Universal behavior of strongly correlated Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)
2007-06-30
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Universal behavior of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G
2007-01-01
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Phase diagram of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Zverev, M.V.; Khodel', V.A.; Baldo, M.
2000-01-01
Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)
2009-06-15
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.
International Nuclear Information System (INIS)
Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.
2009-01-01
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .
Aspects of Strongly Correlated Many-Body Fermi Systems
Porter, William J., III
A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method
Entropy excess in strongly correlated Fermi systems near a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)
2012-12-15
A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau
Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems
Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A
2015-01-01
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...
International Nuclear Information System (INIS)
Riseborough, P.S.
1990-01-01
We calculate the photoemission/inverse photoemission spectrum for an N-fold degenerate Hubbard model, in the 1/N approximation. The spectra are broadened, and for sufficiently large Coulomb interaction strengths the spectra show satellites both in the photoemission and the brehmstrahlung isochromat spectroscopy portions of the spectra. The intensity of the spectra at the fermi level are equal to the noninteracting values, in accordance with Luttinger's theorem. We show that this can result in a temperature-dependent peak at the Fermi level; the width of the peak is governed by the quasi-particle lifetime. We relate the temperature dependent peak to the Fermi-liquid properties
Phase structure of strongly correlated Fermi gases
International Nuclear Information System (INIS)
Roscher, Dietrich
2015-01-01
Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.
Angular correlations near the Fermi energy
International Nuclear Information System (INIS)
Fox, D.; Cebra, D.A.; Karn, J.
1988-01-01
Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra
Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Ryndyk, D.A.
1992-08-01
We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs
Directory of Open Access Journals (Sweden)
J. Spałek
2010-01-01
Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.
Fermi Timing and Synchronization System
International Nuclear Information System (INIS)
Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.
2006-01-01
The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed
Fermi Timing and Synchronization System
Energy Technology Data Exchange (ETDEWEB)
Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.
2006-07-19
The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.
Fermi problem in disordered systems
Menezes, G.; Svaiter, N. F.; de Mello, H. R.; Zarro, C. A. D.
2017-10-01
We revisit the Fermi two-atom problem in the framework of disordered systems. In our model, we consider a two-qubit system linearly coupled with a quantum massless scalar field. We analyze the energy transfer between the qubits under different experimental perspectives. In addition, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that the classical notion of causality emerges only in the wave zone in the presence of random fluctuations of the light cone. Possible repercussions are discussed.
String effects on Fermi-Dirac correlation measurements
International Nuclear Information System (INIS)
Duran Delgado, R.M.; Gustafson, G.; Loennblad, L.
2007-01-01
We investigate some recent measurements of Fermi-Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e + e - annihilation at the Z 0 peak. In hadronization models there is besides the Fermi-Dirac correlation effect also a strong dynamical (anti-) correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations that are not related to Fermi-Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to draw any firm conclusion about the source radii relevant for baryon production at LEP. (orig.)
Transport phenomena in strongly correlated Fermi liquids
International Nuclear Information System (INIS)
Kontani, Hiroshi
2013-01-01
Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.
Transport phenomena in strongly correlated Fermi liquids
Kontani, Hiroshi
2013-01-01
In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...
Momentum sharing in imbalanced Fermi systems
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16
2014-10-01
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
Momentum sharing in imbalanced Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.
2014-10-16
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
Model for paramagnetic Fermi systems
International Nuclear Information System (INIS)
Ainsworth, T.L.; Bedell, K.S.; Brown, G.E.; Quader, K.F.
1983-01-01
We develop a mode for paramagnetic Fermi liquids. This model has both direct and induced interactions, the latter including both density-density and current-current response. The direct interactions are chosen to reproduce the Fermi liquid parameters F/sup s/ 0 , F/sup a/ 0 , F/sup s/ 1 and to satify the forward scattering sum rule. The F/sup a/ 1 and F/sup s/,a/sub l/ for l>1 are determined self-consistently by the induced interactions; they are checked aginst experimental determinations. The model is applied in detail to liquid 3 He, using data from spin-echo experiments, sound attenuation, and the velocities of first and zero sound. Consistency with experiments gives definite preferences for values of m. The model is also applied to paramagnetic metals. Arguments are given that this model should provide a basis for calculating effects of magnetic fields
Aoki, H; Endo, M; Nakayama, M; Takei, H; Kimura, N; Kunii, S; Terashima, T; Uji, S; Matsumoto, T
2002-01-01
We report our recent developments of experimental systems for measuring the de Haas-van Alphen (dHvA) effect under hydrostatic and uniaxial pressures. The dHvA effect of CeB sub 6 has been studied under both hydrostatic and uniaxial pressures and the effects of the pressures on the electronic structure are discussed.
Microscopic Fermi liquid approach to disordered narrow band systems
International Nuclear Information System (INIS)
Kolley, E.; Kolley, W.
1977-01-01
A Fermi liquid approach to tightly bound electrons in disordered systems is proposed to evaluate two-particle correlation functions L at T=0 deg K. Starting with a random Hubbard model and using a local ladder approximation in the particle-particle channel the irreducible particle-hole vertex is derived, being the kernel of the Bethe-Salpeter equation for L. CPA vertex corrections to the electrical conductivity and, for the ordered case, the correlation-enhanced paramagnetic susceptibility are calculated
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
International Nuclear Information System (INIS)
Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M
2006-01-01
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes
Strongly correlated Fermi-Bose mixtures in disordered optical lattices
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)
2006-05-28
We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.
Fermi-Dirac correlation and Q-νKν(Q) distribution
International Nuclear Information System (INIS)
Dai Qirun; Li Jimei; Ma Zhanqing; Zhao Shusong
1996-01-01
The Fermi-Dirac correlation of identical protons is studied. Based on the non-perturbative theory of quantum fields, we put forward a kind of source distribution--the Q -ν K ν (Q) distribution. The Fermi-Dirac correlation of (p +- -p +- )-pairs is calculated from this distribution. The fitted curves agree with experimental data. The Q -ν K ν (Q) distribution has more advantages than the Gauss Source distribution. The radii of the source emitting hadrons and the anomalous dimensions of the Fermi field are calculated from the Fermi-Dirac correlation of identical protons
Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation
International Nuclear Information System (INIS)
Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio
2003-01-01
We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse
Fermi states of Bose systems in three space dimensions
International Nuclear Information System (INIS)
Garbaczewski, P.
1985-01-01
Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified
ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS
International Nuclear Information System (INIS)
Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.
2012-01-01
This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7 +132.6 –106.6 keV and E iso of 34.5 +2.0 –1.8 × 10 52 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = –2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5. 0 8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak -E iso and E src peak -E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.
ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS
Energy Technology Data Exchange (ETDEWEB)
Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)
2012-03-20
This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.
The FERMI-Elettra FEL Photon Transport System
International Nuclear Information System (INIS)
Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.
2010-01-01
The FERMI-Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI-Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.
Effective field theories for superconducting systems with multiple Fermi surfaces
Energy Technology Data Exchange (ETDEWEB)
Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)
2016-11-15
In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.
Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields
International Nuclear Information System (INIS)
Shaginyan, V. R.
2011-01-01
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.
Nuclear physics. Momentum sharing in imbalanced Fermi systems.
Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-10-31
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.
Small Fermi surfaces and strong correlation effects in Dirac materials with holography
Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin
2017-10-01
Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.
Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*
Maple, M. Brian
1996-03-01
Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f
The Correlation between γ-Ray and Radio Emissions for the Fermi ...
Indian Academy of Sciences (India)
Abstract. Based upon the Fermi blazars sample, the radio and γ-ray emissions are compiled for a sample of 74 γ-ray loud blazars to calculate the radio to γ-ray effective spectrum index αRγ . The correlations between. αRγ and γ-ray luminosity, and between radio and γ-ray luminosity are also investigated. Key words.
On the quantization of spin systems and Fermi systems
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue, M.
1978-03-01
It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure
Surface properties of semi-infinite Fermi systems
International Nuclear Information System (INIS)
Campi, X.; Stringari, S.
1979-10-01
A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy
Momentum sharing in imbalanced Fermi systems
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.
2014-01-01
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in ne...
Fermi-edge singularity in one-dimensional electron systems with long-range Coulomb interactions
International Nuclear Information System (INIS)
Otani, H.; Ogawa, T.
1996-01-01
Effects of long-range Coulomb interactions on the Fermi-edge singularity in optical spectra are investigated theoretically for one-dimensional spin-1/2 fermion systems with the use of the Tomonaga-Luttinger bosonization technique. Low-energy excitation spectrum near the Fermi level shows that dispersion of the charge-density fluctuation remains gapless but is nonlinear when the electron-electron (e-e) Coulomb interaction is of the x -1 type (i.e., an infinite force range). Temporal behavior of the current-current correlation function is calculated analytically for arbitrary force ranges, λ e and λ h , of the e-e and the electron-hole (e-h) Coulomb interactions. (i) When both the e-e and the e-h interactions have large but finite force ranges (λ e h max[λ e ,λ h ]/v F . Corresponding optical spectrum near the Fermi edge (within an energy range of ℎv F /max[λ e ,λ h ]) exhibits the power-law divergence or the power-law convergence, which is an ordinary Fermi-edge singularity. (ii) When either the e-e or the e-h interaction is of the x -1 type (i.e., λ e →∞ and/or λ h →∞), an exponent of the correlation function is dependent on time to lead the faster decay than that of any power laws. Then the optical spectra show no power law dependence and always converge (become zero) at the Fermi edge, which is in striking contrast to the ordinary power-law singularity
Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering
Tockstein, Jameson
2017-09-01
When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.
Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems
Energy Technology Data Exchange (ETDEWEB)
Marini, P., E-mail: marini@cenbg.in2p3.fr [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Zheng, H. [Cyclotron Institute, Texas A& M University, College Station, TX-77843 (United States); Laboratori Nazionali del Sud, INFN, via Santa Sofia, 62, 95123 Catania (Italy); Boisjoli, M. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Laboratoire de Physique Nucléaire, Université Laval, Québec, G1V 0A6 (Canada); Verde, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); INFN – Sezione di Catania, via Santa Sofia, 64, 95123 Catania (Italy); Chbihi, A. [Grand Accélérateur National d' Ions Lourds, Bd. Henri Becquerel, BP 55027, 14076 Caen (France); Napolitani, P.; Ademard, G. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Augey, L. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); Bhattacharya, C. [Variable Energy Cyclotron Center, Kolkata (India); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex (France); Bougault, R. [Laboratoire de Physique Corpusculaire, ENSICAEN, Université de Caen Basse Normandie, CNRS/IN2P3, F-14050 Caen Cedex (France); and others
2016-05-10
We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.
Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas
International Nuclear Information System (INIS)
Kuhnle, E. D.; Hu, H.; Liu, X.-J.; Dyke, P.; Mark, M.; Drummond, P. D.; Hannaford, P.; Vale, C. J.
2010-01-01
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tan's relations. This is achieved through measurements of the static structure factor which displays a universal scaling proportional to the ratio of Tan's contact to the momentum C/q. Bragg spectroscopy of ultracold 6 Li atoms from a periodic optical potential is used to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We calibrate our Bragg spectra using the f-sum rule, which is found to improve the accuracy of the structure factor measurement.
Status report of the FERMI-Elettra control system
International Nuclear Information System (INIS)
Lonza, M.; Abrami, A.; Asnicar, F.; Battistello, L.; Bogani, A.I.; Borghes, R.; Chenda, V.; Cleva, S.; Curri, A.; Marco, M. de; Dos Santos, M.; Gaio, G.; Giacuzzo, F.; Kourousias, G.; Passos, G.; Passuello, R.; Pivetta, L.; Prica, M.; Pugliese, R.; Scafuri, C.; Scalamera, G.; Strangolino, G.; Vittor, D.; Zambon, L.
2012-01-01
FERMI-Elettra is a new fourth-generation light source based on a seeded Free Electron Laser (FEL) presently under commissioning in Trieste, Italy. It is the first seeded FEL ever designed to produce fundamental output wavelength down to 4 nm with High Gain Harmonic Generation (HGHG). FERMI-Elettra is a linac-based FEL whose 200 m long accelerator consists of a high brightness photo-cathode gun working at up to 50 Hz repetition rate, a 1.5 GeV normal conducting linac and 2 bunch compressors. Unlike storage ring based synchrotron light sources that are well known machines, the commissioning of a new-concept FEL is a complex and time-consuming process consisting in thorough testing, understanding and optimization, in which a reliable and powerful control system is mandatory. In particular, integrated shot-by-shot beam manipulation capabilities and easy-to-use high level applications are crucial to allow an effective and smooth machine commissioning. This paper reports the status of the control system and the experience gained in two years of alternating construction and commissioning phases. (authors)
International Nuclear Information System (INIS)
Chabungbam, Satyananda; Sahariah, Munima B.
2015-01-01
First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes
Fermi-Dirac Correlations in $\\Lambda$ Pairs in Hadronic Z Decays
Barate, R; Ghez, P; Goy, C; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Bonissent, A; Carr, J; Coyle, P; Payre, P; Rousseau, D; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Tomalin, I R; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G
2000-01-01
Two-particle correlations of Lambda Lambda and Anti-Lambda Anti-Lambda pairshave been studied in multihadronic Z decays recorded with the ALEPH detector at LEP in the years from 1992 to 1995. The correlations were measured as a function of the four-momentum difference Q of the pair. A depletion of events is observed in the region Q 2 GeV the fraction of pairs with spin one is consistent with the value of 0.75 expected for a statistical spin mixture, whilst for Q < 2 GeV this fraction is found to be lower. For Lambda Anti-Lambda pairs, where no Fermi-Dirac correlations are expected, the spin one fraction is measured to be consistent with 0.75 over the entire analysed Q range.
Branch-cut singularities in thermodynamics of Fermi liquid systems.
Shekhter, Arkady; Finkel'stein, Alexander M
2006-10-24
The recently measured spin susceptibility of the two-dimensional electron gas exhibits a strong dependence on temperature, which is incompatible with the standard Fermi liquid phenomenology. In this article, we show that the observed temperature behavior is inherent to ballistic two-dimensional electrons. Besides the single-particle and collective excitations, the thermodynamics of Fermi liquid systems includes effects of the branch-cut singularities originating from the edges of the continuum of pairs of quasiparticles. As a result of the rescattering induced by interactions, the branch-cut singularities generate nonanalyticities in the thermodynamic potential that reveal themselves in anomalous temperature dependences. Calculation of the spin susceptibility in such a situation requires a nonperturbative treatment of the interactions. As in high-energy physics, a mixture of the collective excitations and pairs of quasiparticles can effectively be described by a pole in the complex momentum plane. This analysis provides a natural explanation for the observed temperature dependence of the spin susceptibility, both in sign and in magnitude.
Shells, orbit bifurcations, and symmetry restorations in Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V. [NASU, Institute for Nuclear Research (Ukraine); Arita, K. [Nagoya Institute of Technology, Department of Physics (Japan)
2016-11-15
The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.
Long lifetimes of ultrahot particles in interacting Fermi systems
Bard, M.; Protopopov, I. V.; Mirlin, A. D.
2018-05-01
The energy dependence of the relaxation rate of hot electrons due to interaction with the Fermi sea is studied. We consider 2D and 3D systems, quasi-1D quantum wires with multiple transverse bands, as well as single-channel 1D wires. Our analysis includes both spinful and spin-polarized setups, with short-range and Coulomb interactions. We show that, quite generally, the relaxation rate is a nonmonotonic function of the electron energy and decays as a power law at high energies. In other words, ultrahot electrons regain their coherence with increasing energy. Such a behavior was observed in a recent experiment on multiband quantum wires, J. Reiner et al., Phys. Rev. X 7, 021016 (2017)., 10.1103/PhysRevX.7.021016
Constructive analysis of two dimensional Fermi systems at finite temperature
International Nuclear Information System (INIS)
Lu, Long
2013-01-01
We consider a dilute Fermion system in continuum two spatial dimensions with short-range interaction. We prove nonperturbatively that at low temperature the renormalized perturbation expansion has non-zero radius of convergence. The convergence radius shrinks when the energy scale goes to the infrared cutoff. The shrinking rate of the convergence radius is established to be dependent of the sign of the coupling constant g by a detailed analysis of the so-called ladder contributions. We prove further that the self-energy of the model is uniformly of C 1 , but not C 2 in the analytic domain of the theory. The proofs are based on renormalization of the Fermi surface and multiscale analysis employing mathematical renormalization group technique. Tree expansion is introduced to reorganize perturbation expansion nicely. Finally we apply these techniques to construct a half-filled Hubbard model on honeycomb bilayer lattice with local interaction.
Generalized virial theorem and pressure relation for a strongly correlated Fermi gas
International Nuclear Information System (INIS)
Tan, Shina
2008-01-01
For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations
Quantum correlations of ideal Bose and Fermi gases in the canonical ensemble
International Nuclear Information System (INIS)
Tsutsui, Kazumasa; Kita, Takafumi
2016-01-01
We derive an expression for the reduced density matrices of ideal Bose and Fermi gases in the canonical ensemble, which corresponds to the Bloch-De Dominicis (or Wick's) theorem in the grand canonical ensemble for normal-ordered products of operators. Using this expression, we study one- and two-body correlations of homogeneous ideal gases with N particles. The pair distribution function g (2) (r) of fermions clearly exhibits antibunching with g (2) (0) = 0 due to the Pauli exclusion principle at all temperatures, whereas that of normal bosons shows bunching with g (2) (0) ≈ 2, corresponding to the Hanbury Brown-Twiss effect. For bosons below the Bose-Einstein condensation temperature T 0 , an off-diagonal long-range order develops in the one-particle density matrix to reach g (1) (r) = 1 at T = 0, and the pair correlation starts to decrease towards g (2) (r) ≈ 1 at T = 0. The results for N → ∞ are seen to converge to those of the grand canonical ensemble obtained by assuming the average <ψ(r)> of the field operator ψ(r) below T 0 . This fact justifies the introduction of the 'anomalous' average <ψ(r)> ≠ 0 below T 0 in the grand canonical ensemble as a mathematical means of removing unphysical particle-number fluctuations to reproduce the canonical results in the thermodynamic limit. (author)
Magnetic correlations in a classic Mott system
International Nuclear Information System (INIS)
Bao, W.; Broholm, C.; Aeppli, G.; Carter, S.A.; Dai, D.; Frost, C.D.
1997-07-01
The metal-insulator transition in V 2 O 3 causes a fundamental change in its magnetism. While the antiferromagnetic insulator (AFI) is a Heisenberg localized spin system, the antiferromagnetism in the strongly correlated metal is determined by a Fermi surface instability. Paramagnetic fluctuations in the metal and insulator represent similar spatial spin correlations, but are unrelated to the long range order in the AFI. The phase transition to the AFI induces an abrupt switching of magnetic correlations to a different magnetic wave vector. The AFI transition, therefore, is not a conventional spin order-disorder transition. Instead it is accounted for by an ordering in the occupation of the two degenerate d-orbitals at the Fermi level
Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system
International Nuclear Information System (INIS)
Wang, C.
1992-01-01
The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories
Competing order parameters in Fermi systems with engineered band dispersion
Wu, Chien-Te; Boyack, Rufus; Anderson, Brandon; Levin, K.
We explore a variety of competing phases in 2D and 3D Fermi gases in the presence of novel dispersion relations resulting from a shaken optical lattice. We incorporate spin imbalance along with attractive interactions. In 3D, at the mean field level we present phase diagrams reflecting the stability of alternative order parameters in the pairing (including LOFF) and charge density wave channels. We perform analogous studies in 2D, where we focus on the competition between different paired phases. Important in this regard is that our 2D studies are consistent with the Mermin Wagner theorem, so that, while there is competition, conventional superfluidity cannot occur
Boundary conditions for quasiclassical Green's function for superfluid Fermi systems
International Nuclear Information System (INIS)
Nagai, K.; Hara, J.
1988-01-01
The authors show that the quasiclassical Green's Function for Fermi liquids can be constructed from the solutions of the Bogoliubov-de Gennes equation within the Andreev approximation and derive self-consistent relations to be satisfied by the quasiclassical Green's function at the surfaces. The so-called normalization condition for the quasiclassical Green's function is obtained from this self-consistent relation. They consider a specularly reflecting wall, a randomly rippled wall, and a proximity boundary as model surfaces. Their boundary condition for the randomly rippled wall is different from that derived by Buchholtz and Rainer and Buchholtz
Jin, Tao; Yu, Jian; Zhang, Nan; Zhao, Hong
2017-08-01
As is well known, solitons can be excited in nonlinear lattice systems; however, whether, and if so, how, this kind of nonlinear excitation can affect the energy transport behavior is not yet fully understood. Here we study both the scattering dynamics of solitons and heat transport properties in the Fermi-Pasta-Ulam-α -β model with an asymmetric interparticle interaction. By varying the asymmetry degree of the interaction (characterized by α ), we find that (i) for each α there exists a momentum threshold for exciting solitons from which one may infer an α -dependent feature of probability of presentation of solitons at a finite-temperature equilibrium state and (ii) the scattering rate of solitons is sensitively dependent on α . Based on these findings, we conjecture that the scattering between solitons will cause the nonmonotonic α -dependent feature of heat conduction. Fortunately, such a conjecture is indeed verified by our detailed examination of the time decay behavior of the heat current correlation function, but it is only valid for an early time stage. Thus, this result may suggest that solitons can have only a relatively short survival time when exposed in a thermal environment, eventually affecting the heat transport in a short time.
Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity
International Nuclear Information System (INIS)
Levin, G.A.; Quader, K.F.
1992-01-01
The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab
Microscopic coefficients for the quantum master equation of a Fermi system
International Nuclear Information System (INIS)
Stefanescu, E.; Sandulescu, A.
2002-01-01
In a previous paper, we derived a master equation for fermions, of Lindblad's form, with coefficients depending on microscopic quantities. In this paper, we study the properties of the dissipative coefficients taking into account the explicit expressions of: (a) the matrix elements of the dissipative potential, evaluated from the condition that, essentially, this potential induces transitions among the system eigenstates without significantly modifying these states, (b) the densities of the environment states according to the Thomas-Fermi model, and (c) the occupation probabilities of these states taken as a Fermi-Dirac distribution. The matrix of these coefficients correctly describes the system dynamics: (a) for a normal, Fermi-Dirac distribution of the environment population, the decays dominate the excitation processes; (b) for an inverted (exotic) distribution of this population, specific to a clustering state, the excitation processes are dominant. (author)
Application of nuclear theory methods to new family of fermi systems
International Nuclear Information System (INIS)
Nesterenko, V.O.
1995-01-01
Application of nuclear theory methods to the description of the properties of the new family of small Fermi systems (metal clusters, fullerenes, helium clusters and quantum dots) is briefly reviewed. The main attention is paid to giant resonances in these systems. 52 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Chen, Jing-Yuan, E-mail: chjy@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States); Stanford Institute for Theoretical Physics, Stanford University, CA 94305 (United States); Son, Dam Thanh, E-mail: dtson@uchicago.edu [Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 (United States)
2017-02-15
We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current–current correlator exactly matches with the result obtained from the kinetic theory. - Highlights: • We extend Landau’s kinetic theory of Fermi liquid to incorporate Berry phase. • Berry phase effects in Fermi liquid take exactly the same form as in Fermi gas. • There is a new “emergent electric dipole” contribution to the anomalous Hall effect. • Our kinetic theory is matched to field theory to all orders in Feynman diagrams.
A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions
International Nuclear Information System (INIS)
Merloni, A.; Ruffini, R.; Torroni, V.
1998-01-01
The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected
International Nuclear Information System (INIS)
Flambaum, V.V.; Izrailev, F.M.
1997-01-01
A method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model. copyright 1997 The American Physical Society
Extremely correlated Fermi liquid theory of the t-J model in 2 dimensions: low energy properties
Shastry, B. Sriram; Mai, Peizhi
2018-01-01
Low energy properties of the metallic state of the two-dimensional t-J model are presented for second neighbor hopping with hole-doping (t\\prime ≤slant 0) and electron-doping (t\\prime > 0), with various superexchange energy J. We use a closed set of equations for the Greens functions obtained from the extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of the large U Hubbard model in infinite dimensions. The density and temperature dependent quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated. We also calculate the resistivity, Hall conductivity, Hall number and cotangent Hall angle. The spectral features display high thermal sensitivity at modest T for density n≳ 0.8, implying a suppression of the effective Fermi-liquid temperature by two orders of magnitude relative to the bare bandwidth. The cotangent Hall angle exhibits a T 2 behavior at low T, followed by an interesting kink at higher T. The Hall number exhibits strong renormalization due to correlations. Flipping the sign of t\\prime changes the curvature of the resistivity versus T curves between convex and concave. Our results provide a natural route for understanding the observed difference in the temperature dependent resistivity of strongly correlated electron-doped and hole-doped matter.
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
CORRELATION OF FERMI PHOTONS WITH HIGH-FREQUENCY RADIO GIANT PULSES FROM THE CRAB PULSAR
International Nuclear Information System (INIS)
Bilous, A. V.; Kondratiev, V. I.; McLaughlin, M. A.; Mickaliger, M.; Ransom, S. M.; Lyutikov, M.; Langston, G. I.
2011-01-01
To constrain the giant pulse (GP) emission mechanism and test the model of Lyutikov for GP emission, we have carried out a campaign of simultaneous observations of the Crab pulsar at γ-ray (Fermi) and radio (Green Bank Telescope) wavelengths. Over 10 hr of simultaneous observations we obtained a sample of 2.1 x 10 4 GPs, observed at a radio frequency of 9 GHz, and 77 Fermi photons, with energies between 100 MeV and 5 GeV. The majority of GPs came from the interpulse (IP) phase window. We found no change in the GP generation rate within 10-120 s windows at lags of up to ±40 minutes of observed γ-ray photons. The 95% upper limit for a γ-ray flux enhancement in pulsed emission phase window around all GPs is four times the average pulsed γ-ray flux from the Crab. For the subset of IP GPs, the enhancement upper limit, within the IP emission window, is 12 times the average pulsed γ-ray flux. These results suggest that GPs, at least high-frequency IP GPs, are due to changes in coherence of radio emission rather than an overall increase in the magnetospheric particle density.
International Nuclear Information System (INIS)
Su, Guozhen; Chen, Liwei; Chen, Jincan
2014-01-01
Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions
Stochastic bosonization for a d ≥ 3 Fermi system
International Nuclear Information System (INIS)
Accardi, L.; Lu, Y.G.; Mastropietro, V.
1997-01-01
We consider a system of fermions interacting via an external field and we prove, in d ≥ 3, that a suitable collective operator, bilinear in the fermionic fields, in the stochastic limit becomes a boson quantum brownian motion. The evolution operator after the limit satisfies a quantum stochastic differential equation, in which the imaginary part of the Ito correction is the ground state shift while its real part is the lifetime of the ground state. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Afzali, R., E-mail: afzali@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, Tehran, 15418 (Iran, Islamic Republic of); Ebrahimian, N., E-mail: n.ebrahimian@shahed.ac.ir [Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, 18155-159 (Iran, Islamic Republic of); Eghbalifar, B., E-mail: b.eghbali2011@yahoo.com [Department of Agricultural Management, Marvdasht Branch, Azad University, Marvdasht (Iran, Islamic Republic of)
2016-10-07
Highlights: • In contrast to a s-wave superconductor, the quantum correlation of the d-wave superconductor is sensitive to the change of the gap magnitude. • Quantum discord of the d-wave superconductor oscillates. • Quantum discord becomes zero at a characteristic length of the d-wave superconductor. • Quantum correlation strongly depends on the length of grain. Length of the superconductor lower, the quantum correlation length higher. • Quantum tripartite entanglement for a nano-scale d-wave superconductor is better than for a bulk d-wave superconductor. - Abstract: By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.
Overview of Fermi National Accelerator Lab Control System
International Nuclear Information System (INIS)
Lucas, P.W.
