WorldWideScience

Sample records for coronary injury model

  1. Exertion and acute coronary artery injury.

    Science.gov (United States)

    Black, A; Black, M M; Gensini, G

    1975-12-01

    Twelve cases of myocardial infarction as related to strenuous exertion are presented with the pathological findings in several of these cases. Three cases with coronary arteriography are also presented. The pathology of coronary arteriosclerotic plaques and the vulnerability to acute injury is reviewed and discussed. It is concluded that strenuous exertion can cause acute injury to coronary artery plaques due to the unusual stressful whip-like action to which coronary arteries are subject. These injuries may initiate as cracks in the plaques or subintimal hemorrhages and proceed to coronary occlusion and ultimate myocardial infarction. With this concept in mind we use the term of "crack in the plaque" (Black's Crack in the Plaque) to account for the sudden appearance of clinical coronary artery disease appearing during or shortly after exertion, or other stressful situations in patients without previous existing evidence of clinical coronary artery disease. This could also account for exacerbation of symptoms or death occurring after exertion in previously quiescent asymptomatic known coronary artery disease subjects. This concept may explain some of the puzzling features of coronary disease.

  2. Endoplasmic Reticulum Is Involved in Myocardial Injury in a Miniature Swine Model of Coronary Artery Stenosis Exposed to Acceleration-Associated Stress

    Science.gov (United States)

    Zhang, Haitao; Chai, Meng; Liu, Chaozhong; Sun, Jinjin; Huang, Congchun; Yu, Xinya; Tian, Yi; Luo, Huilan

    2015-01-01

    This study aimed to investigate the effects of myocardial injury in a minimally-invasive miniature swine model with different levels of coronary artery stenosis (CAS) and exposed to maximal tolerated +Gz. Proximal left anterior descending branch was ligated in 20 swine. Five swine underwent a sham operation. A trapezoid acceleration curve was used for +Gz stress. Pathological changes of myocardial tissue were detected by H&E staining. Apoptotic cardiomyocytes were detected by TUNEL. GRP78 and CHOP were investigated by immunohistochemistry and western blot. CAS models were successful in 18 animals.Compared with the sham-operated group (+8.00±0.71 Gz), the maximal tolerated +Gz values of the moderate stenosis (+6.00±0.89 Gz, Pstenosis groups (+5.20±0.84 Gz, Pstenosis group (60.50±9.35%, Pstenosis groups (0.35±0.04), while expression was high in the moderate (0.72±0.04, Pstenosis groups (0.65±0.07, Pstenosis groups. These results indicated that Under maximum exposure to +Gz stress, different levels of CAS led to different levels of myocardial injury. Endoplasmic reticulum response is involved in the apoptosis of cardiomyocytes after +Gz stress. PMID:26167928

  3. Stingray barb injury: a cause of late coronary occlusion and stent failure.

    Science.gov (United States)

    Saunders, Craig R; Saro, Enrique; Patel, Parag; Swidryk, John; Bacani, Victor O; Russo, Mark J; Stone, Jay H

    2013-11-01

    Stingray injuries to the heart are rare, and survivors of this injury are even rarer. To date, there are only three reported survivors of this mode of penetrating cardiac injury, all inflicted by the living animal itself. The following is a report of a stingray injury, inflicted by a human, causing coronary complications 17 years after the injury was sustained.

  4. [Efficacy and mechanism of local delivery of rapamycin and rapamycin-loaded poly(lactic-co-glycolic) acid nanoparticles on coronary restenosis of injury-stenosis model of minipigs].

    Science.gov (United States)

    Miao, L F; Yin, Y P; Cui, Y L; Chen, L F; Zeng, Y; Huang, C L; Zhu, W L; Song, C X; Zhang, H; She, M P; Yang, J

    2016-01-05

    To determine whether intramural administration of rapamycin (RPM)-loaded polylactic-polyglycolic acid (PLGA) nanoparticles (NPs) can reduce intimal thickening and affect the mRNA expressions of matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2 and p27(kipl) in a coronary injury-stenosis model of minipigs. Twenty eight minipigs were randomly separated into four groups: saline group (n=7), blank PLGA NPs group (5.0 mg/ml)(n=7), RPM group (1.0 mg/ml)(n=7), and RPM-PLGA NPs(5.0 mg/ml)group (n=7), respectively. Different treatments were intracoronary locally delivered via a Dispatch™ catheter for 10 minutes. Serial angiography was performed pre-and post-modeling 30 days and the percent stenosis degree was assessed. Hematoxylin-Eosin (HE) staining, Weigert's resorcin fuchsin staining and picric acid-sirius red staining were used for morphometric analysis. Immunohistochemistry was performed to assess the levels of proliferating cell nuclear antigen (PCNA), MMP-2, and TIMP-2 at early and late time points, respectively. The expression of p27(kip1) mRNA was detected by in situ hybridization staining. Data from 21 minipigs had been collected at the end of the experiment with 6, 4, 5, and 6 from the former mentioned 4 groups, respectively. For the instant injury index, there was no significant difference among the four groups. The percent stenosis degree of RPM-PLGA NPs group was significantly lower than that of the other three groups respectively (all Pstenosis degree and shows excellent acute procedural results in the minipig interventional coronary artery oversized balloon injury model. The results from minipig model further support that this approach could be a potential clinical procedure for vascular proliferative disease.

  5. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin-rich pla......Diagnosis of acute coronary syndromes is based on protein biomarkers, such as the cardiac troponins (cTnI/cTnT) and creatine kinase (CK-MB) that are released into the circulation. Biomarker discovery is focused on identifying very low abundance tissue-derived analytes from within albumin...

  6. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  7. Acute kidney injury after coronary artery bypass grafting: assessment using RIFLE and AKIN criteria

    Directory of Open Access Journals (Sweden)

    Vinicius José da Silva Nina

    2013-06-01

    Full Text Available OBJECTIVE: To compare the RIFLE (Risk, Injury, Failure, Loss and End-stage Renal Failure and AKIN (Acute Kidney Injury Network criteria for diagnosis of acute kidney injury after coronary artery bypass grafting. METHODS: Retrospective cohort. 169 patients who underwent coronary artery bypass grafting from January 2007 through December 2008 were analyzed. Information was entered into a database and analyzed using STATA 9.0. RESULTS: Patients' mean age was 63.43 1 9.01 years old. Predominantly male patients (66.86% were studied. Acute Kidney Injury was present in 33.14% by AKIN and in 29.59% by RIFLE. Hemodialysis was required by 3.57% and 4.0% of the patients when AKIN and RIFLE were applied respectively. There was 4.0% and 3.57% mortality of patients with Acute Kidney Injury according to the RIFLE and AKIN criteria, respectively. In 88.76% of the cases, there was good agreement between the two methods in the detection (kappa=0.7380 and stratification (kappa=0.7515 of Acute Kidney Injury. CONCLUSION: This study showed that the RIFLE and AKIN criteria have a good agreement in the detection and stratification of acute kidney injury after coronary artery bypass grafting.

  8. Longitudinal association between lifestyle and coronary heart disease risk factors among individuals with spinal cord injury

    NARCIS (Netherlands)

    de Groot, S.; Post, M. W.; Snoek, G. J.; Schuitemaker, M.; van der Woude, L. H.

    Objective: To investigate: (1) the course of coronary heart disease risk factors (lipid profiles and body mass index (BMI)) in the first five years after discharge from inpatient spinal cord injury (SCI) rehabilitation and (2) the association between lifestyle (physical activity, self-care related

  9. Longitudinal association between lifestyle and coronary heart disease risk factors among individuals with spinal cord injury

    NARCIS (Netherlands)

    de Groot, S.; Post, M. W.; Snoek, G. J.; Schuitemaker, M.; van der Woude, L. H.

    2013-01-01

    Objective: To investigate: (1) the course of coronary heart disease risk factors (lipid profiles and body mass index (BMI)) in the first five years after discharge from inpatient spinal cord injury (SCI) rehabilitation and (2) the association between lifestyle (physical activity, self-care related t

  10. Longitudinal association between lifestyle and coronary heart disease risk factors among individuals with spinal cord injury

    NARCIS (Netherlands)

    de Groot, S.; Post, M. W.; Snoek, G. J.; Schuitemaker, M.; van der Woude, L. H.

    2013-01-01

    Objective: To investigate: (1) the course of coronary heart disease risk factors (lipid profiles and body mass index (BMI)) in the first five years after discharge from inpatient spinal cord injury (SCI) rehabilitation and (2) the association between lifestyle (physical activity, self-care related t

  11. Coronary Flow Velocity Reserve in Burn Injury: A Prospective Clinical Cohort Study.

    Science.gov (United States)

    Caliskan, Mustafa; Turk, Emin; Karagulle, Erdal; Ciftci, Ozgur; Oguz, Hakan; Kostek, Osman; Moray, Gokhan; Haberal, Mehmet

    2016-01-01

    The authors sought to evaluate coronary microvascular function and left ventricular diastolic dysfunction using transthoracic Doppler echocardiography in burn patients. In this study, 32 adult burn patients with partial or full-thickness scald burns that were hospitalized and treated were included. The control group was matched for age and sex and was composed of otherwise healthy volunteers. Transthoracic Doppler echocardiography examinations and simultaneous laboratory tests for cardiac evaluation were performed on the sixth month after burn injury as well as with the control group. High-sensitivity C-reactive protein levels were significantly higher in the burn patients than in controls (5.17 ± 3.86 vs 2.42 ± 1.78; P = .001). Lateral isovolumic relaxation time was significantly higher in the burn injury group than in the control group (92.7 ± 15.7 vs 85.5 ± 8.3; P = .03). Baseline coronary diastolic peak flow velocity of the left anterior descending artery was similar in both groups. However, hyperemic diastolic peak flow velocity and coronary flow velocity reserve (2.26 ± 0.48 vs 2.94 ± 0.47; P < .001) were significantly lower in the burn injury group than in the control group. Coronary flow velocity reserve was significantly and inversely correlated with high-sensitivity C-reactive protein, burn ratio, creatinine, and mitral A-wave max velocity. At the sixth month of treatment, burn patients had high-sensitivity C-reactive protein levels during this period, suggesting that inflammation still exists. In addition, subclinical coronary microvascular and left ventricular diastolic dysfunction can occur in burn patients without traditional cardiovascular risk factors. However, these results must be supported by additional studies.

  12. Coronary stent on coronary CT angiography: Assessment with model-based iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chae; Kim, Yeo Koon; Chun, Eun Ju; Choi, Sang IL [Dept. of of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-05-15

    To assess the performance of model-based iterative reconstruction (MBIR) technique for evaluation of coronary artery stents on coronary CT angiography (CCTA). Twenty-two patients with coronary stent implantation who underwent CCTA were retrospectively enrolled for comparison of image quality between filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and MBIR. In each data set, image noise was measured as the standard deviation of the measured attenuation units within circular regions of interest in the ascending aorta (AA) and left main coronary artery (LM). To objectively assess the noise and blooming artifacts in coronary stent, we additionally measured the standard deviation of the measured attenuation and intra-luminal stent diameters of total 35 stents with dedicated software. All image noise measured in the AA (all p < 0.001), LM (p < 0.001, p = 0.001) and coronary stent (all p < 0.001) were significantly lower with MBIR in comparison to those with FBP or ASIR. Intraluminal stent diameter was significantly higher with MBIR, as compared with ASIR or FBP (p < 0.001, p = 0.001). MBIR can reduce image noise and blooming artifact from the stent, leading to better in-stent assessment in patients with coronary artery stent.

  13. Acute right ventricular myocardial injury and sudden cardiac arrest in a patient with persistent spontaneous coronary vasospasm

    Institute of Scientific and Technical Information of China (English)

    Hung Ming-Yow; Li Ju-Chi; Hao Wen-Rui; Wu Cheng-Hsueh; Hung Ming-Jui

    2011-01-01

    Coronary vasospasm is a rare diagnosis resulting in sudden arrhythmic cardiac arrest. We report a case of a healthy,non-smoking elderly woman resuscitated from arrhythmic cardiac arrest. She had persistent spontaneous coronaxy vasospasm, leading to right ventricular myocardial injury and failure, and shock. She responded quickly to intravenous normal saline bolus infusion, but had irreversible neurological sequelae. Additionally, she had atrial fibrillation preceding ischemic ventricular fibrillation, a rare finding in coronary vasospasm-related cardiac arrest. We suggest immediate coronary angiography of patients in sudden arrhythmic cardiac arrest with acute right ventricular failure for a prompt,accurate diagnosis and appropriate management of the coronary vasospasm.

