WorldWideScience

Sample records for correlated electron systems

  1. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  2. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  3. Electronic Correlations in Electron Transfer Systems

    Science.gov (United States)

    Bulla, Ralf; Tornow, Sabine; Anders, Frithjof

    Electron transfer processes play a central role in many chemical and biological systems. Already the transfer of a single electron from the donor to the acceptor can be viewed as a complicated many-body problem, due to the coupling of the electron to the infinitely many environmental degrees of freedom, realized by density fluctuations of the solvent or molecular vibrations of the protein matrix. We focus on the quantum mechanical modelling of two-electron transfer processes whose dynamics is governed by the Coulomb interaction between the electrons as well as the environmental degrees of freedoms represented by a bosonic bath. We identify the regime of parameters in which concerted transfer of the two electrons occurs and discuss the influence of the Coulomb repulsion and the coupling strength to the environment on the electron transfer rate. Calculations are performed using the non-perturbative numerical renormalization group approach for both equilibrium and non-equilibrium properties.

  4. Disordered strongly correlated electronic systems

    Science.gov (United States)

    Javan Mard, Hossein

    Disorder can have a vast variety of consequences for the physics of phase transitions. Some transitions remain unchanged in the presence of disorder while others are completely destroyed. In this dissertation we study the effects of quenched disorder on electronic systmens at zero temperature. First, we perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave functions remain exponentially localized even in the presence of moderate to strong repulsive interactions, we show that interactions produce a strong decrease of the characteristic conductance scale g* signaling the crossover to strong localization. This effect, which cannot be captured by a simple renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically reduce the impact of Anderson localization (interference) effects. Second, we formulate a strong-disorder renormalization-group (SDRG) approach to study the beta function of the tight-binding model in one dimension with both diagonal and off-diagonal disorder for states at the band center. We show that the SDRG method, when used to compute transport properties, yields exact results since it is identical to the transfer matrix method. The beta function is shown to be universal when only off-diagonal disorder is present even though single-parameter scaling is known to be violated. A different single-parameter scaling theory is formulated for this particular (particle-hole symmetric) case. Upon breaking particle-hole symmetry (by adding diagonal disorder), the beta function is shown to

  5. Effective action for strongly correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, A., E-mail: aferraz.iccmp@gmail.com [International Institute of Physics - UFRN, Department of Experimental and Theoretical Physics - UFRN, Natal (Brazil); Kochetov, E.A. [International Institute of Physics - UFRN, Natal (Brazil); Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-12-21

    The su(2|1) coherent-state path-integral representation of the partition function of the t-J model of strongly correlated electrons is derived at finite doping. The emergent effective action is compared to the one proposed earlier on phenomenological grounds by Shankar to describe holes in an antiferromagnet [R. Shankar, Nucl. Phys. B 330 (1990) 433]. The t-J model effective action is found to have an important 'extra' factor with no analogue in Shankar's action. It represents the local constraint of no double electron occupancy and reflects the rearrangement of the underlying phase-space manifold due to the presence of strong electron correlation. This important ingredient is shown to be essential to describe the physics of strongly correlated electron systems.

  6. Gutzwiller approximation in strongly correlated electron systems

    Science.gov (United States)

    Li, Chunhua

    Gutzwiller wave function is an important theoretical technique for treating local electron-electron correlations nonperturbatively in condensed matter and materials physics. It is concerned with calculating variationally the ground state wave function by projecting out multi-occupation configurations that are energetically costly. The projection can be carried out analytically in the Gutzwiller approximation that offers an approximate way of calculating expectation values in the Gutzwiller projected wave function. This approach has proven to be very successful in strongly correlated systems such as the high temperature cuprate superconductors, the sodium cobaltates, and the heavy fermion compounds. In recent years, it has become increasingly evident that strongly correlated systems have a strong propensity towards forming inhomogeneous electronic states with spatially periodic superstrutural modulations. A good example is the commonly observed stripes and checkerboard states in high- Tc superconductors under a variety of conditions where superconductivity is weakened. There exists currently a real challenge and demand for new theoretical ideas and approaches that treats strongly correlated inhomogeneous electronic states, which is the subject matter of this thesis. This thesis contains four parts. In the first part of the thesis, the Gutzwiller approach is formulated in the grand canonical ensemble where, for the first time, a spatially (and spin) unrestricted Gutzwiller approximation (SUGA) is developed for studying inhomogeneous (both ordered and disordered) quantum electronic states in strongly correlated electron systems. The second part of the thesis applies the SUGA to the t-J model for doped Mott insulators which led to the discovery of checkerboard-like inhomogeneous electronic states competing with d-wave superconductivity, consistent with experimental observations made on several families of high-Tc superconductors. In the third part of the thesis, new

  7. Quantum frustrated and correlated electron systems

    Directory of Open Access Journals (Sweden)

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  8. Emergent behavior in strongly correlated electron systems

    Science.gov (United States)

    Pines, David

    2016-09-01

    I describe early work on strongly correlated electron systems (SCES) from the perspective of a theoretical physicist who, while a participant in their reductionist top-down beginnings, is now part of the paradigm change to a bottom-up ‘emergent’ approach with its focus on using phenomenology to find the organizing principles responsible for their emergent behavior disclosed by experiment—and only then constructing microscopic models that incorporate these. After considering the organizing principles responsible for the emergence of plasmons, quasiparticles, and conventional superconductivity in SCES, I consider their application to three of SCES’s sister systems, the helium liquids, nuclei, and the nuclear matter found in neutron stars. I note some recent applications of the random phase approximation and examine briefly the role that paradigm change is playing in two central problems in our field: understanding the emergence and subsequent behavior of heavy electrons in Kondo lattice materials; and finding the mechanism for the unconventional superconductivity found in heavy electron, organic, cuprate, and iron-based materials.

  9. Optical response of correlated electron systems

    Science.gov (United States)

    Maslov, Dmitrii L.; Chubukov, Andrey V.

    2017-02-01

    Recent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, σ (Ω,T) . This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) Ω /T scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section 2), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron–electron scattering. As a concrete example, we consider a two-band metal and show that although its optical conductivity is finite it does not obey the Drude formula. In the second part (sections 3 and 4), we re-visit the Gurzhi formula for the optical scattering rate, 1/τ (Ω,T)\\propto {{ Ω }2}+4{π2}{{T}2} , and show that a factor of 4{π2} is the manifestation of the ‘first-Matsubara-frequency rule’ for boson response, which states that 1/τ (Ω,T) must vanish upon analytic continuation to the first boson Matsubara frequency. However, recent experiments show that the coefficient b in the Gurzhi-like form, 1/τ (Ω,T)\\propto {{ Ω }2}+b{π2}{{T}2} , differs significantly from b  =  4 in most of the cases. We suggest that the deviations from Gurzhi scaling may be due to the presence of elastic but energy-dependent scattering, which decreases the value of b below 4, with b  =  1 corresponding to purely elastic scattering. In the third part (section 5), we consider the optical conductivity of metals near quantum phase transitions to nematic and spin-density-wave states. In the last case, we focus on ‘composite’ scattering processes, which give rise to a non-Fermi-liquid behavior of the optical conductivity at T  =  0: {σ\\prime}(Ω )\\propto {{ Ω }-1/3} at low frequencies and {σ\\prime}(Ω )\\propto {{ Ω }-1} at higher frequencies. We

  10. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  11. Perspective: Explicitly correlated electronic structure theory for complex systems

    Science.gov (United States)

    Grüneis, Andreas; Hirata, So; Ohnishi, Yu-ya; Ten-no, Seiichiro

    2017-02-01

    The explicitly correlated approach is one of the most important breakthroughs in ab initio electronic structure theory, providing arguably the most compact, accurate, and efficient ansatz for describing the correlated motion of electrons. Since Hylleraas first used an explicitly correlated wave function for the He atom in 1929, numerous attempts have been made to tackle the significant challenges involved in constructing practical explicitly correlated methods that are applicable to larger systems. These include identifying suitable mathematical forms of a correlated wave function and an efficient evaluation of many-electron integrals. R12 theory, which employs the resolution of the identity approximation, emerged in 1985, followed by the introduction of novel correlation factors and wave function ansätze, leading to the establishment of F12 theory in the 2000s. Rapid progress in recent years has significantly extended the application range of explicitly correlated theory, offering the potential of an accurate wave-function treatment of complex systems such as photosystems and semiconductors. This perspective surveys explicitly correlated electronic structure theory, with an emphasis on recent stochastic and deterministic approaches that hold significant promise for applications to large and complex systems including solids.

  12. The utility of band theory in strongly correlated electron systems.

    Science.gov (United States)

    Zwicknagl, Gertrud

    2016-12-01

    This article attempts to review how band structure calculations can help to better understand the intriguing behavior of materials with strongly correlated electrons. Prominent examples are heavy-fermion systems whose highly anomalous low-temperature properties result from quantum correlations not captured by standard methods of electronic structure calculations. It is shown how the band approach can be modified to incorporate the typical many-body effects which characterize the low-energy excitations. Examples underlining the predictive power of this ansatz are discussed.

  13. The utility of band theory in strongly correlated electron systems

    Science.gov (United States)

    Zwicknagl, Gertrud

    2016-12-01

    This article attempts to review how band structure calculations can help to better understand the intriguing behavior of materials with strongly correlated electrons. Prominent examples are heavy-fermion systems whose highly anomalous low-temperature properties result from quantum correlations not captured by standard methods of electronic structure calculations. It is shown how the band approach can be modified to incorporate the typical many-body effects which characterize the low-energy excitations. Examples underlining the predictive power of this ansatz are discussed.

  14. Realistic theory of electronic correlations in nanoscopic systems

    Science.gov (United States)

    Schüler, Malte; Barthel, Stefan; Wehling, Tim; Karolak, Michael; Valli, Angelo; Sangiovanni, Giorgio

    2017-07-01

    Nanostructures with open shell transition metal or molecular constituents host often strong electronic correlations and are highly sensitive to atomistic material details. This tutorial review discusses method developments and applications of theoretical approaches for the realistic description of the electronic and magnetic properties of nanostructures with correlated electrons. First, the implementation of a flexible interface between density functional theory and a variant of dynamical mean field theory (DMFT) highly suitable for the simulation of complex correlated structures is explained and illustrated. On the DMFT side, this interface is largely based on recent developments of quantum Monte Carlo and exact diagonalization techniques allowing for efficient descriptions of general four fermion Coulomb interactions, reduced symmetries and spin-orbit coupling, which are explained here. With the examples of the Cr (001) surfaces, magnetic adatoms, and molecular systems it is shown how the interplay of Hubbard U and Hund's J determines charge and spin fluctuations and how these interactions drive different sorts of correlation effects in nanosystems. Non-local interactions and correlations present a particular challenge for the theory of low dimensional systems. We present our method developments addressing these two challenges, i.e., advancements of the dynamical vertex approximation and a combination of the constrained random phase approximation with continuum medium theories. We demonstrate how non-local interaction and correlation phenomena are controlled not only by dimensionality but also by coupling to the environment which is typically important for determining the physics of nanosystems.

  15. Physics of strongly correlated electron systems (JJAP Series 11)

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, T. [Tohoku Univ., Sendai (Japan); Fujii, H.; Onuki, Y.; Shiba, H. [eds.

    1999-02-28

    Strongly correlated f electron systems are one of the most important fields in solid state physics. The outstanding problems include small magnetic moments, heavy electrons with extremely large masses of 10-200m{sub 0}, exotic superconductivity not following the BCS theory and Kondo insulators with energy gaps at low temperatures. They originate from the 4f (5f) electrons in the Ce and Yb (U) compounds, which change their nature easily between localized and itinerant ones. To clarify these characteristic features, we started a new researching project named 'Physics of Strongly Correlated Electron Systems'. In the project high-quality single crystals were grown for CeRu{sub 2}Si{sub 2}, UPt{sub 3}, UPd{sub 2}Al{sub 3} and CeNiSn. For example, the mean free path of UPt{sub 3} grown in the project is beyond 1000 A, which is by one order longer than the coherence length of Cooper pairs. For these compounds, we measured the electrical resistivity, magnetoresistance, magnetization, specific heat and de Haas-van Alphen effect at temperatures lower than 0.1 K and fields higher than 10 T. Low temperatures, high fields and high pressures are fundamentally important conditions to study the ground state of the f-electron systems. This research report contains novel results obtained under this project such as a new quantum phase transition of CeRu{sub 2}Si{sub 2}, odd-parity superconductivity in UPt{sub 3}, a magnetic excitation gap associated with d-wave superconductivity of UPd{sub 2}Al{sub 3}, an anisotropic energy gap in CeNiSn with a close relationship of spin correlations. It contains also other achievements including a new development in quadrupole and charge orderings, non-Fermi liquid and low-density carrier system. The 94 papers are indexed individually. (J.P.N.)

  16. Improved cluster-in-molecule local correlation approach for electron correlation calculation of large systems.

    Science.gov (United States)

    Guo, Yang; Li, Wei; Li, Shuhua

    2014-10-02

    An improved cluster-in-molecule (CIM) local correlation approach is developed to allow electron correlation calculations of large systems more accurate and faster. We have proposed a refined strategy of constructing virtual LMOs of various clusters, which is suitable for basis sets of various types. To recover medium-range electron correlation, which is important for quantitative descriptions of large systems, we find that a larger distance threshold (ξ) is necessary for highly accurate results. Our illustrative calculations show that the present CIM-MP2 (second-order Møller-Plesser perturbation theory, MP2) or CIM-CCSD (coupled cluster singles and doubles, CCSD) scheme with a suitable ξ value is capable of recovering more than 99.8% correlation energies for a wide range of systems at different basis sets. Furthermore, the present CIM-MP2 scheme can provide reliable relative energy differences as the conventional MP2 method for secondary structures of polypeptides.

  17. Systematically improvable multiscale solver for correlated electron systems

    Science.gov (United States)

    Kananenka, Alexei A.; Gull, Emanuel; Zgid, Dominika

    2015-03-01

    The development of numerical methods capable of simulating realistic materials with strongly correlated electrons, with controllable errors, is a central challenge in quantum many-body physics. Here we describe a framework for a general multiscale method based on embedding a self-energy of a strongly correlated subsystem into a self-energy generated by a method able to treat large weakly correlated systems approximately. As an example, we present the embedding of an exact diagonalization self-energy into a self-energy generated from self-consistent second-order perturbation theory. Using a quantum impurity model, generated from a cluster dynamical mean field approximation to the two-dimensional Hubbard model, as a benchmark, we illustrate that our method allows us to obtain accurate results at a fraction of the cost of typical Monte Carlo calculations. We test the method in multiple regimes of interaction strengths and dopings of the model. The general embedding framework we present avoids difficulties such as double counting corrections, frequency-dependent interactions, or vertex functions. As it is solely formulated at the level of the single-particle Green's function, it provides a promising route for the simulation of realistic materials that are currently difficult to study with other methods.

  18. Computational studies of model disordered and strongly correlated electronic systems

    Science.gov (United States)

    Johri, Sonika

    The theory of non-interacting electrons in perfect crystals was completed soon after the advent of quantum mechanics. Though capable of describing electron behaviour in most simple solid state physics systems, this approach falls woefully short of describing condensed matter systems of interest today, and designing the quantum devices of the future. The reason is that nature is never free of disorder, and emergent properties arising from interactions can be clearly seen in the pure, low-dimensional materials that can be engineered today. In this thesis, I address some salient problems in disordered and correlated electronic systems using modern numerical techniques like sparse matrix diagonalization, density matrix renormalization group (DMRG), and large disorder renormalization group (LDRG) methods. The pioneering work of P. W. Anderson, in 1958, led to an understanding of how an electron can stop diffusing and become localized in a region of space when a crystal is sufficiently disordered. Thus disorder can lead to metal-insulator transitions, for instance, in doped semiconductors. Theoretical research on the Anderson disorder model since then has mostly focused on the localization-delocalization phase transition. The localized phase in itself was not thought to exhibit any interesting physics. Our work has uncovered a new singularity in the disorder-averaged inverse participation ratio of wavefunctions within the localized phase, arising from resonant states. The effects of system size, dimension and disorder distribution on the singularity have been studied. A novel wavefunction-based LDRG technique has been designed for the Anderson model which captures the singular behaviour. While localization is well established for a single electron in a disordered potential, the situation is less clear in the case of many interacting particles. Most studies of a many-body localized phase are restricted to a system which is isolated from its environment. Such a condition

  19. Correlation matrix renormalization approximation for total-energy calculations of correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y. X. [Ames Lab., Ames, IA (United States); Liu, Jun [Ames Lab., Ames, IA (United States); Wang, Cai-Zhuang [Ames Lab., Ames, IA (United States); Ho, Kai-Ming [Ames Lab., Ames, IA (United States)

    2014-01-23

    We generalized the commonly used Gutzwiller approximation for calculating the electronic structure and total energy of strongly correlated electron systems. In our method, the evaluation of one-body and two-body density matrix elements of the Hamiltonian is simplified using a renormalization approximation to achieve better scaling of the computational effort as a function of system size. To achieve a clear presentation of the concept and methodology, we describe the detailed formalism for a finite hydrogen system with minimal basis set. We applied the correlation matrix renormalization approximation approach to a H2 dimer and H8 cubic fragment with minimal basis sets, as well as a H2 molecule with a large basis set. The results compare favorably with sophisticated quantum chemical calculations. We believe our approach can serve as an alternative way to build up the exchange-correlation energy functional for an improved density functional theory description of systems with strong electron correlations.

  20. PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)

    Science.gov (United States)

    Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.

    2012-11-01

    The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion

  1. Advanced cluster methods for correlated-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andre

    2015-04-27

    In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear. Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects. Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom. For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult

  2. Electron transfer in donor-acceptor systems: Many-particle effects and influence of electronic correlations

    Science.gov (United States)

    Tornow, S.; Tong, N.-H.; Bulla, R.

    2006-03-01

    We investigate electron transfer processes in donor-acceptor systems with a coupling of the electronic degrees of freedom to a common bosonic bath. The model allows to study many-particle effects and the influence of the local Coulomb interaction U between electrons on donor and acceptor sites. Using the non-perturbative numerical renormalization group approach we find distinct differences between the electron transfer characteristics in the single- and two-particle subspaces. We calculate the critical electron-boson coupling αc as a function of U and show results for density-density correlation functions in the whole parameter space. The possibility of many-particle (bipolaronic) and Coulomb-assisted transfer is discussed.

  3. Strongly correlated f-electron systems: A PES study

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Sarrao, J.; Thompson, J.D.; Morales, L. [Los Alamos National Lab., NM (United States); Fisk, Z. [Florida State Univ., Tallahassee, FL (United States); Henkie, Z.; Cichorek, T. [Trzebiatowski Inst., Wroclaw (Poland)

    1998-12-31

    The term heavy fermions refers to materials (thus far only compounds with elements having an unfilled 4f or 5f shells) whose large specific heat {gamma}-values suggest that the conduction electrons at low temperatures have a very heavy effective mass. Magnetic susceptibility measurements, {chi}, generally yield a Curie-Weiss behavior at high temperatures with a well developed moment, which would be consistent with localized behavior of the f-electrons. Thus, the f-electrons appear to behave as non-interacting single impurities at elevated temperature. Below a characteristic Kondo temperature, T{sub K}, the susceptibility levels off or even decreases. This is interpreted as a compensation of the f-moment by the ligand conduction electrons that are believed to align anti-parallel to form a singlet state and has led to the widespread use of the Anderson Impurity Hamiltonian and the Single Impurity Model (SIM). Weak hybridization with these conduction electrons yields a narrow, highly temperature dependent, DOS at the Fermi energy, often referred to as the Kondo resonance (KR). At still lower temperatures it is generally agreed that in stoichiometric compounds a lattice of these singlet states finally results in extremely narrow bands at the Fermi energy, whose bandwidth is of the order k{sub B}T{sub K}. Clearly coherent bands cannot form above T{sub K} owing to the narrow width. A model for periodic Kondo systems will inevitably have to include the lattice. Preliminary PAM calculations indicate that this inclusion yields results differing qualitatively, rather than just quantitatively, from the SIM predictions. The photoemission data on single crystal heavy fermions are consistent with the following PAM predictions: (1) the temperature dependence of the KR is much slower than expected from the SIM; indeed, it is primarily7 due to broadening and Fermi function truncation; (2) the spectral weight of the KR relative to the localized 4f feature (not discussed here) is

  4. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... magnetism. This is in contrast to what is observed as the critical temperature is slightly lower for this system compared to other co-doped systems, suggesting that the magnetic and superconducting phases co-exist. A published manuscript describes the study of magnetic and superconducting properties of Ba...

  5. Relaxation of a Classical Spin Coupled to a Strongly Correlated Electron System

    Science.gov (United States)

    Sayad, Mohammad; Rausch, Roman; Potthoff, Michael

    2016-09-01

    A classical spin which is antiferromagnetically coupled to a system of strongly correlated conduction electrons is shown to exhibit unconventional real-time dynamics which cannot be described by Gilbert damping. Depending on the strength of the local Coulomb interaction U , the two main electronic dissipation channels, namely transport of excitations via correlated hopping and via excitations of correlation-induced magnetic moments, become active on largely different time scales. We demonstrate that correlations can lead to a strongly suppressed relaxation which so far has been observed in purely electronic systems only and which is governed here by proximity to the divergent magnetic time scale in the infinite-U limit.

  6. Electron correlation and relativity of the 5f electrons in the U-Zr alloy system

    Science.gov (United States)

    Söderlind, P.; Sadigh, B.; Lordi, V.; Landa, A.; Turchi, P. E. A.

    2014-01-01

    We address a recently communicated conception that spin-orbit interaction and strong electron correlations are important for the metal fuel U-Zr system. Here, we show that (i) relativistic effects only marginally correct the uranium metal equation-of-state and (ii) addition of onsite Coulomb repulsion leads to an unphysical magnetic ground state of the body-centered cubic (γ) phase and a grossly overestimated equilibrium volume. Consequently, LSDA + U is deemed unsuitable for describing the electronic structure of the U-Zr system. Recently, Xiong et al. [1] reported on thermodynamic modeling of the U-Zr system motivated by its potential as a nuclear fuel for fast breeder reactors. This work [1] came on the heels of another report by Landa et al. [2] on the same system, but with very different results for the formation enthalpies and ultimate conclusion on the U-Zr phase diagram. The authors [1] argue that their calculated energetics are significantly more accurate than that by Landa et al. [2], and they further attribute the difference to strong electron correlations and the relativistic spin-orbit interaction.In the present letter we show that uranium metal, and thus the U-Zr metal nuclear fuel system, possess weakly correlated electrons that are adequately described within density-functional theory in the generalized gradient approximation, and that addition of onsite Coulomb repulsion using the LSDA + U formalism leads to finite magnetization of the γ phase in contradiction to experiments. Furthermore, we show that spin-orbit interaction is quite weak in uranium metal and that its inclusion will not significantly change the chemical bonding and formation enthalpies.In order to illustrate our arguments, we perform comparative electronic-structure calculations using the full-potential linear augmented plane-wave (FPLAPW) method and the projector augmented plane-wave (PAW) method as implemented in the Wien2K [3] and VASP [4] codes. The Wien2K computations are set

  7. High-energy photoemission spectroscopy for investigating bulk electronic structures of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Sekiyama, Akira, E-mail: sekiyama@mp.es.osaka-u.ac.jp [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka (Japan); SPring-8/RIKEN, Sayo 679-5148, Hyogo (Japan)

    2016-04-15

    Progress of high-energy photoemission spectroscopy for investigating the bulk electronic structures of strongly correlated electron systems is reviewed. High-resolution soft X-ray photoemission has opened the door for revealing the bulk strongly correlated spectral functions overcoming the surface contributions. More bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES) enables us to study the electronic structure with negligible surface contribution. The recent development of the polarization-dependent HAXPES is also described in this short review.

  8. Correlating electronic and vibrational motions in charge transfer systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Munira [Univ. of Washington, Seattle, WA (United States)

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  9. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...

  10. GHz measurements of correlated electron systems in high magnetic fields

    CERN Document Server

    Edwards, R S

    2002-01-01

    This Thesis presents experiments performed on the high-frequency conductivity of materials in high magnetic fields. The angle dependence of resonances measured in the millimetre-wave absorption is studied using a rotating resonant cavity system, and the frequency dependence is measured using transmission techniques and a tuneable resonant cavity. Chapter 1 introduces the materials. These include the crystalline organic metals, the layered superconductor Sr sub 2 RUO sub 4 and the quantum Ising ferromagnet LiHoF sub 4. In Chapters 2 and 3, the necessary physics and experimental techniques for their investigation are outlined. Chapters 4 to 6 present measurements of cyclotron resonance in layered materials. Chapter 4 describes several models for the origin of cyclotron resonance harmonics, and describes the first definite measurement of the harmonics of a cyclotron resonance in an organic molecular metal, namely beta sup - (BEDT-TTF) sub 2 SF sub 5 CH sub 2 CF sub 2 SO sub 3. The angle dependence of the field p...

  11. First-principles Theory of the Momentum-dependent Local Ansatz for Correlated Electron System

    Science.gov (United States)

    Chandra, Sumal; Kakehashi, Yoshiro

    The momentum-dependent local-ansatz (MLA) wavefunction describes well correlated electrons in solids in both the weak and strong interaction regimes. In order to apply the theory to the realistic system, we have extended the MLA to the first-principles version using the tight-binding LDA+U Hamiltonian. We demonstrate for the paramagnetic Fe that the first-principles MLA can describe a reasonable correlation energy gain and suppression of charge fluctuations due to electron correlations. Furthermore, we show that the MLA yields a distinct momentum dependence of the momentum distribution, and thus improves the Gutzwiller wavefunction.

  12. System for electronic transformation and geographic correlation of satellite television information. [cloud cover photography

    Science.gov (United States)

    Dubenskiy, V. P.; Nemkovskiy, B. L.; Rodionov, B. N.

    1974-01-01

    An electronic transformation and correlation system has been developed for the Meteor space weather system which provides transformation and scaling of the original picture, accounts for satellite flight altitude and inclinations of the optical axes of the transmitting devices, and simultaneously superposes the geographical coordinate grid on the transformed picture.

  13. PREFACE: Correlated Electrons (Japan)

    Science.gov (United States)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states

  14. Electron correlation in molecules

    CERN Document Server

    Wilson, S

    2007-01-01

    Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules.Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equatio

  15. 2012 CORRELATED ELECTRON SYSTEMS GRC AND GRS, JUNE 23-29, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, Steven

    2012-06-29

    The 2012 Gordon Conference on Correlated Electron Systems will present cutting-edge research on emergent properties arising from strong electronic correlations. While we expect the discussion at the meeting to be wide-ranging, given the breadth of the title subject matter, we have chosen several topics to be the particular focus of the talks. These are New Developments in Single and Bilayer Graphene, Topological States of Matter, including Topological Insulators and Spin Liquids, the Interplay Between Magnetism and Unconventional Superconductivity, and Quantum Critical Phenomena in Metallic Systems. We also plan to have shorter sessions on Systems Far From Equilibrium, Low Dimensional Electron Fluids, and New Directions (which will primarily focus on new experimental methodologies and their interpretation).

  16. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Science.gov (United States)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  17. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems

    CERN Document Server

    Flick, Johannes; Ruggenthaler, Michael; Rubio, Angel

    2016-01-01

    In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer bet...

  18. Ground state of the quasi-1D correlated electronic system BaVS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Foury-Leylekian, Pascale, E-mail: pascale.foury@u-psud.fr [Laboratoire de Physique des Solides, UMR 8502, CNRS, Universite Paris-Sud, F- 91405, Orsay Cedex (France); Leininger, Philippe [Max-Planck-Insitut furFestkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Ilakovac, Vita [LCP-MR, Universite Pierre et Marie Curie, UMR 7614, CNRS, F-75321 Paris, France and Universite Cergy-Pontoise, F-95031, Cergy-Pontoise (France); Joly, Yves [Institut Neel, CNRS-UJF, BP 166, F-38042 Grenoble Cedex 9 (France); Bernu, Sylvain; Fagot, Sebastien; Pouget, Jean-Paul [Laboratoire de Physique des Solides, UMR 8502, CNRS, Universite Paris-Sud, F- 91405, Orsay Cedex (France)

    2012-06-01

    In this paper we review the salient features of the different instabilities exhibited by the quasi-1D system BaVS{sub 3} and show that there is a subtle interplay between the different phases stabilized. The analysis of the Peierls instability shows that the mobile dz Superscript-Two electrons are more localized than calculated because of their strong correlation with the localized e(t{sub 2g}) electrons. The complex AF magnetic structure of BaVS{sub 3} incorporates the magnetization of the e(t{sub 2g}) electrons with the Peierls pairing of the dz Superscript-Two electrons into magnetic singlets. Finally, we propose that the zig-zag disorder remaining after an incomplete orthorhombic phase transition could change the sign of the magnetic coupling and thus help to stabilize the canted ferromagnetism observed in non stoichiometric BaVS{sub 3-{delta}} and Sr and Ba substituted compounds.

  19. Electron correlation in beryllium

    DEFF Research Database (Denmark)

    Omiste, Juan J.; Li, Wenliang; Madsen, Lars Bojer

    2017-01-01

    We apply a three-dimensional implementation of the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) method to investigate effects of electron correlation in the ground state of Be as well as in its photoionization dynamics by short XUV pulses, including time delay in photo......We apply a three-dimensional implementation of the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) method to investigate effects of electron correlation in the ground state of Be as well as in its photoionization dynamics by short XUV pulses, including time delay...... schemes, and in this way we identify the orbital spaces that are relevant for an accurate description of the photoelectron spectra. Finally, we investigate the effects of electron correlation on the magnitude of the relative Eisenbud-Wigner-Smith (EWS) time delay in the photoionization process into two...... different ionic channels. One channel, the ground-state channel in the ion, is accessible without electron correlation. The other channel is only accessible when including electron correlation. For theory beyond the mean-field time-dependent Hartree-Fock, the EWS time delay for the photon energy analyzed...

  20. 2010 CORRELATED ELECTRON SYSTEMS GORDON RESEARCH CONFERENCE, JUNE 13-18, 2010 For

    Energy Technology Data Exchange (ETDEWEB)

    Dmitri Basov

    2010-06-18

    The 2010 Gordon Conference on Correlated Electron Systems will present cutting-edge research on emergent properties arising from strong electronic correlations. The Conference will feature a wide range of topics, such as the role of topology in condensed matter systems, quantum Hall interferometry and non-Abelian statistics, quantum criticality, metal-insulator transition, quantum effects in conductivity, Dirac quasiparticles, and superconductivity in cuprates and pnictides. In addition, we are reserving two sessions for new developments in this field that may arise in the coming year. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. We intend to have talks by established leaders in the field and also by young researchers who have made seminal contributions to various aspects of correlated electron physics, The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented.

  1. 2010 Gordon Research Conference on Correlated Electron Systems: Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Basov, Dmitri N. [Univ. of California, San Diego, CA (United States)

    2010-06-18

    The 2010 Gordon Conference on Correlated Electron Systems will present cutting-edge research on emergent properties arising from strong electronic correlations. The Conference will feature a wide range of topics, such as the role of topology in condensed matter systems, quantum Hall interferometry and non-Abelian statistics, quantum criticality, metal-insulator transition, quantum effects in conductivity, Dirac quasiparticles, and superconductivity in cuprates and pnictides. In addition, we are reserving two sessions for new developments in this field that may arise in the coming year. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. We intend to have talks by established leaders in the field and also by young researchers who have made seminal contributions to various aspects of correlated electron physics, The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented.

  2. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    Science.gov (United States)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  3. Suppression of electron magnetotunneling between parallel two-dimensional GaAs/InAs electron systems by the correlation interaction

    Energy Technology Data Exchange (ETDEWEB)

    Khanin, Yu. N.; Vdovin, E. E., E-mail: vdov62@yandex.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Makarovsky, O. [University of Nottingham, School of Physics and Astronomy (United Kingdom); Henini, M. [University of Nottingham, School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Center (United Kingdom)

    2013-09-15

    Magnetotunneling between two-dimensional GaAs/InAs electron systems in vertical resonant tunneling GaAs/InAs/AlAs heterostructures is studied. A new-type of singularity in the tunneling density of states, specifically a dip at the Fermi level, is found; this feature is drastically different from that observed previously for the case of tunneling between two-dimensional GaAs tunnel systems in terms of both the kind of functional dependence and the energy and temperature parameters. As before, this effect manifests itself in the suppression of resonant tunneling in a narrow range near zero bias voltage in a high magnetic field parallel to the current direction. Magnetic-field and temperature dependences of the effect's parameters are obtained; these dependences are compared with available theoretical and experimental data. The observed effect can be caused by a high degree of disorder in two-dimensional correlated electron systems as a result of the introduction of structurally imperfect strained InAs layers.

  4. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    Science.gov (United States)

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  5. Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons

    Science.gov (United States)

    Derzhko, Oleg; Richter, Johannes; Maksymenko, Mykola

    2015-05-01

    On a large class of lattices (such as the sawtooth chain, the kagome and the pyrochlore lattices), the quantum Heisenberg and the repulsive Hubbard models may host a completely dispersionless (flat) energy band in the single-particle spectrum. The flat-band states can be viewed as completely localized within a finite volume (trap) of the lattice and allow for construction of many-particle states, roughly speaking, by occupying the traps with particles. If the flat-band happens to be the lowest-energy one, the manifold of such many-body states will often determine the ground-state and low-temperature physics of the models at hand even in the presence of strong interactions. The localized nature of these many-body states makes possible the mapping of this subset of eigenstates onto a corresponding classical hard-core system. As a result, the ground-state and low-temperature properties of the strongly correlated flat-band systems can be analyzed in detail using concepts and tools of classical statistical mechanics (e.g., classical lattice-gas approach or percolation approach), in contrast to more challenging quantum many-body techniques usually necessary to examine strongly correlated quantum systems. In this review, we recapitulate the basic features of the flat-band spin systems and briefly summarize earlier studies in the field. The main emphasis is made on recent developments which include results for both spin and electron flat-band models. In particular, for flat-band spin systems, we highlight field-driven phase transitions for frustrated quantum Heisenberg antiferromagnets at low temperatures, chiral flat-band states, as well as the effect of a slight dispersion of a previously strictly flat-band due to nonideal lattice geometry. For electronic systems, we discuss the universal low-temperature behavior of several flat-band Hubbard models, the emergence of ground-state ferromagnetism in the square-lattice Tasaki-Hubbard model and the related Pauli-correlated

  6. Nonlocal Wigner-like correlation energy density functional: parametrization and tests on two-electron systems.

    Science.gov (United States)

    Katriel, Jacob; Bauer, Michael; Springborg, Michael; McCarthy, Shane P; Thakkar, Ajit J

    2007-07-14

    Reparametrization of Wigner's correlation energy density functional yields a very close fit to the correlation energies of the helium isoelectronic sequence. However, a quite different reparametrization is required to obtain an equally close fit to the isoelectronic sequence of Hooke's atom. In an attempt to avoid having to reparametrize the functional for different choices of the one-body potential, we propose a parametrization that depends on global characteristics of the ground-state electron density as quantified by scale-invariant combinations of expectation values of local one-body operators. This should be viewed as an alternative to the density-gradient paradigm, allowing one to introduce the nonlocal dependence of the density functional on the density in a possibly more effective way. Encouraging results are obtained for two-electron systems with one-body potentials of the form r(zeta) with zeta=-12,+12,1, which span the range between the Coulomb potential (zeta=-1) and the Hooke potential (zeta=2).

  7. Correlated Electrons in Reduced Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bonesteel, Nicholas E [Florida State Univ., Tallahassee, FL (United States)

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  8. Strongly correlated electron systems: Photoemission and the single-impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Thompson, J.D.; Smith, J.L.; Mandrus, D.; Hundley, M.F.; Cornelius, A.L. [Los Alamos National Laboratories, Los Alamos, New Mexico 87545 (United States); Moshopoulou, E.; Fisk, Z. [NHMFL, Florida State University, Tallahassee, Florida 32306-4005 (United States); Canfield, P.C. [Iowa State University/Ames Laboratory, Ames, Iowa 50011 (United States); Menovsky, A. [Natuurkundig Laboratorium, University of Amsterdam, Amsterdam (The Netherlands)

    1997-09-01

    We present high-resolution, angle-resolved photoemission spectra for Ce-based and U-based strongly correlated electron systems. The experimental results are irreconcilable with the long-accepted single-impurity model, which predicts a narrow singlet state, in close proximity to the Fermi energy, whose linewidth and binding energy are a constant determined by a characteristic temperature T{sub K} for the material. We report that both 4f and 5f photoemission features disperse with crystal momentum at temperatures both above and below T{sub K}; these are characteristics consistent with narrow bands but not with the single-impurity model. Inclusion of the lattice must be considered at all temperatures. Variants of the periodic Anderson model are consistent with this approach. {copyright} {ital 1997} {ital The American Physical Society}

  9. The density matrix renormalization group for strongly correlated electron systems: A generic implementation

    Science.gov (United States)

    Alvarez, G.

    2009-09-01

    The purpose of this paper is (i) to present a generic and fully functional implementation of the density-matrix renormalization group (DMRG) algorithm, and (ii) to describe how to write additional strongly-correlated electron models and geometries by using templated classes. Besides considering general models and geometries, the code implements Hamiltonian symmetries in a generic way and parallelization over symmetry-related matrix blocks. Program summaryProgram title: DMRG++ Catalogue identifier: AEDJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: See file LICENSE No. of lines in distributed program, including test data, etc.: 15 795 No. of bytes in distributed program, including test data, etc.: 83 454 Distribution format: tar.gz Programming language: C++, MPI Computer: PC, HP cluster Operating system: Any, tested on Linux Has the code been vectorized or parallelized?: Yes RAM: 1 GB (256 MB is enough to run included test) Classification: 23 External routines: BLAS and LAPACK Nature of problem: Strongly correlated electrons systems, display a broad range of important phenomena, and their study is a major area of research in condensed matter physics. In this context, model Hamiltonians are used to simulate the relevant interactions of a given compound, and the relevant degrees of freedom. These studies rely on the use of tight-binding lattice models that consider electron localization, where states on one site can be labeled by spin and orbital degrees of freedom. The calculation of properties from these Hamiltonians is a computational intensive problem, since the Hilbert space over which these Hamiltonians act grows exponentially with the number of sites on the lattice. Solution method: The DMRG is a numerical variational technique to study quantum many body Hamiltonians. For one-dimensional and quasi one-dimensional systems, the

  10. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  11. Final Technical Report, Grant DE-FG02-91ER45443: Heavy fermions and other highly correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Schlottmann, P.

    1998-10-12

    Properties of highly correlated electrons, such as heavy fermion compounds, metal-insulator transitions, one-dimensional conductors and systems of restricted dimensionality are studied theoretically. The main focus is on Kondo insulators and impurity bands due to Kondo holes, the low-temperature magnetoresistivity of heavy fermion alloys, the n-channel Kondo problem, mesoscopic systems and one-dimensional conductors.

  12. Correlated electrons in quantum matter

    CERN Document Server

    Fulde, Peter

    2012-01-01

    An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap. It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

  13. Electron correlation effects on the first hyperpolarizability of push-pull π-conjugated systems.

    Science.gov (United States)

    de Wergifosse, Marc; Champagne, Benoît

    2011-02-21

    The first hyperpolarizability (β) of representative push-pull π-conjugated compounds has been calculated at several levels of approximation to assess the effects of electron correlation. First, the 6-31+G(d) basis set has been shown to give the best balance between accuracy and computational resources for a polyene linker whereas for polyyne linker, the 6-31G(d) basis set is already an optimal choice. As a result of cancellations between higher order contributions, the MP2 method turns out to be the method of choice to predict β of push-pull π-conjugated systems since it closely reproduces the values obtained with the reference CCSD(T) scheme. Moreover, the SDQ-MP4 and CCSD approaches provide rarely improved estimates over MP2 while the MP4 method does not represent an improvement over MP4-SDQ or the SCS-MP2 method, over MP2. Among density functional theory exchange-correlation functionals, LC-BLYP is reliable when characterizing the changes of first hyperpolarizability upon enlarging the π-conjugated linker or upon changing the polyyne linker into a polyene segment. Nevertheless, its reliability is very similar to what can be achieved with the Hartree-Fock method and the MP2 scheme is by far more accurate. On the other hand, the BLYP, B3LYP, and BHandHLYP functionals perform quantitatively better in a number of cases but the trends are poorly described. This is also the case of the B2-PLYP and mPW2-PLYP functionals, which are often the most accurate, though they underestimate the increase of β when going from polyyne to polyene linkers and overestimate the enhancement of β with chain length.