1990-01-01
Various facets of the control of the Fermilab accelerators, in particular the Tevatron, are presented. Since Fermilab contains a superconducting machine and a sophisticated injection complex, much of the controls functionality will of necessity be the same at the SSC. The various functions required at a large laboratory are discussed; these include computer-based fire and security alarms and a cable television system, as well as computer networks connected to accelerator hardware components. A description is given of that hardware, of which much is Camac but with considerable computer backplane bus equipment also present. A large fraction of the controls hardware has access to high precision real-time clocks. Our various networks are introduced, with the physical layer being a combination of copper and more modern optic cables, with the primary intercomputer link being Token Ring. A description of the computers is presented - basically these consist of operators' consoles, host VAXs, and link driving front ends. The software effort is detailed, with emphasis on consoles and microprocessors where the majority of effort has been placed. Future plans for the system are presented briefly. 3 refs., 2 figs., 2 tabs
A study of correlation functions for the delta-function fermi gas
International Nuclear Information System (INIS)
Berkovich, A.
1987-01-01
In this dissertation, the author considers the quantum nonlinear Schrodinger model, describing a non-relativistic, finite-density gas of one-dimensional fermions with repulsive delta-function interaction. The author employs the quantum inverse scattering method and temperature Green function technique to derive some new results for the two-point, equal-time correlation function. For the case of zero temperature, it is shown that the correlation function in the infinite coupling limit (c → ∞) can be expressed concisely in terms of the solution of the Painleve equation of the fifth kind. The author, then, extends this result and obtains an exact expression for the order (1/c) correction to the two-point function in terms of the Painleve transcendents. This work is essentially self-contained; both old and new results are presented and discussed at some length
PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
The self-consistent field model for Fermi systems with account of three-body interactions
Directory of Open Access Journals (Sweden)
Yu.M. Poluektov
2015-12-01
Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.
Exploration of Fermi-Pasta-Ulam Behavior in a Magnetic System
Lewis, Jeramy; Camley, Robert E.; Anderson, Nicholas R.
2018-04-01
We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU behavior may be altered or turned off through the magnitude and orientation of an external magnetic field. A realistic micromagnetic model shows such behavior could be measurable.
Pairing and low temperature properties of 2 D Fermi-systems with attraction between particles
International Nuclear Information System (INIS)
Gorbar, E.V.; Gusynin, V.P.; Loktev, V.M.
1992-01-01
Proceeding from microscopic model Hamiltonian for the system of Fermi-particles with attraction the effective Lagrangian, admitting the analysis of its superconducting properties at arbitrary fermion concentration, is obtained.Exact solution for gap and chemical potential makes it possible to trace from local pair situation to Cooper pairing. The crucial parameter discriminating between the regions of exotic and normal superconducting behaviour is show to be that of the energy of the bound fermion state, which, however, rapidly disappears with fermion density increasing. The solutions of the equations for the case of finite temperatures are analysed. (author). 42 refs
International Nuclear Information System (INIS)
Omran, Ahmed
2016-01-01
This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can
Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble
Sen, Surajit; Barrett, Tyler
The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
International Nuclear Information System (INIS)
Furukawa, H.; Nishihara, K.
1992-01-01
The spherical-cell model [F. Perrot, Phys. Rev. A 25, 489 (1982); M. W. C. Dharma-wardana and F. Perrot, ibid. 26, 2096 (1982)] is improved to investigate laser-produced hot, dense plasmas. The free-electron distribution function around a test free electron is calculated by using the Fermi integral in order that the free-electron--free-electron correlation function includes Fermi-degeneracy effects, and also that the calculation includes the discrete-ion effect. The free-electron--free-electron, free-electron--ion, and ion-ion correlation effects are coupled, within the framework of the hypernetted-chain approximation, through the Ornstein-Zernike relation. The effective ion-ion potential includes the effect of a spatial distribution of bound electrons. The interparticle correlation functions and the effective potential acting on either an electron or an ion in hot, dense plasmas are calculated numerically. The Fermi-degeneracy effect on the correlation functions between free electrons becomes clear for the degeneracy parameter θ approx-lt 1. The discrete-ion effect in the calculation of the correlation functions between free electrons affects the electron-ion pair distribution functions for r s approx-gt 3. As an application of the proposed model, the strong-coupling effect on the stopping power of charged particles [Xin-Zhong Yan, S. Tanaka, S. Mitake, and S. Ichimaru, Phys. Rev. A 32, 1785 (1985)] is estimated. While the free-electron--ion strong-coupling effect and the Fermi-degeneracy effect incorporated in the calculation of the free-electron distribution function around a test free electron enhance the stopping number, the quantum-diffraction effect incorporated in the quantal hypernetted-chain equations [J. Chihara, Prog. Theor. Phys. 72, 940 (1984); Phys. Rev. A 44, 1247 (1991); J. Phys. Condens. Matter 3, 8715 (1991)] reduces the stopping number substantially
Strong correlations in few-fermion systems
Energy Technology Data Exchange (ETDEWEB)
Bergschneider, Andrea
2017-07-26
In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education. E Fermi. Articles written in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 82-96 Classics. Quantization of an Ideal Monoatomic Gas · E Fermi · More Details Fulltext PDF ...
An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory
International Nuclear Information System (INIS)
Syphers, M.J.
1987-06-01
A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron
Effective action for superfluid Fermi systems in the strong-coupling limit
International Nuclear Information System (INIS)
Dupuis, N.
2005-01-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)
Effective action for superfluid Fermi systems in the strong-coupling limit
Dupuis, N.
2005-07-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).
Self-consistent theory of finite Fermi systems and radii of nuclei
International Nuclear Information System (INIS)
Saperstein, E. E.; Tolokonnikov, S. V.
2011-01-01
Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
Energy Technology Data Exchange (ETDEWEB)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
The Role of screening in the strongly correlated 2D systems
Hwang, E H
2003-01-01
We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.
The BCS-BEC crossover: From ultra-cold Fermi gases to nuclear systems
Strinati, Giancarlo Calvanese; Pieri, Pierbiagio; Röpke, Gerd; Schuck, Peter; Urban, Michael
2018-04-01
of the theory, especially in the normal phase where they account for precursor pairing effects. After an introduction to present the key concepts of the BCS-BEC crossover, this report discusses the mean-field treatment of the superfluid phase, both for homogeneous and inhomogeneous systems, as well as for symmetric (spin- or isospin-balanced) and asymmetric (spin- or isospin-imbalanced) matter. Pairing fluctuations in the normal phase are then considered, with their manifestations in thermodynamic and dynamic quantities. The last two Sections provide a more specialized discussion of the BCS-BEC crossover in ultra-cold Fermi gases and nuclear matter, respectively. The separate discussion in the two contexts aims at cross communicating to both communities topics and aspects which, albeit arising in one of the two fields, share a strong common interest.
Electron correlations in narrow band systems
International Nuclear Information System (INIS)
Kishore, R.
1983-01-01
The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt
Control and data acquisition systems for the Fermi Elettra experimental stations
International Nuclear Information System (INIS)
Borghes, R.; Chenda, V.; Curri, A.; Gaio, G.; Kourousias, G.; Lonza, M.; Passos, G.; Passuello, R.; Pivetta, L.; Prica, M.; Pugliese, R.; Strangolino, G.
2012-01-01
FERMI-Elettra is a single-pass Free Electron Laser (FEL) user-facility covering the wavelength range from 100 nm to 4 nm. The facility is located in Trieste, Italy, nearby the third-generation synchrotron light source Elettra. Three experimental stations, dedicated to different scientific areas, have been installed in 2011: Low Density Matter (LDM), Elastic and Inelastic Scattering (EIS) and Diffraction and Projection Imaging (DiProI). The experiment control and data acquisition system is the natural extension of the machine control system. It integrates a shot-by-shot data acquisition framework with a centralized data storage and analysis system. Low-level applications for data acquisition and online processing have been developed using the Tango framework on Linux platforms. High-level experimental applications can be developed on both Linux and Windows platforms using C/C++, Python, LabView, IDL or Matlab. The Elettra scientific computing portal allows remote access to the experiment and to the data storage system. (authors)
The Fermi-Pasta-Ulam System as a Model for Glasses
Carati, A.; Maiocchi, A.; Galgani, L.; Amati, G.
2015-12-01
We show that the standard Fermi-Pasta-Ulam system, with a suitable choice for the interparticle potential, constitutes a model for glasses, and indeed an extremely simple and manageable one. Indeed, it allows one to describe the landscape of the minima of the potential energy and to deal concretely with any one of them, determining the spectrum of frequencies and the normal modes. A relevant role is played by the harmonic energy {E} relative to a given minimum, i.e., the expansion of the Hamiltonian about the minimum up to second order. Indeed we find that there exists an energy threshold in {E} such that below it the harmonic energy {E} appears to be an approximate integral of motion for the whole observation time. Consequently, the system remains trapped near the minimum, in what may be called a vitreous or glassy state. Instead, for larger values of {E} the system rather quickly relaxes to a final equilibrium state. Moreover we find that the vitreous states present peculiar statistical behaviors, still involving the harmonic energy {E}. Indeed, the vitreous states are described by a Gibbs distribution with an effective Hamiltonian close to {E} and with a suitable effective inverse temperature. The final equilibrium state presents instead statistical properties which are in very good agreement with the Gibbs distribution relative to the full Hamiltonian of the system.
Farm batch system and Fermi inter-process communication and synchronization toolkit
International Nuclear Information System (INIS)
Mandrichenko, I.V.
2001-01-01
Farms Batch System (FBS) was developed as a batch process management system for off-line Run II data processing at Fermilab. FBS will manage PC farms composed of up to 250 nodes and scalable to 1000 nodes with disk capacity of up to several TB. FBS allows users to start arrays of parallel processes on multiple computers. It uses a simplified resource counting method load balancing. FBS has been successfully used for more than a year at Fermilab by fixed target experiments and will be used for collider experiment off-line data processing. Fermi Inter-Process Communication toolkit (FIPC) was designed as a supplement product for FBS that helps establish synchronization and communication between processes running in a distributed batch environment. However, FIPC is an independent package, and can be used with other batch systems, as well as in a non-batch environment. FIPC provides users with a variety of global distributed objects such as semaphores, queues and string variables. Other types of objects can be easily added to FIPC. FIPC has been running on several PC farms at Fermilab for half a year and is going to be used by CDF for off-line data processing
Fermi LAT Pulsed Detection of PSR J0737-3039A in the Double Pulsar System
Guillemot, L.; Kramer, M.; Johnson, T. J.; Craig, H. A.; Romani, R. W.; Venter, C.; Harding, A. K.; Ferdman, R. D.; Stairs, I. H.; Kerr, M.
2013-01-01
We report the Fermi Large Area Telescope discovery of gamma-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in gamma rays. PSR J0737-3039A is a faint gamma-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the gamma-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the gamma-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination alpha and the viewing angle zeta to be close to 90 deg., which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.
FERMI LAT PULSED DETECTION OF PSR J0737-3039A IN THE DOUBLE PULSAR SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Guillemot, L.; Kramer, M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Johnson, T. J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Craig, H. A.; Romani, R. W.; Kerr, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Venter, C. [Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, 2520 Potchefstroom (South Africa); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferdman, R. D. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Stairs, I. H., E-mail: guillemo@mpifr-bonn.mpg.de [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)
2013-05-10
We report the Fermi Large Area Telescope discovery of {gamma}-ray pulsations from the 22.7 ms pulsar A in the double pulsar system J0737-3039A/B. This is the first mildly recycled millisecond pulsar (MSP) detected in the GeV domain. The 2.7 s companion object PSR J0737-3039B is not detected in {gamma} rays. PSR J0737-3039A is a faint {gamma}-ray emitter, so that its spectral properties are only weakly constrained; however, its measured efficiency is typical of other MSPs. The two peaks of the {gamma}-ray light curve are separated by roughly half a rotation and are well offset from the radio and X-ray emission, suggesting that the GeV radiation originates in a distinct part of the magnetosphere from the other types of emission. From the modeling of the radio and the {gamma}-ray emission profiles and the analysis of radio polarization data, we constrain the magnetic inclination {alpha} and the viewing angle {zeta} to be close to 90 Degree-Sign , which is consistent with independent studies of the radio emission from PSR J0737-3039A. A small misalignment angle between the pulsar's spin axis and the system's orbital axis is therefore favored, supporting the hypothesis that pulsar B was formed in a nearly symmetric supernova explosion as has been discussed in the literature already.
A semiclassical treatment of correlation energy for nuclear systems
International Nuclear Information System (INIS)
Nielsen, M.
1988-01-01
Starting with the separation of the many-body density operator in two parts, one describing the one-body aspects of the full density and the other containing all dynamic correlations information, the semiclassical approximation for the system correlation energy, was calculated. It is showm that, in this case, the Gaussian Wave Packets Phase Space Representation is more convenient than the Wely-Wigner Rrepresentation for the analysis of the semiclassical correlation energy. Using a phenomenological interaction, the correlation energy to the nuclear matter and some simmetric finite nucleus was calculated. The Fermi Surface Diffusivity, was also calculated. Finally, from the relation between this theory and the pertubation theory, we have done some considerations about the viability on the local densities expansion for energy functionals. (author) [pt
Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin
2012-04-07
The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.
Long-lived trimers in a quasi-two-dimensional Fermi system
Laird, Emma K.; Kirk, Thomas; Parish, Meera M.; Levinsen, Jesper
2018-04-01
We consider the problem of three distinguishable fermions confined to a quasi-two-dimensional (quasi-2D) geometry, where there is a strong harmonic potential in one direction. We go beyond previous theoretical work and investigate the three-body bound states (trimers) for the case where the two-body short-range interactions between fermions are unequal. Using the scattering parameters from experiments on ultracold 6Li atoms, we calculate the trimer spectrum throughout the crossover from two to three dimensions. We find that the deepest Efimov trimer in the 6Li system is unaffected by realistic quasi-2D confinements, while the first excited trimer smoothly evolves from a three-dimensional-like Efimov trimer to an extended 2D-like trimer as the attractive interactions are decreased. We furthermore compute the excited trimer wave function and quantify the stability of the trimer against decay into a dimer and an atom by determining the probability that three fermions approach each other at short distances. Our results indicate that the lifetime of the trimer can be enhanced by at least an order of magnitude in the quasi-2D geometry, thus opening the door to realizing long-lived trimers in three-component Fermi gases.
Giner, Emmanuel; Tenti, Lorenzo; Angeli, Celestino; Malrieu, Jean-Paul
2016-09-28
The impact of the antisymmetrization is often addressed as a local property of the many-electron wave function, namely that the wave function should vanish when two electrons with parallel spins are in the same position in space. In this paper, we emphasize that this presentation is unduly restrictive: we illustrate the strong non-local character of the antisymmetrization principle, together with the fact that it is a matter of spin symmetry rather than spin parallelism. To this aim, we focus our attention on the simplest representation of various states of two-electron systems, both in atomic (helium atom) and molecular (H 2 and the π system of the ethylene molecule) cases. We discuss the non-local property of the nodal structure of some two-electron wave functions, both using analytical derivations and graphical representations of cuttings of the nodal hypersurfaces. The attention is then focussed on the impact of the antisymmetrization on the maxima of the two-body density, and we show that it introduces strong correlation effects (radial and/or angular) with a non-local character. These correlation effects are analyzed in terms of inflation and depletion zones, which are easily identifiable, thanks to the nodes of the orbitals composing the wave function. Also, we show that the correlation effects induced by the antisymmetrization occur also for anti-parallel spins since all M s components of a given spin state have the same N-body densities. Finally, we illustrate that these correlation effects occur also for the singlet states, but they have strictly opposite impacts: the inflation zones in the triplet become depletion zones in the singlet and vice versa.
Thermal modified Thomas-Fermi approximation with the Skyrme interaction for the 208Pb + 208Pb system
International Nuclear Information System (INIS)
Mansour, H.M.M.; Ismail, M.; Osman, M.; Ramadan, Kh.A.
1988-01-01
A generalization of the modified Thomas-Fermi (MTF) approximation to finite temperatures is used to calculate the optical potential for the 208 Pb + 208 Pb system using the energy density formalism derived from different effective forces of Skyrme type. The nuclear optical potential becomes more attractive when the temperature is increased. Pockets are also predicted in the total potential (Nuclear + Coulomb) wich depths are dependent on both the type of effective force and the temperature. 23 refs., 7 figs. (author)
Multifrequency Behaviour of the Gamma-Ray Binary System PSR B1259-63: Modelling the FERMI Flare
Directory of Open Access Journals (Sweden)
Brian van Soelen
2014-12-01
Full Text Available This paper presents a brief overview of the multifrequency properties of the gamma-ray binary system PSR B1259-63 from radio to very high energy gamma-rays. A summary is also presented of the various models put forward to explain the Fermi "flare" detected in 2011. Initial results are presented of a new turbulence driven model to explain the GeV observations.
Quantitative application of Fermi-Dirac functions of two- and three-dimensional systems
International Nuclear Information System (INIS)
Grimmer, D.P.; Luszczynski, K.; Salibi, N.
1981-01-01
Expressions for the various physical parameters of the ideal Fermi-Dirac gas in two dimensions are derived and compared to the corresponding three-dimensional expressions. These derivations show that the Fermi-Dirac functions most applicable to the two-dimensional problem are F/sub o/(eta), F 1 (eta), and F' 0 (eta). Analogous to the work of McDougall and Stoner in three dimensions, these functions and parameters derived from them are tabulated over the range of the argument, -4 3 He monolayer and bulk liquid 3 He nuclear magnetic susceptibilities, respectively, are considered. Calculational procedures of fitting data to theoretical parameters and criteria for judging the quality of fit of data to both two- and three-dimensional Fermi-Dirac values are discussed
Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas
International Nuclear Information System (INIS)
Bettelheim, Eldad; Abanov, Alexander G; Wiegmann, Paul B
2008-01-01
We present new nonlinear differential equations for spacetime correlation functions of Fermi gas in one spatial dimension. The correlation functions we consider describe non-stationary processes out of equilibrium. The equations we obtain are integrable equations. They generalize known nonlinear differential equations for correlation functions at equilibrium [1-4] and provide vital tools for studying non-equilibrium dynamics of electronic systems. The method we developed is based only on Wick's theorem and the hydrodynamic description of the Fermi gas. Differential equations appear directly in bilinear form. (fast track communication)
Spin interaction with an ideal fermi gas
International Nuclear Information System (INIS)
Aizenstadt, V.V.; Malyshev, V.A.
1987-01-01
The authors consider the equilibrium dynamics of a system consisting of a spin interacting with an ideal Fermi gas on the lattice Z/sup v, v ≥ 3. They present two examples; when this system is unitarily equivalent to an ideal Fermi gas or to a spin in an ideal Fermi gas without interactions between them
Energy Technology Data Exchange (ETDEWEB)
Biswas, Abhijit [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Ki-Seok [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of); Institute of Edge of Theoretical Science (IES), POSTECH, Pohang 790-784 (Korea, Republic of); Jeong, Yoon H., E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)
2016-02-15
We investigate the effects of compressive strain on the electrical resistivity of 5d iridium based perovskite SrIrO{sub 3} by depositing epitaxial films of thickness 35 nm on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), and SrTiO{sub 3} (001). Surprisingly, we find anomalous transport behaviors as expressed by ρ∝T{sup ε} in the temperature dependent resistivity, where the temperature exponent ε evolves continuously from 4/5 to 1 and to 3/2 with an increase of compressive strain. Furthermore, magnetoresistance always remains positive irrespective of resistivity upturns at low temperatures. These observations imply that the delicate interplay between correlation and disorder in the presence of strong spin-orbit coupling is responsible for the emergence of the non-Fermi liquid behaviors in 5d perovskite SrIrO{sub 3} thin films. We offer a theoretical framework for the interpretation of the experimental results. - Highlights: • We studied the effect of compressive strain on the perovskite SrIrO{sub 3} thin films. • We revealed non-Fermi liquid behaviors in the transport properties. • Irrespective of weak localization effects, magnetoresistance remains positive. • Mott-Anderson-Griffiths scenario is proposed to account for the NFL behaviors.
Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity
Czech Academy of Sciences Publication Activity Database
Abuki, H.; Brauner, Tomáš
2008-01-01
Roč. 78, č. 12 (2008), 125010/1-125010/13 ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : BCS-BEC crossover * Unitary Fermi gas * Quark matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008
International Nuclear Information System (INIS)
Alcober Bosch, V.
2003-01-01
Following the scientific life of Fermi the article reviews the historical evolution of nuclear security from the base of the first system foreseen for the CP-1 critical pile, which made it possible to demonstrate self-sustaining fission reaction, until the mid-fifties by which time the subsequent importance of this concept was perceived. Technological advances have gone hand in hand with the development of the concept of security, and have become a further point to be taken into account in any nuclear installation, and which Fermi always kept in mind during his professional life. (Author) 12 refs
Correlations in charged bosons systems
International Nuclear Information System (INIS)
Almeida Caparica, A. de.
1985-02-01
The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k → ) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k → ). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)
Biswas, Abhijit; Kim, Ki-Seok; Jeong, Yoon H.
2016-02-01
We investigate the effects of compressive strain on the electrical resistivity of 5d iridium based perovskite SrIrO3 by depositing epitaxial films of thickness 35 nm on various substrates such as GdScO3 (110), DyScO3 (110), and SrTiO3 (001). Surprisingly, we find anomalous transport behaviors as expressed by ρ∝Tε in the temperature dependent resistivity, where the temperature exponent ε evolves continuously from 4/5 to 1 and to 3/2 with an increase of compressive strain. Furthermore, magnetoresistance always remains positive irrespective of resistivity upturns at low temperatures. These observations imply that the delicate interplay between correlation and disorder in the presence of strong spin-orbit coupling is responsible for the emergence of the non-Fermi liquid behaviors in 5d perovskite SrIrO3 thin films. We offer a theoretical framework for the interpretation of the experimental results.
Strongly correlated systems experimental techniques
Mancini, Ferdinando
2015-01-01
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...
are available to the public, along with standard analysis software, from NASA's Fermi Science Support Center. For general questions about Fermi, Fermi science, or Fermi classroom materials, please contact Fermi has its own music: a prelude and a symphony. Gamma Ray Bursts trasformed into visual music
Strongly Correlated Systems Theoretical Methods
Avella, Adolfo
2012-01-01
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Directory of Open Access Journals (Sweden)
A. D. Andreyanov
2016-04-01
Full Text Available It was established the dependence of the electrocatalytic activity of alloys Ni-Cr-Mn at the variable contents of copper with values of Fermy energy of their components. Electrocatalytic activity of alloys was estimated by density of the current, determined by the method of suspended half-element. For Fermi energy calculation of various metals Sommerfeld model, in which distribution of electrons by speed is described by Fermi-Dirac statistic was used.
Echoes in correlated neural systems
International Nuclear Information System (INIS)
Helias, M; Tetzlaff, T; Diesmann, M
2013-01-01
Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator. (paper)
Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System
Wu, Mingzhong; Patton, Carl E.
2007-01-01
Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.
Universality class of non-Fermi liquid behaviour in mixed valence systems
International Nuclear Information System (INIS)
Zhang Guangming; Su Zhaobin; Lu Yu
1995-11-01
A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper-oxides. Using the abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed valence quantum critical point separating two different Fermi liquid phases, i.e. the Kondo phase and the empty orbital phase. In the mixed valence quantum critical regime, the local moment is only partially quenched and X-ray edge singularities are generated. Around the quantum critical point, a new type of non-Fermi liquid behaviour is predicted with an extra specific heat C imp ∼ T 1/4 and a singular spin-susceptibility χ imp ∼ T -3/4 . At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in U Pd x Cu 5-x (x=1, 1.5) alloys, which show single-impurity critical behaviour consistent with our predictions. (author). 30 refs
Universality class of non-Fermi-liquid behavior in mixed-valence systems
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
1996-01-01
A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.
Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.
Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J
2013-01-01
High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.
Non-Fermi liquid and spin-glass behavior of the Sc1-xUxPd3 system
International Nuclear Information System (INIS)
Gajewski, D.A.; Allenspach, P.; Seaman, C.L.; Maple, M.B.
1994-01-01
Previous electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C(T) measurements on the Y 1-x U x Pd 3 system have revealed Kondo behavior for 0 K , where T K is the Kondo temperature: ρ(T)/ρ(0)∼1-T/(aT K ) and C(T)/T∼-(1/T K )ln T with evidence for a finite T=0 residual entropy S(0)=(R/2)ln(2). We report measurements of ρ(T), χ(T), and C(T) on the Sc 1-x U x Pd 3 system which reveal similar Kondo, non-Fermi liquid, and spin-glass behaviors. ((orig.))
Pairing and condensation in a resonant Bose-Fermi mixture
International Nuclear Information System (INIS)
Fratini, Elisa; Pieri, Pierbiagio
2010-01-01
We study by diagrammatic means a Bose-Fermi mixture, with boson-fermion coupling tuned by a Fano-Feshbach resonance. For increasing coupling, the growing boson-fermion pairing correlations progressively reduce the boson condensation temperature and make it eventually vanish at a critical coupling. Such quantum critical point depends very weakly on the population imbalance and, for vanishing boson densities, coincides with that found for the polaron-molecule transition in a strongly imbalanced Fermi gas, thus bridging two quite distinct physical systems.
Yong, Gao-Chan; Li, Bao-An
2017-12-01
Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
Relativistic density matrix in the diagonal momentum representation. Fermi-gas
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1984-01-01
The relativistically invariant theory of ideal Fermi-gas is built in the framework of the quantum field theory. The average occupation numbers and correlation functions of statistical systems are found on the equal-time surfaces of arbitrary inertial frames. The effects of anisotropy in their behaviour are pointed out. The partition function method is developed to calculate the thermodynamic quantities of Fermi-gases moving as a whole
Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli
2012-08-01
We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).
Pseudogap phenomena in ultracold atomic Fermi gases
Chen, Qijin; Wang, Jibiao
2014-01-01
The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...
Pairing fluctuations in trapped Fermi gases
International Nuclear Information System (INIS)
Viverit, Luciano; Bruun, Georg M.; Minguzzi, Anna; Fazio, Rosario
2004-01-01
We examine the contribution of pairing fluctuations to the superfluid order parameter for harmonically trapped atomic Fermi gases in the BCS regime. In the limit of small systems we consider, both analytically and numerically, their space and temperature dependence. We predict a parity effect, i.e., that pairing fluctuations show a maximum or a minimum at the center of the trap, depending on the value of the last occupied shell being even or odd. We propose to detect pairing fluctuations by measuring the density-density correlation function after a ballistic expansion of the gas
Energy Technology Data Exchange (ETDEWEB)
Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)
2018-01-15
The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)
Mitra, Sukanya
2018-01-01
The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.
Barle, Stanko
In this dissertation, two dynamical systems with many degrees of freedom are analyzed. One is the system of highly correlated electrons in the two-impurity Kondo problem. The other deals with building a realistic model of diffusion underlying financial markets. The simplest mean-field theory capable of mimicking the non-Fermi liquid behavior of the critical point in the two-impurity Kondo problem is presented. In this approach Landau's adiabaticity assumption--of a one-to-one correspondence between the low-energy excitations of the interacting and noninteracting systems--is violated through the presence of decoupled local degrees of freedom. These do not couple directly to external fields but appear indirectly in the physical properties leading, for example, to the log(T, omega) behavior of the staggered magnetic susceptibility. Also, as observed previously, the correlation function = -1/4 is a consequence of the equal weights of the singlet and triplet impurity configurations at the critical point. In the second problem, a numerical model is developed to describe the diffusion of prices in the market. Implied binomial (or multinomial) trees are constructed to enable practical pricing of derivative securities in consistency with the existing market. The method developed here is capable of accounting for both the strike price and term structure of the implied volatility. It includes the correct treatment of interest rate and dividends which proves robust even if these quantities are unusually large. The method is explained both as a set of individual innovations and, from a different prospective, as a consequence of a single plausible transformation from the tree of spot prices to the tree of futures prices.
Zangrando, Marco; Cocco, Daniele; Fava, Claudio; Gerusina, Simone; Gobessi, Riccardo; Mahne, Nicola; Mazzucco, Eric; Raimondi, Lorenzo; Rumiz, Luca; Svetina, Cristian
2015-05-01
The Photon Analysis Delivery and REduction System of FERMI (PADReS) has been routinely used during the machine commissioning and operations of FERMI since 2011. It has also served the needs of several user runs at the facility from late 2012. The system is endowed with online and shot-to-shot diagnostics giving information about intensity, spatial-angular distribution, spectral content, as well as other diagnostics to determine coherence, pulse length etc. Moreover, PADReS is capable of manipulating the beam in terms of intensity and optical parameters. Regarding the optics, besides a standard refocusing system based on an ellipsoidal mirror, the Kirkpatrick-Baez active optics systems are key elements and have been used intensively to meet users' requirements. A general description of the system is given, together with some selected results from the commissioning/operations/user beam time.
Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions
Directory of Open Access Journals (Sweden)
Liu Jinn-Liang
2017-10-01
Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.
7th International Fermi Symposium
2017-10-01
The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We
A perturbation method in strongly correlated fermion systems
International Nuclear Information System (INIS)
Keiter, H.; Oberbach, S.; Kilic, S.
1998-01-01
We present a new expression for the grand partition function of a many-body system which contains a generalized Feenberg energy formula. In addition a form of the momentum distribution function of the Luttinger model is derived and non Fermi liquid behaviour is demonstrated. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
International Nuclear Information System (INIS)
Nersesyan, A.A.; Tsvelik, A.M.; Wenger, F.
1995-01-01
The influence of weak non-magnetic disorder on the single-particle density of states ρ(ω) of two-dimensional electron systems with a conical spectrum is studied. We use a non-perturbative approach, based on the replica trick with subsequent mapping of the effective action onto a one-dimensional model of interacting fermions, the latter being treated by abelian and non-abelian bosonization methods. Specifically, we consider a weakly disordered p- or d-wave superconductor, in which case the problem reduces to a model of (2+1)-dimensional massless Dirac fermions coupled to random, static, generally non-abelian gauge fields. It is shown that the density of states of a two-dimensional p- or d-wave superconductor, averaged over randomness, follows a non-trivial power-law behavior near the Fermi energy: ρ(ω) similar vertical stroke ωvertical stroke α . The exponent α>0 is exactly calculated for several types of disorder. We demonstrate that the property ρ(0) = 0 is a direct consequence of a continuous symmetry of the effective fermionic model, whose breakdown is forbidden in two dimensions. As a counter example, we also discuss another model with a conical spectrum - a two-dimensional orbital antiferromagnet, where static disorder leads to a finite ρ(0) due to the breakdown of a discrete (particle-hole) symmetry. ((orig.))
Reliability of Structural Systems with Correlated Elements
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Sørensen, John Dalsgaard
1982-01-01
Calculation of the probability of failure of a system with correlation members is usually a difficult and time-consuming numerical problem. However, for some types of systems with equally correlated elements this calculation can be performed in a simple way. This has suggested two new methods bas...... on so-called average and equivalent correlation coefficients. By using these methods approximate values for the probability of failure can easily be calculated. The accuracy of these methods is illustrated with examples....
Production of excited double hypernuclei via Fermi breakup of excited strange systems
International Nuclear Information System (INIS)
Sanchez Lorente, Alicia; Botvina, Alexander S.; Pochodzalla, Josef
2011-01-01
Precise spectroscopy of multi-strange hypernuclei provides a unique chance to explore the hyperon-hyperon interaction. In the present work we explore the production of excited states in double hypernuclei following the micro-canonical break-up of an initially excited double hypernucleus which is created by the absorption and conversion of a stopped Ξ - hyperon. Rather independent on the spectrum of possible excited states in the produced double hypernuclei the formation of excited states dominates in our model. For different initial target nuclei which absorb the Ξ - , different double hypernuclei nuclei dominate. Thus the ability to assign the various observable γ-transitions in a unique way to a specific double hypernuclei by exploring various light targets as proposed by the PANDA Collaboration seems possible. We also confront our predictions with the correlated pion spectra measured by the E906 Collaboration.
Large optical conductivity of Dirac semimetal Fermi arc surface states
Shi, Li-kun; Song, Justin C. W.
2017-08-01
Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.
Energy Technology Data Exchange (ETDEWEB)
Allaria, Enrico; Callegari, Carlo; Cocco, Daniele; Fawley, William M.; Kiskinova, Maya; Masciovecchio, Claudio; Parmigiani, Fulvio
2010-04-05
FERMI@Elettra is comprised of two free electron lasers (FELs) that will generate short pulses (tau ~;; 25 to 200 fs) of highly coherent radiation in the XUV and soft X-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability to produce high quality, longitudinal coherent photon pulses. This capability together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization will open new experimental opportunities not possible with currently available FELs. Here we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source.
Electronic annealing Fermi operator expansion for DFT calculations on metallic systems
Aarons, Jolyon; Skylaris, Chris-Kriton
2018-02-01
Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ˜13 000 atoms.
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Fermi-surface topology of the heavy-fermion system Ce2PtIn8
Klotz, J.; Götze, K.; Green, E. L.; Demuer, A.; Shishido, H.; Ishida, T.; Harima, H.; Wosnitza, J.; Sheikin, I.
2018-04-01
Ce2PtIn8 is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn5. Here we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce2PtIn8 and Pr2PtIn8 . In addition, we performed band-structure calculations for localized and itinerant Ce-4 f electrons in Ce2PtIn8 . Comparison with the experimental data of Ce2PtIn8 and of the 4 f -localized Pr2PtIn8 suggests the itinerant character of the Ce-4 f electrons. This conclusion is further supported by the observation of effective masses in Ce2PtIn8 , which are strongly enhanced with up to 26 bare electron masses.
Localized-to-extended-states transition below the Fermi level
Tito, M. A.; Pusep, Yu. A.
2018-05-01
Time-resolved photoluminescence is employed to examine a transition from localized to extended electron states below the Fermi level in multiple narrow quantum well GaAs/AlGaAs heterostructures, where disorder was generated by interface roughness. Such a transition resembles the metal-insulator transition profoundly investigated by electric transport measurements. An important distinction distinguishes the localized-to-extended-states transition studied here: it takes place below the Fermi level in an electron system with a constant concentration, which implies unchanging Coulomb correlations. Moreover, for such a localized-to-extended-states transition the temperature is shown to be irrelevant. In the insulating regime the magnetic field was found to cause an additional momentum relaxation which considerably enhanced the recombination rate. Thus, we propose a method to explore the evolution of the localized electron states in a system with a fixed disorder and Coulomb interaction.
Correlation control theory of chaotic laser systems
International Nuclear Information System (INIS)
Li Fuli.
1986-04-01
A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)
Superconductivity in Correlated Fermions System | Babalola ...
African Journals Online (AJOL)
We have studied the Hubbard model which is a model that is used to describe the physics of strongly correlated Fermions systems. Using the Hubbard model, we worked on some systems in one dimension (1-D) at half fillings. We employed the numerical exact diagonalization technique and found out that there was a ...
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas
Akbari-Moghanjoughi, M.
2012-01-01
In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...
NASA
2009-01-01
1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)
System Reliability Analysis Considering Correlation of Performances
Energy Technology Data Exchange (ETDEWEB)
Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)
2017-04-15
Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.
System Reliability Analysis Considering Correlation of Performances
International Nuclear Information System (INIS)
Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul
2017-01-01
Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.
On the possibility of simultaneous spiral and superfluid ordering in a Fermi-liquid
International Nuclear Information System (INIS)
Peletminskij, S.V.; Yatsenko, A.A.; Shulga, S.N.
2004-01-01
The paper concerns a particular possibility of ordering for Fermi systems - a superfluid spiral ordering, at which in addition to the phase invariance breakdown there occurs a violence of the translational and the spin rotation invariance. A general approach of studying of the superfluid spiral ordering is formulated on the basis of the Fermi liquid method. For a monocomponent Fermi system self-consistency equations for four order parameters and the temperature of simultaneous transition to spiral and superfluid states are obtained. The system of equations is studied under the assumption of two order parameters being distinct from zero. The spiral parameter dependences of the transition temperature and the energy gap in the spectrum of elementary fermion excitations are calculated. An interval of the spiral parameter values within which the superfluid spiral ordering can exist is determined. The spin correlation function at the spiral ordering is studied
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Two-particle correlations in reactor systems
International Nuclear Information System (INIS)
Mika, J.
1975-01-01
A study is made of the relationship between the general transport equation and the correlation matrix equation, in reactor systems. How some of the results obtained so far for the generalized transport equation can be simply translated to the correlation matrix equation is indicated. In particular, the semigroup formalism developed for the generalized transport equation is used to prove the existence and uniqueness of solution to the correlation matrix equation. The generalized transport equation is rigorously formulated in a Hilbert space of square integrable functions. The semigroup formalism for that equation is introduced and the solution expressed in terms of the semigroup. The correlation matrix equation is then formulated. It is shown how the semigroup formalism developed for the generalized transport equation can be applied to the correlation matrix equation and used to prove the existence theorem. Some applications of the semigroup formalism are then indicated. Firstly, the simple one point model obtained from the general equations is introduced. Secondly, the well known phenomenon of the linear increase with time of the components of the correlation matrix in a critical reactor is analyzed. Finally, it is shown how the singular perturbation method developed recently for the generalized transport equation can be applied to the correlation matrix equation. (U.K.)
Propagating wave correlations in complex systems
International Nuclear Information System (INIS)
Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor
2017-01-01
We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)
Correlations in small systems with ALICE
Lakomov, Igor
2016-01-01
ALICE is dedicated to the study of the strongly interacting matter, the so-called Quark-Gluon Plasma (QGP), formed in heavy-ion collisions at the LHC. In addition, ALICE also actively participated in the pp and p–Pb collision programs. In particular, the measurements of the twoparticle azimuthal correlations in pp collisions at √ s = 7 TeV and in p–Pb collisions at √ sNN = 5.02 TeV have been performed by the ALICE Collaboration during Run I of the LHC. Similar long-range correlations in p–Pb and Pb–Pb collisions have been observed on the near and away side — also known as the double ridge. Further investigations showed the importance of the Multi-Parton Interactions (MPI) in high-multiplicity collisions in small systems. In this work the ALICE results on the correlations in small systems are presented including MPI measurements in pp collisions.
Enrico Fermi centenary exhibition seminar
Maximilien Brice
2002-01-01
Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.
A new digital correlation flaw detection system
International Nuclear Information System (INIS)
Lee, B.B.; Furgason, E.S.
1981-01-01
A new portable digital random signal flaw detection system is described which uses a digital delay line to replace the acoustic delay line of the original random signal system. Using this new system, a comparison was made between the two types of transmit signals which have been used in previous systems--m-sequences and random signals. This comparison has not been possible with these previous correlation flaw detection systems. Results indicated that for high-speed short code operation, the m-sequences produced slightly lower range sidelobes than typical samples of a clipped random signal. For normal long code operation, results indicated that system performance is essentially equivalent in resolution and signal-to-noise ratio using either m-sequences or clipped and sampled random signals. Further results also showed that for normal long code operation, the system produces outputs equivalent in resolution to pulse-echo systems, but with the added benefit of signal-to-noise ratio enhancement
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Eddy Correlation Flux Measurement System (ECOR) Handbook
Energy Technology Data Exchange (ETDEWEB)
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo
2017-12-01
To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.
Directory of Open Access Journals (Sweden)
Antonello Sindona
2015-03-01
Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
Enrico Fermi exhibition at CERN
2002-01-01
A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...
Directory of Open Access Journals (Sweden)
Takashi Yanagisawa
2015-01-01
Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.
TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS
Directory of Open Access Journals (Sweden)
T.Domanski
2004-01-01
Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.
2009-01-01
In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...
Seebeck effect on a weak link between Fermi and non-Fermi liquids
Nguyen, T. K. T.; Kiselev, M. N.
2018-02-01
We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.
International Nuclear Information System (INIS)
Sanchez-Castro, C.R.
1988-01-01
This dissertation is divided in six chapters. Chapter 1 is an introduction to the rest of the dissertation. In it, the author presents the different models for the magnetic equation state of liquid 3 He, a derivation of the induced interaction equations for a one component Fermi liquid, and discuss the basic hamiltonian describing the heavy fermion compounds. In Chapter 2 and Chapter 3, he presents a complete discussion of the thermodynamics and Landau theory of a spin polarized Fermi liquid. A phenomenological model is then developed to predict the polarization dependence of the longitudinal Landau parameters in liquid 3 He. This model predicts a new magnetic equation of state and the possibility of liquid 3 He being 'nearly metamagnetic' at high pressures. Chapter 4 contains a microscopic calculation of the magnetic field dependence of the Landau parameters in a strongly correlated Fermi system using the induced interaction model. The system he studied consists of a single component Fermi liquid with parabolic energy bands, and a large on-site repulsive interaction. In Chapter 5, he presents a complete discussion of the Landau theory of a two component Fermi liquid. Then, he generalizes the induced interaction equations to calculate Landau parameters and scattering amplitudes for an arbitrary, spin polarized, two component Fermi liquid. The resulting equations are used to study a model for the heavy fermion Fermi liquid state: a two band electronic system with an antiferromagnetic interaction between the two bands. Chapter 6 contains the concluding remarks of the dissertation
Electron-phonon interactions in correlated systems
International Nuclear Information System (INIS)
Wysokinski, K.I.
1996-01-01
There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)
Topology of Fermi surfaces and anomaly inflows
Energy Technology Data Exchange (ETDEWEB)
Adem, Alejandro; Camarena, Omar Antolín [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada); Semenoff, Gordon W. [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, V6T 1Z1 (Canada); Sheinbaum, Daniel [Department of Mathematics, University of British Columbia,1984 Mathematics Road, Vancouver, V6T 1Z2 (Canada)
2016-11-14
We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half-space and with a gapped bulk, our derivation naturally yields a K-theory classification. Given the d−1-dimensional surface Brillouin zone X{sub s} of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K{sup −1}(X{sub s}) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d=2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.
Visualizing complex (hydrological) systems with correlation matrices
Haas, J. C.
2016-12-01
When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011
Scattering from correlations in colloidal systems
International Nuclear Information System (INIS)
Hayter, J.B.
1984-01-01
Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10 4 A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10 -8 -10 -3 sec) than those found in simple atomic or small molecular systems (10 -13 -10 -10 sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest
International Nuclear Information System (INIS)
Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.
2004-01-01
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices
Correlated electrons and generalized statistics
International Nuclear Information System (INIS)
Wang, Q.A.
2003-01-01
Several important generalizations of Fermi-Dirac distribution are compared to numerical and experimental results for correlated electron systems. It is found that the quantum distributions based on incomplete information hypothesis can be useful for describing this kind of systems. We show that the additive incomplete fermion distribution gives very good description of weakly correlated electrons and that the non-additive one is suitable to very strong correlated cases. (author)
Eddy Correlation Flux Measurement System Handbook
Energy Technology Data Exchange (ETDEWEB)
Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.
Energy Technology Data Exchange (ETDEWEB)
Kubbinga, H. [Groningen Univ. (Netherlands)
2009-07-01
This article is a short biography of Enrico Fermi 'The Pope of physics'. His main contributions in theoretical physics have paved the way to quantum electrodynamics and the quantization of the fields. Fermi got also great achievements on beta decay process and on nuclear reactions brought about by slow neutrons. Fermi was awarded the Nobel prize of physics in 1938
Correlation effects in superconducting quantum dot systems
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Correlated Levy Noise in Linear Dynamical Systems
International Nuclear Information System (INIS)
Srokowski, T.
2011-01-01
Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)
On the Dynamics of the Fermi-Bose model
DEFF Research Database (Denmark)
Ögren, Magnus
In this talk we formulate and prove results for the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimmers dissociating into its atomic compounds. The problem is solved in D spatial....... In particular the results can be used for studies of threedimensional physical systems of arbitrary geometry. We illustrate the generality of our approach by giving numerical results for the dynamics of Glauber type atomic pair correlation functions for a non-isotropic three-dimensional harmonically trapped...
Non-Fermi liquid behaviour in an extended Anderson model
International Nuclear Information System (INIS)
Liu Yuliang; Su Zhaobin; Yu Lu.
1996-08-01
An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs
Atomic physics of strongly correlated systems
International Nuclear Information System (INIS)
Lin, C.D.
1986-01-01
This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Zangrando, M.; Cudin, I.; Fava, C.; Gerusina, S.; Gobessi, R.; Godnig, R.; Rumiz, L.; Svetina, C.; Parmigiani, F.; Cocco, D.
2011-06-01
The Italian Free Electron Laser (FEL) facility FERMI@Elettra has started to produce photon radiation at the end of 2010. The photon beam is presently delivered by the first undulator chain (FEL1) that is supposed to produce photons in the 100-20 nm wavelength range. A second undulator chain (FEL2) will be commissioned at the end of 2011, and it will produce radiation in the 20-4nm range. The Photon Analysis Delivery and Reduction System (PADReS) was designed to collect the radiation coming from both the undulator chains (FEL1 and FEL2), to characterize and control it, and to redirect it towards the following beamlines. The first parameters that are checked are the pulse-resolved intensity and beam position. For each of these parameters two dedicated monitors are installed along PADReS on each FEL line. In this way it possible to determine the intensity reduction that is realized by the gas reduction system, which is capable of cutting the intensity by up to four orders of magnitude. The energy distribution of each single pulse is characterized by an online spectrometer installed in the experimental hall. Taking advantage of a variable line-spacing grating it can direct the almost-full beam to the beamlines, while it uses a small fraction of the beam itself to determine the spectral distribution of each pulse delivered by the FEL. The first light of FERMI@Elettra, delivered to the PADReS section in late 2010, is used for the first commissioning runs and some preliminary experiments whose results are reported and discussed in detail.
Strongly Correlated Electron Systems: An Operatorial Perspective
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.
Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations
International Nuclear Information System (INIS)
Kontani, Hiroshi
2008-01-01
In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance
To the theory of spin-charge separation in one-dimensional correlated electron systems
International Nuclear Information System (INIS)
Zvyagin, A.A.
2004-01-01
Spin-charge separation is considered to be one of the key properties that distinguish low-dimensional electron systems from others. Three-dimensional correlated electron systems are described by the Fermi liquid theory. There, low-energy excitations (quasiparticles) are reminiscent of noninteracting electrons: They carry charges -e and spins 1/2 . It is believed that for any one-dimensional correlated electron system, low-lying electron excitations carry either only spin and no charge, or only charge without spin. That is why recent experiments looked for such low-lying collective electron excitations, one of which carries only spin, and the other carries only charge. Here we show that despite the fact that for exactly solvable one-dimensional correlated electron models there exist excitations which carry only spin and only charge, in all these models with short-range interactions the low-energy physics is described by low-lying collective excitations, one of which carries both spin and charge
The Electron-Phonon Interaction in Strongly Correlated Systems
International Nuclear Information System (INIS)
Castellani, C.; Grilli, M.
1995-01-01
We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)
The 3-Dimensional Fermi Liquid Description for the Iron-Based Superconductors
Misawa, Setsuo
2018-01-01
The quasiparticles in the normal state of iron-based superconductors have been shown to behave universally as a 3-dimensional Fermi liquid. Because of interactions and the presence of sharp Fermi surfaces, the quasiparticle energy contains, as a function of the momentum \\varvec{p}, a term of the form ( p - p_0)^3 ln {( |p-p_0|/p_0)} , where p = | \\varvec{p} | and p_0 is the Fermi momentum. The electronic specific heat coefficient, magnetic susceptibility (Knight shift), electrical resistivity, Hall coefficient and thermoelectric power divided by temperature follow, as functions of temperature T, the logarithmic formula a-b T^2 ln {(T/T^*)}, a, b and T^* being constant; these formulae have been shown to explain the observed data for all iron-based superconductors. It is shown that the concept of non-Fermi liquids or anomalous metals which appears in the literature is not needed for descriptions of the present systems. When the superconducting transition temperature TC and the b / a value for the resistivity are plotted as functions of the doping content x, there appear various characteristic diagrams in which regions of positive correlation and those of negative correlation between TC and b / a are interconnected; from these diagrams, we may make speculations about the types of superconductivity and the crossover between them.
Geometrical optics in correlated imaging systems
International Nuclear Information System (INIS)
Cao Dezhong; Xiong Jun; Wang Kaige
2005-01-01
We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging
Nonextensive Thomas-Fermi model
Shivamoggi, Bhimsen; Martinenko, Evgeny
2007-11-01
Nonextensive Thomas-Fermi model was father investigated in the following directions: Heavy atom in strong magnetic field. following Shivamoggi work on the extension of Kadomtsev equation we applied nonextensive formalism to father generalize TF model for the very strong magnetic fields (of order 10e12 G). The generalized TF equation and the binding energy of atom were calculated which contain a new nonextensive term dominating the classical one. The binding energy of a heavy atom was also evaluated. Thomas-Fermi equations in N dimensions which is technically the same as in Shivamoggi (1998) ,but behavior is different and in interesting 2 D case nonextesivity prevents from becoming linear ODE as in classical case. Effect of nonextensivity on dielectrical screening reveals itself in the reduction of the envelope radius. It was shown that nonextesivity in each case is responsible for new term dominating classical thermal correction term by order of magnitude, which is vanishing in a limit q->1. Therefore it appears that nonextensive term is ubiquitous for a wide range of systems and father work is needed to understand the origin of it.
Superconductivity in strongly correlated electron systems: successes and open questions
International Nuclear Information System (INIS)
Shastry, B. Sriram
2000-01-01
Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems
Advanced cluster methods for correlated-electron systems
Energy Technology Data Exchange (ETDEWEB)
Fischer, Andre
2015-04-27
In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear. Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects. Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom. For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult
The Fermi GBM catalog (Paciesas+, 2012) [Dataset
Paciesas, W.S.; Meegan, C.A.; von Kienlin, A.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burgess, J.M.; Chaplin, V.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; H. Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Guiriec, S.; van der Horst, A.J.; Kippen, R.M.; Kouveliotou, C.; Lichti, G.; Lin, L.; McBreen, S.; Preece, R.D.; Rau, A.; Tierney, D.; Wilson-Hodge, C.
2012-01-01
The Fermi Gamma-ray Space Telescope was launched on 2008 June 11 on a mission to study the universe at high energies. The onboard Gamma-ray Burst Monitor (GBM) trigger system for detecting GRBs was first enabled on 2008 July 12. In this paper, we provide a catalog of GRBs that triggered the GBM
Fermi surfaces in Kondo insulators
Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.
2018-04-01
We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.
Kashyap, Rahul; Westley, Alexandra; Sen, Surajit
The Duffing oscillator, a nonlinear oscillator with a potential energy with both quadratic and cubic terms, is known to show highly chaotic solutions in certain regions of its parameter space. Here, we examine the behaviors of small chains of harmonically and anharmonically coupled Duffing oscillators and show that these chains exhibit localized nonlinear excitations (LNEs) similar to the ones seen in the Fermi-Pasta-Ulam-Tsingou (FPUT) system. These LNEs demonstrate properties such as long-time energy localization, high periodicity, and slow energy leaking which rapidly accelerates upon frequency matching with the adjacent particles all of which have been observed in the FPUT system. Furthermore, by examining bifurcation diagrams, we will show that many qualitative properties of this system during the transition from weakly to strongly nonlinear behavior depend directly upon the frequencies associated with the individual Duffing oscillators.
Kepp, Kasper P
2011-10-01
Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.
2017-08-01
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
DEFF Research Database (Denmark)
Kepp, Kasper Planeta
2011-01-01
on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0–10kJ/mol, respectively. When...... favors low-spin by 3–53kJ/mol (TPSSh) or 4–15kJ/mol (B3LYP) due to the attractive r−6 term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional......-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results....
On defense strategies for system of systems using aggregated correlations
Energy Technology Data Exchange (ETDEWEB)
Rao, Nageswara S. [ORNL; Imam, Neena [ORNL; Ma, Chris Y. T. [Hang Seng Management College, Hon Kong; Hausken, Kjell [University of Stavanger, Norway; He, Fei [Texas A& M University, Kingsville, TX, USA; Zhuang, Jun [University at Buffalo (SUNY)
2017-04-01
We consider a System of Systems (SoS) wherein each system Si, i = 1; 2; ... ;N, is composed of discrete cyber and physical components which can be attacked and reinforced. We characterize the disruptions using aggregate failure correlation functions given by the conditional failure probability of SoS given the failure of an individual system. We formulate the problem of ensuring the survival of SoS as a game between an attacker and a provider, each with a utility function composed of asurvival probability term and a cost term, both expressed in terms of the number of components attacked and reinforced. The survival probabilities of systems satisfy simple product-form, first-order differential conditions, which simplify the Nash Equilibrium (NE) conditions. We derive the sensitivity functions that highlight the dependence of SoS survival probability at NE on cost terms, correlation functions, and individual system survival probabilities.We apply these results to a simplified model of distributed cloud computing infrastructure.
International Nuclear Information System (INIS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Brigida, M.; Bruel, P.; Caliandro, G. A.
2011-01-01
We report on the discovery of ≥100 MeV γ-rays from the binary system PSR B1259-63/LS 2883 using the Large Area Telescope (LAT) on board Fermi. The system comprises a radio pulsar in orbit around a Be star. We report on LAT observations from near apastron to ∼128 days after the time of periastron, t p , on 2010 December 15. No γ-ray emission was detected from this source when it was far from periastron. Faint γ-ray emission appeared as the pulsar approached periastron. At ∼t p + 30 days, the ≥100 MeV γ-ray flux increased over a period of a few days to a peak flux 20-30 times that seen during the pre-periastron period, but with a softer spectrum. For the following month, it was seen to be variable on daily timescales, but remained at ∼(1-4) x 10 -6 cm -2 s -1 before starting to fade at ∼t p + 57 days. The total γ-ray luminosity observed during this period is comparable to the spin-down power of the pulsar. Simultaneous radio and X-ray observations of the source showed no corresponding dramatic changes in radio and X-ray flux between the pre-periastron and post-periastron flares. We discuss possible explanations for the observed γ-ray-only flaring of the source.
International Nuclear Information System (INIS)
Dhar, S.
1989-01-01
In electronic-structure calculations for finite systems using the local-spin-density (LSD) approximation, it is assumed that the eigenvalues of the Kohn-Sham equation should obey Fermi-Dirac (FD) statistics. In order to comply with this assumption for some of the transition-metal atoms, a nonintegral occupation number is used which also minimizes the total energy. It is shown here that for finite systems it is not necessary that the eigenvalues of the Kohn-Sham equation obey FD statistics. It is also shown that the Kohn-Sham exchange potential used in all LSD models is correct only for integer occupation number. With a noninteger occupation number the LSD exchange potential will be smaller than that given by the Kohn-Sham potential. Ab initio self-consistent spin-polarized calculations have been performed numerically for the total energy of an iron atom. It is found that the ground state belongs to the 3d 6 4s 2 configuration. The ionization potentials of all the Fe/sup n/ + ions are reported and are in agreement with experiment
Radio core dominance of Fermi blazars
Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He
2016-07-01
During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0.70 (a photon spectral index of α_{γ}^{ph}|_{ext.} = 1.70). Some discussions are also presented.
Stability of a fully magnetized ferromagnetic state in repulsively interacting ultracold Fermi gases
International Nuclear Information System (INIS)
Cui Xiaoling; Zhai Hui
2010-01-01
We construct a variational wave function to study whether a fully polarized Fermi sea of ultracold atoms is energetically stable against a single spin flip. Our variational wave function contains short-range correlations at least to the same level as Gutzwiller's projected wave function. For the Hubbard lattice model and the continuum model with pure repulsive interaction, we show that a fully polarized Fermi sea is generally unstable even for infinite repulsive strength. By contrast, for a resonance model, the ferromagnetic state is possible if the s-wave scattering length is positive and sufficiently large and the system is prepared to be orthogonal to the molecular bound state. However, we cannot rule out the possibility that more exotic correlations can destabilize the ferromagnetic state.