  14. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes

    NARCIS (Netherlands)

    Heuvel, van den M.; Sorop, O.; Koopmans, S.J.; Dekker, R.A.; Vries, de R.; Beusekom, H.M.M.; Eringa, E.C.; Duncker, D.J.; Danser, A.H.J.; Giessen, W.J.

    2012-01-01

    Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics.

  15. Cardioprotective effects of salidroside on myocardial ischemia-reperfusion injury in coronary artery occlusion-induced rats and Langendorff-perfused rat hearts.

    Science.gov (United States)

    Chang, Xiayun; Zhang, Kai; Zhou, Rui; Luo, Fen; Zhu, Lingpeng; Gao, Jin; He, He; Wei, Tingting; Yan, Tianhua; Ma, Chunhua

    2016-07-15

    The current study was designed to investigate the protective role of salisroside on rats through the study of energy metabolism homeostasis and inflammation both in ex vivo and in vivo. Energy metabolism homeostasis and inflammation injury were respectively assessed in global ischemia of isolated hearts and coronary artery ligated rats. Excessive release of cardiac enzymes and pro-inflammatory cytokines was inhibited by salidroside in coronary artery occlusion-induced rats. ST segment was also restored with the treatment of salidroside. Triphenyltetrazolium chloride staining (TTC) staining and pathological analysis showed that salidroside could significantly alleviate myocardial injury in vivo. Accumulated data in ex vivo indicated that salidroside improved heart function recovery, which was reflected by enhanced myocardial contractility and coronary flow in isolated hearts. The contents of ATP and glycogen both in ex vivo and in vivo were restored by salidroside compared with those in the model group. Besides, the expressions of p-AMPK, PPAR-α and PGC-1α in rats and isolated hearts subjected to salidroside were significantly elevated, while the levels of p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ were dramatically reduced by salidroside. The present study comprehensively elaborated the protective effects of salidroside on myocardial injury and demonstrated that AMPK/PGC-1α and AMPK/NF-κB signaling cascades were implicated in the myocardial ischemia-reperfusion injury (I/R) model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Flow regulation in coronary vascular tree: a model study.

    Directory of Open Access Journals (Sweden)

    Xinzhou Xie

    Full Text Available Coronary blood flow can always be matched to the metabolic demand of the myocardium due to the regulation of vasoactive segments. Myocardial compressive forces play an important role in determining coronary blood flow but its impact on flow regulation is still unknown. The purpose of this study was to develop a coronary specified flow regulation model, which can integrate myocardial compressive forces and other identified regulation factors, to further investigate the coronary blood flow regulation behavior.A theoretical coronary flow regulation model including the myogenic, shear-dependent and metabolic responses was developed. Myocardial compressive forces were included in the modified wall tension model. Shear-dependent response was estimated by using the experimental data from coronary circulation. Capillary density and basal oxygen consumption were specified to corresponding to those in coronary circulation. Zero flow pressure was also modeled by using a simplified capillary model.Pressure-flow relations predicted by the proposed model are consistent with previous experimental data. The predicted diameter changes in small arteries are in good agreement with experiment observations in adenosine infusion and inhibition of NO synthesis conditions. Results demonstrate that the myocardial compressive forces acting on the vessel wall would extend the auto-regulatory range by decreasing the myogenic tone at the given perfusion pressure.Myocardial compressive forces had great impact on coronary auto-regulation effect. The proposed model was proved to be consistent with experiment observations and can be employed to investigate the coronary blood flow regulation effect in physiological and pathophysiological conditions.

  17. Experimental reversal of acute coronary thrombotic occlusion and myocardial injury in animals utilizing streptokinase.

    Science.gov (United States)

    Lee, G; Giddens, J; Krieg, P; Dajee, A; Suzuki, M; Kozina, J A; Ikeda, R M; DeMaria, A N; Mason, D T

    1981-12-01

    Fresh autologous thrombus, 1.0 to 1.5 ml, was injected into the left anterior descending and/or left diagonal coronary arteries of 19 open-chest dogs to produce evolving acute myocardial infarction (AMI). Thrombotic obstruction was documented by coronary angiography. Multilead epicardial ECGs showed ST segment elevations of affected left ventricular (LV) areas within 2 minutes after thrombus injection, and LV segmental wall cyanosis with hypocontraction was observed within 10 minutes in the myocardial areas supplied by the thrombosed artery. Ten animals then received an initial dose of streptokinase (STK), 250,000 U (intravenous), followed by STK, 1000 to 3000 U/min (intracoronary), while nine control dogs untreated with STK received normal saline infusion. All but one STK-treated animal (all nine animals receiving intracoronary STK) had reestablishment of blood flow in the previously occluded vessels within 1 1/2 hours, disappearance of ventricular cyanosis, return of normal LV contractile function, and normalization of elevated ST segments within 1 hour after intracoronary STK therapy. In contrast, in the non-STK-treated control group, all animals had continued coronary obstruction, progressive ST elevations, and worsening LV cyanosis and hypocontraction until death or for more than 3 hours post thrombus; three control animals died of ventricular fibrillation (VF) within 1 hour of thrombus occlusion, three more died of VF within 2 hours post thrombus, and only three survived beyond 2 hours post thrombus. Postmortem examination of non-STK-treated animals revealed extensive residual coronary thrombus. All intracoronary STK-treated animals evidenced absence of residual coronary thrombus at postmortem examination. These data provide clinically relevant evidence that early intracoronary STK effects thrombolysis in AMI by reopening coronary vessels occluded by fresh thrombus, thereby protecting myocardium from further ischemia and necrosis, preserving LV function, and

  18. [Pain caused by brachial plexus injury during coronary revascularization. Report of 3 cases].

    Science.gov (United States)

    Martín, M A; Marí, C; Miranda, A F; Burón, J A; Fernández, F E; Suárez, R

    1992-01-01

    We report three cases of injury of the brachial plexus after coronary revascularization surgery. During the postoperative phase all patients presented plexopathy involving the left C8 and D1 roots. The symptoms were pain, paresthesia, and motor deficits. The proposed mechanisms for injury of the brachial plexus during cardiac surgery are: hyperabduction of the arm, direct traumatism produced by the needle during catheterization of the internal jugular vein, and traction and compression associated with sternal retraction. In the three patients we ruled out alterations during cannulation of the internal jugular vein and malposition of the arms. We think that in our cases the fundamental mechanism was an excessive and assymetrical opening of sternal and Favoloro's separators that were used in all cases during dissection of the left internal mammary artery. We conclude that injury of the brachial plexus can be minimized by reducing the opening of both separators and by placing Favaloro's separator in a lower position.

  19. Design and modeling balloon-expandable coronary stent for manufacturability

    Science.gov (United States)

    Suryawan, D.; Suyitno

    2017-02-01

    Coronary artery disease (CAD) is a disease that caused by narrowing of the coronary artery. The narrowing coronary artery is usually caused by cholesterol-containing deposit (plaque) which can cause a heart attack. CAD is the most common cause mortality in Indonesia. The commonly CAD treatment use the stent to opens or alleviate the narrowing coronary artery. In this study, the stent design is optimized for the manufacturability. Modeling is used to determine the free stent expansion due to applied pressure in the inner surface of the stent. The stress distribution, outer diameter change, and dogboning phenomena are investigated in the simulation. The result of modeling and simulating was analyzed and used to optimize the stent design before it is manufactured using EDM (Electric Discharge Machine) in the next research.

  20. Evaluation of spinal cord injury animal models

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang; Marong Fang; Haohao Chen; Fangming Gou; Mingxing Ding

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies.

  1. Hemoglobin A1c Levels Predicts Acute Kidney Injury after Coronary Artery Bypass Surgery in Non-Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Cevdet Ugur Kocogulları

    Full Text Available Abstract INTRODUCTION: Elevated hemoglobin A1c levels in patients with diabetes mellitus have been known as a risk factor for acute kidney injury after coronary artery bypass grafting. However, the relationship between hemoglobin A1c levels in non-diabetics and acute kidney injury is under debate. We aimed to investigate the association of preoperative hemoglobin A1c levels with acute kidney injury in non-diabetic patients undergoing isolated coronary artery bypass grafting. METHODS: 202 non-diabetic patients with normal renal function (serum creatinine <1.4 mg/dl who underwent isolated coronary bypass were analyzed. Hemoglobin A1c level was measured at the baseline examination. Patients were separated into two groups according to preoperative Hemoglobin A1c level. Group 1 consisted of patients with preoperative HbA1c levels of < 5.6% and Group 2 consisted of patients with preoperative HbA1c levels of ≥ 5.6%. Acute kidney injury diagnosis was made by comparing baseline and postoperative serum creatinine to determine the presence of predefined significant change based on the Kidney Disease Improving Global Outcomes (KDIGO definition. RESULTS: Acute kidney injury occurred in 19 (10.5% patients after surgery. The incidence of acute kidney injury was 3.6% in Group 1 and 16.7% in Group 2. Elevated baseline hemoglobin A1c level was found to be associated with acute kidney injury (P=0.0001. None of the patients became hemodialysis dependent. The cut off value for acute kidney injury in our group of patients was 5.75%. CONCLUSION: Our findings suggest that, in non-diabetics, elevated preoperative hemoglobin A1c level may be associated with acute kidney injury in patients undergoing coronary artery bypass grafting. Prospective randomized studies in larger groups are needed to confirm these results.

  2. Injury count model for quantification of risk of occupational injury.

    Science.gov (United States)

    Khanzode, Vivek V; Maiti, J; Ray, P K

    2011-06-01

    Reduction of risk of occupational injuries is one of the most challenging problems faced by industry. Assessing and comparing risks involved in different jobs is one of the important steps towards reducing injury risk. In this study, a comprehensive scheme is given for assessing and comparing injury risks with the development of injury count model, injury risk model and derived statistics. The hazards present in a work system and the nature of the job carried out by workers are perceived as important drivers of injury potential of a work system. A loglinear model is used to quantify injury counts and the event-tree approach with joint, marginal and conditional probabilities is used to quantify injury risk. A case study was carried out in an underground coal mine. Finally a number of indices are proposed for the case study mine to capture risk of injury in different jobs. The findings of this study will help in designing injury intervention strategies for the mine studied. The job-wise risk profiles will be used to prioritise the jobs for redesign. The absolute indices can be applied for benchmarking job-wise risks and the relative indices can be used for comparing job-wise risks across work systems.

