WorldWideScience

Sample records for correct wind measurements

  1. Evaluating anemometer drift: A statistical approach to correct biases in wind speed measurement

    Science.gov (United States)

    Azorin-Molina, Cesar; Asin, Jesus; McVicar, Tim R.; Minola, Lorenzo; Lopez-Moreno, Juan I.; Vicente-Serrano, Sergio M.; Chen, Deliang

    2018-05-01

    Recent studies on observed wind variability have revealed a decline (termed "stilling") of near-surface wind speed during the last 30-50 years over many mid-latitude terrestrial regions, particularly in the Northern Hemisphere. The well-known impact of cup anemometer drift (i.e., wear on the bearings) on the observed weakening of wind speed has been mentioned as a potential contributor to the declining trend. However, to date, no research has quantified its contribution to stilling based on measurements, which is most likely due to lack of quantification of the ageing effect. In this study, a 3-year field experiment (2014-2016) with 10-minute paired wind speed measurements from one new and one malfunctioned (i.e., old bearings) SEAC SV5 cup anemometer which has been used by the Spanish Meteorological Agency in automatic weather stations since mid-1980s, was developed for assessing for the first time the role of anemometer drift on wind speed measurement. The results showed a statistical significant impact of anemometer drift on wind speed measurements, with the old anemometer measuring lower wind speeds than the new one. Biases show a marked temporal pattern and clear dependency on wind speed, with both weak and strong winds causing significant biases. This pioneering quantification of biases has allowed us to define two regression models that correct up to 37% of the artificial bias in wind speed due to measurement with an old anemometer.

  2. Bias Correction and Random Error Characterization for the Assimilation of HRDI Line-of-Sight Wind Measurements

    Science.gov (United States)

    Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.

  3. A method of measuring and correcting tilt of anti - vibration wind turbines based on screening algorithm

    Science.gov (United States)

    Xiao, Zhongxiu

    2018-04-01

    A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.

  4. Errors and Correction of Precipitation Measurements in China

    Institute of Scientific and Technical Information of China (English)

    REN Zhihua; LI Mingqin

    2007-01-01

    In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the "horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper.A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.

  5. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    , the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  6. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  7. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.

    Science.gov (United States)

    Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng

    2018-03-05

    The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  9. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  10. The effect of wind farms on vultures in northern Spain - fatalities behaviour and correction measures

    Energy Technology Data Exchange (ETDEWEB)

    Camina, Alvaro

    2011-07-01

    Full text: Spain is one of the leading countries on wind energy, accounting for 20,155 MW installed by 2010. The study has been made in a large area, 300 km long and 50 km width, extending over eight provinces accounting for 170 wind farms and 4605 turbines. 89 wind farms were sampled between 2001 and 2009 for bird fatalities. Collisions involved 2191 griffon vultures Gyps fulvus, the most affected species with 75% of them being adult birds. Other species colliding were the cinereous vulture Aegypius monachus (2 individuals) and the Egyptian vulture Neophron percnopterus (4 individuals). Around 5-10% of turbines caused up to 60% of fatalities and mortality was temporally clumped and related with the species biology. It was lower in January- February while griffons are incubating, increasing in March when hatching. Then, it was reduced until September with a new increase at November-December. In order to explain causes in detail and reduce mortality a pilot study was carried out in a portion of this area (10 wind farms and 267 turbines) from 2005 to the present. Due to high mortality rates on griffons, 33 turbines were shut down by authorities in June 2008. Relationships between flight altitude at turbines area with both weather conditions and landscape features were analysed by means of statistical parametric GLM models. Results included air temperature; turbine features such as its slope and time of the year as significant variables. On the other side, the European policy against the Bovine Spongiform Encephalopathy (BSE) also contributed to increase both mortality and vulture.s crossings through the turbines. Closure of vulture restaurants and carcass removal in the area caused food lacking for these birds. Then, they were forced to feed from a rubbish dump close to the turbines. Correction measures such as opening vulture restaurants since June 2009 and ceasing droppings at the rubbish dump significantly reduced flying rates of griffons to previous levels. In

  11. Short-term wind power combined forecasting based on error forecast correction

    International Nuclear Information System (INIS)

    Liang, Zhengtang; Liang, Jun; Wang, Chengfu; Dong, Xiaoming; Miao, Xiaofeng

    2016-01-01

    Highlights: • The correlation relationships of short-term wind power forecast errors are studied. • The correlation analysis method of the multi-step forecast errors is proposed. • A strategy selecting the input variables for the error forecast models is proposed. • Several novel combined models based on error forecast correction are proposed. • The combined models have improved the short-term wind power forecasting accuracy. - Abstract: With the increasing contribution of wind power to electric power grids, accurate forecasting of short-term wind power has become particularly valuable for wind farm operators, utility operators and customers. The aim of this study is to investigate the interdependence structure of errors in short-term wind power forecasting that is crucial for building error forecast models with regression learning algorithms to correct predictions and improve final forecasting accuracy. In this paper, several novel short-term wind power combined forecasting models based on error forecast correction are proposed in the one-step ahead, continuous and discontinuous multi-step ahead forecasting modes. First, the correlation relationships of forecast errors of the autoregressive model, the persistence method and the support vector machine model in various forecasting modes have been investigated to determine whether the error forecast models can be established by regression learning algorithms. Second, according to the results of the correlation analysis, the range of input variables is defined and an efficient strategy for selecting the input variables for the error forecast models is proposed. Finally, several combined forecasting models are proposed, in which the error forecast models are based on support vector machine/extreme learning machine, and correct the short-term wind power forecast values. The data collected from a wind farm in Hebei Province, China, are selected as a case study to demonstrate the effectiveness of the proposed

  12. Quantification of rain gauge measurement undercatch and wind speed correction

    Science.gov (United States)

    Pollock, Michael; Quinn, Paul; Dutton, Mark; Wilkinson, Mark

    2014-05-01

    Hydrological processes are adversely affected by systematic rain gauge inaccuracy due to wind induced undercatching. The implications of this are discussed and addressed. Despite evidence of the undercatch problem being cited in the past and the difficulty in solving such a complex problem; it has become an inconvenient truth to hydrologists that major inaccuracies in rainfall measurement exist. A two year long experiment using new equipment and improved data logging and telemetery techniques enriches this formative work to redress the wilful neglect with which accurate rainfall measurement has been treated in recent decades. Results from this work suggest that the annual systematic undercatch can be in the order of 20 percent in the UK. During specific periods (measured at high temporal resolution), this can rise to as high as 50 percent for a single wind impacted event. As one organisation, responsible for the environment in the UK, moves towards using fewer instruments (15 percent fewer in the next year), it is scarcely possible to overstate the importance in solving this problem. It had been hoped that new equipment, such as acoustic distrometer and weighing gauge technologies, would be able to reduce the magnitude of the bias. However, through data gathered in the 2 year experiment and through secondary sources from the 1970s and 1980s, it is demonstrated that this is not the case and that the same problems with undercatching remain now as they did then. We further postulate that wider, denser networks of inexpensive telemetered equipment are now possible but they must still address the undercatch issue. There is little merit in pointing out an age old problem if no solution is put forward to fix it. The aforementioned experiment has furnished new ideas and further work has been commissioned to address this problem. This will be achieved via the medium of a Knowledge Transfer Partnership between Newcastle University and an innovative equipment manufacturer

  13. A Bayesian model to correct underestimated 3-D wind speeds from sonic anemometers increases turbulent components of the surface energy balance

    Science.gov (United States)

    John M. Frank; William J. Massman; Brent E. Ewers

    2016-01-01

    Sonic anemometers are the principal instruments in micrometeorological studies of turbulence and ecosystem fluxes. Common designs underestimate vertical wind measurements because they lack a correction for transducer shadowing, with no consensus on a suitable correction. We reanalyze a subset of data collected during field experiments in 2011 and 2013 featuring two or...

  14. High resolution climatological wind measurements for wind energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Measurements with a combined cup anemometer/wind vane instrument, developed at the Department of Meteorology in Uppsala, is presented. The instrument has a frequency response of about 1 Hz, making it suitable not only for mean wind measurements, but also for studies of atmospheric turbulence. It is robust enough to be used for climatological purposes. Comparisons with data from a hot-film anemometer show good agreement, both as regards standard deviations and the spectral decomposition of the turbulent wind signal. The cup anemometer/wind vane instrument is currently used at three sites within the Swedish wind energy research programme. These measurements are shortly described, and a few examples of the results are given. 1 ref, 10 figs

  15. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  16. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  17. Representivity of wind measurements for design wind speed estimations

    CSIR Research Space (South Africa)

    Goliger, Adam M

    2013-07-01

    Full Text Available of instrumentation sited according to World Meteorological Organization (WMO) requirements. With the advent of automatic weather station technology several decades ago, wind measurements have become much more cost-effective. While previously wind measurements were...

  18. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  19. High resolution wind measurements for offshore wind energy development

    Science.gov (United States)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  20. Comparison of Flight Measured, Predicted and Wind Tunnel Measured Winglet Characteristics on a KC-135 Aircraft

    Science.gov (United States)

    Dodson, R. O., Jr.

    1982-01-01

    One of the objectives of the KC-135 Winglet Flight Research and Demonstration Program was to obtain experimental flight test data to verify the theoretical and wind tunnel winglet aerodynamic performance prediction methods. Good agreement between analytic, wind tunnel and flight test performance was obtained when the known differences between the tests and analyses were accounted for. The flight test measured fuel mileage improvements for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The performance improvement obtained was within the wind tunnel test data obtained from two different wind tunnel models. The buffet boundary data obtained for the baseline configuration was in good agreement with previous established data. Buffet data for the 15 deg cant/-4 deg incidence configuration showed a slight improvement, while the 15 deg cant/-2 deg incidence and 0 deg cant/-4 deg incidence data showed a slight deterioration.

  1. Empirical wind retrieval model based on SAR spectrum measurements

    Science.gov (United States)

    Panfilova, Maria; Karaev, Vladimir; Balandina, Galina; Kanevsky, Mikhail; Portabella, Marcos; Stoffelen, Ad

    The present paper considers polarimetric SAR wind vector applications. Remote-sensing measurements of the near-surface wind over the ocean are of great importance for the understanding of atmosphere-ocean interaction. In recent years investigations for wind vector retrieval using Synthetic Aperture Radar (SAR) data have been performed. In contrast with scatterometers, a SAR has a finer spatial resolution that makes it a more suitable microwave instrument to explore wind conditions in the marginal ice zones, coastal regions and lakes. The wind speed retrieval procedure from scatterometer data matches the measured radar backscattering signal with the geophysical model function (GMF). The GMF determines the radar cross section dependence on the wind speed and direction with respect to the azimuthal angle of the radar beam. Scatterometers provide information on wind speed and direction simultaneously due to the fact that each wind vector cell (WVC) is observed at several azimuth angles. However, SAR is not designed to be used as a high resolution scatterometer. In this case, each WVC is observed at only one single azimuth angle. That is why for wind vector determination additional information such as wind streak orientation over the sea surface is required. It is shown that the wind vector can be obtained using polarimetric SAR without additional information. The main idea is to analyze the spectrum of a homogeneous SAR image area instead of the backscattering normalized radar cross section. Preliminary numerical simulations revealed that SAR image spectral maxima positions depend on the wind vector. Thus the following method for wind speed retrieval is proposed. In the first stage of the algorithm, the SAR spectrum maxima are determined. This procedure is carried out to estimate the wind speed and direction with ambiguities separated by 180 degrees due to the SAR spectrum symmetry. The second stage of the algorithm allows us to select the correct wind direction

  2. Validation of Sodar Measurements for Wind Power

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2006-01-01

    the project and a new remote power system has been designed. A direct comparison between SODAR and cup measurements revealed a limitation for the SODAR measurements during different weather conditions, especially since the SODAR was not able to measure wind speeds above 15 m/s due to an increasing back-ground......A ground-based SODAR has been tested for 1½ years together with a traditional measurement set-up consisting of cups and vanes for measuring wind data for wind power assessment at a remote location. Many problems associated to the operation of a remote located SODAR have been solved during...... noise. Instead, using the SODAR as a profiler to establish representative wind speed profiles was successful. These wind speed profiles are combined with low height reference measurements to establish reliable hub height wind speed distributions. Representative wind speed profiles can be establish...

  3. Performance evaluation and bias correction of DBS measurements for a 1290-MHz boundary layer profiler.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2018-02-01

    Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.

  4. Performance evaluation and bias correction of DBS measurements for a 1290-MHz boundary layer profiler

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2018-02-01

    Recently, the government installed a boundary layer profiler (BLP), which is operated under the Doppler beam swinging mode, in a coastal area of China, to acquire useful wind field information in the atmospheric boundary layer for several purposes. And under strong wind conditions, the performance of the BLP is evaluated. It is found that, even though the quality controlled BLP data show good agreement with the balloon observations, a systematic bias can always be found for the BLP data. For the low wind velocities, the BLP data tend to overestimate the atmospheric wind. However, with the increment of wind velocity, the BLP data show a tendency of underestimation. In order to remove the effect of poor quality data on bias correction, the probability distribution function of the differences between the two instruments is discussed, and it is found that the t location scale distribution is the most suitable probability model when compared to other probability models. After the outliers with a large discrepancy, which are outside of 95% confidence interval of the t location scale distribution, are discarded, the systematic bias can be successfully corrected using a first-order polynomial correction function. The methodology of bias correction used in the study not only can be referred for the correction of other wind profiling radars, but also can lay a solid basis for further analysis of the wind profiles.

  5. Wind measurement via direct detection lidar

    Science.gov (United States)

    Afek, I.; Sela, N.; Narkiss, N.; Shamai, G.; Tsadka, S.

    2013-10-01

    Wind sensing Lidar is considered a promising technology for high quality wind measurements required for various applications such as hub height wind resource assessment, power curve measurements and advanced, real time, forward looking turbine control. Until recently, the only available Lidar technology was based on coherent Doppler shift detection, whose market acceptance has been slow primarily due to its exuberant price. Direct detection Lidar technology provides an alternative to remote sensing of wind by incorporating high precision measurement, a robust design and an affordable price tag.

  6. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two

  7. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  8. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination and coni...

  9. Radiative corrections in 5D and 6D expanding in winding modes

    International Nuclear Information System (INIS)

    Rold, Leandro da

    2004-01-01

    We compute radiative corrections in five- and six-dimensional field theories, using winding modes in mixed momentum-coordinate space. This method provides a simple way of finding UV divergencies, finite corrections and localized terms when the space is compactified on orbifolds. As an application we compute the finite piece of scalar masses, the logarithmic contributions to the couplings and the effect of localized parallel and perpendicular kinetic terms. We apply it to get a two loop effective potential that can stabilize large extra dimensions

  10. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Sjöholm, Mikael; Angelou, Nikolas

    2017-01-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated...... structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation...

  11. Field campaign for the comparison of SOUSY radar wind measurements with rawinsonde and model data

    Directory of Open Access Journals (Sweden)

    H. Steinhagen

    Full Text Available A field campaign was carried out from 26 October to 7 November 1992, using the SOUSY-VHF radar and a mobile rawinsonde system installed and operated nearby to produce vertical wind profiles. The purpose of this campaign was to compare the two types of wind measurements with one another and with results from forecast models. Numerical algorithms were developed and applied to the radar data in order to eliminate random errors, correct for velocity aliasing, and calculate the effective zenith angle of the off-vertical beams. Differences between wind profiler data and rawinsonde or model results depend not only upon the errors of the different systems, but also on temporal and spatial variations of the wind field. Therefore, methods for the comparison of radar and rawinsonde data were developed which take into consideration these variations. The practical potential of these methods is demonstrated by comparisons of rawinsonde and radar wind profiles. The comparison of radar data and model output shows excellent agreement in the direction and in the speed of the wind at virtually all altitudes. An evaluation of the quality of wind profiler measurements is possible using the estimation of variance and variability of wind components.

  12. Field campaign for the comparison of SOUSY radar wind measurements with rawinsonde and model data

    Directory of Open Access Journals (Sweden)

    H. Steinhagen

    1994-07-01

    Full Text Available A field campaign was carried out from 26 October to 7 November 1992, using the SOUSY-VHF radar and a mobile rawinsonde system installed and operated nearby to produce vertical wind profiles. The purpose of this campaign was to compare the two types of wind measurements with one another and with results from forecast models. Numerical algorithms were developed and applied to the radar data in order to eliminate random errors, correct for velocity aliasing, and calculate the effective zenith angle of the off-vertical beams. Differences between wind profiler data and rawinsonde or model results depend not only upon the errors of the different systems, but also on temporal and spatial variations of the wind field. Therefore, methods for the comparison of radar and rawinsonde data were developed which take into consideration these variations. The practical potential of these methods is demonstrated by comparisons of rawinsonde and radar wind profiles. The comparison of radar data and model output shows excellent agreement in the direction and in the speed of the wind at virtually all altitudes. An evaluation of the quality of wind profiler measurements is possible using the estimation of variance and variability of wind components.

  13. Full scale measurement of wind induced pressures : 1 configuration of wind induced pressures

    NARCIS (Netherlands)

    Geurts, C.P.W.; Wijen, H.L.M.

    1994-01-01

    A research project 10 the spectral characteristics of wind induced pressures is in progress in Eindhoven. This project includes both wind tunnel and full scale measurements. Wind induced pressures are measured in full scale at the main building of Eindhoven University of Technology. This paper

  14. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  15. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  16. Atmospheric diffusion wind tunnel with automatic measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, S; Sakai, J; Murata, E

    1974-01-01

    A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)

  17. Wind gust measurements using pulsed Doppler wind-lidar: comparison of direct and indirect techniques

    DEFF Research Database (Denmark)

    The measurements of wind gusts, defined as short duration wind speed maxima, have traditionally been limited by the height that can be reached by weather masts. Doppler lidars can potentially provide information from levels above this and thereby fill this gap in our knowledge. To measure the 3D...... is 3.9 s) which can provide high resolution turbulent measurements, both in the vertical direction, and potentially in the horizontal direction. In this study we explore different strategies of wind lidar measurements to measure the wind speed maxima. We use a novel stochastic turbulence reconstruction...... model, driven by the Doppler lidar measurements, which uses a non-linear particle filter to estimate the small-scale turbulent fluctuations. The first results show that the reconstruction method can reproduce the wind speed maxima measured by the sonic anemometer if a low-pass filter with a cut...

  18. Correcting AUC for Measurement Error.

    Science.gov (United States)

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  19. Results of Sexbierum Wind Farm: single wake measurements

    NARCIS (Netherlands)

    Cleijne, J.W.

    1993-01-01

    In the framework of the JOULE-0064 'Full-scale Measurements in Wind Turbine Arrays' in the period between June-November 1992 measurements have been performed in the Sexbierum Wind Farm. The aim of the measurements is to provide data for the validation of wake and wind farm models, which are being

  20. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    Science.gov (United States)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  1. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  2. Wind profile modelling using WAsP and "tall" wind measurements

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Kelly, Mark C.; Troen, Ib

    2015-01-01

    extrapolations (the wind profile) this is done using the Weibull distribution and the geostrophic drag law. Wind lidar measurements obtained during the ’Tall wind’ campaign at three different sites are used to evaluate the assumptions and equations that are used in the WAsP vertical extrapolation strategy...

  3. Validation of a wind tunnel testing facility for blade surface pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Antoniou, I.; Soerensen, N.N.; Madsen, H.A.

    1998-04-01

    This report concerns development and validation of a 2d testing facility for airfoil pressure measurements. The VELUX open jet wind tunnel was used with a test stand inserted. Reynolds numbers until 1.3 million were achieved with an airfoil chord of 0.45 m. The aerodynamic load coefficients were found from pressure distribution measurements and the total drag coefficient was calculated from wake rake measurements. Stationary inflow as well as dynamic inflow through pitching motion was possible. Wind tunnel corrections were applied for streamline curvature and down-wash. Even though the wind tunnel is not ideal for 2d testing, the overall quality of the flow was acceptable with a uniform flow field at the test stand position and a turbulence intensity of 1 % at the inlet of the test section. Reference values for free stream static and total pressure were found upstream of the test stand. The NACA 63-215 airfoil was tested and the results were compared with measurements from FFA and NACA. The measurements agreed well except for lift coefficient values at high angles of attack and the drag coefficient values at low angles of attack, that were slightly high. Comparisons of the measured results with numerical predictions from the XFOIL code and the EllipSys2D code showed good agreement. Measurements with the airfoil in pitching motion were carried out to study the dynamic aerodynamic coefficients. Steady inflow measurements at high angles of attack were used to investigate the double stall phenomenon. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 82 ills., 16 refs.

  4. Analysis of Anholt offshore wind farm SCADA measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Volker, Patrick; Pena Diaz, Alfredo

    SCADA measurements from the Danish Anholt offshore wind farm (ANH) for a period of 2½ years have been qualified. ANH covers 12 km × 22 km and is located between Djursland and the island Anholt in Kattegat, Denmark. This qualification encompasses identification of curtailment and idling periods......, start/stop events and a power curve control for each wind turbine in the wind farm. Data also include wind speed measurements from a nearby WindCube lidar and simulations from the WRF model for the same period as the SCADA. An equivalent wind speed (wsi) is derived from the combined power and pitch...

  5. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities

    Directory of Open Access Journals (Sweden)

    Irene Suomi

    2018-04-01

    Full Text Available Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.

  6. Wind turbine power performance verification in complex terrain and wind farms

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Gjerding, S.; Enevoldsen, P.

    2002-01-01

    is a power performance verification procedure for individual wind turbines. The third is a power performance measurement procedure of whole wind farms, and the fourth is a power performance measurement procedurefor non-grid (small) wind turbines. This report presents work that was made to support the basis......The IEC/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard will be divided into four documents. The first one of these is more or less a revision of the existing document on power performance measurementson individual wind turbines. The second one...... then been investigated in more detail. The work has given rise to a range of conclusionsand recommendations regarding: guaranties on power curves in complex terrain; investors and bankers experience with verification of power curves; power performance in relation to regional correction curves for Denmark...

  7. Field measurement of wind pressure and wind-induced vibration of large-span spatial cable-truss system under strong wind or typhoon

    Directory of Open Access Journals (Sweden)

    ZHANG Zhihong

    2013-10-01

    Full Text Available In order to ensure wind-resistance safety of large-span pre-stressed flexible system in southeast coast area of China,and to prepare something for revising of current codes of practice or technical standards,the present paper conducts field measurement of wind pressure and wind-induced vibration of a practical and typical large-span spatial cable-truss system-lunar stadium in Yueqing city.Wind loading and wind effects on full-scale structure under strong wind or typhoon in real architectural environment can be obtained directly and effectively.Field measurement is the best way to investigate the wind loading property,wind effects,and wind-structure interactions of large-span flexible system.Measured data will be highly valuable for scientific research and practical design.On the other hand,it also provides the basis of wind-resistance safety design of this kind of tension structures.If any creative development,it would dramatically improve the research level of large-span pre-stressed flexible system in our country.

  8. On mean wind and turbulence profile measurements from ground-based wind lidars

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2009-01-01

    Two types of wind lidar?s have become available for ground-based vertical mean wind and turbulence profiling. A continuous wave (CW) wind lidar, and a pulsed wind lidar. Although they both are build upon the same recent 1.55 μ telecom fibre technology, they possess fundamental differences between...... their temporal and spatial resolution capabilities. A literature review of the two lidar systems spatial and temporal resolution characteristics will be presented, and the implication for the two lidar types vertical profile measurements of mean wind and turbulence in the lower atmospheric boundary layer...

  9. Cup anemometer response to the wind turbulence-measurement of the horizontal wind variance

    Directory of Open Access Journals (Sweden)

    S. Yahaya

    2004-11-01

    Full Text Available This paper presents some dynamic characteristics of an opto-electronic cup anemometer model in relation to its response to the wind turbulence. It is based on experimental data of the natural wind turbulence measured both by an ultrasonic anemometer and two samples of the mentioned cup anemometer. The distance constants of the latter devices measured in a wind tunnel are in good agreement with those determined by the spectral analysis method proposed in this study. In addition, the study shows that the linear compensation of the cup anemometer response, beyond the cutoff frequency, is limited to a given frequency, characteristic of the device. Beyond this frequency, the compensation effectiveness relies mainly on the wind characteristics, particularly the direction variability and the horizontal turbulence intensity. Finally, this study demonstrates the potential of fast cup anemometers to measure some turbulence parameters (like wind variance with errors of the magnitude as those deriving from the mean speed measurements. This result proves that fast cup anemometers can be used to assess some turbulence parameters, especially for long-term measurements in severe climate conditions (icing, snowing or sandy storm weathers.

  10. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  11. A new IEA document for the measurement of noise immission from wind turbines at receptor locations

    International Nuclear Information System (INIS)

    Ljunggren, Sten

    1999-01-01

    A new IEA guide on acoustic noise was recently completed by an international expert group. In this guide, several practical and reliable methods for determining wind turbine noise immission at receptor locations are presented: three methods for equivalent continuous A-weighted sound pressure levels and one method for A-weighted percentiles. In the most ambitious method for equivalent sound levels, the noise is measured together with the wind speed at two locations: one at the microphone and the other at the turbine site. With this approach, the turbine levels can be corrected for background sound and the immission level can be determined at a certain target speed. Special importance is attached to the problem of correcting for background noise and to techniques for improving the signal-to-noise ratio. Thus, six methods are described which can be used in difficult situations

  12. Simplified correction of g-value measurements

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    been carried out using a detailed physical model based on ISO9050 and prEN410 but using polarized data for non-normal incidence. This model is only valid for plane, clear glazings and therefor not suited for corrections of measurements performed on complex glazings. To investigate a more general...... correction procedure the results from the measurements on the Interpane DGU have been corrected using the principle outlined in (Rosenfeld, 1996). This correction procedure is more general as corrections can be carried out without a correct physical model of the investigated glazing. On the other hand...... the way this “general” correction procedure is used is not always in accordance to the physical conditions....

  13. An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine

    International Nuclear Information System (INIS)

    Roy, Sukanta; Saha, Ujjwal K.

    2014-01-01

    Highlights: • Significance of the blockage correction in wind tunnel experiments of Savonius-style wind turbine. • Adaptation of blockage factor correlations under open type test sections for blockage ratio of 21.16%. • Effectiveness of adapted correlations for smaller blockage ratios (BRs) of 16% and 12.25%. • Estimate the magnitude of the blockage correction under various loading conditions for each BR. • Variation of blockage correction factor with respect to tip speed ratio and BR. - Abstract: An investigation into the blockage correction effects in wind tunnel experiments of a small-scale wind energy conversion system in an open type test section is carried out. The energy conversion system includes a Savonius-style wind turbine (SSWT) and a power measurement assembly. As the available correlations for the closed type test sections may not be appropriate for the open test section under dynamic loading conditions, new correlations are adapted for the blockage correction factors with free stream wind speed, turbine rotational speed and variable load applied to the turbine to quantify the energy conversion coefficients more precisely. These are obtained for a blockage ratio of 21.16% through a comparison of present experimental data with those of established experimental data under dynamic loading conditions. Further, the accuracy of the adapted correlations is substantiated into the experiments with smaller blockage ratios of 16% and 12.25%. The relationships of the tip speed ratios and blockage ratios with the blockage correction factor are also discussed. Using these correlations, this study provides evidence of increase of blockage correction in the range 1–10% with the increase of both tip speed ratio and blockage ratio. The results also indicate that for blockage ratios approaching 10 and tip speed ratios below 0.5, the blockage effects are almost negligible in the open type test sections

  14. On the energy pattern factor in wind measurements

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; Doherty, M A; McMullan, J.T., Morgan, R.; Murray, R B

    1977-01-01

    Measurements of energy pattern factor K/sub e/ were made using a continuous-analogue wind-power metering technique, rather than by the more usual sampling procedure. The values obtained were significantly larger than the usually accepted figure. The discrepancy is attributed partly to the method of measurement, which includes the actual power present rather than the amount that can be extracted, and partly to the use of rather more typical wind speeds. It is concluded, however, that more energy can be derived from wind schemes than was thought, even during periods of light wind. These conclusions improve the viability of wind power plants.

  15. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1997-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  16. Measurements of Coastal Winds and Temperature. Sensor Evaluation, Data Quality, and Wind Structures

    Energy Technology Data Exchange (ETDEWEB)

    Heggem, Tore

    1998-12-31

    The long Norwegian coastline has excellent sites for wind power production. This thesis contains a documentation of a measurement station for maritime meteorological data at the coast of Mid-Norway, and analysis of temperature and wind data. It discusses experience with different types of wind speed and wind direction sensors. Accurate air temperature measurements are essential to obtain information about the stability of the atmosphere, and a sensor based on separately calibrated thermistors is described. The quality of the calibrations and the measurements is discussed. A database built up from measurements from 1982 to 1995 has been available. The data acquisition systems and the programs used to read the data are described, as well as data control and gap-filling methods. Then basic statistics from the data like mean values and distributions are given. Quality control of the measurements with emphasis on shade effects from the masts and direction alignment is discussed. The concept of atmospheric stability is discussed. The temperature profile tends to change from unstable to slightly stable as maritime winds passes land. Temperature spectra based on two-year time series are presented. Finally, there is a discussion of long-term turbulence spectra calculated from 14 years of measurements. The lack of a gap in the one-hour region of the spectra is explained from the overweight of unstable atmospheric conditions in the dominating maritime wind. Examples of time series with regular 40-minute cycles, and corresponding effect spectra are given. The validity of local lapse rate as a criterion of atmospheric stability is discussed. 34 refs., 86 figs., 11 tabs.

  17. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  18. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  19. Wind Atlas for South Africa (WASA). Report on Measurements

    DEFF Research Database (Denmark)

    Mabille, Eugéne; Prinsloo, Eric; Mortensen, Niels Gylling

    , to verify the results of the meso-scale modelling. The Measurements work package (WP2) is one of six work packages that collectively make up the Wind Atlas for South Africa (WASA) project. The measurements also provide observed wind climates at the measurement sites, which can be used by micrositing...... to be commissioned was WM06 (Sutherland) and this was completed on 17 September 2010. The outputs of WP2 are: i. Establish 10 high quality wind measurement stations providing three years of measurement data for calibration of the mesoscale modelling. ii. A database system for wind data collection and on-line Web...

  20. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E; Papadopoulos, K [CRES (Greece); Borg, N van der [ECN, Petten (Netherlands); Petersen, S M [Risoe, Roskilde (Denmark); Seifert, H [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  1. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....

  2. Comprehensive wind correction for a Rayleigh Doppler lidar from atmospheric temperature and pressure influences and Mie contamination

    International Nuclear Information System (INIS)

    Shangguan Ming-Jia; Xia Hai-Yun; Dou Xian-Kang; Wang Chong; Qiu Jia-Wei; Zhang Yun-Peng; Shu Zhi-Feng; Xue Xiang-Hui

    2015-01-01

    A correction considering the effects of atmospheric temperature, pressure, and Mie contamination must be performed for wind retrieval from a Rayleigh Doppler lidar (RDL), since the so-called Rayleigh response is directly related to the convolution of the optical transmission of the frequency discriminator and the Rayleigh–Brillouin spectrum of the molecular backscattering. Thus, real-time and on-site profiles of atmospheric pressure, temperature, and aerosols should be provided as inputs to the wind retrieval. Firstly, temperature profiles under 35 km and above the altitude are retrieved, respectively, from a high spectral resolution lidar (HSRL) and a Rayleigh integration lidar (RIL) incorporating to the RDL. Secondly, the pressure profile is taken from the European Center for Medium range Weather Forecast (ECMWF) analysis, while radiosonde data are not available. Thirdly, the Klett–Fernald algorithms are adopted to estimate the Mie and Rayleigh components in the atmospheric backscattering. After that, the backscattering ratio is finally determined in a nonlinear fitting of the transmission of the atmospheric backscattering through the Fabry–Perot interferometer (FPI) to a proposed model. In the validation experiments, wind profiles from the lidar show good agreement with the radiosonde in the overlapping altitude. Finally, a continuous wind observation shows the stability of the correction scheme. (paper)

  3. Wind turbine power performance verification in complex terrain and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Gjerding, S.; Ingham, P.; Enevoldsen, P.; Kjaer Hansen, J.; Kanstrup Joergensen, H.

    2002-04-01

    The IEC/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard will be divided into four documents. The first one of these is more or less a revision of the existing document on power performance measurements on individual wind turbines. The second one is a power performance verification procedure for individual wind turbines. The third is a power performance measurement procedure of whole wind farms, and the fourth is a power performance measurement procedure for non-grid (small) wind turbines. This report presents work that was made to support the basis for this standardisation work. The work addressed experience from several national and international research projects and contractual and field experience gained within the wind energy community on this matter. The work was wide ranging and addressed 'grey' areas of knowledge regarding existing methodologies, which has then been investigated in more detail. The work has given rise to a range of conclusions and recommendations regarding: guaranties on power curves in complex terrain; investors and bankers experience with verification of power curves; power performance in relation to regional correction curves for Denmark; anemometry and the influence of inclined flow. (au)

  4. Upper wind observing systems used for meteorological operations

    Directory of Open Access Journals (Sweden)

    J. Nash

    Full Text Available Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s-1.

  5. Noise model for serrated trailing edges compared to wind tunnel measurements

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong

    2016-01-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...... levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However...

  6. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  7. Validation of Sodar Measurements for Wind Power

    OpenAIRE

    Hansen, Kurt Schaldemose

    2006-01-01

    A ground-based SODAR has been tested for 1½ years together with a traditional measurement set-up consisting of cups and vanes for measuring wind data for wind power assessment at a remote location. Many problems associated to the operation of a remote located SODAR have been solved during the project and a new remote power system has been designed. A direct comparison between SODAR and cup measurements revealed a limitation for the SODAR measurements during different weather conditions, espec...

  8. Representativeness of wind measurements in moderately complex terrain

    Science.gov (United States)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  9. Self-Correcting Electronically-Scanned Pressure Sensor

    Science.gov (United States)

    Gross, C.; Basta, T.