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
Nested Fermi surfaces and order in the rare earth nickel borocarbides and copper palladium alloys
International Nuclear Information System (INIS)
Wilkinson, Ian
2002-01-01
The electronic structure of two systems, each displaying a different type of order believed to derive from their respective Fermi surface topologies, has been investigated using the two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. A particular topological feature of a generic rare earth nickel borocarbide (general formula RNi 2 B 2 C) Fermi surface is popularly believed to be responsible for a particular modulated arrangement of local moments observed in several magnetic borocarbides. Accordingly, c-axis 2D-ACAR spectra were collected from four representative members of the series, namely the Er, Tm, Yb and Lu compounds. A further a-axis projection from LuNi 2 B 2 C provides an additional comparison with electronic structure calculations performed for this compound. The c-axis projected k-space electron occupancies reveal a fundamentally similar Fermi surface topology across the measured compounds. The a- and c-axis k-space occupancies obtained from LuNi 2 B 2 C showed exceptional qualitative agreement with the corresponding calculated electron occupancy. A number of edge-detection methods were employed to identify the projected Fermi surface, and the existence of the proposed feature was confirmed by direct observation in each of the measured compounds. Calipers of this feature were found to be in good general agreement with those predicted by relevant calculation and expected from indirect experimental evidence. The compositional phase behaviour of copper-palladium solid solutions is believed to be strongly influenced by the shape of their respective Fermi surfaces. In particular, the concentration-dependent positions of diffuse peaks in electron and X-ray diffraction patterns from disordered samples has been associated with the corresponding evolution of flat, parallel areas on the alloy Fermi surface. Electronic structure calculations indicate these areas to be maximal around 40 at. % Pd, and it has been further suggested that
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.
Enrico Fermi and uranium fission
International Nuclear Information System (INIS)
Hahn, O.
1962-01-01
The author describes the part of his scientific work connected to the research made by Enrico Fermi in the field of nuclear reactions. He said that 'Our gratitude to Fermi today is therefore due less perhaps for his reactor than for his experiments using uncharged neutrons in order to bring about artificial nuclear processes'
PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)
Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.
2012-11-01
The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion
Pair correlation of particles in strongly nonideal systems
International Nuclear Information System (INIS)
Vaulina, O. S.
2012-01-01
A new semiempirical model is proposed for describing the spatial correlation between interacting particles in nonideal systems. The developed model describes the main features in the behavior of the pair correlation function for crystalline structures and can also be used for qualitative and quantitative description of the spatial correlation of particles in strongly nonideal liquid systems. The proposed model is compared with the results of simulation of the pair correlation function.
Enrico Fermi Symposium at CERN : opening celebration
CERN. Geneva. Audiovisual Unit
2002-01-01
You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).
Renormalization group and the superconducting susceptibility of a Fermi liquid
International Nuclear Information System (INIS)
Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.
2010-01-01
A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.
Non-Fermi glasses: fractionalizing electrons at finite energy density
Parameswaran, Siddharth; Gopalakrishnan, Sarang
Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of ``non-Fermi glasses,'' which are phases of interacting disordered fermions that are fully many-body localized, yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlation functions, that sharply distinguishes between the two phases even at infinite temperature. We argue that our results and diagnostic should generically apply to the high-temperature behavior of the many-body localized descendants of fractionalized phases. S.A.P. is supported by NSF Grant DMR-1455366 and a UC President's Research Catalyst Award CA-15-327861, and S.G. by the Burke Institute at Caltech.
Directory of Open Access Journals (Sweden)
Ynduráin, Francisco J.
2002-01-01
Full Text Available Not available
Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.
FermiGrid—experience and future plans
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.
2008-07-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.
FermiGrid - experience and future plans
International Nuclear Information System (INIS)
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.
2007-01-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems
FermiGrid-experience and future plans
International Nuclear Information System (INIS)
Chadwick, K; Berman, E; Canal, P; Hesselroth, T; Garzoglio, G; Levshina, T; Sergeev, V; Sfiligoi, I; Sharma, N; Timm, S; Yocum, D R
2008-01-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
A two-dimensional Fermi gas in the BEC-BCS crossover
Energy Technology Data Exchange (ETDEWEB)
Ries, Martin Gerhard
2016-01-21
This thesis reports on the preparation of a 2D Fermi gas in the BEC-BCS crossover and the observation of the BKT transition into a quasi long-range ordered superfluid phase. The pair momentum distribution of the gas is probed by means of a matter-wave focusing technique which relies on time-of-flight evolution in a weak harmonic potential. This distribution holds the coherence properties of the gas. The quasi long-range ordered phase manifests itself as a sharp low-momentum peak. The temperature where it forms is identified as the transition temperature. By tuning the temperature and the interaction strength, the phase diagram of the 2D Fermi gas in the BEC-BCS crossover is mapped out. The phase coherence is investigated in a self-interference experiment. Furthermore, algebraic decay of correlations is observed in the trap average of the first order correlation function, which is obtained from the Fourier transform of the pair momentum distribution. This is in qualitative agreement with predictions of homogeneous theory for the superfluid phase in a 2D gas. The presented results provide a foundation for future experimental and theoretical studies of strongly correlated 2D Fermi gases. They might thus help to elucidate complex systems such as the electron gas in high-T{sub c} superconductors.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
International Nuclear Information System (INIS)
Elyutin, P V; Rubtsov, A N
2008-01-01
The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence
Two particle correlations in small systems
Palmeiro Pazos, Brais
2015-01-01
The present report summarizes the work on the Summer Student project within the ALICE Collaboration. The aim of the project is to study the two-particle correlations in peripheral Pb-Pb collisions with the ALICE detector. The first part of this project is the development of a Toy Monte Carlo (MC) generator to reproduce and understand the Physics behind and probe the analysis in a controlled data set. Then, once the Toy MC is fully understood, it is possible to move to real data where some unexpected effects might appear and should be comprehended in order to have the whole physical picture of the peripheral Pb-Pb collisions.
Correlation function behavior in quantum systems which are classically chaotic
International Nuclear Information System (INIS)
Berman, G.P.; Kolovsky, A.R.
1983-01-01
The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)
Electron correlation energy in confined two-electron systems
Energy Technology Data Exchange (ETDEWEB)
Wilson, C.L. [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Montgomery, H.E., E-mail: ed.montgomery@centre.ed [Chemistry Program, Centre College, 600 West Walnut Street, Danville, KY 40422 (United States); Sen, K.D. [School of Chemistry, University of Hyderabad, Hyderabad 500 046 (India); Thompson, D.C. [Chemistry Systems and High Performance Computing, Boehringer Ingelheim Pharamaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877 (United States)
2010-09-27
Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05-10a{sub 0}. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z{>=}1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy.
Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System
International Nuclear Information System (INIS)
Satow, D.
2015-01-01
It was suggested that supersymmetry (SUSY) is broken at finite temperature, and as a result of the symmetry breaking, a Nambu-Goldstone fermion (goldstino) related to SUSY breaking appears. Since dispersion relations of quarks and gluons are almost degenerate at extremely high temperature, quasi-zero energy quark excitation was suggested to exist in quark-gluon plasma (QGP), though QCD does not have exact SUSY. On the other hand, in condensed matter system, a setup of cold atom system in which the Hamiltonian has SUSY was proposed, the goldstino was suggested to exist, and the dispersion relation of that mode at zero temperature was obtained recently. In this presentation, we obtain the expressions for the dispersion relation of the goldstino in cold atom system at finite temperature, and compare it with the dispersion of the quasi zero-mode in QGP. Furthermore, we show that the form of the dispersion relation of the goldstino can be understood by using an analogy with a magnon in ferromagnet. We also discuss on how the dispersion relation of the goldstino is reflected in observable quantities in experiment. (author)
Maccone, C.
In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels
International Nuclear Information System (INIS)
Liu, Jinn-Liang; Eisenberg, Bob
2014-01-01
A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10 8 -fold range of Ca 2+ concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to
International Nuclear Information System (INIS)
Uzhinskij, V.V.; Shmakov, S.Yu.
1988-01-01
A method is suggested which enables one to take unto account the Fermi motion of nuclear nucleons in Monte-Carlo simulation of exclusive states in hadron-nucleus and nucleus-nucleus interactions and, in hadron-hadron interaction simulation, to take into account the quark transverse momentum without violation of the energy-momentum conservation law
Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio
2018-03-01
In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed
Stochastic systems with cross-correlated Gaussian white noises
International Nuclear Information System (INIS)
Wang Cheng-Yu; Song Yu-Min; Zhou Peng; Yang Hai; Gao Yun
2010-01-01
This paper theoretically investigates three stochastic systems with cross-correlation Gaussian white noises. Both steady state properties of the stochastic nonlinear systems and the nonequilibrium transitions induced by the cross-correlated noises are studied. The stationary solutions of the Fokker—Planck equation for three specific examples are analysed. It is shown explicitly that the cross-correlation of white noises can induce nonequilibrium transitions
Fermi acceleration in non-autonomous billiards
International Nuclear Information System (INIS)
Gelfreich, V; Turaev, D
2008-01-01
Fermi acceleration can be modelled by a classical particle moving inside a time-dependent domain and elastically reflecting from its boundary. In this paper, we describe how the results from the dynamical system theory can be used to explain the existence of trajectories with unbounded energy. In particular, we show for slowly oscillating boundaries that the energy of the particle may increase exponentially fast in time. (fast track communication)
Enrico Fermi the obedient genius
Bruzzaniti, Giuseppe
2016-01-01
This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...
The radio-γ-ray connection in Fermi blazars
Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.; Bonnoli, G.
2011-05-01
We study the correlation between the γ-ray flux (Fγ), averaged over the first 11 months of the Fermi survey and integrated above 100 MeV, and the radio flux density (Fr at 20 GHz) of Fermi sources associated with a radio counterpart in the 20-GHz Australia Telescope Compact Array (AT20G) survey. Considering the blazars detected in both bands, the correlation is highly significant and has the form Fγ∝F0.85±0.04r, similar to BL Lacertae objects and flat-spectrum radio quasars. However, only a small fraction (˜1/15) of the AT20G radio sources with flat radio spectra are detected by Fermi. To understand if this correlation is real, we examine the selection effects introduced by the flux limits of both the radio and the γ-ray surveys, and the importance of variability of the γ-ray flux. After accounting for these effects, we find that the radio-γ-ray flux correlation is real, but its slope is steeper than the observed one, that is, Fγ∝Fδr with δ in the range 1.25-1.5. The observed Fγ-Fr correlation and the fraction of radio sources detected by Fermi are reproduced assuming a long-term γ-ray flux variability, following a lognormal probability distribution with standard deviation σ≥ 0.5 (corresponding to Fγ varying by at least a factor of 3). Such a variability is compatible, even if not necessarily equal, with what is observed when comparing, for the sources in common, the EGRET and the Fermi γ-ray fluxes (even if the Fermi fluxes are averaged over ˜1 yr). Another indication of variability is the non-detection of 12 out of 66 EGRET blazars by Fermi, despite its higher sensitivity. We also study the strong linear correlation between the γ-ray and the radio luminosity of the 144 AT20G-Fermi associations with known redshift and show, through partial correlation analysis, that it is statistically robust. Two possible implications of these correlations are discussed: the contribution of blazars to the extragalactic γ-ray background and the prediction
BBGKY hierarchy and dynamics of correlations
International Nuclear Information System (INIS)
Polishchuk, D.O.
2010-01-01
We derive the BBGKY hierarchy for the Fermi and Bose many-particle systems, using the von Neumann hierarchy for the correlation operators. The solution of the Cauchy problem of the formulated hierarchy in the case of an n-body interaction potential is constructed in the space of sequences of trace-class operators.
The n-level spectral correlations for chaotic systems
International Nuclear Information System (INIS)
Nagao, Taro; Mueller, Sebastian
2009-01-01
We study the n-level spectral correlation functions of classically chaotic quantum systems without time-reversal symmetry. According to Bohigas, Giannoni and Schmit's universality conjecture, it is expected that the correlation functions are in agreement with the prediction of the circular unitary ensemble (CUE) of random matrices. A semiclassical resummation formalism allows us to express the correlation functions as sums over pseudo-orbits. Using an extended version of the diagonal approximation on the pseudo-orbit sums, we derive the n-level correlation functions identical to the n x n determinantal correlation functions of the CUE.
Dual fermion approach to disordered correlated systems
International Nuclear Information System (INIS)
Haase, Patrick
2015-01-01
Disorder is ubiquitous in real materials and influences the physical properties like the conductivity to varying degrees. If electron-electron interactions are strong, theoretical and numerical treatment of these systems becomes challenging. In this thesis a numerical approach is developed to address these systems, treating both interactions and disorder on equal footing. The approach is based on the dual fermion approach for interacting systems developed by Rubtsov et al. Terletska et al. applied the ideas of the dual fermion approach to disordered non-interacting systems. In this approach, the replica trick is used to integrate out the disorder in favor of an effective electron-electron interaction. We extended the approach from Terletska et al. to treat disordered interacting systems. Dual Fermions allow to take into account non-local fluctuations by means of a perturbative expansion around an impurity problem. The impurity reference system is determined self-consistently, analogously to the dynamical mean-field theory. The perturbative expansion is expected to yield good results for small and large values of interaction strength and disorder. A priori, it is not clear what to expect for intermediate values, but experience shows that oftentimes good results are obtained for this region. An advantage of the dual fermion approach is that there is no sign-problem for a single orbital model if quantum Monte Carlo is used to solve the interacting reference system. Additionally, perturbation theory is usually numerically much cheaper than fully solving an interacting lattice or cluster problem. Thus, the dual fermion approach allows to address regions of parameter space that are not accessible to lattice quantum Monte Carlo calculations or cluster extension of dynamical mean-field theory. Cluster extensions of the dynamical mean-field theory are for example the dynamical cluster approximation or the cellular dynamical mean-field theory. The new approach is benchmarked
Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas
International Nuclear Information System (INIS)
Liao Kai; Chen Jisheng; Li Chao
2010-01-01
The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)
Extracting the Condensate Density from Projection Experiments with Fermi Gases
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Strinati, G.C.
2005-01-01
A debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus 'projecting' the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover. Calculations are presented over wide temperature and coupling ranges, by including pairing fluctuations on top of the mean field
Drag Effect in Double-Layer Dipolar Fermi Gases
International Nuclear Information System (INIS)
Tanatar, B; Renklioglu, B; Oktel, M O
2014-01-01
We consider two parallel layers of two-dimensional spin-polarized dipolar Fermi gas without any tunneling between the layers. The effective interactions describing screening and correlation effects between the dipoles in a single layer (intra-layer) and across the layers (interlayer) are modeled within the Hubbard approximation. We calculate the rate of momentum transfer between the layers when the gas in one layer has a steady flow. The momentum transfer induces a steady flow in the second layer which is assumed initially at rest. This is the drag effect familiar from double-layer semiconductor and graphene structures. Our calculations show that the momentum relaxation time has temperature dependence similar to that in layers with charged particles which we think is related to the contributions from the collective modes of the system
Fermi GBM Observations of Terrestrial Gamma Flashes
Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.;
2010-01-01
In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.
THE SPECTRAL INDEX PROPERTIES OF FERMI BLAZARS
Energy Technology Data Exchange (ETDEWEB)
Fan, J. H.; Yang, J. H.; Yuan, Y. H.; Wang, J.; Gao, Y., E-mail: jhfan_cn@yahoo.com.cn [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China)
2012-12-20
In this paper, a sample of 451 blazars (193 flat spectrum radio quasars (FSRQs), 258 BL Lacertae objects) with corresponding X-ray and Fermi {gamma}-ray data is compiled to investigate the correlation both between the X-ray spectral index and the {gamma}-ray spectral index and between the spectral index and the luminosity, and to compare the spectral indexes {alpha}{sub X}, {alpha}{sub {gamma}}, {alpha}{sub X{gamma}}, and {alpha}{sub {gamma}X{gamma}} for different subclasses. We also investigated the correlation between the X-ray and the {gamma}-ray luminosity. The following results have been obtained. Our analysis indicates that an anti-correlation exists between the X-ray and the {gamma}-ray spectral indexes for the whole sample. However, when we considered the subclasses of blazars (FSRQs, the low-peaked BL Lacertae objects (LBLs) and the high-peaked BL Lacertae objects (HBLs)) separately, there is not a clear relationship for each subclass. Based on the Fermi-detected sources, we can say that the HBLs are different from FSRQs, while the LBLs are similar to FSRQs.
Closed hierarchy of correlations in Markovian open quantum systems
International Nuclear Information System (INIS)
Žunkovič, Bojan
2014-01-01
We study the Lindblad master equation in the space of operators and provide simple criteria for closeness of the hierarchy of equations for correlations. We separately consider the time evolution of closed and open systems and show that open systems satisfying the closeness conditions are not necessarily of Gaussian type. In addition, we show that dissipation can induce the closeness of the hierarchy of correlations in interacting quantum systems. As an example we study an interacting optomechanical model, the Fermi–Hubbard model, and the Rabi model, all coupled to a fine-tuned Markovian environment and obtain exact analytic expressions for the time evolution of two-point correlations. (paper)
Quantum correlation of high dimensional system in a dephasing environment
Ji, Yinghua; Ke, Qiang; Hu, Juju
2018-05-01
For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.
Instabilities of a Fermi gas with nested Fermi surfaces
Energy Technology Data Exchange (ETDEWEB)
Schlottmann, Pedro [Department of Physics, Florida State University, Tallahassee, FL (United States)
2018-01-15
The nesting of the Fermi surfaces of an electron and a hole pocket separated by a vector Q commensurate with the lattice in conjunction with the interaction between the quasiparticles can give rise to a rich phase diagram. Of particular importance is itinerant antiferromagnetic order in the context of pnictides and heavy fermion compounds. By mismatching the nesting the order can gradually be suppressed and as the Neel temperature tends to zero a quantum critical point is obtained. A superconducting dome above the quantum critical point can be induced by the transfer of pairs of electrons between the pockets. The conditions under which such a dome arises are studied. In addition numerous other phases may arise, e.g. charge density waves, non-Fermi liquid behavior, non-s-wave superconductivity, Pomeranchuk instabilities of the Fermi surface, nematic order, and phases with persistent orbital currents. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fermi liquid, clustering, and structure factor in dilute warm nuclear matter
Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.
2018-02-01
Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.
Correlation Functions in Open Quantum-Classical Systems
Hsieh, Chang-Yu; Kapral, Raymond
2013-01-01
Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...
Markovian Limit of a Spatio-Temporal Correlated Open Systems
Monnai, T.
Large fluctuation of Brownian particles is affected by the finiteness of the correlation length of the background noise field. Indeed a Fokker—Planck equation is derived in a Markovian limit of a spatio-temporal short correlated noise. Corresponding kinetic quantities are renormalized due to the spatio-temporal memory. We also investigate the case of open system by connecting a thermostat to the system.
The Fermiac or Fermi's Trolley
Coccetti, F.
2016-03-01
The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.
International Nuclear Information System (INIS)
Backes, Steffen
2017-04-01
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
effects of electronic correlations due to an increase in localization of the iron 3d orbitals. This assumption is indeed confirmed by our calculations and we also find a significant increase in the incoherence properties along the series, which shows that these systems cannot be described within a Fermi-liquid picture even at lower temperatures. Finally, we close the circle by reinvestigating the probably best studied system within LDA+DMFT, the cubic perovskite SrVO{sub 3}. In the literature there was an overall agreement that a low-energy feature below the Fermi level in SrVO{sub 3} is to be interpreted as a lower Hubbard band. In contrast to that we show that oxygen vacancies that are well-known in related materials create a similar feature at the same energy, so that an interpretation of this state purely in terms of a lower Hubbard band is not correct.
Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas
International Nuclear Information System (INIS)
Kwon, Y.; Ceperley, D.M.; Martin, R.M.
1994-01-01
Excitations of the two-dimensional electron gas, including many-body effects, are calculated with a variational Monte Carlo method. Correlated sampling is introduced to calculate small energy differences between different excitations. The usual pair-product (Slater-Jastrow) trial wave function is found to lack certain correlations entirely so that backflow correlation is crucial. From the excitation energies calculated here, we determine Fermi-liquid parameters and related physical quantities such as the effective mass and the Lande g factor of the system. Our results for the effective mass are compared with previous analytic calculations
A Systems-Theoretical Generalization of Non-Local Correlations
von Stillfried, Nikolaus
Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.
A multimodal stress monitoring system with canonical correlation analysis.
Unsoo Ha; Changhyeon Kim; Yongsu Lee; Hyunki Kim; Taehwan Roh; Hoi-Jun Yoo
2015-08-01
The multimodal stress monitoring headband is proposed for mobile stress management system. It is composed of headband and earplugs. Electroencephalography (EEG), hemoencephalography (HEG) and heart-rate variability (HRV) can be achieved simultaneously in the proposed system for user status estimation. With canonical correlation analysis (CCA) and temporal-kernel CCA (tkCCA) algorithm, those different signals can be combined for maximum correlation. Thanks to the proposed combination algorithm, the accuracy of the proposed system increased up to 19 percentage points than unimodal monitoring system in n-back task.
Thomas-Fermi molecular dynamics
International Nuclear Information System (INIS)
Clerouin, J.; Pollock, E.L.; Zerah, G.
1992-01-01
A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated
Full scope upgrade project for the Fermi 2 simulator
International Nuclear Information System (INIS)
Bollacasa, D.; Gonsalves, J.B.; Newcomb, P.C.
1994-01-01
The Detroit Edison company (DECO) concentrated the Simulation Division of Asea Brown Boveri (ABB) to perform a full scope upgrade of the Fermi 2 simulator. The Fermi 2 plant is a BWR 6 generation Nuclear Steam Supply System (NSSS). The project included the complete replacement of the existing simulation model sofware with ABB's high fidelity BWR models, addition of an advanced instructor station facility and new simulation computers. Also provided on the project were ABB's advanced simulation environment (CETRAN), a comprehensive configuration management system based on a modern relational database system and a new computer interface to the input/output system. (8 refs., 2 figs.)
Correlation Between Information Technology And Management Information Systems Quality
Directory of Open Access Journals (Sweden)
Annisa Fitri Anggraeni
2015-08-01
Full Text Available The aim of this research is to find out the correlation between Information Technology and Management Information System Quality. This research applies literature review from various theories and previously conducted research where controversies between Information Technology and Management Information Systems. The result of this research shows that Information Technology is a part of Management Information System and supports the performance of Management Information Systems.
Fermi and the Art of Estimation
Indian Academy of Sciences (India)
IAS Admin
The balance wheel will now shed some ... work best when used by someone with the ... [1] Laura Fermi, Atoms in the Family: My Life with Enrico Fermi, The. University of Chicago ... Geneva, European Organization for Nuclear Research, 1969.
FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG
International Nuclear Information System (INIS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bisello, D.; Baughman, B. M.; Belli, F.
2010-01-01
We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.
Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity
Iizuka, Norihiro; Narayan, Prithvi; Trivedi, Sandip P
2012-01-01
We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.
Quantum correlations for bipartite continuous-variable systems
Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang
2018-04-01
Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
Multi-particle correlations in quaternionic quantum systems
International Nuclear Information System (INIS)
Brumby, S.P.; Joshi, G.C.
1994-01-01
The authors investigated the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. It was found that a multi particles interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components. 15 refs
Correlation functions for Hermitian many-body systems: Necessary conditions
International Nuclear Information System (INIS)
Brown, E.B.
1994-01-01
Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at t=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated
Resonant x-ray scattering in correlated systems
Ishihara, Sumio
2017-01-01
The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.
Resonant X-ray scattering in correlated systems
Energy Technology Data Exchange (ETDEWEB)
Murakami, Youichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Inst. of Materials Structure Science; Ishihara, Sumio (ed.) [Tohoku Univ., Sendai, Miyagi (Japan). Dept. of Physics
2017-03-01
The research and its outcomes presented here is devoted to the use of X-ray scattering to study correlated electron systems and magnetism. Different X-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with X-ray diffraction is shown.
A Generalized Correlation Plot Package for the CEBAF Control System
International Nuclear Information System (INIS)
D. Wu; W. Akers; S. Schaffner; H. Shoaee; W. A. Watson; D. Wetherholt
1996-01-01
The Correlation Package is a general facility for data acquisition and analysis serving as an online environment for performing a wide variety of machine physics experiments and engineering diagnostics. Typical correlation experiments consist of an initial set of actions followed by stepping one or two accelerator parameters while measuring up to several hundred control system parameters. The package utilizes the CDEV [1] device API to access accelerator systems. A variety of analysis and graphics tools are included through integration with the Matlab math modeling package. A post- acquisition script capability is available to automate the data reduction process. A callable interface allows this facility to serve as the data acquisition and analysis engine for high level applications. A planned interface to archived accelerator data will allow the same analysis and graphics tools to be used for viewing and correlating history data. The object oriented design and C++ implementation details as well as the current status of the Correlation Package will be presented
On the interrelation between bulk and thin-film Fermi surfaces
Schwingenschlögl, Udo
2010-12-01
A general scheme for inferring the Fermi surface of a finite slab from ab initio electronic-structure calculations for the parent bulk system is introduced. The simple cubic ReO 3 oxide is studied as an example system. We show that our scheme provides an accurate approximation of the Fermi surface even for very thin slabs. © 2010 Europhysics Letters Association.
Correlation matrices of two-mode bosonic systems
International Nuclear Information System (INIS)
Pirandola, Stefano; Serafini, Alessio; Lloyd, Seth
2009-01-01
We present a detailed analysis of all the algebraic conditions an arbitrary 4x4 symmetric matrix must satisfy in order to represent the correlation matrix of a two-mode bosonic system. Then, we completely clarify when this arbitrary matrix can represent the correlation matrix of a separable or entangled Gaussian state. In this analysis, we introduce alternative sets of conditions, which are expressed in terms of local symplectic invariants.
CORRELATION BETWEEN HUMAN NEEDS SYSTEM - PERSONALITY - HUMAN MOTIVATION
Directory of Open Access Journals (Sweden)
Mirela MINICA
2015-07-01
Full Text Available The article highlights the main attributes of an economic approach of needs and preferences, with detailed focus on the correlation between meta-needs and personality, by correlating the principle of hierarchy established by Maslow with the balance theory. Adopting an integrated system of human capital motivation, which takes into account the complex aspects involved in the knowledge society, represents a managerial requirement for any organisation.
Momentum density and Fermi surface of Nd2-xCexCuO4-δ
International Nuclear Information System (INIS)
Shukla, A.; Barbiellini, B.; Hoffmann, L.; Manuel, A.A.; Sadowski, W.; Walker, E.; Peter, M.
1996-01-01
High-temperature positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurements have recently been succesfully applied to map parts of the Fermi surface of YBa 2 Cu 3 O 7-δ . Using the same principle, we have been able to observe with a bulk sensitive method, the Fermi surface of Nd 2-x Ce x CuO 4-δ . Although positron trapping by defects and correlation effects are strong, positron 2D-ACAR measurements provide a signal from the Fermi surface which agrees with band-structure calculations, confirming earlier surface sensitive photoemission experiments. copyright 1996 The American Physical Society
Many-particle correlations in quasi-two-dimensional electron-hole systems
International Nuclear Information System (INIS)
Nikolaev, Valentin
2002-01-01
This thesis reports a theoretical investigation of many-particle correlation effects in semiconductor heterostructures containing quantum wells. Particular attention is paid towards quasi-particle pair correlations. Using the Green's function technique and the ladder approximation as a basis, the generalized mass action law, which describes the redistribution of particles between correlated and uncorrelated states in quasi-two-dimensional systems for different temperatures and total densities, is derived. The expression is valid beyond the low-density limit, which allows us to investigate the transition of the system from a dilute exciton gas to a dense electron-hole plasma. A generalized Levinson theorem, which takes k-space filling into account, is formulated. Screening in quasi-two-dimensional systems is analyzed rigorously. Firstly, the qualitatively new mechanism of static local screening by indirect excitons is studied using the simple Thomas-Fermi approximation. Then, a detailed many-body description suitable for a proper account of dynamic screening by a quasi-2D electron-hole plasma, and consistent with the previously derived mass action law, is provided. The generalized Lindhard approximation and excitonic plasmon-pole approximations are also derived. The theory is applied to single and double quantum wells. A self-consistent procedure is developed for numerical investigation of the ionization degree of an electron-hole plasma at different values of temperature/exciton Rydberg ratios. This procedure accounts for screening, k-space filling (exciton bleaching), and the formation of excitons. An abrupt jump in the value of the ionization degree that happens with an increase of the carrier density or temperature (Mott transition) is found in a certain density-temperature region. It has been found that the critical density of the Mott transition for indirect excitons may be much smaller than that for direct excitons. A suggestion has been made that some of the
Fermi liquid and non-Fermi liquid in M-channel N fold degenerate anderson lattice
International Nuclear Information System (INIS)
Tsuruta, Atsushi; Ono, Yoshiaki; Matsuura, Tamifusa; Kuroda, Yoshihiro; Kobayashi, Akito; Deguchi, Ken
1999-01-01
We investigate Fermi liquid in the single-channel U-infinite N fold degenerate Anderson lattice with use of the expansion from the large limit of the spin-orbital degeneracy N. By collecting all diagrams up to O(N -2 ) of the imaginary part of the self-energy of the conduction electrons, the sum of those is shown to be given by a form proportional to ω 2 + π 2 T 2 up to O(N -2 ) in the single-channel model. On the other hand, the imaginary part of the self-energy of O(N -1 ) in the multichannel model has more singular frequency-/temperature-dependence, so the system is regarded as non-Fermi liquid. (author)
A distributed timing system for synchronizing control and data correlation
International Nuclear Information System (INIS)
Stettler, M.; Thuot, M.; Dalesio, L.R.; Cole, R.; Fite, C.; Slentz, G.; Warren, D.