  3. Intraoperative radial nerve injury during coronary artery surgery – report of two cases

    Directory of Open Access Journals (Sweden)

    Tsivgoulis Georgios

    2006-12-01

    Full Text Available Abstract Background Peripheral nerve injury and brachial plexopathy are known, though rare complications of coronary artery surgery. The ulnar nerve is most frequently affected, whereas radial nerve lesions are much less common accounting for only 3% of such intraoperative injuries. Case presentations Two 52- and 50-year-old men underwent coronary artery surgery. On the first postoperative day they both complained of wrist drop on the left. Neurological examination revealed a paresis of the wrist and finger extensor muscles (0/5, and the brachioradialis (4/5 with hypoaesthesia on the radial aspect of the dorsum of the left hand. Both biceps and triceps reflexes were normoactive, whereas the brachioradialis reflex was diminished on the left. Muscles innervated from the median and ulnar nerve, as well as all muscles above the elbow were unaffected. Electrophysiological studies were performed 3 weeks later, when muscle power of the affected muscles had already begun to improve. Nerve conduction studies and needle electromyography revealed a partial conduction block of the radial nerve along the spiral groove, motor axonal loss distal to the site of the lesion and moderate impairment in recruitment with fibrillation potentials in radial innervated muscles below the elbow and normal findings in triceps and deltoid. Electrophysiology data pointed towards a radial nerve injury in the spiral groove. We assume external compression as the causative factor. The only apparatus attached to the patients' left upper arm was the sternal retractor, used for dissection of the internal mammary artery. Both patients were overweight and lying on the operating table for a considerable time might have caused the compression of their left upper arm on the self retractor's supporting column which was fixed to the table rail 5 cm above the left elbow joint, in the site where the radial nerve is directly apposed to the humerus. Conclusion Although very uncommon, external

  4. Overuse Injury Assessment Model

    Science.gov (United States)

    2006-03-01

    applied forces such as the impact during a vehicle crash, a human surrogate with force transducers is initially used to measure the applied force...reliable validation procedures also limits the application of inverse optimization. Currently, electromyogram ( EMG ) signals, which describe the input into...1994). EMG assisted optimization: a hybrid approach for estimating muscle forces in an indeterminate biomechanical model. J. Biomech. 27, 1287-9

  5. Complement activation in coronary artery bypass grafting patients without cardiopulmonary bypass - The role of tissue injury by surgical incision

    NARCIS (Netherlands)

    Gu, YJ; Mariani, MA; Boonstra, PW; Grandjean, JG; van Oeveren, W

    1999-01-01

    Study objectives: Complement activation is a trigger in inducing inflammation in patients who undergo coronary artery bypass grafting (CABG) and is usually thought to be induced by the use of cardiopulmonary bypass (CPB), In this study, we examined whether tissue injury caused by chest surgical inci

  6. Endothelial Injury Associated with Cold or Warm Blood Cardioplegia during Coronary Artery Bypass Graft Surgery

    Directory of Open Access Journals (Sweden)

    Elmar W. Kuhn

    2015-01-01

    Full Text Available The aim of this investigation was to analyze the impact of intermittent cold blood cardioplegia (ICC and intermittent warm blood cardioplegia (IWC on endothelial injury in patients referred to elective on-pump coronary artery bypass graft (CABG surgery. Patients undergoing CABG procedures were randomized to either ICC or IWC. Myocardial injury was assessed by CK-MB and cardiac troponin T (cTnT. Endothelial injury was quantified by circulating endothelial cells (CECs, von Willebrand factor (vWF, and soluble thrombomodulin (sTM. Perioperative myocardial injury (PMI and major adverse cardiac events (MACE were recorded. Demographic data and preoperative risk profile of included patients (ICC: n=32, IWC: n=36 were comparable. No deaths, PMI, or MACE were observed. Levels of CK-MB and cTnT did not show intergroup differences. Concentrations of CECs peaked at 6 h postoperatively with significantly higher values for IWC-patients at 1 h (ICC: 10.1 ± 3.9/mL; IWC: 18.4 ± 4.1/mL; P=0.012 and 6 h (ICC: 19.3 ± 6.2/mL; IWC: 29.2 ± 6.7/mL; P<0.001. Concentrations of vWF (ICC: 178.4 ± 73.2 U/dL; IWC: 258.2 ± 89.7 U/dL; P<0.001 and sTM (ICC: 3.2 ± 2.1 ng/mL; IWC: 5.2 ± 2.4 ng/mL; P=0.011 were significantly elevated in IWC-group at 1 h postoperatively. This study shows that the use of IWC is associated with a higher extent of endothelial injury compared to ICC without differences in clinical endpoints.

  7. Predict value of monitoring changes of urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 after coronary angiography and percutaneous coronary intervention on early diagnosis of contrast-induced nephropathy

    Institute of Scientific and Technical Information of China (English)

    王磊

    2014-01-01

    Objective To explore the predict value of monitoring changes of urinary neutrophil gelatinase-associated lipocalin(NGAL)and kidney injury molecule-1(KIM-1)after coronary angiography(CAG)and percutaneous coronary intervention(PCI)on the early diagnosis of contrast-induced nephropathy(CIN).Methods One hundred and sixty patients underwent CAG and PCI were en-

  8. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... Go New to Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ...

  9. Familial hypercholesterolaemic downsized pig with human-like coronary atherosclerosis: a model for preclinical studies

    DEFF Research Database (Denmark)

    Thim, Troels; Hagensen, Mette; Drouet, L.

    2010-01-01

    site-specifically by inflicting coronary artery balloon injury. Both spontaneously developed and balloon accelerated coronary plaques mirrored pertinent human plaque features, including a large necrotic core covered by a thin and inflamed fibrous cap as seen in the most common type of thrombosis...

  10. Shock tubes and blast injury modeling

    Institute of Scientific and Technical Information of China (English)

    Ya-Lei Ning; Yuan-Guo Zhou

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks.The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments.Therefore,development of stable,reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research.The present review addresses the modeling of blast injury and applications of shock tubes.

  11. Acute kidney injury biomarkers for patients in a coronary care unit: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Tien-Hsing Chen

    Full Text Available BACKGROUND: Renal dysfunction is an established predictor of all-cause mortality in intensive care units. This study analyzed the outcomes of coronary care unit (CCU patients and evaluated several biomarkers of acute kidney injury (AKI, including neutrophil gelatinase-associated lipocalin (NGAL, interleukin-18 (IL-18 and cystatin C (CysC on the first day of CCU admission. METHODOLOGY/PRINCIPAL FINDINGS: Serum and urinary samples collected from 150 patients in the coronary care unit of a tertiary care university hospital between September 2009 and August 2010 were tested for NGAL, IL-18 and CysC. Prospective demographic, clinical and laboratory data were evaluated as predictors of survival in this patient group. The most common cause of CCU admission was acute myocardial infarction (80%. According to Acute Kidney Injury Network criteria, 28.7% (43/150 of CCU patients had AKI of varying severity. Cumulative survival rates at 6-month follow-up following hospital discharge differed significantly (p<0.05 between patients with AKI versus those without AKI. For predicting AKI, serum CysC displayed an excellent areas under the receiver operating characteristic curve (AUROC (0.895 ± 0.031, p < 0.001. The overall 180-day survival rate was 88.7% (133/150. Multiple Cox logistic regression hazard analysis revealed that urinary NGAL, serum IL-18, Acute Physiology, Age and Chronic Health Evaluation II (APACHE II and sodium on CCU admission day one were independent risk factors for 6-month mortality. In terms of 6-month mortality, urinary NGAL had the best discriminatory power, the best Youden index, and the highest overall correctness of prediction. CONCLUSIONS: Our data showed that serum CysC has the best discriminative power for predicting AKI in CCU patients. However, urinary NGAL and serum IL-18 are associated with short-term mortality in these critically ill patients.

  12. A Novel High Nitrogen Nickel-free Coronary Stents System:Evaluation in a Porcine Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; CHEN Ming; ZHENG Bo; WANG Xin Gang; WANG Xi Ting; FAN Yuan Yuan; HUO Yong

    2014-01-01

    Objective To study the safety of the novel high nitrogen nickel-free austenitic stainless steel bare metal stents (BMS) in a recognized porcine coronary model and to select a better grid structure of it. Methods Three types of stents were randomly implanted in different coronary arteries of the same pig: 316L stainless steel BMS (316L-BMS) (n=12), novel high nitrogen nickel-free stents Grid A (NF-A-BMS) (n=12) and novel high nitrogen nickel-free stents Grid B (NF-B-BMS) (n=12). In total, eighteen animals underwent successful random placement of 36 oversized stents in the coronary arteries. Coronary angiography was performed after 36 d of stents implantation. Nine animals were respectively sacrificed after 14 d and 36 d for histomorphologic analysis. Results Quantitative coronary angiography (QCA) showed similar luminal loss (LL) in the three groups:(0.21±0.17) mm for 316L-BMS, (0.16±0.12) mm for NF-A-BMS, (0.24±0.15) mm for NF-B-BMS (P>0.05). Histomorphomeric analysis after 15 d and 36 d revealed that there was also no significant difference among the three groups in neointimal area (NA) with similar injury scores respectively. High magnification histomorphologic examination showed similar inflammation scores in the three groups, but NF-A-BMS group had poorer endothelialization scores compared with NF-B-BMS group, 2.00±0.63 vs. 2.83±0.41 (P=0.015) at 15 d, which also could be proved by the scanning electron microscope. However, the difference could not been observed at 36 d. Conclusion The novel NF-BMS showed similar safety as 316L-BMS during the short-term study. NF-B-BMS had better endothelialization than NF-A-BMS and this may owe to the specific strut units.

  13. Cost-effectiveness modelling of percutaneous coronary interventions in stable coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Ariel; Beresniak; Thibaut; Caruba; Brigitte; Sabatier; Yves; Juillière; Olivier; Dubourg; Nicolas; Danchin

    2015-01-01

    The objective of this study is to develop a cost-effectiveness model comparing drug eluting stents(DES) vs bare metal stent(BMS) in patients suffering of stable coronary artery disease. Using a 2-years time horizon, two simulation models have been developed: BMS first line strategy and DES first line strategy. Direct medical costs were estimated considering ambulatory and hospital costs. The effectiveness endpoint was defined as treatment success, which is the absence of major adverse cardiac events. Probabilistic sensitivity analyses were carried out using 10000 Monte-Carlo simulations. DES appeared slightly more efficacious over 2 years(60% of success) when compared to BMS(58% of success). Total costs over 2 years were estimated at 9303  for the DES and at 8926  for bare metal stent. Hence, corresponding mean cost-effectiveness ratios showed slightly lower costs(P < 0.05) per success for the BMS strategy(15520 /success), as compared to the DES strategy(15588 /success). Incremental costeffectiveness ratio is 18850  for one additional percent of success. The sequential strategy including BMS as the first option appears to be slightly less efficacious but more cost-effective compared to the strategy including DES as first option. Future modelling approaches should confirm these results as further comparative data in stable coronary artery disease and long-term evidence become available.

  14. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes

    NARCIS (Netherlands)

    Heuvel, van den M.; Sorop, O.; Koopmans, S.J.; Dekker, R.A.; Vries, de R.; Beusekom, H.M.M.; Eringa, E.C.; Duncker, D.J.; Danser, A.H.J.; Giessen, W.J.

    2012-01-01

    Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics. Streptoz

  15. Differential regulation of functional gene clusters in overt coronary artery disease in a transgenic atherosclerosis-hypertensive rat model.

    OpenAIRE

    Herrera, Victoria M. L.; Didishvili, Tamara; Lopez, Lyle V.; Ruiz-Opazo, Nelson

    2002-01-01

    BACKGROUND: Human acute coronary syndrome refers to the spectrum of clinical manifestations of overt coronary artery (CAD) disease characterized by atherosclerotic plaque destabilization and resultant myocardial injury. Typically studied as distinct pathologies, emerging pathogenic paradigms implicate multiple processes beyond thrombosis and ischemic cell injury respectively, with significant pathway overlap involving inflammation, apoptosis, matrix degradation, and oxidative stress. However,...

  16. Theoretical models for coronary vascular biomechanics: Progress & challenges

    Science.gov (United States)

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  17. Intraperitoneal Bilirubin Administration Decreases Infarct Area in a Rat Coronary Ischemia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Ron eBen-Amotz

    2014-02-01

    Full Text Available Bilirubin was previously considered a toxin byproduct of heme catabolism. However, a mounting body of evidence suggests that at physiological doses, bilirubin is a powerful antioxidant and anti-atherosclerotic agent. Recent clinical studies have shown that human beings with genetically-induced hyperbilirubinemia (Gilbert Syndrome are protected against coronary heart disease. The purpose of this study was to investigate whether administration of exogenous bilirubin to normal rats would convey similar protective effects in an experimental model of coronary ischemia. We hypothesized that intraperitoneal bilirubin administration 1 hour before injury would decrease infarct area and preserve left ventricular (LV systolic function when compared to non-treated rats. Coronary ischemia was induced by temporary (30 min ligation of the left anterior descending coronary artery in control or bilirubin treated rats, followed by a 1-hour period of reperfusion. LV function was estimated by measurements of fractional shortening and fractional area shortening using echocardiography. LV function decreased in both experimental groups after ischemia and reperfusion, although in bilirubin-treated rats fractional shortening was less depressed during the period of ischemia (18.8 vs 25.8%, p = 0.034. Infarct size was significantly reduced in the bilirubin treated group compared to the non-treated group (13.34% vs 25.5%, p = 0.0067. Based on the results of this study, bilirubin supplementation appears to provide significant decrease in infarct size although protective effects on LV function were noted only during the period of ischemia. This result also suggests that lipid soluble antioxidant bilirubin prevents the oxidation of cardiolipin and decreases the infarct size in the heart during ischemia.