    1982-01-01

    High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.

  10. Wind field reconstruction from nacelle-mounted lidar short-range measurements

    Directory of Open Access Journals (Sweden)

    A. Borraccino

    2017-05-01

    Full Text Available Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear. In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken at multiple distances close to the rotor, where a wind model is combined with a simple induction model. The method allows robust determination of free-stream wind characteristics. The method was applied to experimental data obtained with two different types of nacelle lidar (five-beam Demonstrator and ZephIR Dual Mode. The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.

  11. Upgrading the Arecibo Potassium Lidar Receiver for Meridional Wind Measurements

    Science.gov (United States)

    Piccone, A. N.; Lautenbach, J.

    2017-12-01

    Lidar can be used to measure a plethora of variables: temperature, density of metals, and wind. This REU project is focused on the set up of a semi steerable telescope that will allow the measurement of meridional wind in the mesosphere (80-105 km) with Arecibo Observatory's potassium resonance lidar. This includes the basic design concept of a steering system that is able to turn the telescope to a maximum of 40°, alignment of the mirror with the telescope frame to find the correct focusing, and the triggering and programming of a CCD camera. The CCD camera's purpose is twofold: looking though the telescope and matching the stars in the field of view with a star map to accurately calibrate the steering system and determining the laser beam properties and position. Using LabVIEW, the frames from the CCD camera can be analyzed to identify the most intense pixel in the image (and therefore the brightest point in the laser beam or stars) by plotting average pixel values per row and column and locating the peaks of these plots. The location of this pixel can then be plotted, determining the jitter in the laser and position within the field of view of the telescope.

  12. Fiber Laser for Wind Speed Measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig

    This PhD thesis evaluates the practical construction and use of a Frequency Stepped Pulse Train modulated coherent Doppler wind lidar (FSPT lidar) for wind speed measurement. The concept of Doppler lidar is introduced as a means to measure line of sight wind speed by the Doppler shift of reflected...... Sweeper (LSFS) is introduced and analyzed as a light source for the FSPT lidar. The setup of the LSFS is discussed, and the necessary concepts for modeling and analyzing LSFS noise are developed. The model and measurements are then used to discuss the growth of optical noise in the LSFS and the impact...... on its use in the FSPT lidar. A complex ABCD model is developed and described as a method for calculating spatial and frequency dependency of a lidar’s signal strength. The model includes both spatial and temporal components of the lidar system, enabling a model capable of describing both CW, pulsed...

  13. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  14. How good are remote sensors at measuring extreme winds?

    NARCIS (Netherlands)

    Sathe, A.R.; Courtney, M.; Mann, J.; Wagner, R.

    2011-01-01

    This article describes some preliminary efforts within the SafeWind project, aimed to identify the possible added value of using wind lidars to detect extreme wind events. Exceptionally good performance is now regularly reported in the measurement of the mean wind speed with some wind lidars in flat

  15. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  16. Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric

    2008-01-01

    The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.

  17. Measuring gas concentration and wind intensity in a turbulent wind tunnel with a mobile robot

    OpenAIRE

    Martínez Lacasa, Daniel; Moreno Blanc, Javier; Tresánchez, Marcel; Clotet Bellmunt, Eduard; Jiménez-Soto, Juan M.; Magrans, Rudys; Pardo Martínez, Antonio; Marco Colás, Santiago; Palacín Roca, Jordi

    2016-01-01

    This paper presents themeasurement of gas concentration and wind intensity performed with amobile robot in a customturbulent wind tunnel designed for experimentation with customizable wind and gas leak sources.This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber...

  18. Analysis of Detectors and Transmission Curve Correction of Mobile Rayleigh Doppler Wind Lidar

    International Nuclear Information System (INIS)

    Tang Lei; Shu Zhi-Feng; Dong Ji-Hui; Wang Guo-Cheng; Xu Wen-Jing; Hu Dong-Dong; Wang Yong-Tao; Chen Ting-Di; Dou Xian-Kang; Sun Dong-Song; Cha Hyunki

    2010-01-01

    A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10km to 40km. A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity. The lidar operates at 355 nm with a 45-cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing. In order to guarantee the wind accuracy, different forms of calibration function of detectors in different count rates response range would be especially valuable. The accuracy of wind velocity iteration is improved greatly because of application of the calibration function of linearity at the ultra low light intensity especially at altitudes from 10km to 40km. The calibration functions of nonlinearity make the transmission of edge channel 1 and edge channel 2 increase 38.9% and 27.7% at about 1 M count rates, respectively. The dynamic range of wind field measurement may also be extended because of consideration of the response function of detectors in their all possible operating range. (fundamental areas of phenomenology(including applications))

  19. Comparison of measured and predicted airfoil self-noise with application to wind turbine noise reduction

    International Nuclear Information System (INIS)

    Dassen, T.; Parchen, R.; Guidati, G.; Wagner, S.; Kang, S.; Khodak, A.E.

    1998-01-01

    In the ongoing JOULE-III project 'Development of Design Tools for Reduced Aerodynamic Noise Wind Turbines (DRAW)', prediction codes for inflow-turbulence (IT) noise and turbulent boundary layer trailing-edge (TE) noise, are developed and validated. It is shown that the differences in IT noise radiation between airfoils having a different shape, are correctly predicted. The first, preliminary comparison made between predicted and measured TE noise spectra yields satisfactory results. 17 refs

  20. Determination of the thermospheric neutral wind from incoherent scatter radar measurements

    International Nuclear Information System (INIS)

    Haeggstroem, I.; Murdin, J.; Rees, D.

    1984-11-01

    Measurements made by the EISCAT UHF incoherent scatter radar are used to derive thermospheric winds. The derived wind is compared to Fabry-Perot interferometer measurements of the neutral wind made simultaneously. The uncertainties in the radar derived wind are discussed. (author)

  1. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  2. ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space

    Science.gov (United States)

    Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.

    2018-04-01

    This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  3. Wind turbine wake measurement in complex terrain

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Menke, Robert

    2016-01-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large dow...

  4. Wind measurement on the Linth plain; Windmessung in der Linthebene

    Energy Technology Data Exchange (ETDEWEB)

    Langraf, B.

    2003-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of wind measurements made on the Linth plain, a flat alluvial plain in eastern Switzerland located between mountain ranges. The data, which were collected using temporary measurement masts at two locations are presented in the form of tables, diagrams and maps showing the wind-energy potential of various areas of the plain. The actual measurements are compared with prognoses from a geo-information system. The wind measurement equipment and installations are described, as are the software models for the calculation of wind direction, wind intensity and of a prognosis for energy production. Particular attention was also paid to the question of wind turbulence. Further factors investigated included the possibility of icing-up in winter and the choice of a meteorological station in the neighbourhood with similar characteristics that could be used as a reference station. The report also presents the results of the evaluation of various possible locations for wind turbines on the Linth plain. Visual, noise and shadow-casing factors are considered.

  5. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael; Gottschall, Julia

    2011-01-01

    The current IEC standard for wind turbine power performance measurement only requires measurement of the wind speed at hub height assuming this wind speed to be representative for the whole rotor swept area. However, the power output of a wind turbine depends on the kinetic energy flux, which...... itself depends on the wind speed profile, especially for large turbines. Therefore, it is important to characterize the wind profile in front of the turbine, and this should be preferably achieved by measuring the wind speed over the vertical range between lower and higher rotor tips. In this paper, we...... describe an experiment in which wind speed profiles were measured in front of a multimegawatt turbine using a ground–based pulsed lidar. Ignoring the vertical shear was shown to overestimate the kinetic energy flux of these profiles, in particular for those deviating significantly from a power law profile...

  6. The influence of humidity fluxes on offshore wind speed profiles

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Sempreviva, Anna Maria; Pryor, Sara

    2010-01-01

    extrapolation from lower measurements. With humid conditions and low mechanical turbulence offshore, deviations from the traditional logarithmic wind speed profile become significant and stability corrections are required. This research focuses on quantifying the effect of humidity fluxes on stability corrected...... wind speed profiles. The effect on wind speed profiles is found to be important in stable conditions where including humidity fluxes forces conditions towards neutral. Our results show that excluding humidity fluxes leads to average predicted wind speeds at 150 m from 10 m which are up to 4% higher...... than if humidity fluxes are included, and the results are not very sensitive to the method selected to estimate humidity fluxes....

  7. Pressure field in measurement section of wind tunnel

    Directory of Open Access Journals (Sweden)

    Hnidka Jakub

    2017-01-01

    Full Text Available The University of Defence in Brno has a new low-speed wind tunnel. In order to confirm the quality of the wind inside of the measurement section, several measurements of the dynamic pressure have been performed with the Pitot-static tube. The pressure fields are then analysed and quality of the field is evaluated. Measurement of a pressure drop on the body of a standing helicopter was conducted.

  8. Standards for measurements and testing of wind turbine power quality

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P [Risoe National Lab., Roskilde (Denmark); Gerdes, G; Klosse, R; Santjer, F [DEWI, Wilhelmshaven (Germany); Robertson, N; Davy, W [NEL, Glasgow (United Kingdom); Koulouvari, M; Morfiadakis, E [CRES, Pikermi (Greece); Larsson, Aa [Chalmers Univ. of Technology, Goeteborg (Sweden)

    1999-03-01

    The present paper describes the work done in power quality sub-task of the project `European Wind Turbine Testing Procedure Developments` funded by the EU SMT program. The objective of the power quality sub-task has been to make analyses and new recommendation(s) for the standardisation of measurement and verification of wind turbine power quality. The work has been organised in three major activities. The first activity has been to propose measurement procedures and to verify existing and new measurement procedures. This activity has also involved a comparison of the measurements and data processing of the participating partners. The second activity has been to investigate the influence of terrain, grid properties and wind farm summation on the power quality of wind turbines with constant rotor speed. The third activity has been to investigate the influence of terrain, grid properties and wind farm summation on the power quality of wind turbines with variable rotor speed. (au)

  9. Accounting for the speed shear in wind turbine power performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.

    2010-04-15

    The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise the wind field in front of the turbine. However, with the growing size of the turbine rotors during the last years, the effect of the variations of the wind speed within the swept rotor area, and therefore of the power output, cannot be ignored any longer. Primary effects on the power performance are from the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear condition, therefore on the season and the site. It was then proposed to use an equivalent wind speed accounting for the whole speed profile in front of the turbine. The method was first tested with aerodynamic simulations of a multi-megawatt wind turbine which demonstrated the decrease of the scatter in the power curve. A power curve defined in terms of this equivalent wind speed would be less dependant on the shear than the standard power curve. The equivalent wind speed method was then experimentally validated with lidar measurements. Two equivalent wind speed definitions were considered both resulting in the reduction of the scatter in the power curve. As a lidar wind profiler can measure the wind speed at several heights within the rotor span, the wind speed profile is described with more accuracy than with the power law model. The equivalent wind speed derived from measurements, including at least one measurement above hub height, resulted in a smaller scatter in the power curve than the equivalent wind speed derived from profiles extrapolated from measurements

  10. "Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS

    Science.gov (United States)

    Park, J.; Johnson, J. T.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.

  11. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  12. Site calibration for the wind turbine performance evaluation

    International Nuclear Information System (INIS)

    Nam, Yoon Su; Yoo, Neung Soo; Lee, Jung Wan

    2004-01-01

    The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several method on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the TaeKwanRyung test site are presented using three-month wind data from a reference meteorological mast and the other mast temporarily installed at the site of wind turbine. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed

  13. Comparative study of speed estimators with highly noisy measurement signals for Wind Energy Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, O. [Escuela Superior de Computo, Instituto Politecnico Nacional, Av. Juan de Dios Batiz S/N, Col. Lindavista, Del. Gustavo A. Madero 7738, D.F. (Mexico); Figueres, E.; Garcera, G. [Grupo de Sistemas Electronicos Industriales, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, Camino de Vera S/N, 7F, 46020 Valencia (Spain); Gonzalez, L.G. [Departamento de Ingenieria Electronica, Universidad de los Andes, Merida (Venezuela)

    2011-03-15

    This paper presents a comparative study of several speed estimators to implement a sensorless speed control loop in Wind Energy Generation Systems driven by power factor correction three-phase boost rectifiers. This rectifier topology reduces the low frequency harmonics contents of the generator currents and, consequently, the generator power factor approaches unity whereas undesired vibrations of the mechanical system decrease. For implementation of the speed estimators, the compared techniques start from the measurement of electrical variables like currents and voltages, which contain low frequency harmonics of the fundamental frequency of the wind generator, as well as switching frequency components due to the boost rectifier. In this noisy environment it has been analyzed the performance of the following estimation techniques: Synchronous Reference Frame Phase Locked Loop, speed reconstruction by measuring the dc current and voltage of the rectifier and speed estimation by means of both an Extended Kalman Filter and a Linear Kalman Filter. (author)

  14. Velocity measurement of model vertical axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A.; McWilliam, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2006-07-01

    An increasingly popular solution to future energy demand is wind energy. Wind turbine designs can be grouped according to their axis of rotation, either horizontal or vertical. Horizontal axis wind turbines have higher power output in a good wind regime than vertical axis turbines and are used in most commercial class designs. Vertical axis Savonius-based wind turbine designs are still widely used in some applications because of their simplistic design and low wind speed performance. There are many design variables that must be considered in order to optimize the power output in a given wind regime in a typical wind turbine design. Using particle image velocimetry, a study of the air flow around five different model vertical axis wind turbines was conducted in a closed loop wind tunnel. A standard Savonius design with two semi-circular blades overlapping, and two variations of this design, a deep blade and a shallow blade design were among the turbine models included in this study. It also evaluated alternate designs that attempt to increase the performance of the standard design by allowing compound blade curvature. Measurements were collected at a constant phase angle and also at random rotor orientations. It was found that evaluation of the flow patterns and measured velocities revealed consistent and stable flow patterns at any given phase angle. Large scale flow structures are evident in all designs such as vortices shed from blade surfaces. An important performance parameter was considered to be the ability of the flow to remain attached to the forward blade and redirect and reorient the flow to the following blade. 6 refs., 18 figs.

  15. Acoustic and geophysical measurement of infrasound from turbines at wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, H.G. [Hepburn Exploration Inc., Canmore, AB (Canada)

    2005-07-01

    An experiment was conducted at the Castle River Wind Farm in southern Alberta to measure and characterize infrasound from the turbines. The wind farm contains one 600 MW turbine and fifty-nine 660 MW wind turbines. Three types of sensors were used to measure both the low and high frequency acoustic energy and geophysical sound levels. These included low frequency geophones, acoustic microphones and a precision sound analyzer. Data was recorded for low, medium and high wind states, with the entire wind turbine array operating, and with the entire wind farm stopped. Downwind telemetry measurements were recorded for 30 continuous 50 metre offsets, up to a distance of 1450 metres from the wind farm. The objective of the project was to characterize the ambient noise levels and sound emitted by the turbines. Measurements were taken for wind speed and direction, atmospheric pressure, atmospheric temperature and turbine related data. Visual observations included atmospheric conditions, extraneous sources of noise such as aircraft, trains, motor vehicle traffic, highway noise, bird song, crickets and the rotational state of the turbines. It was concluded that for studying low frequency sound, the linear dB scale should be used instead of the dBA scale. Measurements of frequencies down to 6.3 Hz, showed that infrasound emission from the Castle River Wind Farm is not a significant concern. Lower frequencies down to about 2.5 Hz also confirmed that infrasound emissions are not significantly above the ambient noise levels. Any infrasound emissions were strongly coupled to the ground and were attenuated quickly. Time domain measurements showed that at all wind speeds and for frequencies up to 270 Hz, wind noise was actually attenuated when the wind farm is in operation. The noise levels were higher when the turbines were not turning. This finding was confirmed through spectral analysis. 12 refs., 2 tabs., 46 figs.

  16. Results from a three-month intercomparison of boundary-layer wind profiler and sodar wind measurements at Lindenberg, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Beyrich, F.; Goersdorf, U.; Neisser, J.; Steinhagen, H.; Weisensee, U. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium

    1998-10-01

    Intercomparison experiments with a wind profiler and a Doppler sodar have been performed at the meteorological observatory Lindenberg of the German weather service in summer, 1994, and in autumn, 1995, over a total period of about three months. The paper presents selected results of the wind measurements performed with the two systems. Sodar and wind profiler are shown to complement each other quite well. Therefore, a combination of both is a promising tool for continuous, high-resolution measurements of the wind profile. A problem to be solved is the construction of composite wind profiles when the measurements with the two systems disagree in the height range of overlapping. Measurements of the vertical velocity are difficult to assess due to their small absolute values. Long-term averages of the vertical velocity show slightly negative values, especially for the wind profiler. However, similar signatures have been found in the vertical velocity time series during frontal passages or during well-developed convection. (orig.) 7 refs.

  17. E region neutral winds in the postmidnight diffuse aurora during the atmospheric response in aurora 1 rocket campaign

    International Nuclear Information System (INIS)

    Brinkman, D.G.; Walterscheid, R.L.; Lyons, L.R.

    1995-01-01

    Measured E region neutral winds from the Atmospheric Response in Aurora (ARIA 1) rocket campaign are compared with winds predicted by a high-resolution nonhydrostatic dynamical thermosphere model. The ARIA 1 rockets were launched into the postmidnight diffuse aurora during the recovery phase of a substorm. Simulations have shown that electrodynamical coupling between the auroral ionosphere and the thermosphere was expected to be strong during active diffuse auroral conditions. This is the first time that simulations using the time history of detailed specifications of the magnitude and latitudinal variation of the auroral forcing based on measurements have been compared to simultaneous wind measurements. Model inputs included electron densities derived from ground-based airglow measurements, precipitating electron fluxes measured by the rocket, electron densities measured on the rocket, electric fields derived from magnetometer and satellite ion drift measurements, and large-scale background winds from a thermospheric general circulation model. Our model predicted a strong jet of eastward winds at E region heights. A comparison between model predicted and observed winds showed modest agreement. Above 135 km the model predicted zonal winds with the correct sense, the correct profile shape, and the correct altitude of the peak wind. However, it overpredicted the magnitude of the eastward winds by more than a factor or 2. For the meridional winds the model predicted the general sense of the winds but was unable to predict the structure or strength of the winds seen in the observations. Uncertainties in the magnitude and latitudinal structure of the electric field and in the magnitude of the background winds are the most likely sources of error contributing to the differences between model and observed winds. Between 110 and 135 km the agreement between the model and observations was poor because of a large unmodeled jetlike feature in the observed winds

  18. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.

    1993-06-01

    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  19. Vibration analysis of 1 MW gearbox for the Avedoere wind turbine. Test bed measurements

    International Nuclear Information System (INIS)

    Crone, A.

    1995-03-01

    The investigations had several purposes: Firstly, to determine and evaluate the structure-borne noise source strength of the gearbox, which is relevant for the final gear noise emission from the wind turbine. Secondly, to select the potentially least noisy gear set out of two, which have been made for the output gear stage. And Thirdly, to obtain the natural vibration modes of the gearbox structure, in order to determine if the structure-borne noise, transmitted to the wind turbine structure, will be amplified due to resonance conditions. Additional vibration tests were carried out. Among these, trials of 'in situ' measurement of the Transmission Error of the output gear stage, and measurements of the torsional vibrations of the input and output shaft. The test of the two output gear sets (from Flender AG and ELKRAFT A.m.b.A.) had the aim to determine the least noisy one of two different tooth profiles. Both gear sets were intended for the Avedoere Wind Turbine when it, in its first period of operation, is going to operate as a stall regulated turbine. After the first mesurements and the exchange of the Flender-designed gear set with the ELKRAFT-designed gear set, troubles with the backmost bearing of the intermediate shaft arose. The evaluation of the structure-borne noise source strength (expressed as the vibration velocity level), has in general been made at load conditions which correspond to the conditions in the wind turibne at a wind speed of 8 m/s, 10 m above terrain (v 10 ). This condition, is the one normally used when the noise emission from wind turbines is evaluated. At the comparison of the two gear sets against each other, the influence of the torque load on the source strength has also been considered. This comparison may indicate the load at which the profile correction is most effective, and may determine the noise potential of the gearbox at wind speeds lower than 8 m/s, which could also be of interest

  20. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mikkelsen, Torben; Hansen, Kasper H.; Sjoeholm, M.; Harris, M.

    2010-08-15

    In the context of the increasing application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner-mounted wind lidar was tested during the SpinnerEx 2009 experiment. The objective was to install a QinetiQ (Natural Power) ZephIR lidar in the rotating spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009. In this report, information is given regarding the experimental setup and the lidar's operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar's pointing direction, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar's instantaneous line-of-sight radial wind speed measurements. Two different setups have been investigated in which the approaching wind field was measured at distances of 0.58 OE and 1.24 OE rotor diameters upwind, respectively. For both setups, the instantaneous yaw misalignment of the turbine has been estimated from the lidar measurements. Data from an adjacent meteorological mast as well as data logged within the wind turbine's control system were used to evaluate the results. (author)

  1. Study on the influence of attitude angle on lidar wind measurement results

    Science.gov (United States)

    Han, Xiaochen; Dou, Peilin; Xue, Yangyang

    2017-11-01

    When carrying on wind profile measurement of offshore wind farm by shipborne Doppler lidar technique, the ship platform often produces motion response under the action of ocean environment load. In order to measure the performance of shipborne lidar, this paper takes two lidar wind measurement results as the research object, simulating the attitude of the ship in the ocean through the three degree of freedom platform, carrying on the synchronous observation test of the wind profile, giving an example of comparing the wind measurement data of two lidars, and carrying out the linear regression statistical analysis for all the experimental correlation data. The results show that the attitude angle will affect the precision of the lidar, The influence of attitude angle on the accuracy of lidar is uncertain. It is of great significance to the application of shipborne Doppler lidar wind measurement technology in the application of wind resources assessment in offshore wind power projects.

  2. Corrective measures evaluation report for Tijeras Arroyo groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Johnathan L (North Wind, Inc., Idaho Falls, ID); Orr, Brennon R. (North Wind, Inc., Idaho Falls, ID); Dettmers, Dana L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID); Howard, M. Hope (North Wind, Inc., Idaho Falls, ID)

    2005-08-01

    This Corrective Measures Evaluation report was prepared as directed by a Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for Tijeras Arroyo Groundwater. Supporting information includes background concerning the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. The evaluation of remedial alternatives included identifying and describing four remedial alternatives, an overview of the evaluation criteria and approach, comparing remedial alternatives to the criteria, and selecting the preferred remedial alternative. As a result of the Corrective Measures Evaluation, monitored natural attenuation of the contaminants of concern (trichloroethene and nitrate) is the preferred remedial alternative for implementation as the corrective measure for Tijeras Arroyo Groundwater. Design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are also presented.

  3. Canopy wake measurements using multiple scanning wind LiDARs

    Science.gov (United States)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  4. Noise measurements in 4 wind turbine farms

    International Nuclear Information System (INIS)

    Van Zuylen, E.J.; Koerts, M.

    1993-02-01

    The title wind turbine arrays are situated in Herbayum (Newinco 23PI250), Callantsoog (Bouma 160/20), Noordoostpolder (Windmaster WM300), and Ulketocht (Newinco 500 kW). Measurements were carried out by means of the so-called Ecofys Correlating Noise Meter to determine the source level of the wind turbines. The resulting source level as a function of the wind speed is interpolated to a source level for a wind speed of 8 m/s at 10 m height, on the basis of which the noise contours can be calculated. The noise contours are determined to analyze the noise load for people living in the neighbourhood of the wind parks. The source levels are compared with values as indicated in certificates, which are granted on the basis of a so-called Restricted Quality Certificate (BKC, abbreviated in Dutch) or the new standard NNI 6096/2 for the above-mentioned wind turbines. In general the results of this study agree quite well with the certified values. 12 figs., 7 tabs., 6 refs

  5. Practical use of offsite atmospheric measurements to enhance profitability of onsite wind prediction

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Craig [GL Garrad Hassan (Canada)

    2011-07-01

    This paper presents the use of offsite atmospheric measurements to improve the profitability of onsite wind prediction. There are two common sensitivities used, intraday and interday. Results from US mid-western sites show that the error associated with wind predictions is large but there are possibilities for improvement. Inter- and intraday can be used traditionally to contribute towards NWP bias correction. Intraday alone can be used with machine learning and NWP. These techniques are compared and given in order of ease of use and potential accuracy gains. Some considerations and differences for all three techniques, namely, traditional, data assimilation and machine learning are also detailed. An offsite selection matrix shows how elements like location, geography and telemetry rate in the 3 techniques. The experimental setup for all 3 techniques over a 3-month period is given and the results are presented. It can be concluded that the results from these simple experiments show promise but vary in method and time scale.

  6. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    , we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based......The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, the MPC without error compensation and an MPC with re-linearization at each sample point...

  7. Ten years statistics of wind direction and wind velocity measurements performed at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Becker, M.; Dilger, H.

    1979-06-01

    The measurements of wind direction and wind velocity performed at 60 m and 200 m height were evaluated for one year each and frequency distributions of the measured values were established. The velocity was divided into 1 m/s steps and the direction into 10 0 sectors. The frequency distribution of the wind direction reveals three maxima located in the southwest, northeast and north, respectively. The maximum of the frequency distribution of the wind velocity occurs between 4 and 5 m/s at 200 m height and between 3 and 4 m/s at 60 m height. (orig.) [de

  8. Accounting for the speed shear in wind turbine power performance measurement

    DEFF Research Database (Denmark)

    Wagner, Rozenn

    the vertical wind shear and the turbulence intensity. The work presented in this thesis consists of the description and the investigation of a simple method to account for the wind speed shear in the power performance measurement. Ignoring this effect was shown to result in a power curve dependant on the shear...... for turbulence intensity suggested by Albers. The second method was found to be more suitable for normalising the power curve for the turbulence intensity. Using the equivalent wind speed accounting for the wind shear in the power performance measurement was shown to result in a more repeatable power curve than......The power curve of a wind turbine is the primary characteristic of the machine as it is the basis of the warranty for it power production. The current IEC standard for power performance measurement only requires the measurement of the wind speed at hub height and the air density to characterise...

  9. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    and combine all scenes into one wind speed map. QuikSCAT winds undergo a seasonal correction due to lack of data during the cold season that is based on its ratio relative to buoy time series. All processing steps reduce the biases of the individual maps relative to the buoy observed wind climates. The remote...

  10. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  11. Power Curve Measurements

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  12. Wind Corrections in Flight Path Planning

    Directory of Open Access Journals (Sweden)

    Martin Selecký

    2013-05-01

    Full Text Available Abstract When operating autonomous unmanned aerial vehicles (UAVs in real environments it is necessary to deal with the effects of wind that causes the aircraft to drift in a certain direction. In such conditions it is hard or even impossible for UAVs with a bounded turning rate to follow certain trajectories. We designed a method based on an Accelerated A* algorithm that allows the trajectory planner to take the wind effects into account and to generate states that are reachable by UAV. This method was tested on hardware UAV and the reachability of its generated trajectories was compared to the trajectories computed by the original Accelerated A*.

  13. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  14. Phasor measurement of wind power plant operation in Eastern Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Joana; Nielsen, Arne Hejde

    2007-01-01

    Four Phasor Measurement Units (PMUs) record continuously voltage and current phasors in the 400 kV and 132 kV transmission system of Eastern Denmark. The abstract evaluates the unique concept for power system monitoring using PMUs. It focuses on utilization of synchronized phasor measurements from...... Nysted off-shore wind farm during a severe storm in 2005. The wind speeds during the event were so high, that Nysted offshore wind farm as well as a significant amount of on-land wind production in Denmark was disconnected from the grid. The PMU analysis illustrates that PMUs complement the traditional...... measurements from a traditional SCADA system. The case reveals the close relation between voltages, power flows and voltage phase angles over a wide area....

  15. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    Science.gov (United States)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  16. Statistical Analysis and Comparison of Harmonics Measured in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2011-01-01

    The paper shows statistical analysis of harmonic components measured in different offshore wind farms. Harmonic analysis is a complex task and requires many aspects, such as measurements, data processing, modeling, validation, to be taken into consideration. The paper describes measurement process...... and shows sophisticated analysis on representative harmonic measurements from Avedøre Holme, Gunfleet Sands and Burbo Bank wind farms. The nature of generation and behavior of harmonic components in offshore wind farms clearly presented and explained based on probabilistic approach. Some issues regarding...... commonly applied standards are also put forward in the discussion. Based on measurements and data analysis it is shown that a general overview about wind farm harmonic behaviour cannot be fully observed only based on single-value measurements as suggested in the standards but using more descriptive...

  17. The Skipheia Wind Measurement Station. Instrumentation, Wind Speed Profiles and Turbulence Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Aasen, S E

    1995-10-01

    This thesis describes the design of a measurement station for turbulent wind and presents results from an analysis of the collected data. The station is located at Skipheia near the south-west end of Froeya, an island off the coast of Mid-Norway. The station is unique for studies of turbulent winds because of the large numbers of sensors, which are located at various heights above ground up to 100 m, a sampling rate of 0.85 Hz and storage of the complete time series. The frequency of lightning and atmospheric discharges to the masts are quite high and much effort has gone into minimizing the damage caused by lightning activity. A major part of the thesis deals with data analysis and modelling. There are detailed discussions on the various types of wind sensors and their calibration, the data acquisition system and operating experiences with it, the database, data quality control, the wind speed profile and turbulence. 40 refs., 78 figs., 17 tabs.

  18. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge

    2015-01-01

    models that compensate for axial and tangential induction, approximated by blade element momentum theory, radial expansion of the inflow, rotor tilt, dynamic and skew inflow, tip loss, as well as braking and circulation of the flow local to the airfoil. The wind speeds measured on the rotating blades...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...

  19. Videometric research on deformation measurement of large-scale wind turbine blades

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,c...

  20. Wind Ressources in Complex Terrain investigated with Synchronized Lidar Measurements

    Science.gov (United States)

    Mann, J.; Menke, R.; Vasiljevic, N.

    2017-12-01

    The Perdigao experiment was performed by a number of European and American universities in Portugal 2017, and it is probably the largest field campaign focussing on wind energy ressources in complex terrain ever conducted. 186 sonic anemometers on 50 masts, 20 scanning wind lidars and a host of other instruments were deployed. The experiment is a part of an effort to make a new European wind atlas. In this presentation we investigate whether scanning the wind speed over ridges in this complex terrain with multiple Doppler lidars can lead to an efficient mapping of the wind resources at relevant positions. We do that by having pairs of Doppler lidars scanning 80 m above the ridges in Perdigao. We compare wind resources obtained from the lidars and from the mast-mounted sonic anemometers at 80 m on two 100 m masts, one on each of the two ridges. In addition, the scanning lidar measurements are also compared to profiling lidars on the ridges. We take into account the fact that the profiling lidars may be biased due to the curvature of the streamlines over the instrument, see Bingol et al, Meteorolog. Z. vol. 18, pp. 189-195 (2009). We also investigate the impact of interruptions of the lidar measurements on the estimated wind resource. We calculate the relative differences of wind along the ridge from the lidar measurements and compare those to the same obtained from various micro-scale models. A particular subject investigated is how stability affects the wind resources. We often observe internal gravity waves with the scanning lidars during the night and we quantify how these affect the relative wind speed on the ridges.

  1. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    Science.gov (United States)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  2. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...

  3. On trends in historical marine wind data

    Science.gov (United States)

    Cardone, Vincent J.; Greenwood, Juliet G.; Cane, Mark A.

    1990-01-01

    Long-period variations which include a trend toward strengthening winds over the last three decades have on the one hand been suggested to be real climatic changes, and on the other artifacts of the evolution of measuring techniques. An examination is presently conducted of individual ship reports from three regions with high data densities, in order to resolve this dispute. Even with corrections for instrumental effects, the pre-1950 winds appear weaker than post-1950 winds; the most probable explanation is the absence of universal sea state and Beaufort force standards prior to 1946.

  4. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  5. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  6. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    Science.gov (United States)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  7. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  8. Wind measurements with SODAR during strong temperature inversions near the ground

    International Nuclear Information System (INIS)

    Thomas, P.; Vogt, S.

    1989-08-01

    SODAR (Sound Detection and Ranging) equipment has been increasingly used to measure vertical wind profiles with little expenditure in terms of staff, continuously over time and with a good spatial resolution. These informations serve as input variables for atmospheric transport and dispersion models, environmental monitoring of industrial facilities and, generally, for investigating a broad spectrum of meteorological phenomena. The SODAR principle has proved its suitability since long provided that the data recorded with SODAR have served to establish wind statistics valid for extended periods of time. At industrial sites potentially releasing substances prejudicial to health, e.g., chemical plants, nuclear power plants, etc., a SODAR must, moreover, be capable of measuring reliable the wind conditions also during short periods of release. This would, e.g., be important during accidental releases. Especially interesting situations for pollutant dispersion are distinct temperature inversions. It will be examined in this paper whether a SODAR is capable of measuring reliably the wind conditions also during those inversions. The selection of the situations of inversion as well as the direct intercomparison of data supplied by SODAR and conventional wind measuring instruments (anemometer and wind vane) are possible at the 200 m meteorological tower erected at the Karlsruhe Nuclear Research Center. The comparison between SODAR and the meteorological tower has shown that a SODAR is able to measure reliably the wind data also in situations characterized by strong ground-based and elevated inversions, respectively. (orig./KW) [de

  9. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  10. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  11. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mikkelsen, Torben; Hansen, Kasper Hjorth

    spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009....... In this report, information is given regarding the experimental setup and the lidar’s operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar’s pointing direction, the spinner axis’s vertical tilt...... and the wind turbine’s yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar’s instantaneous...

  12. The measurement of winds over the ocean from Skylab with application to measuring and forecasting typhoons and hurricanes

    Science.gov (United States)

    Cardone, V. J.; Pierson, W. J.