  14. Electronic Correlation Strength of Pu

    DEFF Research Database (Denmark)

    Svane, A.; C. Albers, R.; E. Christensen, N.

    2013-01-01

    A new electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly...... found a "universal" scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only upon the local density approximation (LDA) bandwidth and is otherwise independent of crystal structure and lattice constant....

  15. Electronic Correlation Strength of Pu

    DEFF Research Database (Denmark)

    Svane, A.; C. Albers, R.; E. Christensen, N.

    2013-01-01

    A new electronic quantity, the correlation strength, is defined as a necessary step for understanding the properties and trends in strongly correlated electronic materials. As a test case, this is applied to the different phases of elemental Pu. Within the GW approximation we have surprisingly...... found a "universal" scaling relationship, where the f-electron bandwidth reduction due to correlation effects is shown to depend only upon the local density approximation (LDA) bandwidth and is otherwise independent of crystal structure and lattice constant....

  16. Correlated electrons in a dissipative environment

    Science.gov (United States)

    Bulla, R.

    2009-12-01

    When a system of correlated electrons is embedded in a dissipative environment, new emergent phenomena might occur due to the interplay of correlation and dissipation. Here we focus on quantum impurity systems with coupling to a bosonic bath. For the theoretical investigation we introduce the bosonic numerical renormalization group method which has been initially set up for the spin-boson model. The role of both correlations and dissipation is described in the context of two-electron transfer systems. We also discuss prospects for the investigation of lattice models of correlated electrons with coupling to a dissipative bath.

  17. PREFACE: International Conference on Strongly Correlated Electron Systems 2014 (SCES2014)

    Science.gov (United States)

    2015-03-01

    The 2014 International Conference on Strongly Correlated Electron Systems (SCES) was held in Grenoble from the 7th to 11th of July on the campus of the University of Grenoble. It was a great privilege to have the conference in Grenoble after the series of meetings in Sendai (1992), San Diego (1993), Amsterdam (1994), Goa (1995), Zürich (1996), Paris (1998), Nagano (1999), Ann Arbor (2001), Krakow (2002), Karlsruhe (2004), Vienna (2005), Houston (2007), Buzios (2008), Santa Fe (2010), Cambridge (2011) and Tokyo (2013). Every three years, SCES joins the triennial conference on magnetism ICM. In 2015, ICM will take place in Barcelona. The meeting gathered an audience of 875 participants who actively interacted inside and outside of conference rooms. A large number of posters (530) was balanced with four parallel oral sessions which included 86 invited speakers and 141 short oral contributions. A useful arrangement was the possibility to put poster presentations on the website so participants could see them all through the conference week. Each morning two plenary sessions were held, ending on Friday with experimental and theoretical summaries delivered by Philipp Gegenwart (Augsburg) and Andrew Millis (Columbia). The plenary sessions were given by Gabriel Kotliar (Rutgers), Masashi Kawasaki (Tokyo), Jennifer Hoffman (Harvard), Mathias Vojta (Dresden), Ashvin Vishwanath (Berkeley), Andrea Cavalleri (Hamburg), Marc-Henri Julien (Grenoble), Neil Mathur (Cambridge), Giniyat Khaliullin (Stuttgart), and Toshiro Sakakibara (Tokyo). The parallel oral sessions were prepared by 40 symposium organizers selected by the chairman (Antoine Georges) and co-chairman (Kamran Behnia) of the Program Committee with the supplementary rule that speakers had not delivered an invited talk at the previous SCES conference held in 2013 in Tokyo. Special attention was given to help young researchers via grants to 40 overseas students. Perhaps due to the additional possibility of cheap

  18. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    Science.gov (United States)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon

    2015-06-01

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF- and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN+, and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects.

  19. Electron correlations in quantum dots

    CERN Document Server

    Tipton, D L J

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining p...

  20. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.

    Science.gov (United States)

    Huo, Pengfei; Coker, David F

    2012-03-21

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  1. Electron correlations in single-electron capture into any state of fast projectiles from heliumlike atomic systems

    Science.gov (United States)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2013-11-01

    State-selective and total single-electron capture cross sections in fast collisions of a bare projectile with a heliumlike target are examined in the four-body formalism. A special emphasis is given to a proper inclusion of dynamic electron-electron correlation effects. For this purpose, the post form of the four-body boundary-corrected first Born approximation (CB1-4B) is utilized. With regard to our related previous study, where the prior version has been considered, in the present work an extensive analytical study of the post-transition amplitude for electron capture into the arbitrary final states nflfmf of the projectile is carried out. The post-transition amplitude for single charge exchange encompassing symmetric and asymmetric collisions is derived in terms of five-dimensional integrals over real variables. The dielectronic interaction V12=1/r12≡1/|r⃗1-r⃗2| explicitly appears in the perturbation potential Vf of the post-transition probability amplitude Tif+, such that the CB1-4B method can provide information about the relative significance of the dynamic interelectron correlation in the collisions under study. An illustrative computation is performed involving state-selective and total single capture cross sections for the p-He collisions at intermediate and high impact energies. The so-called post-prior discrepancy, which plagues almost all the existing distorted wave approximations, is presently shown to be practically nonexistent in the CB1-4B method. The validity of our findings is critically assessed in comparisons with the available experimental data for both state-selective and total cross sections summed over all the discrete energy levels of the hydrogenlike atom formed with the projectile. Overall, excellent performance of the CB1-4B method is recorded, thus robustly establishing this formalism as the leading first-order description of high-energy single charge exchange, which is a collision of paramount theoretical and practical

  2. Self-consistent local-density approximation with model Coulomb pair-correlation functions for electronic systems

    Science.gov (United States)

    Gritsenko, O. V.; Rubio, A.; Balbás, L. C.; Alonso, J. A.

    1993-03-01

    The model Coulomb pair-correlation functions proposed several years ago by Gritsenko, Bagaturyants, Kazansky, and Zhidomirov are incorporated into the self-consistent local-density approximation (LDA) scheme for electronic systems. Different correlation functions satisfying well-established local boundary conditions and integral conditions have been tested by performing LDA calculations for closed-shell atoms. Those correlation functions contain a single parameter which can be optimized by fitting the atomic correlation energies to empirical data. In this way, a single (universal) value of the parameter is found to give a very good fit for all the atoms studied. The results provide a substantial improvement of calculated correlation energies as compared to the usual LDA functionals and the scheme should be useful for molecular and cluster calculations.

  3. Phase diagrams and anomalous thermodynamic behavior of a correlated spin–electron system on doubly decorated planar lattices

    Energy Technology Data Exchange (ETDEWEB)

    Strečka, Jozef, E-mail: jozef.strecka@upjs.sk [Department of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 040 01 Košice (Slovakia); Čenčariková, Hana [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice (Slovakia); Lyra, Marcelo L. [Instituto de Fisica, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2015-12-04

    Phase diagrams and thermodynamic properties of a correlated spin–electron system considering localized Ising spins on nodal sites and mobile electrons on decorating sites of doubly decorated planar lattices are rigorously examined with the help of generalized decoration–iteration transformation. The investigated model defined on loose-packed (honeycomb and square) lattices exhibits the phase diagram including a spontaneous ferromagnetic and antiferromagnetic order in a vicinity of quarter and half-filling, respectively, while the same model on close-packed (triangular and kagome) lattices only shows a spontaneous ferromagnetic order due to a kinetically-driven spin frustration at high electron concentrations. The lower critical concentration, at which the ferromagnetic order appears, is remarkably close to a bond percolation threshold in spite of the annealed character of the developed procedure. The specific heat exhibits at the critical temperature either a logarithmic divergence for integer-valued electron concentrations or it shows a finite-cusp for any non-integer electron concentration due to the annealed bond disorder. - Highlights: • Correlated spin–electron system on decorated 2D lattices is exactly solved. • Phase diagrams involve ferro- and antiferromagnetic order near 1/4 and 1/2 filling. • Magnetization is not saturated at zero temperature due to the annealed disorder. • Specific heat displays a finite cusp at the critical temperature.

  4. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    CERN Document Server

    Ghazi, M E

    2002-01-01

    addition, another very weak satellites with wavevector (1/2, 1, 1/2) were observed possibly due to spin ordering. two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd sub 1 sub / sub 2 Sr sub 1 sub / sub 2 MnO sub 3 a series of phase transitions were observed using high-resolution synchrotron X-ray scattering. Above the charge ordering transition temperature, T sub C sub O , by measuring the peak profiles of Bragg reflections as a function of temperature, it was foun...

  5. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, Andrew L. [Univ. of Nevada, Las Vegas, NV (United States)

    2016-08-26

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  6. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  7. Combined fragment molecular orbital cluster in molecule approach to massively parallel electron correlation calculations for large systems.

    Science.gov (United States)

    Findlater, Alexander D; Zahariev, Federico; Gordon, Mark S

    2015-04-16

    The local correlation "cluster-in-molecule" (CIM) method is combined with the fragment molecular orbital (FMO) method, providing a flexible, massively parallel, and near-linear scaling approach to the calculation of electron correlation energies for large molecular systems. Although the computational scaling of the CIM algorithm is already formally linear, previous knowledge of the Hartree-Fock (HF) reference wave function and subsequent localized orbitals is required; therefore, extending the CIM method to arbitrarily large systems requires the aid of low-scaling/linear-scaling approaches to HF and orbital localization. Through fragmentation, the combined FMO-CIM method linearizes the scaling, with respect to system size, of the HF reference and orbital localization calculations, achieving near-linear scaling at both the reference and electron correlation levels. For the 20-residue alanine α helix, the preliminary implementation of the FMO-CIM method captures 99.6% of the MP2 correlation energy, requiring 21% of the MP2 wall time. The new method is also applied to solvated adamantine to illustrate the multilevel capability of the FMO-CIM method.

  8. Quantum heat engine cycle working with a strongly correlated electron system

    Institute of Scientific and Technical Information of China (English)

    WANG HaiLong; PAN Hui; WANG RongMing

    2012-01-01

    A new model of a quantum heat engine (QHE) cycle is established,in which the working substance consists of an interacting electrons system.One of our purposes is to test the validity of the second law of thermodynamics by this model,which is more general than the spin-1/2 antiferromagnetic Heisenberg model since it would recover the spin model when the on-site Coulomb interaction U is strong enough.On the basis of quantum mechanics and the first law of thermodynamics,we show no violation of the second law of thermodynamics during the cycle.We further study the performance characteristics of the cycle by investigating in detail the optimal relations of efficiency and dimensionless power output.We find that the efficiency of our engine can be expressed as η=1 - t22/t21 in the large-U limit,which is valid even for a four sites QHE.

  9. Some correlates of electronic health information management system success in nigerian teaching hospitals.

    Science.gov (United States)

    Ojo, Adebowale I; Popoola, Sunday O

    2015-01-01

    Nowadays, an electronic health information management system (EHIMS) is crucial for patient care in hospitals. This paper explores the aspects and elements that contribute to the success of EHIMS in Nigerian teaching hospitals. The study adopted a survey research design. The population of study comprised 442 health information management personnel in five teaching hospitals that had implemented EHIMS in Nigeria. A self-developed questionnaire was used as an instrument for data collection. The findings revealed that there is a positive, close relationship between all the identified factors and EHIMS's success: technical factors (r = 0.564, P < 0.05); social factors (r = 0.616, P < 0.05); organizational factors (r = 0.621, P < 0.05); financial factors (r = 0.705, P < 0.05); and political factors (r = 0.589, P < 0.05). We conclude that consideration of all the identified factors was highly significant for the success of EHIMS in Nigerian teaching hospitals.

  10. Phonon frequency shift and effect of correlation on the electron-phonon interaction in heavy fermion systems

    Indian Academy of Sciences (India)

    B Ojha; P Nayak; S N Behera

    2000-02-01

    The electron–phonon interaction in the periodic Anderson model (PAM) is considered. The PAM incorporates the effect of onsite Coulomb interaction () between -electrons. The influence of Coulomb correlation on the phonon response of the system is studied by evaluating the phonon spectral function for various parameters of the model. The numerical evaluation of the spectral function is carried out in the long wavelength limit at finite temperatures keeping only linear terms in . The observed behaviour is found to agree well with the general features obtained experimentally for some heavy fermion (HF) systems.

  11. Some Correlates of Electronic Health Information Management System Success in Nigerian Teaching Hospitals

    Science.gov (United States)

    Ojo, Adebowale I; Popoola, Sunday O

    2015-01-01

    Nowadays, an electronic health information management system (EHIMS) is crucial for patient care in hospitals. This paper explores the aspects and elements that contribute to the success of EHIMS in Nigerian teaching hospitals. The study adopted a survey research design. The population of study comprised 442 health information management personnel in five teaching hospitals that had implemented EHIMS in Nigeria. A self-developed questionnaire was used as an instrument for data collection. The findings revealed that there is a positive, close relationship between all the identified factors and EHIMS’s success: technical factors (r = 0.564, P < 0.05); social factors (r = 0.616, P < 0.05); organizational factors (r = 0.621, P < 0.05); financial factors (r = 0.705, P < 0.05); and political factors (r = 0.589, P < 0.05). We conclude that consideration of all the identified factors was highly significant for the success of EHIMS in Nigerian teaching hospitals. PMID:25983557

  12. Correlative fluorescence and electron microscopy.

    Science.gov (United States)

    Schirra, Randall T; Zhang, Peijun

    2014-10-01

    Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associated with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology has led to rapid improvement in the protocols and has ushered in a new generation of instruments to reach the next level of correlation--integration.

  13. Correlated many-electron wavefunctions for quantum Monte Carlo calculations of strongly inhomogeneous systems

    CERN Document Server

    Gaudoin, R

    2000-01-01

    correlation terms. 2. We use standard VMC in conjunction with iterative variance minimisation to study bulk aluminium as a test bed for future work on surfaces. QMC has been used successfully for insulators and semiconductors, but little is known about applying it to metals. LDA calculations for aluminium are reasonably accurate for the bulk modulus and lattice constant. In contrast, the LDA cohesive energy is 1.25 times the experimental value. Due to the large statistical uncertainties the VMC result for the bulk modulus is disappointing, but the VMC cohesive energy is a clear improvement on LDA. In general, we find that QMC is applicable to metals and that the finite-size and other errors are qualitatively no different from those encountered in non-metallic systems. The quantum many-body problem is among the most challenging in physics. A popular approach is to reduce the problem to the study of a single particle in an effective potential. These one-particle schemes, the most popular of which is density fun...

  14. Spectroscopic Imaging of Strongly Correlated Electronic States

    Science.gov (United States)

    Yazdani, Ali; da Silva Neto, Eduardo H.; Aynajian, Pegor

    2016-03-01

    The study of correlated electronic systems from high-Tc cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.

  15. Correlative transmission electron microscopy examination of nondemineralized and demineralized resin-dentin interfaces formed by two dentin adhesive systems.

    Science.gov (United States)

    Van Meerbeek, B; Conn, L J; Duke, E S; Eick, J D; Robinson, S J; Guerrero, D

    1996-03-01

    The resin-dentin interface formed by two dentin adhesives, Optibond (OPTI, Kerr) and Scotchbond Multi-Purpose (SBMP, 3M), was ultramorphologically examined by transmission electron microscopy (TEM). Ultrastructural information from nondemineralized and demineralized sections was correlated. It was hypothesized that the different chemical formulations of the two adhesives would result in a different morphological appearance of the hybrid layer. Ultrastructural TEM examination proved that each of the two dentin adhesive systems was able to establish a micromechanical bond between dentin and resin with the formation of a hybrid layer. However, the interfacial hybridization process that took place to produce this resin-dentin bond appeared to be specifically related to the chemical composition and application modes of both systems. OPTI consistently presented with a hybrid layer with a relatively uniform ultrastructure, electron density, and acid resistance. These three parameters were found to be more variable for the hybrid layer formed by SBMP. Characteristic of SBMP was the identification of an amorphous phase deposited at the outer surface of the hybrid layer. Although both adhesive systems investigated follow a total-etch concept, their specific chemical formulations result in different interfacial ultrastructures that are probably related to different underlying bonding mechanisms. The clinical significance of these morphological findings, however, is still unknown.

  16. Photoemission in strongly correlated crystalline f-electron systems: A need for a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Sarrao, J. [and others

    1998-12-01

    The unusual properties of heavy fermion (or heavy electron) materials have sparked an avalanche of research over the last two decades in order to understand the basic phenomena responsible for these properties. Photoelectron spectroscopy (often referred to as PES in the following sections), the most direct measurement of the electronic structure of a material, should in principle be able to shed considerable light on this matter. In general the distinction between a localized and a band-like state is trivially observed in band dispersion. Much of the past work was performed on poly-crystalline samples, scraped in-situ to expose a clean surface for PES. There have since been considerable advances both in the quality of specimens as well as experimental resolution, which raise questions regarding these conclusions. Much of the past work on poly-crystalline samples has been reported in several review articles, most notably Allen et al., and it is not necessary here to review those efforts again, with the exception of subsequent work performed at high resolution. The primary focus of the present review will be on new measurements obtained on single crystals, cleaved or prepared in situ and measured at high resolution, which seem to suggest that agreement with the GS and NCA approximations is less than perfect, and that perhaps the starting models need to be modified, or that even an entirely new approach is called for. Of the promising new models the Periodic Anderson Model is most closely related to the SIM. Indeed, at high temperatures it reverts to the SIM. However, the charge polaron model of Liu (1997) as well as the two-electron band model of Sheng and Cooper (1995) cannot yet be ruled out. Inasmuch as the bulk of the single crystal work was performed by the Los Alamos group, this review will draw heavily on those results. Moreover, since the GS and NCA approximations represent the most comprehensive and widely accepted treatment of heavy fermion PES, it is only

  17. Electron Correlation Models for Optical Activity

    DEFF Research Database (Denmark)

    Höhn, E. G.; O. E. Weigang, Jr.

    1968-01-01

    A two-system no-overlap model for rotatory strength is developed for electric-dipole forbidden as well as allowed transitions. General equations which allow for full utilization of symmetry in the chromophore and in the environment are obtained. The electron correlation terms are developed in full...

  18. Electron correlation energies in atoms

    Science.gov (United States)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  19. Global Method for Electron Correlation

    Science.gov (United States)

    Piris, Mario

    2017-08-01

    The current work presents a new single-reference method for capturing at the same time the static and dynamic electron correlation. The starting point is a determinant wave function formed with natural orbitals obtained from a new interacting-pair model. The latter leads to a natural orbital functional (NOF) capable of recovering the complete intrapair, but only the static interpair correlation. Using the solution of the NOF, two new energy functionals are defined for both dynamic (Edyn) and static (Esta) correlation. Edyn is derived from a modified second-order Møller-Plesset perturbation theory (MP2), while Esta is obtained from the static component of the new NOF. Double counting is avoided by introducing the amount of static and dynamic correlation in each orbital as a function of its occupation. As a result, the total energy is represented by the sum E˜ HF+Edyn+Esta , where E˜ HF is the Hartree-Fock energy obtained with natural orbitals. The new procedure called NOF-MP2 scales formally as O (M5) (where M is the number of basis functions), and is applied successfully to the homolytic dissociation of a selected set of diatomic molecules, paradigmatic cases of near-degeneracy effects. The size consistency has been numerically demonstrated for singlets. The values obtained are in good agreement with the experimental data.

  20. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  1. Computational methods and destruction of the Fermi liquid in systems of correlated lattice electrons

    Science.gov (United States)

    Tremblay, A.-M. S.

    2004-03-01

    One of the most striking phenonema observed in the normal state of high-temperature superconductors is the replacement of Landau quasiparticles by a pseudogap in specific regions of the Brillouin zone. It is believed that this phenomenon can be described by the Hubbard Hamiltonian, that models electrons moving on a lattice and interacting through a short-range potential. Because of the theoretical difficulties involved in the solution of the Hubbard model, computational methods have played a key role in proving that the pseudogap phenomenon is indeed a property of the Hubbard model. In so doing, they also allowed physical understanding of the phenomenon. In this talk, the contributions of Cluster Perturbation Theory [1] and auxiliary field Quantum Monte Carlo will be the main focus. At strong coupling, the pseudogap phenomenon will be contrasted with the Mott gap. [2] At weak to intermediate coupling, the importance of antiferromagnetic fluctuations will be demonstrated through a combination of Quantum Monte Carlo and Two-Particle Self-Consistent calculations.[3] More generally, the strengths and limitations of different methods will be discussed along with the role of numerical solutions as benchmarks for non-perturbative approaches. I will also make a few remarks on the Beowulf cluster used for these calculations. Work done in collaboration with D. Sénéchal, B. Kyung and V. Hankevych. [1] D. Sénéchal et al. Phys. Rev. Lett. 84, 522 (2000); Phys. Rev. B 66, 075129 (2002). [2] D. Sénéchal et al. cond-mat/0308625. [3] B. Kyung et al. Phys. Rev. B 68, 174502/1-5 (2003); S. Moukouri, et al. Phys. Rev. B 61, 7887 (2000).

  2. Electron-gamma directional correlations; Correlations directionnelles electron-gamma

    Energy Technology Data Exchange (ETDEWEB)

    Gerholm, T.R. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-10-01

    The theory of the angular correlation between conversion electrons and gamma rays is briefly outlined. The experimental methods used for the study of the electron-gamma correlation are described. The effects of the formation of a hole and the hyperfine structure magnetic coupling dependent on time are then considered. The experimental results showed that the attenuations found for different metallic media plainly conform to a simple quadrupolar interaction mechanism. For a source surrounded by an insulator, however, the results show that a rapidly disappearing coupling occurs as a supplement to the quadrupolar interaction mechanism. This coupling attenuates the angular correlation by about 75% of the non-perturbed value. It was concluded that for an intermediate half life of the level of the order of the nanosecond, the attenuations produced by the secondary effects of the hole formation can not be completely neglected. The metallic media considered were Ag, Au, Al, and Ga. In the study of E2 conversion processes, the radical matrix elements governing the E2 conversion process in the 412-KeV transition of {sup 198}Hg were determined. The results exclude the presence of dynamic contributions within the limits of experimental error. The values b{sub 2} (E2) and {alpha}-k (E2) obtained indirectly from the experimentally determined b{sub 4} particle parameter are in complete agreement with the theoretical values obtained by applying the corrections due to the shielding effect and to the finite dimension of the nucleus and excluding the dynamic contributions. The value for the internal conversion coefficient was also in good agreement. Experimental results from the intensity ratios between the peak and the continuum, however, seem to show significant deviations with respect to other experimental and theoretical values. There is good agreement between experimental and theoretical results on the internal conversion of {sup 203}Tl, {sup 201}Tl, and {sup 181}Ta. The theory

  3. SLAC's polarized electron source laser system and minimization of electron beam helicity correlations for the E-158 parity violation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Humensky, T.B. E-mail: humensky@uchicago.edu; Alley, R.; Brachmann, A.; Browne, M.J.; Cates, G.D.; Clendenin, J.; Lamare, J. de; Frisch, J.; Galetto, T.; Hughes, E.W.; Kumar, K.S.; Mastromarino, P.; Sodja, J.; Souder, P.A.; Turner, J.; Woods, M

    2004-04-01

    SLAC E-158 is an experiment designed to make the first measurement of parity violation in Moeller scattering. E-158 will measure the right-left cross-section asymmetry, A{sub LR}{sup Moeller}, in the elastic scattering of a 45-GeV polarized electron beam from unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of {approx}10{sup -7} to an accuracy of better than 10{sup -8}. To make this measurement, the photoemission-based polarized electron source requires an intense circularly polarized laser beam and the ability to quickly switch between right- and left-helicity polarization states with minimal right-left helicity-correlated asymmetries in the resulting beam parameters (intensity, position, angle, spot size, and energy), {sup beam}A{sub LR}'s. This laser beam is produced by a unique SLAC-designed flashlamp-pumped Ti:Sapphire laser and is directed through a carefully designed set of polarization optics. We analyze the transport of nearly circularly polarized light through the optical system and identify several mechanisms that generate {sup beam}A{sub LR}'s. We show that the dominant effects depend linearly on particular polarization phase shifts in the optical system. We present the laser system design and a discussion of the suppression and control of {sup beam}A{sub LR}'s. We also present results on beam performance from engineering and physics runs for E-158.

  4. New correlated electron physics from new materials

    Energy Technology Data Exchange (ETDEWEB)

    Maple, M.B., E-mail: mbmaple@ucsd.ed [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Baumbach, R.E.; Hamlin, J.J.; Zocco, D.A.; Taylor, B.J. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093 (United States); Butch, N.P. [Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742 (United States); Jeffries, J.R.; Weir, S.T. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Sales, B.C.; Mandrus, D.; McGuire, M.A.; Sefat, A.S.; Jin, R. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Vohra, Y.K. [Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Chu, J.-H.; Fisher, I.R. [Department of Applied Physics, Geballe Laboratory for Advanced Materials, Stanford University, CA 94305 (United States)

    2009-10-15

    Many important advances in the physics of strongly correlated electron systems have been driven by the development of new materials: for instance the filled skutterudites MT{sub 4}X{sub 12} (M=alkali metal, alkaline earth, lanthanide, or actinide; T=Fe, Ru, or Os; X=P, As, or Sb), certain lanthanide and actinide intermetallic compounds such as URu{sub 2-x}Re{sub x}Si{sub 2} and CeTIn{sub 5} (T=Co, Rh, or Ir), and layered oxypnictides and related materials. These types of complex multinary d- and f-electron compounds have proven to be a vast reservoir of novel strongly correlated electron ground states and phenomena. In these materials, the occurrence of such a wide range of ground states and phenomena arises from a delicate interplay between competing interactions that can be tuned by partial or complete substitution of one element for another, as well as the application of pressure, and magnetic fields, resulting in rich and complex electronic phase diagrams in the hyperspace of temperature, chemical composition, pressure and magnetic field. It seems clear that this type of 'materials driven physics' will continue to play a central role in the development of the field of strongly correlated electron systems in the future, through the discovery of new materials that exhibit unexpected phenomena and experiments on known materials in an effort to optimize their physical properties and test relevant theories.

  5. Mott-Anderson Transition in Molecular Conductors: Influence of Randomness on Strongly Correlated Electrons in the κ-(BEDT-TTF2X System

    Directory of Open Access Journals (Sweden)

    Takahiko Sasaki

    2012-05-01

    Full Text Available The Mott-Anderson transition has been known as a metal-insulator (MI transition due to both strong electron-electron interaction and randomness of the electrons. For example, the MI transition in doped semiconductors and transition metal oxides has been investigated up to now as a typical example of the Mott-Anderson transition for changing electron correlations by carrier number control in concurrence with inevitable randomness. On the other hand, molecular conductors have been known as typical strongly correlated electron systems with bandwidth controlled Mott transition. In this paper, we demonstrate our recent studies on the randomness effect of the strongly correlated electrons of the BEDT-TTF molecule based organic conductors. X-ray irradiation on the crystals introduces molecular defects in the insulating anion layer, which cause random potential modulation of the correlated electrons in the conductive BEDT-TTF layer. In combination with hydrostatic pressure, we are able to control the parameters for randomness and correlations for electrons approaching the Mott-Anderson transition.

  6. Electron correlation by polarization of interacting densities

    CERN Document Server

    Whitten, Jerry L

    2016-01-01

    Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus . A method of avoiding redundancy is described. Applications to atoms, negative ions and molecules representing different types of bonding and spin states are discussed.

  7. Multiband superconductivity in the correlated electron filled skutterudite system Pr1-xCexPt4Ge12

    Science.gov (United States)

    Singh, Y. P.; Adhikari, R. B.; Zhang, S.; Huang, K.; Yazici, D.; Jeon, I.; Maple, M. B.; Dzero, M.; Almasan, C. C.

    2016-10-01

    Studies of superconductivity in multiband correlated electronic systems have become one of the central topics in condensed-matter and materials physics. In this paper, we present the results of thermodynamic measurements on the superconducting filled skutterudite system Pr1 -xCexPt4Ge12 (0 ≤x ≤0.2 ) to investigate how substitution of Ce at Pr sites affects superconductivity. We find that an increase in Ce concentration leads to a suppression of the superconducting transition temperature from Tc˜7.9 K for x =0 to Tc˜0.6 K for x =0.14 . Our analysis of the specific-heat data for x ≤0.07 reveals that superconductivity must develop in at least two bands: the superconducting order parameter has nodes on one Fermi pocket and remains fully gapped on the other. Both the nodal and nodeless gaps decrease, with the nodal gap being suppressed more strongly upon Ce substitution. Ultimately, the higher-Ce-concentration samples (x >0.07 ) display a nodeless gap only.

  8. Thermal and electrical transport measurements of low-dimensional correlated electron systems; Thermische und elektrische Transportuntersuchungen an niederdimensionalen korrelierten Elektronensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank

    2015-10-27

    In this work electrical and thermal transport measurements of a antiferromagnetically ordered iridate and of superconducting FeAs-based high-temperature superconductors are presented and analyzed. The iridates are compounds with strong spin-orbit coupling. In the two-dimensional representative Sr{sub 2}IrO{sub 4} this yields isolating behavior with simultaneous antiferromagnetically ordered spin-orbit moments. Thus, Sr{sub 2}IrO{sub 4} is a model system for studying magnetic excitations in iridates. The analysis of the heat transport yields for the first time clear-cut evidence for magnetic heat conductivity in iridates. The extracted magnetic mean free path uncovers scattering processes of the magnons contributing to the heat transport and draws conclusions about the excitations of the spin-orbit coupled system. The FeAs-superconductors have mainly two-dimensional transport of carriers due to their layered crystal structure. The phase diagrams of these materials consist of ordering phenomena of magnetism, superconductivity and structural distortion. The main focus is on the reaction of the transport coefficients to the developed phases in representatives of the 111- and 122-families upon chemical doping in and out of the two-dimensional plane. With the help of resistivity and magnetic susceptibility phase diagrams are constructed. In selected cases, the Hall coefficient as well as electro-thermal transport coefficients are used to study the phase diagram in detail. The majority of these investigations yield omnipresent electrical ordering phenomena, which are named nematic phase. The measurement of the heat conductivity and the Nernst coefficient in doped BaFe{sub 2}As{sub 2} show that these transport coefficients are dominantly influenced by fluctuations which are preceeding the nematic phase. From the Nernst data conclusions are deduced about the driving mechanisms of the correlated electron system yielding the phase transitions.

  9. Electronic transport and dynamics in correlated heterostructures

    Science.gov (United States)

    Mazza, G.; Amaricci, A.; Capone, M.; Fabrizio, M.

    2015-05-01

    We investigate by means of the time-dependent Gutzwiller approximation the transport properties of a strongly correlated slab subject to Hubbard repulsion and connected with to two metallic leads kept at a different electrochemical potential. We focus on the real-time evolution of the electronic properties after the slab is connected to the leads and consider both metallic and Mott insulating slabs. When the correlated slab is metallic, the system relaxes to a steady state that sustains a finite current. The zero-bias conductance is finite and independent of the degree of correlations within the slab as long as the system remains metallic. On the other hand, when the slab is in a Mott insulating state, the external bias leads to currents that are exponentially activated by charge tunneling across the Mott-Hubbard gap, consistent with the Landau-Zener dielectric breakdown scenario.

  10. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System

    Institute of Scientific and Technical Information of China (English)

    LIN Ming-Xi; QI Sheng-Wen; LIU Yu-Liang

    2006-01-01

    @@ Based on a two-dimensional electron system with pure gauge field, we demonstrate that the long range order of the electron pairing order parameter can be destroyed by the gauge fluctuation for both s-wave and d-wave symmetric Cooper pair parameters, even if the pure gauge field mediates attractive interaction between the spinup and spin-down electrons, while the signal of the Meissner effect is observable. This model can be used to explain the recent experimental data of the high Tc cuprate superconductors observed.

  11. Electron-electron correlations in liquid s-p metals

    CERN Document Server

    Leys, F E

    2003-01-01

    We present calculations for the valence electron-electron structure factor in liquid Mg near freezing, assuming knowledge of the jellium result. On the basis of this, we predict significant corrections to jellium short-range correlations in liquid s-p metals and in particular an increase in the electron-electron contact probability.

  12. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition; Deux systemes d'electrons fortement correles: le modele de reseau Kondo dans la limite du couplage fort et un modele bidimensionnel d'electrons au voisinage d'une transition topologique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bouis, F

    1999-10-14

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  13. Correlative photoactivated localization and scanning electron microscopy.

    Directory of Open Access Journals (Sweden)

    Benjamin G Kopek

    Full Text Available The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM and scanning electron microscope (SEM system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.

  14. Correlative photoactivated localization and scanning electron microscopy.

    Science.gov (United States)

    Kopek, Benjamin G; Shtengel, Gleb; Grimm, Jonathan B; Clayton, David A; Hess, Harald F

    2013-01-01

    The ability to localize proteins precisely within subcellular space is crucial to understanding the functioning of biological systems. Recently, we described a protocol that correlates a precise map of fluorescent fusion proteins localized using three-dimensional super-resolution optical microscopy with the fine ultrastructural context of three-dimensional electron micrographs. While it achieved the difficult simultaneous objectives of high photoactivated fluorophore preservation and ultrastructure preservation, it required a super-resolution optical and specialized electron microscope that is not available to many researchers. We present here a faster and more practical protocol with the advantage of a simpler two-dimensional optical (Photoactivated Localization Microscopy (PALM)) and scanning electron microscope (SEM) system that retains the often mutually exclusive attributes of fluorophore preservation and ultrastructure preservation. As before, cryosections were prepared using the Tokuyasu protocol, but the staining protocol was modified to be amenable for use in a standard SEM without the need for focused ion beam ablation. We show the versatility of this technique by labeling different cellular compartments and structures including mitochondrial nucleoids, peroxisomes, and the nuclear lamina. We also demonstrate simultaneous two-color PALM imaging with correlated electron micrographs. Lastly, this technique can be used with small-molecule dyes as demonstrated with actin labeling using phalloidin conjugated to a caged dye. By retaining the dense protein labeling expected for super-resolution microscopy combined with ultrastructural preservation, simplifying the tools required for correlative microscopy, and expanding the number of useful labels we expect this method to be accessible and valuable to a wide variety of researchers.

  15. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, P. G.; Dhesi, S. S.

    2015-01-26

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007–2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

  16. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described.

  17. Exactly solvable models of strongly correlated electrons

    CERN Document Server

    Korepin, Vladimir E

    1994-01-01

    Systems of strongly correlated electrons are at the heart of recent developments in condensed matter theory. They have applications to phenomena like high-T c superconductivity and the fractional quantum hall effect. Analytical solutions to such models, though mainly limited to one spatial dimension, provide a complete and unambiguous picture of the dynamics involved. This volume is devoted to such solutions obtained using the Bethe Ansatz, and concentrates on the most important of such models, the Hubbard model. The reprints are complemented by reviews at the start of each chapter and an exte

  18. Electron-electron correlations in square-well quantum dots: direct energy minimization approach.

    Science.gov (United States)

    Goto, Hidekazu; Hirose, Kikuji

    2011-04-01

    Electron-electron correlations in two-dimensional square-well quantum dots are investigated using the direct energy minimization scheme. Searches for groundstate charges and spin configurations are performed with varying the sizes of dots and the number of electrons. For a two-electron system, a standout difference between the configurations with and without counting correlation energy is demonstrated. The emergence and melting of Wigner-molecule-like structures arising from the interplay between the kinetic energy and Coulombic interaction energy are described. Electron-electron correlation energies and addition energy spectra are calculated, and special electron numbers related to peculiar effects of the square well are extracted.

  19. High-resolution spectroscopy using synchrotron radiation for surface structure determination and the study of correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J. Jr.

    1996-05-01

    The surface structure of three molecular adsorbate systems on transition metal surfaces, ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees} CO adsorbed on Cu(111), and c(2x2) N2/Ni(100), have been determined using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS). The adsorption site and bond lengths are reported for the adsorbate-metal bond and the first two substrate layers. The ARPEFS diffraction pattern of the shake-up peak for c(2x2) N2/Ni(100) is also discussed. A unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level satellites is presented. We show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. Specifically, we present data for the C 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), N is from c(2x2) N2/Ni(100), and Ni 3p from clean nickel(111). The satellite peaks in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature. A Fourier Transform Soft X-ray spectrometer (FF-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The spectrometer is designed for ultra-high resolution theoretical resolving power E/{Delta}E{approx}-10{sup 6} in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  20. Peierls ground state and excitations in the electron-lattice correlated system (EDO-TTF)2X

    Science.gov (United States)

    Tsuchiizu, M.; Suzumura, Y.

    2008-05-01

    We investigate the exotic Peierls state in the one-dimensional organic compound (EDO-TTF)2X , wherein the Peierls transition is accompanied by the bending of molecules and also by a fourfold periodic array of charge disproportionation along the one-dimensional chain. Such a Peierls state, wherein the interplay between the electron correlation and the electron-phonon interaction takes an important role, is examined based on an extended Peierls Holstein Hubbard model that includes the alternation of the elastic energies for both the lattice distortion and the molecular deformation. The model reproduces the experimentally observed pattern of the charge disproportionation and there exists a metastable state wherein the energy takes a local minimum with respect to the lattice distortion and/or molecular deformation. Furthermore, we investigate the excited states for both the Peierls ground state and the metastable state by considering the soliton formation of electrons. It is shown that the soliton excitation from the metastable state costs energy that is much smaller than that of the Peierls state, where the former is followed only by the charge degree of freedom and the latter is followed by that of spin and charge. Based on these results, we discuss the exotic photoinduced phase found in (EDO-TTF)2PF6 .

  1. Electronic properties of strongly correlated layered oxides

    Science.gov (United States)

    Lee, Wei-Cheng

    The two-dimensional electronic systems (2DESs) have kept surprising physicists for the last few decades. Examples include the integer and fractional quantum Hall effects, cuprate superconductivity, and graphene. This thesis is intended to develop suitable theoretical tools which can be generalized to study new types of 2DESs with strong correlation feature. The first part of this thesis describes the investigation of heterostructures made by Mott insulators. This work is mostly motivated by the significant improvement of techniques for layer-by-layer growth of transition metal oxides in the last few years. We construct a toy model based on generalized Hubbard model complemented with long-ranged Coulomb interaction, and we study it by Hartree-Fock theory, dynamical mean-field theory, and Thomas-Fermi theory. We argue that interesting 2D strongly correlated electronic systems can be created in such heterostructures under several conditions. Since these 2D systems are formed entirely due to the gap generated by electron-electron interaction, they are not addiabatically connected to a noninteracting electron states. This feature makes these 2D systems distinguish from the ones created in semiconductor heterostructures, and they may be potential systems having non-Fermi liquid behaviors. The second part of this thesis is devoted to the study of collective excitations in high-temperature superconductors. One important achievement in this work is to develop a time-dependent mean-field theory for t -- U -- J -- V model, an effective low energy model for cuprates. The time-dependent mean-field theory is proven to be identical to the generalized random-phase approximation (GRPA) which includes both the bubble and ladder diagrams. We propose that the famous 41 meV magnetic resonance mode observed in the inelastic neutron scattering measurements is a collective mode arising from a conjugation relation, which has been overlooked in previous work, between the antiferromagnetic

  2. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    Science.gov (United States)

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be(2+) , and Ne atoms. The variation of the correlation energy with the confinement radius Rc is relatively small for the He, Be(2+) , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small Rc . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing Rc . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small Rc . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Kinks: Fingerprints of strong electronic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Toschi, A; Held, K [Institut fuer Festkoerperphysik, Technische Universitaet Wien, Vienna (Austria); Capone, M; Castellani, C, E-mail: held@ifp.tuwien.ac.a [SMC, CNR-INFM and Dipartimento di Fisica - Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2010-01-15

    The textbook knowledge of solid state physics is that the electronic specific heat shows a linear temperature dependence with the leading corrections being a cubic term due to phonons and a cubic-logarithmic term due to the interaction of electrons with bosons. We have shown that this longstanding conception needs to be supplemented since the generic behavior of the low-temperature electronic specific heat includes a kink if the electrons are sufficiently strongly correlated.