  18. Coronary microembolization.

    Science.gov (United States)

    Skyschally, Andreas; Leineweber, Kkirsten; Gres, Petra; Haude, Michael; Erbel, Raimund; Heusch, Gerd

    2006-09-01

    Atherosclerotic plaque rupture is the key event in the pathogenesis of acute coronary syndromes and it also occurs during coronary interventions. Atherosclerotic plaque rupture does not always result in complete thrombotic occlusion of the epicardial coronary artery with subsequent impending myocardial infarction, but may in milder forms result in the embolization of atherosclerotic and thrombotic debris into the coronary microcirculation. This review summarizes the present experimental pathophysiology of coronary microembolization in animal models of acute coronary syndromes and highlights the main consequences of coronary microembolization--reduced coronary reserve, microinfarction, inflammation and oxidative modification of contractile proteins, contractile dysfunction and perfusion-contraction mismatch.Furthermore, the review presents the available clinical evidence for coronary microembolization in patients and compares the clinical observations with observations in the experimental model.

  19. Lifetime injury prevention: The sport profile model*

    African Journals Online (AJOL)

    2012-01-04

    Jan 4, 2012 ... develop models of understanding of injury risk at different life ... University of Brighton, Sussex Centre for Sport and Exercise ... of knee and hip osteoarthritis in former professional soccer players is ... equally to all situations for that sport. .... prevention and better treatment of injuries that limit physical activity.

  20. Characterisation of a novel porcine coronary artery CTO model.

    Science.gov (United States)

    Fefer, Paul; Robert, Normand; Qiang, Beiping; Liu, Garry; Munce, Nigel; Anderson, Kevan; Osherov, Azriel B; Ladouceur-Wodzak, Michelle; Qi, Xiuling; Dick, Alexander; Weisbrod, Max; Samuel, Michelle; Butany, Jagdish; Wright, Graham; Strauss, Bradley H

    2012-04-01

    To create a large animal coronary chronic total occlusion (CTO) model. Presence of microvessels within the CTO lumen facilitates guidewire crossing. The patterns and time profiles of matrix changes and microvessel formation during coronary CTO maturation are unknown. CTO were created in 15 swine by percutaneous deployment of a collagen plug. Matrix changes were assessed by histology. Intraluminal neovascularisation was assessed by histology and several imaging modalities, including conventional and 3D spin angiography, micro-computed tomography (micro-CT) imaging, and contrast-enhanced magnetic resonance imaging (MRI), at six and 12 weeks following CTO creation. Matrix changes included an intense inflammatory reaction at six weeks which had partially abated by 12 weeks. A proteoglycan-rich matrix at six weeks was partially replaced with collagen by 12 weeks. Similar changes were noted in the proximal cap which was acellular. Three patterns of microvessel formation were identified and defined based on the presence and extent of a "lead" neovessel. No major differences in pattern or extent of neovascularisation were noted between six and 12 weeks. Heterogeneity in neovascularisation patterns occurs during coronary CTO development in a porcine model. Non-invasive imaging to determine the predominant type of neovascularisation prior to and during CTO revascularisation may improve guidewire crossing success rates. This model may be useful for further exploration of CTO pathophysiology, and may aid in further refinements of in vivo imaging of CTO and development of novel therapeutic approaches to revascularisation of CTO, such as manipulations of the proximal cap, matrix composition, neovessel induction, and device testing.

  1. [Correlation between serum uric acid level and acute renal injury after coronary artery bypass grafting].

    Science.gov (United States)

    Xu, D Q; Du, J; Zheng, Z; Tang, Y; Zou, L; Zhang, Y H; Zhang, H T

    2017-07-11

    Objective: To evaluate whether early postoperative serum uric acid level can predict postoperative acute renal injury (AKI) among patients undergoing coronary artery bypass grafting (CABG). Methods: The study retrospectively enrolled 1 306 patients undergoing CABG in Fuwai Hospital between September 2012 and December 2013. The patients were divided into 5 groups by the concentrations of serum uric acid measured on the morning of the first postoperative day, and uric acid categories were as follow: less than 195 μmol/L (Q1 group, 262 cases), 195-236 μmol/L (Q2 group, 263 cases), 237-280 μmol/L (Q3 group, 260 cases), 281-336 μmol/L (Q4 group, 261 cases), more than 336 μmol/L (Q5 group, 260 cases). The primary end points were AKI (RIFLE criteria), severe AKI (AKI≥stage Ⅰ), postoperative continuous renal replacement therapy (CRRT) requirement, in-hospital death, length of stay in hospital and intensive care unit(ICU). The area under the receiver-operating characteristic (ROC) curve (AUC) was used to determine the ability of the early postoperative serum uric acid level as a risk factor for postoperative AKI prediction. Results: Among the 1 306 patients enrolled in the study, AKI was found in 335 patients (25.65%). After adjusting for variables that were different between the 5 groups, the Q5 group had significantly higher risk of AKI, AKI≥ stage Ⅰ and the requirement of CRRT (Puric acid levels alone were used (both Puric acid was a better predictor than serum creatinine(Puric acid concentration within 12 hours after operation is an independent predictor of postoperative AKI in patients undergoing CABG, which could be used to identify patients at high risk for AKI.

  2. Association of Variation in Contrast Volume With Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention.

    Science.gov (United States)

    Amin, Amit P; Bach, Richard G; Caruso, Mary L; Kennedy, Kevin F; Spertus, John A

    2017-09-01

    Acute kidney injury (AKI) after percutaneous coronary intervention (PCI) is common, morbid, and costly; increases patients' mortality risk; and can be mitigated by limiting contrast use. To examine the national variation in AKI incidence and contrast use among US physicians and the variation's association with patients' risk of developing AKI after PCI. This cross-sectional study used the American College of Cardiology National Cardiovascular Data Registry (NCDR) CathPCI Registry to identify in-hospital care for PCI in the United States. Participants included 1 349 612 patients who underwent PCI performed by 5973 physicians in 1338 hospitals between June 1, 2009, and June 30, 2012. Data analysis was performed from July 1, 2014, to August 31, 2016. The primary outcome was AKI, defined according to the Acute Kidney Injury Network criteria as an absolute increase of 0.3 mg/dL or more or a relative increase of 50% or more from preprocedural to peak creatinine. A secondary outcome was the mean contrast volume as reported in the NCDR CathPCI Registry. Physicians who performed more than 50 PCIs per year were the main exposure variable of interest. Hierarchical regression with adjustment for patients' AKI risk was used to identify the variation in AKI rates, the variation in contrast use, and the association of contrast volume with patients' predicted AKI risk. Of the 1 349 612 patients who underwent PCI, the mean (SD) age was 64.9 (12.2) years, 908 318 (67.3%) were men, and 441 294 (32.7%) were women. Acute kidney injury occurred in 94 584 patients (7%). A large variation in AKI rates was observed among individual physicians ranging from 0% to 30% (unadjusted), with a mean adjusted 43% excess likelihood of AKI (median odds ratio, 1.43; 95% CI, 1.41-1.44) for statistically identical patients presenting to 2 random physicians. A large variation in physicians' mean contrast volume, ranging from 79 mL to 487 mL with an intraclass correlation coefficient of 0

  3. Evolution of Coronary Flow in an Experimental Slow Flow Model in Swines: Angiographic and Pathological Insights

    Directory of Open Access Journals (Sweden)

    Yupeng Bai

    2015-01-01

    Full Text Available Objective. Pathomechanism of coronary slow flow phenomenon remains largely unclear now. Present study observed the pathological and angiographic evolution in a pig model of coronary slow flow. Methods. Coronary slow flow was induced by repeat coronary injection of small doses of 40 µm microspheres in 18 male domestic pigs and angiographic and pathological changes were determined at 3 hours, 7 days, and 28 days after microspheres injection. Results. Compared to control group treated with coronary saline injection n=6 and baseline level, coronary flow was significantly reduced at 3 hours and 7 days but completely recovered at 28 days after coronary microsphere injection in slow flow group. Despite normal coronary flow at 28 days after microsphere injection, enhanced myocardial cytokine expression, left ventricular dysfunction, adverse remodelling, and ischemia/microembolism related pathological changes still persisted or even progressed from 3 hours to 28 days after coronary microsphere injection. Conclusions. Our results show that this large animal slow flow model could partly reflect the chronic angiographic, hemodynamic, and pathological changes of coronary slow flow and could be used to test new therapy strategies against the slow flow phenomenon.

  4. Endothelin receptor mediated Ca(2+) signaling in coronary arteries after experimentally induced ischemia/reperfusion injury in rat

    DEFF Research Database (Denmark)

    Kristiansen, Sarah Brøgger; Haanes, Kristian A; Sheykhzade, Majid

    2017-01-01

    a phenotypical shift, which includes increased evoked ETB induced contraction in the smooth muscle cell, and also a higher basal tone development which both are dependent on Ca(2+) influx through VGCCs. This is combined with alterations in the ETA calcium handling, which has a stronger dependence on Ca(2...... greatly exacerbate the damage. For the latter, no medical treatment exist. In this study the aim was to characterize Ca(2+) sensitivity in coronary arteries following experimental ischemia/reperfusion injury. METHODS: Arteries were isolated from hearts exposed to a well-established rat ischemia...

  5. Targeting reperfusion injury in the era of primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Lønborg, Jacob Thomsen

    2015-01-01

    Introduction of reperfusion therapy by primary percutaneous coronary intervention (PCI) has resulted in improved outcomes for patients presenting with ST-segment elevation myocardial infarction. Despite the obvious advantages of primary PCI, acute restoration of blood flow paradoxically also...

  6. Hematopoiesis Primer Modeling Combined Injury

    Science.gov (United States)

    2012-05-01

    2010 Feb; 125( Suppl 2):S3-23. Dainiak N, J.K. Waselenko. Biology and clinical features of radiation injury in adults [Internet]. UpToDate ® 2004...Available from: http://www.sassit.co.za/Journals/General%20complications/ UpToDate %C2%AE%20%27Biolog y%20and%20clinical%20features%20of%20radiation

  7. A new zebrafish bone crush injury model

    Directory of Open Access Journals (Sweden)

    Sara Sousa

    2012-07-01

    While mammals have a limited capacity to repair bone fractures, zebrafish can completely regenerate amputated bony fin rays. Fin regeneration in teleosts has been studied after partial amputation of the caudal fin, which is not ideal to model human bone fractures because it involves substantial tissue removal, rather than local tissue injury. In this work, we have established a bone crush injury model in zebrafish adult caudal fin, which consists of the precise crush of bony rays with no tissue amputation. Comparing these two injury models, we show that the initial stages of injury response are the same regarding the activation of wound healing molecular markers. However, in the crush assay the expression of the blastema marker msxb appears later than during regeneration after amputation. Following the same trend, bone cells deposition and expression of genes involved in skeletogenesis are also delayed. We further show that bone and blood vessel patterning is also affected. Moreover, analysis of osteopontin and Tenascin-C reveals that they are expressed at later stages in crushed tissue, suggesting that in this case bone repair is prolonged for longer than in the case of regeneration after amputation. Due to the nature of the trauma inflicted, the crush injury model seems more similar to fracture bone repair in mammals than bony ray amputation. Therefore, the new model that we present here may help to identify the key processes that regulate bone fracture and contribute to improve bone repair in humans.

  8. Modeling premature brain injury and recovery

    Science.gov (United States)

    Scafidi, Joey; Fagel, Devon M.; Ment, Laura R.; Vaccarino, Flora M.

