of optics, sample preparation, and combining polarized light with differential interference contrast and fluorescence microscopy. A glossary of polarization optical terms is also included to facilitate the discussion of observations made with a polarized light microscope.

  9. Efficient illumination for microsecond tracking microscopy.

    Science.gov (United States)

    Dulin, David; Barland, Stephane; Hachair, Xavier; Pedaci, Francesco

    2014-01-01

    The possibility to observe microsecond dynamics at the sub-micron scale, opened by recent technological advances in fast camera sensors, will affect many biophysical studies based on particle tracking in optical microscopy. A main limiting factor for further development of fast video microscopy remains the illumination of the sample, which must deliver sufficient light to the camera to allow microsecond exposure times. Here we systematically compare the main illumination systems employed in holographic tracking microscopy, and we show that a superluminescent diode and a modulated laser diode perform the best in terms of image quality and acquisition speed, respectively. In particular, we show that the simple and inexpensive laser illumination enables less than 1 μs camera exposure time at high magnification on a large field of view without coherence image artifacts, together with a good hologram quality that allows nm-tracking of microscopic beads to be performed. This comparison of sources can guide in choosing the most efficient illumination system with respect to the specific application.

  10. Efficient illumination for microsecond tracking microscopy.

    Directory of Open Access Journals (Sweden)

    David Dulin

    Full Text Available The possibility to observe microsecond dynamics at the sub-micron scale, opened by recent technological advances in fast camera sensors, will affect many biophysical studies based on particle tracking in optical microscopy. A main limiting factor for further development of fast video microscopy remains the illumination of the sample, which must deliver sufficient light to the camera to allow microsecond exposure times. Here we systematically compare the main illumination systems employed in holographic tracking microscopy, and we show that a superluminescent diode and a modulated laser diode perform the best in terms of image quality and acquisition speed, respectively. In particular, we show that the simple and inexpensive laser illumination enables less than 1 μs camera exposure time at high magnification on a large field of view without coherence image artifacts, together with a good hologram quality that allows nm-tracking of microscopic beads to be performed. This comparison of sources can guide in choosing the most efficient illumination system with respect to the specific application.

  11. Non-radiative excitation fluorescence microscopy

    Science.gov (United States)

    Riachy, Lina; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-03-01

    Non-radiative Excitation Fluorescence Microscopy (NEFM) constitutes a new way to observe biological samples beyond the diffraction limit. Non-radiative excitation of the samples is achieved by coating the substrate with donor species, such as quantum dots (QDs). Thus the dyes are not excited directly by the laser source, as in common fluorescence microscopy, but through a non-radiative energy transfer. To prevent dewetting of the donor film, we have recently implemented a silanization process to covalently bond the QDs on the substrate. An homogeneous monolayer of QDs was then deposited on only one side of the coverslips. Atomic force microscopy was then used to characterize the QD layer. We highlight the potential of our method through the study of Giant Unilamellar Vesicles (GUVs) labeled with DiD as acceptor, in interaction with surface functionalized with poly-L-lysine. In the presence of GUVs, we observed a quenching of QDs emission, together with an emission of DiD located in the membrane, which clearly indicated that non-radiative energy transfer from QDs to DiD occurs.

  12. Two-photon microscopy for chemical neuroscience.

    Science.gov (United States)

    Ellis-Davies, Graham C R

    2011-04-20

    Microscopes using non-linear excitation of chromophores with pulsed near-IR light can generate highly localized foci of molecules in the electronic singlet state that are concentrated in volumes of less than one femtoliter. The three-dimensional confinement of excitation arises from the simultaneous absorption of two IR photons of approximately half the energy required for linear excitation. Two-photon microscopy is especially useful for two types of interrogation of neural processes. First, uncaging of signaling molecules such as glutamate, as stimulation is so refined it can be used to mimic normal unitary synaptic levels. In addition, uncaging allows complete control of the timing and position of stimulation, so the two-photon light beam provides the chemical neuroscientist with an "optical conductor's baton" which can command synaptic activity at will. A second powerful feature of two-photon microscopy is that when used for fluorescence imaging it enables the visualization of cellular structure and function in living animals at depths far beyond that possible with normal confocal microscopes. In this review I provide a survey of the many important applications of two-photon microscopy in these two fields of neuroscience, and suggest some areas for future technical development.