  4. Dynamical simulations of strongly correlated electron materials

    Science.gov (United States)

    Kress, Joel; Barros, Kipton; Batista, Cristian; Chern, Gia-Wei; Kotliar, Gabriel

    We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

  5. ALMA correlator computer systems

    Science.gov (United States)

    Pisano, Jim; Amestica, Rodrigo; Perez, Jesus

    2004-09-01

    We present a design for the computer systems which control, configure, and monitor the Atacama Large Millimeter Array (ALMA) correlator and process its output. Two distinct computer systems implement this functionality: a rack- mounted PC controls and monitors the correlator, and a cluster of 17 PCs process the correlator output into raw spectral results. The correlator computer systems interface to other ALMA computers via gigabit Ethernet networks utilizing CORBA and raw socket connections. ALMA Common Software provides the software infrastructure for this distributed computer environment. The control computer interfaces to the correlator via multiple CAN busses and the data processing computer cluster interfaces to the correlator via sixteen dedicated high speed data ports. An independent array-wide hardware timing bus connects to the computer systems and the correlator hardware ensuring synchronous behavior and imposing hard deadlines on the control and data processor computers. An aggregate correlator output of 1 gigabyte per second with 16 millisecond periods and computational data rates of approximately 1 billion floating point operations per second define other hard deadlines for the data processing computer cluster.

  6. Prototype Optical Correlator For Robotic Vision System

    Science.gov (United States)

    Scholl, Marija S.

    1993-01-01

    Known and unknown images fed in electronically at high speed. Optical correlator and associated electronic circuitry developed for vision system of robotic vehicle. System recognizes features of landscape by optical correlation between input image of scene viewed by video camera on robot and stored reference image. Optical configuration is Vander Lugt correlator, in which Fourier transform of scene formed in coherent light and spatially modulated by hologram of reference image to obtain correlation.

  7. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  8. Inequalities for electron-field correlation functions

    CERN Document Server

    Tyc, T

    2000-01-01

    I show that there exists a class of inequalities between correlation functions of different orders of a chaotic electron field. These inequalities lead to the antibunching effect and are a consequence of the fact that electrons are fermions -- indistinguishable particles with antisymmetric states. The derivation of the inequalities is based on the known form of the correlation functions for the chaotic state and on the properties of matrices and determinants.

  9. Correlations in a partially degenerate electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The density-functional theory proves that an ion-electron mixture can be treated as a one-component liquid interacting only via a pairwise interaction in the evaluation of the ion-ion radial distribution function (RDF), and provides a set of integral equations: one is an integral equation for the ion-ion RDF and another for an effective ion-ion interaction, which depends on the ion-ion RDF. This formulation gives a set of integral equation to calculate plasma structures with combined use of the electron-electron correlations in a partially degenerate electron plasma. Therefore, it is important for this purpose to determine the electron-electron correlations at a arbitrary temperature. Here, they are calculated by the quantal version of the hypernetted chain (HNC) equation. On the basis of the jellium-vacancy model, the ionic and electronic structures of rubidium are calculated for the range from liquid metal to plasma states by increasing the temperature at the fixed density using the electron-correlation results. (author)

  10. A Tale of Two Electrons: Correlation at High Density

    CERN Document Server

    Loos, Pierre-François

    2010-01-01

    We review our recent progress in the determination of the high-density correlation energy $\\Ec$ in two-electron systems. Several two-electron systems are considered, such as the well known helium-like ions (helium), and the Hooke's law atom (hookium). We also present results regarding two electrons on the surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that, in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interacting {\\em via} a Coulomb potential is given by $\\Ec \\sim -1/(8D^2)$ for any radial external potential $V(r)$, where $D$ is the dimensionality of the space. This result explains the similarity of $\\Ec$ in the previous two-electron systems for $D=3$.

  11. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cao, S.C.; Liu, M.; Sheng, X.K. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, X.M. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Jing, Y.; Cheng, R.; Zhao, Y.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Z.M., E-mail: zzm@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, Y.C. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Gai, W. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-10-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  12. Size, dimensionality, and strong electron correlation in nanoscience.

    Science.gov (United States)

    Brus, Louis

    2014-10-21

    In electronic structure theory, electron-electron repulsion is normally considered only in an average (or mean field) sense, for example, in a single Hartree-Fock determinant. This is the simple molecular orbital model, which is often a good approximation for molecules. In infinite systems, this averaging treatment leads to delocalized electronic bands, an excellent description of bulk 3D sp(3) semiconductors. However, in reality electrons try to instantaneously avoid each other; their relative motion is correlated. Strong electron-electron repulsion and correlation create new collective states and cause new femtosecond kinetic processes. This is especially true in 1D and 2D systems. The quantum size effect, a single electron property, is widely known: the band gap increases with decreasing size. This Account focuses on the experimental consequences of strong correlation. We first describe π-π* excited states in carbon nanotubes (CNTs). To obtain the spectra of individual CNTs, we developed a white-light, right-angle resonant Rayleigh scattering method. Discrete exciton transitions dominate the optical absorption spectra of both semiconducting and metallic tubes. Excitons are bound neutral excited states in which the electron and hole tightly orbit each other due to their mutual Coulomb attraction. We then describe more generally the independent roles of size and dimensionality in nanoelectronic structure, using additional examples from graphene, trans-polyacetylene chains, transition metal dichalcogenides, organic/inorganic Pb iodide perovskites, quantum dots, and pentacene van der Waals crystals. In 1D and 2D chemical systems, the electronic band structure diagram can be a poor predictor of properties if explicit correlation is not considered. One- and two-dimensional systems show quantum confinement and especially strong correlation as compared with their 3D parent systems. The Coulomb interaction is enhanced because the electrons are on the surface. One- and

  13. Role of electronic correlations in Ga

    KAUST Repository

    Zhu, Zhiyong

    2011-06-13

    An extended around mean field (AMF) functional for less localized pelectrons is developed to quantify the influence of electronic correlations in α-Ga. Both the local density approximation (LDA) and generalized gradient approximation are known to mispredict the Ga positional parameters. The extended AMF functional together with an onsite Coulomb interaction of Ueff=1.1 eV, as obtained from constraint LDA calculations, reduces the deviations by about 20%. The symmetry lowering coming along with the electronic correlations turns out to be in line with the Ga phase diagram.

  14. Construction of explicitly correlated geminal-projected particle-hole creation operators for many-electron systems using the diagrammatic factorization approach

    Science.gov (United States)

    Bayne, Michael G.; Uchida, Yuki; Eller, Joshua; Daniels, Carena; Chakraborty, Arindam

    2016-11-01

    The computational cost of performing a configuration interaction (CI) calculation for treating electron-electron correlation is directly proportional to the number of terms in the CI expansion. In this work, we present a diagrammatic projection approach for a priori identification of noncontributing terms in a CI expansion. This method known as the geminal-projected configuration interaction (GP-CI) method is based on using a two-body R12 geminal operator for describing electron-electron correlation in a reference many-electron wave function. The diagrammatic projection procedure was performed by first deriving the Hugenholtz diagrams of the energy expression of the R12 reference wave function and then performing diagrammatic factorization of effective particle-hole creation operators. The projection operation, which is a functional of the geminal function, was defined and used for the construction of the geminal-projected particle-hole creation operators. The form of the two-body R12 geminal operator was derived analytically by imposing an approximate Kato cusp condition. A linear combination of the geminal-projected one-particle one-hole and two-particle two-hole operators were used for the construction of the GP-CI wave function. The applicability and implementation of the diagrammatic projection method was demonstrated by performing proof-of-concept calculations on an isoelectronic series of 10 electron systems: CH4,NH3,H2O ,HF , and Ne . The results from the calculations show that compared to conventional CI calculations, the GP-CI method was able to substantially reduce the size of the CI space (by a factor of 6-9) while maintaining an accuracy of 10-5 Hartrees for the ground-state energies. These results demonstrate the ability of the diagrammatic projection procedure to identify noncontributing states using an analytical form of the R12 geminal correlator operator. The geminal-projection method was also applied to second-order Møller-Plesset perturbation

  15. STEP electronic system design

    Science.gov (United States)

    Couch, R. H.; Johnson, J. W.

    1984-01-01

    The STEP electronic system design is discussed. The purpose of the design is outlined. The electronic system design is summarized and it is found that: an effective conceptual system design is developed; the design represents a unique set of capabilities; makes efficient use of available orbiter resources; the system capabilities exceed identified potential experiment needs.

  16. Electron correlation in molecules and condensed phases

    CERN Document Server

    March, N H

    1996-01-01

    This reference describes the latest research on correlation effects in the multicenter problems of atoms, molecules, and solids The author utilizes first- and second-order matrices, including the important observable electron density rho(r), and the Green function for discussing quantum computer simulations With its focus on concepts and theories, this volume will benefit experimental physicists, materials scientists, and physical and inorganic chemists as well as graduate students

  17. Correlations in the impenetrable electron gas

    OpenAIRE

    Göhmann, F.; Its, A. R.; Korepin, V. E.

    1998-01-01

    We consider non-relativistic electrons in one dimension with infinitely strong repulsive delta function interaction. We calculate the long-time, large-distance asymptotics of field-field correlators in the gas phase. The gas phase at low temperatures is characterized by the ideal gas law. We calculate the exponential decay, the power law corrections and the constant factor of the asymptotics. Our results are valid at any temperature. They simplify at low temperatures, where they are easily re...

  18. LDA + GTB (generalized tight-binding) method for the electronic structure calculations of strongly correlated electron systems: Application for the band structure calculations of p-type cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Maxim M. [L.V. Kirensky Institute of Physics, Siberian Branch of RAS, Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany)], E-mail: maxim@mpipks-dresden.mpg.de; Ovchinnikov, Sergey G. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany)

    2007-09-01

    Mean-field theory of the non-superconducting phase of the high-T{sub c} cuprates is formulated within the effective t-t'-t''-J model with three-site correlated hoppings. This model with the ab initio calculated parameters results from the LDA + GTB method. The static spin and kinematical correlation functions beyond Hubbard I approximation are calculated self-consistently taking into account hoppings to the first, the second, and the third neighboring sites, as well as the three-site correlated hoppings. The obtained Fermi surface evolves from hole-pockets at low-doping to large hole-type Fermi surface at higher doping concentrations. Calculated doping dependence of the nodal Fermi velocity, the effective mass and the chemical potential shift are in good agreement with experimental data.

  19. Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: I. Analytical solutions under dipole-dipole correlations

    OpenAIRE

    Jiang, Shidong; Xu, Minzhong

    2005-01-01

    The analytical solutions for the general-four-wave-mixing hyperpolarizabilities $\\chi^{(3)}(-(w_1+w_2+w_3);w_1,w_2,w_3)$ on infinite chains under both Su-Shrieffer-Heeger and Takayama-Lin-Liu-Maki models of trans-polyacetylene are obtained through the scheme of dipole-dipole correlation. Analytical expressions of DC Kerr effect $\\chi^{(3)}(-w;0,0,w)$, DC-induced second harmonic generation $\\chi^{(3)}(-2w;0,w,w)$, optical Kerr effect $\\chi^{(3)}(-w;w,-w,w)$ and DC-electric-field-induced optica...

  20. High-harmonic generation enhanced by dynamical electron correlation

    CERN Document Server

    Tikhomirov, Iliya; Ishikawa, Kenichi L

    2016-01-01

    We theoretically study multielectron effects in high-harmonic generation (HHG), using all-electron first-principles simulations for a one-dimensional (1D) model atom. In addition to usual plateau and cutoff (from a cation in the present case, since the neutral is immediately ionized), we find a prominent resonance peak far above the plateau and a second plateau extended beyond the first cutoff. These features originate from the dication response enhanced by orders of magnitude due to the action of the Coulomb force from the rescattering electron, and, hence, are a clear manifestation of electron correlation. Although the present simulations are done in 1D, the physical mechanism underlying the dramatic enhancement is expected to hold also for three-dimensional real systems. This will provide new possibilities to explore dynamical electron correlation in intense laser fields using HHG, which is usually considered to be of single-electron nature in most cases.

  1. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    Science.gov (United States)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree

  2. Evaluation of Beef by Electronic Tongue System TS-5000Z: Flavor Assessment, Recognition and Chemical Compositions According to Its Correlation with Flavor.

    Directory of Open Access Journals (Sweden)

    Xinzhuang Zhang

    Full Text Available The aim of this study was to assess the ability of electronic tongue system TS-5000Z to evaluate meat quality based on flavor assessment, recognition and correlation with the meat chemical composition. Meat was sampled from eighteen beef cattle including 6 Wagyu breed cattle, 6 Angus breed cattle and 6 Simmental breed cattle. Chemical composition including dry matter, crude protein, fat, ash, cholesterol and taurine and flavor of the meat were measured. The results showed that different breed cattle had different chemical compositions and flavor, which contains sourness, umami, saltiness, bitterness, astringency, aftertaste from astringency, aftertaste from bitterness and aftertaste from umami, respectively. A principal component analysis (PCA showed an easily visible separation between different breeds of cattle and indicated that TS-5000Z made a rapid identification of different breeds of cattle. In addition, TS-5000Z seemed to be used to predict the chemical composition according to its correlation with the flavor. In conclusion, TS-5000Z would be used as a rapid analytical tool to evaluate the beef quality both qualitatively and quantitatively, based on flavor assessment, recognition and chemical composition according to its correlation with flavor.

  3. Electronic correlations in insulators, metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael Andreas

    2010-12-03

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  4. Magnetic Field Effects in a Correlated Electron System with Spin-State Degree of Freedom — Implications for an Excitonic Insulator —

    Science.gov (United States)

    Tatsuno, Taro; Mizoguchi, Eriko; Nasu, Joji; Naka, Makoto; Ishihara, Sumio

    2016-08-01

    Magnetic field (H) effects on a correlated electron system with a spin-state degree of freedom are examined. The effective Hamiltonian derived from the two-orbital Hubbard model is analyzed by the mean-field approximation. Applying a magnetic field to the low-spin (LS) phase induces an excitonic insulating phase as well as a spin-state ordered phase where the LS and high-spin (HS) states are ordered alternately. When H is applied to the HS phase, a reentrant transition for the HS phase appears. A rich variety of the phase diagrams is attributed to the spin-state degree of freedom and their combinations in the wave function as well as in the real-space configuration. The present results provide a possible interpretation for the recent experimental observation of LaCoO3 under a strong magnetic field.

  5. Electronic structure study of strongly correlated Mott-insulators

    Science.gov (United States)

    Yin, Quan

    Strongly correlated electronic systems have presented the most challenging problems to condensed matter theorists for many years and this continues to be the case. They are complicated materials with active d or f orbitals, whose valence electrons are in the intermediate region between itinerant (band-like) and highly localized (atomic-like) limits, which demand genuine many-body treatment. Although dealing with strongly correlated systems is a notorious problem, they have drawn broad interests of both theoretical and experimental condensed matter physicists, with intensive studies carried out in the past and present. This is due to the most exotic properties associated with strongly correlated materials, such as high-temperature superconductivity, metal-insulator transition, volume collapse, Kondo effect, colossal magnetoresistance, and many others. Although density functional theory (DFT) within local density approximation (LDA) is very successful in describing a wide range of materials, it encounters difficulty in predicting strongly correlated systems. Traditionally, they have been studied by model Hamiltonians with empirical parameters. The development of dynamical mean field theory (DMFT) and its marriage to DFT have brought new hope for first-principle study of strongly correlated systems. In this work, electronic structures of select strongly correlated systems are studied using LDA+DMFT. As theoretical backgrounds, reviews of DFT and DMFT are given in the first few chapters, where we also introduce the philosophy and workflow of LDA+DMFT. In the following chapters, applications to transition metal oxides, undoped high-temperature superconductors and actinide oxides are presented, where electronic structures of these materials and other properties derived from electronic structures are calculated and compared with experiments where available. Generally good agreements have been found between theory and experiments.

  6. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  7. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  8. Metallothioneins for correlative light and electron microscopy.

    Science.gov (United States)

    Fernández de Castro, Isabel; Sanz-Sánchez, Laura; Risco, Cristina

    2014-01-01

    Structural biologists have been working for decades on new strategies to identify proteins in cells unambiguously. We recently explored the possibilities of using the small metal-binding protein, metallothionein (MT), as a tag to detect proteins in transmission electron microscopy. It had been reported that, when fused with a protein of interest and treated in vitro with gold salts, a single MT tag will build an electron-dense gold cluster ~1 nm in diameter; we provided proof of this principle by demonstrating that MT can be used to detect intracellular proteins in bacteria and eukaryotic cells. The method, which is compatible with a variety of sample processing techniques, allows specific detection of proteins in cells with exceptional sensitivity. We illustrated the applicability of the technique in a series of studies to visualize the intracellular distribution of bacterial and viral proteins. Immunogold labeling was fundamental to confirm the specificity of the MT-gold method. When proteins were double-tagged with green fluorescent protein and MT, direct correlative light and electron microscopy allowed visualization of the same macromolecular complexes with different spatial resolutions. MT-gold tagging might also become a useful tool for mapping proteins into the 3D-density maps produced by (cryo)-electron tomography. New protocols will be needed for double or multiple labeling of proteins, using different versions of MT with fluorophores of different colors. Further research is also necessary to render the MT-gold labeling procedure compatible with immunogold labeling on Tokuyasu cryosections and with cryo-electron microscopy of vitreous sections.

  9. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  10. Contributed Review: Review of integrated correlative light and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, F. J.; Otto, C. [Medical Cell Biophysics Group, MIRA Institute, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-01-15

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  11. Electronic components and systems

    CERN Document Server

    Dennis, W H

    2013-01-01

    Electronic Components and Systems focuses on the principles and processes in the field of electronics and the integrated circuit. Covered in the book are basic aspects and physical fundamentals; different types of materials involved in the field; and passive and active electronic components such as capacitors, inductors, diodes, and transistors. Also covered in the book are topics such as the fabrication of semiconductors and integrated circuits; analog circuitry; digital logic technology; and microprocessors. The monograph is recommended for beginning electrical engineers who would like to kn

  12. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.

    Science.gov (United States)

    Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E

    2011-05-12

    We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.

  13. Chiral Spin-Density Wave, Spin-Charge-Chern Liquid, and d+id Superconductivity in 1/4-Doped Correlated Electronic Systems on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Shenghan Jiang

    2014-09-01

    Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1system goes through a first-order phase transition at J/t=0.80(2 into the d+id superconductor. Here, the spin-charge-Chern liquid state is a new type of topologically ordered quantum phase with Abelian anyons and fractionalized excitations. Experimental signatures of these quantum phases, such as tunneling conductance, are calculated. These results are discussed in the context of 1/4-doped graphene systems and other correlated electronic materials on the honeycomb lattice.

  14. Spin Correlation in Binary Systems

    CERN Document Server

    Farbiash, N; Farbiash, Netzach; Steinitz, Raphael

    2004-01-01

    We examine the correlation of projected rotational velocities in binary systems. It is an extension of previous work (Steinitz and Pyper, 1970; Levato, 1974). An enlarged data basis and new tests enable us to conclude that there is indeed correlation between the projected rotational velocities of components of binaries. In fact we suggest that spins are already correlated.

  15. The strongly correlated electron systems CeNi sub 2 Ge sub 2 and Sr sub 2 RuO sub 4

    CERN Document Server

    Diver, A J

    1996-01-01

    susceptibility and magnetoresistance on a single crystal CeNi sub 2 Ge sub 2 sample are discussed. The low temperature resistivity is found to show non-Fermi liquid behaviour both at low field and at 16 T. Chapter four is concerned with the layered perovskite superconductor Sr sub 2 RuO sub 4 which has a very similar structure to the La sub 2 sub - sub x Sr sub x CuO sub 4 family of high-T sub c superconductors. De Haas-van Alphen oscillations were detected allowing a study in which all of the Fermi surface sheets were detected. These oscillations are analysed and shown to obey the form expected for a conventional Fermi liquid. The results are compared with the predictions of recent band structure calculations. Measurements of the Hall effect and upper critical field for superconductivity are explained in terms of the measured Fermi surface. Strongly correlated electron systems provide many challenges for condensed matter physics which attempts to find new ways to understand the behaviour of vast numbers of p...

  16. Electron-electron interactions in disordered systems

    CERN Document Server

    Efros, AL

    1985-01-01

    ``Electron-Electron Interactions in Disordered Systems'' deals with the interplay of disorder and the Coulomb interaction. Prominent experts give state-of-the-art reviews of the theoretical and experimental work in this field and make it clear that the interplay of the two effects is essential, especially in low-dimensional systems.

  17. Capacitance and compressibility of heterostructures with strong electronic correlations

    Science.gov (United States)

    Steffen, Kevin; Frésard, Raymond; Kopp, Thilo

    2017-01-01

    Strong electronic correlations related to a repulsive local interaction suppress the electronic compressibility in a single-band model, and the capacitance of a corresponding metallic film is directly related to its electronic compressibility. Both statements may be altered significantly when two extensions to the system are implemented which we investigate here: (i) we introduce an attractive nearest-neighbor interaction V as antagonist to the repulsive onsite repulsion U , and (ii) we consider nanostructured multilayers (heterostructures) assembled from two-dimensional layers of these systems. We determine the respective total compressibility κ and capacitance C of the heterostructures within a strong coupling evaluation, which builds on a Kotliar-Ruckenstein slave-boson technique. Whereas the capacitance C (n ) for electronic densities n close to half-filling is suppressed, illustrated by a correlation induced dip in C (n ) , it may be appreciably enhanced close to a van Hove singularity. Moreover, we show that the capacitance may be a nonmonotonic function of U close to half-filling for both attractive and repulsive V . The compressibility κ can differ from C substantially, as κ is very sensitive to internal electrostatic energies which in turn depend on the specific setup of the heterostructure. In particular, we show that a capacitor with a polar dielectric has a smaller electronic compressibility and is more stable against phase separation than a standard nonpolar capacitor with the same capacitance.

  18. Electron-boson spectral density function of correlated multiband systems obtained from optical data: Ba0.6K0.4Fe2As2 and LiFeAs.

    Science.gov (United States)

    Hwang, Jungseek

    2016-03-31

    We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.

  19. MDT DCS Electronics System

    CERN Document Server

    Tsarouchas, Charilaos; Gazis, Evangelos; Tsipolitis, Georgios

    This note has the aim to present the Detector Control System for the Monitor- ing of the electronics values of MDT chambers in ATLAS experiment in CERN. This system is decided to be called in short ELTX. The principal task of DCS is to enable and ensure the coherent and safe oper- ation of the detector. The interaction of detector expers, users or shifters to the detector hardware is also done via DCS. This is the responsible system of moni- toring the operational parameters and the overall state of the detector, the alarm generation and handling, the connection of hardware values to databases and the interaction with the DAQ system. Through this thesis, one can see what ELTX system has to offer as a Detector Control System and in detail, what is the hardware to be controlled and monitored. Moreover it is presented the mainstream of central Atlas DCS concerning the active interfaces.ELTX is a system following these standards.

  20. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation.

    Science.gov (United States)

    Parkhill, John A; Markovich, Thomas; Tempel, David G; Aspuru-Guzik, Alan

    2012-12-14

    In this work, we develop an approach to treat correlated many-electron dynamics, dressed by the presence of a finite-temperature harmonic bath. Our theory combines a small polaron transformation with the second-order time-convolutionless master equation and includes both electronic and system-bath correlations on equal footing. Our theory is based on the ab initio Hamiltonian, and is thus well-defined apart from any phenomenological choice of basis states or electronic system-bath coupling model. The equation-of-motion for the density matrix we derive includes non-markovian and non-perturbative bath effects and can be used to simulate environmentally broadened electronic spectra and dissipative dynamics, which are subjects of recent interest. The theory also goes beyond the adiabatic Born-Oppenheimer approximation, but with computational cost scaling such as the Born-Oppenheimer approach. Example propagations with a developmental code are performed, demonstrating the treatment of electron-correlation in absorption spectra, vibronic structure, and decay in an open system. An untransformed version of the theory is also presented to treat more general baths and larger systems.

  1. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  2. Cooling system for electronic components

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  3. Power Electronics System Communications

    OpenAIRE

    Milosavljevic, Ivana

    1999-01-01

    This work investigates communication issues in high-frequency power converters. A novel control communication network (Power Electronics System Network or PES Net) is proposed for modular, medium and high-power, converters. The network protocol, hardware and software are designed and implemented. The PES Net runs at 125 Mb/s over plastic optical fiber allowing converter switching frequencies in excess of 100 kHz. Communication control is implemented in a fie...

  4. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  5. LDA+DMFT Approach to Materials with Strong Electronic Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Held, K; Nekrasov, I A; Keller, G; Eyert, V; Blumer, N; McMahan, A K; Scalettar, R T; Pruschke, T; Anisimov, V I; Volhardt, D

    2001-12-02

    LDA+DMFT is a novel computational technique for ab initio investigations of real materials with strongly correlated electrons, such as transition metals and their oxides. It combines the strength of conventional band structure theory in the local density approximation (LDA) with a modern many-body approach, the dynamical mean-field theory (DMFT). In the last few years LDA+DMFT has proved to be a powerful tool for the realistic modeling of strongly correlated electronic systems. In this paper the basic ideas and the set-up of the LDA+DMFT(X) approach, where X is the method used to solve the DMFT equations, are discussed. Results obtained with X=QMC (quantum Monte Carlo) and X=NCA (non-crossing approximation) are presented and compared. By means of the model system La{sub 1-x}Sr{sub x}TiO{sub 3} we show that the method X matters qualitatively and quantitatively. Furthermore, they discuss recent results on the Mott-Hubbard metal-insulator transition in the transition metal oxide V{sub 2}O{sub 3} and the {alpha}-{gamma} transition in the 4f-electron system Ce.

  6. Eddy Correlation Flux Measurement System

    Data.gov (United States)

    Oak Ridge National Laboratory — The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat,...

  7. Electron correlations in single-electron capture from helium by fast protons and α particles

    Science.gov (United States)

    Mančev, Ivan; Milojević, Nenad

    2010-02-01

    Single-electron capture from heliumlike atomic systems by bare projectiles is investigated by means of the four-body boundary-corrected first Born approximation (CB1-4B). The effect of the dynamic electron correlation is explicitly taken into account through the complete perturbation potential. The quantum-mechanical post and prior transition amplitudes for single charge exchange encompassing symmetric and/or asymmetric collisions are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. An illustrative computation is performed for single-electron capture from helium by protons and α particles at intermediate and high impact energies. The role of dynamic correlations is examined as a function of increased projectile energy. The validity and utility of the proposed CB1-4B method is critically assessed in comparison with the existing experimental data for total cross sections, and excellent agreement is obtained.

  8. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    Science.gov (United States)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  9. Efficient and accurate treatment of electron correlations with Correlation Matrix Renormalization theory

    Science.gov (United States)

    Yao, Y. X.; Liu, J.; Liu, C.; Lu, W. C.; Wang, C. Z.; Ho, K. M.

    2015-08-01

    We present an efficient method for calculating the electronic structure and total energy of strongly correlated electron systems. The method extends the traditional Gutzwiller approximation for one-particle operators to the evaluation of the expectation values of two particle operators in the many-electron Hamiltonian. The method is free of adjustable Coulomb parameters, and has no double counting issues in the calculation of total energy, and has the correct atomic limit. We demonstrate that the method describes well the bonding and dissociation behaviors of the hydrogen and nitrogen clusters, as well as the ammonia composed of hydrogen and nitrogen atoms. We also show that the method can satisfactorily tackle great challenging problems faced by the density functional theory recently discussed in the literature. The computational workload of our method is similar to the Hartree-Fock approach while the results are comparable to high-level quantum chemistry calculations.

  10. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  11. STIR: Novel Electronic States by Gating Strongly Correlated Materials

    Science.gov (United States)

    2016-03-01

    understood, has long been the foundation for electronic devices. What if we could apply these techniques to a much broader range of materials ? This short...grant aimed at demonstrating such large potential modulations in correlated electron materials using a technique known as electrolyte gating. This...of Papers published in non peer-reviewed journals: Final Report: STIR: Novel Electronic States by Gating Strongly Correlated Materials Report Title

  12. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  13. Correlated Electron Calculations with Hartree-Fock Scaling

    CERN Document Server

    Gebauer, Ralph; Car, Roberto

    2013-01-01

    We introduce an energy functional for ground-state electronic structure calculations with fundamental variables the natural spin orbitals and their joint occupation probabilities in an implied many-body trial wave function. We use a controlled approximation for the two-particle density matrix that greatly extends the accuracy compared to current functionals of the one-particle density matrix only. Algebraic scaling of computational cost with electron number is achieved in general, and Hartree-Fock scaling in the seniority-zero version of the theory. We present results obtained with the latter version for saturated small molecular systems for which highly accurate quantum chemical computations are available for comparison. The results are variational, capturing most of the correlation energy from equilibrium to dissociation.

  14. Relativistic internally contracted multireference electron correlation methods

    CERN Document Server

    Shiozaki, Toru

    2015-01-01

    We report internally contracted relativistic multireference configuration interaction (ic-MRCI), complete active space second-order perturbation (CASPT2), and strongly contracted n-electron valence state perturbation theory (NEVPT2) on the basis of the four-component Dirac Hamiltonian, enabling accurate simulations of relativistic, quasi-degenerate electronic structure of molecules containing transition-metal and heavy elements. Our derivation and implementation of ic-MRCI and CASPT2 are based on an automatic code generator that translates second-quantized ans\\"atze to tensor-based equations, and to efficient computer code. NEVPT2 is derived and implemented manually. The rovibrational transition energies and absorption spectra of HI and TlH are presented to demonstrate the accuracy of these methods.

  15. Electron correlations and silicon nanocluster energetics

    OpenAIRE

    2016-01-01

    The first-principle prediction of nanocluster stable structure is often hampered by the existence of many isomer configurations with energies close to the ground state. This fact attaches additional importance to many-electron effects going beyond density functional theory (DFT), because their contributions may change a subtle energy order of competitive structures. To analyze this problem, we consider, as an example, the energetics of silicon nanoclusters passivated by hydrogen Si$_{10}$H$_{...

  16. Correlated electronic structure of CeN

    Energy Technology Data Exchange (ETDEWEB)

    Panda, S.K., E-mail: swarup.panda@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Di Marco, I. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Delin, A. [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); KTH Royal Institute of Technology, School of Information and Communication Technology, Department of Materials and Nano Physics, Electrum 229, SE-164 40 Kista (Sweden); KTH Royal Institute of Technology, Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm (Sweden); Eriksson, O., E-mail: olle.eriksson@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden)

    2016-04-15

    Highlights: • The electronic structure of CeN is studied within the GGA+DMFT approach using SPTF and Hubbard I approximation. • 4f spectral functions from SPTF and Hubbard I are coupled to explain the various spectroscopic manifestations of CeN. • The calculated XPS and BIS spectra show good agreement with the corresponding experimental spectra. • The contribution of the various l-states and the importance of cross-sections for the photoemission process are analyzed. - Abstract: We have studied in detail the electronic structure of CeN including spin orbit coupling (SOC) and electron–electron interaction, within the dynamical mean-field theory combined with density-functional theory in generalized gradient approximation (GGA+DMFT). The effective impurity problem has been solved through the spin-polarized T-matrix fluctuation-exchange (SPTF) solver and the Hubbard I approximation (HIA). The calculated l-projected atomic partial densities of states and the converged potential were used to obtain the X-ray-photoemission-spectra (XPS) and Bremstrahlung Isochromat spectra (BIS). Following the spirit of Gunnarsson–Schonhammer model, we have coupled the SPTF and HIA 4f spectral functions to explain the various spectroscopic manifestations of CeN. Our computed spectra in such a coupled scheme explain the experimental data remarkably well, establishing the validity of our theoretical model in analyzing the electronic structure of CeN. The contribution of the various l-states in the total spectra and the importance of cross sections are also analyzed in detail.

  17. Green's function formalism for highly correlated systems

    Directory of Open Access Journals (Sweden)

    F.Mancini

    2006-01-01

    Full Text Available We present the Composite Operator Method (COM as a modern approach to the study of strongly correlated electronic systems, based on the equation of motion and Green's function method. COM uses propagators of composite operators as building blocks at the basis of approximate calculations and algebra constrains to fix the representation of Green's functions in order to maintain the algebraic and symmetry properties.

  18. Inexpensive electronics and software for photon statistics and correlation spectroscopy

    Science.gov (United States)

    Gamari, Benjamin D.; Zhang, Dianwen; Buckman, Richard E.; Milas, Peker; Denker, John S.; Chen, Hui; Li, Hongmin; Goldner, Lori S.

    2016-01-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors. PMID:26924846

  19. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  20. Electron correlation and bond-length alternation in polyene chains

    Energy Technology Data Exchange (ETDEWEB)

    Kuprievich, V.A.

    1986-11-01

    The PPP model is used to consider polyene chains in the ground state with allowance for the interaction of the electrons with core deformations. The stationary wave functions describing the electron correlations are derived as antisymmetrized products of two-electron functions optimized with respect to all variational parameters. The bond-length alternation can be related to the characteristics of the electron-electron potential; one can allow approximately for the effects of interaction between electrons at adjacent centers on the alternation by renormalizing the parameters in the Hubbard model.

  1. Short-Range Correlation Models in Electronic Structure Theory

    Science.gov (United States)

    Goldey, Matthew Bryant

    Correlation methods within electronic structure theory focus on recovering the exact electron-electron interaction from the mean-field reference. For most chemical systems, including dynamic correlation, the correlation of the movement of electrons proves to be sufficient, yet exact methods for capturing dynamic correlation inherently scale polynomially with system size despite the locality of the electron cusp. This work explores a new family of methods for enhancing the locality of dynamic correlation methodologies with an aim toward improving accuracy and scalability. The introduction of range-separation into ab initio wavefunction methods produces short-range correlation methodologies, which can be supplemented with much faster approximate methods for long-range interactions. First, I examine attenuation of second-order Moller-Plesset perturbation theory (MP2) in the aug-cc-pVDZ basis. MP2 treats electron correlation at low computational cost, but suffers from basis set superposition error (BSSE) and fundamental inaccuracies in long-range contributions. The cost differential between complete basis set (CBS) and small basis MP2 restricts system sizes where BSSE can be removed. Range-separation of MP2 could yield more tractable and/or accurate forms for short- and long-range correlation. Retaining only short-range contributions proves to be effective for MP2 in the small aug-cc-pVDZ (aDZ) basis. Using one range-separation parameter within either the complementary error function (erfc) or a sum of two error functions (terfc), superior behavior is obtained versus both MP2/aDZ and MP2/CBS for inter- and intra-molecular test sets. Attenuation of the long-range helps to cancel both BSSE and intrinsic MP2 errors. Direct scaling of the MP2 correlation energy (SMP2) proves useful as well. The resulting SMP2/aDZ, MP2(erfc, aDZ), and MP2(terfc, aDZ) methods perform far better than MP2/aDZ across systems with hydrogen-bonding, dispersion, and mixed interactions at a

  2. Correlating substituent parameter values to electron transport properties of molecules

    Science.gov (United States)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  3. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  4. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    OpenAIRE

    Doory Kim; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Xiaowei Zhuang

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and ima...

  5. Many electron correlations in stage-1 graphene intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Sidharth, E-mail: AcharyaSidharth19@yahoo.in; Sharma, Raman, E-mail: sramanb70@mailcity.com [Department of Physics Himachal Pradesh University, Shimla, Shimla-171005 (India)

    2015-05-15

    Many electron correlations in stage-1 graphene intercalation compounds (GICs) are studied in generalized-random-phase-approximation. With this approximation, we are able to study short range exchange and correlation effects in GICs. These exchange correlations leads to BCS superconducting states in which one electron correlates with another via its correlation hole to form a stable pair of electrons known as Cooper pair. Cooper pair energies are calculated as the excitations in S(q,ω) following a method similar to exciton energy calculations. Short range effects governing local field correction G(q,ω) are studied for all wave vectors and frequencies. We have found a reasonable agreement between our results and the earlier theoretical results.

  6. Quantum liquids in correlated systems

    Science.gov (United States)

    Kusminskiy, Silvia Viola

    Particular aspects of two different relevant systems in contemporary Condensed Matter Physics are studied: heavy fermion materials and the newly discovered graphene (an atom thick layer of graphite), specifically its bilayer. On one hand, the physics of heavy fermion materials under strong external magnetic fields is analyzed from a mean field point of view. The evolution of the heavy fermion ground state under the application of a magnetic field is investigated. A richer version of the usual hybridization mean field theory is presented, which allows for hybridization in both the singlet and triplet channels and incorporates a self-consistent Weiss field. It is shown that for a magnetic field strength B⋆, at a filling-dependent fraction of the zero-field hybridization gap, the spin up quasiparticle band becomes fully polarized---an event marked by a sudden jump in the magnetic susceptibility. The system exhibits a kind of quantum rigidity in which the susceptibility (and several other physical observables) are insensitive to further increases in field strength. This behavior ends abruptly with the collapse of the hybridization order parameter in a first-order transition to the normal metallic state. It is argued that the feature at B⋆ corresponds to the "metamagnetic transition" in YbRh2Si2. These results are in good agreement with recent experimental measurements. For the case of the graphene bilayer, the effect of electron-electron interactions on the properties of a graphene bilayer is studied within the Hartree-Fock-Thomas-Fermi theory. It is found that the electronic compressibility is rather different from those of either the two-dimensional electron gas or ordinary semiconductors. An inherent competition between the contributions coming from intra-band exchange interactions and inter-band interactions leads to a non-monotonic behavior of the compressibility as a function of carrier density. Also analyzed is the effect of the interactions on the

  7. Correlative light and electron microscopy : strategies and applications

    NARCIS (Netherlands)

    Driel, Linda Francina van

    2011-01-01

    Correlative light and electron microscopy (CLEM) refers to the observation of the same structures or ultrastructures with both light microscopy (LM) and electron microscopy (EM). LM provides an overview of the studied material, and enables the quick localization of structures that are fluorescently

  8. Equivalent electron correlations in nonsequential double ionization of noble atoms

    Science.gov (United States)

    Dong, Shansi; Han, Qiujing; Zhang, Jingtao

    2017-02-01

    Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged. Project supported by the National Natural Science Foundation of China (Grant Nos. 61475168 and 11674231) and sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development (Zhang).

  9. Resonant x-ray scattering in correlated systems

    CERN Document Server

    Ishihara, Sumio

    2017-01-01

    The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.

  10. Resonant X-ray scattering in correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Youichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Inst. of Materials Structure Science; Ishihara, Sumio (ed.) [Tohoku Univ., Sendai, Miyagi (Japan). Dept. of Physics

    2017-03-01

    The research and its outcomes presented here is devoted to the use of X-ray scattering to study correlated electron systems and magnetism. Different X-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with X-ray diffraction is shown.

  11. Correlation between metabolic reduction rates and electron affinity of nitroheterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Olive, P.L.

    1979-11-01

    Nitroheterocyclic compounds can selectively sensitize hypoxic (tumor) cells to radiation damage in vitro. However, results in vivo have generally been less optimistic, inasmuch as metabolic reduction of these drugs not only limits effective lifetime but also produces metabolic intermediates with marked cytotoxic and carcinogenic activity. With three reducing systems in vitro, E. coli B/r, mouse L-929 cells, and mouse liver microsomes, the rate of nitroreduction of several nitroheterocycles was found to be proportional to their electron affinity. Since nitroreduction has previously been correlated with subsequent cytotoxicity, DNA damage, and mutagenicity, the present results suggest that improvements in the therapeutic efficacy of nitroheterocycles (i.e., sensitization without toxicity and carcinogenicity) will be dependent on development of drugs with more appropriate pharmacological properties.

  12. [Electronic poison information management system].

    Science.gov (United States)

    Kabata, Piotr; Waldman, Wojciech; Kaletha, Krystian; Sein Anand, Jacek

    2013-01-01

    We describe deployment of electronic toxicological information database in poison control center of Pomeranian Center of Toxicology. System was based on Google Apps technology, by Google Inc., using electronic, web-based forms and data tables. During first 6 months from system deployment, we used it to archive 1471 poisoning cases, prepare monthly poisoning reports and facilitate statistical analysis of data. Electronic database usage made Poison Center work much easier.

  13. Signals of strong electronic correlation in ion scattering processes

    Science.gov (United States)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  14. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  15. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  16. Probing electron correlation and nuclear dynamics in Momentum Space

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S, E-mail: michael.deleuze@uhasselt.b [Research Group of Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan, Gebouw D, B3590 Diepenbeek (Belgium)

    2010-02-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  17. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy....... In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding......-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets...

  18. Explicit inclusion of electronic correlation effects in molecular dynamics

    Science.gov (United States)

    Julien, Jean-Pierre; Kress, Joel D.; Zhu, Jian-Xin

    2017-07-01

    We design a quantum molecular dynamics method for strongly correlated electron metals. The strong electronic correlation effects are treated within a real-space version of the Gutzwiller variational approximation (GA), which is suitable for the inhomogeneity inherent in the process of quantum molecular dynamics (MD) simulations. We also propose an efficient algorithm based on the second-moment approximation to the electronic density of states for the search of the optimal variation parameters, from which the renormalized interatomic MD potentials are fully determined. By considering a minimal one-correlated-orbital Anderson model with parameterized spatial dependence of tight-binding hopping integrals, this fast GA-MD method is benchmarked with that using exact diagonalization to solve the GA variational parameters. The efficiency and accuracy are illustrated. We have demonstrated the effect of temperature coupled with electronic correlation on structural properties simulated with MD. This method will open up an unprecedented opportunity enabling large-scale quantum MD simulations of strongly correlated electronic materials.