    2009-01-01

    Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain. PMID:19482072

  9. Investigation of long-term implantation of BuMA stent in a porcine coronary model

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; WANG Xin-gang; ZHENG Bo; PENG Hong-yu; Zhang Xiao-yan; ZHANG Bin; HUO Yong

    2012-01-01

    Background Stent-based delivery of sirolimus has been shown to reduce neointimal hyperplasia significantly.However,the long-term effect of the polymer is thought to initiate and sustain an inflammatory response and contribute to the occurrence of late complications.Our study aimed to evaluate the efficacy and safety of the BuMA biodegradable drug-coated sirolimus-eluting stent(BSES)for inhibiting neointimal hyperplasia in a porcine coronary model.Methods Four types of stents were implanted at random in different coronary arteries of the same pig:BSES(n=24),bare metal stent(BMS)(n=24),biodegradable polymer coated stent without drug(PCS)(n=24)and only poly(n-butyl methacrylate)base layer coated stent(EGS)(n=23).In total,26 animals underwent successful random placement of 95 oversized stents in the coronary arteries.Coronary angiography was performed after 28 days,90 days and 240 days of stent implantation.After 14 days,28 days,90 days and 240 days,6 animals at each timepoint were sacrificed for histomorphologic analysis.Results The 28-day,90-day and 240-day results of quantitative coronary angiography(QCA)showed reduction in luminal loss(LL)in the BSES group when compared with the BMS group;(0.20±0.35)mm vs.(0.82±0.51)mm(P=0.035),(0.20±0.30)mm vs.(0.93±0.51)mm(P=0.013),and(0.18±0.16)mm vs.(0.19±0.24)mm(P=0.889),respectively.By 28-day,90-day and 240-day histomorphomeric analysis results,there was also a corresponding significant reduction in neointimal tissue proliferation with similar injury scores of BSES compared with the BMS control;average neointimal area(0.90±0.49)mm2 vs.(2.16±1.29)mm2(P=0.049),(1.53±0.84)mm2 vs.(3.41±1.55)mm2(P=0.026),and(2.43±0.95)mm2 vs.(3.12±1.16)mm2(P=0.228),respectively.High magnification histomorphologic examination revealed similar inflammation scores and endothelialization scores in both the BSES and BMS groups.Conclusions The BuMA biodegradable drug-coated sirolimus-eluting stents can significantly reduce neointimal

  10. A Computational Model to Assess Poststenting Wall Stresses Dependence on Plaque Structure and Stenosis Severity in Coronary Artery

    Directory of Open Access Journals (Sweden)

    Zuned Hajiali

    2014-01-01

    Full Text Available The current study presents computational models to investigate the poststenting hemodynamic stresses and internal stresses over/within the diseased walls of coronary arteries which are in different states of atherosclerotic plaque. The finite element method is applied to build the axisymmetric models which include the plaque, arterial wall, and stent struts. The study takes into account the mechanical effects of the opening pressure and its association with the plaque severity and the morphology. The wall shear stresses and the von Mises stresses within the stented coronary arteries show their strong dependence on the plaque structure, particularly the fibrous cap thickness. Higher stresses occur in severely stenosed coronaries with a thinner fibrous cap. Large stress concentrations around the stent struts cause injury or damage to the vessel wall which is linked to the mechanism of restenosis. The in-stent restenosis rate is also highly dependent on the opening pressure, to the extent that stenosed artery is expanded, and geometry of the stent struts. The present study demonstrates, for the first time, that the restenosis is to be viewed as a consequence of biomechanical design of a stent repeating unit, the opening pressure, and the severity and morphology of the plaque.

  11. Assessment of early radial injury after transradial coronary intervention by high-resolution ultrasound biomicroscopy:innovative technology application

    Institute of Scientific and Technical Information of China (English)

    SHEN Hua; JIA De-an; HAN Hong-ya; YU Miao; MA Qian; XU Xiao-han; ZHOU Yu-jie; LIU Yu-yang; DU Jie; LIU Xiao-li; YAN Zhen-xian; WANG Zhi-jian; GAO Fei; YANG Shi-wei

    2012-01-01

    Background Transradial coronary intervention (TRI) introduces injury to the radial artery (RA) which will affect repeat transradial coronary procedure and the quality as a bypass conduit.We sought to compare the early radial injury after TRI between first-TRI and repeat-TRI by ultrasound biomicroscopy (UBM).Methods A total of 1116 patients who underwent the transradial coronary procedures were enrolled.The patients depending on whether for the first time to accept transradial coronary procedure were divided into first-TRI group and repeat-TRI group.The RA was examined by UBM before and one day after the procedure.Results Compared with first-TRI group,the mean RA diameter of repeat-TRI one day after the procedure decreased significantly (P <0.05).In first-TRI group,the mean RA diameter was (2.32±0.53) and (1.93±0.57) mm before procedure and one day after the procedure respectively (P <0.05).In repeat-TRI group,the mean RA diameter was (2.37±0.51) and (1.79±0.54) mm before procedure and one day after the procedure,respectively (P <0.01).Compared with first-TRI group,the mean RA diameter was reduced significantly in repeat-TRI group one day after the procedure (P<0.05).The early radial injuries and intimal thickening were compared between first-TRI and repeat-TRI.The mean intima-media thickness of RA was (0.24±0.13) mm and (0.59±0.28) mm before procedure and one day after the procedure in first-TRI group.The mean intima-media thickness of RA was (0.29±0.16) mm and (0.68±0.32) mm before procedure and one day after the procedure in repeat-TRI group.Compared with first-TRI group,the mean intimal thickening was increased significantly in repeat-TRI group one day after the procedure (P<0.05).Intimal dissection,stenosis and occlusion were all significantly greater in repeat-TRI RAs (P <0.05).Linear regression analysis revealed that diameter,repeated TRI procedure and PCI procedure were the independent predictors of intimal thickening.Conclusions RA early

  12. A laboratory model of the aortic root flow including the coronary arteries

    Science.gov (United States)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  13. Framingham Risk Scores for coronary heart disease in a cohort of Saudi Arabian men and women with spinal cord injury.

    Science.gov (United States)

    Hussain, Amjad; Qureshi, Ahmed Zaheer; Ayaz, Saeed Bin; Rathore, Farooq Azam

    2016-06-01

    People with spinal cord injury (SCI) are at increased risk of developing coronary heart disease (CHD). This study aimed at predicting CHD risk in a cohort of Saudi patients with SCI in comparison with patients without SCI and to correlate different demographic and clinical factors with Framingham Risk Score (FRS) in SCI patients. The study was conducted at the rehabilitation and the main hospitals of King Fahad Medical City, Riyadh, Saudi Arabia; on sixty patients with SCI and sixty controls of age ≥20 years. FRS was calculated on a web-based calculator. For the SCI group, sub-groups were made for statistical analysis based on gender, cigarette smoking, neurological level and completeness of injury. The mean FRS for the SCI group (2 ± 7.9) was significantly higher (P Saudi patients with SCI had a higher FRS as compared to controls, however, majority had a low risk of developing CHD in next 10 years. The age, SBP and total cholesterol surfaced as positive predictors of CHD in SCI patients. Time since SCI, smoking, and neurological level or completeness of injury did not influence the resultant FRS and thus the development of CHD.

  14. Towards Patient-Specific Modeling of Coronary Hemodynamics in Healthy and Diseased State

    Directory of Open Access Journals (Sweden)

    Arjen van der Horst

    2013-01-01

    Full Text Available A model describing the primary relations between the cardiac muscle and coronary circulation might be useful for interpreting coronary hemodynamics in case multiple types of coronary circulatory disease are present. The main contribution of the present study is the coupling of a microstructure-based heart contraction model with a 1D wave propagation model. The 1D representation of the vessels enables patient-specific modeling of the arteries and/or can serve as boundary conditions for detailed 3D models, while the heart model enables the simulation of cardiac disease, with physiology-based parameter changes. Here, the different components of the model are explained and the ability of the model to describe coronary hemodynamics in health and disease is evaluated. Two disease types are modeled: coronary epicardial stenoses and left ventricular hypertrophy with an aortic valve stenosis. In all simulations (healthy and diseased, the dynamics of pressure and flow qualitatively agreed with observations described in literature. We conclude that the model adequately can predict coronary hemodynamics in both normal and diseased state based on patient-specific clinical data.

  15. Prediction of peri-procedural myocardial injury in patients undergoing percutaneous coronary intervention by syntax score

    Directory of Open Access Journals (Sweden)

    Ahmed Fathy

    2014-03-01

    Conclusion: Syntax score has the ability to predict the occurrence of PMI with accepted sensitivity. It can assess the patient risk for development of PMI which could help to rationalize the use of adjunctive therapies as distal embolic protection devices in high risk patients. Also, diabetic patients have higher incidence of complicated coronary lesions, higher syntax score and they are more labile for PMI.

  16. Impact of multi-vessel therapy to the risk of periprocedural myocardial injury after elective coronary intervention: exploratory study.

    Science.gov (United States)

    Chen, Zhang-Wei; Yang, Hong-Bo; Chen, Ying-Hua; Ma, Jian-Ying; Qian, Ju-Ying; Ge, Jun-Bo

    2017-02-27

    Periprocedural myocardial injury (PMI) after elective percutaneous coronary intervention (PCI) significantly influences the prognosis of coronary artery disease (CAD). However, it was unclear whether the occurrence of PMI was associated with a series of controllable factors, such as PCI strategy or severity of CAD. A total of 544 consecutive stable CAD patients underwent elective PCI were enrolled. The main outcome is PMI, defined as troponin T after PCI was at least one value above the 99th percentile upper reference limit. Major adverse cardiac events (MACE), including all-cause death, repeat myocardial infarction and target vessel revascularization were record in the period of follow-up. Univariate and multivariate analysis was applied to assess predictors for the occurrence of PMI. The incidence of PMI was 38.8% in the study. Compared with non-PMI patients (n = 333), PMI patients (n = 211) had more diseased vessels, higher Gensini and Syntax score. Meanwhile, there were higher incidence of MACE in PMI groups (9.5% vs. 3.2%, P PMI patients underwent higher proportion of multi-vessel PCI simultaneously (32.2% vs. 10.5%, P PMI was still increased 84% by multi-vessel PCI independently (OR = 1.654, 95% CI = 1.004-2.720, P PMI occurred more commonly in stable CAD patients underwent multi-vessel PCI. Multi-vessel international therapy could increase the risk of PMI in elective PCI.

  17. Involvement of innate and adaptive immunity in a murine model of coronary arteritis mimicking Kawasaki disease.

    Science.gov (United States)

    Schulte, Danica J; Yilmaz, Atilla; Shimada, Kenichi; Fishbein, Michael C; Lowe, Emily L; Chen, Shuang; Wong, Michelle; Doherty, Terence M; Lehman, Thomas; Crother, Timothy R; Sorrentino, Rosalinda; Arditi, Moshe

    2009-10-15

    Kawasaki disease (KD) is the most common cause of acquired cardiac disease and acute vasculitis in children in the developed world. Injection of a cell wall extract isolated from Lactobacillus casei (LCCWE) into mice causes a focal coronary arteritis that histopathologically mimics the coronary lesions observed in KD patients. In this study we used this model to investigate the participation of T cells, B cells, and dendritic cells (DC) in the development of coronary arteritis. RAG1(-/-), B cell(null), and wild-type (WT) mice were injected with a single dose of LCCWE (500 microg/mouse i.p.). None of the RAG1(-/-) mice developed coronary arteritis, whereas 70% of WT and 100% of B cell(null) mice developed coronary lesions, indicating that T cells were required for lesion formation. When splenocytes isolated from LCCWE-treated mice were restimulated with LCCWE, we observed significant IFN-gamma secretion in WT but not in RAG1(-/-) mice. Immunohistochemical staining showed F4/80(+) macrophages, activated MIDC-8(+) myeloid DCs (mDC), plasmacytoid DCs, and colocalization of CD3(+) T cells with mDCs in coronary artery lesions, suggesting an Ag-driven process. T cells but not B cells are required for LCCWE-induced coronary arteritis. Similar to human lesions, the coronary lesions contain macrophages, activated mDCs, and plaslmacytoid DCs all in close proximity to T cells, further strengthening the relevance of this mouse model to the immunopathology of coronary disease in KD. These studies are consistent with the interpretation that macrophages and DCs may collaborate with T cells in the pathological mechanisms of coronary arteritis.

  18. How Strong Is the Evidence for Sodium Bicarbonate to Prevent Contrast-Induced Acute Kidney Injury After Coronary Angiography and Percutaneous Coronary Intervention?