1992-01-01
Synchronization is necessary in experimental physics machines to provide positive control over related events. The Ground Test Accelerator (GTA) timing system provides this function through a distributed control system, known as the Experimental Physics and Industrial Control System (EPICS). The EPICS timing system was designed to take advantage of a distributed architecture, and provides time stamping for synchronous data correlation as well as event control. The system has been successfully demonstrated on over a dozen controller nodes for operation and data analysis. The design of the hardware, software, and operational results are discussed. (author). 2 refs., 4 figs
A distributed timing system for sychronizing control and data correlation
International Nuclear Information System (INIS)
Stettler, M.; Thout, M.; Dalesio, L.R.; Cole, R.; Fite, C.; Slentz, G.; Warren, D.
1992-01-01
Synchronization is necessary in experimental physics machines to provide positive control over related events. The Ground Test Accelerator (GTA) timing system provides this function through a distributed control system, known as the Experimental Physics and Industrial Control System (EPICS). The EPICS timing system was designed to take advantage of a distributed architecture, and provides time stamping for synchronous data correlation as well as event control. The system has been successfully demonstrated on over a dozen controller nodes for operation and data analysis. The design of the hardware, software, and operational results are discussed
On-Chip Correlator for Passive Wireless SAW Multisensor Systems
Directory of Open Access Journals (Sweden)
Liqiang Xie
2016-01-01
Full Text Available For decoding the asynchronous superposition of response signals from different sensors, it is a challenge to achieve correlation in a code division multiplexing (CDM based passive wireless surface acoustic wave (SAW multisensor system. Therefore, an on-chip correlator scheme is developed in this paper. In contrast to conventional CDM-based systems, this novel scheme enables the correlations to be operated at the SAW sensors, instead of the reader. Thus, the response signals arriving at the reader are the result of cross-correlation on the chips. It is then easy for the reader to distinguish the sensor that is matched with the interrogating signal. The operation principle, signal analysis, and simulation of the novel scheme are described in the paper. The simulation results show the response signals from the correlations of the sensors. A clear spike pulse is presented in the response signals, when a sensor code is matched with the interrogating code. Simulations verify the feasibility of the on-chip correlator concept.
Thermal gravitational radiation of Fermi gases and Fermi liquids
International Nuclear Information System (INIS)
Schafer, G.; Dehnen, H.
1983-01-01
In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec
On the semiclassical description of nuclear Fermi liquid drops
International Nuclear Information System (INIS)
Schuck, P.
1983-11-01
In this series of lectures we aimed at presenting a self-contained semiclassical theory entirely based on the extended Thomas-Fermi or Wigner-Kirkwood h expansion in phase space. We saw that not only the Wigner transform of the single particle density matrix can be understood and very accurately represented in this way but that also generalisations to correlation functions are straightforward. First, we demonstrated a generalisation to superfluid nuclei and to superfluid nuclei in slow rotation. The latter involves already the (static) particle-hole correlation function and we saw how e.g. the reduction of the moment of inertia by roughly a factor of two could be explained very easily in an analytic way. We very clearly pointed out the necessity to treat particles (holes) individually in Thomas Fermi approximation. A further very promising result is that the linear response function for transferred momenta q>0.6 fm -1 can be very accurately represented in our p-h-Thomas Fermi approach. In the last paragraph we give somewhat speculative arguments that say the 2 + states of quasi macroscopic Fermi Liquid Drops could be well calculated in expanding the time dependent density matrix on a set of coherent states and a simple example for nearly harmonic potentials is given
Statistical fluctuations and correlations in hadronic equilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Hauer, Michael
2010-06-17
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Statistical fluctuations and correlations in hadronic equilibrium systems
International Nuclear Information System (INIS)
Hauer, Michael
2010-01-01
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS
Directory of Open Access Journals (Sweden)
Aurelian ISAR
2015-01-01
Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.
International Conference on Strongly Correlated Electron Systems 2017 (SCES2017)
2018-05-01
The 2017 International Conference on Strongly Correlated Electron Systems, SCES 2017, took place at the Clarion Congress Hotel in Prague, Czech Republic from July 17 to 21, 2017. The meeting was held under the auspices of the Department of Condensed Matter Physics of the Faculty of Mathematics and Physics of the Charles University.
Levitation and percolation in quantum Hall systems with correlated disorder
Song, Hui; Maruyama, Isao; Hatsugai, Yasuhiro
2007-01-01
We investigate the integer quantum Hall system in a two dimensional lattice model with spatially correlated disorder by using the efficient method to calculate the Chern number proposed by Fukui et al. [J. Phys. Soc. Jpn. 74, 1674 (2005)]. Distribution of charge density indicates that the extended states at the center of each Landau band have percolating current paths, which are topologically equivalent to the edge states that exist in a system with boundaries. As increasing the strength of d...
Spatial Correlation Characterization of a Full Dimension Massive MIMO System
Nadeem, Qurrat-Ul-Ain
2017-02-07
Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.
Collapse and revival of the Fermi sea in a Bose-Fermi mixture
Iyer, Deepak; Will, Sebastian; Rigol, Marcos
2014-05-01
The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.
Thermodynamics of ultracold Fermi gases
International Nuclear Information System (INIS)
Nascimbene, Sylvain
2010-01-01
Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7 Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)
Fermi UNIX trademark environment
International Nuclear Information System (INIS)
Nicholls, J.
1991-03-01
The introduction of UNIX at Fermilab involves multiple platforms and multiple vendors. Additionally, a single user may have to use more than one platform. This heterogeneity and multiplicity makes it necessary to define a Fermilab environment for UNIX so that as much as possible the systems ''look and feel'' the same. We describe our environment, including both the commercial products and the local tools used to support it. Other products designed for the UNIX environment are also described. 19 refs
PREFACE: Many-body correlations from dilute to dense nuclear systems
Otsuka, Takaharu; Urban, Michael; Yamada, Taiichi
2011-09-01
The International EFES-IN2P3 conference on "Many body correlations from dilute to dense nuclear systems" was held at the Institut Henri Poincaré (IHP), Paris, France, from 15-18 February 2011, on the occasion of the retirement of our colleague Peter Schuck. Correlations play a decisive role in various many-body systems such as nuclear systems, condensed matter and quantum gases. Important examples include: pairing correlations (Cooper pairs) which give rise to nuclear superfluidity (analogous to superconductivity in condensed matter); particle-hole (RPA) correlations in the description of the ground state beyond mean-field theory; clusters; and α-particle correlations in certain nuclei. Also, the nucleons themselves can be viewed as clusters of three quarks. During the past few years, researchers have started to study how the character of these correlations changes with the variation of the density. For instance, the Cooper pairs in dense matter can transform into a Bose-Einstein condensate (BEC) of true bound states at low density (this is the BCS-BEC crossover studied in ultracold Fermi gases). Similar effects play a role in neutron matter at low density, e.g., in the "neutron skin" of exotic nuclei. The α-cluster correlation becomes particularly important at lower density, such as in the excited states of some nuclei (e.g., the α-condensate-like structure in the Hoyle state of 12C) or in the formation of compact stars. In addition to nuclear physics, topics from astrophysics (neutron stars), condensed matter, and quantum gases were discussed in 48 talks and 19 posters, allowing the almost 90 participants from different communities to exchange their ideas, experiences and methods. The conference dinner took place at the Musée d'Orsay, and all the participants enjoyed the very pleasant atmosphere. One session of the conference was dedicated to the celebration of Peter's retirement. We would like to take this opportunity to wish Peter all the best and we hope
Quantum criticality around metal-insulator transitions of strongly correlated electron systems
Misawa, Takahiro; Imada, Masatoshi
2007-03-01
Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal
Anti-correlation and subsector structure in financial systems
Jiang, X. F.; Zheng, B.
2012-02-01
With the random matrix theory, we study the spatial structure of the Chinese stock market, the American stock market and global market indices. After taking into account the signs of the components in the eigenvectors of the cross-correlation matrix, we detect the subsector structure of the financial systems. The positive and negative subsectors are anti-correlated with respect to each other in the corresponding eigenmode. The subsector structure is strong in the Chinese stock market, while somewhat weaker in the American stock market and global market indices. Characteristics of the subsector structures in different markets are revealed.
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces
International Nuclear Information System (INIS)
Feiguin, Adrian E.; Fisher, Matthew P. A.
2009-01-01
We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.
Boson spectra and correlations for thermal locally equilibrium systems
International Nuclear Information System (INIS)
Sinyukov, Y.M.
1999-01-01
The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)
International Nuclear Information System (INIS)
Kuznetsov, V L; Kuznetsova, L A; Rowe, D M
2003-01-01
The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl 3 , manganite La 0.7 Ca 0.3 MnO 3 and high-T c superconductor YBa 2 Cu 3 O 7δ . n- and p-Bi 2 Te 3 -based solid solutions as well as n-Bi 0.85 Sb 0.15 solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed
Pair correlations in an expanding universe for a multicomponent system
International Nuclear Information System (INIS)
Kandrup, H.E.
1983-01-01
Fall and Saslaw have derived an equation for the growth of pair correlations in an expanding universe of identical self-gravitating point masses which is correlation-free at some initial time. Their equation is rigorously true for the earliest stages of growth, assuming only that the system is spatially homogeneous and isotropic, and that it is characterized in the ''comoving frame'' by a Maxwellian distribution of velocities. This paper generalizes their analysis to the case of a multicomponent system of particles with different masses, each species of which is characterized by a Maxwellian distribution at the same temperature. Here there are two types of pair correlations to consider, namely among members of the same species and among members of different species. The general behavior may be understood most readily by considering the covariance functions, which assume very simple forms. Thus one finds that the ''strength'' of the covariance scales, for sufficiently small radial separations, as the product of the masses, whereas the ''range'' of the covariance varies inversely as the square root of the reduced mass of the two constituents. This implies that, for two very different masses, the ''range'' will be set by the lighter constituent. Knowledge of the covariances also permits the calculation of such objects as the correlational energy densities of the various interactions. Consider, for example, a two-component system. Here one finds that even a very small contamination of heavy masses, which would have a negligible effect upon the total mass or kinetic energy densities, can increase the total correlational energy density, and hence decrease the time scale for the evolution of interesting structure, by orders of magnitude
Orientifolding of the ABJ Fermi gas
International Nuclear Information System (INIS)
Okuyama, Kazumi
2016-01-01
The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of N=5O(n)×USp(n"′) theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few “half-instanton” corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k=2,4,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k=2,4 we prove the functional relations among the grand partition functions conjectured in http://arxiv.org/abs/1410.7658.
Orientifolding of the ABJ Fermi gas
Okuyama, Kazumi
2016-03-01
The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.
Petascale Many Body Methods for Complex Correlated Systems
Pruschke, Thomas
2012-02-01
Correlated systems constitute an important class of materials in modern condensed matter physics. Correlation among electrons are at the heart of all ordering phenomena and many intriguing novel aspects, such as quantum phase transitions or topological insulators, observed in a variety of compounds. Yet, theoretically describing these phenomena is still a formidable task, even if one restricts the models used to the smallest possible set of degrees of freedom. Here, modern computer architectures play an essential role, and the joint effort to devise efficient algorithms and implement them on state-of-the art hardware has become an extremely active field in condensed-matter research. To tackle this task single-handed is quite obviously not possible. The NSF-OISE funded PIRE collaboration ``Graduate Education and Research in Petascale Many Body Methods for Complex Correlated Systems'' is a successful initiative to bring together leading experts around the world to form a virtual international organization for addressing these emerging challenges and educate the next generation of computational condensed matter physicists. The collaboration includes research groups developing novel theoretical tools to reliably and systematically study correlated solids, experts in efficient computational algorithms needed to solve the emerging equations, and those able to use modern heterogeneous computer architectures to make then working tools for the growing community.
Enhancement of Iris Recognition System Based on Phase Only Correlation
Directory of Open Access Journals (Sweden)
Nuriza Pramita
2011-08-01
Full Text Available Iris recognition system is one of biometric based recognition/identification systems. Numerous techniques have been implemented to achieve a good recognition rate, including the ones based on Phase Only Correlation (POC. Significant and higher correlation peaks suggest that the system recognizes iris images of the same subject (person, while lower and unsignificant peaks correspond to recognition of those of difference subjects. Current POC methods have not investigated minimum iris point that can be used to achieve higher correlation peaks. This paper proposed a method that used only one-fourth of full normalized iris size to achieve higher (or at least the same recognition rate. Simulation on CASIA version 1.0 iris image database showed that averaged recognition rate of the proposed method achieved 67%, higher than that of using one-half (56% and full (53% iris point. Furthermore, all (100% POC peak values of the proposed method was higher than that of the method with full iris points.
Pulsar Timing with the Fermi LAT
2010-12-01
Pulsar Timing with the Fermi LAT Paul S. Ray∗, Matthew Kerr†, Damien Parent∗∗ and the Fermi PSC‡ ∗Naval Research Laboratory, 4555 Overlook Ave., SW...Laboratory, Washington, DC 20375, USA ‡Fermi Pulsar Search Consortium Abstract. We present an overview of precise pulsar timing using data from the Large...unbinned photon data. In addition to determining the spindown behavior of the pulsars and detecting glitches and timing noise, such timing analyses al
Fermi surface in V3Si from positron annihilation
International Nuclear Information System (INIS)
Peter, M.; Manuel, A.A.; Jarlborg, T.
1982-01-01
The recent work of the Geneva Group on the electronic structure of V 3 Si is briefly reviewed. Accurate self-consistent LMTO calculation leads to a Fermi surface and momentum distribution which is confirmed by high resolution 2-D angular correlation of positron annihilation radiation (2D-ACPAR). The bandstructure data are combined with phonon data from Junod's specific heat measurements to calculate parameters relevant to superconductivity. (orig.)
Thompson, David
2012-01-01
Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.
Detecting Friedel oscillations in ultracold Fermi gases
Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-09-01
Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.
Theory of Fermi Liquid with Flat Bands
Khodel, V. A.
2018-04-01
A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.
The Gamma-ray Universe through Fermi
Thompson, David J.
2012-01-01
Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.
Fast electronic structure methods for strongly correlated molecular systems
International Nuclear Information System (INIS)
Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung
2005-01-01
A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given
Compositeness and the Fermi scale
International Nuclear Information System (INIS)
Peccei, R.D.
1984-01-01
The positive attitude adopted up to now, due to the non-observation of effects of substructure, is that the compositeness scale Λ must be large: Λ > or approx. 1 TeV. Such a large value of Λ gives rise to two theoretical problems which I examine here, namely: 1) What dynamics yields light composite quarks and leptons (msub(f) < < Λ) and 2) What relation does the compositeness scale Λ have with the Fermi scale Λsub(F) = (√2 Gsub(F))sup(-1/2) approx.= 250 GeV. (orig./HSI)
Disentangling multi-level systems: averaging, correlations and memory
International Nuclear Information System (INIS)
Wouters, Jeroen; Lucarini, Valerio
2012-01-01
We consider two weakly coupled systems and adopt a perturbative approach based on the Ruelle response theory to study their interaction. We propose a systematic way of parameterizing the effect of the coupling as a function of only the variables of a system of interest. Our focus is on describing the impacts of the coupling on the long term statistics rather than on the finite-time behavior. By direct calculation, we find that, at first order, the coupling can be surrogated by adding a deterministic perturbation to the autonomous dynamics of the system of interest. At second order, there are additionally two separate and very different contributions. One is a term taking into account the second-order contributions of the fluctuations in the coupling, which can be parameterized as a stochastic forcing with given spectral properties. The other one is a memory term, coupling the system of interest to its previous history, through the correlations of the second system. If these correlations are known, this effect can be implemented as a perturbation with memory on the single system. In order to treat this case, we present an extension to Ruelle's response theory able to deal with integral operators. We discuss our results in the context of other methods previously proposed for disentangling the dynamics of two coupled systems. We emphasize that our results do not rely on assuming a time scale separation, and, if such a separation exists, can be used equally well to study the statistics of the slow variables and that of the fast variables. By recursively applying the technique proposed here, we can treat the general case of multi-level systems
3D Quantum Hall Effect of Fermi Arc in Topological Semimetals
Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.
2017-09-01
The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.
Evaluation of Fermi read-out of the Atlas Tilecal prototype
International Nuclear Information System (INIS)
Ajaltouni, Z.; Alifanov, A.
1998-01-01
Prototypes of the FERMI system have been used to read out a prototype of the ATLAS hadron calorimeter in a beam test at the CERN SPS. The FERMI read-out system, using a compressor and a sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of FERMI data. The resulting energy resolution is better than the one obtained with the standard read-out. (orig.)
Thermostatistic properties of a q-deformed ideal Fermi gas with a general energy spectrum
International Nuclear Information System (INIS)
Cai, Shukuan; Su, Guozhen; Chen, Jincan
2007-01-01
The thermostatistic problems of a q-deformed ideal Fermi gas in any dimensional space and with a general energy spectrum are studied, based on the q-deformed Fermi-Dirac distribution. The effects of the deformation parameter q on the properties of the system are revealed. It is shown that q-deformation results in some novel characteristics different from those of an ordinary system. Besides, it is found that the effects of the q-deformation on the properties of the Fermi systems are very different for different dimensional spaces and different energy spectrums
Heat flux and quantum correlations in dissipative cascaded systems
Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio
2015-02-01
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
International Nuclear Information System (INIS)
Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M.; De Ninno, G.; Zeitoun, P.; Dovillaire, G.; Lambert, G.; Boutu, W.; Merdji, H.; Gonzalez, A.I.; Gauthier, D.
2013-01-01
FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization
Energy Technology Data Exchange (ETDEWEB)
Raimondi, L., E-mail: lorenzo.raimondi@elettra.trieste.it [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Svetina, C.; Mahne, N. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Cocco, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS-19 Menlo Park, CA 94025 (United States); Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; Pedersoli, E.; Kiskinova, M. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); De Ninno, G. [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); Zeitoun, P. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Dovillaire, G. [Imagine Optic, 18 Rue Charles de Gaulle, 91400 Orsay (France); Lambert, G. [Laboratoire d' Optique Appliquée, CNRS-ENSTA-École Polytechnique, Chemin de la Humiére, 91761 Palaiseau (France); Boutu, W.; Merdji, H.; Gonzalez, A.I. [Service des Photons, Atomes et Molécules, IRAMIS, CEA-Saclay, Btiment 522, 91191 Gif-sur-Yvette (France); Gauthier, D. [University of Nova Gorica, Vipavska 13, Rozna Dolina, SI-5000 Nova Gorica (Slovenia); and others
2013-05-11
FERMI@Elettra, the first seeded EUV-SXR free electron laser (FEL) facility located at Elettra Sincrotrone Trieste has been conceived to provide very short (10–100 fs) pulses with ultrahigh peak brightness and wavelengths from 100 nm to 4 nm. A section fully dedicated to the photon transport and analysis diagnostics, named PADReS, has already been installed and commissioned. Three of the beamlines, EIS-TIMEX, DiProI and LDM, installed after the PADReS section, are in advanced commissioning state and will accept the first users in December 2012. These beam lines employ active X-ray optics in order to focus the FEL beam as well as to perform a controlled beam-shaping at focus. Starting from mirror surface metrology characterization, it is difficult to predict the focal spot shape applying only methods based on geometrical optics such as the ray tracing. Within the geometrical optics approach one cannot take into account the diffraction effect from the optics edges, i.e. the aperture diffraction, and the impact of different surface spatial wavelengths to the spot size degradation. Both these effects are strongly dependent on the photon beam energy and mirror incident angles. We employed a method based on physical optics, which applies the Huygens–Fresnel principle to reflection (on which the WISE code is based). In this work we report the results of the first measurements of the focal spot in the DiProI beamline end-station and compare them to the predictions computed with Shadow code and WISE code, starting from the mirror surface profile characterization.
Energy Technology Data Exchange (ETDEWEB)
2017-02-27
FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ, as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.
Adaptationism fails to resolve Fermi's paradox
Directory of Open Access Journals (Sweden)
Ćirković Milan M.
2005-01-01
Full Text Available One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely. .
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Transfer of spectral weight in spectroscopies of correlated electron systems
International Nuclear Information System (INIS)
Rozenberg, M.J.; Kotliar, G.; Kajueter, H.
1996-01-01
We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society
Enrico Fermi significato di una scoperta
2001-01-01
Questo volume è la riedizione, rinnovata ed ampliata, del volume "Enrico Fermi. Significato di una scoperta" edito dal FIEN (Forum Italiano dell'Energia Nucleare) nel 1982 e nel 1992 in occasione, rispettivamente, del 40mo e del 50mo anniversario della pila di Fermi.
Vacuum alignment and radiatively induced Fermi scale
Directory of Open Access Journals (Sweden)
Alanne Tommi
2017-01-01
Full Text Available We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.
From ultracold Fermi Gases to Neutron Stars
Salomon, Christophe
2012-02-01
Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)
On the asymptotic behaviour of the mass operator near the Fermi energy
International Nuclear Information System (INIS)
Sartor, R.
1977-01-01
By taking due account of momentum conservation, it is shown that, when ω is near the Fermi energy ωsub(F), the imaginary part of the mass operator M(k,ω) for an infinite Fermi system behaves like (ω-ωsub(F))sup(p(k)) where the exponent p(k)>=2 depends on the interval in which mod(k) is lying. In particular, the commonly asserted quadratic behaviour (ω-ωsub(F)) 2 is shown to be true only for mod(k)<=3ksub(F). It is explicitly assumed that the Fermi system admits a perturbative type treatment. (Auth.)
Transference of Fermi Contour Anisotropy to Composite Fermions.
Jo, Insun; Rosales, K A Villegas; Mueed, M A; Pfeiffer, L N; West, K W; Baldwin, K W; Winkler, R; Padmanabhan, Medini; Shayegan, M
2017-07-07
There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via applying in situ in-plane strain and measuring their Fermi wave vector anisotropy through commensurability oscillations. For strains on the order of 10^{-4} we observe significant deformations of the shapes of the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high magnetic field (α_{CF}) is less than the anisotropy of their low-field hole (fermion) counterparts (α_{F}), and closely follows the relation α_{CF}=sqrt[α_{F}]. The energy gap measured for the ν=2/3 FQHS, on the other hand, is nearly unaffected by the Fermi contour anisotropy up to α_{F}∼3.3, the highest anisotropy achieved in our experiments.
Unidentified EGRET sources and their possible Fermi counterparts
International Nuclear Information System (INIS)
Lyapin, A R; Arkhangelskaja, I V; Larin, D S
2017-01-01
Unidentified EGRET sources from 3EG catalog have been analyzed. Preliminary data analysis has shown at least 23 of these sources coincide with those in 3FGL Fermi catalogue within 1, 2 and 3 sigma error intervals of the coordinates and fluxes. Their properties are discussed in the presented work. Even 3-sigma difference allows supposing sources similarity because of more than 3-sigma distinctions in values of fluxes between identified EGRET sources and their Fermi counterparts. For instance, the coincidence between 3EG J1255-0549 and 3FGL J1256.1-0547 was reported in Fermi catalogues 1FGL, 2FGL, 3FGL. However, these sources fluxes (in units of 10 −8 photons × cm −2 × s −1 ) in the energy band E > 100 MeV were 179.7 ± 6.7 (3EG), 44.711 ± 0.724 (3FGL), 53.611 ± 0.997 (2FGL) and 67.939 ± 1.861 (1FGL). Such effect was observed for sufficient portion of identified EGRET sources. It could cause by troubles of particles identification by Fermi/LAT trigger system. Very often charged particles recognized as gamma-quanta because of wrong backsplash analysis. Nevertheless, gammas counts as charged particles due analogous reason and rejected during ground data processing. For example, it appears as geomagnetic modulation presence on gamma-quanta count rate latitudinal profiles in energy band E > 20 MeV. (paper)
White matter correlates of neuropsychological dysfunction in systemic lupus erythematosus.
Directory of Open Access Journals (Sweden)
Rex E Jung
Full Text Available Patients diagnosed with Systemic Lupus Erythematosus have similar levels of neuropsychological dysfunction (i.e., 20-50% as those with Neuropsychiatric Systemic Lupus Erythematosus (NPSLE. We hypothesized a gradient between cognition and white matter integrity, such that strongest brain-behavior relationships would emerge in NPSLE, intermediate in non-NPSLE, and minimal in controls. We studied thirty-one patients (16 non-NPSLE; 15 NPSLE, ranging in age from 18 to 59 years old (100% female, and eighteen age and gender matched healthy controls. DTI examinations were performed on a 1.5T scanner. A broad neuropsychological battery was administered, tapping attention, memory, processing speed, and executive functioning. The Total z-score consisted of the combined sum of all neuropsychological measures. In control subjects, we found no significant FA-Total z-score correlations. NPSLE, non-NPSLE, and control subjects differed significantly in terms of Total z-score (NPSLE = -2.25+/-1.77, non-NPSLE = -1.22+/-1.03, Controls = -0.10+/-.57; F = 13.2, p<.001. In non-NPSLE subjects, FA within the right external capsule was significantly correlated with Total z-score. In NPSLE subjects, the largest FA-Total z-score clusters were observed within the left anterior thalamic radiation and right superior longitudinal fasciculus. In subsequent analyses the largest number of significant voxels linked FA with the Processing Speed z-score in NPSLE. The current results reflect objective white matter correlates of neuropsychological dysfunction in both NPSLE and (to a lesser degree in non-NPSLE. non-NPSLE and NPSLE subjects did not differ significantly in terms of depression, as measured by the GDI; thus, previous hypotheses suggesting moderating effects of depression upon neuropsychological performance do not impact the current FA results.
A flexible time recording and time correlation analysis system
International Nuclear Information System (INIS)
Shenhav, N.J.; Leiferman, G.; Segal, Y.; Notea, A.
1983-01-01
A system was developed to digitize and record the time intervals between detection event pulses, feed to its input channels from a detection device. The accumulated data is transferred continuously in real time to a disc through a PDP 11/34 minicomputer. Even though the system was designed for a specific scope, i.e., the comparative study of passive neutron nondestructive assay methods, it can be characterized by its features as a general purpose time series recorder. The time correlation analysis is performed by software after completion of the data accumulation. The digitizing clock period is selectable and any value, larger than a minimum of 100 ns, may be selected. Bursts of up to 128 events with a frequency up to 10 MHz may be recorded. With the present recorder-minicomputer combination, the maximal average recording frequency is 40 kHz. (orig.)
Bound states in strongly correlated magnetic and electronic systems
International Nuclear Information System (INIS)
Trebst, S.
2002-02-01
A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)
Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.
2010-01-01
The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.
Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-11
The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Clinical and MRI correlation in multiple system atrophy
Energy Technology Data Exchange (ETDEWEB)
Negoro, Kiyoshi; Morimatsu, Mitsunori (Yamaguchi Univ., Ube (Japan). School of Medicine)
1994-05-01
By using magnetic resonance imaging (MRI), we studied 11 patients with multiple system atrophy (MSA): 5 olivo-pontocerebellar atrophy (OPCA), 2 Shy-Drager syndrome (SDS), and 4 striatonigral degeneration (SND). The diagnoses of OPCA, SDS and SND were clinically made. The MR images were performed on 1.5 tesla MRI unit (Siemens Asahi Medical, Magnetom H15), using a T[sub 2]-weighted spin echo (SE) sequence (TR: 2000-3000 ms, TE: 80-90 ms), a T[sub 1]-weighted SE sequence (TR: 550, TE: 15), and a proton density-weighted (PD) SE sequence (TR: 2000-3000, TE: 12-22). In the patients with OPCA, MRI revealed cerebellar and brainstem atrophy and degeneration of pontine transverse fibers more marked than in the patients with SDS and SND. T[sub 2]-weighted images showed low intensity in posterolateral putamina in one OPCA patient and all of SDS and SND patients. PD images demonstrated the abnormal slit-like high signals in posterolateral putamina in three SND. The degree of cerebellar ataxia was not well correlated with cerebellar and brainstem atrophy and degeneration of pontine transverse fibers. There was a positive correlation between the atrophy of cerebellum and brainstem and the duration of cerebellar ataxia. In most of the patients with Parkinsonism, MRI demonstrated abnormal low signals in putamina on T[sub 2]-weighted images. There were positive correlations between the abnormal low signals putamina and the duration and severity of Parkinsonism. Though abnormal low signals in lateral putamina may be seen in normal aging and other disorders on T[sub 2]-weighted images, it is useful to evaluate Parkinsonism in MSA. We believe that the abnormal slit-like high signals in posterolateral putamina in MSA may suggest loss of neurons and gliosis. (author).
Preliminary Correlations for Remotely Piloted Aircraft Systems Sizing
Directory of Open Access Journals (Sweden)
Álvaro Gómez-Rodríguez
2018-01-01
Full Text Available The field of Remotely Piloted Aircraft Systems (RPAS is currently undergoing a noteworthy expansion. The diverse types of missions that these aircraft can accomplish, both in military and civil environments, have motivated an increase of interest in their study and applications. The methods chosen to develop this study are based on the statistical analysis of a database including numerous models of RPAS and the estimation of different correlations in order to develop a design method for rapid sizing of H-tail RPAS. Organizing the information of the database according to relevant characteristics, information relative to the state-of-the-art design tendencies can be extracted, which can serve to take decisions relative to the aerodynamic configuration or the power plant in the first phases of the design project. Furthermore, employing statistical correlations estimated from the database, a design method for rapid-sizing of H-tail RPAS has been conducted, which will be focused on the sizing of the wing and tail surfaces. The resulting method has been tested by applying it to an example case so as to validate the proposed procedure.
Observation of hidden Fermi surface nesting in a two dimensional conductor
International Nuclear Information System (INIS)
Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.
1996-01-01
We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society
γ-Rays Radiation of High Redshift Fermi Blazars WG Liu1, SH Fu2 ...
Indian Academy of Sciences (India)
FSRQs), which is from the second Fermi-LAT AGNs catalogue. (2LAC), we studied the correlation between flux densities (FR,FK,Fγ ) in the radio, infrared and γ-ray wave bands. We found that there is a significant positive correlation between Fγ ...
Correlation plot facility in the SLC control system
International Nuclear Information System (INIS)
Hendrickson, L.; Phinney, N.; Sanchez-Chopitea, L.
1991-05-01
The Correlation Plot facility is a powerful interactive tool for data acquisition and analysis throughout the SLC. A generalized interface allows the user to perform a wide variety of machine physics experiments without the need for specialized software. It has been used extensively during SLC commissioning and operation. The user may step one or two independent parameters such as magnet or feedback setpoints while measuring or calculating up to 160 others. Measured variables include all analog signals available to the control system as well as a variety of derived parameters such as beam size or emittance. Various fitting algorithms and display options are provided for data analysis. A software-callable interface is also provided. Applications based on this facility are used to phase klystrons, measure emittance and dispersion, minimize beam size at the interaction point and maintain beam collisions. 4 refs., 3 figs
Correlation Plot facility in the SLC control system
International Nuclear Information System (INIS)
Hendrickson, L.; Phinney, N.; Sanchez-Chopitea, L.; Clark, S.
1991-11-01
The Correlation Plot facility is a powerful interactive tool for data acquisition and analysis throughout the SLC. This generalized interface allows the user to perform a range of operations or machine physics experiments without the need for any specialized analysis software. The user may step one or more independent parameters, such as magnet or feedback setpoints, while measuring or calculating up to 160 other parameters. Measured variables include all analog signals available to the control system, as well as calculated parameters such as beam size, luminosity, or emittance. Various fitting algorithms and display options are provided. A software-callable interface has been provided so that a host of applications can call this package for analysis and display. Such applications regularly phase klystrons, measure emittance and dispersion, minimize beam size, and maintain beam collisions at the interaction point. 4 refs., 5 figs
Correlation Plot facility in the SLC control system
International Nuclear Information System (INIS)
Hendrickson, L.; Phinney, N.; Sachez-Chopitea, L.; Clark, S.
1992-01-01
The Correlation Plot facility is a powerful interactive tool for data acquisition and analysis throughout the SLC. This generalized interface allows the user to perform a range of operations or machine physics experiments without the need for any specialized analysis software. The user may step one or more independent parameters, such as magnet or feedback set points, while measuring or calculating up to 160 other parameters. Measured variables include all analog signals available to the control system, as well as calculated parameters such as beam size, luminosity, or emittance. Various fitting algorithms and display options are provided. A software-callable interface has been provided so that a host of applications can call this package for analysis and display. Such applications regularly phase klystrons, measure emittance and dispersion, minimize beam size, and maintain beam collisions at the interaction point. (author)
Non-equilibrium magnetic interactions in strongly correlated systems
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)
2013-06-15
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.
Precise timing correlation in telemetry recording and processing systems
Pickett, R. B.; Matthews, F. L.
1973-01-01
Independent PCM telemetry data signals received from missiles must be correlated to within + or - 100 microseconds for comparison with radar data. Tests have been conducted to determine RF antenna receiving system delays; delays associated with wideband analog tape recorders used in the recording, dubbing and repdocuing processes; and uncertainties associated with computer processed time tag data. Several methods used in the recording of timing are evaluated. Through the application of a special time tagging technique, the cumulative timing bias from all sources is determined and the bias removed from final data. Conclusions show that relative time differences in receiving, recording, playback and processing of two telemetry links can be accomplished with a + or - 4 microseconds accuracy. In addition, the absolute time tag error (with respect to UTC) can be reduced to less than 15 microseconds. This investigation is believed to be the first attempt to identify the individual error contributions within the telemetry system and to describe the methods of error reduction within the telemetry system and to describe the methods of error reduction and correction.
Digital optical correlator x-ray telescope alignment monitoring system
Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.
2018-01-01
The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.
Moshe RozaliDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Darren Smyth(Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada)
2014-01-01
We discuss finite density configurations on probe D-branes, in the presence of worldvolume fermions. To this end we consider a phenomenological model whose bosonic sector is governed by the DBI action, and whose charged sector is purely fermionic. In this model, we demonstrate the existence of a compact worldvolume embedding, stabilized by a Fermi surface on the D- brane. The finite density state in the boundary QFT is a Fermi-like liquid. We comment on the possibility of realizing non-Fermi ...
Quantum mechanical models for the Fermi shuttle
Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.
2009-05-01
Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)
Zangrando, Marco; Fava, Claudio; Gerusina, Simone; Gobessi, Riccardo; Mahne, Nicola; Mazzucco, Eric; Raimondi, Lorenzo; Rumiz, Luca; Svetina, Cristian
2014-09-01
The FERMI FEL facility has begun delivering photons in 2011, becoming in late 2012 the first seeded facility open to external users worldwide. Since then, several tens of experiments have been carried out on the three operative endstations LDM, DiProI, and EIS-TIMEX. Starting from the commissioning phase, the transport and diagnostics system (PADReS) has been continuously developed and upgraded, becoming the indispensable interface between the machine and the experimental chambers. Moreover, PADReS itself has served as an active player for several machine studies as well as for various state-of-the-art experiments. In particular, some elements of PADReS have become key features to perform cutting edge experiments: the online energy spectrometer, the active optics refocusing systems, the split and delay line, and so on. For each of them the peculiar advantages will be described showing the actual implementation in the experiments. The experience gathered so far in fulfilling the needs of both machine and experimental physicists will be discussed, with particular emphasis on the solutions adopted in different scenarios. Recurrent requests and major difficulties will be reported so to give a glimpse about the standard tasks to be solved when preparing new and demanding experiments. Finally, some ideas and near-future improvements will be presented and discussed.
International Nuclear Information System (INIS)
Nishiyama, Shinya; Matsuura, Hiroyasu; Miyake, Kazumasa
2011-01-01
In f 2 -based heavy fermion systems with a tetragonal symmetry, we investigate the magnetic field dependence of a non-fermi liquid (NFL) which arises related to the quantum critical point (QCP) due to the competition between the crystalline-electric field (CEF) singlet and the Kondo-Yosida singlet states. On the basis of the Wilson numerical renormalization group method, we find that the magnetic field less than a characteristic magnetic field H z * does not affect the characteristic temperature T F * at which the specific heat takes a maximum value. Since such H z * increases as the deviation from the QCP increases, slightly off the QCP, there are parameter regions where NFL behaviors are robust at an observable temperature range T > T F *against a magnetic field of up to H z * which is far larger than T F *. Our result suggests that such robust NFL behaviors can arise also in systems with other CEF symmetries; e.g., magnetically robust NFL behaviors observed in UBe 13 may be understood on this basis.
Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge
Snyman, Izak; Florens, Serge
2017-11-01
Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.
Optimized digital feature extraction in the FERMI microsystem
International Nuclear Information System (INIS)
Alexanian, H.; Appelquist, G.; Bailly, P.
1995-01-01
We describe the digital filter section of the FERMI readout microsystem. The filter section, consisting of two separate filter blocks, extracts the pulse amplitude and time information for the first-level trigger process and performs a highly accurate energy measurement for higher-level triggering and data readout purposes. An FIR-order statistic hybrid filter structure is used to improve the amplitude extraction performance. Using a training procedure the filters are optimized to produce a precise and accurate output in the presence of electronics and pile-up noise, sample timing jitter and the superposition of high-energy pulses. As the FERMI system resides inside the detector where accessibility is limited, the filter implementations are presented together with fault tolerance considerations. The filter section is modelled with the VHDL hardware descriptive language and the subsystems are further optimized to minimize the system latency and circuit area. ((orig.))
Lactose and ''tris'' lyoluminescence dosimetry systems and ESR correlation studies
International Nuclear Information System (INIS)
Oommen, I.K.; Nambi, K.S.V.; Sengupta, S.; Rao, T.K.G.; Ravikumar, M.
1989-01-01
Lyoluminescence (LL) dosimeters have been developed using lactose monohydrate (disaccharide) and tris(hydroxymethyl)aminomethane (''Tris'') systems and attempts have been made to understand the LL mechanism through ESR correlation studies. Tris LL dosimeter has a γ-ray sensitivity with a linear response in the absorbed-dose range 0.05-200 Gy (5-2 x 10 4 rad), while the lactose response extends to a higher range from 1 to 10 4 Gy (10 2 -10 6 rad). The LL output of lactose and Tris did not show any appreciable decay for a period of 6 months after irradiation. ESR measurements show that free-radical concentration in both the systems increases with γ-ray dose in the range 10 2 -10 5 Gy. The minimum dose required to measure the radiation-induced ESR signal for Tris is ∼ 500 Gy, the dose at which the LL output saturates, while lactose shows a radiation-induced ESR signal right at the minimum dose where LL could be detected. The estimated spin density on the radical carbon atom is 0.7. ESR signal stabilities of lactose and Tris were also studied. Lactose did not show any appreciable ESR decay for a period of 3 months after irradiation, while, for Tris, one of the radicals showed a decay of 45% for the same period. (author)
Transport through correlated systems with density functional theory.
Kurth, S; Stefanucci, G
2017-10-18
We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB) + DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB + DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.
Coexistence of pairing gaps in three-component Fermi gases
International Nuclear Information System (INIS)
Nummi, O H T; Kinnunen, J J; Toermae, P
2011-01-01
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously non-zero, in stark contrast to studies performed for trapped gases using local density approximation. We also discuss the role of atom number conservation in the context of a homogeneous system.
Fermi: a physicist in the upheaval
International Nuclear Information System (INIS)
Maria, M. de
2002-01-01
This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)
Fermi's Conundrum: Proliferation and Closed Societies
Teller, Wendy; Westfall, Catherine
2007-04-01
On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.
Fermi and the Theory of Weak Interactions
Indian Academy of Sciences (India)
IAS Admin
Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.
Bright solitons in Bose-Fermi mixtures
International Nuclear Information System (INIS)
Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz
2006-01-01
We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length
A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials
Gochan, Matthew; Bedell, Kevin
Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.
Thomas Fermi model of finite nuclei
International Nuclear Information System (INIS)
Boguta, J.; Rafelski, J.
1977-01-01
A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)
Relativistic stability of interacting Fermi gas in a strong magnetic field
International Nuclear Information System (INIS)
Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng
2013-01-01
By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)
Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.
2018-03-01
In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.
Conoscere Fermi nel centenario della nascita : 29 settembre 1901 - 2001
Bonolis, Luisa
2001-01-01
Il lavoro scientifico di Fermi riguarda molti campi disparati, ciascuno dei quali ha avuto uno sviluppo peculiare in tempi successivi alla morte. In questo volume un certo numero di specialisti contemporanei di ciascun settore espone in forma semplice l'idea originaria e la sua successiva evoluzione. INDICE. Carlo Bernardini, "Introduzione"; Giorgio Salvini, "Enrico Fermi. La sua vita, ed un commento alla sua opera"; Edoardo Amaldi, "Commemorazione del Socio Enrico Fermi"; Enrico Persico, "Commemorazione di Enrico Fermi"; Franco Rasetti, "Enrico Fermi e la Fisica Italiana"; Franco Bassani, "Enrico Fermi e la Fisica dello Stato Solido"; Giorgio Parisi, "La statistica di Fermi"; Giovanni Gallavotti, "La meccanica classica e la rivoluzione quantistica nei lavori giovanili di Fermi"; Tullio Levi-Civita, "Sugli invarianti adiabatici"; Bruno Bertotti, "Le coordinate di Fermi e il Principio di Equivalenza"; Marcello Cini, "Fermi e l'elettrodinamica quantistica"; Nicola Cabibbo. "Le interazioni deboli"; Ugo Amaldi, "...
Macroscopic quantum phenomena in strongly correlated fermionic systems
International Nuclear Information System (INIS)
Rech, J.
2006-06-01
It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)
Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke
2018-03-01
We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.
Quantum phase transitions of strongly correlated electron systems
International Nuclear Information System (INIS)
Imada, Masatoshi
1998-01-01
Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions
Data analysis of backscattering LIDAR system correlated with meteorological data
International Nuclear Information System (INIS)
Uehara, Sandro Toshio
2009-01-01
In these last years, we had an increase in the interest in the monitoring of the effect of the human activity being on the atmosphere and the climate in the planet. The remote sensing techniques has been used in many studies, also related the global changes. A backscattering LIDAR system, the first of this kind in Brazil, has been used to provide the vertical profile of the aerosol backscatter coefficient at 532 nm up to an altitude of 4-6 km above sea level. In this study, data has was collected in the year of 2005. These data had been correlated with data of solar photometer CIMEL and also with meteorological data. The main results had indicated to exist a standard in the behavior of these meteorological data and the vertical distribution of the extinction coefficient gotten through LIDAR. In favorable periods of atmospheric dispersion, that is, rise of the temperature of associated air the fall of relative humidity, increase of the atmospheric pressure and low ventilation tax, was possible to determine with good precision the height of the Planetary Boundary Layer, as much through the vertical profile of the extinction coefficient how much through the technique of the vertical profile of the potential temperature. The technique LIDAR showed to be an important tool in the determination of the thermodynamic structure of the atmosphere, assisting to characterize the evolution of the CLP throughout the day, which had its good space and secular resolution. (author)
Non perturbative aspects of strongly correlated electron systems
International Nuclear Information System (INIS)
Controzzi, D.
2000-01-01
In this thesis we report some selected works on Strongly Correlated Electron Systems. A common ingredient of these works is the use of non-perturbative techniques available in low dimensions. In the first part we use the Bethe Ansatz to study some properties of two families of integrable models introduced by Fateev. We calculate the Thermodynamics of the models and show how they can be interpreted as effective Landau-Ginzburg theories for coupled two-dimensional superconductors interacting with an insulating substrate. This allows us to study exactly the dependence of the critical temperature on the thickness of the insulating layer, and on the interaction between the order parameters of two different superconducting planes. In the second part of the thesis we study the optical conductivity of the sine-Gordon model using the Form Factor method and Conformal Perturbation Theory. This allows us to develop, for the first time, a complete theory of the optical conductivity of one-dimensional Mott insulators, in the Quantum Field Theory limit. (author)
Theory of L -edge spectroscopy of strongly correlated systems
Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.
2017-12-01
X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.
The peculiarities of particle dynamics in the Fermi acceleration scheme
International Nuclear Information System (INIS)
Buts, V.A.
2015-01-01
With examples of discrete and distributed mathematical models of the Fermi acceleration mechanism, a usefulness, or even necessity, of taking into account of singular solutions is demonstrated. Also the role is shown of those parts of phase space where the uniqueness theorem conditions to form the dynamics of physical systems are broken. It was found that the dynamics of particles in discrete and distributed mathematical schemes of Fermi acceleration can be significantly different. The difference is due to the fact that the distributed model takes into account the effects of phase space where conditions do not correspond to those necessary for application of the uniqueness theorem. The role of singular solutions is under discussion as well.
Degenerate Fermi gas in a combined harmonic-lattice potential
International Nuclear Information System (INIS)
Blakie, P. B.; Bezett, A.; Buonsante, P.
2007-01-01
In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate Fermi gases in optical lattices
Fulde–Ferrell superfluids in spinless ultracold Fermi gases
Zheng, Zhen-Fei; Guo, Guang-Can; Zheng, Zhen; Zou, Xu-Bo
2018-06-01
The Fulde–Ferrell (FF) superfluid phase, in which fermions form finite momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that the FF state can emerge in spinless Fermi gases confined in optical lattice associated with nearest-neighbor interactions. The mechanism of the spinless FF state relies on the split Fermi surfaces by tuning the chemistry potential, which naturally gives rise to finite momentum Cooper pairings. The phase transition is accompanied by changed Chern numbers, in which, different from the conventional picture, the band gap does not close. By beyond-mean-field calculations, we find the finite momentum pairing is more robust, yielding the system promising for maintaining the FF state at finite temperature. Finally we present the possible realization and detection scheme of the spinless FF state.
Conditions for monogamy of quantum correlations in multipartite systems
Energy Technology Data Exchange (ETDEWEB)
Kumar, Asutosh, E-mail: asukumar@hri.res.in
2016-09-07
Highlights: • Monogamy of quantum correlations. • Monogamous quantum correlation measures remain so on raising of power. • Non-monogamous quantum correlations remain so on lowering of power. • Monogamy of a convex quantum correlation measure for an arbitrary multipartite pure quantum state leads to its monogamy for the mixed states. • A new monogamy inequality for quantum correlations, stronger than the standard one. - Abstract: Monogamy of quantum correlations is a vibrant area of research because of its potential applications in several areas in quantum information ranging from quantum cryptography to co-operative phenomena in many-body physics. In this paper, we investigate conditions under which monogamy is preserved for functions of quantum correlation measures. We prove that a monogamous measure remains monogamous on raising its power, and a non-monogamous measure remains non-monogamous on lowering its power. We also prove that monogamy of a convex quantum correlation measure for arbitrary multipartite pure quantum state leads to its monogamy for mixed states in the same Hilbert space. Monogamy of squared negativity for mixed states and that of entanglement of formation follow as corollaries of our results.
Fermi surface in La/sub 2/CuO/sub 4-δ/ determine by positron 2D-ACAR
International Nuclear Information System (INIS)
Tanigawa, S.; Mizuhara, Y.; Hidaka, Y.; Oda, M.; Suzuki, M.; Murakami, T.
1988-01-01
The topology of the Fermi surface in La/sub 2/CuO/sub 4-δ/ is determined by two dimensional angular correlation measurements of annihilation radiations (2D-ACAR) at room temperature. The determined Fermi surface is two dimensional and has a slender electron pillar along ΓZ and two kinds of hole pillars along PX and along NN direction parallel to ΓZ, respectively. It is concluded that the Fermi surface is not a simple half filled one and this compound should be metallic at least at room temperature in the band picture
Energy Technology Data Exchange (ETDEWEB)
Rech, J
2006-06-15
It took several years after the idea of a zero-temperature phase transition emerged to realize the impact of such a quantum critical point over a large region of the phase diagram. Observed in many experimental examples, this quantum critical regime is not yet understood in details theoretically, and one needs to develop new approaches. In the first part, we focused on the ferromagnetic quantum critical point. After constructing a controlled approach allowing us to describe the quantum critical regime, we show through the computation of the static spin susceptibility that the ferromagnetic quantum critical point is unstable, destroyed internally by an effective dynamic long-range interaction generated by the Landau damping. In the second part, we revisit the exactly screened single impurity Kondo model, using a bosonic representation of the local spin and treating it in the limit of large spin degeneracy N. We show that, in this regime, the ground-state is a non-trivial Fermi liquid, unlike what was advocated by previous similar studies. We then extend our method to encompass the physics of two coupled impurities, for which our results are qualitatively comparable to the ones obtained from various approaches carried out in the past. We also develop a Luttinger-Ward formalism, enabling us to cure some of the drawbacks of the original method used to describe the single impurity physics. Finally, we present the main ideas and the first results for an extension of the method towards the description of a Kondo lattice, relevant for the understanding of the quantum critical regime of heavy fermion materials. (authors)
International Nuclear Information System (INIS)
Sapershtein, E.E.; Khodel', V.A.
1981-01-01
The problem of calculating the binding energy and self-consistent field of a nucleus in terms of the effective interaction of quasiparticles at the Fermi surface is solved. It is shown that for this one can go over from the system of N Fermi particles to a system of N interacting quasiparticles described by an effective quasiparticle Lagrangian L/sub q/. It is shown that the corresponding quasiparticle energy is equal to the ground-state energy of the system. The connection between the parameters of the effective Lagrangian and the constants of the quasiparticle interaction introduced in the theory of finite Fermi systems is established
Quantum phase transition in strongly correlated many-body system
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Excitonic condensation in systems of strongly correlated electrons
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan
2015-01-01
Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015
Diagnosing alternative conceptions of Fermi energy among undergraduate students
International Nuclear Information System (INIS)
Sharma, Sapna; Ahluwalia, Pardeep Kumar
2012-01-01
Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (ε F ). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper. (paper)
Thomas-Fermi theory for atomic nuclei revisited
International Nuclear Information System (INIS)
Centelles, M.; Schuck, P.; Vinas, X.
2007-01-01
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme interactions and from relativistic mean field theory. VWK consists of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g., 208 Pb turns out to be only ∼-6 MeV what is about a factor two or three off the generally accepted value. As an ad hoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out
Some notes on time dependent Thomas Fermi approximation
International Nuclear Information System (INIS)
Holzwarth, G.
1979-01-01
The successful use of effective density-dependent potentials in static Hartree-Fock calculations for nuclear ground-state properties has led to the question whether it is possible to obtain significant further simplification by approximating also the kinetic energy part of the ground state energy by a functional of the local density alone. The great advantage of such an approach is that its complexity is independent of particle number; the size of the system enters only through parameters, Z and N. The simple 'extended Thomas Fermi' functionals are based on the assumption of a spherically symmetric local Fermi surface throughout the nucleus and they represent the 'liquid drop' part of the static total energy. Given this static formalism which is solved directly for the local density without considering individual particles one might ask for a possible dynamical extension in the same sense as TDHF is a dynamical extension of the static HF approach. The aim of such a Time Dependent Thomas Fermi (TDTF) approximation would be to determine directly the time-dependent local single-particle density from given initial conditions and the single-particle current density without following each particle on its individual orbit
Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}
Directory of Open Access Journals (Sweden)
K. Kummer
2015-03-01
Full Text Available Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce- and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh_{2}Si_{2}, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T_{K}∼25 K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.
A new quantum statistical evaluation method for time correlation functions
International Nuclear Information System (INIS)
Loss, D.; Schoeller, H.
1989-01-01
Considering a system of N identical interacting particles, which obey Fermi-Dirac or Bose-Einstein statistics, the authors derive new formulas for correlation functions of the type C(t) = i= 1 N A i (t) Σ j=1 N B j > (where B j is diagonal in the free-particle states) in the thermodynamic limit. Thereby they apply and extend a superoperator formalism, recently developed for the derivation of long-time tails in semiclassical systems. As an illustrative application, the Boltzmann equation value of the time-integrated correlation function C(t) is derived in a straight-forward manner. Due to exchange effects, the obtained t-matrix and the resulting scattering cross section, which occurs in the Boltzmann collision operator, are now functionals of the Fermi-Dirac or Bose-Einstein distribution
Correlation between duodenogastric reflux and symptoms of digestive system diseases
International Nuclear Information System (INIS)
Leja, M.; Reinholds, E.; Brezinskis, G.; Aboltins, A.; Lejnieks, A.
2004-01-01
The symptoms of digestive origin potentially indicative for duodenogastric reflux (DGR) have been compared to the results obtained by scintigraphic method, elaborated by the group of authors. The symptoms were registred bu using a specially elaborated questionnaire according to preliminary determined intervals of time with respect to the scintigraphic investigation. No correlation was found between DGR and the following symptoms: nausea, vomiting, regurgitation with sour and bitter content, belching, heartburn, burning sensation in the epigastric area, early satiety, flatulence, constipation, dyspepsia and abdominal pain. Diarrhoea in the morning of the investigation and month prior to the investigation was statistically significantly correlating to DGR, while no correlation was confirmed to the symptom a day and a week prior to the investigation. Bittertaste in the mouth had the best correlation to DGR in all the analysed intervals. The conclusion is made that bitter taste in the mouth is the best correlating symptom for DGR, still the low sensitivity and low positive and negative predictive values of the symptom does not make it a useful guide for symptom-based diagnosis of DGR
Transport-induced correlations in weakly interacting systems
International Nuclear Information System (INIS)
Bunin, Guy; Kafri, Yariv; Podolsky, Daniel; Lecomte, Vivien; Polkovnikov, Anatoli
2013-01-01
We study spatial correlations in the transport of energy between two baths at different temperatures. To do this, we introduce a minimal model in which energy flows from one bath to another through two subsystems. We show that the transport-induced energy correlations between the two subsystems are of the same order as the energy fluctuations within each subsystem. The correlations can be either positive or negative and we give bounds on their values which are associated with a dynamic energy scale. The different signs originate as a competition between fluctuations generated near the baths and fluctuations of the current between the two subsystems. This interpretation sheds light on known results for spatially-dependent heat and particle conduction models. (paper)
SEPHIS and the distribution coefficients correlation in the IMPUREX system
International Nuclear Information System (INIS)
Andaur Iturrieta, Claudio
1997-01-01
The reprocessing of spent nuclear fuels by the IMPUREX process consists in uranium selective extraction, originally in aqueous nitric solution, by action of the tributyl phosphate (TBP) present in an organic phase that circulates at countercurrent of the aqueous one. In the study of such process, it is necessary to use the correlations that allows to predict the concentrations of the solutes in the equilibrium, both in the aqueous phase and in the organic one, given as data the ruling operation conditions (temperature, TBP concentration and acidity). A correlation of this kind is the Groenier-Rainey-Watson, which is forming part of the code of the SEPHIS simulation program. In the present work it is analyzed the behavior of this correlation contrasting the predicted values with experimental ones
Coulomb correlation effects in YBaCuO system
International Nuclear Information System (INIS)
Costa-quintana, J.; Lopez-Aguilar, F.; Munoz, J.S.; Sanchez, A.; Balle, S.