  19. Thermodynamic responses of electronic systems

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2017-09-01

    We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.

  20. Dynamical Mean-Field Theory of Electronic Correlations in Models and Materials

    Science.gov (United States)

    Vollhardt, Dieter

    2010-11-01

    The concept of electronic correlations plays an important role in modern condensed matter physics. It refers to interaction effects which cannot be explained within a static mean-field picture as provided by Hartree-Fock theory. Electronic correlations can have a very strong influence on the properties of materials. For example, they may turn a metal into an insulator (Mott-Hubbard metal-insulator transition). In these lecture notes I (i) introduce basic notions of the physics of correlated electronic systems, (ii) discuss the construction of mean-field theories by taking the limit of high lattice dimensions, (iii) explain the simplifications of the many-body perturbation theory in this limit which provide the basis for the formulation of a comprehensive mean-field theory for correlated fermions, the dynamical mean-field theory (DMFT), (v) derive the DMFT self-consistency equations, and (vi) apply the DMFT to investigate electronic correlations in models and materials.

  1. Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.

    Science.gov (United States)

    Nesterov, Alexander I; Berman, Gennady P

    2015-04-01

    We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

  2. The Role of Protein Fluctuation Correlations in Electron Transfer in Photosynthetic Complexes

    CERN Document Server

    Nesterov, Alexander I

    2014-01-01

    We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtain analytic expressions for the electron transfer rates. We compare the correlated and uncorrelated regimes, and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

  3. Self-limited kinetics of electron doping in correlated oxides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun, E-mail: jikunchen@seas.harvard.edu; Zhou, You; Jiang, Jun; Shi, Jian; Ramanathan, Shriram [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Middey, Srimanta; Chakhalian, Jak [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Chen, Nuofu [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source, North China Electric Power University, Beijing 102206 (China); Chen, Lidong; Shi, Xun [CAS Key Laboratory of Materials for Energy Conversion, Shanghai institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Döbeli, Max [Laboratory of Ion Beam Physics, ETH Zurich, Zurich 8093 (Switzerland)

    2015-07-20

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni{sup 3+} are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  4. Self-limited kinetics of electron doping in correlated oxides

    Science.gov (United States)

    Chen, Jikun; Zhou, You; Middey, Srimanta; Jiang, Jun; Chen, Nuofu; Chen, Lidong; Shi, Xun; Döbeli, Max; Shi, Jian; Chakhalian, Jak; Ramanathan, Shriram

    2015-07-01

    Electron doping by hydrogenation can reversibly modify the electrical properties of complex oxides. We show that in order to realize large, fast, and reversible response to hydrogen, it is important to consider both the electron configuration on the transition metal 3d orbitals, as well as the thermodynamic stability in nickelates. Specifically, large doping-induced resistivity modulations ranging several orders of magnitude change are only observed for rare earth nickelates with small ionic radii on the A-site, in which case both electron correlation effects and the meta-stability of Ni3+ are important considerations. Charge doping via metastable incorporation of ionic dopants is of relevance to correlated oxide-based devices where advancing approaches to modify the ground state electronic properties is an important problem.

  5. Electron correlation within the relativistic no-pair approximation

    Science.gov (United States)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa.; Dyall, Kenneth G.; Saue, Trond

    2016-08-01

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying

  6. Modeling Complex System Correlation Using Detrended Cross-Correlation Coefficient

    Directory of Open Access Journals (Sweden)

    Keqiang Dong

    2014-01-01

    Full Text Available The understanding of complex systems has become an area of active research for physicists because such systems exhibit interesting dynamical properties such as scale invariance, volatility correlation, heavy tails, and fractality. We here focus on traffic dynamic as an example of a complex system. By applying the detrended cross-correlation coefficient method to traffic time series, we find that the traffic fluctuation time series may exhibit cross-correlation characteristic. Further, we show that two traffic speed time series derived from adjacent sections exhibit much stronger cross-correlations than the two speed series derived from adjacent lanes. Similarly, we also demonstrate that the cross-correlation property between the traffic volume variables from two adjacent sections is stronger than the cross-correlation property between the volume variables of adjacent lanes.

  7. Correlations of correlations: Secondary autocorrelations in finite harmonic systems.

    Science.gov (United States)

    Plyukhin, Dan; Plyukhin, Alex V

    2015-10-01

    The momentum or velocity autocorrelation function C(t) for a tagged oscillator in a finite harmonic system decays like that of an infinite system for short times, but exhibits erratic behavior at longer time scales. We introduce the autocorrelation function of the long-time noisy tail of C(t) ("a correlation of the correlation"), which characterizes the distribution of recurrence times. Remarkably, for harmonic systems with same-mass particles this secondary correlation may coincide with the primary correlation C(t) (when both functions are normalized) either exactly, or over a significant initial time interval. When the tagged particle is heavier than the rest, the equality does not hold, correlations show nonrandom long-time scale pattern, and higher-order correlations converge to the lowest normal mode.

  8. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  9. Vessel Electronic Reporting System (VERS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The VERS system is composed of a database and other related applications which facilitate the reporting of electronically collected research data via Fisheries...

  10. Electronical Health Record's Systems. Interoperability

    Directory of Open Access Journals (Sweden)

    Simona Angela Apostol

    2008-01-01

    Full Text Available #Understanding the importance that the electronic medical health records system has, with its various structural types and grades, has led to the elaboration of a series of standards and quality control methods, meant to control its functioning. In time, the electronic health records system has evolved along with the medical data’s change of structure. Romania has not yet managed to fully clarify this concept, various definitions still being encountered, such as “Patient’s electronic chart”, “Electronic health file”. A slow change from functional interoperability (OSI level 6 to semantic interoperability (level 7 is being aimed at the moment. This current article will try to present the main electronic files models, from a functional interoperability system’s possibility to be created perspective.

  11. METAL-INSULATOR TRANSITIONS AND STRONG ELECTRON CORRELATIONS

    NARCIS (Netherlands)

    MICHIELSEN, K

    1993-01-01

    An overview of lattice models for strongly correlated electrons is given. A detailed study is presented of a model recently introduced by Montorsi and Rasetti. Analytical, exact diagonalization and Quantum Monte Carlo techniques are employed to investigate the static and dynamic properties of this m

  12. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast.

  13. Ionization of pyridine: Interplay of orbital relaxation and electron correlation

    Science.gov (United States)

    Trofimov, A. B.; Holland, D. M. P.; Powis, I.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Gromov, E. V.; Badsyuk, I. L.; Schirmer, J.

    2017-06-01

    The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2A2(1 a2 -1), 2A1(7 a1 -1), 2B1(2 b1 -1), and 2B2(5 b2 -1), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)-1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum

  14. Correlative stochastic optical reconstruction microscopy and electron microscopy.

    Directory of Open Access Journals (Sweden)

    Doory Kim

    Full Text Available Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.

  15. Conical Fourier shell correlation applied to electron tomograms.

    Science.gov (United States)

    Diebolder, C A; Faas, F G A; Koster, A J; Koning, R I

    2015-05-01

    The resolution of electron tomograms is anisotropic due to geometrical constraints during data collection, such as the limited tilt range and single axis tilt series acquisition. Acquisition of dual axis tilt series can decrease these effects. However, in cryo-electron tomography, to limit the electron radiation damage that occurs during imaging, the total dose should not increase and must be fractionated over the two tilt series. Here we set out to determine whether it is beneficial fractionate electron dose for recording dual axis cryo electron tilt series or whether it is better to perform single axis acquisition. To assess the quality of tomographic reconstructions in different directions here we introduce conical Fourier shell correlation (cFSCe/o). Employing cFSCe/o, we compared the resolution isotropy of single-axis and dual-axis (cryo-)electron tomograms using even/odd split data sets. We show that the resolution of dual-axis simulated and cryo-electron tomograms in the plane orthogonal to the electron beam becomes more isotropic compared to single-axis tomograms and high resolution peaks along the tilt axis disappear. cFSCe/o also allowed us to compare different methods for the alignment of dual-axis tomograms. We show that different tomographic reconstruction programs produce different anisotropic resolution in dual axis tomograms. We anticipate that cFSCe/o can also be useful for comparisons of acquisition and reconstruction parameters, and different hardware implementations.

  16. The effect of electron-electron correlation on the attoclock experiment

    CERN Document Server

    Emmanouilidou, A; Hofmann, C; Keller, U; Landsman, A S

    2015-01-01

    We investigate multi-electron effects in strong-field ionization of Helium using a semi-classical model that, unlike other commonly used theoretical approaches, takes into account electron-electron correlation. Our approach has an additional advantage of allowing to selectively switch off different contributions from the parent ion (such as the remaining electron or the nuclear charge) and thereby investigate in detail how the final electron angle in the attoclock experiment is influenced by these contributions. We find that the bound electron exerts a significant effect on the final electron momenta distribution that can, however, be accounted for by an appropriately selected mean field. Our results show excellent agreement with other widely used theoretical models done within a single active electron approximation.

  17. DMFT at 25. Infinite dimensions. Lecutre notes of the Autumn school on correlated electrons 2014

    Energy Technology Data Exchange (ETDEWEB)

    Pavarini, Eva; Koch, Erik; Vollhardt, Dieter; Lichtenstein, Alexander (eds.)

    2014-07-01

    The following topics were dealt with: From Gutzwiller functions to dynamical mean-field theory, electronic structure of correlated materials, materials from an atonic viewpoint beyond the Landau paradigm, development of the LDA+DMFT approach, projectors and interactions, linear response functions, continuous-time QMC solvers for electronic systems in fermionic and bosonic baths, quantum cluster methods, making use of elf-energy functionals in the variational cluster approximation, dynamic vertex approximation, functional renormalization group approach to interacting Fermi systems, correlated electron dynamics and nonequilibrium dynamical mean-field theory, the one-step ARPES model, photoemission spectroscopy, correlation effects and electronic dimer formation in Ti{sub 2}O{sub 3}. (HSI)

  18. Exact e-e (exchange) correlations of 2-D quantum dots in magnetic field: Size extensive N = 3 , 4 , … , ‧ n ‧ -electron systems via multi-pole expansion

    Science.gov (United States)

    Aggarwal, Priyanka; Sharma, Shivalika; Singh, Sunny; Kaur, Harsimran; Hazra, Ram Kuntal

    2017-04-01

    Inclusion of coulomb interaction emerges with the complexity of either convergence of integrals or separation of variables of Schrödinger equations. For an N-electron system, interaction terms grow by N(N-1)/2 factors. Therefore, 2-e system stands as fundamental basic unit for generalized N-e systems. For the first time, we have evaluated e-e correlations in very simple and absolutely terminating finite summed hypergeometric series for 2-D double carrier parabolic quantum dot in both zero and arbitrary non-zero magnetic field (symmetric gauge) and have appraised these integrals in variational methods. The competitive role among confinement strength, magnetic field, mass of the carrier and dielectric constant of the medium on energy level diagram, level-spacing statistics, heat capacities (Cv at 1 K) and magnetization (T ∼ (0-1)K) is studied on systems spanning over wide range of materials (GaAs,Ge,CdS,SiO2 and He, etc). We have also constructed an exact theory for generalized correlated N-e 2-D quantum dots via multi-pole expansion but for the sake of compactness of the article we refrain from data.

  19. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  20. Fundamentals of electronic systems design

    CERN Document Server

    Lienig, Jens

    2017-01-01

    This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.

  1. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer

    2014-01-01

    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  2. Correlated electronic states of SrVO{sub 3} revealed by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T. [Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Kobayashi, M. [KEK, Photon Factory, Tsukuba 305-0801, Ibaraki (Japan); Yoshimatsu, K. [KEK, Photon Factory, Tsukuba 305-0801, Ibaraki (Japan); Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Kumigashira, H. [KEK, Photon Factory, Tsukuba 305-0801, Ibaraki (Japan); Fujimori, A. [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-04-15

    In this article, we review recent progress in angle-resolved photoemission (ARPES) studies of the Mott-Hubbard-type correlated electron systems SrVO{sub 3}. It has the d{sup 1} electron configuration and is an ideal model compound to study electron correlation effects in normal metal. ARPES studies of bulk single-crystal SrVO{sub 3} and CaVO{sub 3} have revealed the difference in the mass renormalization of electrons between them. In-situ ARPES studies of thin films fabricated by the pulsed laser deposition method have clarified not only quasi-particle dispersions, which show a kink like high-T{sub c} cuprates, but also finite dispersions in the incoherent part. Self-energy in a wide energy range has been deduced from the ARPES spectral weight using Kramers–Kronig transformation. The obtained self-energy has several structures which yield the incoherent feature and a pseudogap-like dip similar to the high-T{sub c} cuprates. Quantum-well states in ultrathin films of SrVO{sub 3} have revealed sub-bands with correlated electrons. These findings of electron correlation effects outlined in the present article would provide a starting point not only for fundamental condensed-matter physics but also for the development of new devices with correlated electrons.

  3. Investigation of real materials with strong electronic correlations by the LDA+DMFT method.

    Science.gov (United States)

    Anisimov, V I; Lukoyanov, A V

    2014-02-01

    Materials with strong electronic correlations are at the cutting edge of experimental and theoretical studies, capturing the attention of researchers for a great variety of interesting phenomena: metal-insulator, phase and magnetic spin transitions, `heavy fermion' systems, interplay between magnetic order and superconductivity, appearance and disappearance of local magnetic moments, and transport property anomalies. It is clear that the richness of physical phenomena for these compounds is a result of partially filled 3d, 4f or 5f electron shells with local magnetic moments preserved in the solid state. Strong interactions of d and f electrons with each other and with itinerant electronic states of the material are responsible for its anomalous properties. Electronic structure calculations for strongly correlated materials should explicitly take into account Coulombic interactions between d or f electrons. Recent advances in this field are related to the development of the LDA+DMFT method, which combines local density approximation (LDA) with dynamical mean-field theory (DMFT) to account for electronic correlation effects. In recent years, LDA+DMFT has allowed the successful treatment not only of simple systems but also of complicated real compounds. Nowadays, the LDA+DMFT method is the state-of-the-art tool for investigating correlated metals and insulators, spin and metal-insulator transitions (MIT) in transition-metal compounds in paramagnetic and magnetically ordered phases.

  4. A Correlation-Based Fingerprint Verification System

    NARCIS (Netherlands)

    Bazen, Asker M.; Verwaaijen, Gerben T.B.; Gerez, Sabih H.; Veelenturf, Leo P.J.; Zwaag, van der Berend Jan

    2000-01-01

    In this paper, a correlation-based fingerprint verification system is presented. Unlike the traditional minutiae-based systems, this system directly uses the richer gray-scale information of the fingerprints. The correlation-based fingerprint verification system first selects appropriate templates i

  5. Temperature dependent electronic correlation effects in GdN

    OpenAIRE

    Sharma, A; Nolting, W.

    2006-01-01

    We investigate temperature dependent electronic correlation effects in the conduction bands of Gadolinium Nitride (GdN) based on the combination of many body analysis of the multi-band Kondo lattice model and the first principles TB-LMTO bandstructure calculations. The physical properties like the quasi-particle density of states (Q-DOS), spectral density (SD) and quasi-particle bandstructure (Q-BS) are calculated and discussed. The results can be compared with spin and angle resolved inverse...

  6. Correlation induced second plasmon in an electron liquid

    CERN Document Server

    Kalman, Gabor J; Silvestri, Luciano G

    2016-01-01

    We predict the existence of a second, low but finite frequency plasmon in a strongly coupled electron liquid. This excitation is maintained by the out-of-phase oscillations of the spin-up and spin-down densities of the electron liquid, but governed solely by the Coulomb interaction between the particles. Its frequency square is proportional to the overlap ($r=0$) (absolute) value of the spin-up/spin-down correlation function, and thus slightly affected by the degree of polarization of the electron liquid. We estimate the spectral weight of the mode, based on the assumption that interspecies drag is the main mechanism for damping in the strongly coupled domain. The spectral weight is manifest in the partial spin-resolved dynamical structure functions. A scattering experiment with polarized neutrons or polarized X-rays is proposed as a means to observe equilibrium fluctuations associated with this mode.

  7. The Delicate Balance of Static and Dynamic Electron Correlation

    CERN Document Server

    Stein, Christopher J; Reiher, Markus

    2016-01-01

    Multi-configurational approaches yield universal wave function parameterizations that can qualitatively well describe electronic structures along reaction pathways. For quantitative results, multi-reference perturbation theory is required to capture dynamic electron correlation from the otherwise neglected virtual orbitals. Still, the overall accuracy suffers from the finite size and choice of the active orbital space and peculiarities of the perturbation theory. Fortunately, the electronic wave functions at equilibrium structures of reactants and products can often be well described by single-reference methods and hence are accessible to accurate coupled cluster calculations. Here, we calculate the heterolytic double dissociation energy of four 3d-metallocenes with the complete active space self-consistent field method and compare to highly accurate coupled cluster data. Our coupled cluster data are well within the experimental error bars. This accuracy can also be approached by complete active space calcula...

  8. Thermopower of few-electron quantum dots with Kondo correlations

    Science.gov (United States)

    Ye, Lvzhou

    2015-03-01

    The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions, particularly in the presence of Kondo correlations. We present a comprehensive picture which elucidates the underlying relations between the thermopower and the spectral density function of two-level quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and orbital degrees of freedom, are clearly unraveled. With these insights, we have exemplified an effective and viable way to control the sign of thermopower of Kondo-correlated quantum dots. This is realized by tuning the temperature and by selecting the appropriate level spacing and Coulomb repulsion strength. Such a physical picture is affirmed by accurate numerical data obtained with a hierarchical equations of motion approach. Our understandings and findings provide useful insights into controlling the direction of electric (heat) current through a quantum dot by applying a temperature (voltage) gradient across the two coupling leads. This may have important implications for novel thermoelectric applications of quantum dots. The support from the Natural Science Foundation of China (Grants No. 21033008, No. 21233007, No. 21303175, and No. 21322305) and the Strategic Priority Research Program (B) of the CAS (XDB01020000) is gratefully appreciated.

  9. Universal correlations of one-dimensional electrons at low density

    OpenAIRE

    Göhmann, F.

    2000-01-01

    We summarize results on the asymptotics of the two-particle Green functions of interacting electrons in one dimension. Below a critical value of the chemical potential the Fermi surface vanishes, and the system can no longer be described as a Luttinger liquid. Instead, the non-relativistic Fermi gas with infinite point-like repulsion becomes the universal model for the long-wavelength, low temperature physics of the one-dimensional electrons. This model, which we call the impenetrable electro...

  10. FTU bolometer electronic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Neri, Carlo; Florean, Marco; Ciccone, Giovanni [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: ► Design and realization of a new bolometer electronic system. ► Many improvements over the actual commercial system. ► Architecture based on digital electronic hardware with minimal analog front end. ► Auto off-set correction, real time visualization features and small system size. ► Test results for the electronic system. -- Abstract: The FTU (Frascati Tokamak Upgrade) requires a bolometer diagnostic in order to measure the total plasma radiation. The current diagnostic architecture is based on a full analog multichannel AC bolometer system, which uses a carrier frequency amplifier with a synchronous demodulation. Taking into account the technological upgrades in the field of electronics, it was decided to realize an upgrade for the bolometric electronic system by using a hybrid analog/digital implementation. The new system developed at the ENEA Frascati laboratories has many improvements, and mainly a massive system volume reduction, a good measurement linearity and a simplified use. The new hardware system consists of two subsystems: the Bolometer Digital Control and the Bolometer Analog System. The Bolometer Digital Control can control 16 bolometer bridges through the Bolometer Analog System. The Bolometer Digital Control, based on the FPGA architecture, is connected via Ethernet with a PC; therefore, it can receive commands settings from the PC and send the stream of bolometric measurements in real time to the PC. In order to solve the cross-talk between the bridges and the cables, each of the four bridges in the bolometer head receives a different synthesized excitation frequency. Since the system is fully controlled by a PC GUI (Graphic User Interface), it is very user friendly. Moreover, some useful features have been developed, such as: auto off-set correction, bridge amplitude regulation, software gain setting, real time visualization, frequency excitation selection and noise spectrum analyzer embedded function. In this paper, the

  11. Molecular Kohn-Sham exchange-correlation potential from the correlated ab initio electron density

    Science.gov (United States)

    Gritsenko, Oleg V.; van Leeuwen, Robert; Baerends, Evert Jan

    1995-09-01

    The molecular Kohn-Sham (KS) exchange-correlation potential vxc has been constructed for LiH from the correlated ab initio density ρ by means of the simple iterative procedure developed by van Leeuwen and Baerends [Phys. Rev. A 49, 2421 (1994)]. The corresponding KS energy characteristics, such as the kinetic energy of noninteracting particles Ts, kinetic part of the exchange-correlation energy Tc, and energy of the highest occupied molecular orbital ɛN, have been obtained with reasonable accuracy. A relation between the form of vxc and the electronic structure of LiH has been discussed. Test calculations for the two-electron H2 molecule have shown the efficiency of the procedure.

  12. Many-electron correlations in computations of sodium atom photoabsorption

    Directory of Open Access Journals (Sweden)

    Alexey V. Konovalov

    2016-03-01

    Full Text Available The role of many-electron correlations in photoabsorption processes has been investigated. The results of numerical computations of photoionization cross sections of sodium atom are presented. The many-body effects such as interchannel correlations resulting in autoionization resonance peaks, as well as effects of atomic core polarization were taken into account in the computations in terms of RPAE. Polarization corrections were accounted for using both static and dynamic polarization potentials. The influence of correlations on the position and the form of resonance peaks was studied. The obtained results demonstrate necessity of taking into account polarization effects, especially for clarification of autoionization resonance peaks position and the cross-section magnitudes in the low energy range. The best agreement with experimental data was reached with the model of dynamic polarization potential based on Dyson equation.

  13. Energetics of correlations in interacting systems.

    Science.gov (United States)

    Friis, Nicolai; Huber, Marcus; Perarnau-Llobet, Martí

    2016-04-01

    A fundamental connection between thermodynamics and information theory arises from the fact that correlations exhibit an inherent work value. For noninteracting systems this translates to a work cost for establishing correlations. Here we investigate the relationship between work and correlations in the presence of interactions that cannot be controlled or removed. For such naturally coupled systems, which are correlated even in thermal equilibrium, we determine general strategies that can reduce the work cost of correlations, and illustrate these for a selection of exemplary physical systems.

  14. Electron Correlation in the Final Continuum of Ionization Hydrogen by 150-eV Electron Impact

    Institute of Scientific and Technical Information of China (English)

    张程华; 臧树良; 王晓伟; 王京阳

    2004-01-01

    Electron correlation in triple differential cross sections for ionization of atomic hydrogen by electron impact is analysed for the case of coplanar asymmetric geometry within the framework of the two-potential formulae. Based on the approximations of projectile and faster-electron plane wave, the transition matrix element is analytically expressed to be a product of two factors: the correlation factor of two electrons in the final channel and the structure-scattering factor. The contribution of both the factors to the angular distribution of the triple differential cross section is calculated. The present results are compared with the experimental data and the other theoretical calculations for the incident energy of 150 eV.

  15. Analysis of two-orbital correlations in wave functions restricted to electron-pair states

    Science.gov (United States)

    Boguslawski, Katharina; Tecmer, Paweł; Legeza, Örs

    2016-10-01

    Wave functions constructed from electron-pair states can accurately model strong electron correlation effects and are promising approaches especially for larger many-body systems. In this article, we analyze the nature and the type of electron correlation effects that can be captured by wave functions restricted to electron-pair states. We focus on the pair-coupled-cluster doubles (pCCD) ansatz also called the antisymmetric product of the 1-reference orbital geminal (AP1roG) method, combined with an orbital optimization protocol presented in Boguslawski et al. [Phys. Rev. B 89, 201106(R) (2014)], 10.1103/PhysRevB.89.201106, whose performance is assessed against electronic structures obtained form density-matrix renormalization-group reference data. Our numerical analysis covers model systems for strong correlation: the one-dimensional Hubbard model with a periodic boundary condition as well as metallic and molecular hydrogen rings. Specifically, the accuracy of pCCD/AP1roG is benchmarked using the single-orbital entropy, the orbital-pair mutual information, as well as the eigenvalue spectrum of the one-orbital and two-orbital reduced density matrices. Our study indicates that contributions from singly occupied states become important in the strong correlation regime which highlights the limitations of the pCCD/AP1roG method. Furthermore, we examine the effect of orbital rotations within the pCCD/AP1roG model on correlations between orbital pairs.

  16. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  17. Electronic structure of NiO: Correlation and band effects

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z. (Stanford Electronics Laboratory, Stanford University, Stanford, California (USA)); List, R.S. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA)); Dessau, D.S.; Wells, B.O. (Stanford Electronics Laboratory, Stanford University, Stanford, California (USA)); Jepsen, O. (Max-Planck-Institute for Solid State Research, D-7000 Stuttgart 80 (Federal Republic of Germany)); Arko, A.J.; Barttlet, R. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA)); Shih, C.K. (Department of Physics, University of Texas, Austin, Texas (USA)); Parmigiani, F. (IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California (USA)); Huang, J.C.; Lindberg, P.A.P. (Stanford Electronics Laboratory, Stanford University, Stanford, California (USA))

    1991-08-15

    We have performed angle-resolved-photoemission experiments and local-density-functional (LDA) band calculations on NiO to study correlation and band effects of this conceptually important compound. Our experimental result suggests a dual nature of the electronic structure of NiO. On the one hand, the LDA band calculation has some relevance to the electronic structure of NiO, and the inclusion of the antiferromagnetic order is essential. For the lower O 2{ital p} bands, the LDA calculation agrees almost perfectly with experimental energy positions and dispersion relations. On the other hand, discrepancies between the experiment and the LDA calculation do exist, especially for the Ni 3{ital d} bands and the O 2{ital p} bands that are heavily mixed with the Ni 3{ital d} bands. It appears that the main discrepancies between the experimental results and the LDA calculation are concentrated in the regions of the insulating gap and the valence-band satellite. In addition to these results, we also report the interesting angle and photon-energy dependence of the satellite emission. The above results show that the angle-resolved-photoemission studies can provide much additional information about the electronic structure of correlated materials like NiO.

  18. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault......-tolerant adjustable speed drive systems; mission profile oriented reliability design in wind turbine and photovoltaic systems; reliability of power conversion systems in photovoltaic applications; power supplies for computers; and high-power converters. Reliability of Power Electronic Converter Systems is essential...... reading for researchers, professionals and students working with power electronics and their applications, particularly those specializing in the development and application of power electronic converters and systems....

  19. Structural Dynamics of Electronic Systems

    Science.gov (United States)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  20. Density-functional formula for strongly correlated systems

    Institute of Scientific and Technical Information of China (English)

    WANG Huaiyu; HAN Rushan; CHEN Nanxian

    2005-01-01

    Density functional method is applied for strongly correlated systems. Based on the assumption that the systems are composed of electrons in singly-occupied orbitals and those in doubly-occupied orbitals, a set of self-consistent equations are obtained by standard variation procedure. The equations consist of two parts. One part is to solve the wave functions of the electrons in singly-occupied orbitals and the other is to solve the wave functions of the electrons in doubly-occupied orbitals. The physical meanings of the terms appearing in the equations are discussed.

  1. Covariance and correlation estimation in electron-density maps.

    Science.gov (United States)

    Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna

    2012-03-01

    Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.

  2. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces.

    Science.gov (United States)

    Koning, Roman I; Celler, Katherine; Willemse, Joost; Bos, Erik; van Wezel, Gilles P; Koster, Abraham J

    2014-01-01

    Light microscopy and electron microscopy are complementary techniques that in a correlative approach enable identification and targeting of fluorescently labeled structures in situ for three-dimensional imaging at nanometer resolution. Correlative imaging allows electron microscopic images to be positioned in a broader temporal and spatial context. We employed cryo-correlative light and electron microscopy (cryo-CLEM), combining cryo-fluorescence light microscopy and cryo-electron tomography, on vitrified Streptomyces bacteria to study cell division. Streptomycetes are mycelial bacteria that grow as long hyphae and reproduce via sporulation. On solid media, Streptomyces subsequently form distinct aerial mycelia where cell division leads to the formation of unigenomic spores which separate and disperse to form new colonies. In liquid media, only vegetative hyphae are present divided by noncell separating crosswalls. Their multicellular life style makes them exciting model systems for the study of bacterial development and cell division. Complex intracellular structures have been visualized with transmission electron microscopy. Here, we describe the methods for cryo-CLEM that we applied for studying Streptomyces. These methods include cell growth, fluorescent labeling, cryo-fixation by vitrification, cryo-light microscopy using a Linkam cryo-stage, image overlay and relocation, cryo-electron tomography using a Titan Krios, and tomographic reconstruction. Additionally, methods for segmentation, volume rendering, and visualization of the correlative data are described.

  3. Reliability of Structural Systems with Correlated Elements

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1982-01-01

    Calculation of the probability of failure of a system with correlation members is usually a difficult and time-consuming numerical problem. However, for some types of systems with equally correlated elements this calculation can be performed in a simple way. This has suggested two new methods based...

  4. Strong electron correlations in biomimetic transition metal molecules

    Science.gov (United States)

    Labute, Montiago Xavier

    The first-row transition metals (Fe, Co, V,...) are key players in the active sites of proteins and enzymes responsible for diverse biological processes such as NO regulation and photosynthesis. Many small transition metal complexes possess chemical coordination environments in the vicinity of the metal atom that are reminiscent of these active sites. We have studied the electronic structure of these molecules and discussed the relevance for their biological analogues. The specific question on which we wish to focus is: Do strong correlations (resulting from the localized character of the TM 3d-orbitals) contribute significantly to the reaction energetics of these molecules and, if so, can these effects be observed by experiment? To accomplish these ends we focus on the cobalt valence tautomer molecules and the phenomenon of electron transfer in aqueous hexaammine cobalt ions. We utilize theoretical methods in order to study the cobalt valence tautomer molecules which undergo an interconversion with temperature that is reminiscent of the changes in structure and spin that the heme group experiences as the result of Fe-ligand interactions. We perform fully ab initio calculations using the GGA implementation of density functional theory with the computer code SIESTA. In addition, a simple Anderson Impurity Model has been employed that more properly accounts for the Coulomb interaction among the 3d electrons on the cobalt atom. The calculated Co K x-ray absorption near-edge spectra XANES agrees well with experimental data and a prediction for the Co L-edge XAS that could be tested in future experiments is also presented. We believe that there are structures in both spectra that may only be explained by a strong admixture of configurations. It is conjectured that strong electron correlations help explain the non-Arrhenius rate behavior observed in the high-spin to low-spin relaxation rate at low temperatures. Work on electron-transfer in CoNH32 +/3+6aq using these

  5. ELECTRONIC CORRELATION IN QUANTUM DOTS SYSTEMS

    OpenAIRE

    VICTOR MARCELO APEL

    2004-01-01

    Nesta tese investigamos os efeitos das interações elétron- elétron nas propriedades de transporte nanosistemas. Em particular, estudamos sistemas constituídos por dois pontos quânticos conectados a dois contatos, em diferentes topologias. O principal interesse é estudar os efeitos do regime Kondo e da fase eletrônica na condutância. Na configuração onde os dois pontos são inseridos em cada braço de um anel atravessado por um fluxo magnético, denota...

  6. Component Based Electronic Voting Systems

    Science.gov (United States)

    Lundin, David

    An electronic voting system may be said to be composed of a number of components, each of which has a number of properties. One of the most attractive effects of this way of thinking is that each component may have an attached in-depth threat analysis and verification strategy. Furthermore, the need to include the full system when making changes to a component is minimised and a model at this level can be turned into a lower-level implementation model where changes can cascade to as few parts of the implementation as possible.

  7. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s/sup 2/2pn/ell/ (n greater than or equal to 6) in O/sup 6 +/ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s/sup 2/2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s/sup 2/2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs.

  8. A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation

    CERN Document Server

    Parkhill, John A; Tempel, David G; Aspuru-Guzik, Alan

    2012-01-01

    In this work we develop a theory of correlated many-electron dynamics dressed by the presence of a finite-temperature harmonic bath. The theory is based on the ab-initio Hamiltonian, and thus well-defined apart from any phenomenological choice of collective basis states or electronic coupling model. The equation-of-motion includes some bath effects non-perturbatively, and can be used to simulate line- shapes beyond the Markovian approximation and open electronic dynamics which are subjects of renewed recent interest. Energy conversion and transport depend critically on the ratio of electron-electron coupling to bath-electron coupling, which is a fitted parameter if a phenomenological basis of many-electron states is used to develop an electronic equation of motion. Since the present work doesn't appeal to any such basis, it avoids this ambiguity. The new theory produces a level of detail beyond the adiabatic Born-Oppenheimer states, but with cost scaling like the Born-Oppenheimer approach. While developing th...

  9. Advanced uncooled infrared system electronics

    Science.gov (United States)

    Neal, Henry W.

    1998-07-01

    Over the past two decades, Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems & Electronics Group, developed a robust family of products based on a low- cost, hybrid ferroelectric (FE) uncooled focal-plane array (FPA) aimed at meeting the needs for thermal imaging products across both military and commercial markets. Over the years, RSC supplied uncooled infrared (IR) sensors for applications such as in combat vehicles, man-portable weaponry, personnel helmets, and installation security. Also, various commercial IR systems for use in automobiles, boats, law enforcement, hand-held applications, building/site security, and fire fighting have been developed. These products resulted in a high degree of success where cooled IR platforms are too bulky and costly, and other uncooled implementations are less reliable or lack significant cost advantage. Proof of this great success is found in the large price reductions, the unprecedented monthly production rates, and the wide diversity of products and customers realized in recent years. The ever- changing needs of these existing and potential customers continue to fuel the advancement of both the primary technologies and the production capabilities of uncooled IR systems at RSC. This paper will describe a development project intended to further advance the system electronics capabilities of future uncooled IR products.

  10. A Partitioned Correlation Function Interaction approach for describing electron correlation in atoms

    CERN Document Server

    Verdebout, S; Jönsson, P; Gaigalas, G; Fischer, C Froese; Godefroid, M

    2013-01-01

    Traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis (OB). For atoms with complicated shell structures, a large OB is needed to saturate all the electron correlation effects. The large OB leads to massive configuration state function (CSF) expansions that are difficult to handle. We show that it is possible to relax the orthonormality restriction on the OB and break down the originally large calculations to a set of smaller ones that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The mixing coefficients of the PCFs are fixed from a small generalized eigenvalue problem. The required matrices are computed using a biorthonormal transformation technique. The new method, called partitioned c...

  11. Self-consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs

    Science.gov (United States)

    Filatov, Michael; Liu, Fang; Kim, Kwang S.; Martínez, Todd J.

    2016-12-01

    The spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociation of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.

  12. Focused Research Group in Correlated Electron and Complex Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziqiang [Boston College, Chestnut Hill, MA (United States)

    2016-02-17

    While the remarkable physical properties of correlated and complex electronic materials hold great promise for technological applications, one of the key values of the research in this field is its profound impact on fundamental physics. The transition metal oxides, pnictides, and chalcogenides play a key role and occupy an especially important place in this field. The basic reason is that the outer shell of transition metals contains the atomic d-orbitals that have small spatial extent, but not too small to behave as localized orbtials. These d-electrons therefore have a small wave function overlap in a solid, e.g. in an octahedral environment, and form energy bands that are relatively narrow and on the scale of the short-range intra-atomic Coulomb repulsion (Hubbard U). In this intermediate correlation regime lies the challenge of the many-body physics responsible for new and unconventional physical properties. The study of correlated electron and complex materials represents both the challenge and the vitality of condensed matter and materials physics and often demands close collaborations among theoretical and experimental groups with complementary techniques. Our team has a track record and a long-term research goal of studying the unusual complexities and emergent behaviors in the charge, spin, and orbital sectors of the transition metal compounds in order to gain basic knowledge of the quantum electronic states of matter. During the funding period of this grant, the team continued their close collaborations between theory, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy and made significant progress and contributions to the field of iron-based superconductors, copper-oxide high-temperature superconductors, triangular lattice transition metal oxide cobaltates, strontium ruthenates, spin orbital coupled iridates, as well as topological insulators and other topological quantum states of matter. These results include both new

  13. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona (Spain))

    1993-07-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity.

  14. Electronic structure of spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Saha-Dasgupta, Tanusri

    2016-04-15

    Highlights: • We review the theoretical modeling of quantum spin systems. • We apply the Nth order muffin-tin orbital electronic structure method. • The method shows the importance of chemistry in the modeling. • CuTe{sub 2}O{sub 5} showed a 2-dimensional coupled spin dimer behavior. • Ti substituted Zn{sub 2}VO(PO{sub 4}){sub 2} showed spin gap behavior. - Abstract: Low-dimensional quantum spin systems, characterized by their unconventional magnetic properties, have attracted much attention. Synthesis of materials appropriate to various classes within these systems has made this field very attractive and a site of many activities. The experimental results like susceptibility data are fitted with the theoretical model to derive the underlying spin Hamiltonian. However, often such a fitting procedure which requires correct guess of the assumed spin Hamiltonian leads to ambiguity in deciding the representative model. In this review article, we will describe how electronic structure calculation within the framework of Nth order muffin-tin orbital (NMTO) based Wannier function technique can be utilized to identify the underlying spin model for a large number of such compounds. We will show examples from compounds belonging to vanadates and cuprates.

  15. Electronic properties of antiferromagnetic UBi2 metal by exact exchange for correlated electrons method

    Directory of Open Access Journals (Sweden)

    E Ghasemikhah

    2012-03-01

    Full Text Available This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT, employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients (EFGs at the uranium site in UBi2 compound were calculated and compared with the experiment. The EFGs were predicted experimentally at the U site to be very small in this compound. The EFG calculated by the EECE functional are in agreement with the experiment. The densities of states (DOSs show that 5f U orbital is hybrided with the other orbitals. The plotted Fermi surfaces show that there are two kinds of charges on Fermi surface of this compound.

  16. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  17. Correlated electron-hole plasma in organometal perovskites

    Science.gov (United States)

    Saba, Michele; Cadelano, Michele; Marongiu, Daniela; Chen, Feipeng; Sarritzu, Valerio; Sestu, Nicola; Figus, Cristiana; Aresti, Mauro; Piras, Roberto; Geddo Lehmann, Alessandra; Cannas, Carla; Musinu, Anna; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2014-09-01

    Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance.

  18. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  19. Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk

    This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light...... will be discussed in detail. The second chapter describes the design and synthesis of DHA/VHFs intended for use in molecular electronics and their solution and single-molecule junction switching properties. By the expansion of the recently reported procedure for functionalization of this system by Suzuki cross...... of back-reaction was increased with close to a factor of 2 which is only the statistical improvement of having two possible sites for back-reaction as supposed to just one. The fifth chapter describes, in short, my contributions to an additional seven papers published. Figure 1. Structure of proposed...

  20. Electronic Band Structure of BaCo_{2}As_{2}: A Fully Doped Ferropnictide Analog with Reduced Electronic Correlations

    Directory of Open Access Journals (Sweden)

    N. Xu

    2013-01-01

    Full Text Available We report an investigation with angle-resolved photoemission spectroscopy of the Fermi surface and electronic band structure of BaCo_{2}As_{2}. Although its quasinesting-free Fermi surface differs drastically from that of its Fe-pnictide cousins, we show that the BaCo_{2}As_{2} system can be used as an approximation to the bare unoccupied band structure of the related BaFe_{2-x}Co_{x}As_{2} and Ba_{1-x}K_{x}Fe_{2}As_{2} compounds. However, our experimental results, in agreement with dynamical-mean-field-theory calculations, indicate that electronic correlations are much less important in BaCo_{2}As_{2} than in the ferropnictides. Our findings suggest that this effect is due to the increased filling of the electronic 3d shell in the presence of significant Hund’s exchange coupling.

  1. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy.

    Science.gov (United States)

    Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R

    2014-07-15

    Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.

  2. Importance of conduction electron correlation in a Kondo lattice, Ce{sub 2}CoSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran, E-mail: kbmaiti@tifr.res.i [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce{sub 2}CoSi{sub 3}, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  3. Electron correlation effects beyond the random phase approximation

    Science.gov (United States)

    Fan, J. D.; Malozovsky, Y. M.