    Science.gov (United States)

    Dong, Yuhao; Zhang, Bin; Liang, Long; Lian, Zhouyang; Liu, Jing; Liang, Changhong; Zhang, Shuixing

    2016-01-01

    Abstract Hydration with sodium bicarbonate is one of the strategies to prevent contrast-induced acute kidney injury (CI-AKI). The purpose of this study was to determine how strong is the evidence for sodium bicarbonate to prevent CI-AKI after coronary angiography (CAG) and/or percutaneous coronary intervention (PCI). We conducted PubMed, EMBASE, and CENTRAL databases to search for randomized controlled trials (RCTs) comparing the efficacy of sodium bicarbonate with sodium chloride to prevent CI-AKI after CAG and/or PCI. Relative risk (RR), standardized mean difference (SMD), or weighted mean difference (WMD) with 95% confidence intervals (CIs) was calculated. Heterogeneity, publication bias, and study quality were evaluated, sensitivity analyses, cumulative analyses, and subgroup analyses were performed. The risk of random errors was assessed by trial sequential analysis (TSA). Sixteen RCTs (3537 patients) met the eligibility criteria. Hydration with sodium bicarbonate showed significant beneficial effects in preventing CI-AKI (RR 0.67; 95% CI: 0.47–0.96, P = 0.029), decreasing the change in serum creatinine (SCr) (SMD −0.31 95% CI: −0.55 to −0.07, P = 0.011) and estimated glomerular filtration rate (eGFR) (SMD −0.17 95% CI: −0.30 to −0.04, P = 0.013). But no significant differences were observed in the requirement for dialysis (RR 1.11; 95% CI: 0.60–2.07, P = 0.729), mortality (RR 0.71; 95% CI: 0.41–1.21, P = 0.204) and reducing the length of hospital stay (LHS) (WMD −1.47; 95% CI: −4.14 to 1.20, P = 0.279). The result of TSA on incidence of CI-AKI showed the required information size (RIS = 6614) was not reached and cumulative z curve did not cross TSA boundary. The result of TSA on the requirement for dialysis and mortality demonstrated the required information sizes (RIS = 170,510 and 19,516, respectively) were not reached, and the cumulative z-curve did not cross any boundaries. The evidence that sodium

  19. Assessment of myocardial injury markers and neurohumoral indicators in serum after STEMI patients received percutaneous coronary intervention combined with thrombus aspiration

    Institute of Scientific and Technical Information of China (English)

    Ling Gong

    2016-01-01

    Objective:To study the myocardial injury markers and neurohumoral indicators in serum after STEMI patients received percutaneous coronary intervention combined with thrombus aspiration.Methods:Patients with acute ST-segment elevation myocardial infarction who received percutaneous coronary intervention in our hospital from May 2010 to December 2015 were selected for study, 48 cases of patients who received PCI combined with thrombus aspiration and 50 cases of patients who received direct PCI were screened and included in experimental group and control group respectively. The degree of myocardial injury and neurohumoral indicators of two groups were compared.Results:Intraoperative TIMI grade of experimental group was significantly higher than that of control group, peak values of CK-MB, cTnT and cTnI 24 h after operation were significantly lower than those of control group, and ST-segment fallback ratio within 1h after operation was significantly higher than that of control group; 24h after operation, serum renin, angiotensin II, aldosterone, sodium and endothlin-1 content of experimental group were significantly lower than those of control group, potassium and nitric oxide content were significantly higher than those of control group, and the number of CD31+/CD42b- EMPs in peripheral blood was significantly lower than that of control group. Conclusion:Percutaneous coronary intervention combined with thrombus aspiration treatment of STEMI can improve coronary perfusion, reduce myocardial cell injury, inhibit RAS system activation and protect endothelial function.

  20. A mathematical model for the vessel recruitment in coronary microcirculation in the absence of active autoregulation.

    Science.gov (United States)

    Saracco, Alice; Bauckneht, Matteo; Verna, Edoardo; Ghiringhelli, Sergio; Repetto, Rodolfo; Sambuceti, Gianmario; Provasoli, Stefano; Storace, Marco

    2016-03-01

    This paper proposes a mathematical model for vessel recruitment in the microvascular coronary network. The model is based on microvascular network units (MVNUs), where we define a MVNU as a portion of the microvascular network comprising seven generations of identical, parallel-arranged vessels (upstream arteries, large and small arterioles, capillaries, small and large venules, and downstream veins). The model implements a new mechanism to describe the variation in the number of MVNU in response to sudden variations of the local input pressure. In particular, it describes a recruitment mechanism dependent on distal pressure which operates in the coronary microcirculatory network even in maximally dilated conditions. We apply the model to interpret data from 29 patients who underwent revascularization by percutaneous coronary intervention (PCI). Treated vessels were the left anterior descending coronary artery, the left circumflex and the right coronary artery in 26, 2 and 1 patients, respectively. Following intracoronary adenosine administration, distal coronary pressure and blood flow were 48 ± 18 mmHg and 45 ± 30 ml/min before PCI, respectively, and significantly increased afterwards to 80 ± 17 mmHg and 68 ± 32 ml/min (p<0.001). The model predicts an increase in MVNU number in patients with preserved wall motion in the myocardial region which underwent PCI. On the contrary, a decrease in MVNU number is predicted by the model in patients with regional dysfunction and implies a relatively lower response of maximal flow to revascularization.

  1. A logistic regression model of Coronary Artery Disease among Male Patients in Punjab

    Directory of Open Access Journals (Sweden)

    Sohail Chand

    2005-07-01

    Full Text Available This is a cross-sectional retrospective study of 308 male patients, who were presented first time for coronary angiography at the Punjab Institute of Cardiology. The mean age was 50.97 + 9.9 among male patients. As the response variable coronary artery disease (CAD was a binary variable, logistic regression model was fitted to predict the Coronary Artery Disease with the help of significant risk factors. Age, Chest pain, Diabetes Mellitus, Smoking and Lipids are resulted as significant risk factors associated with CAD among male population.

  2. Dissecting the Effects of Ischemia and Reperfusion on the Coronary Microcirculation in a Rat Model of Acute Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Maurits R Hollander

    Full Text Available Microvascular injury (MVI after coronary ischemia-reperfusion is associated with high morbidity and mortality. Both ischemia and reperfusion are involved in MVI, but to what degree these phases contribute is unknown. Understanding the etiology is essential for the development of new potential therapies.Rats were divided into 3 groups receiving either 30 minutes ischemia, 90 minutes ischemia or 30 minutes ischemia followed by 60 minutes reperfusion. Subsequently hearts were ex-vivo perfused in a Langendorff-model. Fluorescence and electron microscopy was used for analysis of capillary density, vascular permeability and ultrastructure. Most MVI was observed after 30 minutes ischemia followed by 60 minutes reperfusion. In comparison to the 30' and 90' ischemia group, wall thickness decreased (207.0±74 vs 407.8±75 and 407.5±71, p = 0.02. Endothelial nuclei in the 30'-60' group showed irreversible damage and decreased chromatin density variation (50.5±9.4, 35.4±7.1 and 23.7±3.8, p = 0.03. Cell junction density was lowest in the 30'-60' group (0.15±0.02 vs 2.5±0.6 and 1.8±0.7, p<0.01. Microsphere extravasation was increased in both the 90' ischemia and 30'-60' group.Ischemia alone for 90 minutes induces mild morphological changes to the coronary microcirculation, with increased vascular permeability. Ischemia for 30 minutes, followed by 60 minutes of reperfusion, induces massive MVI. This shows the direct consequences of reperfusion on the coronary microcirculation. These data imply that a therapeutic window exists to protect the microcirculation directly upon coronary revascularization.

  3. Computational Biology: Modeling Chronic Renal Allograft Injury.

    Science.gov (United States)

    Stegall, Mark D; Borrows, Richard

    2015-01-01

    New approaches are needed to develop more effective interventions to prevent long-term rejection of organ allografts. Computational biology provides a powerful tool to assess the large amount of complex data that is generated in longitudinal studies in this area. This manuscript outlines how our two groups are using mathematical modeling to analyze predictors of graft loss using both clinical and experimental data and how we plan to expand this approach to investigate specific mechanisms of chronic renal allograft injury.

  4. Effect of one-cycle remote ischemic preconditioning to reduce myocardial injury during percutaneous coronary intervention.

    Science.gov (United States)

    Zografos, Theodoros A; Katritsis, George D; Tsiafoutis, Ioannis; Bourboulis, Nikolaos; Katsivas, Apostolos; Katritsis, Demosthenes G

    2014-06-15

    Up to 1/3 of percutaneous coronary interventions (PCIs) are complicated by troponin release. Remote ischemic preconditioning (IPC) confers effective cardioprotection; however, a 30-minute remote IPC protocol may be difficult to implement during ad hoc PCI. This study was performed to assess the ability of a brief remote IPC protocol to attenuate cardiac troponin I (cTnI) release after ad hoc PCI. Ninety-four patients undergoing ad hoc PCI for stable coronary artery disease, with undetectable preprocedural cTnI, were recruited and randomized to receive remote IPC (induced by one 5-minute inflation of a blood pressure cuff to 200 mm Hg around the upper arm) or control after the decision for PCI was made. The primary outcome was the difference between cTnI levels 24 hours after PCI and cTnI levels before coronary angiography (ΔcTnI). ΔcTnI in the remote IPC group was significantly lower compared with the control group (0.04 ng/ml [interquartile range 0.01 to 0.14] vs 0.19 ng/ml [interquartile range 0.18 to 0.59], p <0.001). The incidence of PCI-related myocardial infarction (MI) was greater in the control group (42.6% vs 19.1%, p = 0.014). In multivariate analysis, remote IPC was independently associated with ΔcTnI and PCI-related MI. In conclusion, our results suggest that even 1 cycle of remote IPC immediately before ad hoc PCI attenuates periprocedural cTnI release and reduces the incidence of type 4a MI.

  5. The impact of a single episode of remote ischemic preconditioning on myocardial injury after elective percutaneous coronary intervention

    Science.gov (United States)

    Taylan, Gökay; Aktoz, Meryem; Gürlertop, Hanefi Y.; Aksoy, Yüksel; Özçelik, Fatih; Yalta, Kenan; Ekuklu, Galip

    2017-01-01

    Introduction Myocardial injury after percutaneous coronary intervention (PCI) occurs in approximately 30% of procedures, and is related to worse prognosis. Effects of remote ischemic preconditioning (RIPC) on reperfusion injury have been investigated before, yielding conflicting results. Aim To assess the impact of a single episode of RIPC on myocardial injury after elective PCI. Material and methods One hundred and four patients undergoing elective PCI, with normal baseline cardiac troponin-I (cTn-I) values, were randomized to two groups. Two patients were excluded due to data loss, and 102 patients were analyzed. Five minutes of ischemic preconditioning was delivered just before the intervention to the preconditioning group, by inflating the blood pressure cuff up to 200 mm Hg on the non-dominant arm. Postprocedural 16th hour cTn-I, ΔcTn-I (difference between the 16th h and baseline cTn-I values) and the prevalence of type 4a myocardial infarction were compared between the two groups. Results Median cTn-I values after the procedure were compared. 16th hour cTn-I was insignificantly lower in the preconditioning arm (0.026 μg/l vs. 0.045 μg/l, p = 0.186). The incidence of cTn-I elevation 5-fold above the upper reference limit (URL) (> 0.115 μg/l) was lower in the preconditioning group, but it was also not significant (21.6% vs. 11.8%, p = 0.184). Conclusions A single episode of RIPC before elective PCI demonstrated less troponin elevation but failed to show a significant effect. PMID:28344616

  6. Frequency of Acute Kidney Injury in Patients Treated With Normal Saline after Off-Pump Coronary Artery Bypass Grafting

    Directory of Open Access Journals (Sweden)

    Shima Sheybani

    2017-03-01

    Full Text Available Introduction: Acute kidney injury (AKI is a common postoperative complication of cardiac surgery, which is associated with an increased risk of morbidity and mortality. This study investigated the frequency of postoperative AKI in low risk adult patients undergoing off-pump coronary artery bypass grafting (CABG.Materials & Methods: All consecutive adult patients of American Society of Anesthesiologists (ASA class II and III, who were transferred to the post-operative cardiac surgery ICU after off-pump CABG and were low risk for AKI from October 2013 to September 2014 at Emam Reza Hospital, Mashhad, Iran were enrolled in this prospective cohort study at a teaching hospital. The patients were explored for AKI development, based on risk-injury-failure-loss- end stage kidney disease (RIFLE and acute kidney injury network (AKIN criteria, frequency of metabolic acidosis, hypernatremia, hyperchloremia, and length of stay in ICU.Results: According to the results of the present study, 479 patients with the mean age of 60.8±10.75 yrs were included. AKI occurred in 22 (4.4% and23 (4.8% patients, based on both the RIFLE and AKIN criteria, respectively with the highest rate of AKI, reported on the third and fourth post-operative days. Additionally, hyperchloremia and hypernatremia were observed in 71 (14.8% and 76 (15.9% patients, respectively. Only one case of mortality occurred during the study. Metabolic acidosis was reported in 112 (23.4% patients with a high anion gap in 60 (12.5% cases.Conclusion: The current study demonstrated that hypernatremia and metabolic acidosis but not AKI are frequently seen in patients receiving normal saline following off pump CABG with low risk for AKI.