  13. Photoemission electron microscopy, a tool for plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Douillard, L., E-mail: ludovic.douillard@cea.fr; Charra, F.

    2013-08-15

    Highlights: •Brief review of photoemission electron microscopy PEEM as a tool for plasmonics, •PEEM gives access to (tip free) near field maps of subwavelength length resolution, •PEEM makes use of a true optical excitation scheme, exhibiting strong connections to ultrafast optical spectrometries. -- Abstract: A key challenge to plasmonics is the development of experimental tools allowing access to the spatial distribution of the optical near field at the nanometre scale. A recent approach for mapping the near optical field is the use of the photoemission electron microscopy PEEM. Indeed, photoemission can be strongly enhanced upon excitation of surface plasmons. By collecting the photoemitted electrons, two-dimensional intensity maps reflecting the actual distribution of the optical near-field are obtained. In the following a brief overview of the possibilities of the photoemission electron microscopy as a tool for plasmonics is given. Main focuses will be set on experimental results regarding the mapping of the near optical field at nanometer scale, the investigation of the spatio-temporal dynamics of plasmon-polariton waves and the manipulation at will of the near field.

  14. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  15. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  16. Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography

    National Research Council Canada - National Science Library

    Jun, Sangmi; Ke, Danxia; Debiec, Karl; Zhao, Gongpu; Meng, Xin; Ambrose, Zandrea; Gibson, Gregory A; Watkins, Simon C; Zhang, Peijun

    2011-01-01

    Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-native state and therefore has the potential to help elucidate early events of HIV-1 infection in host cells...

  17. Correlating Viscoelasticity with Metabolism in Single Cells using Atomic Force Microscopy

    Science.gov (United States)

    Caporizzo, Matthew; Roco, Charles; Coll-Ferrer, Carme; Eckmann, David; Composto, Russell

    2015-03-01

    Variable indentation-rate rheometric analysis by Laplace transform (VIRRAL), is developed to evaluate Dex-Gel drug carriers as biocompatible delivery agents. VIRRAL provides a general platform for the rapid characterization of the health of single cells by viscoelasticity to promote the self-consistent comparison between cells paramount to the development of early diagnosis and treatment of disease. By modelling the frequency dependence of elastic modulus, VIRRAL provides three metrics of cytoplasmic viscoelasticity: low frequency stiffness, high frequency stiffness, and a relaxation time. THP-1 cells are found to exhibit a frequency dependent elastic modulus consistent with the standard linear solid model of viscoelasticity. VIRRAL indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent 2-fold increase in elastic modulus and cytoplasmic viscosity while the cytoskeletal relaxation time remains unchanged independent of cytoplasmic stiffness. This is consistent with the known toxic mechanism of silver nanoparticles, where mitochondrial injury leads to ATP depletion and metabolic stress causes a decrease of mobility within cytoplasm. NSF DMR08-32802, NIH T32-HL007954, and ONR N000141410538.

  18. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    NARCIS (Netherlands)

    T.J. van Ham (Tjakko); C.A. Brady (Colleen); R.D. Kalicharan (Ruby); N. Oosterhof (Nynke); J. Kuipers (Jeroen); A. Veenstra-Algra (Anneke); K.A. Sjollema (Klaas); R.T. Peterson (Randall); H. Kampinga (Harm); B.N.G. Giepmans (Ben)

    2014-01-01

    textabstractMany brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to

  19. Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation

    NARCIS (Netherlands)

    van Ham, Tjakko J.; Brady, Colleen A.; Kalicharan, Ruby D.; Oosterhof, Nynke; Kuipers, Jeroen; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Peterson, Randall T.; Kampinga, Harm H.; Giepmans, Ben N. G.

    Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell

  20. Correlative Light and Electron Microscopy (CLEM) and its applications in infectious disease

    Science.gov (United States)

    2016-05-20

    inclusion of time- resolved images enhancing the study of virus replication and production [14-17]. In this review we focus on the use of various CLEM...Examples include Lucifer yellow[67], Horseradish Peroxidase (HRP) conjugated IF antibodies [68] or co- expression with FP[69], boron-dipyrromethene (BODIPY...conjugates[70], eosin conjugated reagents[43], ReAsh[58], and MiniSOG[71]. The enzyme horseradish peroxidase (HRP) can oxidize DAB, but its

  1. Diverse Protocols for Correlative Super-Resolution Fluorescence Imaging and Electron Microscopy of Cells and Tissue

    Science.gov (United States)

    2016-05-25

    Typically, a “north” and “east” direction marking is sufficient to locate cells of interest (Box 2). ?TROUBLESHOOTING ii) Seed tissue culture...lysine solution for 20 minutes. ii) Adherent cultured cells should be seeded onto the coverslip allowing room for growth to reach a final confluency... shadowing of the coating will aid in more complete coating of cellular structures and minimize charging effects during SEM imaging. ix) Image by SEM

  2. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rösner, Harald, E-mail: rosner@uni-muenster.de [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Peterlechner, Martin [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Kübel, Christian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Schmidt, Vitalij [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Wilde, Gerhard [Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2014-07-01

    Density changes between sheared zones and their surrounding amorphous matrix as a result of plastic deformation in a cold-rolled metallic glass (melt-spun Al{sub 88}Y{sub 7}Fe{sub 5}) were determined using high-angle annular dark-field (HAADF) detector intensities supplemented by electron-energy loss spectroscopy (EELS), energy-dispersive X-ray (EDX) and nano-beam diffraction analyses. Sheared zones or shear bands were observed as regions of bright or dark contrast arising from a higher or lower density relative to the matrix. Moreover, abrupt contrast changes from bright to dark and vice versa were found within individual shear bands. We associate the decrease in density mainly with an enhanced free volume in the shear bands and the increase in density with concomitant changes of the mass. This interpretation is further supported by changes in the zero loss and Plasmon signal originating from such sites. The limits of this new approach are discussed. - Highlights: • We describe a novel approach for measuring densities in shear bands of metallic glasses. • The linear relation of the dark-field intensity I/I{sub 0} and the mass thickness ρt was used. • Individual shear bands showed abrupt contrast changes from bright to dark and vice versa. • Density changes ranging from about −10% to +6% were found for such shear bands. • Mixtures of amorphous/medium range ordered domains were found within the shear bands.

  3. Correlating Microstructure with Switching Field Distribution in Nanomagnetic Systems with Transmission Electron Microscopy

    Science.gov (United States)

    2008-08-01

    Journal of Applied Physics , vol. 99, p. 08R702, Apr...magnetic properties of Co/Pd multilayers," Journal of Applied Physics , vol. 89, pp. 7531-7533, Jun 2001. [5] K. J. Kirk, J. N. Chapman, S. McVitie, P. R...Aitchison, and C. D. W. Wilkinson, "Interactions and switching field distributions of nanoscale magnetic elements," Journal of Applied Physics ,

  4. Correlative Microscopy of Alpha Prime Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-01

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. This work represents the current state-of-the-art on both techniques for analysis of α' precipitate microstructures and the processes and mechanisms governing its formation in neutron-irradiated Fe-Cr-Al alloys.

  5. Bone and gallium scans in mastocytosis: correlation with count rates, radiography, and microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ensslen, R.D. (Cross Cancer Inst., Edmonton, Alberta); Jackson, F.I.; Reid, A.M.

    1983-07-01

    Mastocytosis (urticaria pigmentosa) was proven in a patient suffering from severe back pain. A bone scan showed diffusely increased bone activity. Count rates were also abnormally elevated over several areas of the skeleton. Radiographs were consistent with mastocytosis in bone.

  6. Microtubule organization within mitotic spindles revealed by serial block face scanning electron microscopy and image analysis.