    2016-04-01

    The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a

  4. Effects of electron correlations on transport properties of iron at Earth's core conditions.

    Science.gov (United States)

    Zhang, Peng; Cohen, R E; Haule, K

    2015-01-29

    Earth's magnetic field has been thought to arise from thermal convection of molten iron alloy in the outer core, but recent density functional theory calculations have suggested that the conductivity of iron is too high to support thermal convection, resulting in the investigation of chemically driven convection. These calculations for resistivity were based on electron-phonon scattering. Here we apply self-consistent density functional theory plus dynamical mean-field theory (DFT + DMFT) to iron and find that at high temperatures electron-electron scattering is comparable to the electron-phonon scattering, bringing theory into agreement with experiments and solving the transport problem in Earth's core. The conventional thermal dynamo picture is safe. We find that electron-electron scattering of d electrons is important at high temperatures in transition metals, in contrast to textbook analyses since Mott, and that 4s electron contributions to transport are negligible, in contrast to numerous models used for over fifty years. The DFT+DMFT method should be applicable to other high-temperature systems where electron correlations are important.

  5. First principles electron-correlated calculations of optical absorption in magnesium clusters

    CERN Document Server

    Shinde, Ravindra

    2015-01-01

    In this paper we report the calculations of linear optical absorption spectra of various isomers of magnesium clusters Mg$_{n}$ (n=2--5) involving valence transitions, performed using the large-scale all-electron configuration interaction (CI) methodology. First, geometries of several low-lying isomers of each cluster were optimized at the coupled-cluster singles doubles (CCSD) level of theory. These geometries were subsequently employed to perform ground and excited state calculations on these systems using the multi-reference singles-doubles configuration-interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. Resultant CI wave functions were used to compute the optical absorption spectra within the electric-dipole approximation. Our results on magnesium dimer (Mg$_{2}$) isomer are in excellent agreement with the experiments as far as oscillator strengths, and excitation energies are concerned. Owing to a better description of electron-correlation effects, these ...

  6. Correlation Matrix Renormalization Theory: Improving Accuracy with Two-Electron Density-Matrix Sum Rules.

    Science.gov (United States)

    Liu, C; Liu, J; Yao, Y X; Wu, P; Wang, C Z; Ho, K M

    2016-10-11

    We recently proposed the correlation matrix renormalization (CMR) theory to treat the electronic correlation effects [Phys. Rev. B 2014, 89, 045131 and Sci. Rep. 2015, 5, 13478] in ground state total energy calculations of molecular systems using the Gutzwiller variational wave function (GWF). By adopting a number of approximations, the computational effort of the CMR can be reduced to a level similar to Hartree-Fock calculations. This paper reports our recent progress in minimizing the error originating from some of these approximations. We introduce a novel sum-rule correction to obtain a more accurate description of the intersite electron correlation effects in total energy calculations. Benchmark calculations are performed on a set of molecules to show the reasonable accuracy of the method.

  7. Thermodynamic prediction of glass formation tendency, cluster-in-jellium model for metallic glasses, ab initio tight-binding calculations, and new density functional theory development for systems with strong electron correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yongxin [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    also plays an important role, as it may directly track the movement of every atom. Simulation time is a major limit for molecular dynamics, not only because of “slow” computer speed, but also because of the accumulation error in the numerical treatment of the motion equations. There is also a great concern about the reliability of the emperical potentials if using classical molecular dynamics. Ab initio methods based on density functional theory(DFT) do not have this problem, however, it suffers from small simulation cells and is more demanding computationally. When crystal phase is involved, size effect of the simulation cell is more pronounced since long-range elastic energy would be established. Simulation methods which are more efficient in computation but yet have similar reliability as the ab initio methods, like tight-binding method, are highly desirable. While the complexity of metallic glasses comes from the atomistic level, there is also a large field which deals with the complexity from electronic level. The only “ab initio” method applicable to solid state systems is density functional theory with local density approximation( LDA) or generalized gradient approximation(GGA) for the exchange-correlation energy. It is very successful for simple sp element, where it reaches an high accuracy for determining the surface reconstruction. However, there is a large class of materials with strong electron correlation, where DFT based on LDA or GGA fails in a fundamental way. An “ab initio” method which can generally apply to correlated materials, as LDA for simple sp element, is still to be developed. The thesis is prepared to address some of the above problems.

  8. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.

  9. Black Box Real-Time Transient Absorption Spectroscopy and Electron Correlation

    Science.gov (United States)

    Parkhill, John

    2017-06-01

    We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP- chromophore derivative1. The method is an application of OSCF2, our dissipative exten- sion of time-dependent density-functional theory. We compare our simulated spectra directly with recent ultra-fast spectroscopic experiments. We identify features in the TA spectra to Pauli-blocking which may be missed without a first-principles model. An important ingredient in this method is the stationary-TDDFT correction scheme recently put forwards by Fischer, Govind, and Cramer which allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to reproduce the energies of bleaches and induced absorptions, as well as the decay of the transient spectrum, with only the molecular structure as input. We show that the treatment of electron correlation is the biggest hurdle for TA simulations, which motivates the second half of the talk a new method for realtime electron correlation. We continue to derive and propagate self-consistent electronic dynamics. Extending our derivation of OSCF2 to include electron correlation we obtain a non-linear correlated one-body equation of motion which corrects TDHF. Similar equations are known in quantum kinetic theory, but rare in electronic structure. We introduce approximations that stabilize the theory and reduce its computational cost. We compare the resulting dynamics with well-known exact and approximate theories showing improvements over TDHF. When propagated EE2 changes occupation numbers like exact theory, an important feature missing from TDHF or TDDFT. We introduce a rotating wave approximation to reduce the scaling of the model to O(N^4), and enable propagation on realistically large systems. The equation-of-motion does not rely on a pure-state model for the electronic state, and could be used to study the relationship between electron

  10. A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction

    Science.gov (United States)

    Chatterjee, Koushik; Pastorczak, Ewa; Jawulski, Konrad; Pernal, Katarzyna

    2016-06-01

    A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples of systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.

  11. Modeling of power electronic systems with EMTP

    Science.gov (United States)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  12. Local probe studies on lattice distortions and electronic correlations in manganites

    CERN Document Server

    lopes, Armandina; Correia, João Guilherme

    This thesis presents an experimental study on lattice distortions and electronic correlations in colossal magnetoresistive magnetic oxides. The Perturbed Angular Correlation local probe technique is used to study selected manganite systems in order to obtain relevant insight into microscopic phenomena responsible for their macroscopic pr operties. Complementary structural, magnetic and electric characterization was performed. The work is focused on the following aspects: \\\\Lattice distortions and polaron clusters in LaMnO$_{3+ \\Delta}$ system. A study of the electric field gradi ent and magnetic hyperfine field was performed in representative samples of the LaMnO$_{3+ \\Delta}$ system, and correlated with macroscopic information obtained in the same samples. Particular attention was given to the LaMnO$_{3.12}$ sample since this compound is a prototype of a ferromagnetic-insulat or manganite, presenting a rhombohedric- orthorhombic structural phase transition near room temperature. We found that random distribu...

  13. Studies of electron correlation in the photoionization process

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard Allen [Univ. of California, Berkeley, CA (United States)

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying configuration interaction. The types of CI involved in the photoionization process can be divided into three categories: initial state configuration interaction (ISCI), final ionic state configuration interaction (FISCI), and continuum state configuration interaction (CSCI). This thesis deals with experimental studies which reveal how the various types of CI may become manifested in photoionization. The experimental methods utilized in this work are photoelectron spectroscopy (PES), electron impact spectroscopy (EIS), and time-resolved fluorescence spectroscopy. The EIS was carried out following the discovery that the UV lamp on a Perkin-Elmer photoelectron spectrometer could be utilized as a source of low energy electrons. The time-resolved fluorescence work utilized both the tunability and the time structure of the radiation available at the Stanford Synchrotron Radiation Laboratory (SSRL). A commercial photoelectron spectrometer equipped with a conventional UV lamp (Hei, Nei) was employed for some of the PES studies, and a novel time-of-flight photoelectron spectrometer was developed for the PES work performed using synchrotron radiation. The PES of Ba, Sm, Eu, and Yb was studied using both Hei (22.22 eV) and Nei (16.85 eV) radiation. Satellite structure observed in these spectra using Nei (and for Yb, Hei also) radiation could be satisfactorily explained by ISCI alone. The Hei spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by a new mechanism, autoionization, which is a special form of CSCI. The detailed nature of this mechanism was explored in Ba using synchrotron radiation. It was found that the autoionizing level decays

  14. Electron-correlation-induced band renormalization and Mott transition in Ca1-xSrxVO3

    Institute of Scientific and Technical Information of China (English)

    Wang Guang-Tao; Zhang Min-Ping; Zheng Li-Hua

    2011-01-01

    We present the local density approximate+Gutzwiller results for the electronic structure of Ca1-xSryVO3. The substitution of Sr 2+ by Ca2+ reduces the bandwidth,as the V-O-V bond angle decreases from 180°for SrVO3 to about 160°for CaVO3. However,we find that the bandwidth decrease induced by the V-O-V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems,such as Ca1-xSr. V03,the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mottinsulator phase.

  15. Surface magnetism Correlation of structural, electronic and chemical properties with magnetic behavior

    CERN Document Server

    Getzlaff, Mathias

    2010-01-01

    This volume reviews on selected aspects related to surface magnetism, a field of extraordinary interest during the last decade. The special emphasis is set to the correlation of structural, electronic and magnetic properties in rare earth metal systems and ferromagnetic transition metals. This is made possible by the combination of electron emission techniques (spin polarized photoelectron spectroscopy, magnetic dichroism in photoemission and spin polarized metastable deexcitation spectroscopy) and local probes with high lateral resolution down to the atomic scale (spin polarized scanning tunneling microscopy / spectroscopy).

  16. Correlation functions and correlation widths in quantum-chaotic scattering for mesoscopic systems and nuclei.

    Science.gov (United States)

    Ramos, J G G S; Barbosa, A L R; Carlson, B V; Frederico, T; Hussein, M S

    2016-01-01

    We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed.

  17. Van Hove correlation functions in an interacting electron gas: Equation-of-motion approach

    Science.gov (United States)

    Schinner, Andreas; Bachlechner, Martina E.

    1992-10-01

    An extension of the classical van Hove correlation functions to a three-dimensional system of identical fermions is investigated, taking into account interaction effects. This is done within the framework of a Singwi-Tosi-Land-Sjölander-like static local-field approximation, combined with second-order effects of plasmon damping. As a main result the relaxation of the Fermi hole around an instantaneously removed electron is presented.

  18. Thermodynamic potential of electrons and phonons system of disordered alloy

    CERN Document Server

    Repetskij, S P

    2002-01-01

    The cluster decomposition for the delayed two-time Green functions and the disordered crystal dynamic potential is obtained with an account of the electron-phonon and electron-electron interactions. The system electron states are described within the frames of the multizone strong coupling model. The calculations are based on the diagram technique for the Green temperature functions. The coherent potential approximation is chosen as the zero mononode approximation in this cluster decomposition method. It is shown that the processes of the contributions of the elementary excitations scattering on the clusters decrease with the cluster nodes number growth in the cluster in correspondence with certain small parameters. The analytical evaluations of the electron-phonon interaction impact on the electron energy spectrum of the ordering alloy are made in the monozone model. The possibility of applying the obtained results for describing the strong electron correlations impact on the electron structure and propertie...

  19. Correlated spin networks in frustrated systems

    Science.gov (United States)

    Stone, Thomas E.; McKay, Susan R.

    2010-08-01

    We introduce a network model for frustrated spin systems based on highly correlated spin fluctuations, to quantify and visualize their ordering. This model shows that networks of strongly correlated but non-contiguous spins exist at low temperatures on a triangular Ising lattice with competing nearest-neighbor interactions. This finding is consistent with chaotic renormalization-group trajectories previously reported for frustrated hierarchical lattices.

  20. The density matrix functional approach to electron correlation: Dynamic and nondynamic correlation along the full dissociation coordinate

    Energy Technology Data Exchange (ETDEWEB)

    Mentel, Ł. M.; Meer, R. van; Gritsenko, O. V. [Section Theoretical Chemistry, VU University, Amsterdam (Netherlands); Pohang University of Science and Technology, Pohang (Korea, Republic of); Baerends, E. J. [Section Theoretical Chemistry, VU University, Amsterdam (Netherlands); Pohang University of Science and Technology, Pohang (Korea, Republic of); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-06-07

    For chemistry an accurate description of bond weakening and breaking is vital. The great advantage of density matrix functionals, as opposed to density functionals, is their ability to describe such processes since they naturally cover both nondynamical and dynamical correlation. This is obvious in the Löwdin-Shull functional, the exact natural orbital functional for two-electron systems. We present in this paper extensions of this functional for the breaking of a single electron pair bond in N-electron molecules, using LiH, BeH{sup +}, and Li{sub 2} molecules as prototypes. Attention is given to the proper formulation of the functional in terms of not just J and K integrals but also the two-electron L integrals (K integrals with a different distribution of the complex conjugation of the orbitals), which is crucial for the calculation of response functions. Accurate energy curves are obtained with extended Löwdin-Shull functionals along the complete dissociation coordinate using full CI calculations as benchmark.

  1. Holographic description of strongly correlated electrons in external magnetic fields

    CERN Document Server

    Gubankova, E; Cubrovic, M; Schalm, K; Schijven, P; Zaanen, J

    2013-01-01

    We study the Fermi level structure of (2+1)-dimensional strongly interacting electron systems in external magnetic field using the AdS/CFT correspondence. The gravity dual of a finite density fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordstrom black hole. In the probe limit the magnetic system can be reduced to the non-magnetic one, with Landau-quantized momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at the critical magnetic field triggers the non-Fermi liquid regime with unstable quasiparticles and a change in transport properties of the system. We associate it with a metal-"strange metal" phase transition. We compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators. As expecte...

  2. Cognitive systems in electronic warfare

    Science.gov (United States)

    Kulpa, Krzysztof; Szczepankiewicz, Michał; Żywek, Marcin; Malanowski, Mateusz; Misiurewicz, Jacek; Samczyński, Piotr

    2017-04-01

    Electronic warfare (EW) techniques were invented 70 years ago and are still being developed, all the time with a key role played by their operators. However, a human operator responds far too slowly for the on-going needs since to be adequate to current threats the EW system reaction should be within 1 ms or less. Too slow reaction defers an achievement of the objectives, and generally may lead to disclosure of the applied strategy and to waste of resources. Developing the adequate response to the threat is a multifaceted matter that requires considerable experience and knowledge on the one hand, and thorough observation of outcomes of the applied strategy on the other hand. Such action requires the use of not only intelligence but also more complex algorithms for automatic control than the classical ones, and it heavily builds on the experience. It is therefore a cognitive task in its nature, and a human operator acts naturally this way. Consequently, a proper training and experience gained are what really matters. As a result of tests and actions in EW the operator builds his own knowledge base, thus, gains a capability of responding to the known threats in a balanced way. New threats, however, are much more challenging since they should be handled as fast as possible but in a fresh and creative manner. To this end, adapting the algorithms of radar jamming protection for the new conditions of the battlefield is an example of such challenging tasks. At present, such adjustments are done in a long feedback loop when the operator, after recognizing the problem, notifies the equipment manufacturers, and then, their engineers work on required solutions accordingly. Thus, the reaction time is counted in years, not a single milliseconds or seconds. Speeding up the response time is therefore the key issue, and a solution to it would be feasible only when cognitive systems were used. A concept of such cognitive system is presented in this paper.

  3. Micro-Electronic Nose System

    Science.gov (United States)

    Zee, Frank C.

    2011-12-01

    The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one

  4. Tensor correlations in nuclei and exlusive electron scattering

    CERN Document Server

    Ryckebusch, J; Van Nespen, W; Debruyne, D

    2000-01-01

    The effect of tensor nucleon-nucleon correlations upon exclusive and semi-exclusive electronuclear reactions is studied. Differential cross sections for the semi-exclusive ^{16}O(e,e'p) and exclusive ^{16}O(e,e'pn) processes are computed by explicitly evaluating the dynamical electromagnetic coupling to a tensor correlated nucleon pair. In both reaction channels the tensor correlations contribute in a very substantial way. Tensor correlations are found to generate more electronuclear strength than central Jastrow correlations do.

  5. Propagating wave correlations in complex systems

    Science.gov (United States)

    Creagh, Stephen C.; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures.

  6. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy

    Science.gov (United States)

    Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.

    2017-01-01

    ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312

  7. 3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy.

    Science.gov (United States)

    Russell, Matthew R G; Lerner, Thomas R; Burden, Jemima J; Nkwe, David O; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L; Peddie, Christopher J; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G; Collinson, Lucy M

    2017-01-01

    The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. © 2017. Published by The Company of Biologists Ltd.

  8. Anomalous transport in low-dimensional systems with correlated disorder

    Energy Technology Data Exchange (ETDEWEB)

    Izrailev, F M [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla, Pue., 72570 (Mexico); Makarov, N M [Instituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, Puebla, Pue., 72050 (Mexico)

    2005-12-09

    We review recent results on the anomalous transport in one-dimensional and quasi-one-dimensional systems with bulk and surface disorder. Principal attention is paid to the role of long-range correlations in random potentials for the bulk scattering and in corrugated profiles for the surface scattering. It is shown that with the proper type of correlations one can construct such a disorder that results in a selective transport with given properties. Of particular interest is the possibility to arrange windows of a complete transparency (or reflection) with dependence on the wave number of incoming classical waves or electrons.

  9. Correlations in small systems with ALICE

    CERN Document Server

    Lakomov, Igor

    2016-01-01

    ALICE is dedicated to the study of the strongly interacting matter, the so-called Quark-Gluon Plasma (QGP), formed in heavy-ion collisions at the LHC. In addition, ALICE also actively participated in the pp and p–Pb collision programs. In particular, the measurements of the twoparticle azimuthal correlations in pp collisions at √ s = 7 TeV and in p–Pb collisions at √ sNN = 5.02 TeV have been performed by the ALICE Collaboration during Run I of the LHC. Similar long-range correlations in p–Pb and Pb–Pb collisions have been observed on the near and away side — also known as the double ridge. Further investigations showed the importance of the Multi-Parton Interactions (MPI) in high-multiplicity collisions in small systems. In this work the ALICE results on the correlations in small systems are presented including MPI measurements in pp collisions.

  10. Theory and simulation of strong correlations in quantum Coulomb systems

    CERN Document Server

    Bonitz, M; Filinov, A V; Golubnychiy, V O; Kremp, D; Gericke, D O; Murillo, M S; Filinov, V S; Fortov, V; Hoyer, W; Koch, S W

    2003-01-01

    Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.

  11. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  12. X2000 power system electronics development

    Science.gov (United States)

    Carr, Greg; Deligiannis, Frank; Franco, Lauro; Jones, Loren; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treichler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2005-01-01

    The X2000 Power System Electronics (PSE) is a Jet Propulsion Laboratory (JPL) task to develop a new generation of power system building blocks for potential use on future deep space missions. The effort includes the development of electronic components and modules that can be used as building blocks in the design of generic spacecraft power systems.

  13. Survey of Electronic Payment Methods and Systems

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerard J.M.; Helme, Arne

    1996-01-01

    In this paper an overview of electronic payment methods and systems is given. This survey is done as part of the Moby Dick project. Electronic payment systems can be grouped into three broad classes: traditional money transactions, digital currency and creditdebit payments. Such payment systems have

  14. Design of a correlation electron cyclotron emission diagnostic for Alcator C-Moda)

    Science.gov (United States)

    Sung, C.; White, A. E.; Irby, J. H.; Leccacorvi, R.; Vieira, R.; Oi, C. Y.; Peebles, W. A.; Nguyen, X.

    2012-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been installed in Alcator C-Mod. In order to measure electron temperature fluctuations, this diagnostic uses a spectral decorrelation technique. Constraints obtained with nonlinear gyrokinetic simulations guided the design of the optical system and receiver. The CECE diagnostic is designed to measure temperature fluctuations which have kθ ≤ 4.8 cm-1 (kθρs < 0.5) using a well-focused beam pattern. Because the CECE diagnostic is a dedicated turbulence diagnostic, the optical system is also flexible, which allows for various collimating lenses and antenna to be used. The system overview and the demonstration of its operability as designed are presented in this paper.

  15. Multipurpose Platform for Electronic Currency System

    Directory of Open Access Journals (Sweden)

    Andreea Magdalena Dae

    2014-12-01

    Full Text Available Nowadays, there are multiple solutions for exchanging electronic currencies which will most probably replace physical money. This paper presents a platform for electronic currency system implemented within a Java smart card for accessing different types of products or services. The user interacts with an “electronic currency bank” and with a merchant through a secure protocol.

  16. Cluster-in-molecule local correlation method for large systems

    Institute of Scientific and Technical Information of China (English)

    LI Wei; LI ShuHua

    2014-01-01

    A linear scaling local correlation method,cluster-in-molecule(CIM)method,was developed in the last decade for large systems.The basic idea of the CIM method is that the electron correlation energy of a large system,within the M ller-Plesset perturbation theory(MP)or coupled cluster(CC)theory,can be approximately obtained from solving the corresponding MP or CC equations of various clusters.Each of such clusters consists of a subset of localized molecular orbitals(LMOs)of the target system,and can be treated independently at various theory levels.In the present article,the main idea of the CIM method is reviewed,followed by brief descriptions of some recent developments,including its multilevel extension and different ways of constructing clusters.Then,some applications for large systems are illustrated.The CIM method is shown to be an efficient and reliable method for electron correlation calculations of large systems,including biomolecules and supramolecular complexes.

  17. Electronic spectra of radical cations and their correlation with photoelectron spectra—III. Perylenes and coronenes

    Science.gov (United States)

    Khan, Zahid H.

    Radical cations of perylene, 1,12-benzoperylene, coronene, 1,2-benzocoronene, and naphtho-(2',3':1,2)coronene are produced by photooxidation in boric acid matrix and their electronic absorption spectra are measured. The results are discussed in terms of Longuet-Higgins-Pople and Wasilewski type Open-Shell SCF-MO calculations and the u.v. photoelectron spectra of the parent molecules. The correspondence between optical and photoelectron spectra is found to be fairly good. A correlation diagram for the electronic transitions for some of the molecular ions is presented to demonstrate their movement from one system to another. Finally, an expression showing the relationship between the first ionization potentials of the parent molecules and A-type electronic band energies in the cation spectra is given from which the first IP's of the hydrocarbons may be estimated.

  18. Electronic Official Personnel Folder System

    Data.gov (United States)

    US Agency for International Development — The eOPF is a digital recreation of paper personnel folder that stores electronic personnel data spanning an individual's Federal career. eOPF allows employees to...

  19. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  20. Quantum Monte Carlo approaches for correlated systems

    CERN Document Server

    Becca, Federico

    2017-01-01

    Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...

  1. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...

  2. Electron localizability indicators ELI and ELIA: the case of highly correlated wavefunctions for the argon atom.

    Science.gov (United States)

    Bezugly, Viktor; Wielgus, Pawel; Wagner, Frank R; Kohout, Miroslav; Grin, Yuri

    2008-06-01

    Electron localizability indicators based on the same-spin electron pair density and the opposite-spin electron pair density are studied for correlated wavefunctions of the argon atom. Different basis sets and reference spaces are used for the multireference configuration interaction method following the complete active space calculations aiming at the understanding of the effect of local electron correlation when approaching the exact wavefunction. The populations of the three atomic shells of Ar atom in real space are calculated for each case.

  3. Quantum Monte Carlo study of the itinerant-localized model of strongly correlated electrons: Spin-spin correlation functions

    OpenAIRE

    Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii

    2016-01-01

    We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi long-range antiferromagnetic order in the lightly doped regime.

  4. Quantum Monte Carlo study of the itinerant-localized model of strongly correlated electrons: Spin-spin correlation functions

    Science.gov (United States)

    Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii

    2016-12-01

    We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi-long-range antiferromagnetic order in the lightly doped regime.

  5. Measurements of Long-range Electronic Correlations During Femtosecond Diffraction Experiments Performed on Nanocrystals of Buckminsterfullerene.

    Science.gov (United States)

    Ryan, Rebecca A; Williams, Sophie; Martin, Andrew V; Dilanian, Ruben A; Darmanin, Connie; Putkunz, Corey T; Wood, David; Streltsov, Victor A; Jones, Michael W M; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J; Boutet, Sebastien; Messerschmidt, Marc; Seibert, M Marvin; Curwood, Evan K; Balaur, Eugeniu; Peele, Andrew G; Nugent, Keith A; Quiney, Harry M; Abbey, Brian

    2017-08-22

    The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.

  6. Generation and focusing of electron beams with initial transverse-longitudinal correlation

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [Colorado State Univ., Fort Collins, CO (United States) Dept. of Electrical and Computer Engineering.; Lewellen, J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poole, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-07

    In charged particle beams, one of the roles played by space charge is to couple the transverse and longitudinal dynamics of the beam. This can lead to very complex phenomena which are generally studied using computer simulations. However, in some cases models based on phenomenological or analytic approximations can provide valuable insight into the system behavior. In this paper, we employ such approximations to investigate the conditions under which all the slices of a space charge dominated electron beam with slowly varying current could be focused to a waist with the same radius and at the same location, independent of slice current, and show that this can be accomplished approximately if the initial transverse-longitudinal correlation introduced onto the beam by the electron gun is chosen to compensate for the transverse-longitudinal correlation introduced onto the beam in the drift section. The validity of our approximations is assessed by use of progressively more realistic calculations. We also consider several design elements of electron guns that affect the initial correlations in the beams they generate.

  7. Correlation of angular and lateral distributions of electrons in extensive air showers

    Science.gov (United States)

    Giller, Maria; Śmiałkowski, Andrzej; Legumina, Remigiusz

    2016-08-01

    The aim of this paper is to explain the weak correlation of the angular and lateral deflections of electrons in extensive air showers in the primary energy range 1016-1019 eV, when compared with that in some models of electron propagation. We derive analytical formulae for the correlation coefficient in the multiple scattering model with energy losses and show a strong role of the ionisation in diminishing the correlation. By considering a Heitler-like model of an electromagnetic cascade we show also that the presence of photons, parent to electrons, causes a decrease of the correlation, roughly explaining quantitatively the small correlation in air showers.

  8. NATO Advanced Study Institute on Relativistic and Electron Correlation Effects in Molecules and Solids

    CERN Document Server

    1994-01-01

    The NATO Advanced Study Institute (ASI) on "R@lativistic and Electron Correlation Effects in Molecules and Solids", co-sponsored by Simon Fraser University (SFU) and the Natural Sciences and Engineering Research Council of Canada (NSERC) was held Aug 10- 21, 1992 at the University of British Columbia (UBC), Vancouver, Canada. A total of 90 lecturers and students with backgrounds in Chemistry, Physics, Mathematics and various interdisciplinary subjects attended the ASI. In my proposal submitted to NATO for financial support for this ASI, I pointed out that a NATO ASI on the effects of relativity in many-electron systems was held ten years ago, [See G.L. Malli, (ed) Relativistic Effects in Atoms, Molecules and Solids, Plenum Press, Vol B87, New York, 1983]. Moreover, at a NATO Advanced Research Workshop (ARW) on advanced methods for molecular electronic structure "an assessment of state-of­ the-art of Electron Correlation ... " was carried out [see C.E. Dykstra, (ed), Advanced Theories and Computational Approa...

  9. Velocity dispersion of correlated energy spread electron beams in the free electron laser

    Science.gov (United States)

    Campbell, L. T.; Maier, A. R.

    2017-03-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the free electron laser (FEL), and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a ‘small’ chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is nonlinear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma driven FELs and low energy linac driven FEL test facilities.

  10. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  11. High perveance electron gun for the electron cooling system

    CERN Document Server

    Korotaev, Yu V; Petrov, A; Sidorin, A; Smirnov, A; Syresin, E M; Titkova, I

    2000-01-01

    The cooling time in the electron cooling system is inversely proportional to the beam current. To obtain high current of the electron beam the control electrode of the gun is provided with a positive potential and an electrostatic trap for secondary electrons appears inside the electron gun. This leads to a decrease in the gun perveance. To avoid this problem, the adiabatic high perveance electron gun with the clearing control electrode is designed in JINR (J. Bosser, Y. Korotaev, I. Meshkov, E. Syresin et al., Nucl. Instr. and Meth. A 391 (1996) 103. Yu. Korotaev, I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, The generation of electron beams with perveance of 3-6 mu A/V sup 3 sup / sup 2 , Proceedings of SCHEF'99). The clearing control electrode has a transverse electric field, which clears secondary electrons. Computer simulations of the potential map were made with RELAX3D computer code (C.J. Kost, F.W. Jones, RELAX3D User's Guide and References Manual).

  12. Correlated double electron capture in slow, highly charged ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L/sub 1/L/sub 23/X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs.

  13. Anonymity control in electronic check systems

    Institute of Scientific and Technical Information of China (English)

    Ma Chunguang; Yang Yixian; Hu Zhengming

    2005-01-01

    Electronic check systems, as one of electronic payment systems, are more desirable than other electronic cash systems. In the system, only a single check is used to pay any price that is not more than the face value. The main problem in check systems is to design an efficient refund mechanism that makes refund checks undistinguished from initial checks during payment and deposit. The problem of anonymity control also called fairness is also an important issue in check systems. All check systems yet are unconditional anonymity that opens the door to misuse for crime such as laundering and blackmailing. In this paper, the notion of anonymity revocation is introduced to electronic check system for the first time, and a model of fair electronic check system is proposed. An efficient fair online electronic check system with reusable refund is presented. In the system, a passive trustee is employed to revoke the anonymity of un-honest users. Moreover, the system solves the reusability problem of refunds thanks to the RSA-based partially signature. The system is efficient and meets all basic security requirements.

  14. Nonlinear identification of power electronic systems

    OpenAIRE

    Chau, KT; Chan, CC

    1995-01-01

    This paper presents a new approach to modelling power electronic systems using nonlinear system identification. By employing the nonlinear autoregressive moving average with exogenous input (NARMAX) technique, the parametric model of power electronic systems can be derived from the time-domain data. This approach possesses some advantages over available circuit-oriented modelling approaches, such as no small-signal approximation, no circuit idealization and no detailed knowledge of system ope...

  15. The Detection of Defects in Optical Fibers Using a Hybrid Opto-electronic Correlator

    Institute of Scientific and Technical Information of China (English)

    LIU Yange; LIU Wei; ZHANG Yimo; ZHOU Ge

    2000-01-01

    A hybrid opto-electronic correlator for detecting defects in optical fibers is proposed. After the light from a He-Ne laser being expanded and filtered it is not collimated but directly passes a Fourier transform lens and illuminates a reference fiber and a test fiber at the same input plane. The Fourier transform spectrum of the two fibers is therefore obtained at the rear focal plane of the lens, where it is sampled via a CCD array connected with a computer through a frame grabber. The computer performs filter, inverse Fourier transform and setting threshold operation on classification. The system is an equivalent of joint transform correlator with a Fourier lens of long focal length. The experiment results for optical fibers having incoordinate defects are presented. The results indicate that the system can be used for fiber defect detection, and has the advantages of high identification, compact configuration, easy adjustment and flexible manipulation.

  16. Modeling electronic structure and spectroscopy in correlated materials and topological insulators

    Science.gov (United States)

    Wang, Yung Jui

    Current major topics in condensed matter physics mostly focus on the investigation of materials having exotic quantum phases. For instance, Z 2 topological insulators have novel quantum states, which are distinct from ordinary band insulators. Recent developments show that these nontrivial topological phases may provide a platform for creating new types of quasiparticles in real materials, such as Majorana fermions. In correlated systems, high-T c superconducting cuprates are complicated due to the richness of their phase diagram. Surprisingly, the discovery of iron pnictides demonstrates that high-Tc superconductivity related phenomena are not unique to copper oxide compounds. Many people believe that the better the understanding of the electronic structure of cuprates and iron pnictides, the higher chances to unveil the high temperature superconductivity mystery. Despite the fact that silicon is a fundamental element in modern semiconductor electronics technology, the chemical bonding properties of liquid silicon phase still remain a puzzle. A popular approach to investigate electronic structure of complex materials is combining the first principles calculation with an experimental light scattering probe. Particularly, Compton scattering probes the many body electronic ground state in the bulk of materials in terms of electron momentum density projected along a certain scattering direction, and inelastic x-ray scattering measures the dynamic structure factor S(q, o) which contains information about electronic density-density correlations. In this thesis, I study several selected materials based on first principles calculations of their electronic structures, the Compton profiles and the Lindhard susceptibility within the framework of density functional theory. Specifically, I will discuss the prediction of a new type of topological insulators in quaternary chalcogenide compounds of compositions I2-II-IV-VI 4 and in ternary famatinite compounds of compositions I3

  17. Electron-correlation effects on the static longitudinal polarizability of polymeric chains. II. Bond-length-alternation effects

    Science.gov (United States)

    Champagne, Benoît; Mosley, David H.; Vračko, Marjan; André, Jean-Marie

    1995-08-01

    Ab initio calculations of the static longitudinal polarizability of different molecular hydrogen model chains have been carried out at different levels of approximation to investigate the effects of including electron correlation as well as the variation of these effects as a function of the bond-length alternation of the systems. First, the coupled and uncoupled Hartree-Fock schemes have been employed. To assess the electron-correlation effects, the size-consistent Mo/ller-Plesset treatments limited to second (MP2), third (MP3), and fourth (MP4) order in electron-electron interactions, as well as the coupled-cluster techniques including all double substitutions (CCD), all single and double substitutions (CCSD), and all single and double substitutions with a perturbational estimate of the connected triple excitations [CCSD(T)] have been used. Within the MP4 treatment, a decomposition of the electron-correlation corrections according to the different classes of substitutions and different order highlights the relatively greater importance of the double substitutions at second and third orders. The main findings are that (i) the coupled Hartree-Fock (CHF) technique overestimates the asymptotic static longitudinal polarizability per unit cell for the three types of H2 chains under investigation; (ii) larger basis sets have to be employed when including electron correlation effects, otherwise, the correction is overestimated; (iii) these basis-set effects on the electron-correlation correction are enhanced in the case of the less alternating chains; (iv) using a sufficiently large atomic basis set, at the Mo/ller-Plesset or CCSD(T) levels, the more conjugated the chains, the less the relative magnitude of the electron-correlation correction to the CHF value, whereas using the CCD and CCSD techniques, these relative electron-correlation corrections slightly increase in the case of the less alternating molecular hydrogen chains; and (v) the more conjugated the systems

  18. Correlated electron state in CeCu2Si2 controlled through Si to P substitution

    Science.gov (United States)

    Lai, Y.; Saunders, S. M.; Graf, D.; Gallagher, A.; Chen, K.-W.; Kametani, F.; Besara, T.; Siegrist, T.; Shekhter, A.; Baumbach, R. E.

    2017-08-01

    CeCu2Si2 is an exemplary correlated electron metal that features two domes of unconventional superconductivity in its temperature-pressure phase diagram. The first dome surrounds an antiferromagnetic quantum critical point, whereas the more exotic second dome may span the termination point of a line of f -electron valence transitions. This behavior has received intense interest, but what has been missing are ways to access the high pressure behavior under milder conditions. Here we study Si → P chemical substitution, which compresses the unit cell volume but simultaneously weakens the hybridization between the f - and conduction electron states and encourages complex magnetism. At concentrations that show magnetism, applied pressure suppresses the magnetic ordering temperature and superconductivity is recovered for samples with low disorder. These results reveal that the electronic behavior in this system is controlled by a nontrivial combination of effects from unit cell volume and electronic shell filling. Guided by this topography, we discuss prospects for uncovering a valence fluctuation quantum phase transition in the broader family of Ce-based ThCr2Si2 -type materials through chemical substitution.

  19. Electron correlation effects on the d-d excitations in NiO

    NARCIS (Netherlands)

    de Graaf, C; Broer, R.; Nieuwpoort, WC

    1996-01-01

    The partly filled 3d shell in solid transition metal compounds is quite localized on the transition metal ion and gives rise to large electron correlation effects. With the recently developed CASSCF/CASPT2 approach electron correlation effects can be accounted for efficiently. The CASSCF step

  20. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  1. Spatial Correlation Characterization of a Full Dimension Massive MIMO System

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-02-07

    Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.

  2. Accurate exchange-correlation energies for the warm dense electron gas

    OpenAIRE

    Malone, FD; Blunt, NS; Brown, EW; Lee, DKK; Spencer, JS; Foulkes, WMC; Shepherd, JJ

    2016-01-01

    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average $N$-body density matrices for uniform electron gas systems of up to 10$^{124}$ matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the $k$-space configurati...

  3. Communication: Uncovering correlated vibrational cooling and electron transfer dynamics with multidimensional spectroscopy

    Science.gov (United States)

    Guo, Zhenkun; Giokas, Paul G.; Cheshire, Thomas P.; Williams, Olivia F.; Dirkes, David J.; You, Wei; Moran, Andrew M.

    2016-09-01

    Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET.

  4. Incoherent correlator system for satellite orientation control

    Science.gov (United States)

    Kouris, Aristodemos; Young, Rupert C. D.; Chatwin, Christopher R.; Birch, Philip M.

    2002-03-01

    An incoherent correlator configuration is proposed and experimentally demonstrated that is capable of recognizing star patterns. The device may thus be employed for the orientation and navigation of a satellite or spacecraft. The correlator employs starlight directly and requires no laser or input spatial light modulator for operation. The filter is constructed form an array of mirrors that may be individually appropriately tilted so as recognize a particular star arrangement. The only other components of the system are a converging lens and CCD array detector. The device is capable of determining the pointing direction and rotation of a satellite or space vehicle. Experimental results employing the mirror array device illuminated with a point source early to simulate starlight are presented.

  5. Equilibrium time correlation functions in open systems

    CERN Document Server

    Zhu, Jinglong; Agarwal, Animesh; Site, Luigi Delle

    2014-01-01

    We study equilibrium time correlation functions for liquid water at room temperature employing the Molecular Dynamics (MD) adaptive resolution method AdResS in its Grand Canonical formulation (GC-AdResS). This study introduces two technical innovations: the employment of a local thermostat that acts only in the reservoir and the consequent construction of an "ideal" Grand Canonical reservoir of particles and energy. As a consequence the artificial action of a thermostat in the calculation of equilibrium time correlation functions of standard NVT simulations is efficiently removed. The success of the technical innovation provides the basis for formulating a profound conceptual problem, that is the extension of Liouville theorem to open systems (Grand Canonical ensemble), a question, so far, treated neither in MD nor (in general) in statistical physics.

  6. An electronic voting system supporting vote weights

    OpenAIRE

    Eliasson, C.; Zúquete, A.

    2006-01-01

    Typically each voter contributes with one vote for an election. But there are some elections where voters can have different weights associated with their vote. In this paper we provide a solution for allowing an arbitrary number of weights and weight values to be used in an electronic voting system. We chose REVS, Robust Electronic Voting System, a voting system designed to support Internet voting processes, as the start point for studying the introduction of vote weights. To the best of our...

  7. Effect of electron correlations on the electronic structure and phase stability of FeSe upon lattice expansion

    Science.gov (United States)

    Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.

    2017-07-01

    We present results of a detailed theoretical study of the electronic, magnetic, and structural properties of the chalcogenide parent system FeSe using a fully charge-self-consistent implementation of the density functional theory plus dynamical mean-field theory (DFT+DMFT) method. In particular, we predict a remarkable change of the electronic structure of FeSe which is accompanied by a complete reconstruction of the Fermi surface topology (Lifshitz transition) upon a moderate expansion of the lattice volume. The phase transition results in a change of the in-plane magnetic nesting wave vector from (π ,π ) to (π ,0 ) and is associated with a transition from itinerant to orbital-selective localized magnetic moments. We attribute this behavior to a correlation-induced shift of the Van Hove singularity of the Fe t2 bands at the M point across the Fermi level. Our results reveal a strong orbital-selective renormalization of the effective mass m*/m of the Fe 3 d electrons upon expansion. The largest effect occurs in the Fe x y orbital, which gives rise to a non-Fermi-liquid-like behavior above the transition. The behavior of the momentum-resolved magnetic susceptibility χ (q ) demonstrates that magnetic correlations are also characterized by a pronounced orbital selectivity, suggesting a spin-fluctuation origin of the nematic phase of paramagnetic FeSe. We conjecture that the anomalous behavior of FeSe upon expansion is associated with the proximity of the Fe t2 Van Hove singularity to the Fermi level and the sensitive dependence of its position on external conditions.

  8. Microscopic theory on charge transports of a correlated multiorbital system

    Science.gov (United States)

    Arakawa, Naoya

    2016-07-01

    Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.