  7. Deceleration injury of concomitant coronary artery and thoracic aorta:a case report

    Institute of Scientific and Technical Information of China (English)

    陶谦民; 陈君柱; 张芙荣; 邱原刚; 朱建华; 郑良荣

    2002-01-01

    An unusual case resulted from a motor vehicle accident presented with hemo-mediastinum and left pneumohemo~throrax and delayed anterior myocardial infarction. Further examination revealed a traumatic transection of left anterior descending coronary artery and a thoracic ortic rupture. Percutaneous revascularization of the left anterior descending artery was unsuccessful because the gidewire failed to pass through the stenosis, but aortic disruption was successfully stented with a stent graft. The patient recovered well, but aneurysm of cardiac anterior wall and decreased heart function remained.

  8. Late coronary artery and tricuspid valve injury post pectus excavatum surgery.

    Science.gov (United States)

    Bibiloni Lage, Ignacio; Khan, Khalid; Kaabneh, Ahmed; Kendall, Simon

    2013-10-01

    We report the surgical case of a 25-year old man admitted because of progressive dyspnoea and stabbing chest pain, who had undergone a pectus excavatum correction using a retrosternal strut 8 years previously. The computerized tomography scan showed that the right tip of the pectus bar had migrated across his right ventricle and tricuspid valve into the right atrium. Intraoperatively, it was confirmed that in its path, the right coronary artery and the posterior leaflet of the tricuspid valve had been damaged. After removing the bar and repairing the tricuspid valve, the patient made a full recovery.

  9. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  10. Human models of acute lung injury

    Directory of Open Access Journals (Sweden)

    Alastair G. Proudfoot

    2011-03-01

    Full Text Available Acute lung injury (ALI is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.

  11. A Blast Model of Traumatic Brain Injury in Swine

    Science.gov (United States)

    2009-05-01

    public release; distribution unlimited Although blast-induced traumatic brain injury (BI- TBI ) is a significant cause of morbidity and behavioral...survival model of BI- TBI in swine. Traumatic Brain Injury , Swine, Blast, Model Development U U U 7 USAMRMC W81XWH-08-2-0082... Injury , TBI Scientific Advisor, Defense Center of Excellence for Psychological Health and Traumatic Brain Injury ) and Dr. Tamara Crowder at the DoD

  12. Permanent ligation of the left anterior descending coronary artery in mice: a model of post-myocardial infarction remodelling and heart failure.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Lox, Marleen; Jacobs, Frank; De Geest, Bart

    2014-12-02

    Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.

  13. Intra-coronary administration of soluble receptor for advanced glycation end-products attenuates cardiac remodeling with decreased myocardial transforming growth factor-β1 expression and fibrosis in minipigs with ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    LU Lin; SHEN Wei-feng; ZHANG Qi; XU Yan; ZHU Zheng-bin; GENG Liang; WANG Ling-jie; JIN Cao; CHEN Qiu-jing; Ann Marie Schmidt

    2010-01-01

    Background The cardioprotective effects of soluble receptor for advanced glycation end-products (sRAGE) have not been evaluated in large animals and the underlying mechanisms are not fully understood. This study aimed to evaluate the effects of intra-coronary administration of sRAGE on left ventricular function and myocardial remodeling in a porcine model of ischemia-reperfusion (I/R) injury. Methods Ten male minipigs with I/R injury were randomly allocated to receive intra-coronary administration of sRAGE (sRAGE group, n=5) or saline (control group, n=5). Echocardiography was performed before and 2 months after infarction. Myocardial expression of transforming growth factor (TGF)-β1was determined by immunohistochemistry and fibrosis was evaluated by Sirius red staining. Results As compared with the baseline values in the control animals, left ventricular end-diastolic volume (from (19.5 5.1) to (32.3 5.6) ml, P <0.05) and end-systolic volume (from (8.3 3.2) to (15.2 4.1) ml, P <0.05) were significantly increased, whereas ejection fraction was decreased (from (61.6 13.3)% to (50.2 11.9)%, P<0.05). No obvious change in these parameters was observed in the sRAGE group. Myocardial expression of TGF-β1 was significantly elevated in the infarct and non-infarct regions in the control group, as compared with sRAGE group (both P<0.01). Fibrotic lesions were consistently more prominent in the infarct region of the myocardium in the control animals (P<0.05). Conclusion Intra-coronary sRAGE administration attenuates RAGE-mediated myocardial fibrosis and I/R injury through a TGF-β1-dependent mechanism, suggesting a clinical potential in treating RAGE/ligand-associated cardiovascular diseases.

  14. Development of a model of the coronary arterial tree for the 4D XCAT phantom

    Science.gov (United States)

    Fung, George S. K.; Segars, W. Paul; Gullberg, Grant T.; Tsui, Benjamin M. W.

    2011-09-01

    A detailed three-dimensional (3D) model of the coronary artery tree with cardiac motion has great potential for applications in a wide variety of medical imaging research areas. In this work, we first developed a computer-generated 3D model of the coronary arterial tree for the heart in the extended cardiac-torso (XCAT) phantom, thereby creating a realistic computer model of the human anatomy. The coronary arterial tree model was based on two datasets: (1) a gated cardiac dual-source computed tomography (CT) angiographic dataset obtained from a normal human subject and (2) statistical morphometric data of porcine hearts. The initial proximal segments of the vasculature and the anatomical details of the boundaries of the ventricles were defined by segmenting the CT data. An iterative rule-based generation method was developed and applied to extend the coronary arterial tree beyond the initial proximal segments. The algorithm was governed by three factors: (1) statistical morphometric measurements of the connectivity, lengths and diameters of the arterial segments; (2) avoidance forces from other vessel segments and the boundaries of the myocardium, and (3) optimality principles which minimize the drag force at the bifurcations of the generated tree. Using this algorithm, the 3D computational model of the largest six orders of the coronary arterial tree was generated, which spread across the myocardium of the left and right ventricles. The 3D coronary arterial tree model was then extended to 4D to simulate different cardiac phases by deforming the original 3D model according to the motion vector map of the 4D cardiac model of the XCAT phantom at the corresponding phases. As a result, a detailed and realistic 4D model of the coronary arterial tree was developed for the XCAT phantom by imposing constraints of anatomical and physiological characteristics of the coronary vasculature. This new 4D coronary artery tree model provides a unique simulation tool that can be

  15. Coronary heart disease risk indicators, aerobic power, and physical activity in men with spinal cord injuries

    NARCIS (Netherlands)

    Janssen, T W; van Oers, C A; van Kamp, G J; TenVoorde, B J; van der Woude, L H; Hollander, A P

    OBJECTIVE: To compare the lipid and (apo-)lipoprotein profile and blood pressure of men with long-standing spinal cord injuries (SCI) to those of an age-matched able-bodied (AB) population, and to assess the most important determinants of this profile and blood pressure. DESIGN: A cross-sectional

  16. Effect of cardiopulmonary bypass on tissue injury markers and endothelial activation during coronary artery bypass graft surgery

    Directory of Open Access Journals (Sweden)

    S Nair

    2012-01-01

    Full Text Available Background: Coronary artery bypass grafting (CABG is done either using cardiopulmonary bypass (CPB or without using CPB (OPCAB. But, recently, reports have shown that CPB is associated with increased postoperative morbidity because of the involvement of many systems. Aims: The aim of this prospective study was to evaluate the influence of the technique of surgery on various tissue injury markers and the extent of endothelial activation in patients undergoing CABG and OPCAB coronary revascularization. Settings and Design: This study was conducted at a tertiary healthcare center during the period May 2008 to December 2009. Materials and Methods: This was a prospective nonrandomized blinded study. The activities of Creatine Phosphokinase (CK and its isoenzyme CK-MB, Lactate dehydrogenase (LDH, levels of cardiac Troponin I, soluble vascular cell adhesion molecule-1 (sVCAM-I and systemic nitric oxide production were assessed. Statistical analysis: All the results were expressed as Mean±SD. P value ≤0.05 was considered significant. The statistical analysis was carried out using SPSS Version 11.5-computer software (SPSS Inc., Chicago, IL, USA. Results: The surgical trauma had elevated CK, CK-MB and Troponin I in both the groups and further elevation was seen in the CABG group in comparison to OPCAB (P<0.001. The Troponin I concentrations showed an increase from 0.11±0.02 preoperatively to 6.59±0.59 (ng/ml at 24 h (P<0.001 compared to the OPCAB group. Mean serum levels of sVCAM-1 increased significantly after surgery in both the groups (P<0.02. To determine serum nitric oxide (NO production, NO2− and NO3− (stable end products of NO oxidation were analyzed which also increased significantly at 24 h in both the groups. But the increase was not significant at 48 h in both the groups compared to the preoperative value in our study. Conclusion: The present study indicates that, despite comparable surgical trauma, the OPCAB significantly reduces

  17. Development of a rabbit model for a preclinical comparison of coronary stent types in-vivo.

    Science.gov (United States)

    Lee, Joo Myung; Lee, Jaewon; Jeong, Heewon; Choe, Won Seok; Seo, Won-Woo; Lim, Woo-Hyun; Kim, Young-Chan; Hur, Jin; Lee, Sang Eun; Yang, Han-Mo; Cho, Hyun-Jai; Kim, Hyo-Soo

    2013-11-01

    Along with the development of innovative stent designs, preclinical trials in animal models are essential. Many animal models have been used and appear to yield comparable results to clinical trials despite substantial criticisms about their validity. Among the animal models, porcine coronary artery models have been the standard models for the preclinical evaluation of endovascular devices. However, rapid growth rate, high body weight potential, and the propensity to develop granulomatous inflammatory reactions are major limitations of the porcine coronary artery model. Compared with porcine coronary artery models, the comparative rabbit iliac artery model has the advantages of being small and easy to handle and relatively inexpensive. Furthermore, the rabbit model has been known to reliably reflect human restenosis histopathologically and have major advantages such as pairwise comparison, which makes each animal serve as its own control subject, therefore, maximizing its statistical power for comparative testing. However, despite the widespread use of this model, a systematic description of the procedure and harvest protocols has never been published. This article describes the surgical procedure, stent implantation procedure, method for tissue harvesting, and how measurements are performed. Although the results of animal models may not perfectly extrapolate to humans, the comparative rabbit iliac artery model may be a useful tool for assessing and comparing the efficacy of new coronary stents with conventional stent systems. This thorough description of the techniques required for vascular access, stent implantation, tissue preparation, and measurement, should aid investigators wishing to begin using the comparative rabbit iliac artery model.

  18. Influence of anatomical dominance and hypertension on coronary conduit arterial and microcirculatory flow patterns: a multiscale modeling study.

    Science.gov (United States)

    Mynard, Jonathan P; Smolich, Joseph J

    2016-07-01

    Coronary hemodynamics are known to be affected by intravascular and extravascular factors that vary regionally and transmurally between the perfusion territories of left and right coronary arteries. However, despite clinical evidence that left coronary arterial dominance portends greater cardiovascular risk, relatively little is known about the effects of left or right dominance on regional conduit arterial and microcirculatory blood flow patterns, particularly in the presence of systemic or pulmonary hypertension. We addressed this issue using a multiscale numerical model of the human coronary circulation situated in a closed-loop cardiovascular model. The coronary model represented left or right dominant anatomies and accounted for transmural and regional differences in vascular properties and extravascular compression. Regional coronary flow dynamics of the two anatomical variants were compared under normotensive conditions, raised systemic or pulmonary pressures with maintained flow demand, and after accounting for adaptations known to occur in acute and chronic hypertensive states. Key findings were that 1) right coronary arterial flow patterns were strongly influenced by dominance and systemic/pulmonary hypertension; 2) dominance had minor effects on left coronary arterial and all microvascular flow patterns (aside from mean circumflex flow); 3) although systemic hypertension favorably increased perfusion pressure, this benefit varied regionally and transmurally and was offset by increased left ventricular and septal flow demands; and 4) pulmonary hypertension had a substantial negative effect on right ventricular and septal flows, which was exacerbated by greater metabolic demands. These findings highlight the importance of interactions between coronary arterial dominance and hypertension in modulating coronary hemodynamics.