    Science.gov (United States)

    Nixon, Faye M; Honnor, Thomas R; Clarke, Nicholas I; Starling, Georgina P; Beckett, Alison J; Johansen, Adam M; Brettschneider, Julia A; Prior, Ian A; Royle, Stephen J

    2017-05-15

    Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow that are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; and fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of microtubules within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle. © 2017. Published by The Company of Biologists Ltd.

  7. Correlation and Entanglement

    Institute of Scientific and Technical Information of China (English)

    Shun-long Luo; You-feng Luo

    2003-01-01

    In quantum mechanics, it is long recognized that there exist correlations between observables which are much stronger than the classical ones. These correlations are usually called entanglement, and cannot be accounted for by classical theory. In this paper, we will study correlations between observables in terms of covariance and the Wigner-Yanase correlation, and compare their merits in characterizing entanglement. We will show that the Wigner-Yanase correlation has some advantages over the conventional covariance.

  8. General correlation and partial correlation analysis in finding interactions: with Spearman rank correlation and proportion correlation as correlation measures

    OpenAIRE

    WenJun Zhang; Xin Li

    2015-01-01

    Between-taxon interactions can be detected by calculating the sampling data of taxon sample type. In present study, Spearman rank correlation and proportion correlation are chosen as the general correlation measures, and their partial correlations are calculated and compared. The results show that for Spearman rank correlation measure, in all predicted candidate direct interactions by partial correlation, about 16.77% (x, 0-45.4%) of them are not successfully detected by Spearman rank correla...

  9. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    Science.gov (United States)

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  10. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  12. Resolution doubling using confocal microscopy via analogy with structured illumination microscopy

    Science.gov (United States)

    Hayashi, Shinichi

    2016-08-01

    Structured illumination microscopy (SIM) is a super-resolution fluorescence microscopy with a 2-fold higher lateral resolution than conventional wide-field fluorescence (WF) microscopy. Confocal fluorescence (CF) microscopy has approximately the same optical cutoff frequency as SIM; however, the maximum theoretical increase in lateral resolution over that of WF is 1.4-fold with an infinitesimal pinhole diameter. Quantitative comparisons based on an analytical imaging formula revealed that modulation transfer functions (MTFs) of SIM reconstructed images before postprocessing are nearly identical to those of CF images recorded with an infinitesimal pinhole diameter. Here, we propose a new method using an adequate pinhole diameter combined with the use of an apodized Fourier inverse filter to increase the lateral resolution of CF images to as much as that SIM images without significant noise degradation in practice. Furthermore, the proposed method does not require a posteriori parameterization and has reproducibility. This approach can be easily applied to conventional laser scanning CF, spinning disk CF, and multiphoton microscopies.

  13. Scanning Electron Microscopy of the Presbylarynx.

    Science.gov (United States)

    Gonçalves, Tatiana Maria; Dos Santos, Daniela Carvalho; Pessin, Adriana Bueno Benito; Martins, Regina Helena Garcia

    2016-06-01

    To describe the findings on the presbylarynx under scanning electron microscopy. Cadaver study. Universidade Estadual Paulista (Botucatu, São Paulo, Brazil). Sixteen vocal folds were removed during necropsies and distributed into 2 age groups: control (n = 8; aged 30-50 years) and elderly (n = 8; aged 75-92 years). The right vocal fold was dissected, fixed in glutaraldehyde 2.5%, and prepared for scanning electron microscopy. The thickness of the epithelium was measured using a scandium morphometric digital program. In the control group, the epithelium had 5 to 7 overlapped cell layers, rare desquamation cells, and little undulation with protruding intercellular junctions. The lamina propria showed a uniform network of collagen and elastic fibers in the superficial layer. A dense network of collagen was identified in the deeper layer. In the elderly group, the epithelium was atrophic (2-3 cells), with more desquamation cells and intercellular junctions delimited by deep sulci. The epithelial thickness was lower in elderly than in controls (mean [SD], 221.64 [145.90] µm vs 41.79 [21.40] µm, respectively). The lamina propria had a dense and irregular distribution of collagen and elastic fibers in the superficial layer. In the deep layers, the collagen fibers formed a true fibrotic and rigid skeleton. Scanning electron microscopy identified several changes in the elderly larynx, differentiating it from the controls. These alterations are probably related to the aging process of the vocal folds. However, the exact interpretation of these findings requires additional studies, even to the molecular level, having the fibroblasts as targets. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  14. Characterization of the magnetic micro- and nanostructure in unalloyed steels by magnetic force microscopy

    Science.gov (United States)

    Batista, L.; Rabe, U.; Hirsekorn, S.