1989-01-01
In this work, the authors apply a mean field potential deduced from the multiband Hubbard Hamiltonian in order to obtain the lower and upper strongly correlated bands. They have obtained the total and partial density of states for U d = O and U d = 4 eV. The results show that the density of states calculated with U d = 4 eV at E F is lesser than that obtained with U d = 0. A small peak above E F arising from the strong correlated bands appears in the dDOS calculated with U d = 4 eV and this is in agreement with the experimental data
Molecular photoionization studies of nucleobases and correlated systems
Energy Technology Data Exchange (ETDEWEB)
Poliakoff, Erwin D. [Louisiana State Univ., Baton Rouge, LA (United States)
2015-03-11
We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.
Quantum correlations in a bipartite multiqubit spin ring system
International Nuclear Information System (INIS)
Doronin, S I; Fel’dman, E B; Kuznetsova, E I
2015-01-01
We consider a spin ring with an arbitrary number of spins on the ring and one spin in its center in a strong external magnetic field. The spins on the ring are connected by the secular dipole–dipole interactions and interact with the central spin through the Heisenberg zz-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for an arbitrary number of the spins in the high-temperature approximation. We demonstrate the evolution of quantum correlations at different numbers of the spins. The contributions of longitudinal and transversal spin interactions to the quantum discord are discussed. (paper)
Equations of State of Elements Based on the Generalized Fermi-Thomas Theory
Feynman, R. P.; Metropolis, N.; Teller, E.
1947-04-28
The Fermi-Thomas model has been used to derive the equation of state of matter at high pressures and at various temperatures. Calculations have been carried out both without and with the exchange terms. Discussion of similarity transformations lead to the virial theorem and to correlation of solutions for different Z-values.
Dark lump excitations in superfluid Fermi gases
Xu, Yan-Xia; Duan, Wen-Shan
2012-11-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
Dark lump excitations in superfluid Fermi gases
International Nuclear Information System (INIS)
Xu Yan-Xia; Duan Wen-Shan
2012-01-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity
Description of atomic burials in compact globular proteins by Fermi-Dirac probability distributions.
Gomes, Antonio L C; de Rezende, Júlia R; Pereira de Araújo, Antônio F; Shakhnovich, Eugene I
2007-02-01
We perform a statistical analysis of atomic distributions as a function of the distance R from the molecular geometrical center in a nonredundant set of compact globular proteins. The number of atoms increases quadratically for small R, indicating a constant average density inside the core, reaches a maximum at a size-dependent distance R(max), and falls rapidly for larger R. The empirical curves turn out to be consistent with the volume increase of spherical concentric solid shells and a Fermi-Dirac distribution in which the distance R plays the role of an effective atomic energy epsilon(R) = R. The effective chemical potential mu governing the distribution increases with the number of residues, reflecting the size of the protein globule, while the temperature parameter beta decreases. Interestingly, betamu is not as strongly dependent on protein size and appears to be tuned to maintain approximately half of the atoms in the high density interior and the other half in the exterior region of rapidly decreasing density. A normalized size-independent distribution was obtained for the atomic probability as a function of the reduced distance, r = R/R(g), where R(g) is the radius of gyration. The global normalized Fermi distribution, F(r), can be reasonably decomposed in Fermi-like subdistributions for different atomic types tau, F(tau)(r), with Sigma(tau)F(tau)(r) = F(r), which depend on two additional parameters mu(tau) and h(tau). The chemical potential mu(tau) affects a scaling prefactor and depends on the overall frequency of the corresponding atomic type, while the maximum position of the subdistribution is determined by h(tau), which appears in a type-dependent atomic effective energy, epsilon(tau)(r) = h(tau)r, and is strongly correlated to available hydrophobicity scales. Better adjustments are obtained when the effective energy is not assumed to be necessarily linear, or epsilon(tau)*(r) = h(tau)*r(alpha,), in which case a correlation with hydrophobicity
Spin-spin correlations in the tt'-Hubbard model
International Nuclear Information System (INIS)
Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.
1994-01-01
We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)
Magneto-structural correlations in exchange coupled systems
International Nuclear Information System (INIS)
Willett, R.D.; Gatteschi, D.; Kahn, O.
1985-01-01
This book contains 19 chapters. Some of the chapter titles are: Optical Spectroscophy; The Basis of Spin-Hamiltonian Theory; Inelastic Neutorn Scattering From Clusters; Magneto-structural Correlations in Bioinorganic Chemistry; and Magnetic Exchange Interactions Propagated by Multi-Atom Bridges
Quantification of correlations in quantum many-particle systems
Czech Academy of Sciences Publication Activity Database
Byczuk, K.; Kuneš, Jan; Hofstetter, W.; Vollhardt, D.
2012-01-01
Roč. 108, č. 8 (2012), "087004-1"-"087004-5" ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : electronic correlations * entropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.943, year: 2012 http://link.aps.org/doi/10.1103/PhysRevLett.108.087004
Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors
Zhao, Huaisong; Gao, Deheng; Feng, Shiping
2017-03-01
One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.
International Nuclear Information System (INIS)
Crabtree, G.W.; Aoki, H.; Joss, W.; Hulliger, F.
1987-01-01
This paper uses accurate Fermi surface measurements as a test of hybridization models in CeSb. Detailed measurements of the Fermi surface geometry and effective masses are presented which show a number of unusual properties associated with the magnetic structure and anisotropy. Measurements are compared with predictions of a band structure in which the f-electron is assumed to be local, interacting with the conduction electrons only through anisotropic Coulomb and exchange interactions. This model reproduces all the unusual features observed in the measurements and suggests that hybridization is not essential to describing the electronic properties of CeSb
Supernova Remnants with Fermi Large Area Telescope
Directory of Open Access Journals (Sweden)
Caragiulo M.
2017-01-01
Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.
Itinerant Ferromagnetism in Ultracold Fermi Gases
DEFF Research Database (Denmark)
Heiselberg, Henning
2012-01-01
Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...
Study of a model Fermi liquid interacting via a hard-core repulsive potential and an attractive tail
International Nuclear Information System (INIS)
Ng, Tai Kai; Singwi, K.S.
1986-02-01
In this paper we present an extensive microscopic study of the collective and single-particle properties of a model Fermi liquid whose particles interact via a repulsive hard-core potential and an attractive tail. The model system is intended to simulate liquid 3 He. The study is based on an approximate scheme of Singwi, Tosi, Land and Sjoelander (STLS) which was devised to treat correlations in Coulomb Fermi liquids. The primary aim of this study is to learn whether the model system is capable of reproducing some of the salient features observed in normal liquid 3 He, and about the role of the repulsive and attractive parts of the potential. We have calculated the Landau parameters F 0 /sup s/ and F 0 /sup a/ and their variation with pressure, the wave number and pressure dependence of the spin-symmetric and spin-anti-symmetric polarization potentials, pressure dependence of the dispersion of the zero sound, the static structure factors and the quasiparticle mass. Although we make no quantitative claims when comparing our calculations with experiments in real liquid 3 He, we do conclude that our model system within the framework of the STLS scheme can account qualitatively for the latter. Besides, since the theory is microscopic in nature and is parameter free, it has enabled us to understand better the role of the repulsive and the attractive parts of the bare potential in determining the properties of liquid 3 He. 27 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Amusia, M. Ya.; Shaginyan, V. R.
2001-06-01
A model of a Fermi liquid with the fermion condensate (FC) is applied to the consideration of quasiparticle excitations in high-temperature superconductors, in their superconducting and normal states. Within our model the appearance of the fermion condensate presents a quantum phase transition that separates the regions of normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other{emdash}fermion condensate localized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the superconducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines, characterized by effective masses M{sub FC}{sup *} and M{sub L}{sup *}, respectively, and intersecting near the binding energy, which is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that fermion systems with FC have features of a {open_quotes}quantum protectorate{close_quotes} [R. B. Laughlin and D. Pines, Proc. Natl. Acad. Sci. U.S.A. >97, 28 (2000); P. W. Anderson, cond-mat/0007185 (unpublished); cond-mat/0007287 (unpublished)].
International Nuclear Information System (INIS)
Amusia, M. Ya.; Shaginyan, V. R.
2001-01-01
A model of a Fermi liquid with the fermion condensate (FC) is applied to the consideration of quasiparticle excitations in high-temperature superconductors, in their superconducting and normal states. Within our model the appearance of the fermion condensate presents a quantum phase transition that separates the regions of normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other-fermion condensate localized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the superconducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines, characterized by effective masses M FC * and M L * , respectively, and intersecting near the binding energy, which is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that fermion systems with FC have features of a 'quantum protectorate' [R. B. Laughlin and D. Pines, Proc. Natl. Acad. Sci. U.S.A. >97, 28 (2000); P. W. Anderson, cond-mat/0007185 (unpublished); cond-mat/0007287 (unpublished)
Attack-Induced Entanglement of Noninteracting Fermi Gas
International Nuclear Information System (INIS)
Ren Jie; Zhu Shiqun
2008-01-01
The bipartite entanglement in Fermi gas without interaction is investigated when there are three fermions in the system. The negativity and the von Neumann entropy are employed to measure the entanglement of the system. The position of the third fermion can affect the entanglement between the first and the second fermions. The entanglement can be enhanced or suppressed when the third fermion changes its position. When the two fermions are at the same position or when their distance is more than 2.0/k F , the third fermion cannot affect them
Interaction quantum quenches in the one-dimensional Fermi-Hubbard model
Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano
2016-05-01
We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.
Some thermodynamic non-Fermi liquid properties of correlated ...
African Journals Online (AJOL)
Inverse temperature dependences of electronic specific heat Cv , entropy function (S) and pair susceptibility (Χ↑↓) are computed and exhibited. The specific heat dependence upon inverse temperature shows a linear form at very high temperature. It displays inverse-square-law temperature dependence, approximately, ...
Current correlation functions of ideal Fermi gas at finite temperature
Indian Academy of Sciences (India)
in the study of time dependent density functional theory [5] due to the work of Vignale and. Kohn [6,7]. They obtained ... part has relevance to the study of viscous effects [10] in the electron gas and to the dia- magnetic ... is found that the diamagnetic susceptibility, related to the transverse part, smoothly cross over from ...
Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel
2013-07-19
We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.
Selective correlations in finite quantum systems and the Desargues property
Lei, C.; Vourdas, A.
2018-06-01
The Desargues property is well known in the context of projective geometry. An analogous property is presented in the context of both classical and Quantum Physics. In a classical context, the Desargues property implies that two logical circuits with the same input show in their outputs selective correlations. In general their outputs are uncorrelated, but if the output of one has a particular value, then the output of the other has another particular value. In a quantum context, the Desargues property implies that two experiments each of which involves two successive projective measurements have selective correlations. For a particular set of projectors, if in one experiment the second measurement does not change the output of the first measurement, then the same is true in the other experiment.
Coulomb correlation effects in YBaCuO system
Energy Technology Data Exchange (ETDEWEB)
Costa-Quintana, J; Lopez-Aguilar, F; Munoz, J S; Sanchez, A [Dept. de Fisica, Grupo de Electromagnetismo, Univ. Autonoma de Barcelona (Spain); Balle, S [Dept. de Fisica, Univ. de les Illes Balears, Palma de Mallorca (Spain)
1989-12-01
In this work, we apply a mean field potential deduced from the multiband Hubbard hamiltonian in order to obtain the lower and upper strongly correlated bands. We have obtained the total and partial density of states for U{sub d} = 0 and U{sub d} = 4 eV. The results show that the density of states calculated with U{sub d} = 4 eV at E{sub F} is lesser than that obtained with U{sub d} = 0. A small peak above E{sub F} arising from the strong correlated bands appears in the dDOS calculated with U{sub d} = 4 eV and this is in agreement with the experimental data. (orig.).
Towards a large deviation theory for strongly correlated systems
International Nuclear Information System (INIS)
Ruiz, Guiomar; Tsallis, Constantino
2012-01-01
A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e −Nr , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e q −Nr q (∝1/N 1/(q−1) , q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.
International Nuclear Information System (INIS)
Dasgupta, I.; Mookerjee, A.
1993-07-01
Based on the Augmented Space formalism proposed by one of us and a generalization of the alloy analogy, including the effect of the dynamics of the exchange bath, we show that a half-filled Hubbard model shows Fermi-liquid behaviour at low values of the interaction parameter U. This gives way to non-Fermi liquid behaviour at a critical U, where the system is still metallic. We also show that quenched disorder tends to lower this critical value of U. (author). 19 refs, 2 figs
Ground-state pressure of an ideal Fermi gas
International Nuclear Information System (INIS)
Delsante, A.E.; Frankel, N.E.
1979-01-01
A simple relationship between the pressure, internal energy and Fermi energy of an ideal ultra-degenerate Fermi gas is derived in two ways. The conditions for its validity and its use in simplifying calculations are discussed
CLUSTERING OF γ-RAY-SELECTED 2LAC FERMI BLAZARS
Energy Technology Data Exchange (ETDEWEB)
Allevato, V.; Finoguenov, A. [Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, FI-00014 Helsinki (Finland); Cappelluti, N. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)
2014-12-20
We present the first measurement of the projected correlation function of 485 γ-ray-selected blazars, divided into 175 BL Lacertae (BL Lacs) and 310 flat-spectrum radio quasars (FSRQs) detected in the 2 year all-sky survey by the Fermi-Large Area Telescope. We find that Fermi BL Lacs and FSRQs reside in massive dark matter halos (DMHs) with log M{sub h} = 13.35{sub −0.14}{sup +0.20} and log M{sub h} = 13.40{sub −0.19}{sup +0.15} h {sup –1} M {sub ☉}, respectively, at low (z ∼ 0.4) and high (z ∼ 1.2) redshift. In terms of clustering properties, these results suggest that BL Lacs and FSRQs are similar objects residing in the same dense environment typical of galaxy groups, despite their different spectral energy distributions, power, and accretion rates. We find no difference in the typical bias and hosting halo mass between Fermi blazars and radio-loud active galactic nuclei (AGNs), supporting the unification scheme simply equating radio-loud objects with misaligned blazar counterparts. This similarity in terms of the typical environment they preferentially live in, suggests that blazars tend to occupy the center of DMHs, as already pointed out for radio-loud AGNs. This implies, in light of several projects looking for the γ-ray emission from DM annihilation in galaxy clusters, a strong contamination from blazars to the expected signal from DM annihilation.
Accurate correlation energies in one-dimensional systems from small system-adapted basis functions
Baker, Thomas E.; Burke, Kieron; White, Steven R.
2018-02-01
We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.
Multiplicities and Correlations at LEP
International Nuclear Information System (INIS)
Sarkisyan, E.K.G.
2002-01-01
A brief review on recent charge multiplicity and correlation measurements at LEP is given. The measurements of un biased gluon jet multiplicity are discussed. Recent results on charged particle Bose-Einstein and Fermi-Dirac correlations at LEP1 are reported. New results on two-particle correlations of neutral pions are given. Correlations of more than two particles (high-order correlations) obtained using different methods are performed. Recent Bose-Einstein correlation measurements at LEP2 are discussed. (author)
Multiplicities and correlations at LEP
Sarkisyan-Grinbaum, E
2002-01-01
A brief review on recent charge multiplicity and correlation measurements at LEP is given. The measurements of unbiased gluon jet multiplicity are discussed. Recent results on charged particle Bose- Einstein and Fermi-Dirac correlations at LEP1. are reported. New results on two-particle correlations of neutral pions are given. Correlations of more than two particles (high-order correlations) obtained using different methods are performed. Recent Bose-Einstein correlation measurements at LEP2 are discussed. (13 refs).
Universal structure of a strongly interacting Fermi gas
Energy Technology Data Exchange (ETDEWEB)
Kuhnle, Eva; Dyke, Paul; Hoinka, Sascha; Mark, Michael; Hu Hui; Liu Xiaji; Drummond, Peter; Hannaford, Peter; Vale, Chris, E-mail: cvale@swin.edu.au [ARC Centre of Excellence for Quantum Atom Optics, Swinburne University of Technology, Hawthorn 3122 (Australia)
2011-01-10
This paper presents studies of the universal properties of strongly interacting Fermi gases using Bragg spectroscopy. We focus on pair-correlations, their relationship to the contact C introduced by Tan, and their dependence on both the momentum and temperature. We show that short-range pair correlations obey a universal law, first derived by Tan through measurements of the static structure factor, which displays a universal scaling with the ratio of the contact to the momentum C/q. Bragg spectroscopy of ultracold {sup 6}Li atoms is employed to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We show that calibrating our Bragg spectra using the f-sum rule leads to a dramatic improvement in the accuracy of the structure factor measurement. We also measure the temperature dependence of the contact in a unitary gas and compare our results to calculations based on a virial expansion.
Onoda, Masashige; Sato, Takuma
2017-12-01
The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.
Semiclassical shell structure in rotating Fermi systems
International Nuclear Information System (INIS)
Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.
2010-01-01
The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.
Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.
2017-02-01
We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.
Modelling of Graphene Nanoribbon Fermi Energy
International Nuclear Information System (INIS)
Johari, Z.; Ahmadi, M.T.; Chek, D.C.Y.; Amin, N.A.; Ismail, R.
2010-01-01
Graphene nano ribbon (GNR) is a promising alternative to carbon nano tube (CNT) to overcome the chirality challenge as a nano scale device channel. Due to the one-dimensional behavior of plane GNR, the carrier statistic study is attractive. Research works have been done on carrier statistic study of GNR especially in the parabolic part of the band structure using Boltzmann approximation (nondegenerate regime). Based on the quantum confinement effect, we have improved the fundamental study in degenerate regime for both the parabolic and non parabolic parts of GNR band energy. Our results demonstrate that the band energy of GNR near to the minimum band energy is parabolic. In this part of the band structure, the Fermi-Dirac integrals are sufficient for the carrier concentration study. The Fermi energy showed the temperature-dependent behavior similar to any other one-dimensional device in nondegenerate regime. However in the degenerate regime, the normalized Fermi energy with respect to the band edge is a function of carrier concentration. The numerical solution of Fermi-Dirac integrals for non parabolic region, which is away from the minimum energy band structure of GNR, is also presented.
Scattering resonances in a degenerate Fermi gas
DEFF Research Database (Denmark)
Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus
2009-01-01
We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...
Fermi Surface and Antiferromagnetism in Europium Metal
DEFF Research Database (Denmark)
Andersen, O. Krogh; Loucks, T. L.
1968-01-01
of the nearly cubical part of the hole surface at P, and we also discuss the effects of the electron surface at H. Since it is likely that barium and europium have similar Fermi surfaces, we have presented several extremal areas and the corresponding de Haas-van Alphen frequencies in the hope that experimental...
Thomas-Fermi model of warm nuclei
International Nuclear Information System (INIS)
Buchler, J.R.; Epstein, R.I.
1980-01-01
The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed
Vacuum alignment and radiatively induced Fermi scale
DEFF Research Database (Denmark)
Alanne, Tommi
2017-01-01
We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges ...
Some Applications of Holography to Study Strongly Correlated Systems
Directory of Open Access Journals (Sweden)
Bhatnagar Neha
2018-01-01
Full Text Available In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography. We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.
Fermi: a physicist in the upheaval; Fermi: un physicien dans la tourmente
Energy Technology Data Exchange (ETDEWEB)
Maria, M. de
2002-07-01
This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)
Relativistic effects in the Thomas--Fermi atom
International Nuclear Information System (INIS)
Waber, J.T.; Canfield, J.M.
1975-01-01
Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values
Expansions of Fermi and symmetrized Fermi integrals and applications in nuclear physics
International Nuclear Information System (INIS)
Grypeos, M.; Koutroulos, C.; Luk'yanov, V.; Shebeko, A.
1998-01-01
A detailed study is undertaken, using various techniques, in deriving expansions of integrals containing the Fermi or the symmetrized Fermi distributions. The results are presented in a mathematically compact form and consist of generalizations and extensions of previously known expansions. The relevance of the results to quantities of interest in nuclear physics is recalled and particular attention is paid to the so-called exponentially small terms which may play an essential role in certain cases
A Correlated Model for Evaluating Performance and Energy of Cloud System Given System Reliability
Directory of Open Access Journals (Sweden)
Hongli Zhang
2015-01-01
Full Text Available The serious issue of energy consumption for high performance computing systems has attracted much attention. Performance and energy-saving have become important measures of a computing system. In the cloud computing environment, the systems usually allocate various resources (such as CPU, Memory, Storage, etc. on multiple virtual machines (VMs for executing tasks. Therefore, the problem of resource allocation for running VMs should have significant influence on both system performance and energy consumption. For different processor utilizations assigned to the VM, there exists the tradeoff between energy consumption and task completion time when a given task is executed by the VMs. Moreover, the hardware failure, software failure and restoration characteristics also have obvious influences on overall performance and energy. In this paper, a correlated model is built to analyze both performance and energy in the VM execution environment given the reliability restriction, and an optimization model is presented to derive the most effective solution of processor utilization for the VM. Then, the tradeoff between energy-saving and task completion time is studied and balanced when the VMs execute given tasks. Numerical examples are illustrated to build the performance-energy correlated model and evaluate the expected values of task completion time and consumed energy.
Warm ''pasta'' phase in the Thomas-Fermi approximation
International Nuclear Information System (INIS)
Avancini, Sidney S.; Menezes, Debora P.; Chiacchiera, Silvia; Providencia, Constanca
2010-01-01
In the present article, the 'pasta' phase is studied at finite temperatures within a Thomas-Fermi (TF) approach. Relativistic mean-field models, both with constant and density-dependent couplings, are used to describe this frustrated system. We compare the present results with previous ones obtained within a phase-coexistence description and conclude that the TF approximation gives rise to a richer inner ''pasta'' phase structure and the homogeneous matter appears at higher densities. Finally, the transition density calculated within TF is compared with the results for this quantity obtained with other methods.
Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases
DEFF Research Database (Denmark)
Massignan, Pietro; Bruun, Georg
2011-01-01
We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From...... polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation...
Fermi surface measurements in actinide metals and compounds
International Nuclear Information System (INIS)
Arko, A.J.; Schirber, J.E.
1978-01-01
The various techniques of measuring Fermi Surface parameters are briefly discussed in terms f application to actinide systems. Particular emphasis is given the dHvA effect. Some general results found in the dHvA studies of actinide compounds are given. The dHvA effect has been measured in α-U and is presented in detail. None of the observed frequencies corresponds to closed surfaces. Results are compared to the calculations of Freeman, Koelling and Watson-Yang where qualitative agreement is observed
Similarity of fluctuations in correlated systems: The case of seismicity
International Nuclear Information System (INIS)
Varotsos, P.A.; Sarlis, N.V.; Tanaka, H.K.; Skordas, E.S.
2005-01-01
We report a similarity of fluctuations in equilibrium critical phenomena and nonequilibrium systems, which is based on the concept of natural time. The worldwide seismicity as well as that of the San Andreas fault system and Japan are analyzed. An order parameter is chosen and its fluctuations relative to the standard deviation of the distribution are studied. We find that the scaled distributions fall on the same curve, which interestingly exhibits, over four orders of magnitude, features similar to those in several equilibrium critical phenomena (e.g., two-dimensional Ising model) as well as in nonequilibrium systems (e.g., three-dimensional turbulent flow)
Neurofunctional systems. 3D reconstructions with correlated neuroimaging
International Nuclear Information System (INIS)
Kretschmann, H.J.; Fiekert, W.; Gerke, M.; Vogt, H.; Weirich, D.; Wesemann, M.; Weinrich, W.
1998-01-01
This book introduces, for the first time, computer-generated images of the neurofunctional systems of the human brain. These images are more accurate than drawings. The main views presented are of the medial lemniscus system, auditory system, visual system, basal ganglia, corticospinal system, and the limbic system. The arteries and sulci of the cerebral hemispheres are also illustrated by computer. These images provide a three-dimensional orientation of the intracranial space and help, for example, to assess vascular functional disturbance of the brain. Clinicians will find these images valuable for the spatial interpretation of magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) images since many neurofunctional systems cannot be visualized as isolated structures in neuroimaging. Computer-assisted surface reconstructions of the neurofunctional systems and the cerebral arteries serve as a basis for constructing these computer-generated images. The surface reconstructions are anatomically realistic having been created from brain sections with minimal deformations. The method of computer graphics, known as ray tracing, produces digital images form these reconstructions. The computer-generated methods are explained. The computer-generated images are accompanied by illustrations and texts on neuroanatomy and clinical practice. The neurofunctional systems of the human brain are also shown in sections so that the reader can mentally reconstruct the neurofunctional systems, thus facilitating the transformation of information into textbooks and atlantes of MR and CT imaging. The aim of this book is acquaint the reader with the three-dimensional aspects of the neurofunctional systems and the cerebral arteries of the human brain using methods of computer graphics. Computer scientists and those interested in this technique are provided with basic neuroanatomic and neurofunctional information. Physicians will have a clearer understanding
Neurofunctional systems. 3D reconstructions with correlated neuroimaging
Energy Technology Data Exchange (ETDEWEB)
Kretschmann, H.J.; Fiekert, W.; Gerke, M.; Vogt, H.; Weirich, D.; Wesemann, M. [Medizinische Hochschule Hannover (Germany). Abt. Neuroanatomie; Weinrich, W. [Staedtisches Krankenhaus Nordstadt, Hannover (Germany). Abt. fuer Neurologie
1998-12-31
This book introduces, for the first time, computer-generated images of the neurofunctional systems of the human brain. These images are more accurate than drawings. The main views presented are of the medial lemniscus system, auditory system, visual system, basal ganglia, corticospinal system, and the limbic system. The arteries and sulci of the cerebral hemispheres are also illustrated by computer. These images provide a three-dimensional orientation of the intracranial space and help, for example, to assess vascular functional disturbance of the brain. Clinicians will find these images valuable for the spatial interpretation of magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) images since many neurofunctional systems cannot be visualized as isolated structures in neuroimaging. Computer-assisted surface reconstructions of the neurofunctional systems and the cerebral arteries serve as a basis for constructing these computer-generated images. The surface reconstructions are anatomically realistic having been created from brain sections with minimal deformations. The method of computer graphics, known as ray tracing, produces digital images form these reconstructions. The computer-generated methods are explained. The computer-generated images are accompanied by illustrations and texts on neuroanatomy and clinical practice. The neurofunctional systems of the human brain are also shown in sections so that the reader can mentally reconstruct the neurofunctional systems, thus facilitating the transformation of information into textbooks and atlantes of MR and CT imaging. The aim of this book is acquaint the reader with the three-dimensional aspects of the neurofunctional systems and the cerebral arteries of the human brain using methods of computer graphics. Computer scientists and those interested in this technique are provided with basic neuroanatomic and neurofunctional information. Physicians will have a clearer understanding
Signature of Fermi surface jumps in positron spectroscopy data
International Nuclear Information System (INIS)
Adam, G.; Adam, S.
1998-12-01
A subtractionless method for solving Fermi surface sheets (FSS), from measured n-axis-projected momentum distribution histograms by two-dimensional angular correlation of the positron-electron annihilation radiation (2D-ACAR) technique, is discussed. The window least squares statistical noise smoothing filter described in Adam et al., NIM A, 337 (1993) 188, is first refined such that the window free radial parameters (WRP) are optimally adapted to the data. In an ideal single crystal, the specific jumps induced in the WRP distribution by the existing Fermi surface jumps yield straightforward information on the resolved FSS. In a real crystal, the smearing of the derived WRP optimal values, which originates from positron annihilations with electrons at crystal imperfections, is ruled out by median smoothing of the obtained distribution, over symmetry defined stars of bins. The analysis of a gigacount 2D-ACAR spectrum, measured on the archetypal high-T c compound Y Ba 2 Cu 3 O 7-δ at room temperature, illustrates the method. Both electronic FSS, the ridge along Γ Χ direction and the pillbox centered at the S point of the first Brillouin zone, are resolved. (author)
Stability of spinor Fermi gases in tight waveguides
International Nuclear Information System (INIS)
Campo, A. del; Muga, J. G.; Girardeau, M. D.