  9. Bridging Single- and Multireference Domains for Electron Correlation: Spin-Extended Coupled Electron Pair Approximation.

    Science.gov (United States)

    Tsuchimochi, Takashi; Ten-No, Seiichiro

    2017-04-11

    We propose a size-consistent generalization of the recently developed spin-extended configuration interaction with singles and doubles (ECISD), where a CI wave function is explicitly spin-projected. The size-consistent effect is effectively incorporated by treating quadruples within the formulation of coupled electron pair approximation. As in coupled-cluster theory, quadruple excitations are approximated by a disconnected product of double excitations. Despite its conceptual similarity to the standard single-reference and multireference analogues, such a generalization requires careful derivation, as the spin-projected CI space is nonorthogonal and overcomplete. Although our methods generally yield better results than ECISD, size-consistency is only approximately retained because the action of a symmetry-projection operator is size-inconsistent. In this work, we focus on simple models where exclusion-principle-violating terms, which eliminate undesired contributions to the correlation effects, are either completely neglected or averaged. These models possess an orbital-invariant energy functional that is to be minimized by diagonalizing an energy-shifted effective Hamiltonian within the singles and doubles manifold. This allows for a straightforward generalization of the ECISD analytical gradients needed to determine molecular properties and geometric optimization. Given the multireference nature of the spin-projected Hartree-Fock method, the proposed approaches are expected to handle static correlation, unlike single-reference analogues. We critically assess the performance of our methods using dissociation curves of molecules, singlet-triplet splitting gaps, hyperfine coupling constants, and the chromium dimer. The size-consistency and size-extensivity of the methods are also discussed.

  10. Corrosion Reliability of Electronic Systems

    DEFF Research Database (Denmark)

    Ambat, Rajan; Jensen, Stine G.; Møller, Per

    2008-01-01

    Inherently two factors namely multi-material usage and potential bias makes electronic devices susceptible to corrosion if exposed to humid conditions. The problem is compounded today due to miniaturization and contamination effects. The reduction in size of the components and close spacing...... on a Printed Circuit Board (PCB) for high density packing has greatly increased the risk of corrosion under humid conditions. An important issue is the failures due to electrolytic metal migration. This paper describes an investigation of the electrolytic migration of Sn-Pb solder lines on PCBs in humid...

  11. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  12. Electronic Correlations, Jahn-Teller Distortions and Mott Transition to Superconductivity in Alkali-C60 Compounds

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available The discovery in 1991 of high temperature superconductivity (SC in A3C60 compounds, where A is an alkali ion, has been rapidly ascribed to a BCS mechanism, in which the pairing is mediated by on ball optical phonon modes. While this has lead to consider that electronic correlations were not important in these compounds, further studies of various AnC60 with n=1, 2, 4 allowed to evidence that their electronic properties cannot be explained by a simple progressive band filling of the C60 six-fold degenerate t1u molecular level. This could only be ascribed to the simultaneous influence of electron correlations and Jahn-Teller Distortions (JTD of the C60 ball, which energetically favour evenly charged C60 molecules. This is underlined by the recent discovery of two expanded fulleride Cs3C60 isomeric phases which are Mott insulators at ambient pressure. Both phases undergo a pressure induced first order Mott transition to SC with a (p, T phase diagram displaying a dome shaped SC, a common situation encountered nowadays in correlated electron systems. NMR experiments allowed us to study the magnetic properties of the Mott phases and to evidence clear deviations from BCS expectations near the Mott transition. So, although SC involves an electron-phonon mechanism, the incidence of electron correlations has an importance on the electronic properties, as had been anticipated from DMFT calculations.

  13. Dihydroazulene Photochromism:Synthesis, Molecular Electronics and Hammett Correlations

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk

    This thesis describes the development of a versatile synthetic protocol for preparation of a large selection of dihydroazulenes (DHAs) with both electron withdrawing and donating groups. By UV-Vis and NMR spectroscopies and even in a single-molecule junction, their ability to undergo a light-indu...

  14. Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires.

    Science.gov (United States)

    Stiegler, J M; Tena-Zaera, R; Idigoras, O; Chuvilin, A; Hillenbrand, R

    2012-01-01

    High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared-electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure. While transmission electron microscopy provides structural information up to the atomic level, infrared near-field imaging yields nanoscale maps of chemical composition and conductivity. We demonstrate the method's potential by studying the relation between conductivity and crystal structure in ZnO nanowire cross-sections. The combination of infrared conductivity maps and the local crystal structure reveals a radial free-carrier gradient, which inversely correlates to the density of extended crystalline defects. Our method opens new avenues for studying the local interplay between structure, conductivity and chemical composition in widely different material systems.

  15. Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires

    Science.gov (United States)

    Stiegler, J. M.; Tena-Zaera, R.; Idigoras, O.; Chuvilin, A.; Hillenbrand, R.

    2012-10-01

    High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared-electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure. While transmission electron microscopy provides structural information up to the atomic level, infrared near-field imaging yields nanoscale maps of chemical composition and conductivity. We demonstrate the method's potential by studying the relation between conductivity and crystal structure in ZnO nanowire cross-sections. The combination of infrared conductivity maps and the local crystal structure reveals a radial free-carrier gradient, which inversely correlates to the density of extended crystalline defects. Our method opens new avenues for studying the local interplay between structure, conductivity and chemical composition in widely different material systems.

  16. Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps.

    Science.gov (United States)

    Wrede, Christoph; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2008-05-01

    In several fields of cell biology, correlative microscopy is applied to compare the structure of objects at high resolution under the electron microscope with low resolution light microscopy images of the same sample. It is, however, difficult to prepare samples and marker systems that are applicable for both microscopic techniques for the same specimen at the same time. In our studies, we used microbial mats from Cold Seep communities for a simple and rapid correlative microscopy method. The mats consist of bacterial and archaeal microorganisms, coupling reverse methanogenesis to the reduction of sulfate. The reverse methanogenic pathway also generates carbonates that precipitate inside the mat and may be the main reason for the formation of a microbial reef. The mat shows highly differentiated aggregates of various organisms, tightly interconnected by extracellular polysaccharides. In order to investigate the role of EPS as adhesive mucilage for the biofilm and as a precipitation matrix for carbonate minerals, samples were embedded in a hydrophilic resin (Lowicryl K4 M). Sections were suitable for light as well as electron microscopy in combination with lectins, either labeled with a fluorescent marker or with colloidal gold. This allows lectin mapping at low resolution for light microscopy in direct comparison with a highly resolved electron microscopic image.

  17. Velocity Dispersion of Correlated Energy Spread Electron Beams in the Free Electron Laser

    CERN Document Server

    Campbell, L T

    2016-01-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the FEL, and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a `small' chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is non-linear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma d...

  18. Electron-phonon interaction dressed by electronic correlations near charge ordering. Possible implications for cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Foussats, A [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Avenida Pellegrini 250-2000 Rosario (Argentina); Greco, A [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Avenida Pellegrini 250-2000 Rosario (Argentina); Bejas, M [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Avenida Pellegrini 250-2000 Rosario (Argentina); Muramatsu, A [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2006-12-20

    We consider possible routes to superconductivity on the basis of the t-J-V model plus phonons on the triangular lattice. We studied the stability conditions for the homogeneous Fermi liquid (HFL) phase against different broken symmetry phases. Besides the {radical}3 x{radical}3 CDW phase, triggered by the nearest-neighbour Coulomb interaction V, we have found that the HFL is unstable, at very low doping, against a bond-ordered phase due to J. We also discuss the occurrence of phase separation at low doping and V. The interplay between the electron-phonon interaction and correlations near the {radical}3 x{radical}3 CDW leads to superconductivity in the unconventional next-nearest-neighbour f-wave (NNN-f) channel with a dome shape for T{sub c} around x{approx}0.35, and with values of a few kelvin. Near the bond-ordered phase at low doping we found tendencies to superconductivity with d-wave symmetry for finite J and x<0.15. Possible implications for cobaltates are discussed.

  19. Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts

    DEFF Research Database (Denmark)

    Roque, Francisco S.; Jensen, Peter B.; Schmock, Henriette

    2011-01-01

    Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting...... phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International...... Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks....

  20. Electronic Dental Records System Adoption.

    Science.gov (United States)

    Abramovicz-Finkelsztain, Renata; Barsottini, Claudia G N; Marin, Heimar Fatima

    2015-01-01

    The use of Electronic Dental Records (EDRs) and management software has become more frequent, following the increase in prevelance of new technologies and computers in dental offices. The purpose of this study is to identify and evaluate the use of EDRs by the dental community in the São Paulo city area. A quantitative case study was performed using a survey on the phone. A total of 54 offices were contacted and only one declinedparticipation in this study. Only one office did not have a computer. EDRs were used in 28 offices and only four were paperless. The lack of studies in this area suggests the need for more usability and implementation studies on EDRs so that we can improve EDR adoption by the dental community.

  1. Compositional phase stability of strongly correlated electron materials within DFT+U

    Science.gov (United States)

    Isaacs, Eric B.; Marianetti, Chris A.

    2017-01-01

    Predicting the compositional phase stability of strongly correlated electron materials is an outstanding challenge in condensed matter physics. In this work, we employ the density functional theory plus U (DFT +U ) formalism to address the effects of local correlations due to transition metal d electrons on compositional phase stability in the prototype phase stable and separating materials LixCoO2 and olivine LixFePO4 , respectively. We introduce a spectral decomposition of the DFT +U total energy, revealing the distinct roles of the filling and ordering of the d orbital correlated subspace. The on-site interaction U drives both of these very different materials systems towards phase separation, stemming from enhanced ordering of the d orbital occupancies in the x =0 and x =1 species, whereas changes in the overall filling of the d shell contribute negligibly. We show that DFT +U formation energies are qualitatively consistent with experiments for phase stable LixCoO2 , phase separating LixFePO4 , and phase stable LixCoPO4 . However, we find that charge ordering plays a critical role in the energetics at intermediate x , strongly dampening the tendency for the Hubbard U to drive phase separation. Most relevantly, the phase stability of Li1 /2CoO2 within DFT +U is qualitatively incorrect without allowing charge ordering, which is problematic given that neither charge ordering nor the band gap that it induces are observed in experiment. We demonstrate that charge ordering arises from the correlated subspace interaction energy as opposed to the double counting. Additionally, we predict the Li order-disorder transition temperature for Li1 /2CoO2 , demonstrating that the unphysical charge ordering within DFT +U renders the method problematic, often producing unrealistically large results. Our findings motivate the need for other advanced techniques, such as DFT plus dynamical mean-field theory, for total energies in strongly correlated materials.

  2. Simple estimation of electron correlation energy for multi-atomic strong ionic compounds KX and (KX)2 (X = OH, NC)

    Institute of Scientific and Technical Information of China (English)

    禚淑苹; 韦吉崇; 陈德展; 居冠之

    2002-01-01

    On the basis of the calculations and analyses of the intrapair and interpair correlation energy of KX (X = OH, NC) molecules and the results of the transferability of both the innermost intrapair correlation energy and the inner core effect of K and X in KX molecules, we defined and calculated the Kδ+ and Xδ-correlation contributions to the total correlation energy of KX molecules. With the comparison of the pair correlation energy of K+, X-and KX systems, we present a simple estimation method to estimate the electron correlation energy of strong ionic compound by summarizing the correlation energy of its constituent ion and ionic group. By using this simple method, the reasonable estimation results of the correlation energy of (KOH)2 and (KNC)2 have been obtained at mp2/6-311++G(d) level with Gaussian98 program, and the deviations are very small. Applying the scheme of "Separate Large System into Smaller Ones" to the calculation of electron correlation energy of large ionic compounds, it can not only save lot of computation work but also reach the chemical accuracy.

  3. Recent progress of probing correlated electron states by point contact spectroscopy

    Science.gov (United States)

    Lee, Wei-Cheng; Greene, Laura H.

    2016-09-01

    across the junction leads to the conclusion that the point contact conductance is proportional to the effective density of states, a physical quantity that can be computed if the electron self energy is known. The experimental data on iron based superconductors and heavy fermion compounds will be analyzed in this framework. These recent developments have extended the applicability of point contact spectroscopy to correlated materials, which will help us achieve a deeper understanding of the single electron dynamics in strongly correlated systems.

  4. Electron correlation effects in the presence of non-symmetry dictated nodes

    Indian Academy of Sciences (India)

    P Singha Deo

    2002-02-01

    We numerically study the effect of non-symmetry dictated nodes (NSDN) on electron correlation effects for spinless electrons. We find that repulsive interaction between electrons can enhance the overlap between nearest neighbors in the tight binding Hamiltonian, in the presence of NSDN. Normally, in the absence of NSDN, attractive interaction between electrons give such an effect and repulsive interaction gives the opposite effect.

  5. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  6. Sturmian bases for two-electron systems in hyperspherical coordinates

    CERN Document Server

    Abdouraman, A; Hamido, A; Mota-Furtado, F; O'Mahony, P F; Mitnik, D; Gasaneo, G; Piraux, B

    2016-01-01

    We give a detailed account of an $\\it{ab}$ $\\it{initio}$ spectral approach for the calculation of energy spectra of two active electron atoms in a system of hyperspherical coordinates. In this system of coordinates, the Hamiltonian has the same structure as the one of atomic hydrogen with the Coulomb potential expressed in terms of a hyperradius and the nuclear charge replaced by an angle dependent effective charge. The simplest spectral approach consists in expanding the hyperangular wave function in a basis of hyperspherical harmonics. This expansion however, is known to be very slowly converging. Instead, we introduce new hyperangular sturmian functions. These functions do not have an analytical expression but they treat the first term of the multipole expansion of the electron-electron interaction potential, namely the radial electron correlation, exactly. The properties of these new functions are discussed in detail. For the basis functions of the hyperradius, several choices are possible. In the present...

  7. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high...... on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical components IGBTs. Different aspects of improving the reliability of the power converter are mapped. Finally, the challenges and opportunities to achieve more reliable power electronic systems are addressed....

  8. A United Effort for Crystal Growth, Neutron Scattering, and X-ray Scattering Studies of Novel Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-12

    The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.

  9. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  10. Data base systems in electronic design engineering

    Science.gov (United States)

    Williams, D.

    1980-01-01

    The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.

  11. An Internet Based Anonymous Electronic Cash System

    Directory of Open Access Journals (Sweden)

    Israt Jahan

    2015-04-01

    Full Text Available There is an increase activity in research to improve the current electronic payment system which is parallel with the progress of internet. Electronic cash system is a cryptographic payment system which offers anonymity during withdrawal and purchase. Electronic cash displays serial numbers which can be recorded to allow further tracing. Contrary to their physical counterparts, e-cash have an inherent limitation; they are easy to copy and reuse (double-spending. An observer is a tamper-resistant device, issued by the Internet bank, which is incorporated with the Internet user’s computer that prevents double-spending physically, i.e., the user has no access to her e-cash and therefore he cannot copy them. In this paper, we shall present an anonymous electronic cash scheme on the internet which incorporates tamper-resistant device with user-module.

  12. Evidence for weak electronic correlations in Fe-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.L.

    2010-04-29

    Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe L edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters U {approx}< 2eV and J {approx} 0.8eV.

  13. Evidence for weak electronic correlations in Fe-Pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. L.; Sorini, A. P.; Chen, C-C.; Moritz, B.; Lee, W.-S.; Vernay, F.; Olalde-Velasco, P.; Denlinger, J. D.; Delley, B.; Chu, J.-H.; Analytis, J.G.; Fisher, I. R.; Ren, Z. A.; Yang, J.; Lu, W.; Zhao, Z. X.; van den Brink, J.; Hussain, Z.; Shen, Z.-X.; Devereaux, T. P.

    2009-06-11

    Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe L edges is investigated in Fe pnictide materials, and contrasted tothat measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters U<~;; 2eV and J ~;; 0.8eV.

  14. Correlation analysis for preseismic total electron content anomalies around the 2011 Tohoku-Oki earthquake

    Science.gov (United States)

    Iwata, Takuya; Umeno, Ken

    2016-09-01

    We can observe the changes of Total Electron Content, TEC, in ionosphere by analyzing the data from Global Navigation Satellite Systems (GNSS) satellites. Up to now, preseismic TEC anomalies have been reported in several papers. However, they are not so clear as coseismic TEC anomalies, and their analysis methods have some problems for practical earthquake prediction. One factor making it difficult to detect TEC anomalies is large noises in TEC data. Nonnegligible TEC disturbances are caused by many natural mechanisms. To overcome this difficulty, we propose correlation analyses between one GNSS station and GNSS stations surrounding it. First, we model TEC time series over a few hours using polynomial functions of time. Second, we calculate prediction errors as the departure of the TEC time series from the models over time scale of a few minutes and define it as the TEC anomaly. Third, we calculate the correlation between anomaly of one GNSS station and those at the surrounding stations. Although such a correlation method has long been used for radio communications, in particular for spread spectrum communications and very long baseline interferometry to increase signal-to-noise ratio, it has not been widely applied for TEC analysis. As a result of our method, we demonstrate that the correlation analysis can detect preseismic anomalies about 1 h before the 2011 Tohoku-Oki earthquake on 11 March (Mw 9.0), 20 min before the foreshock on 9 March and 40 min before the aftershock on 7 April (Mw 7.3).

  15. Strong correlations and topological order in one-dimensional systems

    Science.gov (United States)

    De Gottardi, Wade Wells

    This thesis presents theoretical studies of strongly correlated systems as well as topologically ordered systems in 1D. Non-Fermi liquid behavior characteristic of interacting 1D electron systems is investigated with an emphasis on experimentally relevant setups and observables. The existence of end Majorana fermions in a 1D p-wave superconductor subject to periodic, incommensurate and disordered potentials is studied. The Tomonaga-Luttinger liquid (TLL), a model of interacting electrons in one spatial dimension, is considered in the context of two systems of experimental interest. First, a study of the electronic properties of single-walled armchair carbon nanotubes in the presence of transverse electric and magnetic fields is presented. As a result of their effect on the band structure and electron wave functions, fields alter the nature of the (effective) Coulomb interaction in tubes. In particular, it is found that fields couple to nanotube bands (or valleys), a quantum degree of freedom inherited from the underlying graphene lattice. As revealed by a detailed TLL calculation, it is predicted that fields induce electrons to disperse into their spin, band, and charge components. Fields also provide a means of tuning the shell-filling behavior associated with short tubes. The phenomenon of charge fractionalization is investigated in a one-dimensional ring. TLL theory predicts that momentum-resolved electrons injected into the ring will fractionalize into clockwise- and counterclockwise-moving quasiparticles. As a complement to transport measurements in quantum wires connected to leads, non-invasive measures involving the magnetic field profiles around the ring are proposed. Topological aspects of 1D p-wave superconductors are explored. The intimate connection between non-trivial topology (fermions) and spontaneous symmetry breaking (spins) in one-dimension is investigated. Building on this connection, a spin ladder system endowed with vortex degrees of freedom is

  16. Security in Electronic Payment Systems

    Directory of Open Access Journals (Sweden)

    Roxana Turcu

    2014-12-01

    Full Text Available The payment security becomes fundamental in our days. Based on this statement I have decided to deepen this subject and to study the online payment systems and the connection between them. I have observed that this area becomes the hackers’ attraction and I have realized how important the security of the ecommerce is. Also I have done a research of the possible attacks and I have searched for the countermeasures of this attacks. The result of my research is my payment gateway solution presented in the following lines.

  17. Quantum Monte Carlo Assessment of the Relevance of Electronic Correlations in Defects and EOS in Metals

    Energy Technology Data Exchange (ETDEWEB)

    Hood, R Q; Williamson, A J; Dubois, J L; Reboredo, F A

    2008-02-07

    We have developed a highly accurate computational capability to calculate the equation of state (EOS) and defect formation energies of metallic systems. We are using a newly developed algorithm that enables the study of metallic systems with quantum Monte Carlo (QMC) methods. To date, technical limitations have restricted the application of QMC methods to semiconductors, insulators and the homogeneous electron gas. Using this new 'QMC for metals' we can determine, for the first time, the significance of correlation effects in the EOS and in the formation energies of point defects, impurities, surfaces and interfaces in metallic systems. These calculations go beyond the state-of-the-art accuracy which is currently obtained with Density Functional Theory approaches. Such benchmark calculations can provide more accurate predictions for the EOS and the formation energies of vacancies and interstitials in simple metals. These are important parameters in determining the mechanical properties as well as the micro-structural evolution of metals in irradiated materials or under extreme conditions. We describe the development of our 'QMC for metals' code, which has been adapted to run efficiently on a variety of computer architectures including BG/L. We present results of the first accurate quantum Monte Carlo calculation of an EOS of a realistic metallic system that goes beyond the homogeneous electron gas.

  18. Traffic Sign Recognition System based on Cambridge Correlator Image Comparator

    OpenAIRE

    J. Turan; L. Ovsenik; T. Harasthy

    2012-01-01

    Paper presents basic information about application of Optical Correlator (OC), specifically Cambridge Correlator, in system to recognize of traffic sign. Traffic Sign Recognition System consists of three main blocks, Preprocessing, Optical Correlator and Traffic Sign Identification. The Region of Interest (ROI) is defined and chosen in preprocessing block and then goes to Optical Correlator, where is compared with database of Traffic Sign. Output of Optical Correlation is correlation plane, w...

  19. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers

    Science.gov (United States)

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-01

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  20. Parity effects in eigenvalue correlators, parametric and crossover correlators in random matrix models: Application to mesoscopic systems

    Indian Academy of Sciences (India)

    N Deo

    2002-02-01

    This paper summarizes some work that I have been doing on eigenvalue correlators of random matrix models which show some interesting behavior. First we consider matrix models with gaps in their spectrum or density of eigenvalues. The density–density correlators of these models depend on whether , where is the size of the matrix, takes even or odd values. The fact that this dependence persists in the large thermodynamic limit is an unusual property and may have consequences in the study of one electron effects in mesoscopic systems. Secondly, we study the parametric and cross correlators of the Harish Chandra–Itzykson–Zuber matrix model. The analytic expressions determine how the correlators change as a parameter (e.g. the strength of a perturbation in the Hamiltonian of the chaotic system or external magnetic field on a sample of material) is varied. The results are relevant for the conductance fluctuations in disordered mesoscopic systems.

  1. The Intelligent Technologies of Electronic Information System

    Science.gov (United States)

    Li, Xianyu

    2017-08-01

    Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.

  2. Weight Estimation of Electronic Power Conversion Systems

    OpenAIRE

    Wen, Bo

    2011-01-01

    Electronic power conversion systems with large number of power converters have a variety of applications, such as data center, electric vehicles and future smart â nanogridâ in residential home. Those systems could have very different architectures. For example, one system could be based on ac, dc or hybrid power distribution bus, and the bus voltage could be different. Also those systems have great need to develop low-cost architectures which reduce weight, increase efficiency and improve...

  3. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  4. Symmetry of many-electron systems

    CERN Document Server

    Kaplan, I G

    2013-01-01

    Symmetry of Many-Electron Systems discusses the group-theoretical methods applied to physical and chemical problems. Group theory allows an individual to analyze qualitatively the elements of a certain system in scope. The text evaluates the characteristics of the Schrodinger equations. It is proved that some groups of continuous transformation from the Lie groups are useful in identifying conditions and in developing wavefunctions. A section of the book is devoted to the utilization of group-theoretical methods in quantal calculations on many-electron systems. The focus is on the use of group

  5. Anomalous dimensions of gauge-invariant amplitudes in massless effective gauge theories of strongly correlated systems

    NARCIS (Netherlands)

    Gusynin, VP; Khveshchenko, DV; Reenders, M

    2003-01-01

    We use the radial gauge to calculate the recently proposed ansatz for the physical electron propagator in such effective models of strongly correlated electron systems as the QED(3) theory of the pseudogap phase of the cuprates. The results of our analysis help to settle the recent dispute about the

  6. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  7. Blind Signatures in Electronic Voting Systems

    Science.gov (United States)

    Kucharczyk, Marcin

    Electronic voting systems are created to facilitate the election, accelerate voting and counting votes and increase turnout for the election. The main problems of the electronic systems are related with the assurance of system security (cryptographic security and protection against frauds) and a guarantee that the voters are anonymous. The authorization of voters and the anonymity of them seem to be contradictory, but it is possible to create such a system where the both requirements are met. Some solutions, the most common e-voting systems, are presented in the paper. These models are adjusted to the demands and implemented in the polls system for quality of teaching evaluation where anonymity is very important. The blind signature protocol, model directed to user's anonymity, is a very good solution of the authorization and anonymity problem in the polls system with remote access only, as it was described in the paper.

  8. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  9. VHDL Model of Electronic-Lock System

    Directory of Open Access Journals (Sweden)

    J. Noga

    2000-04-01

    Full Text Available The paper describes the design of an electronic-lock system which wascompleted as part of the Basic VHDL course in the Department of Controland Measurement Faculty of Electrical Engineering and Informatics,Technical University of Ostrava, Czech Republic in co-operation withthe Department if Electronic Engineering, University of Hull, GreatBritain in the frame of TEMPUS project no. S_JEP/09468-95.

  10. Simultaneous Correlative Light and Electron Microscopy of Samples in Liquid

    NARCIS (Netherlands)

    Liv, N.

    2014-01-01

    A combined use of fluorescence and light microscopy is a powerful approach to further increase our understanding in biological systems of structure-function relations at cellular and sub-cellular levels. The power of fluorescence microscopy (FM) is to spectrally resolve and visualize individual

  11. Electron spin echo studies of the internal motion of radicals in crystals: Phase memory vs correlation time

    Science.gov (United States)

    Kispert, Lowell D.; Bowman, Michael K.; Norris, James R.; Brown, Meta S.

    1982-01-01

    An electron spin echo (ESE) study of the internal motion of the CH2 protons in irradiated zinc acetate dihydrate crystals shows that quantitative measurements of the motional correlation time can be obtained quite directly from pulsed measurements. In the slow motional limit, the motional correlation time is equal to the phase memory time determined by ESE. In the fast motional limit, the motional correlation time is proportional to the no motion spectral second moment divided by the ESE phase memory time. ESE offers a convenient method of studying motion, electron transfer, conductivity, etc. in a variety of systems too complicated for study by ordinary EPR. New systems for study by ESE include biological samples, organic polymers, liquid solutions of radicals with unresolved hyperfine, etc. When motion modulates large anisotropic hyperfine couplings, ESE measurements of the phase memory time are sensitive to modulation of pseudosecular hyperfine interactions.

  12. Evolution of electronic correlations across the rutile, perovskite, and Ruddelsden-Popper iridates with octahedral connectivity

    Science.gov (United States)

    Kawasaki, Jason K.; Uchida, Masaki; Paik, Hanjong; Schlom, Darrell G.; Shen, Kyle M.

    2016-09-01

    The confluence of electron correlations and spin-orbit interactions is critical to realizing quantum phases in 5 d transition metal oxides. Here, we investigate how the strength of the effective electron correlations evolve across a series of d5 iridates comprised of IrO6 octahedra, ranging from the layered correlated insulator Sr2IrO4 , to the three-dimensional perovskite semimetal SrIrO3, to metallic rutile IrO2 in which the octahedra are arranged in a mixed edge and corner sharing network. Through a combination of reactive oxide molecular-beam epitaxy, in situ angle-resolved photoemission spectroscopy, core level photoemission, and density functional theory, we show how the effective electron correlations weaken as a function of increasing connectivity of the IrO6 network and p -d hybridization. Our results demonstrate how structure and connectivity can be used to control the strength of correlations in the iridates.

  13. Power electronics system modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jih-Sheng

    1994-12-31

    This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and output current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.

  14. A Flexible Electronic Commerce Recommendation System

    Science.gov (United States)

    Gong, Songjie

    Recommendation systems have become very popular in E-commerce websites. Many of the largest commerce websites are already using recommender technologies to help their customers find products to purchase. An electronic commerce recommendation system learns from a customer and recommends products that the customer will find most valuable from among the available products. But most recommendation methods are hard-wired into the system and they support only fixed recommendations. This paper presented a framework of flexible electronic commerce recommendation system. The framework is composed by user model interface, recommendation engine, recommendation strategy model, recommendation technology group, user interest model and database interface. In the recommender strategy model, the method can be collaborative filtering, content-based filtering, mining associate rules method, knowledge-based filtering method or the mixed method. The system mapped the implementation and demand through strategy model, and the whole system would be design as standard parts to adapt to the change of the recommendation strategy.

  15. Sarcopenia correlates with systemic inflammation in COPD

    Science.gov (United States)

    Byun, Min Kwang; Cho, Eun Na; Chang, Joon; Ahn, Chul Min; Kim, Hyung Jung

    2017-01-01

    Background Muscle wasting and chronic inflammation are predominant features of patients with COPD. Systemic inflammation is associated with an accelerated decline in lung function. In this study, the prevalence of sarcopenia and the relationships between sarcopenia and systemic inflammations in patients with stable COPD were investigated. Materials and methods In a cross-sectional design, muscle strength and muscle mass were measured by handgrip strength (HGS) and bioelectrical impedance analysis in 80 patients with stable COPD. Patients (≥40 years old) diagnosed with COPD were recruited from outpatient clinics, and then COPD stages were classified. Sarcopenia was defined as the presence of both low muscle strength (by HGS) and low muscle mass (skeletal muscle mass index [SMMI]). Levels of circulating inflammatory biomarkers (IL-6 and high-sensitivity TNFα [hsTNFα]) were measured. Results Sarcopenia was prevalent in 20 (25%) patients. Patients with sarcopenia were older, had lower body mass index, and a higher percentage of cardiovascular diseases. In addition, they had significantly higher modified Medical Research Council scores and lower 6-minute walk distance than those without sarcopenia. HGS was significantly correlated with age, modified Medical Research Council score, and COPD Assessment Test scores. Both HGS and SMMI had associations with IL-6 and hsTNFα (HGS, r=−0.35, P=0.002; SMMI, r=−0.246, P=0.044) level. In multivariate analysis, old age, lower body mass index, presence of cardiovascular comorbidities, and higher hsTNFα levels were significant determinants for sarcopenia in patients with stable COPD. Conclusion Sarcopenia is very common in patients with stable COPD, and is associated with more severe dyspnea-scale scores and lower exercise tolerance. Systemic inflammation could be an important contributor to sarcopenia in the stable COPD population. PMID:28255238

  16. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, Pascale [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Kaufmann, Rainer [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Siebert, C. Alistair; Hagen, Christoph [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wodrich, Harald [Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux SEGALEN, 146 rue Leo Seignat, 33076 Bordeaux (France); Grünewald, Kay, E-mail: kay@strubi.ox.ac.uk [Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. - Highlights: • Vitrified mammalian cell were imaged by fluorescence and electron cryo microscopy. • TetraSpeck fluorescence markers were added to correct shifts between cryo fluorescence channels. • FluoSpheres fiducials were used as reference points to assign new coordinates to cryoEM images. • Adenovirus particles were localised with an average correlation precision of 63 nm.

  17. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    Energy Technology Data Exchange (ETDEWEB)

    Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch [Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard, E-mail: hjj@sdu.dk [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense (Denmark)

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  18. Description of correlated densities for few-electron atoms by simple functional forms

    Energy Technology Data Exchange (ETDEWEB)

    Porras, I.; Arias de Saavedra, F. [Univ. de Granada (Spain). Dept. de Fisica Moderna

    1999-02-20

    Simple analytical functional forms for the electron density of two- and three-electron atoms which reproduce fairly the correlated (exact) values are presented. The procedure is based on the fitting of an auxiliary f(r) function which has adequate properties for this purpose and can be extended to more complex atoms.

  19. Controlling helicity-correlated beam asymmetries in a polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Kent Paschke

    2007-07-01

    The control of helicity-correlated changes in the electron beam is a critical issue for the next generation of parity-violating electron scattering measurements. The underlying causes and methods for controlling these changes are reviewed with reference to recent operational experience at Jefferson Lab.

  20. Density Matrix Renormalization Group with Efficient Dynamical Electron Correlation Through Range Separation

    CERN Document Server

    Hedegård, Erik Donovan; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard; Reiher, Markus

    2015-01-01

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  1. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  2. Signatures of spatially correlated noise and non-secular effects in two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Lim, James; Ing, David J; Rosskopf, Joachim; Jeske, Jan; Cole, Jared H; Huelga, Susana F; Plenio, Martin B

    2017-01-14

    We investigate how correlated fluctuations affect oscillatory features in rephasing and non-rephasing two-dimensional (2D) electronic spectra of a model dimer system. Based on a beating map analysis, we show that non-secular environmental couplings induced by uncorrelated fluctuations lead to oscillations centered at both cross- and diagonal-peaks in rephasing spectra as well as in non-rephasing spectra. Using an analytical approach, we provide a quantitative description of the non-secular effects in terms of the Feynman diagrams and show that the environment-induced mixing of different inter-excitonic coherences leads to oscillations in the rephasing diagonal-peaks and non-rephasing cross-peaks. We demonstrate that as correlations in the noise increase, the lifetime of oscillatory 2D signals is enhanced at rephasing cross-peaks and non-rephasing diagonal-peaks, while the other non-secular oscillatory signals are suppressed. We discuss that the asymmetry of 2D lineshapes in the beating map provides information on the degree of correlations in environmental fluctuations. Finally we investigate how the oscillatory features in 2D spectra are affected by inhomogeneous broadening.

  3. Signatures of spatially correlated noise and non-secular effects in two-dimensional electronic spectroscopy

    Science.gov (United States)

    Lim, James; Ing, David J.; Rosskopf, Joachim; Jeske, Jan; Cole, Jared H.; Huelga, Susana F.; Plenio, Martin B.

    2017-01-01

    We investigate how correlated fluctuations affect oscillatory features in rephasing and non-rephasing two-dimensional (2D) electronic spectra of a model dimer system. Based on a beating map analysis, we show that non-secular environmental couplings induced by uncorrelated fluctuations lead to oscillations centered at both cross- and diagonal-peaks in rephasing spectra as well as in non-rephasing spectra. Using an analytical approach, we provide a quantitative description of the non-secular effects in terms of the Feynman diagrams and show that the environment-induced mixing of different inter-excitonic coherences leads to oscillations in the rephasing diagonal-peaks and non-rephasing cross-peaks. We demonstrate that as correlations in the noise increase, the lifetime of oscillatory 2D signals is enhanced at rephasing cross-peaks and non-rephasing diagonal-peaks, while the other non-secular oscillatory signals are suppressed. We discuss that the asymmetry of 2D lineshapes in the beating map provides information on the degree of correlations in environmental fluctuations. Finally we investigate how the oscillatory features in 2D spectra are affected by inhomogeneous broadening.

  4. Energy-independent total quantum transmission of electrons through nanodevices with correlated disorder

    Science.gov (United States)

    Novotny, M. A.

    2014-10-01

    In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.

  5. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  6. Communication: Simple and accurate uniform electron gas correlation energy for the full range of densities

    Science.gov (United States)

    Chachiyo, Teepanis

    2016-07-01

    A simple correlation energy functional for the uniform electron gas is derived based on the second-order Moller-Plesset perturbation theory. It can reproduce the known correlation functional in the high-density limit, while in the mid-density range maintaining a good agreement with the near-exact correlation energy of the uniform electron gas to within 2 × 10-3 hartree. The correlation energy is a function of a density parameter rs and is of the form a * ln ( 1 + /b r s + /b rs 2 ) . The constants "a" and "b" are derived from the known correlation functional in the high-density limit. Comparisons to the Ceperley-Alder's near-exact Quantum Monte Carlo results and the Vosko-Wilk-Nusair correlation functional are also reported.

  7. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Indistinguishability and correlation in model systems

    Energy Technology Data Exchange (ETDEWEB)

    Laguna, H G; Sagar, R P, E-mail: sagar@xanum.uam.mx [Departamento de Quimica, Universidad Autonoma Metropolitana, San Rafael Atlixco No. 186, Iztapalapa, 09340 Mexico D.F. (Mexico)

    2011-05-06

    We study the influence of wavefunction symmetry on localization measures of quantum mechanical distributions for two non-interacting particles in a box, in position and in momentum spaces. A comparison between the marginal distributions and the previously studied one-particle model is performed. The correlation coefficient and mutual information are examined as measures of correlation and the differences discussed. The influence of symmetry on the correlation measures is examined in both spaces.

  9. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  10. Magnetoconductivity of two-dimensional electron systems

    Science.gov (United States)

    Kuehnel, Frank Oliver

    The conductivity sigmaxx(o) of a low-density nondegenerate 2D electron gas is investigated under conditions where hoc ≫ kBT ≫ hgamma (oc is the cyclotron frequency and hgamma is the disorder-induced width of the Landau level). Such conditions have been met for electrons on helium surface, and can also be achieved in ultra high quality heterostructures. Because of the random potential of defects, single-electron states of the lowest Landau level form a band of a width hgamma ≪ hoc. Almost all of these states are localized. Therefore, for ho c ≫ kBT ≫ hgamma, the static single-electron conductivity sigma xx(0) may be expected to be equal to zero. Since for o ≫ gamma the conductivity should decay, on the whole sigma xx(o) has a peak at a finite frequency. From scaling arguments, we show that in the single-electron approximation sigma xx(o) ∝ omu for o → 0, with the exponent mu in the range from 0.21 to 0.22, whereas the frequency dependence of the cyclotron resonance absorption peak is non-critical. The far tails of the conductivity peaks are obtained using the method of optimal fluctuation and are shown to be Gaussian. In order to investigate the shape of the low frequency peak and cyclotron resonance absorption peak, we use the method of moments (MOM). In MOM, the low-frequency conductivity is restored from its 14 spectral moments, whereas the cyclotron resonance absorption is restored from the calculated 10 spectral moments using the continuous fraction expansion. In combination with the analytical asymptotics, both expansions converge rapidly with increasing number of included moments, and give numerically accurate results throughout the region of interest. The effect of electron-electron interaction (EEI) on the low frequency conductivity is also investigated. EEI makes the static conductivity finite. For a low-density system, the effect can be described using the notion of a fluctuational field Efl which drives an electron because of electron

  11. Dynamical mean field theory-based electronic structure calculations for correlated materials.

    Science.gov (United States)

    Biermann, Silke

    2014-01-01

    We give an introduction to dynamical mean field approaches to correlated materials. Starting from the concept of electronic correlation, we explain why a theoretical description of correlations in spectroscopic properties needs to go beyond the single-particle picture of band theory.We discuss the main ideas of dynamical mean field theory and its use within realistic electronic structure calculations, illustrated by examples of transition metals, transition metal oxides, and rare-earth compounds. Finally, we summarise recent progress on the calculation of effective Hubbard interactions and the description of dynamical screening effects in solids.

  12. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  13. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  14. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  15. Design for Reliability of Power Electronic Systems

    DEFF Research Database (Denmark)

    Wang, Huai; Ma, Ke; Blaabjerg, Frede

    2012-01-01

    availability, long lifetime, sufficient robustness, low maintenance cost and low cost of energy. However, the reliability predictions are still dominantly according to outdated models and terms, such as MIL-HDBK-217F handbook models, Mean-Time-To-Failure (MTTF), and Mean-Time-Between-Failures (MTBF......Advances in power electronics enable efficient and flexible processing of electric power in the application of renewable energy sources, electric vehicles, adjustable-speed drives, etc. More and more efforts are devoted to better power electronic systems in terms of reliability to ensure high......). A collection of methodologies based on Physics-of-Failure (PoF) approach and mission profile analysis are presented in this paper to perform reliability-oriented design of power electronic systems. The corresponding design procedures and reliability prediction models are provided. Further on, a case study...

  16. Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12)

    Science.gov (United States)

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank

    2017-08-01

    In this work, explicitly correlated second order N-electron valence state perturbation theory (NEVPT2-F12) has been derived and implemented for the first time. The NEVPT2-F12 algorithm presented here is based on a fully internally contracted wave function and includes the correction of semi-internal excitation subspaces. The algorithm exploits the resolution of identity (RI) approximation to improve the computational efficiency. The overall O(N5) scaling of the computational effort is documented. In Sec. III, the dissociation processes of diatomic molecules and the singlet-triplet gap of several systems are studied. For all relative energies studied in this work, the errors with respect to the complete basis set (CBS) limit for the NEVPT2-F12 method are within 1 kcal/mol. For moderately sized active spaces, the computational cost of a RI-NEVPT2-F12 correlation energy calculation for each root is comparable to a closed-shell RI-MP2-F12 calculation on the same system.