    1975-01-01

    On Skylab, a combination microwave radar-radiometer (S193) made measurements in a tropical hurricane (AVA), a tropical storm, and various extratropical wind systems. The winds at each cell scanned by the instrument were determined by objective numerical analysis techniques. The measured radar backscatter is compared to the analyzed winds and shown to provide an accurate method for measuring winds from space. An operational version of the instrument on an orbiting satellite will be able to provide the kind of measurements in tropical cyclones available today only by expensive and dangerous aircraft reconnaissance. Additionally, the specifications of the wind field in the tropical boundary layer should contribute to improved accuracy of tropical cyclone forecasts made with numerical weather predictions models currently being applied to the tropical atmosphere.

  13. Corrective measures evaluation report for technical area-v groundwater.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Johnathan L (North Wind, Inc., Idaho Falls, ID); Orr, Brennon R. (North Wind, Inc., Idaho Falls, ID); Dettmers, Dana L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID); Howard, Hope (North Wind, Inc., Idaho Falls, ID)

    2005-07-01

    This Corrective Measures Evaluation Report was prepared as directed by the Compliance Order on Consent issued by the New Mexico Environment Department to document the process of selecting the preferred remedial alternative for contaminated groundwater at Technical Area V. Supporting information includes background information about the site conditions and potential receptors and an overview of work performed during the Corrective Measures Evaluation. Evaluation of remedial alternatives included identification and description of four remedial alternatives, an overview of the evaluation criteria and approach, qualitative and quantitative evaluation of remedial alternatives, and selection of the preferred remedial alternative. As a result of the Corrective Measures Evaluation, it was determined that monitored natural attenuation of all contaminants of concern (trichloroethene, tetrachloroethene, and nitrate) was the preferred remedial alternative for implementation as the corrective measure to remediate contaminated groundwater at Technical Area V of Sandia National Laboratories/New Mexico. Finally, design criteria to meet cleanup goals and objectives and the corrective measures implementation schedule for the preferred remedial alternative are presented.

  14. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  15. Intercalibration of HRDI and WINDII wind measurements

    Directory of Open Access Journals (Sweden)

    M. D. Burrage

    1997-09-01

    Full Text Available The High Resolution Doppler Imager (HRDI and the Wind Imaging Interferometer (WINDII in- struments, which are both on the Upper Atmosphere Research Satellite, measure winds by sensing the Doppler shift in atmospheric emission features. Because the two observation sets are frequently nearly coincident in space and time, each provides a very e.ective validation test of the other. Discrepancies due to geophysical di.erences should be much smaller than for comparisons with other techniques (radars, rockets, etc., and the very large sizes of the coincident data sets provide excellent statistics for the study. Issues that have been examined include relative systematic o.sets and the wind magnitudes obtained with the two systems. A significant zero wind position di.erence of ~6 m s–1 is identified for the zonal component, and it appears that this arises from an absolute perturbation in WINDII winds of –4 m s–1 and in HRDI of +2 m s–1. Altitude o.sets appear to be relatively small, and do not exceed 1 km. In addition, no evidence is found for the existence of a systematic wind speed bias between HRDI and WINDII. However, considerable day-to-day variability is found in the quality of the agreement, and RMS di.erences are surprisingly large, typically in the range of 20±30 m s–1.

  16. High-Resolution Wind Measurements for Offshore Wind Energy Development

    Science.gov (United States)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  17. Wind Atlas of Bay of Bengal with Satellite Wind Measurement

    DEFF Research Database (Denmark)

    Nadi, Navila Rahman

    footstep towards offshore wind energy analysis for this region. Generally, it is difficult to find offshore wind data relative to the wind turbine hub heights, therefore a starting point is necessary to identify the possible wind power density of the region. In such scenario, Synthetic aperture radars (SAR......The objective of this study is to obtain appropriate offshore location in the Bay of Bengal, Bangladesh for further development of wind energy. Through analyzing the previous published works, no offshore wind energy estimation has been found here. That is why, this study can be claimed as the first......) have proven useful. In this study, SAR based dataset- ENVISAT ASAR has been used for Wind Atlas generation. Furthermore, a comparative study has been performed with Global Wind Atlas (GWA) to determine a potential offshore wind farm. Additionally, the annual energy production of that offshore windfarm...

  18. Grid impact of variable-speed wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aa [Chalmers Univ. of Technology, Dept. of Electric Power Engineering, Goeteborg (Sweden); Soerensen, P [Risoe National Lab., Roskilde (Denmark); Santjer, F [German Wind Energy Inst., DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In this paper the power quality of variable-speed wind turbines equipped with forced-commutated inverters is investigated. Measurements have been taken on the same type of variable-speed wind turbines in Germany and Sweden. The measurements have been analysed according to existing IEC standards. Special attention has been paid to the aggregation of several wind turbines on flicker emission and harmonics. The aggregation has been compared with the summation laws used in the draft IEC 61400-21 `Power Quality Requirements for Grid Connected wind turbines`. The methods for calculating and summing flicker proposed by IEC Standards are reliable. Harmonics and inter-harmonics are treated in IEC 61000-4-7 and IEC 61000-3-6. The methods for summing harmonics and inter-harmonics in IEC 61000-3-6 are applicable to wind turbines. In order to obtain a correct magnitude of the frequency components, the use of a well-defined window width, according to IEC 61000-4-7 Amendment 1 is of a great importance. (au)

  19. Optical measurements of winds in the lower thermosphere

    International Nuclear Information System (INIS)

    Wiens, R.H.; Shepherd, G.G.; Gault, W.A.; Kosteniuk, P.R.

    1988-01-01

    WAMDII, the wide-angle Michelson Doppler imaging interferometer, was used to measure the neutral wind in the lower thermosphere by the Doppler shift of the O I 557-nm line. Observations were made at Saskatoon (60.5 degree N invariant) around the spring equinox of 1985 with WAMDII coupled to an all-sky lens. With dopplergrams averaged over 3 to 30 min, no evidence was found for persistent highly localized winds on either of the two nights studied, one viewing only aurora and one viewing only airglow. The nocturnal variation was determined for both nights using average horizontal wind for the whole all-sky image. The pattern for the auroral case shows winds parallel to the aurora orientation in the evening but substantial crosswinds near midnight. High latitude general circulation models seem to represent this case better than local auroral generation models. The airglow case showed eastward winds in the morning sector

  20. Predicting the Extreme Loads on a Wind Turbine Considering Uncertainty in Airfoil Data

    DEFF Research Database (Denmark)

    Abdallah, Imad; Natarajan, Anand; Sørensen, John Dalsgaard

    2014-01-01

    The sources contributing to uncertainty in a wind turbine blade static airfoil data include wind tunnel testing, CFD calculations, 3D rotational corrections based on CFD or emprircal models, surface roughness corrections, Reynolds number corrections, expansion to the full 360-degree angle of attack...... range, validation by full scale measurements, and geometric distortions of the blade during manufacturing and under loading. In this paper a stochastic model of the static airfoil data is proposed to supplement the prediction of extreme loads effects for large wind turbines. It is shown...... that the uncertainty in airfoil data can have e significant impact on the prediction of extreme loads effects depending on the component, and the correlation along the span of the blade....

  1. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  2. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  3. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  4. Simulation of power fluctuation of wind farms based on frequency domain

    DEFF Research Database (Denmark)

    Lin, Jin; Sun, Yuanzhang; Li, Guojie

    2011-01-01

    , however, is incapable of completely explaining the physical mechanism of randomness of power fluctuation. To remedy such a situation, fluctuation modeling based on the frequency domain is proposed. The frequency domain characteristics of stochastic fluctuation on large wind farms are studied using...... the power spectral density of wind speed, the frequency domain model of a wind power generator and the information on weather and geography of the wind farms. The correctness and effectiveness of the model are verified by comparing the measurement data with simulation results of a certain wind farm. © 2011...

  5. Wake Measurements in ECN's Scaled Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wagenaar, J.W.; Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2013-02-15

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the wind speed ratio, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  6. Measurement of the environmental noise at the Torseroed wind turbine site

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    2000-12-01

    Further to complaints about the noise generated by a Micon 600 kW wind turbine, measurements of both noise immission and noise emission were performed at the Torseroed site. The measurements and analysis presented in this report were carried out by following the recommendations of the IEA documents for noise emission and immission measurements. It was found that the immission level, i.e. the wind turbine sound, at one of the nearest dwelling, namely Solglaentan, is 39 dB(A) for a wind speed of 8 m/s at hub height. Measurements carried out close to the turbine show that the sound power level of the turbine is 4.3 dB higher than the A-weighted level given by the supplier. Furthermore, the noise level increases more rapidly as a function of the wind speed than what is expected from the values furnished by the manufacturer. The measurements results also show that the background noise level is unusually low at Solglaentan

  7. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  8. 3D wake measurements from a scanning wind lidar in combination with a fast wind field reconstruction model

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, T. G.; Astrup, Poul

    2017-01-01

    University of Denmark. The purpose of the SpinnerLidar measurements at SWIFT is to measure the response of a V27 turbine wake to varying inflow conditions and turbine operating states. Although our fast scanning SpinnerLidar is able to measure the line-of-sight projected wind speed at up to 400 points per......-Stokes CFD code “Lincom Cyclop-buster model,”3 the corresponding 3D wind vector field (u, v, w) can be reconstructed under constraints for conservation of mass and momentum. The resulting model calculated line-of-sight projections of the 3D wind velocity vectors will become consistent with the line...

  9. A device for regulating the field generated by a superconducting winding or the gradient of same

    International Nuclear Information System (INIS)

    Duret, Denis; Dunand, J.-J.

    1974-01-01

    Description is given of a stabilizing device which does not require the use of a specific solvent. Changes occurring in the field generated by the main winding and the correcting winding are transmitted by a superconducting unit to a quantum superconducting interferometer. An impedance measurement provides an error-signal, the latter being integrated for feeding the correcting winding. A form of embodiment relates to the regulation of a modulated field. This can be applied to nuclear magnetic resonance spectrometers [fr

  10. Wind atlas for Egypt: Measurements, micro- and mesoscale modelling

    DEFF Research Database (Denmark)

    Mortensen, N.G.; Hansen, J.C.; Badger, J.

    2006-01-01

    – close to consumers and the electrical grid. The KAMM simulations seem to capture the main features of the wind climate of Egypt, but in regions where the horizontal wind gradients are large, the uncertainties are large as well and additional measurements are required. The results are now published...

  11. Wind Tunnel Measurements at Virginia Tech

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck

    2012-01-01

    In this section, the wind tunnel configuration used for aerodynamic and aeroacoustic measurement is described. Then, the validation of the method for evaluating far-field noise from surface microphones as described in Section 5 is presented. Finally, the design concept proposed in Section 6 is ve...

  12. Intercalibration of HRDI and WINDII wind measurements

    Directory of Open Access Journals (Sweden)

    M. D. Burrage

    Full Text Available The High Resolution Doppler Imager (HRDI and the Wind Imaging Interferometer (WINDII in- struments, which are both on the Upper Atmosphere Research Satellite, measure winds by sensing the Doppler shift in atmospheric emission features. Because the two observation sets are frequently nearly coincident in space and time, each provides a very e.ective validation test of the other. Discrepancies due to geophysical di.erences should be much smaller than for comparisons with other techniques (radars, rockets, etc., and the very large sizes of the coincident data sets provide excellent statistics for the study. Issues that have been examined include relative systematic o.sets and the wind magnitudes obtained with the two systems. A significant zero wind position di.erence of ~6 m s–1 is identified for the zonal component, and it appears that this arises from an absolute perturbation in WINDII winds of –4 m s–1 and in HRDI of +2 m s–1. Altitude o.sets appear to be relatively small, and do not exceed 1 km. In addition, no evidence is found for the existence of a systematic wind speed bias between HRDI and WINDII. However, considerable day-to-day variability is found in the quality of the agreement, and RMS di.erences are surprisingly large, typically in the range of 20±30 m s–1.

  13. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  14. Using Particle Image Velocimetry to Measure the Wind in a Winnowing Chamber

    OpenAIRE

    Matsui, Masami; Inoue, Eiji; Kuwano, Tomoko; Mori, Ken; Furuno, Yuko

    2003-01-01

    The array of vectors for the winnowing wind in the threshing unit was investigated uding PIV in order to improve the winnowing accuracy. It is difficult to measure wind velocities at many points simultaneously using the anemometer. However, visualization of the winnowing wind was possible using the tracer and laser beam. Futhermore, The PIV method made it possible to measure an array of vectors for the winnowing wind. The results produced by PIV concurred with the results of conventional meth...

  15. Complete methodology on generating realistic wind speed profiles based on measurements

    DEFF Research Database (Denmark)

    Gavriluta, Catalin; Spataru, Sergiu; Mosincat, Ioan

    2012-01-01

    , wind modelling for medium and large time scales is poorly treated in the present literature. This paper presents methods for generating realistic wind speed profiles based on real measurements. The wind speed profile is divided in a low- frequency component (describing long term variations...

  16. Simulation of wind loads on facades - Out in the wind; Simulation von Windlasten auf Fassaden. Vom Winde umstroemt

    Energy Technology Data Exchange (ETDEWEB)

    Menti, U.-P.; Pluess, I.

    2007-07-01

    This illustrated article discusses the wind loads experienced by buildings at exposed locations and, in particular, the correct design of their facades. The various numerical methods such as computational fluid dynamics (CFD) available for this purpose are introduced and explained. The validation of the models is discussed and the simulation of wind loads on the new revolving restaurant on the Hohe Kasten mountain in eastern Switzerland is looked at. Here winds with speeds of up to 250 km/h from various directions can be expected. Illustrations are provided of the results obtained. Practical results obtained from the simulations such as the design of the building's facades and the correct placing of air vents are presented and discussed.

  17. Observational Constraints on Ephemeral Wind Gusts that MobilizeSoil Dust Aerosols

    Science.gov (United States)

    Miller, R. L.; Leung, M. F.

    2017-12-01

    Dust aerosol models resolve the planetary scale winds that disperse particles throughout the globe, but the winds raising dust are often organized on smaller scales that are below the resolution of the model. These winds, including ephemeral wind gusts associated with boundary layer mixing, are typically parameterized. For example, gusts by dry convective eddies are related to the sensible heat flux. What remains is to constrain the magnitude of the wind gusts using boundary layer measurements, so that dust emission has the correct sensitivity to these gusts, relative to the resolved wind. Here, we use a year of ARM measurements with high temporal resolution from Niamey, Niger in the Sahel to evaluate our parameterization. This evaluation is important for dust aerosol models that use 'nudging' to reproduce observed transport patterns.

  18. Application of the spectral correction method to reanalysis data in South Africa

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries C.

    2014-01-01

    of this study is to evaluate the applicability of the method to the relevant region. The impacts from the two aspects are investigated for interior and coastal locations. Measurements from five stations from South Africa are used to evaluate the results from the spectral model S(f)=af−5/3 together...... with the hourly time series of the Climate Forecast System Reanalysis (CFSR) 10 m wind at 38 km resolution over South Africa. The results show that using the spectral correction method to the CFSR wind data produce extreme wind atlases in acceptable agreement with the atlas made from limited measurements across...

  19. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  20. COUPLING MEASUREMENT AND CORRECTION AT RHIC

    International Nuclear Information System (INIS)

    PILAT, F.; BEEBE-WANG, J.; FISCHER, W.; PTITSYN, V.; SATOGATA, T.

    2002-01-01

    Coupling correction at RHIC has been operationally achieved through a two-step process: using local triplet skew quadrupoles to compensate coupling corn rolled low-beta triplet quadrupoles, and minimizing the tune separation and residual coupling with orthogonal global skew quadrupole families. An application has been developed for global correction that allows skew quadrupole tuning and tune display with a choice of different tune measurement techniques, including tune-meter, Schottky and phase lock loop (PLL). Coupling effects have been analyzed by using 1024-turn (TBT) information from the beam position monitor (BPM) system. These data allow the reconstruction of the off-diagonal terms of the transfer matrix, a measure of global coupling. At both injection and storage energies, coordination of tune meter kicks with TBT acquisition at 322 BPW's in each ring allows the measurement of local coupling at all BPM locations

  1. An Examination of the Quality of Wind Observations with Smartphones

    Science.gov (United States)

    Hintz, Kasper; Vedel, Henrik; Muñoz-Gomez, Juan; Woetmann, Niels

    2017-04-01

    Over the last years, the number of devices connected to the internet has increased significantly making it possible for internal and external sensors to communicate via the internet, opening up many possibilities for additional data for use in the atmospheric sciences. Vaavud has manufactured small anemometer devices which can measure wind speed and wind direction when connected to a smartphone. This work examines the quality of such crowdsourced Handheld Wind Observations (HWO). In order to examine the quality of the HWO, multiple idealised measurement sessions were performed at different sites in different atmospheric conditions. In these sessions, a high-precision ultrasonic anemometer was installed to work as a reference measurement. The HWO are extrapolated to 10 m in order to compare these to the reference observations. This allows us to examine the effect of stability correction in the surface layer and the quality of height extrapolated HWO. The height extrapolation is done using the logarithmic wind profile law with and without stability correction. Furthermore, this study examines the optimal ways of using traditional observations and numerical models to validate HWO. In order to do so, a series of numerical reanalysis have been run for a period of 5 months to quantise the effect of including crowdsourced HWO in a traditional observation dataset.

  2. Rotor equivalent wind speed for power curve measurement – comparative exercise for IEA Wind Annex 32

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Cañadillas, B.; Clifton, A.

    2014-01-01

    was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions...

  3. Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX)

    International Nuclear Information System (INIS)

    Takle, E S; Rajewski, D A; Lundquist, J K; Gallus, W A Jr; Sharma, A

    2014-01-01

    The Midwest US currently is experiencing a large build-out of wind turbines in areas where the nocturnal low-level jet (NLLJ) is a prominent and frequently occurring feature. We describe shear characteristics of the NLLJ and their influence on wind power production. Reports of individual turbine power production and concurrent measurements of near-surface thermal stratification are used to turbine wake interactions and turbine interaction with the overlying atmosphere. Progress in forecasting conditions such as wind ramps and shear are discussed. Finally, the pressure perturbation introduced by a line of turbines produces surface flow convergence that may create a vertical velocity and hence a mesoscale influence on cloud formation by a wind farm

  4. Passive correction of persistent current multipoles in superconducting accelerator dipoles

    International Nuclear Information System (INIS)

    Fisk, H.E.; Hanft, R.A.; Kuchnir, M.; McInturff, A.D.

    1986-07-01

    Correction of the magnetization sextupole and decapole fields with strips of superconductor placed just inside the coil winding is discussed. Calculations have been carried out for such a scheme, and tests have been conducted on a 4 cm aperture magnet. The calculated sextupole correction at the injection excitation of 330 A, 5% of full field, was expected to be 77% effective, while the measured correction is 83%, thus suggesting the scheme may be useful for future accelerators such as SSC and LHC

  5. Blade-Element/Momentum Technique for Rotors operating in Wind Tunnels

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Sørensen, Dan Nørtoft

    2003-01-01

    small, since important properties of the blade boundary layer otherwise cannot be captured correctly. On the other hand, severe problems with wind tunnel blockage may be the result if the ratio between the areas of the rotor and the wind tunnel cross section is too big. In all cases, wind tunnel...... wallcorrections are needed in order that measured data corresponds to unconstrained flow conditions. The present work is based on a model for ducted axial fans by Sørensen and Sørensen [5], modified to account for free (unbounded) turbines [6]. Here, we extend the model to acount for wind turbines placed in wind...

  6. Performance enhancement and load reduction on wind turbines using inflow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abildgaard Kragh, K.

    2013-06-15

    Wind energy is being applied at a larger and larger scale worldwide, and is one of the technologies eligible for accommodating the increasing demand for renewable energy. However, wind energy is still not competitive compared to technologies that are based on fossil energy sources. Therefore, much wind energy research is focused on decreasing the cost of the energy that can be produced from the wind. The cost of energy can for example be decreased by ensuring that wind turbines are operated in a way that ensures that the maximum amount of energy is extracted, and that the turbines are not loaded excessively. The operation of a wind turbine is governed by a number of controllers that are based on a series of sensors and actuators. Classical wind turbine control utilizes sensors for measuring turbine parameters such as rotor speed, power and shaft torque, as well as actuators for applying generator torque and collective pitch angle changes. Thus, classical wind turbine control schemes are based on measurements of the effects of the inflow on the turbine. Therefore, the reactions of the control system to the inflow changes are inherently delayed compared to the actual inflow changes. Because of the inherent delay of the control system, the ability of the system to react promptly to inflow changes is limited. Control schemes that are based on inflow measurements have been developed to overcome the limitations of the classical wind turbine control system. By measuring the inflow directly, actuation can be initiated instantly as the inflow changes. If the inflow is measured upstream of the turbine, actuation can be initiated prior to the occurrence of a wind speed change at the turbine. Hereby, even the actuator delay can be compensated for. Upstream inflow measurements could for example be acquired using ''Light Detection and Ranging''. In this thesis, the potentials for improving the power production and decreasing the load variations of horizontal axis upwind turbines

  7. Actuator disk model of wind farms based on the rotor average wind speed

    DEFF Research Database (Denmark)

    Han, Xing Xing; Xu, Chang; Liu, De You

    2016-01-01

    Due to difficulty of estimating the reference wind speed for wake modeling in wind farm, this paper proposes a new method to calculate the momentum source based on the rotor average wind speed. The proposed model applies volume correction factor to reduce the influence of the mesh recognition of ...

  8. Topographic Correction of Wind-driven Rainfall for Landslide Analysis in Central Taiwan with Validation from Aerial and Satellite Optical Images

    Directory of Open Access Journals (Sweden)

    Jin-King Liu

    2013-05-01

    Full Text Available Rainfall intensity plays an important role in landslide prediction especially in mountain areas. However, the rainfall intensity of a location is usually interpolated from rainfall recorded at nearby gauges without considering any possible effects of topographic slopes. In order to obtain reliable rainfall intensity for disaster mitigation, this study proposes a rainfall-vector projection method for topographic-corrected rainfall. The topographic-corrected rainfall is derived from wind speed, terminal velocity of raindrops, and topographical factors from digital terrain model. In addition, scatter plot was used to present landslide distribution with two triggering factors and kernel density analysis is adopted to enhance the perception of the distribution. Numerical analysis is conducted for a historic event, typhoon Mindulle, which occurred in 2004, in a location in central Taiwan. The largest correction reaches 11%, which indicates that topographic correction is significant. The corrected rainfall distribution is then applied to the analysis of landslide triggering factors. The result with corrected rainfall distribution provides better agreement with the actual landslide occurrence than the result without correction.

  9. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  10. LiDAR-based 2D Localization and Mapping System using Elliptical Distance Correction Models for UAV Wind Turbine Blade Inspection

    DEFF Research Database (Denmark)

    Nikolov, Ivan Adriyanov; Madsen, Claus B.

    2017-01-01

    for on-site outdoor localization and mapping in low feature environment using the inexpensive RPLIDAR and an 9-DOF IMU. Our algorithm geometrically simplifies the wind turbine blade 2D cross-section to an elliptical model and uses it for distance and shape correction. We show that the proposed algorithm...

  11. Windscanner: 3-D wind and turbulence measurements from three steerable doppler lidars

    International Nuclear Information System (INIS)

    Mikkelsen, T; Mann, J; Courtney, M; Sjoeholm, M

    2008-01-01

    At RISOe DTU we has started to build a new-designed laser-based lidar scanning facility for detailed remote measurements of the wind fields engulfing the huge wind turbines of today. Our aim is to measure in real-time 3D wind vector data at several hundred points every second: 1) upstream of the turbine, 2) near the turbine, and 3) in the wakes of the turbine rotors. Our first proto-type Windscanner is now being built from three commercially available Continuous Wave (CW) wind lidars modified with fast adjustable focus length and equipped with 2-D prism-based scan heads, in conjunction with a commercially available pulsed wind lidar for extended vertical profiling range. Design, construction and initial testing of the new 3-D wind lidar scanning facility are described and the functionality of the Windscanner and its potential as a new research facility within the wind energy community is discussed

  12. Wind Speed Measurement by Paper Anemometer

    Science.gov (United States)

    Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan

    2011-01-01

    A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…

  13. The efficiency of windbreaks on the basis of wind field and optical porosity measurement

    Directory of Open Access Journals (Sweden)

    Tomáš Středa

    2008-01-01

    Full Text Available Windbreaks have been used for many years to reduce wind speed as a wind-erosion control mea­su­re. To assessment of windbreak efficiency two main parameters are using: height of windbreak (H and aerodynamic porosity. In South Moravian Region the total area of windbreaks is approximately 1200 ha. For purposes of horizontal profile measurement of wind speed and wind direction windbreaks with various spices composition, age and construction in cadastral territory Suchá Loz and Micmanice were chosen. Windbreak influence on horizontal wind profile was found out in distance of 50, 100, 150 and 200 m in front and behind windbreak in two-meter height above surface. For the optical porosity measurement the ImageTool program was used. The wind field measurement results of windbreak in Suchá Loz cadastral shows limited effect of windbreak on wind speed. The windbreak is created mainly by Canadian poplars (Populus × canadensis. In dependence on main species foliage stage the effect of windbreak was obvious on leeward side to distance of 100–150 m (c. 5–7 H. Average optical porosity of windbreak in Suchá Loz was 50% (April. Reduction of average wind speed was about 17% maximally in this stage. Optical porosity was 20% and wind speed reduction was about 37% during second measurement (October. The second monitored windbreak (Micmanice had a significant influence on wind speed even to the maximal measured distance (200 m, c. 14 H. This windbreak crea­ted mainly by Acer sp. and Fraxinus excelsior reduced the wind speed about 64%. During first measurement (May the optical porosity of 20% and maximal wind speed reduction of 64% were assessed. For optical porosity of 21% (October the wind speed reduction was about 55%. Close relation between optical porosity and wind speed reduction was found out by statistical evaluation. Correlation coefficient regardless locality for distance of 50 m was −0.80, 100 m −0.92, 150 m −0.76 and for distance of 200 m

  14. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  15. Janus: Graphical Software for Analyzing In-Situ Measurements of Solar-Wind Ions

    Science.gov (United States)

    Maruca, B.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.

    2016-12-01

    In-situ observations of solar-wind ions provide tremendous insights into the physics of space plasmas. Instrument on spacecraft measure distributions of ion energies, which can be processed into scientifically useful data (e.g., values for ion densities and temperatures). This analysis requires a strong, technical understanding of the instrument, so it has traditionally been carried out by the instrument teams using automated software that they had developed for that purpose. The automated routines are optimized for typical solar-wind conditions, so they can fail to capture the complex (and scientifically interesting) microphysics of transient solar-wind - such as coronal mass ejections (CME's) and co-rotating interaction regions (CIR's) - which are often better analyzed manually.This presentation reports on the ongoing development of Janus, a new software package for processing in-situ measurement of solar-wind ions. Janus will provide user with an easy-to-use graphical user interface (GUI) for carrying out highly customized analyses. Transparent to the user, Janus will automatically handle the most technical tasks (e.g., the retrieval and calibration of measurements). For the first time, users with only limited knowledge about the instruments (e.g., non-instrumentalists and students) will be able to easily process measurements of solar-wind ions. Version 1 of Janus focuses specifically on such measurements from the Wind spacecraft's Faraday Cups and is slated for public release in time for this presentation.

  16. Multi-MW wind turbine power curve measurements using remote sensing instruments - the first Hoevsoere campaign

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.

    2009-02-15

    Power curve measurement for large wind turbines requires taking into account more parameters than only the wind speed at hub height. Based on results from aerodynamic simulations, an equivalent wind speed taking the wind shear into account was defined and found to reduce the scatter in the power curve significantly. Two LiDARs and a SoDAR are used to measure the wind profile in front of a wind turbine. These profiles are used to calculate the equivalent wind speed. LiDAR are found to be more accurate than SoDAR and therefore more suitable for power performance measurement. The equivalent wind speed calculated from LiDAR profile measurements gave a small reduction of the power curve uncertainty. Several factors can explain why this difference is smaller than expected, including the experimental design and errors pertaining to the LiDAR at that time. This first measurement campaign shows that used of the equivalent wind speed at least results in a power curve with no more scatter than using the conventional method. (au)

  17. How important is getting the land surface energy exchange correct in WRF for wind energy forecasting?

    Science.gov (United States)

    Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.

    2013-12-01

    Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in

  18. A FULL-SCALE MEASUREMENT OF WIND ACTIONS AND EFFECTS ON A SEA-CROSSING BRIDGE

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    2017-10-01

    Full Text Available Wind loading is critical for the large-span and light-weight structures, and field measurement is the most effective way to evaluate the wind resistance performance of a specific structure. This study investigates the wind characteristics and wind-induced vibration on a sea-crossing bridge in China, namely Donghai Bridge, based on up to six years of monitoring data. It is found that: (1 there exists obvious discrepancy between the measured wind field parameters and the values suggested by the design code; and the wind records at the bridge site is easily interfered by the bridge structure itself, which should be considered in interpreting the measurements and designing structural health monitoring systems (SHMS; (2 for strong winds with high non-stationarity, a shorter averaging time than 10-min is preferable to obtain more stable turbulent wind characteristics; (3 the root mean square (RMS of the wind-induced acceleration of the girder may increase in an approximately quadratic curve relationship with the mean wind speed; and (4 compared to traffic load, the wind dominates the girder’s lateral vibration amplitude, while the heavy-load traffic might exert more influence on the girder’s vertical and torsional vibrations than the high winds. This study provides field evidence for the wind-resistant design and evaluation of bridges in similar operational conditions.

  19. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...... for accurately measuring small scale flow structures in a wind tunnel....

  20. Measuring power output intermittency and unsteady loading in a micro wind farm model

    OpenAIRE

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2016-01-01

    In this study porous disc models are used as a turbine model for a wind-tunnel wind farm experiment, allowing the measurement of the power output, thrust force and spatially averaged incoming velocity for every turbine. The model's capabilities for studying the unsteady turbine loading, wind farm power output intermittency and spatio temporal correlations between wind turbines are demonstrated on an aligned wind farm, consisting of 100 wind turbine models.

  1. Estimating Health Condition of the Wind Turbine Drivetrain System

    Directory of Open Access Journals (Sweden)

    Peng Qian

    2017-10-01

    Full Text Available Condition Monitoring (CM has been considered as an effective method to enhance the reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven model-based CM approach for wind turbines based on the online sequential extreme learning machine (OS-ELM algorithm. A physical kinetic energy correction model is employed to normalize the temperature change to the value at the rated power output to eliminate the effect of variable speed operation of the turbines. The residual signal, obtained by comparing the predicted values and practical measurements, is processed by the physical correction model and then assessed with a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory control and data acquisition (SCADA data acquired from an operational wind farm, which contains various types of temperature data of the gearbox. The results show that the proposed method can detect more efficiently both the long-term aging characteristics and the short-term faults of the gearbox.

  2. Reliability measures for indexed semi-Markov chains applied to wind energy production

    International Nuclear Information System (INIS)

    D'Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio

    2015-01-01

    The computation of the dependability measures is a crucial point in many engineering problems as well as in the planning and development of a wind farm. In this paper we address the issue of energy production by wind turbines by using an indexed semi-Markov chain as a model of wind speed. We present the mathematical model, the data and technical characteristics of a commercial wind turbine (Aircon HAWT-10kW). We show how to compute some of the main dependability measures such as reliability, availability and maintainability functions. We compare the results of the model with real energy production obtained from data available in the Lastem station (Italy) and sampled every 10 min. - Highlights: • Semi-Markov models. • Time series generation of wind speed. • Computation of availability, reliability and maintainability.

  3. An MPC approach to individual pitch control of wind turbines using uncertain LIDAR measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. A new approach is proposed to simplify the optimization problem of MPC. We linearize the obtained nonlinear model for different operating points which are determined by the effective wind...... speed on the rotor disc and take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore the scheduling variable is known for the entire prediction horizon. We consider uncertainty in the wind propagation, which is the traveling time of wind...... from the LIDAR measurement point to the rotor. An algorithm based on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, without error...

  4. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  5. Measurements of Waves in a Wind-wave Tank Under Steady and Time-varying Wind Forcing.

    Science.gov (United States)

    Zavadsky, Andrey; Shemer, Lev

    2018-02-13

    This manuscript describes an experimental procedure that allows obtaining diverse quantitative information on temporal and spatial evolution of water waves excited by time-dependent and steady wind forcing. Capacitance-type wave gauge and Laser Slope Gauge (LSG) are used to measure instantaneous water surface elevation and two components of the instantaneous surface slope at a number of locations along the test section of a wind-wave facility. The computer-controlled blower provides airflow over the water in the tank whose rate can vary in time. In the present experiments, the wind speed in the test section initially increases quickly from rest to the set value. It is then kept constant for the prescribed duration; finally, the airflow is shut down. At the beginning of each experimental run, the water surface is calm and there is no wind. Operation of the blower is initiated simultaneously with the acquisition of data provided by all sensors by a computer; data acquisition continues until the waves in the tank fully decay. Multiple independent runs performed under identical forcing conditions allow determining statistically reliable ensemble-averaged characteristic parameters that quantitatively describe wind-waves' variation in time for the initial development stage as a function of fetch. The procedure also allows characterizing the spatial evolution of the wave field under steady wind forcing, as well as decay of waves in time, once the wind is shut down, as a function of fetch.

  6. All-Fiber Airborne Coherent Doppler Lidar to Measure Wind Profiles

    Directory of Open Access Journals (Sweden)

    Liu Jiqiao

    2016-01-01

    Full Text Available An all-fiber airborne pulsed coherent Doppler lidar (CDL prototype at 1.54μm is developed to measure wind profiles in the lower troposphere layer. The all-fiber single frequency pulsed laser is operated with pulse energy of 300μJ, pulse width of 400ns and pulse repetition rate of 10kHz. To the best of our knowledge, it is the highest pulse energy of all-fiber eye-safe single frequency laser that is used in airborne coherent wind lidar. The telescope optical diameter of monostatic lidar is 100 mm. Velocity-Azimuth-Display (VAD scanning is implemented with 20 degrees elevation angle in 8 different azimuths. Real-time signal processing board is developed to acquire and process the heterodyne mixing signal with 10000 pulses spectra accumulated every second. Wind profiles are obtained every 20 seconds. Several experiments are implemented to evaluate the performance of the lidar. We have carried out airborne wind lidar experiments successfully, and the wind profiles are compared with aerological theodolite and ground based wind lidar. Wind speed standard error of less than 0.4m/s is shown between airborne wind lidar and balloon aerological theodolite.