2007-01-01
The two- and three-body correlation functions of the ground state of an optically trapped ultracold spin-(1/2) Fermi gas (SFG) in a tight waveguide [one-dimensional (1D) regime] are calculated in the plane of even- and odd-wave coupling constants, assuming a 1D attractive zero-range odd-wave interaction induced by a 3D p-wave Feshbach resonance, as well as the usual repulsive zero-range even-wave interaction stemming from 3D s-wave scattering. The calculations are based on the exact mapping from the SFG to a 'Lieb-Liniger-Heisenberg' model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, and indicate that the SFG should be stable against three-body recombination in a large region of the coupling constant plane encompassing parts of both the ferromagnetic and antiferromagnetic phases. However, the limiting case of the fermionic Tonks-Girardeau gas, a spin-aligned 1D Fermi gas with infinitely attractive p-wave interactions, is unstable in this sense. Effects due to the dipolar interaction and a Zeeman term due to a resonance-generating magnetic field do not lead to shrinkage of the region of stability of the SFG
A possible origin of gamma rays from the Fermi Bubbles
Thoudam, Satyendra
2014-11-01
One of the most exciting discoveries of recent years is a pair of gigantic gamma-ray emission regions, the so-called Fermi bubbles, above and below the Galactic center. The bubbles, discovered by the Fermi space telescope, extend up to ∼50° in Galactic latitude and are ∼40° wide in Galactic longitude. The gamma-ray emission is also found to correlate with radio, microwave and X-rays emission. The origin of the bubbles and the associated non-thermal emissions are still not clearly understood. Possible explanations for the non-thermal emission include cosmic-ray injection from the Galactic center by high speed Galactic winds/jets, acceleration by multiple shocks or plasma turbulence present inside the bubbles, and acceleration by strong shock waves associated with the expansion of the bubbles. In this paper, I will discuss the possibility that the gamma-ray emission is produced by the injection of Galactic cosmic-rays mainly protons during their diffusive propagation through the Galaxy. The protons interact with the bubble plasma producing π°-decay gamma rays, while at the same time, radio and microwave synchrotron emissions are produced by the secondary electrons/positrons resulting from the π± decays.
A possible origin of gamma rays from the Fermi Bubbles
International Nuclear Information System (INIS)
Thoudam, Satyendra
2014-01-01
One of the most exciting discoveries of recent years is a pair of gigantic gamma-ray emission regions, the so-called Fermi bubbles, above and below the Galactic center. The bubbles, discovered by the Fermi space telescope, extend up to ∼50 ° in Galactic latitude and are ∼40 ° wide in Galactic longitude. The gamma-ray emission is also found to correlate with radio, microwave and X-rays emission. The origin of the bubbles and the associated non-thermal emissions are still not clearly understood. Possible explanations for the non-thermal emission include cosmic-ray injection from the Galactic center by high speed Galactic winds/jets, acceleration by multiple shocks or plasma turbulence present inside the bubbles, and acceleration by strong shock waves associated with the expansion of the bubbles. In this paper, I will discuss the possibility that the gamma-ray emission is produced by the injection of Galactic cosmic-rays mainly protons during their diffusive propagation through the Galaxy. The protons interact with the bubble plasma producing π ° -decay gamma rays, while at the same time, radio and microwave synchrotron emissions are produced by the secondary electrons/positrons resulting from the π ± decays
2001-01-01
Italy needs to ensure that its system for making appointments to permanent univeristy positions, is cleaned up. Currently accusations of unnecessary bureaucracy and cronyism abound (1 page editorial).
The elimination of singularities in pair correlation functions of a multicomponent liquid system
International Nuclear Information System (INIS)
Vasil'jev, O.M.; Chalij, O.V.
2004-01-01
In this paper we propose a method that allows to find nonsingular expressions for pair correlation functions of a multicomponent liquid system. The nature of the method deals with using integral and differential Ornstein-Zernike equations for finding asymptotic expressions for pair correlation functions and their subsequent precision. The obtained results are analyzed taking into account their possible applicability for studying the correlative behaviour of multicomponent liquid systems
International Nuclear Information System (INIS)
Abul-Magd, A.Y.; Talib aly al Hinai, M.
2000-01-01
In the framework of Glauber's multiple scattering theory we propose a closed form expression for the total nucleus-nucleus reaction cross-section. We adopt the Gaussian and the two-parameter Fermi step radial shapes to describe the nuclear density distributions of the projectile and the target, respectively. The present formula is used to study different systems over a wide energy range including low energy reactions, where the role of the Coulomb repulsion is taken into account. The present predictions reasonably reproduce experiment
Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag
Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex
2017-11-01
We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.
DIRAC framework evaluation for the Fermi-LAT and CTA experiments
International Nuclear Information System (INIS)
Arrabito, L; Cohen-Tanugi, J; Piron, F; Renaud, M; Rolland, V; Diaz, R Graciani; Longo, F; Kuss, M; Sapunov, M; Tsaregorodtsev, A; Zimmer, S
2014-01-01
DIRAC (Distributed Infrastructure with Remote Agent Control) is a general framework for the management of tasks over distributed heterogeneous computing environments. It has been originally developed to support the production activities of the LHCb (Large Hadron Collider Beauty) experiment and today is extensively used by several particle physics and biology communities. Current (Fermi Large Area Telescope – LAT) and planned (Cherenkov Telescope Array – CTA) new generation astrophysical/cosmological experiments, with very large processing and storage needs, are currently investigating the usability of DIRAC in this context. Each of these use cases has some peculiarities: Fermi-LAT will interface DIRAC to its own workflow system to allow the access to the grid resources, while CTA is using DIRAC as workflow management system for Monte Carlo production and analysis on the grid. We describe the prototype effort that we lead toward deploying a DIRAC solution for some aspects of Fermi-LAT and CTA needs.
Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Devine, N., E-mail: nnd124@rsphysse.anu.edu.au [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Ankiewicz, A. [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia); Genty, G. [Tampere University of Technology, Optics Laboratory, FI-33101 Tampere (Finland); Dudley, J.M. [Institut FEMTO-ST UMR 6174 CNRS/Universite de Franche-Comte, Besancon (France); Akhmediev, N. [Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2011-11-07
We show that the dynamics of Fermi-Pasta-Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular case of the self-focussing nonlinear Schroedinger equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence cycle, is a previously-unremarked feature of the Fermi-Pasta-Ulam problem, and we anticipate its wide significance as an essential feature of related dynamics in other systems. -- Highlights: → The dynamics of FPU recurrence is associated with a phase shift between initial and final states. → The properties of this phase shift are studied for the self-focussing NLS equation. → This phase shift is a previously-unremarked feature of the FPU growth-return cycle. → We anticipate its wide significance as an essential feature of related dynamics in other systems.
Recurrence phase shift in Fermi-Pasta-Ulam nonlinear dynamics
International Nuclear Information System (INIS)
Devine, N.; Ankiewicz, A.; Genty, G.; Dudley, J.M.; Akhmediev, N.
2011-01-01
We show that the dynamics of Fermi-Pasta-Ulam recurrence is associated with a nonlinear phase shift between initial and final states that are otherwise identical, after a full growth-return cycle. The properties of this phase shift are studied for the particular case of the self-focussing nonlinear Schroedinger equation, and we describe the magnitude of the phase shift in terms of the system parameters. This phase shift, accumulated during the nonlinear recurrence cycle, is a previously-unremarked feature of the Fermi-Pasta-Ulam problem, and we anticipate its wide significance as an essential feature of related dynamics in other systems. -- Highlights: → The dynamics of FPU recurrence is associated with a phase shift between initial and final states. → The properties of this phase shift are studied for the self-focussing NLS equation. → This phase shift is a previously-unremarked feature of the FPU growth-return cycle. → We anticipate its wide significance as an essential feature of related dynamics in other systems.
Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats
D'Ambrosio, Federico; Baiesi, Marco
2017-01-01
The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of
On the interrelation between bulk and thin-film Fermi surfaces
Schwingenschlö gl, Udo; Fré sard, Raymond
2010-01-01
A general scheme for inferring the Fermi surface of a finite slab from ab initio electronic-structure calculations for the parent bulk system is introduced. The simple cubic ReO 3 oxide is studied as an example system. We show that our scheme
Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium
DEFF Research Database (Denmark)
Aikawa, K.; Frisch, A.; Mark, M.
2014-01-01
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...
Higher-dimensional bosonization and its application to Fermi liquids
Energy Technology Data Exchange (ETDEWEB)
Meier, Hendrik
2012-06-28
The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the
Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.
2010-01-01
The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.
International Nuclear Information System (INIS)
Walukiewicz, W.
1988-02-01
The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs
Magnetic interactions in strongly correlated systems: Spin and orbital contributions
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2015-09-15
We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.
Correlated electron systems studied by μSR technique
International Nuclear Information System (INIS)
Amato, A.
1995-01-01
Recent muon spin relaxation and rotation experiments in heavy-fermion compounds aimed at investigating the microscopic co-existence as well as the interplay between magnetism and superconductivity are briefly presented. Relevant properties of the two systems UPd 2 Al 3 and CeCu 2 Si 2 are discussed and utilized to point out the lack of a universal picture for the heavy-fermion superconductors. The search for weak magnetism phenomena in the heavy-fermion compounds is illustrated with new examples and its possible origins are briefly surveyed. ((orig.))
Heavy fermions and other highly correlated electron systems
International Nuclear Information System (INIS)
Schlottmann, P.
1991-01-01
In this paper I given a brief summary of the achievements grouped under three main headings, namely (1) heavy-fermion, mixed-valence and Kondo systems, (2) the n-channel Kondo problem and applications, and (3) one-dimensional conductors and antiferromagnets. The list of published papers and preprints is attached to the report, as well as a list of abstracts submitted to Conferences. All these papers are new in the sense that none of them was listed in the final technical report of grant DE-FG02-87ER45333
System Design, Implementation, and Evaluation of the Optical Broadband Correlator
1994-09-20
shear-mode TeO2 , Model No. N45075-6-20, manufactured by Newport Electro- Optic Systems with a length of 75 pjs, acoustic direction 1110], optical...optical aperture (or useful length) TOA of our cells are shown in Table 3. The Bragg cells are shear-mode TeO2 , Model No. N45075-6-20, manufactured by...focusing or integrating (Fourier transform) lens is a laser diode glass doublet Model 06LAI013/076, from Melles Griot. Its focal length is 145 nun at 830
Measurement-Based Spatial Correlation and Capacity of Indoor Distributed MIMO System
Directory of Open Access Journals (Sweden)
Yan Zhang
2013-01-01
Full Text Available Distributed MIMO (D-MIMO system is one of the candidates for future wireless access networks. In this study, the spatial correlation and capacity in indoor D-MIMO system are presented. All results are from the actual channel measurements in typical indoor scenarios, including office and corridor. Based on measured data, spatial correlation coefficients between distributed transmitting antennas are analyzed. Although the literature about D-MIMO system assumes the small scale fading between distributed antennas is independent, we find that spatial correlation may still exist in specific propagation scenario. This correlation can also degrade the performance of D-MIMO system. To mitigate the impact of spatial correlation, one efficient method is to use transmitting antenna selection technique.
Magnetar Observations with Fermi/GBM
Kouveliotou, Chryssa
2009-01-01
NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.
Excited Dark Matter versus PAMELA/Fermi
Cline, James M
2010-01-01
Excitation of multicomponent dark matter in the galactic center has been proposed as the source of low-energy positrons that produce the excess 511 keV gamma rays that have been observed by INTEGRAL. Such models have also been promoted to explain excess high-energy electrons/positrons observed by the PAMELA, Fermi/LAT and H.E.S.S. experiments. We investigate whether one model can simultaneously fit all three anomalies, in addition to further constraints from inverse Compton scattering by the high-energy leptons. We find models that fit both the 511 keV and PAMELA excesses at dark matter masses M < 400 GeV, but not the Fermi lepton excess. The conflict arises because a more cuspy DM halo profile is needed to match the observed 511 keV signal than is compatible with inverse Compton constraints at larger DM masses.
Statistical mechanics of magnetized pair Fermi gas
International Nuclear Information System (INIS)
Daicic, J.; Frankel, N.E.; Kowalenko, V.
1993-01-01
Following previous work on the magnetized pair Bose gas this contribution presents the statistical mechanics of the charged relativistic Fermi gas with pair creation in d spatial dimensions. Initially, the gas in no external fields is studied. As a result, expansions for the various thermodynamic functions are obtained in both the μ/m→0 (neutrino) limit, and about the point μ/m =1, where μ is the chemical potential. The thermodynamics of a gas of quantum-number conserving massless fermions is also discussed. Then a complete study of the pair Fermi gas in a homogeneous magnetic field, is presented investigating the behavior of the magnetization over a wide range of field strengths. The inclusion of pairs leads to new results for the net magnetization due to the paramagnetic moment of the spins and the diamagnetic Landau orbits. 20 refs
MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST
International Nuclear Information System (INIS)
Abdo, A. A.; Linnemann, J. T.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.; DeYoung, T.; Dingus, B. L.; Hoffman, C. M.; Ellsworth, R. W.; Gonzalez, M. M.; Hays, E.; McEnery, J. E.; Huentemeyer, P. H.; Morgan, T.
2009-01-01
We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.
Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors
International Nuclear Information System (INIS)
Classen, Laura
2016-01-01
In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.
Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors
Energy Technology Data Exchange (ETDEWEB)
Classen, Laura
2016-11-04
In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.
Super-allowed Fermi beta-decay
International Nuclear Information System (INIS)
Wilkinson, D.H.
2005-01-01
A final analysis of J π =0 + ->0 + super-allowed Fermi transitions yields vertical bar V ud vertical bar 2 =0.9500±0.0007; vertical bar V ud vertical bar 2 + vertical bar V us vertical bar 2 + vertical bar V ub vertical bar 2 =0.9999±0.0011 with the operational vector coupling constant G V */(-bar c) 3 =(1.15052±0.00021)x10 -5 GeV -2
Hu, Shunren; Chen, Weimin; Liu, Lin; Gao, Xiaoxia
2010-03-01
Bridge structural health monitoring system is a typical multi-sensor measurement system due to the multi-parameters of bridge structure collected from the monitoring sites on the river-spanning bridges. Bridge structure monitored by multi-sensors is an entity, when subjected to external action; there will be different performances to different bridge structure parameters. Therefore, the data acquired by each sensor should exist countless correlation relation. However, complexity of the correlation relation is decided by complexity of bridge structure. Traditionally correlation analysis among monitoring sites is mainly considered from physical locations. unfortunately, this method is so simple that it cannot describe the correlation in detail. The paper analyzes the correlation among the bridge monitoring sites according to the bridge structural data, defines the correlation of bridge monitoring sites and describes its several forms, then integrating the correlative theory of data mining and signal system to establish the correlation model to describe the correlation among the bridge monitoring sites quantificationally. Finally, The Chongqing Mashangxi Yangtze river bridge health measurement system is regards as research object to diagnosis sensors fault, and simulation results verify the effectiveness of the designed method and theoretical discussions.
An efficient and accurate decomposition of the Fermi operator.
Ceriotti, Michele; Kühne, Thomas D; Parrinello, Michele
2008-07-14
We present a method to compute the Fermi function of the Hamiltonian for a system of independent fermions based on an exact decomposition of the grand-canonical potential. This scheme does not rely on the localization of the orbitals and is insensitive to ill-conditioned Hamiltonians. It lends itself naturally to linear scaling as soon as the sparsity of the system's density matrix is exploited. By using a combination of polynomial expansion and Newton-like iterative techniques, an arbitrarily large number of terms can be employed in the expansion, overcoming some of the difficulties encountered in previous papers. Moreover, this hybrid approach allows us to obtain a very favorable scaling of the computational cost with increasing inverse temperature, which makes the method competitive with other Fermi operator expansion techniques. After performing an in-depth theoretical analysis of computational cost and accuracy, we test our approach on the density functional theory Hamiltonian for the metallic phase of the LiAl alloy.
Program system for processing of spectra obtained on the multidetector correlation device (MUK)
International Nuclear Information System (INIS)
Venos, D.; Adam, J.; Hnatowicz, V.; Honusek, M.
1988-01-01
A program system used by evaluation of multidimensional coincidence spectra is described. The spectra recorded on magnetic tapes are obtained by means of multidetector correlation device (MUK). The angular correlation coefficients A 22 and A 44 for the given cascades of gamma transitions are the final result of the calculations. The system operates in DOS/ES system of the EC-1040 computer with the 1024 Kbyte memeory. All the codes are written in fortran language
Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach
Directory of Open Access Journals (Sweden)
Ishita Pant
2015-01-01
Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.
Fermi/GBM Results of Magnetars
Kouveliotou, chryssa
2011-01-01
Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.
Exploring the Variability of the Fermi LAT Blazar Population
Macomb, Daryl J.; Shrader, C. R.
2014-01-01
The flux variability of the approximately 2000 point sources cataloged by the Fermi Gamma-Ray Space Telescope provide important clues to population characteristics. This is particularly true of the more than 1100 source that are likely AGN. By characterizing the intrinsic flux variability and distinguishing this variability from flaring behavior, we can better address questions of flare amplitudes, durations, recurrence times, and temporal profiles. A better understanding of the responsible physical environments, such as the scale and location of jet structures responsible for the high-energy emission, may emerge from such studies. Assessing these characteristics as a function of blazar sub-class is a further goal in order to address questions about the fundamentals of blazar AGN physics. Here we report on progress made in categorizing blazar flare behavior, and correlate these behaviors with blazar sub-type and other source parameters.
Bell Correlations in a Many-Body System with Finite Statistics
Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel
2017-10-01
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.
Energy Technology Data Exchange (ETDEWEB)
Hartwell, R. W. [Power Reactor Development Company, Detroit, MI (United States)
1963-10-15
Construction of the Enrico Fermi Atomic Power Plant, which utilizes a 100 MW(e) fast breeder reactor, was essentially completed in December 1961. During the past eighteen-month period, systems and components have been extensively tested. This pre-operational test programme has proved most valuable in verifying the design and in indicating needed modifications. All the problems encountered have proved manageable. The more important modifications are summarized. Graphite shielding. In December 1960, the primary system was filled with sodium, and extensive testing began. When the primary shield tank was reopened after a 1000{sup o}F primary system test, it was found that much of the graphite block shielding which had been installed around the reactor had deteriorated. These hightemperature blocks which were impregnated with boron had increased in volume and lost strength. Extensive analysis indicated that the graphite binder had failed. It was decided to replace all of the graphite, to use boron carbide as the boronating agent, to install the block with mechanical fasteners, and to keep moisture to a minimum. Modifications within the reactor vessel. Repairs and design modifications were made to correct the cause of sub-assembly sticking, the damage which resulted, and to prevent further malfunctions of the offset handling mechanism. In order to make repairs and alterations, the offset handling mechanism was removed, the reactor vessel was drained of sodium, and trained personnel wearing specially designed protective suits entered the reactor vessel. Entrance to the work area was through a special air lock since an argon atmosphere was maintained inside the vessel. Steam generator modifications. During hydrostatic testing of the No. 2 steam generator, several leaking tubes were discovered. Tube failure was traced to stress corrosion cracking. The No. 2 bundle was retubed, all units were stress relieved, and a hydrogen detector system was installed. In December 1962, a
Disordered ultracold atomic gases in optical lattices: A case study of Fermi-Bose mixtures
International Nuclear Information System (INIS)
Ahufinger, V.; Sanchez-Palencia, L.; Kantian, A.; Sanpera, A.; Lewenstein, M.
2005-01-01
We present a review of properties of ultracold atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. In the strong interacting limit and at very low temperatures, fermions form, together with bosons or bosonic holes, composite fermions. Composite fermions behave as a spinless interacting Fermi gas, and in the presence of local disorder they interact via random couplings and feel effective random local potential. This opens a wide variety of possibilities of realizing various kinds of ultracold quantum disordered systems. In this paper we review these possibilities, discuss the accessible quantum disordered phases, and methods for their detection. The discussed quantum phases include Fermi glasses, quantum spin glasses, 'dirty' superfluids, disordered metallic phases, and phases involving quantum percolation
Sampling Transition Pathways in Highly Correlated Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Chandler, David
2004-10-20
This research grant supported my group's efforts to apply and extend the method of transition path sampling that we invented during the late 1990s. This methodology is based upon a statistical mechanics of trajectory space. Traditional statistical mechanics focuses on state space, and with it, one can use Monte Carlo methods to facilitate importance sampling of states. With our formulation of a statistical mechanics of trajectory space, we have succeeded at creating algorithms by which importance sampling can be done for dynamical processes. In particular, we are able to study rare but important events without prior knowledge of transition states or mechanisms. In perhaps the most impressive application of transition path sampling, my group combined forces with Michele Parrinello and his coworkers to unravel the dynamics of auto ionization of water [5]. This dynamics is the fundamental kinetic step of pH. Other applications concern nature of dynamics far from equilibrium [1, 7], nucleation processes [2], cluster isomerization, melting and dissociation [3, 6], and molecular motors [10]. Research groups throughout the world are adopting transition path sampling. In part this has been the result of our efforts to provide pedagogical presentations of the technique [4, 8, 9], as well as providing new procedures for interpreting trajectories of complex systems [11].
Correlation between obesity, adipokines and the immune system
Directory of Open Access Journals (Sweden)
Marcos Regini Silveira
2009-09-01
Full Text Available Obesity is a worldwide health problem and the increase in its incidence, risks and consequences are a matter of growing concern. Obesity is characterized by the accumulation of fat in the body. Many studies are currently investigating obesity and associated comorbidities in an attempt to clarify the mechanisms involved. Fat tissue is a dynamic organ that secretes several factors, including adipokines. Adipokines are bioactive peptides secreted by fat cells, which are important for energy regulation and inflammatory and immune responses. Leptin, adiponectin and resistin are the most studied adipokines. The aim of this review was to gather information about these adipokines (leptin, adiponectin and resistin and their relationship with the immune response in obese individuals, as well as the susceptibility of these patients to infections. The results of the literature review permit some observations. The circulating levels of these adipokines are directly involved in the degree of obesity of the patient. High or low circulating concentrations of these adipokines may have beneficial or negative effects on immune competence, with obese patients being more susceptible to infection and inflammation than eutrophic individuals.Key words: Obesity; Adipokines; Leptin; Adiponectin; Resistin; Immune system.
BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms
International Nuclear Information System (INIS)
Perali, A.; Pieri, P.; Pisani, L.; Strinati, G.C.
2004-01-01
We consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings
VizieR Online Data Catalog: Short GRBs with Fermi GBM and Swift BAT (Burns+, 2016)
Burns, E.; Connaughton, V.; Zhang, B.-B.; Lien, A.; Briggs, M. S.; Goldstein, A.; Pelassa, V.; Troja, E.
2018-01-01
Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. (4 data files).
International Nuclear Information System (INIS)
Khotkevych-Sanina, N V; Kolesnichenko, Yu A; Van Ruitenbeek, J M
2013-01-01
We present a theoretical analysis of the standing wave patterns in scanning tunneling microscope (STM) images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects. (paper)
Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases
International Nuclear Information System (INIS)
Xu Yan-Xia; Duan Wen-Shan
2011-01-01
We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases, including the linear and nonlinear waves of the system. A Korteweg de Vries (KdV) solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime, a BCS regime and unitarity. The dependences of the propagation velocity, amplitude and the width of the solitary wave on the dimensionless interaction parameter y = 1/(k F a sc ) are given for the limited cases of BEC and unitarity. (physics of gases, plasmas, and electric discharges)
International Nuclear Information System (INIS)
Bouis, F.
1999-01-01
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units
Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.
2008-01-01
A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer
Two Point Correlation Functions for a Periodic Box-Ball System
Directory of Open Access Journals (Sweden)
Jun Mada
2011-03-01
Full Text Available We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N-point functions is also presented.
Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea
Balram, Ajit C.; Jain, J. K.
2017-12-01
The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .
Tests of a robust eddy correlation system for sensible heat flux
Blanford, J. H.; Gay, L. W.
1992-03-01
Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.
The FERMI-Elettra distributed real-time framework
International Nuclear Information System (INIS)
Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.
2012-01-01
FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)
Contribution to the theory of ultracold highly polarized Fermi gases
International Nuclear Information System (INIS)
Giraud, Sebastien
2010-01-01
This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)
Dimensional BCS-BEC crossover in ultracold Fermi gases
Energy Technology Data Exchange (ETDEWEB)
Boettcher, Igor
2014-12-10
We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.
Engineering frequency-dependent superfluidity in Bose-Fermi mixtures
Arzamasovs, Maksims; Liu, Bo
2018-04-01
Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.
Advanced Electron Beam Diagnostics for the FERMI FEL
Ferianis, M; D'Auria, G; Di Mitri, S
2005-01-01
Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...
Bose-Einstein condensate & degenerate Fermi cored dark matter halos
Chung, W.-J.; Nelson, L. A.
2018-06-01
There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.
Universal Borromean Binding in Spin-Orbit-Coupled Ultracold Fermi Gases
Directory of Open Access Journals (Sweden)
Xiaoling Cui
2014-08-01
Full Text Available Borromean rings and Borromean binding, a class of intriguing phenomena as three objects are linked (bound together while any two of them are unlinked (unbound, widely exist in nature and have been found in systems of biology, chemistry, and physics. Previous studies have suggested that the occurrence of such a binding in physical systems typically relies on the microscopic details of pairwise interaction potentials at short range and is, therefore, nonuniversal. Here, we report a new type of Borromean binding in ultracold Fermi gases with Rashba spin-orbit coupling, which is universal against short-range interaction details, with its binding energy only dependent on the s-wave scattering length and the spin-orbit-coupling strength. We show that the occurrence of this universal Borromean binding is facilitated by the symmetry of the single-particle dispersion under spin-orbit coupling and is, therefore, symmetry selective rather than interaction selective. The state is robust over a wide range of mass ratios between composing fermions, which are accessible by Li-Li, K-K, and K-Li mixtures in cold-atom experiments. Our results reveal the importance of single- particle spectral symmetry in few-body physics and shed light on the emergence of new quantum phases in a many-body system with exotic few-body correlations.
Tunable two-photon correlation in a double-cavity optomechanical system
Directory of Open Access Journals (Sweden)
Zhi-Bo Feng
2015-12-01
Full Text Available Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.
The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog
Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.
2017-12-01
The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.
Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor.
Butch, Nicholas P; Jin, Kui; Kirshenbaum, Kevin; Greene, Richard L; Paglione, Johnpierre
2012-05-29
In the high-temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here, we identify quantum critical scaling in the electron-doped cuprate material La(2-x)Ce(x)CuO(4) with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non-Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, these facts suggest that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.
Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars
Breton, R.P.; van Kerkwijk, M.H.; Roberts, M.S.E.; Hessels, J.W.T.; Camilo, F.; McLaughlin, M.A.; Ransom, S.M.; Ray, P.S.; Stairs, I.H.
2013-01-01
In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified γ-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show
Internal flood analysis at Fermi 2 using a component-based frequency calculation approach
International Nuclear Information System (INIS)
Lin, J.C.; Hou, Y.M.; Ramirez, J.V.; Page, E.M.
2004-01-01
An analysis to identify potential accident sequences involving internal floods at Fermi Unit 2 was completed to fulfill the individual plant examination requirements. Floods can be significant core damage scenarios if they cause an initiating event and a common mode failure of critical systems. (author)
A normalisation for the four - detector system for gamma - gamma angular correlation studies
International Nuclear Information System (INIS)
Kiang, G.C.; Chen, C.H.; Niu, W.F.
1994-01-01
A normalisation method for the multiple - HPGe - detector system is described. The system consists of four coaxial HPGe detectors with a CAMAC event - by - event data acquisition system, enabling to measure six gamma -gamma coincidences of angles simultaneously. An application for gamma - gamma correlation studies of Kr 82 is presented and discussed. 3 figs., 6 refs. (author)
A CATASTROPHIC-CUM-RESTORATIVE QUEUING SYSTEM WITH CORRELATED BATCH ARRIVALS AND VARIABLE CAPACITY
Directory of Open Access Journals (Sweden)
Rakesh Kumar
2008-07-01
Full Text Available In this paper, we study a catastrophic-cum-restorative queuing system with correlated batch arrivals and service in batches of variable sizes. We perform the transient analysis of the queuing model. We obtain the Laplace Transform of the probability generating function of system size. Finally, some particular cases of the model have been derived and discussed. Keywords: Queue length, Catastrophes, Correlated batch arrivals, Broadband services, Variable service capacity, and Restoration.
Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.
Zheng, Wei; Zhai, Hui
2014-12-31
In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.