  17. Correlation effects on the energy spectra of quantum dot electrons with harmonic model interactions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The low-lying excitation energy spectra of two, three and five quantum dot electrons with harmonic model interactions in a large magnetic field are calculated by the Hartree-Fock(HF) methods. Correlation effects on the energy level structures are investigated by comparing the HF results with the exact ones. It is found that the pure collective excitations(center-of-mass mode quanta) existing in the exact energy spectra do not appear in the HF energy spectra. The degeneracies of energy levels are also related to the correlation interactions, especially in the energy spectrum of two electrons. In the cases of more than two electrons, as the electron-electron interaction strength is increased the HF energy levels exhibit more complex crossings than the exact ones.

  18. Electronic Chart Display and Information System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces the most advanced form of electronic chart display and information systems (ECDIS) which complies with the Performance Standards for ECDIS established by the International Maritime Organization (IMO) and the International Hydrographic Organization (IHO).It also describes the key features and the important functions of ECDIS.Then the future development of ECDIS in marine is discussed.

  19. Doping dependence of thermopower and thermoelectricity in strongly correlated systems

    OpenAIRE

    Mukerjee, Subroto; Moore, J. E.

    2006-01-01

    The search for semiconductors with high thermoelectric figure of merit has been greatly aided by theoretical modeling of electron and phonon transport, both in bulk materials and in nanocomposites. Recent experiments have studied thermoelectric transport in ``strongly correlated'' materials derived by doping Mott insulators, whose insulating behavior without doping results from electron-electron repulsion, rather than from band structure as in semiconductors. Here a unified theory of electric...

  20. Soft errors in modern electronic systems

    CERN Document Server

    Nicolaidis, Michael

    2010-01-01

    This book provides a comprehensive presentation of the most advanced research results and technological developments enabling understanding, qualifying and mitigating the soft errors effect in advanced electronics, including the fundamental physical mechanisms of radiation induced soft errors, the various steps that lead to a system failure, the modelling and simulation of soft error at various levels (including physical, electrical, netlist, event driven, RTL, and system level modelling and simulation), hardware fault injection, accelerated radiation testing and natural environment testing, s

  1. Electronic system for optical shutter control

    Science.gov (United States)

    Viljoen, H. C.; Gaylord, T. K.

    1976-01-01

    The paper describes a precise and versatile electronic system for shutter control in light beam experiments. Digital and analog circuitry is used to provide automatic timing, exposure control, manual operation, and remote programmability. A block diagram of the system is presented and the individual circuits - the timer control circuit, the clock control circuit, the comparator circuit, the exposure (integrator) circuit, and the shutter drive circuit are discussed in detail and diagrams are provided.

  2. Electronic emulator of linear dynamic systems

    OpenAIRE

    Garan, Maryna; Kovalenko, Iaroslav; Moučka, Michal; Vagaská, Alena

    2015-01-01

    The aim of this article is development and realization of electronic emulator of dynamic systems with setting of parameters from PC. This emulator is the first prototype, which is meant to prove the possibility of emulating the behavior of dynamic systems by microprocessor. The main goal of research is creating of equipment, which can emulate a behavior of pneumatic muscle with sufficient accuracy. Dynamic of pneumatic muscles is significantly non-linear and changeable in the dependence on...

  3. 600-GHz Electronically Tunable Vector Measurement System

    Science.gov (United States)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  4. Enhanced coherent emission of terahertz radiation by energy-phase correlation in a bunched electron beam.

    Science.gov (United States)

    Doria, A; Gallerano, G P; Giovenale, E; Messina, G; Spassovsky, I

    2004-12-31

    We report the first observation of enhanced coherent emission of terahertz radiation in a compact free electron laser. A radio-frequency (rf) modulated electron beam is passed through a magnetic undulator emitting coherent radiation at harmonics of the rf with a phase which depends on the electron drift velocity. A proper correlation between the energy and phase distributions of the electrons in the bunch has been exploited to lock in phase the radiated field, resulting in over 1 order of magnitude enhancement of the coherent emission.

  5. Epidermal electronic systems for sensing and therapy

    Science.gov (United States)

    Lu, Nanshu; Ameri, Shideh K.; Ha, Taewoo; Nicolini, Luke; Stier, Andrew; Wang, Pulin

    2017-04-01

    Epidermal electronic system is a class of hair thin, skin soft, stretchable sensors and electronics capable of continuous and long-term physiological sensing and clinical therapy when applied on human skin. The high cost of manpower, materials, and photolithographic facilities associated with its manufacture limit the availability of disposable epidermal electronics. We have invented a cost and time effective, completely dry, benchtop "cut-and-paste" method for the green, freeform and portable manufacture of epidermal electronics within minutes. We have applied the "cut-and-paste" method to manufacture epidermal electrodes, hydration and temperature sensors, conformable power-efficient heaters, as well as cuffless continuous blood pressure monitors out of metal thin films, two-dimensional (2D) materials, and piezoelectric polymer sheets. For demonstration purpose, we will discuss three examples of "cut-and-pasted" epidermal electronic systems in this paper. The first will be submicron thick, transparent epidermal graphene electrodes that can be directly transferred to human skin like a temporary transfer tattoo and can measure electrocardiogram (ECG) with signal-to-noise ratio and motion artifacts on par with conventional gel electrodes. The second will be a chest patch which houses both electrodes and pressure sensors for the synchronous measurements of ECG and seismocardiogram (SCG) such that beat-to-beat blood pressure can be inferred from the time interval between the R peak of the ECG and the AC peak of the SCG. The last example will be a highly conformable, low power consumption epidermal heater for thermal therapy.

  6. Double ionization of two-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Ancarani, L U; Cappello, C Dal [Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine - Metz, 57078 Metz (France); Gasaneo, G, E-mail: ancarani@univ-metz.f [Departamento de Fisica, Universidad Nacional del Sur and Consejo Nacional de Investigaciones CientIficas y Tecnicas, 8000 BahIa Blanca, Buenos Aires (Argentina)

    2010-02-01

    We address various issues related to the double ionization by electron impact of two-electron systems. The emphasis will be put on the theoretical description of high incident energy (e,3e) processes, for which the first Born approximation should be suitable. In the case of helium, absolute experimental data for fivefold differential cross sections are available in coplanar geometry. We will review and discuss the divergencies existing between the results obtained with different theoretical models, and those appearing when compared to the experiments in particular with respect to the absolute scale. We will then discuss some results obtained in a recently proposed out of plane geometry.

  7. New insights into electron spin dynamics in the presence of correlated noise.

    Science.gov (United States)

    Spezia, S; Adorno, D Persano; Pizzolato, N; Spagnolo, B

    2012-02-08

    The changes in the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which takes into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examining the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitudes lower than the Gunn field, the dephasing length shortens with increasing noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.

  8. The Small Explorer power system electronics

    Science.gov (United States)

    Dakermanji, G.; Carlsson, U.; Temkin, D.; Culver, H.; Rodriguez, G. E.; Ahmad, A.

    1991-01-01

    The power system electronics for the NASA Goddard Space Flight Center Small Explorer Satellites are intended to satisfy various planned missions. The selected topology is a direct energy transfer (DET) system with the battery connected directly to the bus. The shunt control technique is a linear sequential full shunt which provides a simple solar array interface and can support both 3 axis stabilized and spinner satellites. In addition, it can meet stringent electromagnetic interference requirements which are expected on some Small Explorer Missions. The Power Systems Electronics (PSE) performs battery charge control using both temperature compensated charge/discharge ratio ampere hour integration and voltage-temperature control. The PSE includes all the circuits needed to perform telemetry and command functions using an optical MIL-STD-1773 interface.

  9. Tutorial: Radiation Effects in Electronic Systems

    Science.gov (United States)

    Pellish, Jonathan A.

    2017-01-01

    This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.

  10. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers.

    Science.gov (United States)

    Schellenberger, Pascale; Kaufmann, Rainer; Siebert, C Alistair; Hagen, Christoph; Wodrich, Harald; Grünewald, Kay

    2014-08-01

    Correlative light and electron microscopy (CLEM) is an emerging technique which combines functional information provided by fluorescence microscopy (FM) with the high-resolution structural information of electron microscopy (EM). So far, correlative cryo microscopy of frozen-hydrated samples has not reached better than micrometre range accuracy. Here, a method is presented that enables the correlation between fluorescently tagged proteins and electron cryo tomography (cryoET) data with nanometre range precision. Specifically, thin areas of vitrified whole cells are examined by correlative fluorescence cryo microscopy (cryoFM) and cryoET. Novel aspects of the presented cryoCLEM workflow not only include the implementation of two independent electron dense fluorescent markers to improve the precision of the alignment, but also the ability of obtaining an estimate of the correlation accuracy for each individual object of interest. The correlative workflow from plunge-freezing to cryoET is detailed step-by-step for the example of locating fluorescence-labelled adenovirus particles trafficking inside a cell. © 2013 Published by Elsevier B.V.

  11. 42 CFR 456.722 - Electronic claims management system.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Electronic claims management system. 456.722... Electronic Claims Management System for Outpatient Drug Claims § 456.722 Electronic claims management system... electronic claims management (ECM) system to perform on-line, real-time (that is, immediate)...

  12. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  13. Correlated electric field and low-energy electron measurements in the low-altitude polar cusp

    Science.gov (United States)

    Kintner, P. M.; Ackerson, K. L.; Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Correlated electric field and low-energy electron measurements are presented for two passes of Hawkeye 1 through the south polar cusp at 2000-km altitude during local morning. In one case the electric field reversal coincides with the boundary of detectable 5.2keV electron intensities and the equatorward boundary of the cusp. In the other case the electric field reversal and the 5.2 keV electron trapping boundary coincide, but the equatorward edge of the cusp as determined from the presence of 180 eV electron intensities is 5 degrees invariant latitude equatorward of the electric field reversal. It is concluded that in the second case, electron intensities associated with the polar cusp populate closed dayside field lines, and hence the corresponding equatorward edge of these electron intensities is not always an indicator of the boundary between closed dayside field lines and polar cap field lines.

  14. Electronic structure and correlated wave functions of a few electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  15. Recent perspectives of electronic medical record systems.

    Science.gov (United States)

    Zhang, Xiao-Ying; Zhang, Peiying

    2016-06-01

    Implementation of electronic medical record (EMR) systems within developing contexts as part of efforts to monitor and facilitate the attainment of health-related aims has been on the increase. However, these efforts have been concentrated on urban hospitals. Recent findings showed that development processes of EMR systems are associated with various discrepancies between protocols and work practices. These discrepancies were mainly caused by factors including high workload, lack of medical resources, misunderstanding of the protocols by health workers, and client/patient practices. The present review focused on the effects of EMRs on patient care work, and on appropriate EMR designs principles and strategies to ameliorate these systems.

  16. NASA Electronic Library System (NELS) optimization

    Science.gov (United States)

    Pribyl, William L.

    1993-01-01

    This is a compilation of NELS (NASA Electronic Library System) Optimization progress/problem, interim, and final reports for all phases. The NELS database was examined, particularly in the memory, disk contention, and CPU, to discover bottlenecks. Methods to increase the speed of NELS code were investigated. The tasks included restructuring the existing code to interact with others more effectively. An error reporting code to help detect and remove bugs in the NELS was added. Report writing tools were recommended to integrate with the ASV3 system. The Oracle database management system and tools were to be installed on a Sun workstation, intended for demonstration purposes.

  17. Metastable and spin-polarized states in electron systems with localized electron-electron interaction

    Science.gov (United States)

    Sablikov, Vladimir A.; Shchamkhalova, Bagun S.

    2014-05-01

    We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron-electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.

  18. Magnetic anisotropic effects and electronic correlations in MnBi ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Antropov, VP; Antonov, VN; Bekenov, LV; Kutepov, A; Kotliar, G

    2014-08-07

    The electronic structure and numerous magnetic properties of MnBi magnetic systems are investigated using local spin density approximation (LSDA) with on-cite Coulomb correlations (LSDA+U) included. We show that the inclusion of Coulomb correlations provides a much better description of equilibrium magnetic moments on Mn atoms as well as the magnetic anisotropy energy behavior with temperature and magneto-optical effects. We found that the inversion of the anisotropic pairwise exchange interaction between Bi atoms is responsible for the observed spin reorientation transition at 90 K. This interaction appears as a result of strong spin orbit coupling on Bi atoms, large magnetic moments on Mn atoms, significant p-d hybridization between Mn and Bi atoms, and it depends strongly on lattice constants (anisotropic Bi-Bi exchange striction). A better agreement with the magneto-optical Kerr measurements at higher energies is obtained. We also present the detailed investigation of the Fermi surface, the de Haas-van Alphen effect, and the x-ray magnetic circular dichroism in MnBi.

  19. Magnetic anisotropic effects and electronic correlations in MnBi ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Antropov, V P [Ames Laboratory; Antonov, V N [Ames Laboratory; Bekenov, L V [Institute of metal Physics; Kutepov, A [Ames Laboratory; Kotliar, G [Rutgers University

    2014-08-01

    The electronic structure and numerous magnetic properties of MnBi magnetic systems are investigated using local spin density approximation (LSDA) with on-cite Coulomb correlations (LSDA+U) included. We show that the inclusion of Coulomb correlations provides a much better description of equilibrium magnetic moments on Mn atoms as well as the magnetic anisotropy energy behavior with temperature and magneto-optical effects. We found that the inversion of the anisotropic pairwise exchange interaction between Bi atoms is responsible for the observed spin reorientation transition at 90 K. This interaction appears as a result of strong spin orbit coupling on Bi atoms, large magnetic moments on Mn atoms, significant p-d hybridization between Mn and Bi atoms, and it depends strongly on lattice constants (anisotropic Bi-Bi exchange striction). A better agreement with the magneto-optical Kerr measurements at higher energies is obtained. We also present the detailed investigation of the Fermi surface, the de Haas–van Alphen effect, and the x-ray magnetic circular dichroism in MnBi.

  20. Microfluidic system for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ring, Elisabeth A [ORNL; De Jonge, Niels [ORNL

    2010-01-01

    We present a microfluidic system that maintains liquid flow in a specimen chamber for (scanning) transmission electron microscope ((S)TEM) imaging. The specimen chamber consists of two ultra-thin silicon nitride windows supported by silicon microchips. They are placed in a specimen holder that seals the sample from the vacuum in the electron microscope, and incorporates tubing to and from the sample connected to a syringe pump outside the microscope. Using results obtained from fluorescence microscopy of microspheres flowing through the system, an equation to characterize the liquid flow through the system was calibrated. Gold nanoparticles of diameters of 30 and 100 nm moving in liquid were imaged with a 200 kV STEM. It was concluded that despite strong influences from Brownian motion, and sensitivity to small changes in the depth of the bypass channel, the electron microscopy flow data matched the calculated flow speed within an order of magnitude. The system allows for rapid (within a minute) liquid exchange, which can potentially be used, for example, to investigate the response of specimens, e.g., eukaryotic-, or bacterial cells, to certain stimuli.

  1. Self-amplified photo-induced gap quenching in a correlated electron material

    Science.gov (United States)

    Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.

    2016-10-01

    Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains--on a microscopic level--the extremely fast response of this material to ultrafast optical excitation.

  2. Correlated proton-electron hole dynamics in protonated water clusters upon extreme ultraviolet photoionization

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2016-07-01

    Full Text Available The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2On after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects.

  3. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    Science.gov (United States)

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  4. Interplay between electron correlations and polar displacements in metallic SrEuMo2O6

    Science.gov (United States)

    Giovannetti, Gianluca; Puggioni, Danilo; Rondinelli, James M.; Capone, Massimo

    2016-03-01

    Using density functional theory and dynamical mean-field theory, we study the electronic properties of the proposed candidate polar metal SrEuMo2O6 . Its electronic structure shares similarities with centrosymmetric SrMoO3 and EuMoO3, from which it may be considered an ordered derivative, but polar displacements of the divalent cations and oxide anions lift inversion symmetry mediated by an anharmonic lattice interaction in the metallic state. We find that Hund's coupling promotes the effects of electronic correlations owing to the Mo4 + d2 electronic configuration, producing a correlated metallic phase far from the Mott state. The contraindication between metallicity and polar distortions is thereby alleviated in part through the renormalized quasiparticles, which are unable to fully screen the ordered local dipoles.

  5. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    Science.gov (United States)

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-07-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.

  6. Dynamic behavior of correlated electrons in the insulating doped semiconductor Si:P

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Elvira

    2009-06-04

    At low energy scales charge transport in the insulating Si:P is dominated by activated hopping between the localized donor electron states. Theoretical models for a disordered electronic system with a long-range Coulomb interaction are appropriate to interpret the electric conductivity spectra. With a novel and advanced method we perform broadband phase sensitive measurements of the reflection coefficient from 45 MHz up to 5 GHz, employing a vector network analyzer with a 2.4 mm coaxial sensor, which is terminated by the sample under test. While the material parameters (conductivity and permittivity) can be easily extracted from the obtained impedance data if the sample is metallic, no direct solution is possible if the material under investigation is an insulator. Focusing on doped semiconductors with largely varying conductivity and dielectric function, we present a closed calibration and evaluation procedure with an optimized theoretical and experimental complexity, based on the rigorous solution for the electromagnetic field inside the insulating sample, combined with the variational principle. Basically no limiting assumptions are necessary in a strictly defined parameter range. As an application of our new method, we have measured the complex broadband microwave conductivity of Si:P in a broad range of phosphorus concentration n/n{sub c} from 0.56 to 0.9 relative to the critical value n{sub c}=3.5 x 10{sup 18} cm{sup -3} of the metal-insulator transition driven by doping at temperatures down to 1.1 K, and studied unresolved issues of fundamental research concerning the electronic correlations and the metal-insulator transition. (orig.)

  7. STEM in Kondo Lattices: a new window on correlated electron materials

    Science.gov (United States)

    Coleman, Piers

    2012-02-01

    The tremendous developments in scanning tunneling electron spectroscopy over the past decade, applied with tremendous success to the cuprate superconductors, are now beginning to be applied to other strongly correlated electron systems. One area where they offer tremendous potential, is in the context of heavy fermion materials. In the last few years, it has become possible to start probing the physics of the Kondo lattice using STEM methods. In this talk I will review this field, discussing the physics of tunneling into the Kondo lattice, showing how tunneling involves a co-operative process of electron transfer and spin-flip, called ``cotunnelling'' [1,2]. I will provide an overview of latest results in this field, especially URu2Si2 [3,4], YbRh2Si2 [5] and CeCoIn5 [6], discussing how STEM can be used to probe various new theoretical proposals [7,8] for the exotic order and critical behavior. [4pt] [1] M. Maltseva, M. Dzero, and P. Coleman, Phys. Rev. Lett. 103, 206402 (2009).[0pt] [2] J. Figgins and D. Morr, Phys. Rev. Lett. 104, 187202 (2010).[0pt] [3] A. R. Schmidt et al, Nature 465, 570-576 (2010).[0pt] [4] P. Aynajian et al., Proc. Natl. Acad. Sci. U.S.A. 107, 10383 (2010).[0pt] [5] S. Ernst et al, Nature (2011).[0pt] [6] S. Ernst et al, Physica Status Solidi 247, 624 (2010).[0pt] [7] Y. Dubi and A.V. Balatsky, Phys. Rev. Lett. 106, 196407 (2011).[0pt] [8] P. Chandra, P. Coleman and R. Flint, to be published (2012).

  8. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  9. Correlative infrared–electron nanoscopy reveals the local structure–conductivity relationship in zinc oxide nanowires

    OpenAIRE

    Stiegler, J.M.; Tena-Zaera, R.; Idigoras, O.; Chuvilin, A.; Hillenbrand, R

    2012-01-01

    High-resolution characterization methods play a key role in the development, analysis and optimization of nanoscale materials and devices. Because of the various material properties, only a combination of different characterization techniques provides a comprehensive understanding of complex functional materials. Here we introduce correlative infrared–electron nanoscopy, a novel method yielding transmission electron microscope and infrared near-field images of one and the same nanostructure. ...

  10. High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy.

    Science.gov (United States)

    Koga, Daisuke; Kusumi, Satoshi; Shodo, Ryusuke; Dan, Yukari; Ushiki, Tatsuo

    2015-12-01

    In this study, we introduce scanning electron microscopy (SEM) of semithin resin sections. In this technique, semithin sections were adhered on glass slides, stained with both uranyl acetate and lead citrate, and observed with a backscattered electron detector at a low accelerating voltage. As the specimens are stained in the same manner as conventional transmission electron microscopy (TEM), the contrast of SEM images of semithin sections was similar to TEM images of ultrathin sections. Using this technique, wide areas of semithin sections were also observed by SEM, without the obstruction of grids, which was inevitable for traditional TEM. This study also applied semithin section SEM to correlative light and electron microscopy. Correlative immunofluorescence microscopy and immune-SEM were performed in semithin sections of LR white resin-embedded specimens using a FluoroNanogold-labeled secondary antibody. Because LR white resin is hydrophilic and electron stable, this resin is suitable for immunostaining and SEM observation. Using correlative microscopy, the precise localization of the primary antibody was demonstrated by fluorescence microscopy and SEM. This method has great potential for studies examining the precise localization of molecules, including Golgi- and ER-associated proteins, in correlation with LM and SEM.

  11. Density functional for short-range correlation: Is the random phase approximation accurate for iso-electronic energy changes?

    Science.gov (United States)

    Yan, Zidan; Perdew, John P.; Kurth, Stefan

    2000-03-01

    Within a density functional context, the random phase approximation (RPA) for the correlation emergy makes a short-range error which is well-suited for correction by a local spin density or generalized gradient approximation (GGA). Here we construct a GGA for the short-range correction, following the same reliable procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting density functional is nearly local, and predicts a substantial correction to the RPA correlation energy of an atom but \\underlinevery small corrections to the RPA atomization energy of a molecule, which may by itself come close to "chemical accuracy", and to the RPA surface energy of a metal. A by-product of this work is a density functional for the system-averaged correlation hole within RPA.

  12. Electron--electron correlations assessed analyzing doubly differential angular distributions in double ionization of helium by proton impact

    Science.gov (United States)

    Ciappina, Marcelo; Schulz, Michael; Kirchner, Tom; Fischer, Daniel; Moshammer, Robert; Ullrich, Joachim

    2008-10-01

    Double ionization (DI) of helium by ion impact presents a singular scenario to study electron-electron correlation in atomic physics. Recent experimental data have revealed signatures of this feature in the doubly differential cross sections in terms of the angles of the two emitted electrons [1]. We present an exhaustive theoretical and experimental study of these cross sections, by disentangling the contribution of the different mechanisms that contribute to DI [2]. To this end, first order and higher order distorted wave theories are implemented jointly with the Monte Carlo Event Generator method (MCEG) [3]. This latter tool allows us to incorporate efficiently all the experimental conditions in the theoretical models. [1] M. Schulz et al, J. Phys. B 38, 1363-1370 (2005). [2] M. F. Ciappina et al, PRA (in preparation) (2008). [3] M. D"urr et al, Phys. Rev. A 75, 062708 (2007).

  13. Electronic Document Management Using Inverted Files System

    Science.gov (United States)

    Suhartono, Derwin; Setiawan, Erwin; Irwanto, Djon

    2014-03-01

    The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.

  14. Electronic Document Management Using Inverted Files System

    Directory of Open Access Journals (Sweden)

    Suhartono Derwin

    2014-03-01

    Full Text Available The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.

  15. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering; Electrons correles sous haute pression: une approche par diffusion inelastique des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, J.P

    2007-06-15

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  16. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, K.; Rozpędzik, D.; Zejma, J. [Jagiellonian University, Faculty of Physics, Astronomy and Applied Informatics, Reymonta 4, 30059 Kraków (Poland); Caban, P.; Rembieliński, J.; Włodarczyk, M. [University of Łódź, Faculty of Physics and Applied Informatics, Pomorska 149/153, 90236 Łódź (Poland); Ciborowski, J. [University of Warsaw, Faculty of Physics, Hoza 69, 00681 Warsaw (Poland); Enders, J.; Köhler, A. [Technische Universität Darmstadt, Institut für Kernphysik, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Kozela, A. [Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31342 Kraków (Poland)

    2013-11-07

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  17. Electronic circuits for communications systems: A compilation

    Science.gov (United States)

    1972-01-01

    The compilation of electronic circuits for communications systems is divided into thirteen basic categories, each representing an area of circuit design and application. The compilation items are moderately complex and, as such, would appeal to the applications engineer. However, the rationale for the selection criteria was tailored so that the circuits would reflect fundamental design principles and applications, with an additional requirement for simplicity whenever possible.

  18. The double ionization of H{sub 2} by fast electron impact: Influence of the final state electron-electron correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chuluunbaatar, O., E-mail: chuka@jinr.ru; Gusev, A. A., E-mail: gooseff@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Joulakian, B. B., E-mail: boghos.joulakian@univ-lorraine.fr [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, Institut Jean Barriol (France)

    2013-02-15

    We have determined fully differential cross sections of the (e, 3e) double ionization of H{sub 2} by employing correlated initial- and final-state wave functions. We have constructed for the description of the two slow ejected electrons a symmetrized product of a correlation function and two-center continuum wave functions, which fulfill the correct boundary conditions asymptotically up to the order O((kr){sup -2}). We have shown that the introduction of the correlated part of the final-state wave function improves the results on the (e, 3-1e) of H{sub 2}.

  19. Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes

    Directory of Open Access Journals (Sweden)

    Yuriy Kruglyak

    2015-05-01

    Full Text Available This review is devoted to the basic problem in quantum theory of quasi-one-dimensional electron systems like polyenes (Part 1 and cumulenes (Part 2 – physical origin of the forbidden zone in these and analogous 1D electron systems due to two possible effects – Peierls instability (bond alternation and Mott instability (electron correlation. Both possible contradiction and coexistence of the Mott and Peierls instabilities are summerized on the basis of the Kiev quantum chemistry team research projects.

  20. Negative electron affinities from DFT: influence of asymptotic exchange-correlation potential and effective homogeneity under density scaling.

    Science.gov (United States)

    Borgoo, Alex; Tozer, David J

    2012-06-07

    The influence of the asymptotic exchange-correlation potential and density-scaling homogeneity on negative electron affinities determined using the approach of Tozer and De Proft [J. Phys. Chem. A2005, 109, 8923] is investigated. Application of an asymptotic correction to the potential improves the accuracy for several of the systems with the most negative affinities, reflecting their diffuse lowest unoccupied orbitals. For systems with modest affinities, it reduces the accuracy marginally. Enforcing a near-exact effective homogeneity through a simple shift in the potential leads to improved correlation with experimental values but significantly overestimated affinities. Optimal effective homogeneities are therefore determined, and a simple scheme is proposed for enforcing an average optimal value. Application of the scheme to a series of organic molecules maintains the excellent correlation with the experimental values while significantly reducing the absolute errors.

  1. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  2. Depletion of density of states near Fermi energy induced by disorder and electron correlation in alloys

    Science.gov (United States)

    Noh, Han-Jin; Nahm, Tschang-Uh; Kim, Jae-Young; Park, W.-G.; Oh, S.-J.; Hong, J.-P.; Kim, C.-O.

    2000-03-01

    We have performed high resolution photoemission study of substitutionally disordered alloys Cu-Pt, Cu-Pd, Cu-Ni, and Pd-Pt. The ratios between alloy spectra and pure metal spectra are found to have dips at the Fermi level when the residual resistivity is high and when rather strong repulsive electron-electron interaction is expected. This is in accordance with Altshuler and Aronov's model which predicts depletion of density of states at the Fermi level when both disorder and electron correlation are present.

  3. Dynamic correlation in the electron angular distribution in ionization of helium by ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Monti, J M; Fojon, O A; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Hanssen, J, E-mail: rivarola@fceia.unr.edu.ar [Institut de Chimie, Physique et Materiaux, Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine - Metz, 1 Bv. Arago, 57078 Metz Cedex 3 (France)

    2011-04-01

    Single ionization of helium by proton impact is investigated in terms of a four-body distorted wave model. In this approximation both electrons are considered as active, being one of them ionized whereas the other remains in a residual target bound state. The influence of dynamic correlation between electrons is investigated by comparison with a four-body uncorrelated distorted wave model. Double differential cross sections as a function of the emission angle for fixed electron energies and different collision energies are presented.

  4. Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons

    Science.gov (United States)

    Maco, Bohumil; Holtmaat, Anthony; Cantoni, Marco; Kreshuk, Anna; Straehle, Christoph N.; Hamprecht, Fred A.; Knott, Graham W.

    2013-01-01

    Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis. PMID:23468982

  5. Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Bohumil Maco

    Full Text Available Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis.

  6. Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, I. A., E-mail: nekrasov@iep.uran.ru; Pavlov, N. S.; Sadovskii, M. V. [Russian Academy of Sciences, Institute for Electrophysics, Ural Branch (Russian Federation)

    2013-04-15

    We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO{sub 3} and Sr{sub 2}RuO{sub 4}). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

  7. Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals

    Science.gov (United States)

    Nekrasov, I. A.; Pavlov, N. S.; Sadovskii, M. V.

    2013-04-01

    We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4 s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

  8. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity.

    Science.gov (United States)

    Davis, J C Séamus; Lee, Dung-Hai

    2013-10-29

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron-electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

  9. Quantum Chemistry on the time axis: electron correlations and rearrangements on femtosecond and attosecond scales

    CERN Document Server

    Nicolaides, Cleanthes A

    2015-01-01

    Recent developments toward the production and laboratory use of pulses of high intensity, and/or of very high frequency, and/or of ultrashort duration, make possible experiments which can produce time-resolved data on ultrafast transformations involving motions of electrons. The formulation, quantitative understanding and prediction of related new phenomena entail the possibility of computing and applying solutions of the many-electron time-dependent Schroedinger equation, for arbitrary electronic structures, including the dominant effects of Rydberg series, of multiply excited states and of the multi-channel continuous spectrum. To this purpose, we have proposed and applied to many prototypical cases the state-specific expansion approach (SSEA). (Mercouris, Komninos and Nicolaides, Adv. Quantum Chem. 60, 333 (2010)). The paper explains briefly the SSEA, and outlines four of its applications to recently formulated problems concerning time-resolved electronic processes, where electron correlations are crucial....

  10. Insight into the electron-positron correlations in metals through the looking glass

    Science.gov (United States)

    Rubaszek, Anna

    2016-05-01

    A semi-empirical analysis of the positron annihilation experimental spectra indicates for a strong sensitivity of the two-particle electron-positron (e-p) enhancement factor to the l=s, p, d, f character of the initial electronic state [1,2]. The essential discrepancy between the models consists in the dependence of the relevant correlation functions on the energy of the annihilating electron. The present contribution contains a theoretical study of the e-p enhancement factors for s, p, d and f states as a function of the electron energy. The slope of the resulting characteristics is directly related to the degree of localisation of the s, p, d and f electrons in the electron density of states. This effect occurs especially for d electrons in transition metals, in favour to the approach of Ref. [1]. The energy dependence of the two-particle correlation functions is also a source of controversy between various theoretical approaches. The energy dependent enhancement factors describe properly the positron interaction with delocalised s and p electrons, but this approach overestimates the high momentum components of the e-p momentum densities, dominated by the localised d and f states. On the contrary, the calculations that employ the energy averaged enhancement factors match better with experiment for localised d and f electrons, but they hardly reproduce experimental spectra for nearly-free electron populations. An attempt to visit two sides of the looking glass is made in the theory of the present work. The model combines the properties of both approaches. The resulting e-p momentum densities and enhancement factors are in good agreement with the experimental data for simple, noble and transition metals, both in the low and high momentum region.

  11. Electron correlation dynamics of strong-field double ionization of atoms below recollision threshold

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yunquan; Gong Qihuang [Department of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Ye Difa; Liu Jie [Center for Applied Physics and Technology, Peking University, 100084 Beijing (China); Rudenko, A; Tschuch, S; Duerr, M; Moshammer, R; Ullrich, J [Max-Planck-Institut fuer Kernphysik, D-69117 Heidelberg (Germany); Siegel, M; Morgner, U, E-mail: yunquan.liu@pku.edu.cn [Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany)

    2011-02-01

    In recent combined experimental and theoretical study we have explored nonsequential double ionization of neon and argon atoms in the infrared light field (800nm) below the recollision threshold. We find that the two-electron correlation dynamics depends on atomic structure- 'side-by-side emission' (correlation) for Ne and 'back-to-back emission' (anticorrelation) for argon atoms. This can be explained theoretically within our three dimensional classical model calculation including tunnelling effect. The multiple recollisions as well as recollision-induced-excitation-tunnelling (RIET) effect dominate the anticorrelation of argon, whereas the laser-assisted instantaneous recollision dominates the correlation of neon.

  12. Electron Correlation in Nonsequential Double Ionization of Helium by Two-Color Pulses

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yue-Ming; LIAO Qing; HUANG Cheng; TONG Ai-Hong; LU Pei-Xiang

    2010-01-01

    @@ We investigate the momentum and energy correlations between the two electrons from nonsequential double ionization(NSDI)of helium by strong two-color pulses with the classical three-dimensional ensemble model.The correlated momentum distribution in the direction parallel to the laser field exhibits an arc-like structure and the sum-energy spectrum shows a sharp peak for the NSDI of helium in the two-color fields.Back analysis reveals that the narrow time interval during which recollisions occur,the low returning energy and the short time delay between recollision and double ionization lead to the novel momentum and energy correlations.

  13. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...

  14. Electronic integrated disease surveillance system and pathogen asset control system.

    Science.gov (United States)

    Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K

    2012-06-20

    Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).

  15. Electronic Integrated Disease Surveillance System and Pathogen Asset Control System

    Directory of Open Access Journals (Sweden)

    Tom G. Wahl

    2012-06-01

    Full Text Available Electronic Integrated Disease Surveillance System (EIDSS has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP sponsored by the US Defense Threat Reduction Agency (DTRA.

  16. Evidence for strong electron correlations in graphene molecular fragments: Theory and experiments on two-photon absorptions

    Science.gov (United States)

    Aryanpour, Karan; Roberts, Adam; Sandhu, Arvinder; Shukla, Alok; Mazumdar, Sumit

    2013-03-01

    Historically, the occurrence of the lowest two-photon state below the optical one-photon state in linear polyenes, polyacetylenes and polydiacetylenes provided the strongest evidence for strong electron correlations in these linear π-conjugated systems. We demonstrate similar behavior in several molecular fragments of graphene with D6 h symmetry, theoretically and experimentally. Theoretically, we have calculated one versus two-photon absorptions in coronene, two different hexabenzocoronenes and circumcoronene, within the Pariser-Parr-Pople π-electron Hamiltonian using high order configuration interaction. Experimentally, we have performed z-scan measurements using a white light super-continuum source on coronene and hexa-peri-hexabenzocoronene to determine frequency-dependent two-photon absorption coefficients, for comparison to the ground state absorptions. Excellent agreement between experiment and theory in our work gives strong evidence for significant electron correlations between the π-electrons in the graphene molecular fragments. We particularly benchmark high order electron-hole excitations in graphene fragments as a key element behind the agreement between theory and experiment in this work. We acknowledge NSF-CHE-1151475 grant as our funding source.

  17. Pairing correlations and transitions in nuclear systems

    CERN Document Server

    Belic, A; Hjorth-Jensen, M

    2004-01-01

    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. A simple pairing interaction model is used in order to study and classify an eventual pairing phase transition in finite fermionic systems such as nuclei. We show that systems with as few as 10-16 fermions can exhibit clear features reminiscent of a phase transition.

  18. Traffic Sign Recognition System based on Cambridge Correlator Image Comparator

    Directory of Open Access Journals (Sweden)

    J. Turan

    2012-06-01

    Full Text Available Paper presents basic information about application of Optical Correlator (OC, specifically Cambridge Correlator, in system to recognize of traffic sign. Traffic Sign Recognition System consists of three main blocks, Preprocessing, Optical Correlator and Traffic Sign Identification. The Region of Interest (ROI is defined and chosen in preprocessing block and then goes to Optical Correlator, where is compared with database of Traffic Sign. Output of Optical Correlation is correlation plane, which consist of highly localized intensities, know as correlation peaks. The intensity of spots provides a measure of similarity and position of spots, how images (traffic signs are relatively aligned in the input scene. Several experiments have been done with proposed system and results and conclusion are discussed.

  19. Spectroscopic evidence for negative electronic compressibility in a quasi-three-dimensional spin–orbit correlated metal

    Energy Technology Data Exchange (ETDEWEB)

    He, Junfeng; Hogan, T.; Mion, Thomas R.; Hafiz, H.; He, Y.; Denlinger, J. D.; Mo, S-K.; Dhital, C.; Chen, X.; Lin, Qisen; Zhang, Y.; Hashimoto, M.; Pan, H.; Lu, D. H.; Arita, M.; Shimada, K.; Markiewicz, R. S.; Wang, Z.; Kempa, K.; Naughton, M. J.; Bansil, A.; Wilson, S. D.; He, Rui-Hua

    2015-04-27

    Negative compressibility is a sign of thermodynamic instability of open1, 2, 3 or non-equilibrium4, 5 systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by positive compressibility of the others. Manifestations of this effect have so far been limited to low-dimensional dilute electron systems6, 7, 8, 9, 10, 11. Here, we present evidence from angle-resolved photoemission spectroscopy (ARPES) for negative electronic compressibility (NEC) in the quasi-three-dimensional (3D) spin–orbit correlated metal (Sr1-xLax)3Ir2O7. Increased electron filling accompanies an anomalous decrease of the chemical potential, as indicated by the overall movement of the deep valence bands. Such anomaly, suggestive of NEC, is shown to be primarily driven by the lowering in energy of the conduction band as the correlated bandgap reduces. Our finding points to a distinct pathway towards an uncharted territory of NEC featuring bulk correlated metals with unique potential for applications in low-power nanoelectronics and novel metamaterials.

  20. Electronic Properties of Tin and Bismuth from Angular Correlation of Annihilation Photons

    DEFF Research Database (Denmark)

    Mogensen, O.E.; Trumpy, Georg

    1969-01-01

    ) deformed bismuth. For both metals, the single-crystal angular-correlation curves lie near to the free-electron parabola. The tin curves show more anisotropy than the bismuth curves. An important result is the clear anisotropy found in the high-momentum part of the curves—the tails—for both metals. Little...

  1. Decorrelation and fringe visibility: On the limiting behavior of varous electronic speckle pattern correlation interferometers

    DEFF Research Database (Denmark)

    Owner-Petersen, Mette

    1996-01-01

    I discuss the behavior of fringe formation in image-plane electronic speckle-pattern correlation interferometers as the limit of total decorrelation is approached. The interferometers are supposed to operate in the difference mode. The effect of decorrelation will be a decrease in fringe visibility...

  2. Electron Correlation Effects on the Longitudinal Polarizabilities and Second Hyperpolarizabilities of Polyenes: A Finite Field Study

    Directory of Open Access Journals (Sweden)

    Qingxu Li

    2014-01-01

    perturbation theory and coupled cluster with singles and doubles method. Calculations with density functional theory are also made to compare with wave-function based methods. Our study shows that electron correlation reduces linear longitudinal polarizability and enhances longitudinal second hyperpolarizability for short polyenes, but the effects decrease as the chain increases; choosing appropriate basis sets is important when quantitative results are required.

  3. Electron impact ionization of helium isoelectronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Talukder, M.R. [Rajshahi Univ., Dept. of Applied Physics and Electronic Engineering (Bangladesh)

    2008-09-15

    The electron impact single ionization cross sections, on the helium isoelectronic He, Li{sup 1+}, B{sup 3+}, C{sup 4+} N{sup 5+} O{sup 6+} Ne{sup 8+}, Na{sup 9+}. Ar{sup +16}, Fe{sup 24+}, Mo{sup 41+} Ag{sup 45+}, and U{sup 90+} targets, are calculated modifying the simplified Bell (SBELL) model [Eur. Phys. J. D 46, 281 (2008)]. The results of the present analysis are compared with the available experimental and theoretical data. The modified SBELL (MSBELL) model, incorporating the ionic correction factor in it, produces excellent agreement with the experimental data and theoretical calculations for all the two-electron systems, neutral or ions. This model may be a prudent choice in plasma modeling due to its simple inherent structure. (authors)

  4. Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Lee [Los Alamos National Laboratory

    2009-01-01

    We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort pulses in the extreme ultraviolet (XUV) regime with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for pulses with mean frequencies in the so-called 'sequential' regime ({Dirac_h}{omega} > 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct ('nonsequential') and indirect ('sequential') double photoionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route towards measuring the pulse duration of x-ray free-electron laser (XFEL) pulses.