  7. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  8. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  9. Anemometers for Mars. [Viking '75 wind measurements

    Science.gov (United States)

    Henry, R. M.; Greene, G. C.

    1974-01-01

    An investigation is conducted concerning the problems involved in the conduction of wind measurements on the planet Mars, taking into account the currently known characteristics of the Martian atmosphere. Problems introduced by the presence of the lander are examined. The suitability of several different types of anemometers for making the measurements is discussed, giving attention to rotating anemometers, sonic anemometers, ion tracers, drag force anemometers, pitot tubes, and thermal anemometers.

  10. Offshore Wind Turbine Foundation Model Validation with Wind Farm Measurements and Uncertainty Quantification

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Krogh, Thomas

    2013-01-01

    The variation in simulated monopile substructure loads is quantified by validating an aero-hydro-servo-elastic design tool with offshore foundation load measurements. A three bladed 3.6MW pitch controlled variable speed wind turbine for offshore monopile foundations is modeled in the HAWC2...

  11. Simulation of the Impact of New Aircraft- and Satellite-Based Ocean Surface Wind Measurements on H*Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Krishnamurti, T. N.; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath ( 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state

  12. 风力发电系统中的风速测量技术%Wind Speed Measurement Technology in Wind Power Generation System

    Institute of Scientific and Technical Information of China (English)

    雷鹏; 刘文红; 张帅; 邱天爽

    2015-01-01

    风速测量在风力发电系统中影响着风力机组的转速和功率的控制,风速值的准确性将影响整个风机的效率.首先介绍了几种在风力发电系统中常用的风速测量仪,简述了其原理、结构特点,然后分析了各种风速测量方法的优缺点及适用范围,最后展望了软测量技术在风力发电系统风速测量中的应用前景.%The wind speed measurement in wind power system, the influence of the wind turbine speed and power control, the accuracy of the wind speed value will affect the efficiency of the whole wind turbine. In this paper, the wind speed measuring instrument for wind power generation system is introduced, and its principle and structure characteristics are described. Then the advantages and disadvantages of various wind speed measurement methods are analyzed.

  13. Comparison of NWP wind speeds and directions to measured wind speeds and directions

    DEFF Research Database (Denmark)

    Astrup, Poul; Mikkelsen, Torben

    Numerical Weather Predictions (NWP) of wind speed and direction has been compared to measurements for seven German sites for nuclear power plants, and for Risø, the site of the Danish nuclear research reactors now being decommissioned . For the German sites the data cover approximately three month...

  14. Fault isolation in parallel coupled wind turbine converters

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Thøgersen, Paul Bach; Stoustrup, Jakob

    2010-01-01

    Parallel converters in wind turbine give a number advantages, such as fault tolerance due to the redundant converters. However, it might be difficult to isolate gain faults in one of the converters if only a combined power measurement is available. In this paper a scheme using orthogonal power...... references to the converters is proposed. Simulations on a wind turbine with 5 parallel converters show a clear potential of this scheme for isolation of this gain fault to the correct converter in which the fault occurs....

  15. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P -E

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  16. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  17. Real-time scatter measurement and correction in film radiography

    International Nuclear Information System (INIS)

    Shaw, C.G.

    1987-01-01

    A technique for real-time scatter measurement and correction in scanning film radiography is described. With this technique, collimated x-ray fan beams are used to partially reject scattered radiation. Photodiodes are attached to the aft-collimator for sampled scatter measurement. Such measurement allows the scatter distribution to be reconstructed and subtracted from digitized film image data for accurate transmission measurement. In this presentation the authors discuss the physical and technical considerations of this scatter correction technique. Examples are shown that demonstrate the feasibility of the technique. Improved x-ray transmission measurement and dual-energy subtraction imaging are demonstrated with phantoms

  18. The sound power measurement and certification of wind turbines

    International Nuclear Information System (INIS)

    MacKinnon, A.; Henderson, R.

    1992-01-01

    It is anticipated that there will be a substantial growth in the exploitation of renewable energy from the wind over the next few years. A major factor in this expected growth is the environmental acceptance or otherwise of wind turbines and in particular their acoustic characteristics. It is generally accepted within the turbine community that reliable methods of measuring and quantifying a turbine's acoustic signature are essential if this exploitation is to be realised. This paper will seek to review current practice both in the UK and further afield and will describe the development of a practical and reliable test method, which will aid the wind turbine Manufacturer, Developer and Planner. (author)

  19. QT measurement and heart rate correction during hypoglycemia

    DEFF Research Database (Denmark)

    Christensen, Toke Folke; Randløv, Jette; Christensen, Leif Engmann

    2010-01-01

    induced by intravenous injection of two insulin types in a cross-over design. QT measurements were done using the slope-intersect (SI) and manual annotation (MA) methods. Heart rate correction was done using Bazett's (QTcB) and Fridericia's (QTcF) formulas. Results. The SI method showed significant......Introduction. Several studies show that hypoglycemia causes QT interval prolongation. The aim of this study was to investigate the effect of QT measurement methodology, heart rate correction, and insulin types during hypoglycemia. Methods. Ten adult subjects with type 1 diabetes had hypoglycemia...... prolongation at hypoglycemia for QTcB (42(6) ms; P measuring the QT interval has...

  20. Correction of the second-order degree of coherence measurement

    Institute of Scientific and Technical Information of China (English)

    Congcong Li; Xiangdong Chen; Shen Li; Fangwen Sun

    2016-01-01

    The measurement of the second-order degree of coherence [g(2)(τ)] is one of the important methods used to study the dynamical evolution of photon-matter interaction systems.Here,we use a nitrogen-vacancy center in a diamond to compare the measurement of g(2)(τ) with two methods.One is the prototype measurement process with a tunable delay.The other is a start-stop process based on the time-to-amplitude conversion (TAC) and multichannel analyzer (MCA) system,which is usually applied to achieve efficient measurements.The divergence in the measurement results is observed when the delay time is comparable with the mean interval time between two neighboring detected photons.Moreover,a correction function is presented to correct the results from the TAC-MCA system to the genuine g(2)(τ).Such a correction method will provide a way to study the dynamics in photonic systems for quantum information techniques.

  1. Noise measurement at wind power plants; Geraeuschmessung an Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Ralph [Cirrus Research plc, Frankfurt am Main (Germany)

    2012-09-15

    Wind energy is a supporting pillar of the energy transition. For further expansion, it is important to reduce prejudices, for example by measurements as precise as possible and assessments of the often unobjectively discussed noise emissions. These measurements are based on instruments which can analyze and measure low-frequency sound.

  2. Converter for Measurement of non-sinusoidal current peak value

    DEFF Research Database (Denmark)

    Butvin, P.; Nielsen, Otto V; Brauer, Peter

    1997-01-01

    A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current.......A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current....

  3. On Association Measures for Continuous Variables and Correction for Chance

    NARCIS (Netherlands)

    Warrens, Matthijs J.

    2015-01-01

    This paper studies correction for chance for association measures for continuous variables. The set of linear transformations of Pearson's product-moment correlation is used as the domain of the correction for chance function. Examples of measures in this set are Tucker's congruence coefficient,

  4. The Application of TAPM for Site Specific Wind Energy Forecasting

    Directory of Open Access Journals (Sweden)

    Merlinde Kay

    2016-02-01

    Full Text Available The energy industry uses weather forecasts for determining future electricity demand variations due to the impact of weather, e.g., temperature and precipitation. However, as a greater component of electricity generation comes from intermittent renewable sources such as wind and solar, weather forecasting techniques need to now also focus on predicting renewable energy supply, which means adapting our prediction models to these site specific resources. This work assesses the performance of The Air Pollution Model (TAPM, and demonstrates that significant improvements can be made to only wind speed forecasts from a mesoscale Numerical Weather Prediction (NWP model. For this study, a wind farm site situated in North-west Tasmania, Australia was investigated. I present an analysis of the accuracy of hourly NWP and bias corrected wind speed forecasts over 12 months spanning 2005. This extensive time frame allows an in-depth analysis of various wind speed regimes of importance for wind-farm operation, as well as extreme weather risk scenarios. A further correction is made to the basic bias correction to improve the forecast accuracy further, that makes use of real-time wind-turbine data and a smoothing function to correct for timing-related issues. With full correction applied, a reduction in the error in the magnitude of the wind speed by as much as 50% for “hour ahead” forecasts specific to the wind-farm site has been obtained.

  5. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality

    Science.gov (United States)

    Buehrle, Ralph David

    1997-01-01

    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  6. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  7. Performance Enhancement and Load Reduction on Wind Turbines Using Inflow Measurements

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard

    . The load variations on a wind turbine can be alleviated using either yaw or pitch actuation. A method is presented for alleviating load variations using yaw control, and it is shown how the method can be efficiently applied for decreasing the load variations that are caused by a vertical wind shear...... wind energy research is focused on decreasing the cost of the energy that can be produced from the wind. The cost of energy can for example be decreased by ensuring that wind turbines are operated in a way that ensures that the maximum amount of energy is extracted, and that the turbines are not loaded...... excessively. The operation of a wind turbine is governed by a number of controllers that are based on a series of sensors and actuators. Classical wind turbine control utilizes sensors for measuring turbine parameters such as rotor speed, power and shaft torque, as well as actuators for applying generator...

  8. Self-correcting electronically scanned pressure sensor

    Science.gov (United States)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  9. Measured wind speed trends on the west coast of Canada

    Science.gov (United States)

    Tuller, Stanton E.

    2004-09-01

    Trends in measured wind speed are discussed for four stations on the west coast of Canada. Periods of record vary with the station. They begin in the late 1940s or the 1950s and run through to the early to mid 1990s. The most prominent feature of the time series was a decline in mean annual and winter wind speeds at Cape St James, Victoria International Airport, and Vancouver International Airport during the middle portion of the record. Declines in mean annual wind speed are matched by increases in the percentage of calms and decreases in high wind speed observations. The pressure gradient between Victoria, Vancouver and Comox, the Pacific North American index, the Pacific decadal oscillation index, and other climate elements in British Columbia and the northwestern USA show trends at roughly the same time, indicating a natural cause of the wind speed decrease. Comox Airport mean wind speeds increased, however, perhaps the result of reduced friction in the vicinity of the anemometer outweighing the decrease in the regional pressure gradient.

  10. Tracking of smokestack and cooling tower plumes using wind measurements at different levels

    International Nuclear Information System (INIS)

    Miller, R.L.; Patrinos, A.A.N.

    1980-08-01

    Relationships between cooling tower and smokestack plumes at the Bowen Electric Generating Plant in northwestern Georgia and wind direction measurements at levels from the surface at 850 mb (approx. 1.5 km) are examined. The wind measurements play an important role in estimating plume directions which in turn are utilized to establish control and target (upwind and downwind) areas for a study of plant-induced precipitation modification. Fifty-two plume observations were made during a three week period in December 1979. Results indicate that a windset (4.5 km from the plant) mounted at a level approximating that of the cooling tower plume is a better predictor of plume direction than surface windsets (1.0 km from the plant) or 850 mb level winds. However, an apparent topographical influence on the wind direction measurements at the plume-level windset site somewhat limits its plume tracking capability, at least for ambient winds from the SW quadrant

  11. Thermal analysis of laser welding for ITER correction coil case

    Energy Technology Data Exchange (ETDEWEB)

    Fang, C., E-mail: fangchao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland); Song, Y.T.; Wu, W.Y.; Wei, J.; Xin, J.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Wu, H.P.; Salminen, A. [Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta (Finland)

    2015-11-15

    Highlights: • Morphology of simulated heat source is found to be close to the welded joint sample. • The FEA temperature distribution shows good agreement with experimental measurements. • Laser welding process used on ITER correction coil case will not harm the winding pack. - Abstract: This paper presents the simulation results of 3D finite element analysis (FEA) of laser welding processes for the ITER correction coil case welding; predicts the temperature distribution and compares it with the experimental result to evaluate the impact to the properties of winding pack during the welding process. A specimen of coil case was modeled and simulated by using specialized welding simulation software SYSWELD, Modeling used austenitic stainless steel 316LN as the specimen material and a 3D Conical Gaussian was used as a heat source model. A plate sample was welded before the FE modeling in order to obtain the laser welding parameters and the Gaussian parameters of molten pool. To verify the simulation results, a coil case sample was welded using laser welding with welding parameters that matched the model, and the corresponding temperature values were measured using thermocouples. Compared with the FEA results, it was found that the FEA temperature distribution shows good agreement with the experimental measurements and the laser welding process will not harm the winding pack.

  12. Measurement and correction of chromaticity in Hefei light source

    International Nuclear Information System (INIS)

    Sun Baogen; Xu Hongliang; He Duohui; Wang Junhua; Lu Ping

    2001-01-01

    The measurement and correction of chromaticity for Hefei light source is introduced. The natural chromaticity is obtained by detecting the variation of the betatron tune with the main dipole field strength. The correction chromaticity is obtained by detecting the variation of the betatron tune with the RF frequency. The theoretic analysis and formula for the two methods is given. The measurement results of chromaticity are given

  13. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Newman, Jennifer

    2017-02-24

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in wind profiling aimed at reducing uncertainty and increasing data availability are introduced.

  14. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    The sensitivity of nacelle lidar wind speed measurements to wind-induction models and lidar range configurations is studied using experimental data from the Nørrekær Enge (NKE) measurement campaign and simulated lidar data from Reynold-Averaged Navier Stokes (RANS) aerodynamic computational fluid...... the ZDM was configured to measure at five distances. From the configured distances, a large number of range configurations were created and systematically tested to determine the sensitivity of the reconstructed wind speeds to the number of ranges, minimum range and maximum range in the range......) of the fitting residuals. The results demonstrate that it is not possible to use RANS CFD simulated lidar data to determine optimal range configurations for real-time nacelle lidars due to their perfect (unrealistic) representation of the simulated flow field. The recommended range configurations are therefore...

  15. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  16. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  17. Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Golestaneh, Faranak; Gooi, Hoay Beng; Lin, Jeremy; Bavafa, Farhad; Terzija, Vladimir

    2016-01-01

    Highlights: • Suggesting a new UC mixing a probabilistic security and incentive demand response. • Investigating the effects of uncertainty on UC using chance-constraint programming. • Proposing an efficient spinning reserve satisfaction based on a new ED correction. • Presenting a new operational cycles way to convert binary variable to discrete one. - Abstract: We propose a probabilistic unit commitment problem with incentive-based demand response and high level of wind power. Our novel formulation provides an optimal allocation of up/down spinning reserve. A more efficient unit commitment algorithm based on operational cycles is developed. A multi-period elastic residual demand economic model based on the self- and cross-price elasticities and customers’ benefit function is used. In the proposed scheme, the probability of residual demand falling within the up/down spinning reserve imposed by n − 1 security criterion is considered as a stochastic constraint. A chance-constrained method, with a new iterative economic dispatch correction, wind power curtailment, and commitment of cheaper units, is applied to guarantee that the probability of loss of load is lower than a pre-defined risk level. The developed architecture builds upon an improved Jaya algorithm to generate feasible, robust and optimal solutions corresponding to the operational cost. The proposed framework is applied to a small test system with 10 units and also to the IEEE 118-bus system to illustrate its advantages in efficient scheduling of generation in the power systems.

  18. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    International Nuclear Information System (INIS)

    Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik

    2014-01-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach

  19. Scaling forecast models for wind turbulence and wind turbine power intermittency

    Science.gov (United States)

    Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy

    2017-04-01

    The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.

  20. Equatorial F region neutral winds and shears near sunset measured with chemical release techniques

    Science.gov (United States)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2015-10-01

    The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.

  1. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

    Directory of Open Access Journals (Sweden)

    Paula Doubrawa

    2016-11-01

    Full Text Available Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  2. Assessment of wind speed and wind power through three stations in Egypt, including air density variation and analysis results with rough set theory

    International Nuclear Information System (INIS)

    Essa, K.S.M.; Embaby, M.; Marrouf, A.A.; Koza, A.M.; Abd El-Monsef, M.E.

    2007-01-01

    It is well known that the wind energy potential is proportional to both air density and the third power of the wind speed average over a suitable time period. The wind speed and air density have random variables depending on both time and location. The main objective of this work is to derive the most general wind energy potential of the wind formulation putting into consideration the time variable in both wind speed and air density. The correction factor is derived explicitly in terms of the cross-correlation and the coefficients of variation.The application is performed for environmental and wind speed measurements at the Cairo Airport, Kosseir and Hurguada, Egypt. Comparisons are made between Weibull, Rayleigh, and actual data distributions of wind speed and wind power of one year 2005. A Weibull distribution is the best match to the actual probability distribution of wind speed data for most stations. The maximum wind energy potential was 373 W/m 2 in June at Hurguada (Red Sea coast) where the annual mean value was 207 W/m 2 . By Using Rough Set Theory, We Find That the Wind Power Depends on the Wind Speed with greater than air density

  3. Software Package for Optics Measurement and Correction in the LHC

    CERN Document Server

    Aiba, M; Tomas, R; Vanbavinckhove, G

    2010-01-01

    A software package has been developed for the LHC on-line optics measurement and correction. This package includes several different algorithms to measure phase advance, beta functions, dispersion, coupling parameters and even some non-linear terms. A Graphical User Interface provides visualization tools to compare measurements to model predictions, fit analytical formula, localize error sources and compute and send corrections to the hardware.

  4. MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY

    International Nuclear Information System (INIS)

    Garrett, A.; Kurzeja, R.; Villa-Aleman, E.; Tuckfield, C.; Pendergast, M.

    2009-01-01

    The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper (1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions

  5. High-altitude wind prediction and measurement technology assessment

    Science.gov (United States)

    2009-06-30

    The principles and operational characteristics of balloon and radar-based techniques for measuring upper air winds in support of launches and recoveries are presented. Though either a balloon or radar system could serve as a standalone system, the sa...

  6. Method for Estimating Evaporative Potential (IM/CLO) from ASTM Standard Single Wind Velocity Measures

    Science.gov (United States)

    2016-08-10

    IM/CLO) FROM ASTM STANDARD SINGLE WIND VELOCITY MEASURES DISCLAIMER The opinions or assertions contained herein are the private views of the...USARIEM TECHNICAL REPORT T16-14 METHOD FOR ESTIMATING EVAPORATIVE POTENTIAL (IM/CLO) FROM ASTM STANDARD SINGLE WIND VELOCITY... ASTM STANDARD SINGLE WIND VELOCITY MEASURES Adam W. Potter Biophysics and Biomedical Modeling Division U.S. Army Research Institute of Environmental

  7. Wind turbine power performance measurement with the use of spinner anemometry

    DEFF Research Database (Denmark)

    Demurtas, Giorgio

    The spinner anemometer was patented by DTU in 2004 and licenced to ROMO Wind in 2011. By 2015 the spinner anemometer was installed on several hundred wind turbines for yaw misalignment measurements. The goal of this PhD project was to investigate the feasibility of use of spinner anemometry......-mast and spinner anemometer were then compared. Application of the NTF from one turbine to the other was made with a difference of only 0.38% in AEP. Different methods of analysis of fast sampled measurements such as the Langevin power curve were tested, concluding that the method of bins (IEC61400...... measurements was further improved with an innovation step to calibrate without use of the yaw position sensor, saving cost and time of installing the additional yaw sensor. The so called "wind speed response method" was validated by comparing 27 different calibration tests to the fist methods. This method...

  8. A methodology for the prediction of offshore wind energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S J; Watson, G M [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Holt, R.J. [Univ. of East Anglia, Climatic Research Unit, Norwich (United Kingdom)] Barthelmie, R.J. [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Zuylen, E.J. van [Ecofys Energy and Environment, Utrecht (Netherlands)] Cleijne, J.W. [Kema Sustainable, Arnhem (Netherlands)

    1999-03-01

    There are increasing constraints on the development of wind power on land. Recently, there has been a move to develop wind power offshore, though the amount of measured wind speed data at potential offshore wind farm sites is sparse. We present a novel methodology for the prediction of offshore wind power resources which is being applied to European Union waters. The first stage is to calculate the geostrophic wind from long-term pressure fields over the sea area of interest. Secondly, the geostrophic wind is transformed to the sea level using WA{sup s}P, taking account of near shore topography. Finally, these values are corrected for land/sea climatology (stability) effects using an analytical Coastal discontinuity Model (CDM). These values are further refined using high resolution offshore data at selected sites. The final values are validated against existing offshore datasets. Preliminary results are presented of the geostrophic wind speed validation in European Union waters. (au)

  9. Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

    International Nuclear Information System (INIS)

    Zhao, Y; Zimmermann, E; Wolters, B; Van Waasen, S; Huisman, J A; Treichel, A; Kemna, A

    2015-01-01

    Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ. (paper)

  10. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    Science.gov (United States)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  11. A comprehensive measure of the energy resource: Wind power potential (WPP)

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille

    2014-01-01

    data at four differing stations in the state of North Dakota. The results illustrate the variation of wind conditions and, subsequently, its influence on the quality of wind resources. A comparison of four sites in North Dakota shows that WPD and WPP follow different trends, and the ranking of candidate sites in terms of a realistic resource potential measure is not captured by WPD

  12. Physics-based Tests to Identify the Accuracy of Solar Wind Ion Measurements: A Case Study with the Wind Faraday Cups

    Science.gov (United States)

    Kasper, J. C.; Lazarus, A. J.; Steinberg, J. T.; Ogilvie, K. W.; Szabo, A.

    2006-01-01

    We present techniques for comparing measurements of velocity, temperature, and density with constraints imposed by the plasma physics of magnetized bi-Maxwellian ions. Deviations from these physics-based constraints are interpreted as arising from measurement errors. Two million ion spectra from the Solar Wind Experiment Faraday Cup instruments on the Wind spacecraft are used as a case study. The accuracy of velocity measurements is determined by the fact that differential flow between hydrogen and helium should be aligned with the ambient magnetic field. Modeling the breakdown of field alignment suggests velocity uncertainties are less than 0.16% in magnitude and 3deg in direction. Temperature uncertainty is found by examining the distribution of observed temperature anisotropies in high-beta solar wind intervals where the firehose, mirror, and cyclotron microinstabilities should drive the distribution to isotropy. The presence of a finite anisotropy at high beta suggests overall temperature uncertainties of 8%. Hydrogen and helium number densities are compared with the electron density inferred from observations of the local electron plasma frequency as a function of solar wind speed and year. We find that after accounting for the contribution of minor ions, the results are consistent with a systematic offset between the two instruments of 34%. The temperature and density methods are sensitive to non-Maxwellian features such as heat flux and proton beams and as a result are more suited to slow solar wind where these features are rare. These procedures are of general use in identifying the accuracy of observations from any solar wind ion instrument.

  13. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  14. Interaction of intersteller pick-up ions with the solar wind

    International Nuclear Information System (INIS)

    Mobius, E.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1988-01-01

    The interaction of interstellar pick-up ions with the solar wind is studied by comparing a model for the velocity distribution function of pick-up ions with actual measurements of He + ions in the solar wind. The model includes the effects of pitch-angle diffusion due to interplanetary Alfven waves, adiabatic deceleration in the expanding solar wind and the radial variation of the source function. It is demonstrated that the scattering mean free path is in the range ≤0.1 AU and that energy diffusion can be neglected as compared with adiabatic deceleration. The effects of adiabatic focusing, of the radial variation of the neutral density and of an variation of the solar wind velocity with distance from the Sun are investigated. With the correct choice of these parameters the authors can model the measured energy spectra of the pick-up ions does not vary with the solar wind velocity and the direction of the interplanetary magnetic field for a given local neutral gas density and ionization rate. Therefore, the comparison of the model distributions with the measurements leads to a quantitative determination of the local interstellar gas density

  15. Wind field re-construction of 3D Wake measurements from a turbine-installed scanning lidar

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, Tommy; Astrup, Poul

    High-resolution wake flow measurements obtained from a turbine-mounted scanning lidar have been obtained from 1D to 5D behind a V27 test turbine. The measured line-of-sight projected wind speeds have, in connection with a fast CFD wind field reconstruction model, been used to generate 3D wind fie...

  16. Air slab-correction for Γ-ray attenuation measurements

    Science.gov (United States)

    Mann, Kulwinder Singh

    2017-12-01

    Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.

  17. CFD modelling approaches against single wind turbine wake measurements using RANS

    International Nuclear Information System (INIS)

    Stergiannis, N; Lacor, C; Beeck, J V; Donnelly, R

    2016-01-01

    Numerical simulations of two wind turbine generators including the exact geometry of their blades and hub are compared against a simplified actuator disk model (ADM). The wake expansion of the upstream rotor is investigated and compared with measurements. Computational Fluid Dynamics (CFD) simulations have been performed using the open-source platform OpenFOAM [1]. The multiple reference frame (MRF) approach was used to model the inner rotating reference frames in a stationary computational mesh and outer reference frame for the full wind turbine rotor simulations. The standard k — ε and k — ω turbulence closure schemes have been used to solve the steady state, three dimensional Reynolds Averaged Navier- Stokes (RANS) equations. Results of near and far wake regions are compared with wind tunnel measurements along three horizontal lines downstream. The ADM under-predicted the velocity deficit at the wake for both turbulence models. Full wind turbine rotor simulations showed good agreement against the experimental data at the near wake, amplifying the differences between the simplified models. (paper)

  18. Neutral wind measurements by Fabry-Perot interferometry in Antarctica

    International Nuclear Information System (INIS)

    Stewart, K.D.; Dudeney, J.R.; Rodger, A.S.; Smith, R.W.; Rees, D.

    1986-01-01

    A large-aperture (150 mm), spatially scanned Fabry-Perot Interferometer (FPI) has been deployed at Halley (75.5 o S, 26.8 o W; L=4.2), Antarctica. Thermospheric neutral wind measurements were made by finding the Doppler shift of the OI( 3 P 2 - 1 D 2 ) 630.0 nm emission. This has allowed the first comparison to be made between southern hemisphere ground-based thermospheric wind measurements and the predictions of a three-dimensional, time-dependent thermospheric global circulation model. Geomagnetic and geographic latitude are well separated at Halley, so we may expect a distinct contrast to the dynamic behaviour observed in the more frequently studied northern polar thermosphere. Although the initial results from the experiment are in general agreement with the model, some consistent and significant differences between the observed wind field and that predicted are evident in the morning sector. These may be related to uncertainties in mapping magnetospheric boundaries to ionospheric heights in the southern hemisphere. The intensity of the 630 nm emission has been examined with respect to the maximum plasma frequency of the Es layer using data from the Advanced Ionospheric Sounder at Halley

  19. 3D turbulence measurements in inhomogeneous boundary layers with three wind LiDARs

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    One of the most challenging tasks in atmospheric anemometry is obtaining reliable turbulence measurements of inhomogeneous boundary layers at heights or in locations where is not possible or convenient to install tower-based measurement systems, e.g. mountainous terrain, cities, wind farms, etc. Wind LiDARs are being extensively used for the measurement of averaged vertical wind profiles, but they can only successfully accomplish this task under the limiting conditions of flat terrain and horizontally homogeneous flow. Moreover, it has been shown that common scanning strategies introduce large systematic errors in turbulence measurements, regardless of the characteristics of the flow addressed. From the point of view of research, there exist a variety of techniques and scanning strategies to estimate different turbulence quantities but most of them rely in the combination of raw measurements with atmospheric models. Most of those models are only valid under the assumption of horizontal homogeneity. The limitations stated above can be overcome by a new triple LiDAR technique which uses simultaneous measurements from three intersecting Doppler wind LiDARs. It allows for the reconstruction of the three-dimensional velocity vector in time as well as local velocity gradients without the need of any turbulence model and with minimal assumptions [EGU2013-9670]. The triple LiDAR technique has been applied to the study of the flow over the campus of EPFL in Lausanne (Switzerland). The results show the potential of the technique for the measurement of turbulence in highly complex boundary layer flows. The technique is particularly useful for micrometeorology and wind engineering studies.

  20. Permutation importance: a corrected feature importance measure.

    Science.gov (United States)

    Altmann, André; Toloşi, Laura; Sander, Oliver; Lengauer, Thomas

    2010-05-15

    In life sciences, interpretability of machine learning models is as important as their prediction accuracy. Linear models are probably the most frequently used methods for assessing feature relevance, despite their relative inflexibility. However, in the past years effective estimators of feature relevance have been derived for highly complex or non-parametric models such as support vector machines and RandomForest (RF) models. Recently, it has been observed that RF models are biased in such a way that categorical variables with a large number of categories are preferred. In this work, we introduce a heuristic for normalizing feature importance measures that can correct the feature importance bias. The method is based on repeated permutations of the outcome vector for estimating the distribution of measured importance for each variable in a non-informative setting. The P-value of the observed importance provides a corrected measure of feature importance. We apply our method to simulated data and demonstrate that (i) non-informative predictors do not receive significant P-values, (ii) informative variables can successfully be recovered among non-informative variables and (iii) P-values computed with permutation importance (PIMP) are very helpful for deciding the significance of variables, and therefore improve model interpretability. Furthermore, PIMP was used to correct RF-based importance measures for two real-world case studies. We propose an improved RF model that uses the significant variables with respect to the PIMP measure and show that its prediction accuracy is superior to that of other existing models. R code for the method presented in this article is available at http://www.mpi-inf.mpg.de/ approximately altmann/download/PIMP.R CONTACT: altmann@mpi-inf.mpg.de, laura.tolosi@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online.

  1. Humidity correction in the standard measurement of exposure

    International Nuclear Information System (INIS)

    Ibaraki, Yasuyuki; Katoh, Akira

    1980-01-01

    This paper deals with the humidity correction to be made in the standard measurement of the exposure to the measured ionization current in the humid air for the purpose of excluding the influence of the water vapour that is not included in the definition of the exposure. First, formulae giving the humidity correction factors for a parallel plate free air chamber and a cavity chamber have been derived respectively in the case where the contributions of air and water vapour to the ionization are independent. Next, in the case where the contributions are not independent, i.e., the Jesse effect is taken into account, a formula to obtain the W-value for humid air has been derived on the basis of the Niatel's experimental result. Using this formula, formulae to obtain the humidity correction factors for the free air chamber and the cavity chamber are derived. The humidity calculated by the latter formulae show good agreements with the results by Niatel and Guiho, respectively. (author)

  2. Full two-dimensional rotor plane inflow measurements by a spinner-integrated wind lidar

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Pedersen, Anders Tegtmeier; Angelou, Nikolas

    2013-01-01

    Introduction Wind turbine load reduction and power performance optimization via advanced control strategies is an active area in the wind energy community. In particular, feed-forward control using upwind inflow measurements by lidar (light detection and ranging) remote sensing instruments has...... novel full two-dimensional radial inflow measurements. Approach In order to achieve full two-dimensional radial inflow measurements, a special laser beam scanner has been developed at the DTU Wind Energy Department. It is based on two rotating prisms that each deviate the beam by 15°, resulting......, a proof-of-concept trial with a blade mounted lidar was performed during the measurement campaign and is reported in a separate EWEA 2013 contribution. Conclusion The study presented here is the novel full two-dimensional continuation of the previous inflow measurements on a circle presented in the paper...

  3. Economics of wind energy

    International Nuclear Information System (INIS)

    Ranganathan, V.; Kumar, H.P.S.

    1991-01-01

    Conventional economic analysis of wind energy often ignores the fact that it is not an energy source available on tap, but is intermittent. The analysis at times is discriminatory in the sense that the costs of transmission and distribution are added to the central grid alternative but the costs of the locational constraints of wind energy siting are not quantified. This paper evaluates wind energy after correcting for these two factors. The results are not encouraging

  4. Expert group study on recommended practices for wind turbine testing and evaluation. 10. Measurement of noise immission from wind turbines at noise receptor locations

    International Nuclear Information System (INIS)

    Ljunggren, S.

    1997-01-01

    The purpose of this guide is to provide a set of techniques and methods for the measurement and description of wind turbine noise immission, that is, wind turbine noise at receptor locations. These techniques and methods have been prepared so that they can be used by: manufacturers; developers; operators; planning authorities; research and development engineers, for the purpose of verification of compliance with noise immission limits and of noise propagation models. The measurement of noise immission from wind turbines is a complex acoustic task. This guideline cannot cover all possible problems that may be encountered on, for instance: determination of wind speed; measurements in cases of low signal-to-noise ratio; allowance for reflections from buildings. Thus, it is strongly recommended that the measurements described in this guide are always carried out by experienced acousticians. (au)

  5. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site

    DEFF Research Database (Denmark)

    Gullí, D.; Avolio, E.; Calidonna, C. R.

    2017-01-01

    Reliable measurements of vertical profiles of wind speed and direction are needed for testing models and methodologies of use for wind energy assessment. In particular, modelling complex terrain such as coastal areas is challenging due to the coastal discontinuity that is not accurately resolved...... in mesoscale numerical model. Here, we present a unique database from a coastal site in South Italy (middle of the Mediterranean area) where vertical profiles of wind speed and direction have been collected during a two-year period from a wind-lidar ZEPHIR-300® at a coastal-suburban area. We show an overview...

  6. Advancements in Wind Energy Metrology - UPWIND 1A2.3

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Troels F.; Wagner, R.