    2013-01-01

    The formation of a cementite phase influences significantly the macroscopic mechanical and magnetic properties of steels. Based on a correlation between mechanical and magnetic properties, mechanical properties as well as the morphology and content of the cementite phase can be inspected by electromagnetic non-destructive testing methods. The influence of the carbon content on bulk magnetic properties of unalloyed steels is studied on a macroscopic scale by hysteresis loop and Barkhausen noise measurements. The micro- and nanostructure is investigated by atomic force microscopy and magnetic force microscopy. Surface topography images and magnetic images of globular cementite precipitates embedded in a ferrite matrix are presented. The size, shape, and orientation of the precipitates influence the domain configuration. Applied external magnetic fields cause magnetization processes mainly in the ferrite matrix: Bloch walls move and are pinned by the cementite precipitates. The correlation between the microscopic observations and macroscopic magnetic properties of the material is discussed.

  15. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Guha T

    2014-03-01

    Full Text Available Atomic Force Microscope (AFM was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM, the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting biological samples. He wondered why the surfaces be always imaged with a current but not with a force. He thought if small forces of interactions between a probe tip atoms and specimen surface atoms could be detected and amplified then imaging of biological specimen would be possible at a very high resolution. AFM working Principle: AFM is a Scanning Probe Microscopy (SPM by which imaging is realized by interaction of a probe with sample surface without any beam (light, electron and lens system. The probe is attached to a soft and sensitive cantilever and either specimen is scanned by probe or specimen scans itself under a stationary probe. Probe’s spring constant must be small and the deflection must be measurable along with high resonance frequency. The most commonly associated force with AFM is called Vander Waals force. Three modes of working are contact mode, non contact mode and tapping mode. In contact zone, the probe tip attached with cantilever is held less than a few A˚ from the sample surface and the inter-atomic force between the atoms of probe tip and sample surface is repulsive. In non-contact zone, the probe tip is held at a distance of 100s of A˚ from the sample surface and the inter-atomic force here is long range Vander Waals interaction and is attractive in nature. AFM is also called Scanning Force Microscope because the force of interaction between probe tip atoms and surface atoms is amplified to generate a signal voltage which modulates video

  16. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  17. Spiral phase contrast imaging in microscopy.

    Science.gov (United States)

    Fürhapter, Severin; Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2005-02-07

    We demonstrate an optical method for edge contrast enhancement in light microscopy. The method is based on holographic Fourier plane filtering of the microscopic image with a spiral phase element (also called vortex phase or helical phase filter) displayed as an off-axis hologram at a computer controlled high resolution spatial light modulator (SLM) in the optical imaging pathway. The phase hologram imprints a helical phase term of the form exp(i phi) on the diffracted light field in its Fourier plane. In the image plane, this results in a strong and isotropic edge contrast enhancement for both amplitude and phase objects.

  18. Tip-modulation scanned gate microscopy.

    Science.gov (United States)

    Wilson, Neil R; Cobden, David H

    2008-08-01

    We introduce a technique that improves the sensitivity and resolution and eliminates the nonlocal background of scanned gate microscopy (SGM). In conventional SGM, a voltage bias is applied to the atomic force microscope tip and the sample conductance is measured as the tip is scanned. In the new technique, which we call tip-modulation SGM (tmSGM), the biased tip is oscillated and the induced oscillation of the sample conductance is measured. Applied to single-walled carbon nanotube network devices, tmSGM gives sharp, low-noise and background-free images.

  19. Computer vision for microscopy diagnosis of malaria.

    Science.gov (United States)

    Tek, F Boray; Dempster, Andrew G; Kale, Izzet

    2009-07-13

    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  20. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.