  5. The effects of local correlations on the electronic structure of FeSe

    Science.gov (United States)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  6. Correlated micro-photoluminescence and electron microscopy studies of the same individual heterostructured semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Todorovic, J; Van Helvoort, A T J [Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim (Norway); Moses, A F; Karlberg, T; Olk, P; Dheeraj, D L; Fimland, B O; Weman, H, E-mail: a.helvoort@ntnu.no [Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491, Trondheim (Norway)

    2011-08-12

    To correlate optical properties to structural characteristics, we developed a robust strategy for characterizing the same individual heterostructured semiconductor nanowires (NWs) by alternating low temperature micro-photoluminescence ({mu}-PL), low voltage scanning (transmission) electron microscopy and conventional transmission electron microscopy. The NWs used in this work were wurtzite GaAs core with zinc blende GaAsSb axial insert and AlGaAs radial shell grown by molecular beam epitaxy. The series of experiments demonstrated that high energy (200 kV) electrons are detrimental for the optical properties, whereas medium energy (5-30 kV) electrons do not affect the PL response. Thus, such medium energy electrons can be used to select NWs for correlated optical-structural studies prior to {mu}-PL or in NW device processing. The correlation between the three main {mu}-PL bands and crystal phases of different compositions, present in this heterostructure, is demonstrated for selected NWs. The positions where a NW fractures during specimen preparation can considerably affect the PL spectra of the NW. The effects of crystal-phase variations and lattice defects on the optical properties are discussed. The established strategy can be applied to other nanosized electro-optical materials, and other characterization tools can be incorporated into this routine.

  7. Micro through nanostructure investigations of polycrystalline CdTe: Correlations with processing and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Moutinho, H.R.; Hasoon, F.A.; Keyes, B.M.; Ahrenkiel, R.K.; Al-Jassim, M.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Birkmire, R.W. [Univ. of Delaware, Newark, DE (United States). Inst. of Energy Conversion

    1994-12-31

    This paper provides first-time correlations of the nanoscale physical structure with the macroscale electronic and optical properties of CdTe/CdS thin films for several standard deposition techniques. Atomic force microscopy (AFM) was used to determine the micro and nanostructures of polycrystalline CdTe thin films used in photovoltaic (PV) cell fabrication. Photoluminescence (PL) was used to determine band gap, relative defect density, and photoexcited carrier lifetime. Nanostructural features (nanograins), beyond the spatial resolution of conventional scanning electron microscopy (SEM), were observed and characterized in as-deposited CdTe. The correlations of the proximal probe measurements of the physical structure with the optically determined electronic properties were used to show the effects of the chemical and heat processing, directly and conclusively. A particularly striking effect with important implications for PV applications is the diffusion of sulfur across the CdTe/CdS interface during heat treatment.

  8. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision

    Science.gov (United States)

    Kukulski, Wanda; Schorb, Martin; Welsch, Sonja; Picco, Andrea

    2011-01-01

    Correlative electron and fluorescence microscopy has the potential to elucidate the ultrastructural details of dynamic and rare cellular events, but has been limited by low precision and sensitivity. Here we present a method for direct mapping of signals originating from ∼20 fluorescent protein molecules to 3D electron tomograms with a precision of less than 100 nm. We demonstrate that this method can be used to identify individual HIV particles bound to mammalian cell surfaces. We also apply the method to image microtubule end structures bound to mal3p in fission yeast, and demonstrate that growing microtubule plus-ends are flared in vivo. We localize Rvs167 to endocytic sites in budding yeast, and show that scission takes place halfway through a 10-s time period during which amphiphysins are bound to the vesicle neck. This new technique opens the door for direct correlation of fluorescence and electron microscopy to visualize cellular processes at the ultrastructural scale. PMID:21200030

  9. System Driven by Correlated Gaussian Noises Related with Disorder

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui

    2007-01-01

    A system driven by correlated Gaussian noises related with disorder is investigated. The Fokker-Planck equation (FPE) for the system is derived. Using the FPE derived, some systems driven by correlated Gaussian noises related with disorder can be investigated for Brownian motors, nonequilibrium transition, resonant activation,stochastic resonance, and so on. We only give one example: i.e., using the FPE derived, we study the resonant activation for a single motor protein model with correlated noises related to disorder. Since the correlated noise related to disorder usually exists with the friction, for the temperature, and so on, our results have generic physical meanings for physics, chemistry, biology and other sciences.

  10. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  11. Can X-ray constrained Hartree-Fock wavefunctions retrieve electron correlation?

    Science.gov (United States)

    Genoni, Alessandro; Dos Santos, Leonardo H R; Meyer, Benjamin; Macchi, Piero

    2017-03-01

    The X-ray constrained wavefunction (XC-WF) method proposed by Jayatilaka [Jayatilaka & Grimwood (2001) ▸, Acta Cryst. A57, 76-86] has attracted much attention because it represents a possible third way of theoretically studying the electronic structure of atoms and molecules, combining features of the more popular wavefunction- and DFT-based approaches. In its original formulation, the XC-WF technique extracts statistically plausible wavefunctions from experimental X-ray diffraction data of molecular crystals. A weight is used to constrain the pure Hartree-Fock solution to the observed X-ray structure factors. Despite the wavefunction being a single Slater determinant, it is generally assumed that its flexibility could guarantee the capture, better than any other experimental model, of electron correlation effects, absent in the Hartree-Fock Hamiltonian but present in the structure factors measured experimentally. However, although the approach has been known for long time, careful testing of this fundamental hypothesis is still missing. Since a formal demonstration is impossible, the validation can only be done heuristically and, to accomplish this task, X-ray constrained Hartree-Fock calculations have been performed using structure factor amplitudes computed at a very high correlation level (coupled cluster) for selected molecules in isolation, in order to avoid the perturbations due to intermolecular interactions. The results show that a single-determinant XC-WF is able to capture the electron correlation effects only partially. The largest amount of electron correlation is extracted when: (i) a large external weight is used (much larger than what has normally been used in XC-WF calculations using experimental data); and (ii) the high-order reflections, which carry less information on the electron correlation, are down-weighted (or even excluded), otherwise they would bias the fitting towards the unconstrained Hartree-Fock wavefunction.

  12. Can X-ray constrained Hartree–Fock wavefunctions retrieve electron correlation?

    Directory of Open Access Journals (Sweden)

    Alessandro Genoni

    2017-03-01

    Full Text Available The X-ray constrained wavefunction (XC-WF method proposed by Jayatilaka [Jayatilaka & Grimwood (2001, Acta Cryst. A57, 76–86] has attracted much attention because it represents a possible third way of theoretically studying the electronic structure of atoms and molecules, combining features of the more popular wavefunction- and DFT-based approaches. In its original formulation, the XC-WF technique extracts statistically plausible wavefunctions from experimental X-ray diffraction data of molecular crystals. A weight is used to constrain the pure Hartree–Fock solution to the observed X-ray structure factors. Despite the wavefunction being a single Slater determinant, it is generally assumed that its flexibility could guarantee the capture, better than any other experimental model, of electron correlation effects, absent in the Hartree–Fock Hamiltonian but present in the structure factors measured experimentally. However, although the approach has been known for long time, careful testing of this fundamental hypothesis is still missing. Since a formal demonstration is impossible, the validation can only be done heuristically and, to accomplish this task, X-ray constrained Hartree–Fock calculations have been performed using structure factor amplitudes computed at a very high correlation level (coupled cluster for selected molecules in isolation, in order to avoid the perturbations due to intermolecular interactions. The results show that a single-determinant XC-WF is able to capture the electron correlation effects only partially. The largest amount of electron correlation is extracted when: (i a large external weight is used (much larger than what has normally been used in XC-WF calculations using experimental data; and (ii the high-order reflections, which carry less information on the electron correlation, are down-weighted (or even excluded, otherwise they would bias the fitting towards the unconstrained Hartree–Fock wavefunction.

  13. Can X-ray constrained Hartree–Fock wavefunctions retrieve electron correlation?

    Science.gov (United States)

    Genoni, Alessandro; Dos Santos, Leonardo H. R.; Meyer, Benjamin; Macchi, Piero

    2017-01-01

    The X-ray constrained wavefunction (XC-WF) method proposed by Jayatilaka [Jayatilaka & Grimwood (2001) ▸, Acta Cryst. A57, 76–86] has attracted much attention because it represents a possible third way of theoretically studying the electronic structure of atoms and molecules, combining features of the more popular wavefunction- and DFT-based approaches. In its original formulation, the XC-WF technique extracts statistically plausible wavefunctions from experimental X-ray diffraction data of molecular crystals. A weight is used to constrain the pure Hartree–Fock solution to the observed X-ray structure factors. Despite the wavefunction being a single Slater determinant, it is generally assumed that its flexibility could guarantee the capture, better than any other experimental model, of electron correlation effects, absent in the Hartree–Fock Hamiltonian but present in the structure factors measured experimentally. However, although the approach has been known for long time, careful testing of this fundamental hypothesis is still missing. Since a formal demonstration is impossible, the validation can only be done heuristically and, to accomplish this task, X-ray constrained Hartree–Fock calculations have been performed using structure factor amplitudes computed at a very high correlation level (coupled cluster) for selected molecules in isolation, in order to avoid the perturbations due to intermolecular interactions. The results show that a single-determinant XC-WF is able to capture the electron correlation effects only partially. The largest amount of electron correlation is extracted when: (i) a large external weight is used (much larger than what has normally been used in XC-WF calculations using experimental data); and (ii) the high-order reflections, which carry less information on the electron correlation, are down-weighted (or even excluded), otherwise they would bias the fitting towards the unconstrained Hartree–Fock wavefunction. PMID:28250952

  14. Sturmian bases for two-electron systems in hyperspherical coordinates

    Science.gov (United States)

    Abdouraman, A.; Frapiccini, A. L.; Hamido, A.; Mota-Furtado, F.; O'Mahony, P. F.; Mitnik, D.; Gasaneo, G.; Piraux, B.

    2016-12-01

    We give a detailed account of an ab initio spectral approach for the calculation of energy spectra of two active electron atoms in a system of hyperspherical coordinates. In this system of coordinates, the Hamiltonian has the same structure as the one of atomic hydrogen with the Coulomb potential expressed in terms of a hyperradius and the nuclear charge replaced by an angle dependent effective charge. The simplest spectral approach consists in expanding the hyperangular wave function in a basis of hyperspherical harmonics. This expansion however, is known to be very slowly converging. Instead, we introduce new hyperangular Sturmian functions. These functions do not have an analytical expression but they treat the first term of the multipole expansion of the electron-electron interaction potential, namely the radial electron correlation, exactly. The properties of these new functions are discussed in detail. For the basis functions of the hyperradius, several choices are possible. In the present case, we use Coulomb-Sturmian functions of half integer angular momentum. We show that, in the case of H-, the accuracy of the energy and the width of the resonance states obtained through a single diagonalization of the Hamiltonian, is comparable to the values given by state-of-the-art methods while using a much smaller basis set. In addition, we show that precise values of the electric-dipole oscillator strengths for {{S}}\\to {{P}} transitions in helium are obtained thereby confirming the accuracy of the bound state wave functions generated with the present method.

  15. Awareness of Electronic Banking System among Management Students in Pakistan

    Directory of Open Access Journals (Sweden)

    Zeeshan FAREED

    2014-06-01

    Full Text Available Electronic Banking is an essential sector of banking industry. E-banking services are gaining the attention of conventional bank’s customers rapidly. It has brought the revolutionary changes in the Pakistan banking industry in terms of customer and business perspectives. Electronic banking has got popularity in the developed as well as developing countries because it saves people time, reduces costs and people have access to all banking services on the click of a button. More often, the new innovated system allows the customers to touch their accounts at home using a mobile device or electronic terminals. This research paper focuses on growth and awareness of electronic banking among Management Students of the Okara, Pakistan. Questionnaire on 5 point Likert scale was developed to find the views of 200 respondents. Frequency distribution and correlation analysis were employed on data. The results revealed that 74% of the students are well aware about ATM and 82% of management students of our sample populations believe that e-banking is very convenient system of banking. 74% of the Management students feel secure when they have money in credit and debit card while 82% of the students prefer e-banking over traditional banking.

  16. Quantum Interferometry and Correlated Two-Electron Wave-Packet Observation in Helium

    CERN Document Server

    Ott, Christian; Raith, Philipp; Meyer, Kristina; Laux, Martin; Zhang, Yizhu; Hagstotz, Steffen; Ding, Thomas; Heck, Robert; Pfeifer, Thomas

    2012-01-01

    The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative ...

  17. The EH101 Electronic Instrument Systems

    Directory of Open Access Journals (Sweden)

    Kieth N. Atkin

    1990-04-01

    Full Text Available This paper describes the background to the introduction of an electronic instrument system on the Anglo-Italian EH101 helicopter. The demanded flexibility to accommodate the display needs of several roles leading logically to the adoption of full colour multi-purpose display surfaces and the drive to achieve maximum commonality between military and civil variants is discussed. The configurations arrived at for both variants are described together with the operating philosophy and display formats developed during an ongoing simulator program. The paper also deals with a detailed description of the hardware implementation of the EIS including the fully integrated systems architecture and details of the symbol generators (SGs, display units (DUs and display mode selectors (DMSs. Emphasis is placed on the robust integrity characteristics and reversionary switching philosophy of the system."

  18. New Electron Gun System for BEPCII

    CERN Document Server

    Liu, Bo; Long Chi, Yun; Zhang, Chuang

    2005-01-01

    The new electron gun system for BEPCII has been put into operation since Nov. 2004. The article describes the design, experiment and operation of this new system. The design current of the gun is 10 A for the pulse lengths of 1 ns, 2.5 ns and 1 μs with repetition rate of 50 Hz. The gun is operated with a pulsed high voltage power supply which can provide up to 200 kV high voltage. Computer simulations have been carried out in the design stage, including simulation of the gun geometry and beam transportation. Some important relation curves are obtained during the experiment. Two-bunch operation is available and some elementary tests have been performed. New scheme of the gun control system based on EPICS is also presented. The real operation shows that the design and manufacturing is basically successful.

  19. Quantum Transport in Strongly Correlated Systems

    DEFF Research Database (Denmark)

    Bohr, Dan

    2007-01-01

    the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second...... describes the leads in momentum-space. We benchmark each of these schemes against exact Greens function results for the conductance in the non-interacting limit, thus demonstrating the accuracy of the lead descriptions. We first use the DMRG implementations to calculate the conductance of an interacting...... spinless resonant 7 site chain, studying the effect of repulsive interaction inside the chain. We demonstrate that both weak and strong interactions inside the chain lead to Coulomb blockade renormalization of the resonances in the conductance spectrum. Additionally the strongly interacting case sharpens...

  20. Quantum Transport in Strongly Correlated Systems

    DEFF Research Database (Denmark)

    Bohr, Dan

    2007-01-01

    describes the leads in momentum-space. We benchmark each of these schemes against exact Greens function results for the conductance in the non-interacting limit, thus demonstrating the accuracy of the lead descriptions. We first use the DMRG implementations to calculate the conductance of an interacting...... suppression when having the interaction inside the chain, and conjecture that the enhancement by interacting contacts is universal. This result challenges the commonly used division between interacting transport region and non-interacting leads, and shows that care should be taken when making....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...

  1. Quantum Correlations Relativity for Continuous-Variables Bipartite Systems

    CERN Document Server

    Dugic, M; Jeknic-Dugic, J

    2011-01-01

    Based on the so-called Entanglement Relativity, we point out relativity of the more general non-classical (quantum) correlations for the continuous-variables bipartite systems. Our observation points out that quantum processing resources based on the non-classical correlations (non-zero quantum discord) are ubiquitous in such systems.

  2. Fluctuating Potential Barrier System with Correlated Spatial Noises

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui

    2004-01-01

    In this paper, we study a fluctuating potential barrier system with correlated spatial noises. Study shows that for this system, there is the resonant activation over the fluctuating potential barrier, and that the correlation between the different spatial noises can enhance (or weaken) the resonant activation.

  3. Electronic journal management systems experiences from the field

    CERN Document Server

    Ives, Gary W

    2013-01-01

    Discover how to manage your library's electronic journals?with tips from those who've already met the challenge!The explosive growth of electronic journals presents unique challenges for libraries. Electronic Journal Management Systems: Experiences from the Field comprehensively examines these complex topics, including explanations of the automated systems libraries have developed or adopted, licensing issues, and the provision of access to electronic journals. Respected library professionals discuss their own experiences in the implementation and use of electronic journal management systems,

  4. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  5. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  6. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  7. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  8. Correlation effects on electron-phonon coupling in semiconductors: Many-body theory along thermal lines

    Science.gov (United States)

    Monserrat, Bartomeu

    2016-03-01

    A method is proposed for the inclusion of electron correlation in the calculation of the temperature dependence of band structures arising from electron-phonon coupling. It relies on an efficient exploration of the vibrational phase space along the recently introduced thermal lines. Using the G0W0 approximation, the temperature dependence of the direct gaps of diamond, silicon, lithium fluoride, magnesium oxide, and titanium dioxide is calculated. Within the proposed formalism, a single calculation at each temperature of interest is sufficient to obtain results of the same accuracy as in alternative, more expensive methods. It is shown that many-body contributions beyond semilocal density functional theory modify the electron-phonon coupling strength by almost 50 % in diamond, silicon, and titanium dioxide, but by less than 5 % in lithium flouride and magnesium oxide. The results reveal a complex picture regarding the validity of semilocal functionals for the description of electron-phonon coupling.

  9. Nuclear quantum and electronic exchange-correlation effects on the high pressure phase diagram of lithium

    Science.gov (United States)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron character. However, increased core/valence electron overlap under compression leads to surprisingly complex behavior. Dense lithium is known to posses a maximum in the melting line, a metal to semiconductor phase transition around 80GPa, reemergent metallicity around 120GPa, and low coordination solid and liquid phases. In addition to its complex electronic structure at high pressure, the atomic mass of lithium is low enough that nuclear quantum effects could have a nontrivial impact on its phase diagram. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. Additionally, we have determined the robustness of previously predicted tetrahedral clustering in the dense liquid to the inclusion of nuclear quantum effects and approximate treatment of electronic exchange-correlation effects.

  10. Thermal currents in highly correlated systems

    OpenAIRE

    MORENO, J; Coleman, P.

    1996-01-01

    Conventional approaches to thermal conductivity in itinerant systems neglect the contribution to thermal current due to interactions. We derive this contribution to the thermal current and show how it produces important corrections to the thermal conductivity in anisotropic superconductors. We discuss the possible relevance of these corrections for the interpretation of the thermal conductivity of anisotropic superconductors.

  11. Fast electron generation by Coulomb scattering on spatially correlated ions in a strong laser field

    CERN Document Server

    Bauch, S

    2009-01-01

    Electrons colliding with spatially fixed ions in strong laser fields are investigated by solving the time-dependent Schr\\"odinger equation. Considering first simple one-dimensional model systems, the mechanisms and energy spectra of fast electrons are analyzed, starting from collisions on a single ion. By using these electrons as projectiles for a second and third collision, the maximum possible energy obtained can be significantly increased. We then generalize the analysis to 2D systems where additional angular degrees of freedom lead to a drastic loss of efficiency. This problem can be overcome by introducing external confinements, which allow to focus the electrons and increase the intensity of high-energy electrons.

  12. Disorder-related effects in electron systems of low dimensionality

    Science.gov (United States)

    Gramada, Apostol

    1999-08-01

    This dissertation reports on research we have done on different topics in the physics of low-dimensional disordered electron systems. For two-dimensional systems in the presence of a magnetic field, we approach aspects related to the delocalized states (levitation, structure and position in multilayer systems) and the problem of generation of high harmonics of the cyclotron resonance. We estimate that the delocalized state ``levitate'' away from the center of the Landau level as the inverse of the fourth power of the magnetic field. In a two-layer system, the delocalized states repel each other in a manner similar to the usual level repulsion in quantum mechanics. We calculate the position and structure of the delocalized states. In the limit of the weak magnetic field, we establish the physics and develop the quantitative theory which explain the recent observation of the enhancement of the harmonics of the cyclotron resonance in this limit. For the case of one-dimensional systems, we study the effect of inhomogeneity on the tunnel density of states in a Luttinger liquid. We show that for a periodic inhomogeneity, an additional anomaly develops in the electron density of states and we find its position and magnitude. In the case of a disordered inhomogeneity, the plasmons associated with the low-energy excitations of the system become localized and, as a consequence, the correlator of the fluctuations of the densities of states is modified, acquiring an oscillatory dependence on the distance.

  13. Development of a practical multicomponent density functional for electron-proton correlation to produce accurate proton densities

    Science.gov (United States)

    Yang, Yang; Brorsen, Kurt R.; Culpitt, Tanner; Pak, Michael V.; Hammes-Schiffer, Sharon

    2017-09-01

    Multicomponent density functional theory (DFT) enables the consistent quantum mechanical treatment of both electrons and protons. A major challenge has been the design of electron-proton correlation (epc) functionals that produce even qualitatively accurate proton densities. Herein an electron-proton correlation functional, epc17, is derived analogously to the Colle-Salvetti formalism for electron correlation and is implemented within the nuclear-electronic orbital (NEO) framework. The NEO-DFT/epc17 method produces accurate proton densities efficiently and is promising for diverse applications.

  14. Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.

    Science.gov (United States)

    Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J

    2016-09-09

    The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.

  15. The n-level spectral correlations for chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Taro [Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Mueller, Sebastian [Department of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom)

    2009-09-18

    We study the n-level spectral correlation functions of classically chaotic quantum systems without time-reversal symmetry. According to Bohigas, Giannoni and Schmit's universality conjecture, it is expected that the correlation functions are in agreement with the prediction of the circular unitary ensemble (CUE) of random matrices. A semiclassical resummation formalism allows us to express the correlation functions as sums over pseudo-orbits. Using an extended version of the diagonal approximation on the pseudo-orbit sums, we derive the n-level correlation functions identical to the n x n determinantal correlation functions of the CUE.

  16. [Central nervous system malformations: neurosurgery correlates].

    Science.gov (United States)

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  17. A Statistical Correlation Between Low L-shell Electrons Measured by NOAA Satellites and Strong Earthquakes

    Science.gov (United States)

    Fidani, C.

    2015-12-01

    More than 11 years of the Medium Energy Protons Electrons Detector data from the NOAA polar orbiting satellites were analyzed. Significant electron counting rate fluctuations were evidenced during geomagnetic quiet periods by using a set of adiabatic coordinates. Electron counting rates were compared to earthquakes by defining a seismic event L-shell obtained radially projecting the epicenter geographical positions to a given altitude. Counting rate fluctuations were grouped in every satellite semi-orbit together with strong seismic events and these were chosen with the L-shell coordinates close to each other. Electron data from July 1998 to December 2011 were compared for nearly 1,800 earthquakes with magnitudes larger than or equal to 6, occurring worldwide. When considering 30 - 100 keV energy channels by the vertical NOAA telescopes and earthquake epicenter projections at altitudes greater that 1,300 km, a 4 sigma correlation appeared where time of particle precipitations Tpp occurred 2 - 3 hour prior time of large seismic events Teq. This was in physical agreement with different correlation times obtained from past studies that considered particles with greater energies. The correlation suggested a 4-8 hour advance in preparedness of strong earthquakes influencing the ionosphere. Considering this strong correlation between earthquakes and electron rate fluctuations, and the hypothesis that such fluctuations originated with magnetic disturbances generated underground, a small scale experiment with low cost at ground level is advisable. Plans exists to perform one or more unconventional experiments around an earthquake affected area by private investor in Italy.

  18. Complexity in electronic negotiation support systems.

    Science.gov (United States)

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  19. Micro through nanostructure investigations of polycrystalline CdTe. Correlations with processing and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D.H.; Moutinho, H.R.; Hasoon, F.S.; Keyes, B.M.; Ahrenkiel, R.K.; Al-Jassim, M.; Kazmerski, L.L. [National Renewable Energy Laboratory, Golden, CO (United States); Birkmire, R.W. [Institute of Energy Conversion, University of Delaware, Newark, DW (United States)

    1996-06-10

    This paper provides first-time correlations of the nanoscale physical structure with the macroscale electronic and optical properties of CdTe/CdS thin films for several standard deposition techniques. Atomic force microscopy (AFM) was used to determine the micro and nanostructures of polycrystalline CdTe thin films used in photovoltaic (PV) cell fabrication. Photoluminescence (PL) was used to determine band gap, relative defect density, and photoexcited carrier lifetime. Cross-sectional scanning tunneling microscopy (STM) was used to determine the nanoscale electronic properties. Nanostructural features (nanograins), beyond the spatial resolution of conventional scanning electron microscopy (SEM), were observed and characterized in as-deposited CdTe. The correlations of the proximal probe measurements of the physical and electronic structure with the optically determined electronic properties were used to show the effects of the chemical and heat processing, directly and conclusively. A particularly striking effect with important implications for PV applications is the diffusion of sulfur across the CdTe/CdS interface during heat treatment

  20. Radiation Risks and Mitigation in Electronic Systems

    CERN Document Server

    Todd, B

    2015-01-01

    Electrical and electronic systems can be disturbed by radiation-induced effects. In some cases, radiation-induced effects are of a low probability and can be ignored; however, radiation effects must be considered when designing systems that have a high mean time to failure requirement, an impact on protection, and/or higher exposure to radiat ion. High-energy physics power systems suffer from a combination of these effects: a high mean time to failure is required, failure can impact on protection, and the proximity of systems to accelerators increases the likelihood of radiation-induced events. This paper presents the principal radiation-induced effects, and radiation environments typical to high-energy physics. It outlines a procedure for designing and validating radiation-tolerant systems using commercial off-the-shelf components. The paper ends with a worked example of radiation-tolerant power converter controls that are being developed for the Large Hadron Collider and High Luminosity-Large Hadron Colli...

  1. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, Robert A.; Averitt, Richard D.

    2006-11-14

    Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale

  2. Electronic Correlations Decimate the Ferroelectric Polarization of Multiferroic HoMn2O5

    Science.gov (United States)

    Giovannetti, Gianluca; van den Brink, Jeroen

    2008-06-01

    We show that electronic correlations decimate the intrinsic ferroelectric polarization of multiferroic manganites RMn2O5, where R is a rare earth element. Such is manifest from ab initio band structure computations that account for the Coulomb interactions between the manganese 3d electrons—the root of magnetism in RMn2O5. Including these leads to an amplitude and direction of polarization of HoMn2O5 that agree with experiment. The decimation is caused by a near cancellation of the ionic polarization induced by the lattice and the electronic one due to valence charge redistributions.

  3. Educational Systems Design Implications of Electronic Publishing.

    Science.gov (United States)

    Romiszowski, Alexander J.

    1994-01-01

    Discussion of electronic publishing focuses on the four main purposes of media in general: communication, entertainment, motivation, and education. Highlights include electronic journals and books; hypertext; user control; computer graphics and animation; electronic games; virtual reality; multimedia; electronic performance support;…

  4. Educational Systems Design Implications of Electronic Publishing.

    Science.gov (United States)

    Romiszowski, Alexander J.

    1994-01-01

    Discussion of electronic publishing focuses on the four main purposes of media in general: communication, entertainment, motivation, and education. Highlights include electronic journals and books; hypertext; user control; computer graphics and animation; electronic games; virtual reality; multimedia; electronic performance support;…

  5. Physics of Correlated Systems, Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Chris H. [University of Colorado at Boulder

    2014-06-25

    The funding of this DOE project has enabled the P.I. and his collaborators to tackle a number of problems involving nonperturbatively coupled atomic systems, including their interactions with each other and/or with an external electromagnetic field of the type provided by either a continuous-wave or a femtosecond short-pulse laser. The progress includes a new, deeper understanding of an old and famous theory of autoionization lineshapes, developed initially by Ugo Fano in 1935 and later extended in a highly cited 1961 article; the new result specifically is that in a collaboration with the Heidelberg group we have been able to demonstrate an unexpectedly simple behavior in the time domain that is relevant for modern short-pulse lasers. This study also demonstrates a way to modify and even control the lineshapes of unstable atomic and molecular energy levels.

  6. Angular correlations of photons from solution diffraction at a free-electron laser encode molecular structure

    Directory of Open Access Journals (Sweden)

    Derek Mendez

    2016-11-01

    Full Text Available During X-ray exposure of a molecular solution, photons scattered from the same molecule are correlated. If molecular motion is insignificant during exposure, then differences in momentum transfer between correlated photons are direct measurements of the molecular structure. In conventional small- and wide-angle solution scattering, photon correlations are ignored. This report presents advances in a new biomolecular structural analysis technique, correlated X-ray scattering (CXS, which uses angular intensity correlations to recover hidden structural details from molecules in solution. Due to its intense rapid pulses, an X-ray free electron laser (XFEL is an excellent tool for CXS experiments. A protocol is outlined for analysis of a CXS data set comprising a total of half a million X-ray exposures of solutions of small gold nanoparticles recorded at the Spring-8 Ångström Compact XFEL facility (SACLA. From the scattered intensities and their correlations, two populations of nanoparticle domains within the solution are distinguished: small twinned, and large probably non-twinned domains. It is shown analytically how, in a solution measurement, twinning information is only accessible via intensity correlations, demonstrating how CXS reveals atomic-level information from a disordered solution of like molecules.

  7. A quantum Monte Carlo study on electron correlation in all-metal aromatic clusters MAl4(-) (M = Li, Na, K, Rb, Cu, Ag and Au).

    Science.gov (United States)

    Brito, Bráulio Gabriel A; Hai, G-Q; Teixeira Rabelo, J N; Cândido, Ladir

    2014-05-14

    Using fixed-node diffusion quantum Monte Carlo (FN-DMC) simulation we investigate the electron correlation in all-metal aromatic clusters MAl4(-) (with M = Li, Na, K, Rb, Cu, Ag and Au). The electron detachment energies and electron affinities of the clusters are obtained. The vertical electron detachment energies obtained from the FN-DMC calculations are in very good agreement with the available experimental results. Calculations are also performed within the Hartree-Fock approximation, density-functional theory (DFT), and the couple-cluster (CCSD(T)) method. From the obtained results, we analyse the impact of the electron correlation effects in these bimetallic clusters and find that the correlation of the valence electrons contributes significantly to the detachment energies and electron affinities, varying between 20% and 50% of their total values. Furthermore, we discuss the electron correlation effects on the stability of the clusters as well as the accuracy of the DFT and CCSD(T) calculations in the present systems.

  8. Correlations in complex nonlinear systems and quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Innsbruck (Austria); Galla, Tobias [School of Physics and Astronomy, University of Manchester (United Kingdom)

    2010-07-01

    The dynamical evolution of classical complex systems such as coupled logistic maps or simple models of lattice gases and cellular automata can result in correlations between distant parts of the system. For the understanding of these systems, it is crucial to develop methods to characterize and quantify these multi-party correlations. On the other hand, the study of correlations between distant particles is also a central problem in the field of quantum information theory. There, correlations are often viewed as a resource and many tools have been developed for their characterization. In this talk, we explore the extent to which the tools from quantum information can be applied to study classical complex systems and whether they allow to study complex systems from a different perspective.

  9. Intrusion Correlation Using Ontologies and Multi-agent Systems

    Science.gov (United States)

    Isaza, Gustavo; Castillo, Andrés; López, Marcelo; Castillo, Luis; López, Manuel

    This paper proposes an ontology model for representing intrusion detection events and prevention rules, integrating multiagent systems based on unsupervised and supervised techniques for classification, correlation and pattern recognition. The semantic model describes attacks signatures, reaction tasks, axioms with alerts communication and correlation; nevertheless we have developed the prevention architecture integrated with another security tools. This article focuses on the approach to incorporate semantic operations that facilitate alerts correlation process and providing the inference and reasoning to the ontology model.

  10. Final Report: Novel Nanowires as Probes of Electron Coherence and Correlations in Restricted Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Natelson, Douglas

    2005-05-20

    This is a final summary report of the research conducted under DE-FG03-01ER45946, which was a research program using metal nanostructures to examine quantum coherence of electrons in normal and ferromagnetic metals. This program was the PI's first federal research grant, and by augmenting with other funds (Packard Foundation), this grant supported two graduate students during its duration. In normal metal nanostructures, quantum coherence was assessed by two independent techniques: weak localization magnetoresistance, and time-dependent universal conductance fluctuations (TDUCF noise). This work found that, in AuPd nanowires, the coherence information inferred from these two techniques were quantitatively consistent, even in the presence of magnetic impurity and phonon scattering. This confirmed theoretical expectations. However, in Ag and Au wires, the two techniques disagree, with noise measurements indicating a lower coherence length at low temperatures than weak localization. We have a candidate explanation for this, and are finishing these experiments. This work shows that subtleties remain in our understanding of coherence processes even in normal metals, particularly those involving the tunneling two-level systems that produce low frequency noise; this has relevance for quantum information processing implementations using metal devices. We have also studied time-dependent universal conductance fluctuations in ferromagnetic metals for the first time. The TDUCF in ferromagnetic nanowires show that the Cooperon channel of coherent processes is suppressed in these correlated materials. Furthermore, the surprisingly steep temperature dependence of the noise suggests that decoherence in these systems is through a different process than in normal metals. We are finishing measurements of ''magnetofingerprint'' conductance fluctuations in ferromagnetic metals to examine this unusual temperature dependence with an independent technique. This

  11. Correlated Electrons in Two Dimensions: The Fractional Quantum Hall Effect and More

    Science.gov (United States)

    Eisenstein, James

    2014-03-01

    A collection of electrons confined to move on a plane surface is surely one of the simplest many-body systems imaginable. But in spite of this apparent simplicity, a strong magnetic field applied perpendicular to the plane opens a door to a complex and beautiful world filled with many-body exotica. The magnetic field quenches the kinetic energy, leaving Coulomb interactions in control of the physics. The result has been a revolution in many-body physics comparable to that created by the discovery of superconductivity. Incompressible liquid ground states with fractionally charged quasiparticle excitations exhibit the quantized Hall effect at numerous discrete partial fillings of the lowest and first excited Landau level. The first examples of topological condensed matter, these many-body bulk insulators possess complex families of both conducting and neutral edge states at their boundaries. Highly correlated compressible phases of composite fermions also exist and may be viewed as progenitors of the various families of incompressible states. Multi-component two-dimensional systems with active discrete internal degrees of freedom (spin, layer, valley, etc.) display a wide array of broken symmetry states including ferromagnetism and exciton condensation. Now thirty years old, the field generically dubbed ``the fractional quantum Hall effect,'' remains extraordinarily vibrant. Once confined largely to GaAs/AlGaAs heterostructures, the fractional quantum Hall effect and its many relatives and offspring are now pursued in graphene, various oxide interfaces, and other materials. Some of the most fundamental aspects, including the exotic non-abelian quasiparticle statistics expected of some of the more subtle phases, have hardly been touched experimentally even as their potential for applications to quantum computation is alluring. In this talk, I will try to give a flavor of this enormous field, emphasizing current topics and possible future directions.

  12. Approximate Counting via Correlation Decay in Spin Systems

    CERN Document Server

    Li, Liang; Yin, Yitong

    2011-01-01

    We give the first deterministic fully polynomial-time approximation scheme (FPTAS) for computing the partition function of a two-state spin system on an arbitrary graph, when the parameters of the system satisfy the uniqueness condition on infinite regular trees. This condition is of physical significance and is believed to be the right boundary between approximable and inapproximable. The FPTAS is based on the correlation decay technique introduced by Bandyopadhyay and Gamarnik [SODA 06] and Weitz [STOC 06]. The classic correlation decay is defined with respect to graph distance. Although this definition has natural physical meanings, it does not directly support an FPTAS for systems on arbitrary graphs, because for graphs with unbounded degrees, the local computation that provides a desirable precision by correlation decay may take super-polynomial time. We introduce a notion of \\concept{computationally efficient correlation decay}, in which the correlation decay is measured in a refined metric instead of g...

  13. Irreducible many-body correlations in topologically ordered systems

    Science.gov (United States)

    Liu, Yang; Zeng, Bei; Zhou, D. L.

    2016-02-01

    Topologically ordered systems exhibit large-scale correlation in their ground states, which may be characterized by quantities such as topological entanglement entropy. We propose that the concept of irreducible many-body correlation (IMC), the correlation that cannot be implied by all local correlations, may also be used as a signature of topological order. In a topologically ordered system, we demonstrate that for a part of the system with holes, the reduced density matrix exhibits IMCs which become reducible when the holes are removed. The appearance of these IMCs then represents a key feature of topological phase. We analyze the many-body correlation structures in the ground state of the toric code model in external magnetic fields, and show that the topological phase transition is signaled by the IMCs.

  14. Electronic correlations at the alpha-gamma structural phase transition in paramagnetic iron

    OpenAIRE

    Leonov, I.; Poteryaev, A. I.; Anisimov, V. I.; Vollhardt, D.

    2010-01-01

    We compute the equilibrium crystal structure and phase stability of iron at the alpha(bcc)-gamma(fcc) phase transition as a function of temperature, by employing a combination of ab initio methods for calculating electronic band structures and dynamical mean-field theory. The magnetic correlation energy is found to be an essential driving force behind the alpha-gamma structural phase transition in paramagnetic iron.

  15. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  16. A combined experimental, theoretical, and Van't Hoff model study for identity methyl, proton, hydrogen atom, and hydride exchange reactions. Correlation with three-center four-, three-, and two-electron systems

    Science.gov (United States)

    Buck, Henk M.

    We have studied carbon transfer reactions following an SN2 reaction profile. With ab initio calculations and experimental geometries concerning the nature of the various complexes indicated as stable, intermediate, and transition state we were able to show the additional value of van't Hoff's tetrahedral configuration by changing its geometry via a trigonal pyramid into a trigonal bipyramid. The ratio of the apical bond and corresponding tetrahedral bond distances is then nearly 1.333. The relevance of this approach has also been shown for identity proton-(hydrogen atom-, and hydride-) in-line reactions. The use of this geometrical transmission will be demonstrated for the hydrogen bonding distances in e.g., DNA duplexes and other biological (supra) molecular systems.

  17. CERN Sells its Electronic Document Handling System

    CERN Multimedia

    2001-01-01

    The EDH team. Left to right: Derek Mathieson, Rotislav Titov, Per Gunnar Jonsson, Ivica Dobrovicova, James Purvis. Missing from the photo is Jurgen De Jonghe. In a 1 MCHF deal announced this week, the British company Transacsys bought the rights to CERN's Electronic Document Handling (EDH) system, which has revolutionised the Laboratory's administrative procedures over the last decade. Under the deal, CERN and Transacsys will collaborate on developing EDH over the coming 12 months. CERN will provide manpower and expertise and will retain the rights to use EDH, which will also be available freely to other particle physics laboratories. This development is an excellent example of the active technology transfer policy CERN is currently pursuing. The negotiations were carried out through a fruitful collaboration between AS and ETT Divisions, following the recommendations of the Technology Advisory Board, and with the help of SPL Division. EDH was born in 1991 when John Ferguson and Achille Petrilli of AS Divisi...

  18. Advances in Ultrafast Control and Probing of Correlated-Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Simon [Univ. of Oxford (United Kingdom). Clarendon Lab.; Rini, Matteo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dhesi, Sarnjeet S. [Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.; Schoenlein, Robert W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Cavalleri, Andrea [Univ. of Oxford (United Kingdom). Clarendon Lab.; Univ. of Hamburg (Germany). Max Planck Research Dept. for Structural Dynamics

    2011-02-24

    Here in this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium filling and bandwidth control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. Lastly, x-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain.

  19. Electron correlation effects on photoionization time delay in atomic Ar and Xe

    Science.gov (United States)

    Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.

    2016-05-01

    Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).

  20. Extension of Hopfield's Electron Transfer Model To Accommodate Site-Site Correlation.

    Science.gov (United States)

    Newton, Marshall D

    2015-11-19

    Extension of the Förster analogue for the ET rate constant (based on virtual intermediate electron detachment or attachment states) with inclusion of site-site correlation due to coulomb terms associated with solvent reorganization energy and the driving force, has been developed and illustrated for a simple three-state, two-mode model. The model is applicable to charge separation (CS), recombination (CR), and shift (CSh) ET processes, with or without an intervening bridge. The model provides a unified perspective on the role of virtual intermediate states in accounting for the thermal Franck-Condon weighted density of states (FCWD), the gaps controlling superexchange coupling, and mean absolute redox potentials, with full accommodation of site-site coulomb interactions. Two types of correlation have been analyzed: aside from the site-site correlation due to coulomb interactions, we have emphasized the intrinsic "nonorthogonality" which generally pertains to reaction coordinates (RCs) for different ET processes involving multiple electronic states, as may be expressed by suitably defined direction cosines (cos(θ)). A pair of RCs may be nonorthogonal even when the site-site coulomb correlations are absent. While different RCs are linearly independent in the mathematical sense for all θ ≠ 0°, they are independent in the sense of being "uncorrelated" only in the limit of orthogonality (θ = 90°). Application to more than two coordinates is straightforward and may include both discrete and continuum contributions.