    2011-02-15

    An overview of wind related metrology research made at Risoe DTU over the period of the UPWIND project is given. A main part of the overview is devoted to development of the Lidar technology with several sub-chapters considering different topics of the research. Technical problems are not rare for this new technology, and testing against a traditional met mast have shown to be efficient for gaining confidence with the ground based Lidar technology and for trust in accuracy of measurements. In principle, Lidar measurements could be traceable through the fundamental measurement principles, but at this stage of development it is not found feasible. Instead, traceability is secured through comparison with met masts that are traceable through wind tunnel calibrations of cup anemometers. The ground based Lidar measurement principle works almost acceptable in flat terrain. In complex terrain and close to woods the measurement volume is disturbed because the flow is no longer horizontally homogeneous. These conditions require special attention and correction methods. Due to the large measurement volume, ground based Lidars perform a spatial averaging which has the effect of a low pass filter on turbulence measurements. Theory and measurements seem to be in good agreement. Lidar measurements from a rotating spinner have been performed. The analysis show good perspectives for scanning the incoming wind, which may lead to better controlled wind turbines. Lidars have also been used to scan the wake of wind turbines. These measurements document the meandering wake pattern. The second part of the overview considers power performance measurements. A new investigation on the influence of wind shear points to a revision of the definition of a power curve. A new measurement method has been developed which has a good chance of being implemented in the present revision of the IEC performance standard. Also, a turbulence normalization method has been tested but not found efficient

  7. Wind turbine performance: Methods and criteria for reliability of measured power curves

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [Advanced Wind Turbines Inc., Seattle, WA (United States)

    1996-12-31

    In order to evaluate the performance of prototype turbines, and to quantify incremental changes in performance through field testing, Advanced Wind Turbines (AWT) has been developing methods and requirements for power curve measurement. In this paper, field test data is used to illustrate several issues and trends which have resulted from this work. Averaging and binning processes, data hours per wind-speed bin, wind turbulence levels, and anemometry methods are all shown to have significant impacts on the resulting power curves. Criteria are given by which the AWT power curves show a high degree of repeatability, and these criteria are compared and contrasted with current published standards for power curve measurement. 6 refs., 5 figs., 5 tabs.

  8. Measurement and correction of leaf open times in helical tomotherapy

    International Nuclear Information System (INIS)

    Sevillano, David; Mínguez, Cristina; Sánchez, Alicia; Sánchez-Reyes, Alberto

    2012-01-01

    Purpose: The binary multileaf collimator (MLC) is one of the most important components in helical tomotherapy (HT), as it modulates the dose delivered to the patient. However, methods to ensure MLC quality in HT treatments are lacking. The authors obtained data on the performance of the MLC in treatments administered in their department in order to assess possible delivery errors due to the MLC. Correction methods based on their data are proposed. Methods: Twenty sinograms from treatments delivered using both of the authors HT systems were measured and analyzed by recording the fluence collected by the imaging detector. Planned and actual sinograms were compared using distributions of leaf open time (LOT) errors, as well as differences in fluence reconstructed at each of the 51 projections into which the treatment planning system divides each rotation for optimization purposes. They proposed and applied a method based on individual leaf error correction and the increase in projection time to prevent latency effects when LOT is close to projection time. In order to analyze the dosimetric impact of the corrections, inphantom measurements were made for four corrected treatments. Results: The LOTs measured were consistent with those planned. Most of the mean errors in LOT distributions were within 1 ms with standard deviations of over 4 ms. Reconstructed fluences showed good results, with over 90% of points passing the 3% criterion, except in treatments with a short mean LOT, where the percentage of passing points was as low as 66%. Individual leaf errors were as long as 4 ms in some cases. Corrected sinograms improved error distribution, with standard deviations of over 3 ms and increased percentages of points passing 3% in the fluence per angle analysis, especially in treatments with a short mean LOT and those that were more subject to latency effects. The minimum percentage of points within 3% increased to 86%. In-phantom measurements of the corrected treatments

  9. Measurement and correction of leaf open times in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sevillano, David; Minguez, Cristina; Sanchez, Alicia; Sanchez-Reyes, Alberto [Department of Medical Physics, Tomotherapy Unit, Grupo IMO, Madrid 28010 (Spain)

    2012-11-15

    Purpose: The binary multileaf collimator (MLC) is one of the most important components in helical tomotherapy (HT), as it modulates the dose delivered to the patient. However, methods to ensure MLC quality in HT treatments are lacking. The authors obtained data on the performance of the MLC in treatments administered in their department in order to assess possible delivery errors due to the MLC. Correction methods based on their data are proposed. Methods: Twenty sinograms from treatments delivered using both of the authors HT systems were measured and analyzed by recording the fluence collected by the imaging detector. Planned and actual sinograms were compared using distributions of leaf open time (LOT) errors, as well as differences in fluence reconstructed at each of the 51 projections into which the treatment planning system divides each rotation for optimization purposes. They proposed and applied a method based on individual leaf error correction and the increase in projection time to prevent latency effects when LOT is close to projection time. In order to analyze the dosimetric impact of the corrections, inphantom measurements were made for four corrected treatments. Results: The LOTs measured were consistent with those planned. Most of the mean errors in LOT distributions were within 1 ms with standard deviations of over 4 ms. Reconstructed fluences showed good results, with over 90% of points passing the 3% criterion, except in treatments with a short mean LOT, where the percentage of passing points was as low as 66%. Individual leaf errors were as long as 4 ms in some cases. Corrected sinograms improved error distribution, with standard deviations of over 3 ms and increased percentages of points passing 3% in the fluence per angle analysis, especially in treatments with a short mean LOT and those that were more subject to latency effects. The minimum percentage of points within 3% increased to 86%. In-phantom measurements of the corrected treatments

  10. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  11. Implementation of a Particle Image Velocimetry System for Wind Tunnel Flowfield Measurements

    Science.gov (United States)

    2014-12-01

    Instrumentation Wind tunnel speed was measured by two pitot probes mounted on opposite tunnel walls upstream of the model and above the ground...board. The pitot probes were connected differentially to Scanivalve 1-psi transducers. A secondary measurement of wind tunnel speed was made with the...Manf. Model Range 1 Tunnel Vel (south pitot ) Transducer Scanivalve CR24D 1 psi 2 Tunnel Vel (north pitot ) Transducer Scanivalve CR24D 1 psi 3

  12. Coupling correction using closed orbit measurements

    International Nuclear Information System (INIS)

    Safranek, J.; Krinsky, S.

    1994-01-01

    The authors describe a coupling correction scheme they have developed and used to successfully reduce the vertical emittance of the NSLS X-Ray ring by a factor of 6 to below 2 A. This gives a vertical to horizontal emittance ratio of less than 0.2%. They find the strengths of 17 skew quadrupoles to simultaneously minimize the vertical dispersion and the coupling. As a measure of coupling they utilize the shift in vertical closed orbit resulting from a change in strength of a horizontal steering magnet. Experimental measurements confirm the reduced emittance

  13. Calibration procedures for improved accuracy of wind turbine blade load measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Johansson, Hjalmar [Teknikgruppen AB, Sollentuna (Sweden)

    1996-12-01

    External loads acting on wind turbine blades are mainly transferred via the hub to the rest of the structure. It is therefore a normal approach to measure the loads acting on the turbine by load measurements in the blade roots. The load measurement is often accomplished by measurements of strain on the surface of the blade or the hub. The strain signals are converted to loads by applying calibration factors to the measurements. This paper deals with difficulties associated with load measurements on two different wind turbines; one with strain gauges applied to a steel hub where a linear stress-load relationship is expected and the other with strain gauges applied to the GFRP blade close to the bearings where strong non-linearity`s and temperature effects are expected. This paper suggests calibration methods to overcome these problems. 2 refs, 11 figs

  14. GPS synchronisation of harmonic and transient measurements in offshore wind farms

    DEFF Research Database (Denmark)

    Kocewiak, Łukasz Hubert; Arana Aristi, Iván; Hjerrild, Jesper

    2012-01-01

    The GPS synchronization challenges during the development, construction and installation of a measurement system for multi-point, high-speed and long-term data logging is described in this paper. The presented measurement system was tested in a rough offshore environment at Avedøre Holme and Gunf......The GPS synchronization challenges during the development, construction and installation of a measurement system for multi-point, high-speed and long-term data logging is described in this paper. The presented measurement system was tested in a rough offshore environment at Avedøre Holme...... and Gunfleet Sands Offshore wind farms. The paper will describe the application of GPS technology in synchronised measurements carried out at Avedøre Holme and Gunfleet Sands wind farms. Different aspects of software development and hardware configuration in order to optimise measurement system reliability...

  15. Magnetic field measurement and correction of VECC K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    Dey, M.K.; Debnath, J.; Bhunia, U.; Pradhan, J.; Rashid, H.; Paul, S.; Dutta, A.; Naser, Z.A.; Singh, V.; Pal, G.; Nandi, C.; Dasgupta, S.; Bhattacharya, S.; Pal, S.; Roy, A.; Bhattacharya, T.; Bhole, R.B.; Bhale, D.; Chatterjee, M.; Prasad, R.; Nabhiraj, P.Y.; Hazra, D.P.; Mallik, C.; Bhandari, R.K.

    2006-01-01

    The VECC K500 superconducting cyclotron magnet is commissioned and magnetic field measurement and correction program was successfully completed in March 2006. Here we report the analysis of the measured field data and subsequent correction of the magnet to improve the field quality. (author)

  16. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict......As the wind turbine is a nonlinear high-order system, to achieve good pitch control performance, model free adaptive control (MFAC) approach which doesn't need the mathematical model of the wind turbine is adopted in the pitch control system in this paper. A pseudo gradient vector whose estimation...... the wind turbine loads and response in high accuracy is used. The results show that the controller produces good dynamic performance, good robustness and adaptability....

  17. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  18. Comparison of Large Eddy Simulations of a convective boundary layer with wind LIDAR measurements

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2012-01-01

    Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when...

  19. Correction factors for assessing immersion suits under harsh conditions.

    Science.gov (United States)

    Power, Jonathan; Tikuisis, Peter; Ré, António Simões; Barwood, Martin; Tipton, Michael

    2016-03-01

    Many immersion suit standards require testing of thermal protective properties in calm, circulating water while these suits are typically used in harsher environments where they often underperform. Yet it can be expensive and logistically challenging to test immersion suits in realistic conditions. The goal of this work was to develop a set of correction factors that would allow suits to be tested in calm water yet ensure they will offer sufficient protection in harsher conditions. Two immersion studies, one dry and the other with 500 mL of water within the suit, were conducted in wind and waves to measure the change in suit insulation. In both studies, wind and waves resulted in a significantly lower immersed insulation value compared to calm water. The minimum required thermal insulation for maintaining heat balance can be calculated for a given mean skin temperature, metabolic heat production, and water temperature. Combining the physiological limits of sustainable cold water immersion and actual suit insulation, correction factors can be deduced for harsh conditions compared to calm. The minimum in-situ suit insulation to maintain thermal balance is 1.553-0.0624·TW + 0.00018·TW(2) for a dry calm condition. Multiplicative correction factors to the above equation are 1.37, 1.25, and 1.72 for wind + waves, 500 mL suit wetness, and both combined, respectively. Calm water certification tests of suit insulation should meet or exceed the minimum in-situ requirements to maintain thermal balance, and correction factors should be applied for a more realistic determination of minimum insulation for harsh conditions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Measurements of UWB Pulse Propagation Along a Wind Turbine Blade at 1 to 20 GHz

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Syrytsin, Igor A.; Eggers, Patrick Claus F.

    2018-01-01

    This paper describes propagation measurements of an Ultra Wide Band (UWB) pulse along a full-scale wind turbine blade. The aim is to use the UWB channel characteristics to determine the deflection of the wind turbine blade under different wind loads. The frequency response is measured from 1 to 20...... the reflection originates a ray-tracing study incorporating a model of the curvature of the blade have been conducted. This showed the area causing the reflections depended highly on the placement of the antenna on the wind turbine blade....

  1. Field measurements in the wake of a model wind turbine

    International Nuclear Information System (INIS)

    Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark

    2014-01-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability

  2. Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Hansen, Kurt Schaldemose; Frandsen, Sten Tronæs

    2009-01-01

    power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses...

  3. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  4. A hybrid measure-correlate-predict method for long-term wind condition assessment

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille; Hodge, Bri-Mathias

    2014-01-01

    Highlights: • A hybrid measure-correlate-predict (MCP) methodology with greater accuracy is developed. • Three sets of performance metrics are proposed to evaluate the hybrid MCP method. • Both wind speed and direction are considered in the hybrid MCP method. • The best combination of MCP algorithms is determined. • The developed hybrid MCP method is uniquely helpful for long-term wind resource assessment. - Abstract: This paper develops a hybrid measure-correlate-predict (MCP) strategy to assess long-term wind resource variations at a farm site. The hybrid MCP method uses recorded data from multiple reference stations to estimate long-term wind conditions at a target wind plant site with greater accuracy than is possible with data from a single reference station. The weight of each reference station in the hybrid strategy is determined by the (i) distance and (ii) elevation differences between the target farm site and each reference station. In this case, the wind data is divided into sectors according to the wind direction, and the MCP strategy is implemented for each wind direction sector separately. The applicability of the proposed hybrid strategy is investigated using five MCP methods: (i) the linear regression; (ii) the variance ratio; (iii) the Weibull scale; (iv) the artificial neural networks; and (v) the support vector regression. To implement the hybrid MCP methodology, we use hourly averaged wind data recorded at five stations in the state of Minnesota between 07-01-1996 and 06-30-2004. Three sets of performance metrics are used to evaluate the hybrid MCP method. The first set of metrics analyze the statistical performance, including the mean wind speed, wind speed variance, root mean square error, and mean absolute error. The second set of metrics evaluate the distribution of long-term wind speed; to this end, the Weibull distribution and the Multivariate and Multimodal Wind Distribution models are adopted. The third set of metrics analyze

  5. Measuring electromagnetic fields (EMF) around wind turbines in Canada: is there a human health concern?

    Science.gov (United States)

    McCallum, Lindsay C; Whitfield Aslund, Melissa L; Knopper, Loren D; Ferguson, Glenn M; Ollson, Christopher A

    2014-02-15

    The past five years has seen considerable expansion of wind power generation in Ontario, Canada. Most recently worries about exposure to electromagnetic fields (EMF) from wind turbines, and associated electrical transmission, has been raised at public meetings and legal proceedings. These fears have not been based on any actual measurements of EMF exposure surrounding existing projects but appear to follow from worries from internet sources and misunderstanding of the science. The study was carried out at the Kingsbridge 1 Wind Farm located near Goderich, Ontario, Canada. Magnetic field measurements were collected in the proximity of 15 Vestas 1.8 MW wind turbines, two substations, various buried and overhead collector and transmission lines, and nearby homes. Data were collected during three operational scenarios to characterize potential EMF exposure: 'high wind' (generating power), 'low wind' (drawing power from the grid, but not generating power) and 'shut off' (neither drawing, nor generating power). Background levels of EMF (0.2 to 0.3 mG) were established by measuring magnetic fields around the wind turbines under the 'shut off' scenario. Magnetic field levels detected at the base of the turbines under both the 'high wind' and 'low wind' conditions were low (mean = 0.9 mG; n = 11) and rapidly diminished with distance, becoming indistinguishable from background within 2 m of the base. Magnetic fields measured 1 m above buried collector lines were also within background (≤ 0.3 mG). Beneath overhead 27.5 kV and 500 kV transmission lines, magnetic field levels of up to 16.5 and 46 mG, respectively, were recorded. These levels also diminished rapidly with distance. None of these sources appeared to influence magnetic field levels at nearby homes located as close as just over 500 m from turbines, where measurements immediately outside of the homes were ≤ 0.4 mG. The results suggest that there is nothing unique to wind farms with respect to EMF exposure; in

  6. Marketing Strategic Choices for Wind Technology in China : case: Chinese Domestic Wind Technology Companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  7. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Science.gov (United States)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  8. Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR

    Directory of Open Access Journals (Sweden)

    S. A. Cohn

    Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R2 = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.

    Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing

  9. Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement

    OpenAIRE

    Brown, Kenneth Alexander

    2016-01-01

    The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m L...

  10. Acoustic Emission Stethoscope - Measurements with Acoustic Emission on Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Krystof Kryniski [AaF Infrastructure, Stockholm (Sweden)

    2013-02-15

    A remote ultrasonic stethoscope, designed on mobile devices to help a maintenance team in diagnosing drive train problems, has been demonstrated. By implementing an acoustic emission technology, the operating conditions of wind turbines have been assessed by trending techniques and ultrasonic acoustic emission converted into audible sound. The new approach has been developed and tested and compared to other monitoring techniques. Acoustic emission has generally been shown to provide a number of advantages over vibration and shock pulse methods because the system is operating in a substantially higher frequency range (100 kHz) and therefore it is more immune to operation of surrounding machines and components. Quick attenuation of ultrasonic propagation waves in the drive-train structure helps to pin-point the origin of any fault as the signals are sharper and more pronounced. Further, with the intensity measurements a direction of the source of ultrasonic energy can be identified. Using a high frequency thus makes the method suitable for measuring local effects and to determine local defects since the disturbing signals from other parts are damped. Recently developed programmable sensors capable of processing signals onboard, producing quality outputs with extremely low noise-to-signal ratio, have been used. It is discussed how the new approach can lower the cost of a wind-turbine monitoring system, while at the same time making it simple and more reliable, see Appendix A. The method has been tested on rotating parts of wind-turbines, including traditionally difficult areas such as low speed main bearings and planetary gearboxes. The method developed in the project was designed to see physical processes such as friction, impacts and metal removal, occurring when machinery degrades, can be detected and notified with the developed notification system. Apart from reporting the status and displaying the changes of the pre-defined parameters or symptoms, the system has

  11. Measurement campaign for wind power potential in west Greenland

    Science.gov (United States)

    Rønnow Jakobsen, Kasper

    2013-04-01

    . During the first years, the influence of instrument icing was not considered, but recently one of the sites was equipped with an ice rate sensor and a heated ultrasonic anemometer to study the ice influence. 3 Results The predominant wind direction for most sites is away from the ice cap at the center of the continent, but for some coastal sites it is north or south. The north-south wind pattern is expected from the synoptic patterns and the barrier effect of the ice cap. The sites where the predominant wind direction is away from the inland ice are dominated by katabatic wind systems from the ice cap and form valley systems. These sites also seem to have the highest wind resource and will be studied further. A good example of the influence of katabatic and thermal wind systems can be seen in the measurement data from Sarfannguit and Nanortalik 66 and 60 degrees northern latitude respectively. In future work, these katabatic flows and their impact on the wind resource will be studied using mesoscale modelling and microscale downscaling.

  12. Optimal sensor placement for modal testing on wind turbines

    Science.gov (United States)

    Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph

    2016-09-01

    The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.

  13. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  14. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    Science.gov (United States)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  15. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  16. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  17. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)

    2012-11-15

    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  18. Utgrunden off-shore wind farm - Measurements of underwater noise

    International Nuclear Information System (INIS)

    Lindell, Hans

    2003-07-01

    Airicole, GE Wind Energy and SEAS/Energi E2 have initiated this project in order to achieve a better understanding on how offshore based wind farms effect the underwater noise. The main reason is to gain knowledge on how marine wildlife could be effected by this kind of installation. The measurements were performed at Utgrunden wind farm that is situated at the reef Utgrunden on the Swedish southeast coast. The farm consists of seven 1,5 MW turbines. Three hydrophones registered the underwater sound and four accelerometers the tower vibrations. The measurement campaign was conducted during a period from November 2002 to February 2003. The objectives with this project is to answer the following issues and its results are: 1. What is the character of sound from a single power station? - The turbines radiate sound mainly at a few dominating frequencies from 30 Hz up to 800 Hz. At frequencies below 3 Hz no contribution from the turbines can be detected due to the high background level from the waves and the low tower vibration level. 2. What are the sound generating mechanisms in the turbine? - Gearbox mesh frequency vibrations that are transmitted via the tower structure and radiated out to the water mainly generate the sound. Airborne blade sound is effectively dampened in the transition from air to water. 3. How does the sound attenuate with increasing distance at different frequencies? - The average attenuation per doubled distance for frequencies between 31 Hz and 722 Hz is approximately 4 dB in the measured positions. No clear frequency dependence could be found. 4. How does the sound pressure level vary with increasing wind speed? - With increasing wind speed, the sound pressure level increases and the dominating frequencies move upward due to increasing turbine rotational speed. 5. How does sound from different power stations interfere with each other and influence the over all sound image? - No clear tendencies of interference could be observed in this study

  19. Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements.

    Science.gov (United States)

    Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L

    2014-03-01

    Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.

  20. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  1. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  2. Acoustic noise measurements on a wind turbine performed in the frame of the NIWT round robin

    International Nuclear Information System (INIS)

    Van der Borg, N.J.C.M.; Vink, P.W.

    1996-11-01

    A round robin acoustic measurement campaign has been performed by five project partners using one and the same wind turbine (WT). The measurement procedure for the round robin exercise was agreed to be in compliance with the IEA-recommended practices on WT-noise emission measurements and the measured characteristics were agreed to be the apparent sound power level and the tonality, both measured at the reference measurement position. The measurements performed by ECN resulted in an A-weighted sound power level of the TACKE TW500/37 wind turbine in Hooksiel, Germany, of 95.8 dB(A) at a wind speed of 5.5 m/s at reference conditions. The tonality assessment of the sound pressure at 50 m down wind of the turbine resulted in a difference between the maximum tone level and the masking noise level of 2.4 dB. This characterizes the noise as 'prominent'. 2 refs

  3. Wind-stilling in the light of wind speed measurements: the Czech experience

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Valík, A.; Zahradníček, Pavel; Řezníčková, Ladislava; Tolasz, R.; Možný, M.

    2018-01-01

    Roč. 74 (2018), s. 131-143 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-11805S Institutional support: RVO:86652079 Keywords : universal anemograph * vaisala wind-speed sensors * wind speed * homogenisation * wind stilling * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.578, year: 2016

  4. Measurement of productive efficiency with frontier methods. A case study for wind farms

    International Nuclear Information System (INIS)

    Iglesias, Guillermo; Castellanos, Pablo; Seijas, Amparo

    2010-01-01

    In this paper, we measure the productive efficiency of a group of wind farms during the period 2001-2004 using the frontier methods Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). Taking an extensive definition of the productive process of wind electricity as our starting point, we obtain results which allow us to identify, on the one hand, an essentially ex ante efficiency measure and, on the other hand, aspects of relevance for wind farm development companies (developers), technology suppliers and operators in terms of their economic impact. These results may also be of interest for regulators and other stakeholders in the sector. Furthermore, we discuss the implications of the simultaneous use of DEA and SFA methodologies. (author)

  5. A new wind vane for the measurement of atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M.J.; Heverly, M.

    1997-02-01

    A Cooperative Research and Development Agreement (CRADA) between Met One Instruments, Incorporated (Met One) and Westinghouse Savannah River Company (WSRC) was created to develop a new wind vane that more accurately measures atmospheric turbulence. Through a process that had several phases, Met One created a prototype vane that was designed to attach to the existing Model 1585 Bi-Directional Wind Vane instrument structure. The prototype contained over 20% less mass to enhance responsiveness, which was also increased through the use of a teardrop-shaped fin structure. The prototype vane can be readily manufactured for commercial retail. Tests in wind tunnel of Building 735-7A, the Meteorological Engineering Facility, indicated that the new vane has a superior starting threshold of less than 0.14 meter per second, a delay distance of 0.72 meter, and a damping ratio of 0.4. The relative accuracy of less than one degree is unchanged from the previous design. The vane bias was acceptable at 0.8 degree for the horizontal wind angle, but was slightly high at 1.4 degree for the verticle wind angle. The high value of the verticle wind angle bias can most likely be reduced to the desired less than one degree value with standard manufacturing production techniques. The durability of the prototype vane was not tested in the field but is expected to be slightly less due to the use of hollow rather than foam-filled fins. However, the loss of some durability is more than compensated with increased sensitivity at low wind speeds. Field testing of the prototype is required to test for adequacy of durability.

  6. Measurement of the pulse pileup correction for the HPGe gamma spectrometer

    International Nuclear Information System (INIS)

    Kulkarni, D.B.; Anuradha, R.; Joseph, Leena; Kulkarni, M.S.

    2018-01-01

    Radiation Standards Section (RSS), RSSD, has HPGe gamma spectrometry system maintained as a secondary standard for standardization of gamma emitting radionuclides. This system is also used to detect the impurities in the radioactivity samples supplied for the international inter-comparison exercises, so that the appropriate correction can be made for the standardized activity of principle radionuclide. The system is calibrated as per the recommended procedure (ANSI standard N42.14, 1999). As a part of this calibration, measurement of the pulse pile up correction was carried out in the energy range of 81 keV to 1408 keV. The measurement of pileup correction is very important for the standardization of sources having higher counting rates where the extent of the pileup effect is more and considerable deviation from the true counting rates was observed. For these sources the measured photo peak counting rate is less than true counting rate and needs to be corrected for pileup effect. The details of experiments are discussed in this paper

  7. Diurnal evolution of wind structure and data availability measured by the DOE prototype radar system

    Science.gov (United States)

    Hirth, Brian D.; Schroeder, John L.; Guynes, Jerry G.

    2017-11-01

    A new Doppler radar prototype has been developed and deployed at Texas Tech University with a focus on enhancing the technologies’ capability to contribute to wind plant relevant complex flow measurements. In particular, improvements in data availability, total data coverage, and autonomous operation were targeted to enable contributions to a wider range of wind energy applications. Doppler radar offers rapid scan speeds, extended maximum range and excellent along-beam range resolution allowing for the simultaneous measurement of various wind phenomena ranging from regional and wind plant scales to inflow and wake flow assessment for an individual turbine. Data examples and performance improvements relative to a previous edition of the technology are presented, including insights into the influence of diurnal atmospheric stability evolution of wind structure and system performance.

  8. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  9. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    Science.gov (United States)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  10. Marketing strategic choice for wind power technology in China : case: Chinese domestic wind technology companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  11. Output-only modal analysis of linear time-periodic systems with application to wind turbine simulation data

    DEFF Research Database (Denmark)

    Allen, Matthew S.; Sracic, Michael W.; Chauhan, Shashank

    2011-01-01

    to interrogate simulated measurements from a rotating wind turbine. The measurements were simulated for a 5 MW turbine modeled in the HAWC2 simulation code, which includes both structural dynamic and aerodynamic effects. This simulated system identification provides insights into the test and measurement......Many important systems, such as wind turbines, helicopters and turbomachinery, must be modeled with linear time-periodic equations of motion to correctly predict resonance phenomena. Time periodic effects in wind turbines might arise due to blade-to-blade manufacturing variations, stratification...... in the velocity of the wind with height and changes in the aerodynamics of the blades as they pass the tower. These effects may cause parametric resonance or other unexpected phenomena, so it is important to properly characterize them so that these machines can be designed to achieve high reliability, safety...

  12. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  13. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot W.; Churchfield, Matthew J.; Cheung, Lawrence; Kern, Stefan

    2017-01-09

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  14. Pilot-scale concept of real-time wind speed-matching wind tunnel for measurements of gaseous emissions

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...

  15. Extreme Design Loads Calibration of Offshore Wind Turbine Blades through Real Time Measurements

    DEFF Research Database (Denmark)

    Natarajan, Anand; Vesth, Allan; Lamata, Rebeca Rivera

    2014-01-01

    Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset of the mea......Blade Root flap and Edge moments are measured on the blades of a 3.6MW offshore wind turbine in normal operation. Ten minute maxima of the measurements are sampled to determine the extreme blade root flap moment, edge moment and resultant moment over six month duration. A random subset...... of the measurements over a week is taken as input to stochastic load extrapolation whereby the one year extrapolated design extreme is obtained, which are then compared with the maximum extremes obtained from direct measurements over a six month period to validate the magnification in the load levels for the blade...... root flap moment, edge moment obtained by extrapolation. The validation yields valuable information on prescribing the slope of the local extrapolation curve at each mean wind speed. As an alternative to determining the contemporaneous loads for each primary extrapolated load, the blade root resultant...

  16. Study of tip loss corrections using CFD rotor computations

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2014-01-01

    Tip loss correction is known to play an important role for engineering prediction of wind turbine performance. There are two different types of tip loss corrections: tip corrections on momentum theory and tip corrections on airfoil data. In this paper, we study the latter using detailed CFD...... computations for wind turbines with sharp tip. Using the technique of determination of angle of attack and the CFD results for a NordTank 500 kW rotor, airfoil data are extracted and a new tip loss function on airfoil data is derived. To validate, BEM computations with the new tip loss function are carried out...... and compared with CFD results for the NordTank 500 kW turbine and the NREL 5 MW turbine. Comparisons show that BEM with the new tip loss function can predict correctly the loading near the blade tip....

  17. Simultaneous measurements of the thermospheric wind profile at three separate positions in the dusk auroral oval

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Friis-Christensen, E.; Larsen, M.F.; Kelley, M.C.; Vickrey, J.; Meriwether, J.; Shih, P.

    1987-01-01

    On March 20, 1985, two rockets were launched from Soendre Stroemfjord, Greenland, into the dusk auroral oval. Three trimethyl aluminium trails were released to measure the neutral wind profiles between 95 and 190 km of altitude at two points separated by 190 km normal to the invariant latitude circles and at a third point separated from the first two by 300 km along the invariant latitude circles. Two barium/strontium clouds were released at 250 km of altitude, extending two of the neutral wind profiles to this altitude. In the E region the tip of the wind vector traced an ellipse as a function of increasing altitude with maximum wind speeds of 100-150 m/s in the southeastward and northwestward directions. The F region winds were southward with speeds of 100-200 m/s. The zonal wind component between 115 and 140 km of altitude had a horizontal gradient in the southeastward direction, whereas the meridional wind component at the same heights was constant over the spatial extent covered by the measurements. The authors interpret the observed E region wind field as being part of a gravity wave with a period of 3 hours as estimated from the ellipticity of the wind hodograms. The wind vectors rotated 540 degree clockwise with increasing height, indicating that the wave energy is propagating upward. The Fabry-Perot interferometer at Soendre Stroemfjord was first able to detect the F region winds 45 min after the releases and measured winds of 100-400 m/s mainly in the southeastward or antisunward direction. The geomagnetic conditions were quiet, with Kp not exceeding 2 for the 24 hours preceding the experiment. The incoherent scatter radar at Soendre Stroemfjord observed a contracted plasma convection pattern associated with positive B y and B z components of the interplanetary magnetic field

  18. A combined aeroelastic-aeroacoustic model for wind turbine noise: Verification and analysis of field measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    In this paper, semi-empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in-house aeroelastic code HAWC2 commonly used for wind turbine load calculations...... and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources...... and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured....

  19. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  20. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  1. Wind Turbine Measurement Technique—an Open Laboratory for Educational Purposes

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Hansen, Kurt Schaldemose; Schmidt Paulsen, Uwe

    2008-01-01

    operational parameters, (ii) meteorological onditions, (iii) electrical quantities and (iv) mechanical loads. The data acquisition system was PC based, and it was combined with a MySQL® database for data management.The system enabled online access for real-time recordings,which were used both...... of non-commercial time series, which would be available for practicing fatigue calculations and extreme load estimation in basic wind turbine courses. Power quality analysis was carried out based on high-speed-sampled, three-phase voltage and current signals. The wide spectrum of sensors enabled....... The WTMLAB was included in a new course entitled Wind Turbine Measurement Techniques....

  2. Magnetic measurements of the correction and adjustment magnets of the main ring

    International Nuclear Information System (INIS)

    Trbojevic, D.

    1986-07-01

    Correction magnets correct the field imperfections and alignment errors of the main quadrupole and bend magnets. For reducing and controlling chromaticity there are 186 sextupoles and 78 octupoles, while for suppressing various resonances there are 12 normal and 18 skew sextupoles and 24 normal and 19 skew quadrupoles. Beam positions are individually controlled by 108 horizontal and 108 skew dipoles. This report includes results of the all Main Ring correction and adjustment magnet harmonic measurements. The measurement principle and basic equations are described

  3. Rate of rotation measurement using back-EMFS associated with windings of a brushless DC motor

    Science.gov (United States)

    Howard, David E. (Inventor)

    2000-01-01

    A system and method are provided for measuring rate of rotation. A brushless DC motor is rotated and produces a back electromagnetic force (emf) on each winding thereof. Each winding's back-emf is integrated and multiplied by the back-emf associated with an adjacent winding. The multiplied outputs associated with each winding are combined to produce a directionally sensitive DC output proportional only to the rate of rotation of the motor's shaft.

  4. Influence of blockage effect on measurement by vane anemometers

    Directory of Open Access Journals (Sweden)

    Sluse Jan

    2017-01-01

    Full Text Available The article deals with influence of blockage effect caused by vane anemometer in the wind tunnel by measurement via this anemometer. The influences will be represented by correction coefficient. The first part of this article is focused on the design of the impeller of vane anemometers. The impellers are printed on 3D printer with variable parameters. The anemometer is fixed in an open section of the wind tunnel with closed loop and the velocity profile is measured by Laser Doppler velocimetry (LDV in front and behind it for all impellers. The experimental data are compared with the numerical simulation in OpenFOAM. The results are correction coefficients.

  5. Short-Term Wind Speed Hybrid Forecasting Model Based on Bias Correcting Study and Its Application

    OpenAIRE

    Mingfei Niu; Shaolong Sun; Jie Wu; Yuanlei Zhang

    2015-01-01

    The accuracy of wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. In particular, reliable short-term wind speed forecasting can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, due to the strong stochastic nature and dynamic uncertainty of wind speed, the forecasting of wind speed data using different patterns is difficult. This paper proposes a novel combination bias c...

  6. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2015-01-01

    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...

  7. Aerodynamical errors on tower mounted wind speed measurements due to the presence of the tower

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)

    1996-12-01

    Field measurements of wind speed from two lattice towers showed large differences for wind directions where the anemometers of both towers should be unaffected by any upstream obstacle. The wind speed was measured by cup anemometers mounted on booms along the side of the tower. A simple wind tunnel test indicates that the boom, for the studied conditions, could cause minor flow disturbances. A theoretical study, by means of simple 2D flow modelling of the flow around the mast, demonstrates that the tower itself could cause large wind flow disturbances. A theoretical study, based on simple treatment of the physics of motion of a cup anemometer, demonstrates that a cup anemometer is sensitive to velocity gradients across the cups and responds clearly to velocity gradients in the vicinity of the tower. Comparison of the results from the theoretical study and field tests show promising agreement. 2 refs, 8 figs

  8. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    variations are clearly visible across the domain; for instance sheltering effects caused by the land masses. The satellite based wind resource maps have two shortcomings. One is the lack of information at the higher vertical levels where wind turbines operate. The other is the limited number of overlapping...... years of WRF data – specifically the parameters heat flux, air temperature, and friction velocity – are used to calculate a long-term correction for atmospheric stability effects. The stability correction is applied to the satellite based wind resource maps together with a vertical wind profile...... from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In this presentation, satellite wind maps are used in combination with mast observations and numerical...

  9. Summary Report: The Shadow effect of large wind farms: measurements, data analysis and modelling

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Barthelmie, Rebecca Jane; Rathmann, Ole

    It was the goal of the project – by means of data from the demonstration wind farms Horns Rev and Nysted, analyses of these data and modelling – to facilitate prediction of the power losses from a wind farm should a new wind farm be built upwind relative to the prevailing wind direction...... it may appropriate to build new wind farms rather close to the existing wind farms. A relevant question is therefore how far away new wind farms must be placed to avoid too large power losses. Measurements have been carried out for several years at the two sites, and databases have been prepared....... Thus, if different modelling efforts results in comparable results, the quality of the models will be tested outside the physical range where data are available. All considered the project participants find that the project has been immensely successful. The main achievements of the project are...

  10. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    The air flow in the lower atmosphere on the spatial scale of the modern wind turbines is studied. Because wind turbines are nowadays often taller than 100 m, the validity of current analytical and numerical atmospheric models has to be evaluated and more knowledge about the structure of the atmos......The air flow in the lower atmosphere on the spatial scale of the modern wind turbines is studied. Because wind turbines are nowadays often taller than 100 m, the validity of current analytical and numerical atmospheric models has to be evaluated and more knowledge about the structure...

  11. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  12. Wind direction correlated measurements of radon and radon progeny in atmosphere: a method for radon source identification

    International Nuclear Information System (INIS)

    Akber, R.A.; Pfitzner, J.; Johnston, A.

    1994-01-01

    This paper describes the basic principles and methodology of a wind direction correlated measurement technique which is used to distinguish the mine-related and background components of radon and radon progeny concentrations in the vicinity of the ERA Ranger Uranium Mine. Simultaneous measurements of atmospheric radon and radon progeny concentrations and wind speed and direction were conducted using automatic sampling stations. The data were recorded as a time series of half hourly averages and grouped into sixteen 22.5 degrees wind sectors. The sampling interval and the wind sector width were chosen considering wind direction variability (σ θ ) over the sampling time interval. The data were then analysed for radon and radon progeny concentrations in each wind sector. Information about the wind frequency wind speed seasonal and diurnal variations in wind direction and radon concentrations was required for proper data analysis and interpretation of results. A comparison with model-based estimates for an identical time period shows agreement within about a factor of two between the two methods. 15 refs., 1 tab., 5 figs

  13. Techniques for transparent lattice measurement and correction

    Science.gov (United States)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  14. Measurement of starting characteristics of a remote area Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Freere, P. [Monash University, Clayton (Australia). Dept. of Electrical Engineering; Moller, C.; Jespersen, R. [Danish Technical University, Copenhagen (Denmark). Dept. of Electrical Engineering

    1999-07-01

    A 17 kW Darrieus was constructed as a remote area power supply for an independent community outside Melbourne, Australia. After languishing for several years it was reconditioned, but found not to start at wind speeds up to 12 m/s. Therefore, the turbine was modelled by driving it with an electric motor at various rotational speeds over a range of wind speeds. Thus it was possible to measure the turbine starting characteristics, thereby indicating reasons for the turbine's lack of performance. (author)

  15. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  16. Evaluating potentials for future generation off-shore wind-power outside Norway

    Science.gov (United States)

    Benestad, R. E.; Haugen, J.; Haakenstad, H.

    2012-12-01

    With todays critical need of renewable energy sources, it is naturally to look towards wind power. With the long coast of Norway, there is a large potential for wind farms offshore Norway. Although there are more challenges with offshore wind energy installations compared to wind farms on land, the offshore wind is generally higher, and there is also higher persistence of wind speed values in the power generating classes. I planning offshore wind farms, there is a need of evaluation of the wind resources, the wind climatology and possible future changes. In this aspect, we use data from regional climate model runs performed in the European ENSEMBLE-project (van der Linden and J.F.B. Mitchell, 2009). In spite of increased reliability in RCMs in the recent years, the simulations still suffer from systematic model errors, therefore the data has to be corrected before using them in wind resource analyses. In correcting the wind speeds from the RCMs, we will use wind speeds from a Norwegian high resolution wind- and wave- archive, NORA10 (Reistad et al 2010), to do quantile mapping (Themeβl et. al. 2012). The quantile mapping is performed individually for each regional simulation driven by ERA40-reanalysis from the ENSEMBLE-project corrected against NORA10. The same calibration is then used to the belonging regional climate scenario. The calibration is done for each grid cell in the domain and for each day of the year centered in a +/-15 day window to make an empirical cumulative density function for each day of the year. The quantile mapping of the scenarios provide us with a new wind speed data set for the future, more correct compared to the raw ENSEMBLE scenarios. References: Reistad M., Ø. Breivik, H. Haakenstad, O. J. Aarnes, B. R. Furevik and J-R Bidlo, 2010, A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. J. Geophys. Res., 116. doi:10.1029/2010JC006402. Themessl M. J., A. Gobiet and A. Leuprecht, 2012

  17. The determination of beam quality correction factors: Monte Carlo simulations and measurements.

    Science.gov (United States)

    González-Castaño, D M; Hartmann, G H; Sánchez-Doblado, F; Gómez, F; Kapsch, R-P; Pena, J; Capote, R

    2009-08-07

    Modern dosimetry protocols are based on the use of ionization chambers provided with a calibration factor in terms of absorbed dose to water. The basic formula to determine the absorbed dose at a user's beam contains the well-known beam quality correction factor that is required whenever the quality of radiation used at calibration differs from that of the user's radiation. The dosimetry protocols describe the whole ionization chamber calibration procedure and include tabulated beam quality correction factors which refer to 60Co gamma radiation used as calibration quality. They have been calculated for a series of ionization chambers and radiation qualities based on formulae, which are also described in the protocols. In the case of high-energy photon beams, the relative standard uncertainty of the beam quality correction factor is estimated to amount to 1%. In the present work, two alternative methods to determine beam quality correction factors are prescribed-Monte Carlo simulation using the EGSnrc system and an experimental method based on a comparison with a reference chamber. Both Monte Carlo calculations and ratio measurements were carried out for nine chambers at several radiation beams. Four chamber types are not included in the current dosimetry protocols. Beam quality corrections for the reference chamber at two beam qualities were also measured using a calorimeter at a PTB Primary Standards Dosimetry Laboratory. Good agreement between the Monte Carlo calculated (1% uncertainty) and measured (0.5% uncertainty) beam quality correction factors was obtained. Based on these results we propose that beam quality correction factors can be generated both by measurements and by the Monte Carlo simulations with an uncertainty at least comparable to that given in current dosimetry protocols.

  18. Converter Monitoring Unit for Retrofit of Wind Power Converters

    DEFF Research Database (Denmark)

    Rannestad, Bjorn; Maarbjerg, Anders Eggert; Frederiksen, Kristian

    2018-01-01

    A Converter Monitoring Unit (CMU), which will enable condition monitoring of wind turbine converters is presented in this paper. Reducing the cost of corrective maintenance by means of condition monitoring is a way of lowering Operation & Maintenance (O&M) costs for wind turbine systems....... The CMU must be able to detect a broad range of failure modes related to Insulated Gate Bipolar Transistor (IGBT) power modules and associated gate drives. IGBT collector-emitter on-state voltage (vceon) and current (ic) is sampled in the CMU and used for detection of emerging failures. A new method...... for compensation of unwanted inductive voltage drop in the vceon measurement path is presented, enabling retrofitting of CMUs in existing wind turbines. Finally, experimental results obtained on a prototype CMU are presented. Experimentally the vceon dependency to IGBT junction temperature and deterioration...

  19. Design and fabrication of the prototype superconducting tuning quadrupole and octupole correction winding for the LHC project

    International Nuclear Information System (INIS)

    Perin, R.; Siegel, N.; Bidaurrazaga, H.; Garcia Tabares, L.

    1992-01-01

    CERN is preparing for the construction of the Large Hadron Collider (LHC) to be installed in the LEP tunnel. The magnetic lattice of the LHC will consist of a ring of twin aperture dipoles and quadrupoles, connected electrically in series. To adjust the working point of the machine, so called tuning quadrupoles will be installed in pairs in each regular cell, next to the main quadrupoles. Also, to correct multipolar field errors in the LHC, an octupole correction winding is required near each lattice quadrupole. A nested construction of these two magnets is foreseen. As part of the LHC R and D program, CERN and ACICA (a group of five Spanish industries: Abengoz, Canzler, Indar, Cenemesa and AME; since June 1990 Cenemesa is part of ABB Spain), signed a common development agreement for the design, fabrication and testing of a prototype tuning quadrupole and octupole corrector. This paper describes the design of these magnets, giving details of magnetic and mechanical calculations, including results from existing and specially developed computer codes, and model work. Further, the construction procedures are described, including the facilities and tooling developed by ACICA for this work

  20. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...

  1. Relationship between Clinical and Polysomnography Measures Corrected for CPAP Use.

    Science.gov (United States)

    Kirkham, Erin M; Heckbert, Susan R; Weaver, Edward M

    2015-11-15

    The changes in patient-reported measures of obstructive sleep apnea (OSA) burden are largely discordant with the change in apnea-hypopnea index (AHI) and other polysomnography measures before and after treatment. For patients treated with continuous positive airway pressure (CPAP), some investigators have theorized that this discordance is due in part to the variability in CPAP use. We aim to test the hypothesis that patient-reported outcomes of CPAP treatment have stronger correlations with AHI when it is corrected for mean nightly CPAP use. This was a cross-sectional study of 459 adults treated with CPAP for OSA. Five patient-reported measures of OSA burden were collected at baseline and after 6 months of CPAP therapy. The correlations between the change in each patient-reported measure and the change in AHI as well as mean nightly AHI (corrected for CPAP use with a weighted average formula) were measured after 6 months of treatment. The same analysis was repeated for 4 additional polysomnography measures, including apnea index, arousal index, lowest oxyhemoglobin saturation, and desaturation index. The change in AHI was weakly but significantly correlated with change in 2 of the 5 clinical measures. The change in mean nightly AHI demonstrated statistically significant correlations with 4 out of 5 clinical measures, though each with coefficients less than 0.3. Similar results were seen for apnea index, arousal index, lowest oxyhemoglobin saturation, and desaturation index. Correction for CPAP use yielded overall small but significant improvements in the correlations between patient-reported measures of sleep apnea burden and polysomnography measures after 6 months of treatment. © 2015 American Academy of Sleep Medicine.

  2. Practical aspects of phase correction determination for gauge blocks measured by optical interferometry

    International Nuclear Information System (INIS)

    Ramotowski, Zbigniew; Salbut, Leszek

    2012-01-01

    Determination of a phase correction is necessary when making interferometric measurements of gauge blocks with an auxiliary platen. The phase correction compensates for the differences in the reflecting properties of the gauge block and the platen surfaces. Different phase corrections are reported for gauge blocks of different manufacturers, made from different materials and with different surface roughness compared to the platen. In this paper, the process of selection of the best surface roughness parameter and the influence of different complex refractive indices of the same type of material are analysed. The new surface roughness parameter based on the difference between the weighted mean of maximum and minimum asperities of 3D surface roughness measured by a modernized Linnik phase shifting interferometer is introduced. The results of comparison of the phase correction values calculated from the difference between the weighted mean values and calculated from stack method measurements are presented and discussed. The complementary method of phase correction measurement based on the cross-wringing method with the use of the modernized phase shifting Kösters interferometer is proposed. (paper)

  3. Wind Predictions Upstream Wind Turbines from a LiDAR Database

    Directory of Open Access Journals (Sweden)

    Soledad Le Clainche

    2018-03-01

    Full Text Available This article presents a new method to predict the wind velocity upstream a horizontal axis wind turbine from a set of light detection and ranging (LiDAR measurements. The method uses higher order dynamic mode decomposition (HODMD to construct a reduced order model (ROM that can be extrapolated in space. LiDAR measurements have been carried out upstream a wind turbine at six different planes perpendicular to the wind turbine axis. This new HODMD-based ROM predicts with high accuracy the wind velocity during a timespan of 24 h in a plane of measurements that is more than 225 m far away from the wind turbine. Moreover, the technique introduced is general and obtained with an almost negligible computational cost. This fact makes it possible to extend its application to both vertical axis wind turbines and real-time operation.

  4. Multi-MW wind turbine power curve measurements using remote sensing instruments – the first Høvsøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael

    curve significantly. Two LiDARs and a SoDAR are used to measure the wind profile in front of a wind turbine. These profiles are used to calculate the equivalent wind speed. LiDAR are found to be more accurate than SoDAR and therefore more suitable for power performance measurement. The equivalent wind...... that used of the equivalent wind speed at least results in a power curve with no more scatter than using the conventional method....

  5. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  6. Filter Paper: Solution to High Self-Attenuation Corrections in HEPA Filter Measurements

    International Nuclear Information System (INIS)

    Oberer, R.B.; Harold, N.B.; Gunn, C.A.; Brummett, M.; Chaing, L.G.

    2005-01-01

    An 8 by 8 by 6 inch High Efficiency Particulate Air (HEPA) filter was measured as part of a uranium holdup survey in June of 2005 as it has been routinely measured every two months since 1998. Although the survey relies on gross gamma count measurements, this was one of a few measurements that had been converted to a quantitative measurement in 1998. The measurement was analyzed using the traditional Generalized Geometry Holdup (GGH) approach, using HMS3 software, with an area calibration and self-attenuation corrected with an empirical correction factor of 1.06. A result of 172 grams of 235 U was reported. The actual quantity of 235 U in the filter was approximately 1700g. Because of this unusually large discrepancy, the measurement of HEPA filters will be discussed. Various techniques for measuring HEPA filters will be described using the measurement of a 24 by 24 by 12 inch HEPA filter as an example. A new method to correct for self attenuation will be proposed for this measurement Following the discussion of the 24 by 24 by 12 inch HEPA filter, the measurement of the 8 by 8 by 6 inch will be discussed in detail

  7. GPS Synchronization and EMC of Harmonic and Transient Measurement Equipment in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Kocewiak, Łukasz Hubert; Arana, Iván; Hjerrild, Jesper

    2012-01-01

    synchronization, electromagnetic compatibility (EMC) and interference (EMI) challenges during the development, construction, testing and installation of a measurement system for multi-point, high-speed and long-term data logging is described in this paper. The presented measurement system was tested in a rough...... offshore environment at Avedøre Holme and Gunfleet Sands offshore wind farms.The paper will describe the application of GPS technology in synchronised measurements carried out at Avedøre Holme and Gunfleet Sands wind farms. Different aspects of software development and hardware configuration in order...

  8. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  9. Radiographic cup anteversion measurement corrected from pelvic tilt.

    Science.gov (United States)

    Wang, Liao; Thoreson, Andrew R; Trousdale, Robert T; Morrey, Bernard F; Dai, Kerong; An, Kai-Nan

    2017-11-01

    The purpose of this study was to develop a novel technique to improve the accuracy of radiographic cup anteversion measurement by correcting the influence of pelvic tilt. Ninety virtual total hip arthroplasties were simulated from computed tomography data of 6 patients with 15 predetermined cup orientations. For each simulated implantation, anteroposterior (AP) virtual pelvic radiographs were generated for 11 predetermined pelvic tilts. A linear regression model was created to capture the relationship between radiographic cup anteversion angle error measured on AP pelvic radiographs and pelvic tilt. Overall, nine hundred and ninety virtual AP pelvic radiographs were measured, and 90 linear regression models were created. Pearson's correlation analyses confirmed a strong correlation between the errors of conventional radiographic cup anteversion angle measured on AP pelvic radiographs and the magnitude of pelvic tilt (P cup anteversion angle from the influence of pelvic tilt. The current method proposes to measure the pelvic tilt on a lateral radiograph, and to use it as a correction for the radiographic cup anteversion measurement on an AP pelvic radiograph. Thus, both AP and lateral pelvic radiographs are required for the measurement of pelvic posture-integrated cup anteversion. Compared with conventional radiographic cup anteversion, the errors of pelvic posture-integrated radiographic cup anteversion were reduced from 10.03 (SD = 5.13) degrees to 2.53 (SD = 1.33) degrees. Pelvic posture-integrated cup anteversion measurement improves the accuracy of radiographic cup anteversion measurement, which shows the potential of further clarifying the etiology of postoperative instability based on planar radiographs. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Churchfield, Matthew; Cheung, Lawrence; Kern, Stefan

    2017-02-01

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  11. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  12. Corrective measures and actions in response to defects

    International Nuclear Information System (INIS)

    1981-01-01

    This guideline presents a number of corrective measures which can be taken when the derived limits in the Code or the relevant action levels are exceeded. Appropriate actions to be taken for external β and γ radiation, airborne contamination, surface contamination and uranium or thorium concentrate spillage are specified

  13. Comparison of X-band radar backscatter measurements with area extended wave slope measurements made in a large wind wave tank

    NARCIS (Netherlands)

    Halsema, D. van; Jaehne, B.; Oost, W.A.; Calkoen, C.J.; Snoeij, P.

    1989-01-01

    Combined measurements of microwave backscatter, wind, waves, and gas exchange have been carried out in the large Delft Hydraulics wind/wave tank. This experiment was the first of a series of experiments in the VIERS-1 project. In this project, a number of Dutch and one German laboratory cooperate to

  14. Identification of support structure damping of a full scale offshore wind turbine in normal operation

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Vesth, Allan

    2015-01-01

    damping from the decaying time series. The Enhanced Frequency Domain Decomposition (EFDD) method was applied to the wind turbine response under ambient excitation, for estimation of the damping in normal operation. The aero-servo-hydro-elastic tool HAWC2 is validated with offshore foundation load...... maxima of an impulse response caused by a boat impact. The result is used in the verification of the non aerodynamic damping in normal operation for low wind speeds. The auto-correlation function technique for damping estimation of a structure under ambient excitation was validated against the identified...... measurements. The model was tuned to the damping values obtained from the boat impact to match the measured loads. Wind turbulence intensity and wave characteristics used in the simulations are based on site measurements. A flexible soil model is included in the analysis. The importance of the correctly...

  15. High-resolution humidity profiles retrieved from wind profiler radar measurements

    Science.gov (United States)

    Saïd, Frédérique; Campistron, Bernard; Di Girolamo, Paolo

    2018-03-01

    The retrieval of humidity profiles from wind profiler radars has already been documented in the past 30 years and is known to be neither as straightforward and nor as robust as the retrieval of the wind velocity. The main constraint to retrieve the humidity profile is the necessity to combine measurements from the wind profiler and additional measurements (such as observations from radiosoundings at a coarser time resolution). Furthermore, the method relies on some assumptions and simplifications that restrict the scope of its application. The first objective of this paper is to identify the obstacles and limitations and solve them, or at least define the field of applicability. To improve the method, we propose using the radar capacity to detect transition levels, such as the top level of the boundary layer, marked by a maximum in the radar reflectivity. This forces the humidity profile from the free troposphere and from the boundary layer to coincide at this level, after an optimization of the calibration coefficients, and reduces the error. The resulting mean bias affecting the specific humidity profile never exceeds 0.25 g kg-1. The second objective is to explore the capability of the algorithm to retrieve the humidity vertical profiles for an operational purpose by comparing the results with observations from a Raman lidar.

  16. Remote-controlled flexible pose measurement system and method for a moving target in wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei LIU

    2018-01-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. This paper proposes a remote-controlled flexible pose measurement system in wind tunnel conditions for the separation of a target from an aircraft. The position and attitude parameters of a moving object are obtained by utilizing a single camera with a focal length and camera orientation that can be changed based on different measurement conditions. Using this proposed system and method, both the flexibility and efficiency of the pose measurement system can be enhanced in wind tunnel conditions to meet the measurement requirements of different objects and experiments, which is also useful for the development of an intelligent position and attitude measurement system. The position and the focal length of the camera also can be controlled remotely during measurements to enlarge both the vertical and horizontal measurement range of this system. Experiments are conducted in the laboratory to measure the position and attitude of moving objects with high flexibility and efficiency, and the measurement precision of the measurement system is also verified through experiments.

  17. Analysis of wind data for airport runway design

    Directory of Open Access Journals (Sweden)

    Roberto Bellasio

    2014-09-01

    Full Text Available Purpose: To provide a methodology, and examples of application, for analyzing wind data for the correct orientation of airport runways. Design/methodology/approach: More than 90000 observed wind data have been analyzed for each one of the three airports used as case studies. Both observed and estimated gusts have been considered. Findings: If only observed data are considered, each single runway of the three airports used as case studies is correctly oriented. When estimated gusts are considered, the FAA requirements are not satisfied by a single runway in some airports (which anyway satisfy such requirements by using more runways. Practical implications: The correct orientation of runways minimize the crosswind components, then increase the safety of the airports. Originality/value: The paper provides a methodology to evaluate the orientation of existing runways and to design new runways. Such methodology is based on the analysis wind data, considering both observed values and estimated gusts.

  18. Measurement and correction of accelerator optics

    International Nuclear Information System (INIS)

    Zimmerman, F.

    1998-06-01

    This report reviews procedures and techniques for measuring, correcting and controlling various optics parameters of an accelerator, including the betatron tune, beta function, betatron coupling, dispersion, chromaticity, momentum compaction factor, and beam orbit. The techniques described are not only indispensable for the basic set-up of an accelerator, but in addition the same methods can be used to study more esoteric questions as, for instance, dynamic aperture limitations or wakefield effects. The different procedures are illustrated by examples from several accelerators, storage rings, as well as linacs and transport lines

  19. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Science.gov (United States)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  20. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  1. A method of bias correction for maximal reliability with dichotomous measures.

    Science.gov (United States)

    Penev, Spiridon; Raykov, Tenko

    2010-02-01

    This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.

  2. Recent Successes of Wave/Turbulence Driven Models of Solar Wind Acceleration

    Science.gov (United States)

    Cranmer, S. R.; Hollweg, J. V.; Chandran, B. D.; van Ballegooijen, A. A.

    2010-12-01

    A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a first-principles understanding of coronal heating. Also, it is still unknown whether the solar wind is "fed" through flux tubes that remain open (and are energized by footpoint-driven wavelike fluctuations) or if mass and energy are input intermittently from closed loops into the open-field regions. In this presentation, we discuss self-consistent models that assume the energy comes from solar Alfven waves that are partially reflected, and then dissipated, by magnetohydrodynamic turbulence. These models have been found to reproduce many of the observed features of the fast and slow solar wind without the need for artificial "coronal heating functions" used by earlier models. For example, the models predict a variation with wind speed in commonly measured ratios of charge states and elemental abundances that agrees with observed trends. This contradicts a commonly held assertion that these ratios can only be produced by the injection of plasma from closed-field regions on the Sun. This presentation also reviews two recent comparisons between the models and empirical measurements: (1) The models successfully predict the amplitude and radial dependence of Faraday rotation fluctuations (FRFs) measured by the Helios probes for heliocentric distances between 2 and 15 solar radii. The FRFs are a particularly sensitive test of turbulence models because they depend not only on the plasma density and Alfven wave amplitude in the corona, but also on the turbulent correlation length. (2) The models predict the correct sense and magnitude of changes seen in the polar high-speed solar wind by Ulysses from the previous solar minimum (1996-1997) to the more recent peculiar minimum (2008-2009). By changing only the magnetic field along the polar magnetic flux tube, consistent with solar and heliospheric observations at the two epochs, the model correctly predicts that the

  3. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko Toshimitsu; Koutarou Nishikawa; Wataru Haruki; Shinichi Oono; Manabu Takao; Yuji Ohya

    2008-01-01

    The wind turbines with a flanged-diffuser shroud -so called "wind lens turbine"- are developed as one of high performance wind turbines by Ohya et al. In order to investigate the flow characteristics and flow acceleration, the paper presents the flow velocity measurements of a long-type and a compact-type wind turbines with a flanged-diffuser shroud by particle image velocimetry. In the case of the long type wind turbine, the velocity vec-tors of the inner flow field of the diffuser for turbine blades rotating and no blades rotating are presented at Rey-nolds number, 0.9x105. Furthermore the flow fields between with and without rotating are compared. Through the PIV measurement results, one can realize that the turbine blades rotating affects as suppress the disturbance and the flow separation near the inner wall of the diffuser. The time average velocity vectors are made on the av-erage of the instantaneous velocity data. There are two large vortices in downstream region of the diffuser. One vortex behind the flange acts as suck in wind to the diffuser and raise the inlet flow velocity. Another large vortex appears in downstream. It might be act as blockage vortex of main flow. The large blockage vortex is not clear in the instantaneous velocity vectors, however it exists clearly in the time average flow field. The flow field around the wind turbine with a compact-type flanged-diffuser shroud is also investigated. The flow pattern behind the flange of the compact-type turbine is the same as the long-type one. It means that the effect of flow acceleration is caused by the unsteady vortices behind the flange. The comparison with CFD and PIV results of meridional time-average streamlines after the compact-type diffuser is also presented.

  4. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  5. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    Science.gov (United States)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  6. Flow measurement behind a pair of vertical-axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Hummels, Raymond; Leftwich, Megan C.

    2017-11-01

    The wake from a pair of vertical-axis wind turbines (VAWTs) is measured using particle imaging velocimetry (PIV). The VAWT models are mounted in a low-speed wind tunnel and driven using a motor control system. The rotation of the turbines is synced using a proportional controller that allows the turbine's rotational position to be set relative to each other. The rotation of the turbines is also synced with the PIV system for taking phase averaged results. The VAWTs are tested for both co- and counter-rotating cases over a range of relative phase offsets. Time averaged and phase averaged results are measured at the horizontal mid-plane in the near wake. The time-averaged results compare the bulk wake profiles from the pair of turbines. Phase averaged results look at the vortex interactions in the near wake of the turbines. By changing the phase relation between the turbines we can see the impact of the structure interactions in both the phase and time averaged results.

  7. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  8. The Coincidence Tracker: Electronic Equipment for a Time-of-Flight Wind-Speed Measurement System

    DEFF Research Database (Denmark)

    Fog, Christian

    1982-01-01

    The electronic part of a laser-beam measuring system for wind velocity is described. Pulses of light scattered from aerosols are treated, first in a pair of adaptive filters, then in a tracker that calculates the wind velocity on-line while applying some knowledge about the velocity to be expected...

  9. Design and construction of a simple blade pitch measurement system for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Whale, Jonathan [Research Institute of Sustainable Energy, Murdoch University, Perth, WA 6150 (Australia)

    2009-02-15

    For small wind turbines to be reliable they must have in place good mechanisms to protect themselves against very high winds or sudden removal of load. One common protection method in small wind turbines is that of blade feathering. It is important that the blade feathering mechanism of a small wind turbine is tested before the turbine is installed in the field. This paper presents a simple system for monitoring the blade feathering of a turbine with an overall component cost that small wind turbine manufacturers can afford. The Blade Pitch Measurement System (BPMS) has been designed and constructed by the Research Institute of Sustainable Energy (RISE) and aids small wind turbine manufacturers in testing and optimising the settings of the blade feathering mechanisms on their machines. The results show that the BPMS was successful in recording the behaviour of the blade feathering mechanism in field trials with a 20 kW and a 30 kW wind turbine. The BPMS displays significant potential as an effective, inexpensive system for small wind turbine manufacturers to ensure the reliability of their pitch regulating over-speed protection mechanisms. (author)

  10. Spatial-temporal analysis of coherent offshore wind field structures measured by scanning Doppler-lidar

    Science.gov (United States)

    Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.

    2016-09-01

    An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.

  11. Outlet temperature measurement correction of Gd fuel assemblies at Dukovany NPP

    International Nuclear Information System (INIS)

    Jurickova, M.

    2008-01-01

    In year 2006 we started data processing from the Dukovany NPP operating history database that contained data from the old measurement system VK3 and the new Scorpio-VVER. The work has been done in cooperation with the reactor physicists at Dukovany NPP. Obtained data from database were compared with calculated parameters from 3D diffusion macrocode Mobydick. During the data processing it was found that the Gd fuel assemblies have different time plot of measured assembly outlet temperature compared to the non-Gd fuel assemblies. Experimental studies in RRC KI found that there is insufficient coolant mixing in the region from the fuel bundle to the fuel assembly thermocouple. Due to this fact the thermocouple measure temperature is systematically higher than real temperature. There are two methods to solve this problem. The first method analyses the flow and heat transfer in the region from the fuel bundle to the fuel assembly thermocouple - this method is developed in Skoda JS. The second method statistically studies differences between the measured and calculated temperature by the Mobydick code using the operational history database. Our study is focused on the second method. Several calculation methods for the correction of measured assembly outlet temperature were developed. All correction methods were applied to the measured temperatures from the Dukovany NPP operating history database and the methods were mutually compared. In near future it is planned to compare results of our chosen correction method with modeling method, which is developing in Skoda JS and it is planned to validate both of them. Consequently, the one of these correction methods will be implemented in the modernized Scorpio-VVER for Dukovany NPP. (author)

  12. Studies on the true coincidence correction in measuring filter samples by gamma spectrometry

    CERN Document Server

    Lian Qi; Chang Yong Fu; Xia Bing

    2002-01-01

    The true coincidence correction in measuring filter samples has been studied by high efficiency HPGe gamma detectors. The true coincidence correction for a specific three excited levels de-excitation case has been analyzed, and the typical analytical expressions of true coincidence correction factors have been given. According to the measured relative efficiency on the detector surface with 8 'single' energy gamma emitters and efficiency of filter samples, the peak and total efficiency surfaces are fitted. The true coincidence correction factors of sup 6 sup 0 Co and sup 1 sup 5 sup 2 Eu calculated by the efficiency surfaces agree well with experimental results

  13. A spinner-integrated wind lidar for enhanced wind turbine control

    DEFF Research Database (Denmark)

    Mikkelsen, Torben; Angelou, Nikolas; Hansen, Kasper Hjorth

    2013-01-01

    A field test with a continuous wave wind lidar (ZephIR) installed in the rotating spinner of a wind turbine for unimpeded preview measurements of the upwind approaching wind conditions is described. The experimental setup with the wind lidar on the tip of the rotating spinner of a large 80 m roto...... of the spinner lidar data, is investigated. Finally, the potential for enhancing turbine control and performance based on wind lidar preview measurements in combination with feed-forward enabled turbine controllers is discussed. Copyright © 2012 John Wiley & Sons, Ltd....

  14. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pukayastha, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, C. [Univ. of Colorado, Boulder, CO (United States); Newsom, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  15. Precision Photometric Extinction Corrections from Direct Atmospheric Measurements

    Science.gov (United States)

    McGraw, John T.; Zimmer, P.; Linford, J.; Simon, T.; Measurement Astrophysics Research Group

    2009-01-01

    For decades astronomical extinction corrections have been accomplished using nightly mean extinction coefficients derived from Langley plots measured with the same telescope used for photometry. Because this technique results in lost time on program fields, observers only grudgingly made sporadic extinction measurements. Occasionally extinction corrections are not measured nightly but are made using tabulated mean monthly or even quarterly extinction coefficients. Any observer of the sky knows that Earth's atmosphere is an ever-changing fluid in which is embedded extinction sources ranging from Rayleigh (molecular) scattering to aerosol, smoke and dust scattering and absorption, to "just plain cloudy.” Our eyes also tell us that the type, direction and degree of extinction changes on time scales of minutes or less - typically shorter than many astronomical observations. Thus, we should expect that atmospheric extinction can change significantly during a single observation. Mean extinction coefficients might be well-defined nightly means, but those means have high variance because they do not accurately record the wavelength-, time-, and angle-dependent extinction actually affecting each observation. Our research group is implementing lidar measurements made in the direction of observation with one minute cadence, from which the absolute monochromatic extinction can be measured. Simultaneous spectrophotometry of nearby bright standard stars allows derivation and MODTRAN modeling atmospheric transmission as a function of wavelength for the atmosphere through which an observation is made. Application of this technique is demonstrated. Accurate real-time extinction measurements are an enabling factor for sub-1% photometry. This research is supported by NSF Grant 0421087 and AFRL Grant #FA9451-04-2-0355.

  16. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    effects of rotation on stall. By using the stall flag method, we were able to clear up two practical problems that seriously threatened the performance of stall turbines. These topics will be described briefly. 1. Inherent Heat Generation The classic result for an actuator disk representing a wind turbine is that the power extracted equals the kinetic power transferred. This is a consequence of disregarding the flow around the disk. When this flow is included, we need to introduce a heat generation term in the energy balance. This has the practical consequence that an actuator disk at the Lanchester-Betz limit transfers 50% more kinetic energy than it extracts. This surplus is dissipated in heat. Using this new argument, together with a classic argument on induction, we see no reason to introduce the concept of edge-forces on the tips of the rotor blades (Van Kuik, 1991). We rather recommend following the ideas of Lanchester (1915) on the edge of the actuator disk and on the wind speed at the disc. We analyse the concept induction, and show that correcting for the aspect ratio, for induced drag and application of Blade Element Momentum Theory all have the same significance for a wind turbine. Such corrections are sometimes made twice (Viterna & Corrigan, 1981). 2. Rotational Effects on Flow Separation In designing wind turbine rotors, one uses the aerodynamic characteristics measured in the wind tunnel on fixed aerodynamic profiles. These characteristics are corrected for the effects of rotation and subsequently used for wind turbine rotors. Such a correction was developed by Snel (1990-1999). This correction is based on boundary layer theory, the validity of which we question in regard to separated flow. We estimated the effects of rotation on flow separation by arguing that the separation layer is thick so the velocity gradients are small and viscosity can be neglected. We add the argument that the chord-wise speed and its derivative normal to the wall is zero at the

  17. Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective

    Directory of Open Access Journals (Sweden)

    Zhongling Guo

    2014-12-01

    Full Text Available Soil degradation is one of the most serious ecological problems in the world. In arid and semi-arid northern China, soil degradation predominantly arises from wind erosion. Trends in soil degradation caused by wind erosion in northern China frequently change with human activities and climatic change. To decrease soil loss by wind erosion and enhance local ecosystems, the Chinese government has been encouraging residents to reduce wind-induced soil degradation through a series of national policies and several ecological projects, such as the Natural Forest Protection Program, the National Action Program to Combat Desertification, the “Three Norths” Shelter Forest System, the Beijing-Tianjin Sand Source Control Engineering Project, and the Grain for Green Project. All these were implemented a number of decades ago, and have thus created many land management practices and control techniques across different landscapes. These measures include conservation tillage, windbreak networks, checkerboard barriers, the Non-Watering and Tube-Protecting Planting Technique, afforestation, grassland enclosures, etc. As a result, the aeolian degradation of land has been controlled in many regions of arid and semiarid northern China. However, the challenge of mitigating and further reversing soil degradation caused by wind erosion still remains.

  18. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Site-specific assessment of wind turbine design requires verification that the individual wind turbine components can survive the site-specific wind climate. The wind turbine design standard, IEC 61400-1 (third edition), describes how this should be done using a simplified, equivalent wind climate...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...

  19. Optimal day-ahead wind-thermal unit commitment considering statistical and predicted features of wind speeds

    International Nuclear Information System (INIS)

    Sun, Yanan; Dong, Jizhe; Ding, Lijuan

    2017-01-01

    Highlights: • A day–ahead wind–thermal unit commitment model is presented. • Wind speed transfer matrix is formed to depict the sequential wind features. • Spinning reserve setting considering wind power accuracy and variation is proposed. • Verified study is performed to check the correctness of the program. - Abstract: The increasing penetration of intermittent wind power affects the secure operation of power systems and leads to a requirement of robust and economic generation scheduling. This paper presents an optimal day–ahead wind–thermal generation scheduling method that considers the statistical and predicted features of wind speeds. In this method, the statistical analysis of historical wind data, which represents the local wind regime, is first implemented. Then, according to the statistical results and the predicted wind power, the spinning reserve requirements for the scheduling period are calculated. Based on the calculated spinning reserve requirements, the wind–thermal generation scheduling is finally conducted. To validate the program, a verified study is performed on a test system. Then, numerical studies to demonstrate the effectiveness of the proposed method are conducted.

  20. Characterization Of Ocean Wind Vector Retrievals Using ERS-2 High-Resolution Long-Term Dataset And Buoy Measurements

    Science.gov (United States)

    Polverari, F.; Talone, M.; Crapolicchio, R. Levy, G.; Marzano, F.

    2013-12-01

    The European Remote-sensing Satellite (ERS)-2 scatterometer provides wind retrievals over Ocean. To satisfy the needs of high quality and homogeneous set of scatterometer measurements, the European Space Agency (ESA) has developed the project Advanced Scatterometer Processing System (ASPS) with which a long-term dataset of new ERS-2 wind products, with an enhanced resolution of 25km square, has been generated by the reprocessing of the entire ERS mission. This paper presents the main results of the validation work of such new dataset using in situ measurements provided by the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). The comparison indicates that, on average, the scatterometer data agree well with buoys measurements, however the scatterometer tends to overestimates lower winds and underestimates higher winds.

  1. PET measurements of cerebral metabolism corrected for CSF contributions

    International Nuclear Information System (INIS)

    Chawluk, J.; Alavi, A.; Dann, R.; Kushner, M.J.; Hurtig, H.; Zimmerman, R.A.; Reivich, M.

    1984-01-01

    Thirty-three subjects have been studied with PET and anatomic imaging (proton-NMR and/or CT) in order to determine the effect of cerebral atrophy on calculations of metabolic rates. Subgroups of neurologic disease investigated include stroke, brain tumor, epilepsy, psychosis, and dementia. Anatomic images were digitized through a Vidicon camera and analyzed volumetrically. Relative areas for ventricles, sulci, and brain tissue were calculated. Preliminary analysis suggests that ventricular volumes as determined by NMR and CT are similar, while sulcal volumes are larger on NMR scans. Metabolic rates (18F-FDG) were calculated before and after correction for CSF spaces, with initial focus upon dementia and normal aging. Correction for atrophy led to a greater increase (%) in global metabolic rates in demented individuals (18.2 +- 5.3) compared to elderly controls (8.3 +- 3.0,p < .05). A trend towards significantly lower glucose metabolism in demented subjects before CSF correction was not seen following correction for atrophy. These data suggest that volumetric analysis of NMR images may more accurately reflect the degree of cerebral atrophy, since NMR does not suffer from beam hardening artifact due to bone-parenchyma juxtapositions. Furthermore, appropriate correction for CSF spaces should be employed if current resolution PET scanners are to accurately measure residual brain tissue metabolism in various pathological states

  2. Wake effects in Alsvik wind park: Comparison between measurements and predictions

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Mikael [Uppsala Univ. (Sweden). Dept. of Meteorology; Rados, K.G.; Pothou, K.P. [National Technical Univ., Athen (Greece). Fluid section

    1996-12-01

    In this paper characteristic parameters in a wind turbine wake are studied. The data used are full-scale measurements from a wind farm in Sweden, Alsvik, and results from a numerical model calculated for the same site. The results are valid for neutral stratification. The model employs a particle-vortex approach at the rotor plane, a Navier-Stokes solver in the near wake and applies self preservation in the far wake. The parameters investigated are the relative velocity deficit at centre line and hub height, and the radial distribution of the turbulent kinetic energy. 6 refs, 9 figs

  3. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    The production of electricity from wind has experienced an enormous growth worldwide in the last 20 years. It is now widely seen as a serious alternative to more conventional energy production methods. Improvements are however still possible to make it more cost-effective. This can be done through a better understanding of the fundamental phenomena involved in the interaction of the wind with the wind turbine rotor. This growth in the production of energy from wind is expected to continue at a similar rate in the years to come, helped by the installation of wind turbines at sea, that is becoming a hot topic in the wind energy field today. The phenomenon of stall delay affecting rotating wind turbine blades is an example of an aerodynamic phenomenon that is not yet fully understood. Several models exist to correct for this effect. Five such models were first tested within a vortex wake simulation code based on the modelling of a prescribed wake behind the rotor of the turbine. Comparison was made with wind tunnel test data acquired in head-on flow on a two-bladed 10.1 diameter wind turbine at the National Renewable Energy Laboratories (NREL) in 2000. It revealed a general overprediction of the stall delay effects, at the same time as great disparity was obtained between the different models. Conclusions from this work served as a starting point for a much more thorough investigation on this subject, where several models were tested in terms of different quantities using the same simulation code, and where the application of some of the models was improved. Overprediction of the loads was once again obtained when comparison was made to the NREL results in head-on flow, and none of the models was found to correctly represent the flow physics involved. The premises on which each of the models relies were discussed as a means of better understanding and modelling this phenomenon. The important issue of tip loss was also covered, and guidelines were suggested to improve

  4. High Resolution Atmospheric Modeling for Wind Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  5. Wind Turbine Test. Wind Matic WM 17S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, structural...

  6. Wind Turbine Test Wind Matic WM 15S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, dynamical...

  7. Computational methods in wind power meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann Joergensen, B.; Ott, S.; Mann, J.; Badger, J.

    2006-06-15

    Subsets of measured wind data from the Hjardemael field experiment are extracted in order to produce test cases representing nearly stationary, neutral conditions with well defined upstream flow. Model solutions of the Reynolds Averaged Navier-Stokes (RANS) equations are obtained by utilizing the numerical flow solver EllipSys3D. When utilizing the well-knowh k - e model as a turbulence closure, the result is a nearly complete agreement between the measurements and the model solution - not only for the forward flow but also for the separating backward flow over the Hjardemael escarpment. Smal1 deviations can be understood from analyzing the conditions of the field experiment. It is of vital importance to understand the conditions under which the flow solver yields accurate solutions, in particular with respect to the grid generation, which was performed with the hyperbolic grid generator HypGrid2D/3D. The grid must allow the model to represent the underlying physics of the flow problem and the grid resolution must be sufficient to produce grid independent solutions. This fields not only the correct mean velocity but also the correct Turbulent Kinetic Energy (TKE). Devitations of the TKE in the zone very close to onset of separation can be understood by addressing the assumptions of a zero horizontal pressure gradient in the momentum balance near the surface. It is argued on basis of the obtained results that the model can be extended to non-neutral conditions and more complex terrain. The difficulties in using existing measurement data from a sparsely instrumented site, Porto, in complex terrain in Portugal for evaluating the model is demonstrated. Suggestions are offered to assist future field work incorporating wind measurements for complex terrain and non-neutral conditions in order to evaluate numerical flow models. (au)

  8. QCD corrections, virtual heavy quark effects and electroweak precision measurements

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kuehn, J.H.; Stuart, R.G.

    1988-01-01

    QCD corrections to virtual heavy quark effects on electroweak parameters are calculated, which may affect planned precision measurements at SLC and LEP. The influence of toponium and T b resonances is incorporated as well as the proper threshold behaviour of the imaginary part of the vacuum polarization function. The shift of the W-boson mass from these corrections and their influence on the polarization asymmetry are calculated and compared to the envisaged experimental precision. (orig.)

  9. Intra-seasonal Oscillations (ISO of zonal-mean meridional winds and temperatures as measured by UARS

    Directory of Open Access Journals (Sweden)

    F. T. Huang

    2005-06-01

    Full Text Available Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI on the UARS spacecraft in the upper mesosphere (95km, persistent and regular intra-seasonal oscillations (ISO with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here on an analysis of concurrent UARS temperature measurements, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55km, their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  10. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    Science.gov (United States)

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  11. Correction of self-reported BMI based on objective measurements: a Belgian experience.

    Science.gov (United States)

    Drieskens, S; Demarest, S; Bel, S; De Ridder, K; Tafforeau, J

    2018-01-01

    Based on successive Health Interview Surveys (HIS), it has been demonstrated that also in Belgium obesity, measured by means of a self-reported body mass index (BMI in kg/m 2 ), is a growing public health problem that needs to be monitored as accurately as possible. Studies have shown that a self-reported BMI can be biased. Consequently, if the aim is to rely on a self-reported BMI, adjustment is recommended. Data on measured and self-reported BMI, derived from the Belgian Food Consumption Survey (FCS) 2014 offers the opportunity to do so. The HIS and FCS are cross-sectional surveys based on representative population samples. This study focused on adults aged 18-64 years (sample HIS = 6545 and FCS = 1213). Measured and self-reported BMI collected in FCS were used to assess possible misreporting. Using FCS data, correction factors (measured BMI/self-reported BMI) were calculated in function of a combination of background variables (region, gender, educational level and age group). Individual self-reported BMI of the HIS 2013 were then multiplied with the corresponding correction factors to produce a corrected BMI-classification. When compared with the measured BMI, the self-reported BMI in the FCS was underestimated (mean 0.97 kg/m 2 ). 28% of the obese people underestimated their BMI. After applying the correction factors, the prevalence of obesity based on HIS data significantly increased (from 13% based on the original HIS data to 17% based on the corrected HIS data) and approximated the measured one derived from the FCS data. Since self-reported calculations of BMI are underestimated, it is recommended to adjust them to obtain accurate estimates which are important for decision making.

  12. Colour quenching corrections on the measurement of 90Sr through Cerenkov counting

    International Nuclear Information System (INIS)

    Mosqueda, F.; Villa, M.; Vaca, F.; Bolivar, J.P.

    2007-01-01

    The determination of 90 Sr through the Cerenkov radiation emitted by its descendant 90 Y is a well-known method and firmly established in literature. Nevertheless, in order to obtain an accurate result based on a Cerenkov measurement, the experimental work must be extremely rigorous because the efficiency of Cerenkov counting is especially sensitive to the presence of colour. Any traces of colour in the sample produce a decrease in the number of photons detected in the photomultipliers and, therefore, this might cause a diminution in Cerenkov counting efficiency. It is essential not only to detect the effect of colour quenching in the sample but also to correct the decrease in counting efficiency. For this reason, colour quenching correction curves versus counting efficiency are usually done when measuring through Cerenkov counting. One of the most widely used techniques to evaluate colour quenching in these measurements is the channel ratio method, which consists of the measurement of the shift of the spectrum measuring the ratio of counts in two different windows. The selection of the windows for the application of the corrections might have an influence on the quality of the fitting parameters of the correction curves efficiency versus colour quenching degree and hence on the final 90 Sr result. This work is focused on the calculation of the counting efficiency decrease using the channel ratio method and on obtaining the best fitting correction curve. For this purpose, empirical curves obtained through artificial quenchers have been studied and the results have been tested in real samples. Additionally, given that the Packard Tri-Carb 3170 TR/SL liquid scintillation counter is a novel detector for use in Cerenkov counting, the previous calibration of the Tri-Carb 3170 TR/SL detector, necessary for the measurement of 90 Sr, is included

  13. Measurements of Thermal and Wind Environment of Vernacular Architecture made of Adobe in Morocco

    OpenAIRE

    Deguchi, Kiyotaka; Sugawara, Keiko

    2010-01-01

    This paper deals with the field measurements on thermal and wind environment of a vernacular architecture made of adobe called “Kasbah” in Morocco.It has a courtyard and watch towers in corners.Investigation was carried out by measuring temperature,humidity,wind velocity,heat transfer,etc. The thermal comfort was evaluated by the index of SET*. The courtyard is evaluated as comfort by SET* at the time of the shadow zone,and the central room at the first floor was almost comfort because of th...

  14. Griffon vulture mortality at wind farms in southern Spain: Distribution of fatalities and active mitigation measures

    OpenAIRE

    Lucas, Manuela de; Ferrer, Miguel; Bechard, Mark J.; Muñoz, Antonio R.

    2012-01-01

    Wind is increasingly being used as a renewable energy source around the world. Avian mortality is one of the negative impacts of wind energy and a new technique that reduces avian collision rates is necessary. Using the most frequently-killed species, the griffon vulture (Gyps fulvus), we studied its mortality at 13 wind farms in Tarifa, Cadiz, Spain, before (2006-2007) and after (2008-2009) when selective turbine stopping programs were implemented as a mitigation measure. Ten wind farms (tot...

  15. The use of ground reflecting boards in measuring wind turbine noise

    International Nuclear Information System (INIS)

    Henderson, A.R.; Mackinnon, A.; Benson, I.M.

    1992-01-01

    This paper gives an account of an experimental programme to assess the ground microphone measurement technique which can potentially increase the accuracy, reliability and confidence in wind turbine noise emission measurements. It shows that a 1 m diameter circular board can achieve acceptable accuracy and, since it is significantly more practical to use, could readily be adopted for international standards. (author)

  16. Measures against the adverse impact of natural wind on air-cooled condensers in power plant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.

  17. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    International Nuclear Information System (INIS)

    Churchfield, M; Wang, Q; Scholbrock, A; Herges, T; Mikkelsen, T; Sjöholm, M

    2016-01-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign. (paper)

  18. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  19. Measurement, analysis and correction of the closed orbit distortion ...

    Indian Academy of Sciences (India)

    2013-02-01

    Feb 1, 2013 ... quency (RF), linear coupling are being carried out. ..... Its guide tool is used to develop GUI for COD correction software. In addition ... rection software also has a feature to save all the parameters such as predicted/measured.

  20. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Gylling Mortensen, N [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U S [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  1. Review of corrective measures to stabilize subsidence in shallow-land burial trenches

    International Nuclear Information System (INIS)

    Roop, R.D.; Staub, W.P.; Hunsaker, D.B. Jr.; Ketelle, R.H.; Lee, D.W.; Pin, F.G.; Witten, A.J.

    1983-05-01

    Shallow-land burial of low-level radioactive wastes is frequently followed by subsidence: the slumping, cave-in, or depression of the trench's surface. This report describes and evaluates the measures proposed for correcting subsidence, including roller compaction, grouting, explosives, surcharging, falling mass, pile driving, in situ incineration, and accelerated decomposition. Subsidence, which has occurred at all the major waste disposal sites, has two major causes: filling of packing voids (spaces between waste containers) and filling of interior voids (spaces within containers). Four additional mechanisms also contribute to subsidence: collapse of trench walls, chemical and biological degradation, soil consolidation, and shrink and swell phenomena. Corrective measures for subsidence are evaluated on three criteria: effectiveness, applicability, and cost. The evaluation indicates that one method, falling mass, is considered to be effective, widely applicable, and relatively low in cost, suggesting that this would be the most generally useful technique and would yield the greatest payoff from further development and field trials. There are many uncertainties associated with the cost and effectiveness of corrective measures which can best be resolved by experimental field demonstrations. Site-specific analyses for each disposal area are recommended, to determine which techniques are appropriate and to evaluate the overall desirability of applying corrective measures

  2. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  3. Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2017-01-01

    Full Text Available The paper reports on hot wire turbulence intensity measurements performed in the entry of a suction-type wind tunnel, used for investigation of flow-induced vibration of airfoils and slender structures. The airfoil is elastically supported with two degrees of freedom (pitch and plunge in the test section of the wind tunnel with lateral optical access for interferometric measurements, and free to oscillate. The turbulence intensity was measured for velocities up to M = 0.3 i with the airfoil blocked, ii with the airfoil self-oscillating. Measurements were performed for a free inlet and further with two different turbulence grids generating increased turbulence intensity levels. For the free inlet and static airfoil, the turbulence intensity lies below 0.4%. The turbulence grids G1 and G2 increase the turbulence level up to 1.8% and 2.6%, respectively. When the airfoil is free to oscillate due to fluid-structure interaction, its motion disturbs the surrounding flow field and increases the measured turbulence intensity levels up to 5%.

  4. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  5. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  6. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    Science.gov (United States)

    Kelley, N. D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  7. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass

    Science.gov (United States)

    John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer

    2012-01-01

    Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10­50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...

  8. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  9. Development of an apparatus to measure thermophysical properties of wind tunnel heat transfer models

    Science.gov (United States)

    Romanowski, R. F.; Steinberg, I. H.

    1974-01-01

    The apparatus and technique for measuring the thermophysical properties of models used with the phase-change paint method for obtaining wind tunnel heat transfer data are described. The method allows rapid measurement of the combined properties in a transient manner similar to an actual wind tunnel test. An effective value of the thermophysical properties can be determined which accounts for changes in thermal properties with temperature or with depth into the model surface. The apparatus was successfully tested at various heating rates between 19,000 and 124,000 watts per square meter.

  10. Use of Active Learning to Design Wind Tunnel Runs for Unsteady Cavity Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Ankur Srivastava

    2014-01-01

    Full Text Available Wind tunnel tests to measure unsteady cavity flow pressure measurements can be expensive, lengthy, and tedious. In this work, the feasibility of an active machine learning technique to design wind tunnel runs using proxy data is tested. The proposed active learning scheme used scattered data approximation in conjunction with uncertainty sampling (US. We applied the proposed intelligent sampling strategy in characterizing cavity flow classes at subsonic and transonic speeds and demonstrated that the scheme has better classification accuracies, using fewer training points, than a passive Latin Hypercube Sampling (LHS strategy.

  11. Wind model for low frequency power fluctuations in offshore wind farms

    DEFF Research Database (Denmark)

    Vigueras-Rodríguez, A.; Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    of hours, taking into account the spectral correlation between different wind turbines. The modelling is supported by measurements from two large wind farms, namely Nysted and Horns Rev. Measurements from individual wind turbines and meteorological masts are used. Finally, the models are integrated......This paper investigates the correlation between the frequency components of the wind speed Power Spectral Density. The results extend an already existing power fluctuation model that can simulate power fluctuations of wind power on areas up to several kilometers and for time scales up to a couple...

  12. WindScanner.eu - a new remote sensing research infrastructure for on- and offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Torben; Knudsen, Soeren; Sjoeholm, M.; Angeloua, N.; Tegtmeier, A. [Technical Univ. og Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)

    2012-07-01

    A new remote sensing based research infrastructure for atmospheric boundary-layer wind and turbulence measurements named WindScanner have during the past three years been in its early phase of development at DTU Wind Energy in Denmark. During the forthcoming three years the technology will be disseminated throughout Europe to pilot European wind energy research centers. The new research infrastructure will become an open source infrastructure that also invites collaboration with wind energy related atmospheric scientists and wind energy industry overseas. Recent achievements with 3D WindScanners and spin-off innovation activity are described. The Danish WindScanner.dk research facility is build from new and fast-scanning remote sensing equipment spurred from achievements within fiber optics and telecommunication technologies. At the same time the wind energy society has demanded excessive 3D wind flow and ever taller wind profile measurements for the wind energy resource assessment studies on- and off shore of the future. Today, hub heights on +5 MW wind turbines exceed the 100 m mark. At the Danish DTU test site Oesterild testing is ongoing with a Siemens turbine with hub height 120 meters and a rotor diameter of 154 meters; hence its blade tips reaches almost 200 meters into the sky. The wind speed profiles over the rotor planes are consequently no longer representatively measured by a single cup anemometer at hub height from a nearby met-mast; power curve assessment as well as turbine control call for multi-height multi point measurement strategies of wind speed and wind shear within the turbines entire rotor plane. The development of our new remote sensing-based WindScanner.dk facility as well as the first measurement results obtained to date are here presented, including a first wind lidar measurement of turbulence in complex terrain within an internal boundary layer developing behind an escarpment. Also measurements of wind speed and direction profiles

  13. Measured effects of wind turbine generation at the Block Island Power Company

    Science.gov (United States)

    Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.

    1984-01-01

    Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.

  14. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    Science.gov (United States)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity

  15. Wind power in the Danish liberalised power market-Policy measures, price impact and investor incentives

    International Nuclear Information System (INIS)

    Munksgaard, Jesper; Morthorst, Poul Erik

    2008-01-01

    Wind power has a strong position at the Danish electricity market, mainly caused by high feed-in tariffs in the 1990s. Investments in new wind-power installations on land, however, have declined dramatically after the Danish electricity market was liberalised in 1999. First, the paper describes how policy measures directed towards wind power have been redesigned to match the liberalised market. Then, we estimate the impact of the redesigned tariffs on the electricity prices. Finally, we assess whether the new tariffs make an incentive to invest in wind power. The paper concludes that the new tariffs not by itself make evidence for the actual Danish recession in new wind-power installations after the electricity reform. The main causes could include a combination of problems in spatial planning, high risk aversion of new wind turbine investors and perhaps more favourable support schemes in other countries

  16. Evolution of wind towards wind turbine

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Remote sensing of the atmospheric variables with the use of LiDAR is a relatively new technology field for wind resource assessment in wind energy. The validation of LiDAR measurements and comparisons is of high importance for further applications of the data.

  17. Scintigraphic measurements of gastric emptying corrected for differences in tissue attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, J.B.; Hoejgaard, L.; Uhrenholdt, A. (Copenhagen Univ. (Denmark). Hvidovre Hospital)

    1983-10-01

    In order to evaluate the importance of variations in tissue attenuation in scintigraphic measurements of gastric emptying, both in vivo and in vitro measurements of count rates from an encapsulated sup(99m)Tc dose were performed in different parts of the stomach. The obtained individual tissue correction factors were applied in the calculation of gastric emptying rates by gamma camera in healthy volunteers. The results showed that the anterior gamma camera scan without correction for differences in tissue attenuation underestimated the gastric emptying rate by 11% if the results were expressed as percentage meal emptied over 60 minutes.

  18. Investigation of the Impact of the Upstream Induction Zone on LIDAR Measurement Accuracy for Wind Turbine Control Applications using Large-Eddy Simulation

    International Nuclear Information System (INIS)

    Simley, Eric; Pao, Lucy Y; Gebraad, Pieter; Churchfield, Matthew

    2014-01-01

    Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone

  19. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  20. Lubricants : the lifeblood of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Y. [Petro-Canada, Calgary, AB (Canada)

    2009-07-01

    With the significant investments in wind turbine equipment, companies need to exercise due diligence when it comes to the types of lubricants and fluids used. Mechanical and equipment issues can often be eliminated with improved maintenance practices and the appropriate selection of lubricants. This presentation discussed lubricants as being the lifeblood of wind turbines. The presentation first provided an overview and discussed wind turbine trends and application trends. The technical aspects of fluid formation were presented. Lubrication maintenance practices and oil monitoring were discussed. Last, key industry tests, and OEM specifications for bearings, gearboxes, and wind turbines were identified. It was concluded that improved maintenance practices in combination with the correct lubricant selection can address several operating problems. figs.

  1. Performance Improvement of Membrane Stress Measurement Equipment through Evaluation of Added Mass of Membrane and Error Correction

    Directory of Open Access Journals (Sweden)

    Sang-Wook Jin

    2017-01-01

    Full Text Available One of the most important issues in keeping membrane structures in stable condition is to maintain the proper stress distribution over the membrane. However, it is difficult to determine the quantitative real stress level in the membrane after the completion of the structure. The stress relaxation phenomenon of the membrane and the fluttering effect due to strong wind or ponding caused by precipitation may cause severe damage to the membrane structure itself. Therefore, it is very important to know the magnitude of the existing stress in membrane structures for their maintenance. The authors have proposed a new method for separately estimating the membrane stress in two different directions using sound waves instead of directly measuring the membrane stress. The new method utilizes the resonance phenomenon of the membrane, which is induced by sound excitations given through an audio speaker. During such experiment, the effect of the surrounding air on the vibrating membrane cannot be overlooked in order to assure high measurement precision. In this paper, an evaluation scheme for the added mass of membrane with the effect of air on the vibrating membrane and the correction of measurement error is discussed. In addition, three types of membrane materials are used in the experiment in order to verify the expandability and accuracy of the membrane measurement equipment.

  2. The influence of turbulence and vertical wind profile in wind turbine power curve

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia, A.; Gomez-Lazaro, E. [Castilla-La Mancha Univ., Albacete (Spain). Renewable Energy Research Inst.; Vigueras-Rodriguez, A. [Albacete Science and Technolgy Park, Albacete (Spain)

    2012-07-01

    To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been performed. Measurements have been developed using a cup anemometer and a LIDAR equipment, specifically a pulsed wave one. The wind profile has been recorded to study the effect of the atmospheric conditions over the energy generated by a wind turbine located close to the LIDAR system. The changes in the power production of the wind turbine are relevant. (orig.)

  3. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  4. Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft

    Science.gov (United States)

    Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.

    2018-04-01

    It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.

  5. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm

    DEFF Research Database (Denmark)

    Gaumond, M.; Réthoré, Pierre-Elouan; Ott, Søren

    2014-01-01

    of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape...... of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power...... production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both...

  6. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    Science.gov (United States)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to

  7. SU-F-T-584: Investigating Correction Methods for Ion Recombination Effects in OCTAVIUS 1000 SRS Measurements

    International Nuclear Information System (INIS)

    Knill, C; Snyder, M; Rakowski, J; J, Burmeister; Zhuang, L; Matuszak, M

    2016-01-01

    Purpose: PTW’s Octavius 1000 SRS array performs IMRT QA measurements with liquid filled ionization chambers (LICs). Collection efficiencies of LICs have been shown to change during IMRT delivery as a function of LINAC pulse frequency and pulse dose, which affects QA results. In this study, two methods were developed to correct changes in collection efficiencies during IMRT QA measurements, and the effects of these corrections on QA pass rates were compared. Methods: For the first correction, Matlab software was developed that calculates pulse frequency and pulse dose for each detector, using measurement and DICOM RT Plan files. Pulse information is converted to collection efficiency and measurements are corrected by multiplying detector dose by ratios of calibration to measured collection efficiencies. For the second correction, MU/min in daily 1000 SRS calibration was chosen to match average MU/min of the VMAT plan. Usefulness of derived corrections were evaluated using 6MV and 10FFF SBRT RapidArc plans delivered to the OCTAVIUS 4D system using a TrueBeam equipped with an HD- MLC. Effects of the two corrections on QA results were examined by performing 3D gamma analysis comparing predicted to measured dose, with and without corrections. Results: After complex Matlab corrections, average 3D gamma pass rates improved by [0.07%,0.40%,1.17%] for 6MV and [0.29%,1.40%,4.57%] for 10FFF using [3%/3mm,2%/2mm,1%/1mm] criteria. Maximum changes in gamma pass rates were [0.43%,1.63%,3.05%] for 6MV and [1.00%,4.80%,11.2%] for 10FFF using [3%/3mm,2%/2mm,1%/1mm] criteria. On average, pass rates of simple daily calibration corrections were within 1% of complex Matlab corrections. Conclusion: Ion recombination effects can potentially be clinically significant for OCTAVIUS 1000 SRS measurements, especially for higher pulse dose unflattened beams when using tighter gamma tolerances. Matching daily 1000 SRS calibration MU/min to average planned MU/min is a simple correction that

  8. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  9. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    to predict the wind loads and the flow patterns around the hip-roof building. .... various wind angle attack on the roof using CFD simulation. .... SIMPLE algorithm substitutes the flux correction equations into the discrete continuity equation to ...

  10. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine...

  11. Wind tunnel measurements of the urban boundary layer development over a historical district in Italy

    NARCIS (Netherlands)

    Ricci, A.; Burlando, M.; Freda, A.; Repetto, M.P.

    2017-01-01

    This paper presents the results of an experimental study aimed at investigating the urban boundary layer in a district of Livorno city, in Tuscany. The wind flow over this area has been measured in the wind tunnel of the University of Genova using a physical model in scale 1:300. Two sets of

  12. Effect of Wind Farm Noise on Local Residents' Decision to Adopt Mitigation Measures.

    Science.gov (United States)

    Botelho, Anabela; Arezes, Pedro; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M Costa

    2017-07-11

    Wind turbines' noise is frequently pointed out as the reason for local communities' objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes' noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people's decision to adopt mitigating measures, independently of the reported annoyance.

  13. Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures

    Science.gov (United States)

    Botelho, Anabela; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M. Costa

    2017-01-01

    Wind turbines’ noise is frequently pointed out as the reason for local communities’ objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes’ noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people’s decision to adopt mitigating measures, independently of the reported annoyance. PMID:28696404

  14. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  15. Bulk sample self-attenuation correction by transmission measurement

    International Nuclear Information System (INIS)

    Parker, J.L.; Reilly, T.D.

    1976-01-01

    Various methods used in either finding or avoiding the attenuation correction in the passive γ-ray assay of bulk samples are reviewed. Detailed consideration is given to the transmission method, which involves experimental determination of the sample linear attenuation coefficient by measuring the transmission through the sample of a beam of gamma rays from an external source. The method was applied to box- and cylindrically-shaped samples

  16. Analysis of Mexico wind tunnel measurements. Final report of IEA Task 29, Mexnext (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G.; Boorsma, K. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Cho, T. [Korea Aerospace Research Institute KARI, Daejeon (Korea, Republic of); Gomez-Iradi, S. [National Renewable Energy Center of Spain CENER, Sarriguren (Spain); Schaffarczyk, P. [A. Jeromin University of Applied Sciences, CEWind EG, Kiel (Germany); Shen, W.Z. [The Technical University of Denmark, Kongens Lyngby (Denmark); Lutz, T. [K. Meister University of Stuttgart, Stuttgart (Germany); Stoevesandt, B. [ForWind, Zentrum fuer Windenergieforschung, Oldenburg (Germany); Schreck, S. [National Renewable Energy Laboratory NREL, Golden, CO (United States); Micallef, D.; Pereira, R.; Sant, T. [Delft University of Technology TUD, Delft (Netherlands); Madsen, H.A.; Soerensen, N. [Risoe-DTU, Roskilde (Denmark)

    2012-02-15

    This report describes the work performed within the first phase of IEA Task 29 Mexnext. In this IEA Task 29 a total of 20 organisations from 11 different countries collaborated in analysing the measurements which have been performed in the EU project 'Mexico'. Within this Mexico project 9 European institutes carried out a wind tunnel experiment in the Large Low Speed Facility (LLF) of the German Dutch Wind Facilities DNW on a rotor with a diameter of 4.5 m. Pressure distributions were measured at five locations along the blade along with detailed flow field measurements around the rotor plane using stereo PIV. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The detailed pressure measurements along the blade in combination with the detailed flow field measurements gave a unique opportunity to better understand the response of a wind turbine to the incoming flow field. Deficiencies in modelling have been established and directions for model improvement can be given.

  17. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  18. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  19. Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements

    Science.gov (United States)

    Ho, Y. K.; Liu, C. H.

    2012-04-01

    Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.

  20. Maximizing the spatial representativeness of NO2 monitoring data using a combination of local wind-based sectoral division and seasonal and diurnal correction factors.

    Science.gov (United States)

    Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian

    2016-10-14

    This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression

  1. Airflow over Barchan dunes: field measurements, mathematical modelling and wind tunnel testing

    OpenAIRE

    Wiggs, G. F. S.

    1992-01-01

    There are few empirical measurements of velocity, shear velocity, sand transport, morphological change on the windward slopes of dunes.This thesis compares field measurements on a barchan dune in Oman with calculations using a mathematical model (FLOWSTAR) and measurements in a wind tunnel. All three techniques demonstrate similar patterns of velocity, confirming the acceleration of flow up the windward slope, deceleration between the crest and brink and significant flow decele...

  2. ESTABLISHING A CONNECTION BETWEEN ACTIVE REGION OUTFLOWS AND THE SOLAR WIND: ABUNDANCE MEASUREMENTS WITH EIS/HINODE

    International Nuclear Information System (INIS)

    Brooks, David H.; Warren, Harry P.

    2011-01-01

    One of the most interesting discoveries from Hinode is the presence of persistent high-temperature high-speed outflows from the edges of active regions (ARs). EUV imaging spectrometer (EIS) measurements indicate that the outflows reach velocities of 50 km s -1 with spectral line asymmetries approaching 200 km s -1 . It has been suggested that these outflows may lie on open field lines that connect to the heliosphere, and that they could potentially be a significant source of the slow speed solar wind. A direct link has been difficult to establish, however. We use EIS measurements of spectral line intensities that are sensitive to changes in the relative abundance of Si and S as a result of the first ionization potential (FIP) effect, to measure the chemical composition in the outflow regions of AR 10978 over a 5 day period in 2007 December. We find that Si is always enhanced over S by a factor of 3-4. This is generally consistent with the enhancement factor of low FIP elements measured in situ in the slow solar wind by non-spectroscopic methods. Plasma with a slow wind-like composition was therefore flowing from the edge of the AR for at least 5 days. Furthermore, on December 10 and 11, when the outflow from the western side was favorably oriented in the Earth direction, the Si/S ratio was found to match the value measured a few days later by the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer. These results provide strong observational evidence for a direct connection between the solar wind, and the coronal plasma in the outflow regions.

  3. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  4. Correction of radiographic measurements of acetabular cup wear for variations in pelvis orientation.

    Science.gov (United States)

    Derbyshire, Brian

    2018-03-01

    Radiographic measurement of two-dimensional acetabular cup wear is usually carried out on a series of follow-up radiographs of the patient's pelvis. Since the orientation of the pelvis might not be consistent at every X-ray examination, the resulting change in view of the wear plane introduces error into the linear wear measurement. This effect is amplified on some designs of cup in which the centre of the socket is several millimetres below the centre of the cup or circular wire marker. This study describes the formulation of a mathematical method to correct radiographic wear measurements for changes in pelvis orientation. A mathematical simulation of changes in cup orientation and wear vectors caused by pelvic tilt was used to confirm that the formulae corrected the wear exactly if the radiographic plane of the reference radiograph was parallel to the true plane of wear. An error analysis showed that even when the true wear plane was not parallel to the reference radiographic plane, the formulae could still provide a useful correction. A published correction formula was found to be ineffective.

  5. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  6. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    Science.gov (United States)

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  7. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  8. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.; Friis Pedersen, T.; Dunbabin, P.; Antoniou, I.; Frandsen, S.; Klug, H.; Albers, A.; Lee, W.K.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard for wind turbine power performance testing. The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project it describes, has been designed to help provide a solid technical foundation for this revised standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support of fundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle anemometry, multi-variate regression analysis and density normalisation. (au)

  9. Wind energy analysis system

    OpenAIRE

    2014-01-01

    M.Ing. (Electrical & Electronic Engineering) One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis of the energy within the wind on that particular site. No wind energy analysis system exists for the measurement and analysis of wind power. This dissertation documents the design and development of a Wind Energy Analysis System (WEAS). Using a micro-controller based design in conjunction with sensors, WEAS measure, calcu...

  10. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  11. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  12. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  13. A simple method to downscale daily wind statistics to hourly wind data

    OpenAIRE

    Guo, Zhongling

    2013-01-01

    Wind is the principal driver in the wind erosion models. The hourly wind speed data were generally required for precisely wind erosion modeling. In this study, a simple method to generate hourly wind speed data from daily wind statistics (daily average and maximum wind speeds together or daily average wind speed only) was established. A typical windy location with 3285 days (9 years) measured hourly wind speed data were used to validate the downscaling method. The results showed that the over...

  14. Wind Turbine Rotor Simulation via CFD Based Actuator Disc Technique Compared to Detailed Measurement

    Directory of Open Access Journals (Sweden)

    Esmail Mahmoodi

    2015-10-01

    Full Text Available In this paper, a generalized Actuator Disc (AD is used to model the wind turbine rotor of the MEXICO experiment, a collaborative European wind turbine project. The AD model as a combination of CFD technique and User Defined Functions codes (UDF, so-called UDF/AD model is used to simulate loads and performance of the rotor in three different wind speed tests. Distributed force on the blade, thrust and power production of the rotor as important designing parameters of wind turbine rotors are focused to model. A developed Blade Element Momentum (BEM theory as a code based numerical technique as well as a full rotor simulation both from the literature are included into the results to compare and discuss. The output of all techniques is compared to detailed measurements for validation, which led us to final conclusions.

  15. Design and performance simulation of 532 nm Rayleigh-Mie Doppler lidar system for 5-50 km wind measurement

    Science.gov (United States)

    Shen, Fahua; Wang, Bangxin; Shi, Wenjuan; Zhuang, Peng; Zhu, Chengyun; Xie, Chenbo

    2018-04-01

    A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5 ∼20 km, 0.5 km@20 ∼40 km, 1 km@40 ∼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210 ∼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.

  16. Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control

    Directory of Open Access Journals (Sweden)

    David Schlipf

    2015-11-01

    Full Text Available Recent developments in remote sensing are offering a promising opportunity to rethink conventional control strategies of wind turbines. With technologies such as lidar, the information about the incoming wind field - the main disturbance to the system - can be made available ahead of time. Initial field testing of collective pitch feedforward control shows, that lidar measurements are only beneficial if they are filtered properly to avoid harmful control action. However, commercial lidar systems developed for site assessment are usually unable to provide a usable signal for real time control. Recent research shows, that the correlation between the measurement of rotor effective wind speed and the turbine reaction can be modeled and that the model can be used to optimize a scan pattern. This correlation depends on several criteria such as turbine size, position of the measurements, measurement volume, and how the wind evolves on its way towards the rotor. In this work the longitudinal wind evolution is identified with the line-of-sight measurements of a pulsed lidar system installed on a large commercial wind turbine. This is done by staring directly into the inflowing wind during operation of the turbine and fitting the coherence between the wind at different measurement distances to an exponential model taking into account the yaw misalignment, limitation to line-of-sight measurements and the pulse volume. The identified wind evolution is then used to optimize the scan trajectory of a scanning lidar for lidar-assisted feedforward control in order to get the best correlation possible within the constraints of the system. Further, an adaptive filer is fitted to the modeled correlation to avoid negative impact of feedforward control because of uncorrelated frequencies of the wind measurement. The main results of the presented work are a first estimate of the wind evolution in front of operating wind turbines and an approach which manufacturers of

  17. A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm

    International Nuclear Information System (INIS)

    Guo, Zhenhai; Chi, Dezhong; Wu, Jie; Zhang, Wenyu

    2014-01-01

    Highlights: • Impact of meteorological factors on wind speed forecasting is taken into account. • Forecasted wind speed results are corrected by the associated rules. • Forecasting accuracy is improved by the new wind speed forecasting strategy. • Robust of the proposed model is validated by data sampled from different sites. - Abstract: Wind energy has been the fastest growing renewable energy resource in recent years. Because of the intermittent nature of wind, wind power is a fluctuating source of electrical energy. Therefore, to minimize the impact of wind power on the electrical grid, accurate and reliable wind power forecasting is mandatory. In this paper, a new wind speed forecasting approach based on based on the chaotic time series modelling technique and the Apriori algorithm has been developed. The new approach consists of four procedures: (I) Clustering by using the k-means clustering approach; (II) Employing the Apriori algorithm to discover the association rules; (III) Forecasting the wind speed according to the chaotic time series forecasting model; and (IV) Correcting the forecasted wind speed data using the associated rules discovered previously. This procedure has been verified by 31-day-ahead daily average wind speed forecasting case studies, which employed the wind speed and other meteorological data collected from four meteorological stations located in the Hexi Corridor area of China. The results of these case studies reveal that the chaotic forecasting model can efficiently improve the accuracy of the wind speed forecasting, and the Apriori algorithm can effectively discover the association rules between the wind speed and other meteorological factors. In addition, the correction results demonstrate that the association rules discovered by the Apriori algorithm have powerful capacities in handling the forecasted wind speed values correction when the forecasted values do not match the classification discovered by the association rules

  18. Colour quenching corrections on the measurement of {sup 90}Sr through Cerenkov counting

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueda, F. [Dpto. de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain)], E-mail: fernando.mosqueda@dfa.uhu.es; Villa, M. [Centro de Investigacion, Tecnologia e Innovacion, Universidad de Sevilla, Av. Reina Mercedes 4B, E41012 Sevilla (Spain); Vaca, F.; Bolivar, J.P. [Dpto. de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain)

    2007-12-05

    The determination of {sup 90}Sr through the Cerenkov radiation emitted by its descendant {sup 90}Y is a well-known method and firmly established in literature. Nevertheless, in order to obtain an accurate result based on a Cerenkov measurement, the experimental work must be extremely rigorous because the efficiency of Cerenkov counting is especially sensitive to the presence of colour. Any traces of colour in the sample produce a decrease in the number of photons detected in the photomultipliers and, therefore, this might cause a diminution in Cerenkov counting efficiency. It is essential not only to detect the effect of colour quenching in the sample but also to correct the decrease in counting efficiency. For this reason, colour quenching correction curves versus counting efficiency are usually done when measuring through Cerenkov counting. One of the most widely used techniques to evaluate colour quenching in these measurements is the channel ratio method, which consists of the measurement of the shift of the spectrum measuring the ratio of counts in two different windows. The selection of the windows for the application of the corrections might have an influence on the quality of the fitting parameters of the correction curves efficiency versus colour quenching degree and hence on the final {sup 90}Sr result. This work is focused on the calculation of the counting efficiency decrease using the channel ratio method and on obtaining the best fitting correction curve. For this purpose, empirical curves obtained through artificial quenchers have been studied and the results have been tested in real samples. Additionally, given that the Packard Tri-Carb 3170 TR/SL liquid scintillation counter is a novel detector for use in Cerenkov counting, the previous calibration of the Tri-Carb 3170 TR/SL detector, necessary for the measurement of {sup 90}Sr, is included.

  19. Airborne direct-detection and coherent wind lidar measurements over the North Atlantic in 2015 supporting ESA's aeolus mission

    Science.gov (United States)

    Marksteiner, Uwe; Reitebuch, Oliver; Lemmerz, Christian; Lux, Oliver; Rahm, Stephan; Witschas, Benjamin; Schäfler, Andreas; Emmitt, Dave; Greco, Steve; Kavaya, Michael J.; Gentry, Bruce; Neely, Ryan R.; Kendall, Emma; Schüttemeyer, Dirk

    2018-04-01

    The launch of the Aeolus mission by the European Space Agency (ESA) is planned for 2018. The satellite will carry the first wind lidar in space, ALADIN (Atmospheric Laser Doppler INstrument). Its prototype instrument, the ALADIN Airborne Demonstrator (A2D), was deployed during several airborne campaigns aiming at the validation of the measurement principle and optimization of algorithms. In 2015, flights of two aircraft from DLR & NASA provided the chance to compare parallel wind measurements from four airborne wind lidars for the first time.

  20. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  1. Wind tunnel investigation of an STOL aircraft model. STOL zenki mokei-fudo shiken. ; Engine nacelle keijo koka

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The nacelle shape of a mimic engine mounted on the wind tunnel test model for an STOL aircraft developed by the National Aerospace Laboratory has much larger length than in the nacelle of a scale reduced to 8% of an actual engine, and the shape below the nacelle is different. Therefore, in order to estimate the air force in the actual aircraft from the aerodynamic data obtained in a wind tunnel test, the data are corrected by using differences in aerodynamic loads (estimated values) applied on the mimic engine and the actual engine. For the purpose of discussing the reasonability of this correction, an 8%-scale flow through nacelle with the same shape as in the actual aircraft (the actual aircraft type) and a flow through nacelle for a wind tunnel testing model of the experimental STOL aircraft were fabricated and wind tunnel tests were performed. These results were compared with the corrected results of the mimic engine wind tunnel test. As a result, it was made clear that the force data have been corrected excessively, and the moments have been corrected considerably well. 7 refs., 32 figs., 7 tabs.

  2. Wind uplift of radioactive dust from the ground

    International Nuclear Information System (INIS)

    Makhon'ko, K.P.

    1992-01-01

    Near nuclear power plants the recontamination of the atmosphere near the ground becomes dangerous, if a radioactive zone has formed at the site. Wind can easily carry toxic dust from the polluted territory of neighboring industrial enterprises. Moreover, wind erosion of the soil during the summer or transport of radioactive snow by a snowstorm during the winter can displace the boundaries of the contaminated radioactive zone. In Russia the investigation of wind pickup of radioactive dust from the ground began after a radiation accident occurred at a storage facility in the Southern Urals in 1957, as a result of which a contaminated zone formed in the area. Since the direct mechanism of detachment of dust particles from the ground is not important in studying the results of the raising of radioactive dust into the atmosphere by wind, the authors do not distinguish between wind pickup and wind erosion, and the entire process wind pickup of radioactivity from the ground. After the radiation accident at the Chernobyl nuclear power plant a new generation of investigators began to study wind pickup of radioactive dust from the ground, and the process under consideration was sometimes referred to as wind uplift. The intensity of the process of wind pickup of radioactive dust from the ground is characterized by the wind pickup coefficient α, which is the coefficient of proportionality between the upward flux Q of radioactivity from the ground and the density A of radioactive contamination of the ground: α = Q/A. Physically, the coefficient α is the upward flux of the impurity from the ground with unit contamination density, i.e., the intensity of dust contamination or the fraction of radioactivity picked up by the wind from the ground per unit time. The greatest difficulty in determining α experimentally under dusty conditions is measuring correctly the upward radioactivity flux Q. The author discusses three methods for determining this quantity

  3. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  4. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    Science.gov (United States)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  5. Disk-Wind Connection During the Heartbeats of GRS 1915+105

    DEFF Research Database (Denmark)

    Zoghbi, Abderahmen; Miller, M. C.; King, A. L.

    2016-01-01

    . By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii...... are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ~10°. The simultaneous Chandra data show....... The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290–1300 r g from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk...

  6. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.

  7. Monthly Wind Characteristics and Wind Energy in Rwanda | Sarari ...

    African Journals Online (AJOL)

    Evaluating wind power potential for a site is indispensable before making any ... objective was to investigate the potential of wind energy resource in Rwanda. ... fit to the distribution of the measured wind data varies from a location to another. ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  8. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  9. Higher magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Green, M.A.

    1990-01-01

    Correction elements in colliding beam accelerators such as the Superconducting Super Collider (SSC) can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. Multipole magnetization field components have been measured within the HERA storage ring dipole magnets. Calculations of these components using the SCMAG04 code, which agree substantially with the measured multipoles, are presented in the report. As a result, in the proposed continuous correction winding for the SSC, dipoles have been replaced with lumped correction elements every six dipole magnets (about 120 meters apart). Nested lumped correction elements will also produce undesirable higher magnetization multipoles. This report shows a method by which the higher multipole generated by nested correction elements can be identified. (author)

  10. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

    DEFF Research Database (Denmark)

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar

    2014-01-01

    -doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm3 to 0.3 cm3). All detector measurements were corrected for volume averaging effect and compared with dose ratios...... measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators....

  11. Comparison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer

    DEFF Research Database (Denmark)

    Mann, Jakob; Cariou, J.-P.; Courtney, Michael

    2008-01-01

    Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence mea...... measurements with lidars. The results show a very good correlation between the lidar and the sonic times series. The variance of the velocity measured by the Mar is attenuated due to spatial filtering, and the amount of attenuation can be predicted theoretically.......Three pulsed lidars were used in staring, non-scanning mode, placed so that their beams crossed close to a 3D sonic anemometer. The goal is to compare lidar volume averaged wind measurement with point measurement reference sensors and to demonstrate the feasibility of performing 3D turbulence...

  12. Wind reconstruction algorithm for Viking Lander 1

    Science.gov (United States)

    Kynkäänniemi, Tuomas; Kemppinen, Osku; Harri, Ari-Matti; Schmidt, Walter

    2017-06-01

    The wind measurement sensors of Viking Lander 1 (VL1) were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  13. Wind reconstruction algorithm for Viking Lander 1

    Directory of Open Access Journals (Sweden)

    T. Kynkäänniemi

    2017-06-01

    Full Text Available The wind measurement sensors of Viking Lander 1 (VL1 were only fully operational for the first 45 sols of the mission. We have developed an algorithm for reconstructing the wind measurement data after the wind measurement sensor failures. The algorithm for wind reconstruction enables the processing of wind data during the complete VL1 mission. The heater element of the quadrant sensor, which provided auxiliary measurement for wind direction, failed during the 45th sol of the VL1 mission. Additionally, one of the wind sensors of VL1 broke down during sol 378. Regardless of the failures, it was still possible to reconstruct the wind measurement data, because the failed components of the sensors did not prevent the determination of the wind direction and speed, as some of the components of the wind measurement setup remained intact for the complete mission. This article concentrates on presenting the wind reconstruction algorithm and methods for validating the operation of the algorithm. The algorithm enables the reconstruction of wind measurements for the complete VL1 mission. The amount of available sols is extended from 350 to 2245 sols.

  14. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    Science.gov (United States)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  15. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing....... The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project itdescribes, has been designed to help provide a solid technical foundation for this revised...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  16. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  17. DISK–WIND CONNECTION DURING THE HEARTBEATS OF GRS 1915+105

    Energy Technology Data Exchange (ETDEWEB)

    Zoghbi, Abderahmen; Miller, J. M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); King, A. L. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Miller, M. C.; Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Proga, D. [Department of Physics, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States); Kallman, T.; Zhang, W. W. [NASA Goddard Space Flight Center, Code 662, Greedbelt, MD 20771 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Harrison, F. A. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kaastra, J. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Raymond, J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Boggs, S. E.; Craig, W. [Space Science Laboratory, University of California, Berkeley, California 94720 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027 (United States); Stern, D., E-mail: abzoghbi@umich.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-12-20

    Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk–wind connection in the ρ class of variability in GRS 1915+105 using a joint NuSTAR – Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ∼10°. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s{sup −1}, and possibly two more with velocities reaching 20,000 km s{sup −1} (∼0.06 c ). The column densities are ∼5 × 10{sup 22} cm{sup −2}. An upper limit to the wind response time of 2 s is measured, implying a launch radius of <6 × 10{sup 10} cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290–1300 r{sub g} from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.

  18. Disk-Wind Connection During the Heartbeats of GRS 1915+105

    Science.gov (United States)

    Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.; hide

    2016-01-01

    Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the Rho class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by approx.10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s(exp. -1), and possibly two more with velocities reaching 20,000 km s(exp. -1) (approx. 0.06 c). The column densities are approx. 5 × 10(exp. 22) cm(exp. -2). An upper limit to the wind response time of 2 s is measured, implying a launch radius of less than 6 × 10(exp. 10) cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290-1300 r (sub g) from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.

  19. Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe

    International Nuclear Information System (INIS)

    Gao, Xiang; Yuan, You-Jin; Yang, Jian-cheng; Litvinov, S.; Wang, Meng; Litvinov, Y.; Zhang, Wei; Yin, Da-Yu; Shen, Guo-Dong; Chai, Wei-ping; Shi, Jian; Shang, Peng

    2014-01-01

    Isochronous Mass Spectrometry (IMS) is a unique experimental method for mass measurement experiments on short-lived nuclei. Mass measurements of 78 Kr projectile fragments were performed in HIRFL-CSRe at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. The short-lived secondary beams were produced by bombarding a 15 mm thick beryllium-target in the Radioactive Ion Beam Line (RIBLL2) and were then injected into the CSRe storage ring. The masses of stored ions were measured by employing the IMS technique, which is based on the determination of the ion revolution times. A dedicated time-of-flight (TOF) detector is used for the latter purpose. However, the isochronicity, and thus the mass resolving power, depends on the momentum spread and the transverse emittance of the injected beams, Here, we present the first-order isochronicity optimization, the chromaticity and second-order isochronicity corrections through the modification of the quadrupole and sextupole field strengths. With the help of these corrections, the mass resolution of Δm/m=10 −6 can be achieved

  20. Isochronicity corrections for isochronous mass measurements at the HIRFL-CSRe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yuan, You-Jin; Yang, Jian-cheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Litvinov, S. [GSI, Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Wang, Meng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Litvinov, Y. [GSI, Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Zhang, Wei; Yin, Da-Yu [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shen, Guo-Dong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Chai, Wei-ping; Shi, Jian [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shang, Peng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-11-01

    Isochronous Mass Spectrometry (IMS) is a unique experimental method for mass measurement experiments on short-lived nuclei. Mass measurements of {sup 78}Kr projectile fragments were performed in HIRFL-CSRe at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. The short-lived secondary beams were produced by bombarding a 15 mm thick beryllium-target in the Radioactive Ion Beam Line (RIBLL2) and were then injected into the CSRe storage ring. The masses of stored ions were measured by employing the IMS technique, which is based on the determination of the ion revolution times. A dedicated time-of-flight (TOF) detector is used for the latter purpose. However, the isochronicity, and thus the mass resolving power, depends on the momentum spread and the transverse emittance of the injected beams, Here, we present the first-order isochronicity optimization, the chromaticity and second-order isochronicity corrections through the modification of the quadrupole and sextupole field strengths. With the help of these corrections, the mass resolution of Δm/m=10{sup −6} can be achieved.

  1. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  2. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  3. Wind potential data analysis based on on-site measurements with tall meteorological masts installed in northern Bulgaria

    International Nuclear Information System (INIS)

    Terziev, A.; Genovski, I.; Petrov, P.; Valchev, V.

    2010-01-01

    The current work has studied the possibility of correlation between wind data collected with tall meteorological masts in Northern Bulgaria. The processed data were collected for the same time period. The analysis is based on daily wind data. The correlation was made taking into consideration the following factors: the height of carried wind measurements, the prevailing wind direction, and the surface roughness of the relief. The analysis of the distance effect between meteorological masts is also considered. The possibility of modeling the wind velocity field for the area limited by the meteorological mast locations is examined. For this purpose for wind speed velocity field description is used triangulation with linear interpolation between the data. Data interpolation was made based on compulsory condition for relative flatness of the terrain. (authors)

  4. Estimation of effective wind speed

    Science.gov (United States)

    Østergaard, K. Z.; Brath, P.; Stoustrup, J.

    2007-07-01

    The wind speed has a huge impact on the dynamic response of wind turbine. Because of this, many control algorithms use a measure of the wind speed to increase performance, e.g. by gain scheduling and feed forward. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper a new method is presented for the estimation of the effective wind speed. First, the rotor speed and aerodynamic torque are estimated by a combined state and input observer. These two variables combined with the measured pitch angle is then used to calculate the effective wind speed by an inversion of a static aerodynamic model.

  5. The position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging

    International Nuclear Information System (INIS)

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision. (author)

  6. Collision risk of birds with modern large wind turbines

    NARCIS (Netherlands)

    Krijgsveld, K.L.; Akershoek, K.; Schenk, F.; Dijk, van F.; Dirksen, J.

    2009-01-01

    We studied collision rate of birds with modern, large 1.65 MW wind turbines in three wind farms in The Netherlands during three months in autumn and winter. Collision rate, after correction for retrieval and disappearance rate, was 0.08 birds per turbine per day on average (range 0.05-0.19).

  7. Model-based bootstrapping when correcting for measurement error with application to logistic regression.

    Science.gov (United States)

    Buonaccorsi, John P; Romeo, Giovanni; Thoresen, Magne

    2018-03-01

    When fitting regression models, measurement error in any of the predictors typically leads to biased coefficients and incorrect inferences. A plethora of methods have been proposed to correct for this. Obtaining standard errors and confidence intervals using the corrected estimators can be challenging and, in addition, there is concern about remaining bias in the corrected estimators. The bootstrap, which is one option to address these problems, has received limited attention in this context. It has usually been employed by simply resampling observations, which, while suitable in some situations, is not always formally justified. In addition, the simple bootstrap does not allow for estimating bias in non-linear models, including logistic regression. Model-based bootstrapping, which can potentially estimate bias in addition to being robust to the original sampling or whether the measurement error variance is constant or not, has received limited attention. However, it faces challenges that are not present in handling regression models with no measurement error. This article develops new methods for model-based bootstrapping when correcting for measurement error in logistic regression with replicate measures. The methodology is illustrated using two examples, and a series of simulations are carried out to assess and compare the simple and model-based bootstrap methods, as well as other standard methods. While not always perfect, the model-based approaches offer some distinct improvements over the other methods. © 2017, The International Biometric Society.

  8. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  9. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results ar...

  10. Contractors Road Heavy Equipment Area SWMU 055 Corrective Measures Implementation Progress Report

    Science.gov (United States)

    Dorman, Lane

    2015-01-01

    This Corrective Measures Implementation (CMI) Progress Report, Revision 1, for Contractor's Road Heavy Equipment (CRHE) Area Solid Waste Management Unit (SWMU) Number 055 was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B, Delivery Order NNK09CA62D and Project Number PCN ENV-2324. This CMI Progress Report documents: (i) activities conducted as part of supplemental assessment activities completed from June 2009 through November 2014; (ii) Engineering Evaluation (EE) Advanced Data Packages (ADPs); and (iii) recommendations for future activities related to corrective measures at the Site.

  11. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  12. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  13. Numerical simulation of a mistral wind event occuring

    Science.gov (United States)

    Guenard, V.; Caccia, J. L.; Tedeschi, G.

    2003-04-01

    The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.

  14. Proactive monitoring of a wind turbine array with lidar measurements, SCADA data and a data-driven RANS solver

    Science.gov (United States)

    Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.

    2016-12-01

    Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction

  15. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  16. Integral image rendering procedure for aberration correction and size measurement.

    Science.gov (United States)

    Sommer, Holger; Ihrig, Andreas; Ebenau, Melanie; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2014-05-20

    The challenge in rendering integral images is to use as much information preserved by the light field as possible to reconstruct a captured scene in a three-dimensional way. We propose a rendering algorithm based on the projection of rays through a detailed simulation of the optical path, considering all the physical properties and locations of the optical elements. The rendered images contain information about the correct size of imaged objects without the need to calibrate the imaging device. Additionally, aberrations of the optical system may be corrected, depending on the setup of the integral imaging device. We show simulation data that illustrates the aberration correction ability and experimental data from our plenoptic camera, which illustrates the capability of our proposed algorithm to measure size and distance. We believe this rendering procedure will be useful in the future for three-dimensional ophthalmic imaging of the human retina.

  17. Wind power statistics and an evaluation of wind energy density

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, M.; Parsa, S.; Majidi, M. [Materials and Energy Research Centre, Tehran (Iran, Islamic Republic of)

    1995-11-01

    In this paper the statistical data of fifty days` wind speed measurements at the MERC- solar site are used to find out the wind energy density and other wind characteristics with the help of the Weibull probability distribution function. It is emphasized that the Weibull and Rayleigh probability functions are useful tools for wind energy density estimation but are not quite appropriate for properly fitting the actual wind data of low mean speed, short-time records. One has to use either the actual wind data (histogram) or look for a better fit by other models of the probability function. (Author)

  18. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  19. In-situ measurements of a highly fragmented comet: WIND STICS Measurements

    Science.gov (United States)

    Lepri, S. T.; Gilbert, J. A.; Gruesbeck, J. R.; Rubin, M.; Gershman, D. J.; Zurbuchen, T.

    2013-12-01

    In this paper, we present in-situ observations of cometary fragments associated with Comet 73P/Schwassmann-Wachmann as it passed very close to the Earth (<0.07AU) in 2006. We examine the spatial distribution of the fragments and the characteristics of the picked up ion velocity distributions. Comet 73P started to disintegrate in 1995, two major components B and C were recovered in 2001, and it burst into more than 36 pieces during its passage near the Earth in 2006. Distant fragmentation members, well-separated from the major identified fragments, passed between the Earth and Sun so that cometary pickup ions and possibly recombined solar wind minor ions convected past the WIND spacecraft in late May 2006. The Suprathermal Ion Composition Spectrometer on WIND provides a rare and detailed 3D glimpse of the newly picked up ion properties.

  20. Wind Resource Estimation using QuikSCAT Ocean Surface Winds

    DEFF Research Database (Denmark)

    Xu, Qing; Zhang, Guosheng; Cheng, Yongcun

    2011-01-01

    In this study, the offshore wind resources in the East China Sea and South China Sea were estimated from over ten years of QuikSCAT scatterometer wind products. Since the errors of these products are larger close to the coast due to the land contamination of radar backscatter signal...... and the complexity of air-sea interaction processes, an empirical relationship that adjusts QuikSCAT winds in coastal waters was first proposed based on vessel measurements. Then the shape and scale parameters of Weibull function are determined for wind resource estimation. The wind roses are also plotted. Results...

  1. Considerations and Optimization of Time-Resolved PIV Measurements near Complex Wind-Generated Air-Water Wave Interface

    Science.gov (United States)

    Stegmeir, Matthew; Markfort, Corey

    2017-11-01

    Time Resolved PIV measurements are applied on both sides of air-water interface in order to study the coupling between air and fluid motion. The multi-scale and 3-dimensional nature of the wave structure poses several unique considerations to generate optimal-quality data very near the fluid interface. High resolution and dynamic range in space and time are required to resolve relevant flow scales along a complex and ever-changing interface. Characterizing the two-way coupling across the air-water interface provide unique challenges for optical measurement techniques. Approaches to obtain near-boundary measurement on both sides of interface are discussed, including optimal flow seeding procedures, illumination, data analysis, and interface tracking. Techniques are applied to the IIHR Boundary-Layer Wind-Wave Tunnel and example results presented for both sides of the interface. The facility combines a 30m long recirculating water channel with an open-return boundary layer wind tunnel, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  2. Tjæreborg Wind Turbine

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s.......This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s....

  3. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  4. Isolated systems with wind power. Results of measurements in Egypt

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Saleh, L.; Hafiez, S.A.

    2001-01-01

    different sites. Three of the sites were in Hurghada, where the power system is rather large. The last two measurement sites were at village systems: one large system and one with only power ca. five hours perday. The measured load profiles were quite different at the different sites. The power quality...... at the different sites was adequate even at the small village sites where the load is almost constant. The impact of different load profiles on the technicaland economic performance of a wind diesel system in the feasibility phase was investigated. The results indicate that when the profile has low values...

  5. Wind turbine transformer admittance characterization based on online time-domain measurements and preliminary results from measurements done in two transformers using a SFRA

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holbøll, Joachim; Nielsen, Arne Hejde

    2009-01-01

    This paper presents the analysis of online time-domain measurements on the primary and secondary side of a wind turbine transformer in an Offshore Wind Farm (OWF), during one switching operation realized in the collection grid. The frequency characteristics up to 10 kHz of the current and voltage...... signals of each phase were compared and the transformers admittance characteristic was estimated based on these measurements. Based on the results from the previous analysis, it was decided to acquire a Sweep Frequency Response Analyzer (SFRA) to realize detailed transformer measurements. First...... the results from the measurements in a small dry-type transformer under laboratory conditions are presented, and finally the results from a large transformer measured in a in an industrial setting are shown....

  6. Evaluation model of wind energy resources and utilization efficiency of wind farm

    Science.gov (United States)

    Ma, Jie

    2018-04-01

    Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.

  7. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now...... by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM....... In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd....

  8. Danish wind power export and cost

    Energy Technology Data Exchange (ETDEWEB)

    Lund, H.; Hvelplund, F.; Alberg OEstergaard, P. (and others)

    2010-02-15

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both local resources and international market mechanisms. This is done in a way which makes it possible for our neighbouring countries to follow a similar path. Moreover, Denmark has a strategy to raise this share to 50 percent and the necessary measures are in the process of being implemented. Recently, a study made by the Danish think tank CEPOS claimed the opposite, i.e. that most of the Danish wind power has been exported in recent years. However, this claim is based on an incorrect interpretation of statistics and a lack of understanding of how the international electricity markets operate. Consequently, the results of the CEPOS study are in general not correct. Moreover, the CEPOS study claims that using wind turbines in Denmark is a very expensive way of reducing CO{sub 2} emissions and that this is the reason for the high energy taxes for private consumers in Denmark. These claims are also misleading. The cost of CO{sub 2} reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years of 2004-2008, such subsidy has increased consumer prices by 0.54 EURO/kWh on average. On the other hand, however, the same electricity consumers also benefitted from the wind

  9. Model Deformation and Optical Angle of Attack Measurement System in the NASA Ames Unitary Plan Wind Tunnel

    Science.gov (United States)

    Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.

    2017-01-01

    Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.

  10. An application of ensemble/multi model approach for wind power production forecast.

    Science.gov (United States)

    Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.

    2010-09-01

    The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic

  11. Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.

    2012-12-01

    Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings

  12. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  13. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  14. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  15. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    Science.gov (United States)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  16. Development and Design of a Flexible Measurement System for Offshore Wind Farm

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Arana Aristi, Iván; Hjerrild, Jesper

    The development process of a flexible measurement system for multi-point, high-speed and long-term offshore data logging is described in this paper. This covers the complete design taking into account precise synchronisation, electromagnetic compatibility, software development and sensor...... calibration. The presented measurement set-up was tested in a rough offshore environment. Results from measurement campaigns at Avedøre and Gunfleet Sands offshore wind farms including synchronisation precision and accuracy, electromagnetic interference of power electronic devices are briefly presented....

  17. Development and Design of a Flexible Measurement System for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Arana Aristi, Ivan; Hjerrild, Jesper

    2011-01-01

    The development process of a flexible measurement system for multi-point, high-speed and long-term offshore data logging is described in this paper. This covers the complete design taking into account precise synchronisation, electromagnetic compatibility, software development and sensor...... calibration. The presented measurement set-up was tested in a rough offshore environment. Results from measurement campaigns at Avedøre and Gunfleet Sands offshore wind farms including synchronisation precision and accuracy, electromagnetic interference of power electronic devices are briefly presented....

  18. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  19. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  20. Diagnostics of the Solar Wind and Global Heliosphere with Lyman-α Emission Measurements

    Science.gov (United States)

    Provornikova, E. P.; Izmodenov, V. V.; Laming, J. M.; Strachan, L.; Wood, B. E.; Katushkina, O. A.; Ko, Y.-K.; Tun Beltran, S.; Chakrabarti, S.

    2018-02-01

    We propose to develop an instrument measuring full sky intensity maps and spectra of interplanetary Lyman-α emission to reveal the global solar wind variability and the nature of the heliosphere and the local interstellar medium.