  19. Efficacy of Multidetector Computed Tomography to Predict Periprocedural Myocardial Injury After Percutaneous Coronary Intervention for Chronic Total Occlusion.

    Science.gov (United States)

    Usui, Eisuke; Lee, Tetsumin; Murai, Tadashi; Kanaji, Yoshihisa; Matsuda, Junji; Araki, Makoto; Yonetsu, Taishi; Yamakami, Yosuke; Kimura, Shigeki; Kakuta, Tsunekazu

    2017-02-07

    Specific signatures of culprit lesions detected on multidetector computed tomography (MDCT) were identified as predictors of periprocedural myocardial injury (PMI) after percutaneous coronary intervention (PCI) in patients with stable angina; PMI has been shown to be associated with a worse prognosis. We investigated the association between preprocedural culprit lesion characteristics, assessed by MDCT, and PMI after PCI for chronic total occlusion (CTO). From three medical centers, 81 patients who underwent pre-PCI MDCT and CTO PCI, and systematic cardiac troponin (cTn) sampling before and after PCI, were included. Patients were divided into two groups according to the presence or absence of post-PCI cTn elevation. Patient characteristics, MDCT findings, and procedural variables were compared between the two groups. Procedure success was observed in 65 patients (80.2%) and was not associated with PMI. The incidence of PMI was higher in patients treated with the retrograde versus the antegrade approach. On MDCT, lesion length and the presence of the napkin-ring sign were significantly associated with PMI. Multivariate analysis revealed that the lesion length (odds ratio [OR]: 1.04; 95% confidence interval [CI]: 1.01-1.08; P PMI. PMI is not uncommon in patients undergoing elective CTO PCI, regardless of procedure success or failure. Pre-PCI MDCT may help identify patients at high risk for PMI after CTO PCI.

  20. Effect of danhong injection on endothelial injury, degree of inflammation and cardiac function of patients with acute coronary syndrome after interventional therapy

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Jin-Peng Xu; Wei-Ying Di; Jing Li; Zhan-Wen Xu; Xing-Zhou Zhao; Shu-Jiang Song; Fu-Lin Liu

    2016-01-01

    Objective:To analyze the effect of danhong injection on endothelial injury, degree of inflammation and cardiac function of patients with acute coronary syndrome after interventional therapy.Methods:A total of 104 patients with acute coronary syndrome who received inpatient treatment in our hospital from August 2012 to August 2015 were chosen as the research subjects and randomly divided into observation group 52 cases and control group 52 cases according to different treatment. Control group received clinical routine interventional therapy for acute coronary syndrome, the observation group received danhong injection adjuvant treatment on the basis of interventional therapy, and then endothelial injury, the degree of inflammation and cardiac function were compared between two groups.Results:After observation group received danhong injection adjuvant treatment, plasma vWF, ET-1 and NTG value were lower than those of control group while NO and FMD value were higher than those of control group (P<0.05); serum pentraxin-3, IL-18, IL-18/IL-10 and LpPLA2 value of observation group after treatment were lower than those of control group while IL-10 value was higher than that of control group (P<0.05); LVEDV, LVESV and BNP value of observation group after treatment were lower than those of control group while LVEF value was higher than that of control group (P<0.05).Conclusions: Danhong injection adjuvant therapy on the basis of interventional therapy for patients with acute coronary syndrome can reduce vascular endothelial and inflammatory injury, and play a positive role in cardiac protection.

  1. A Clinical model to identify patients with high-risk coronary artery disease

    NARCIS (Netherlands)

    Y. Yang (Yelin); L. Chen (Li); Y. Yam (Yeung); S. Achenbach (Stephan); M. Al-Mallah (Mouaz); D.S. Berman (Daniel); M.J. Budoff (Matthew); F. Cademartiri (Filippo); T.Q. Callister (Tracy); H.-J. Chang (Hyuk-Jae); V.Y. Cheng (Victor); K. Chinnaiyan (Kavitha); R.C. Cury (Ricardo); A. Delago (Augustin); A. Dunning (Allison); G.M. Feuchtner (Gudrun); M. Hadamitzky (Martin); J. Hausleiter (Jörg); R.P. Karlsberg (Ronald); P.A. Kaufmann (Philipp); Y.-J. Kim (Yong-Jin); J. Leipsic (Jonathon); T.M. LaBounty (Troy); F.Y. Lin (Fay); E. Maffei (Erica); G.L. Raff (Gilbert); L.J. Shaw (Leslee); T.C. Villines (Todd); J.K. Min (James K.); B.J.W. Chow (Benjamin)

    2015-01-01

    textabstractObjectives This study sought to develop a clinical model that identifies patients with and without high-risk coronary artery disease (CAD). Background Although current clinical models help to estimate a patient's pre-test probability of obstructive CAD, they do not accurately identify th

  2. A Clinical model to identify patients with high-risk coronary artery disease

    NARCIS (Netherlands)

    Y. Yang (Yelin); L. Chen (Li); Y. Yam (Yeung); S. Achenbach (Stephan); M. Al-Mallah (Mouaz); D.S. Berman (Daniel); M.J. Budoff (Matthew); F. Cademartiri (Filippo); T.Q. Callister (Tracy); H.-J. Chang (Hyuk-Jae); V.Y. Cheng (Victor); K. Chinnaiyan (Kavitha); R.C. Cury (Ricardo); A. Delago (Augustin); A. Dunning (Allison); G.M. Feuchtner (Gudrun); M. Hadamitzky (Martin); J. Hausleiter (Jörg); R.P. Karlsberg (Ronald); P.A. Kaufmann (Philipp); Y.-J. Kim (Yong-Jin); J. Leipsic (Jonathon); T.M. LaBounty (Troy); F.Y. Lin (Fay); E. Maffei (Erica); G.L. Raff (Gilbert); L.J. Shaw (Leslee); T.C. Villines (Todd); J.K. Min (James K.); B.J.W. Chow (Benjamin)

    2015-01-01

    textabstractObjectives This study sought to develop a clinical model that identifies patients with and without high-risk coronary artery disease (CAD). Background Although current clinical models help to estimate a patient's pre-test probability of obstructive CAD, they do not accurately identify th

  3. A new beating-heart off-pump coronary artery bypass grafting training model

    NARCIS (Netherlands)

    Bouma, Wobbe; Kuijpers, Michiel; Bijleveld, Aanke; De Maat, Gijs E.; Koene, Bart M.; Erasmus, Michiel E.; Natour, Ehsan; Mariani, Massimo A.

    OBJECTIVES: Training models are essential in mastering the skills required for off-pump coronary artery bypass grafting (OPCAB). We describe a new, high-fidelity, effective and reproducible beating-heart OPCAB training model in human cadavers. METHODS: Human cadavers were embalmed according to the

  4. Remote Ischemic Preconditioning for the Prevention of Contrast-Induced Acute Kidney Injury in Diabetics Receiving Elective Percutaneous Coronary Intervention

    Science.gov (United States)

    Balbir Singh, Gillian; Ann, Soe Hee; Park, Jongha; Chung, Hyun Chul; Lee, Jong Soo; Kim, Eun-Sook; Choi, Jung Il; Lee, Jiho; Kim, Shin-Jae; Shin, Eun-Seok

    2016-01-01

    Objective Remote ischemic preconditioning (RIPC) induces transient episodes of ischemia by the occlusion of blood flow in non-target tissue, before a subsequent ischemia-reperfusion injury. When RIPC is applied before percutaneous coronary intervention (PCI), the kidneys may be protected against ischemia-reperfusion injury and subsequently contrast-induced acute kidney injury (CI-AKI). The aim of this study was to evaluate the efficacy of RIPC for the prevention of CI-AKI in patients with diabetes with pre-existing chronic kidney disease (CKD) undergoing elective PCI. Methods This randomized, double-blind, sham-controlled study enrolled patients with diabetes scheduled for elective PCI with eGFR ≤60 ml/min/1.73 m2 or urinary albumin creatinine ratio of >300 mg/g to receive either RIPC or the sham ischemic preconditioning. Results One hundred and two patients (68.9 ± 8.2 years old, 47.1% men) were included. Baseline eGFR, creatinine and serum NGAL was similar between RIPC and control groups (48.5 ± 12 ml/min vs. 46.6 ± 10 ml/min, p = 0.391; 1.42 ± 0.58 mg/dl vs. 1.41 ± 0.34 mg/dl, p = 0.924; and 136.0 ± 45.0 ng/ml vs. 137.6 ± 43.3 ng/ml, p = 0.961, respectively). CI-AKI occurred in 13.7% (14/102) of the total subjects, with both RIPC and control groups having an equal incidence of 13.7% (7/51). No significant differences were seen in creatinine, NGAL, cardiac enzymes (troponin T, CKMB) and hs-CRP between the groups post-procedure. Conclusions In this study, RIPC applied prior to elective PCI was not effective in preventing CI-AKI in patients with diabetes with pre-existing CKD. Trial Registration ClinicalTrials.gov NCT02329444 PMID:27723839

  5. Head Injury, from Men to Model

    NARCIS (Netherlands)

    W.A. van den Brink (Willem Aart)

    2000-01-01

    textabstractIn well developed countries, injury is the leading cause of death and disability among young adults. In less developed countries the incidence of injury is high and rapidly increasing, but the relative mortality due to injuries is overshadowed by other causes, such as infections and maln

  6. Effect of folic acid adjuvant therapy on Hcy as well as lipid metabolism and endothelial injury in coronary heart disease patients with stable angina pectoris

    Institute of Scientific and Technical Information of China (English)

    Liang Wen; Yi Xie; Xian-Jun Wu; Rui-Feng Wang; Jian Cao

    2016-01-01

    Objective:To analyze the effect of folic acid adjuvant therapy on Hcy as well as lipid metabolism and endothelial injury in coronary heart disease patients with stable angina pectoris. Methods:A total of 98 cases of coronary heart disease patients with stable angina pectoris who received treatment in our hospital from March 2014 to August 2015 were selected as research subjects and randomly divided into observation group 49 cases and control group 49 cases. Control group received conventional clinical treatment, observation group received folic acid adjuvant therapy, and then differences in levels of Hcy, lipid metabolism, endothelial injury and adhesion molecules were compared between two groups after treatment. Results:Hcy, TC, LDL-C and ApoB values of observation group were lower than those of control group while HDL-C and ApoA1/ApoB values were higher than those of control group;Flow-vel and FMD values of observation group after treatment were higher than those of control group;serum E-selectin, ICAM-1, VCAM-1 and sICAM-1 values of observation group after treatment were lower than those of control group. Conclusion:Folic acid adjuvant therapy for coronary heart disease patients with stable angina pectoris can reduce plasma Hcy level and optimize lipid metabolism, further protects vascular endothelium, and has positive clinical significance.

  7. Model generation of coronary artery bifurcations from CTA and single plane angiography

    Energy Technology Data Exchange (ETDEWEB)

    Cardenes, Ruben; Diez, Jose L.; Duchateau, Nicolas; Pashaei, Ali; Frangi, Alejandro F. [Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)-Universitat Pompeu Fabra and Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08018 (Spain); Cardiology Department, University Hospital Dr. Peset, Valencia 46017 (Spain); Hospital Clinic Provincial de Barcelona, Institut d' investigacions Biomediques August Pi i Sunyer-Universitat de Barcelona, Barcelona 08036 (Spain); Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)-Universitat Pompeu Fabra and Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08018 (Spain); Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)-Universitat Pompeu Fabra and Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08018, Spain and Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-01-15

    Purpose: To generate accurate and realistic models of coronary artery bifurcations before and after percutaneous coronary intervention (PCI), using information from two image modalities. Because bifurcations are regions where atherosclerotic plaque appears frequently and intervention is more challenging, generation of such realistic models could be of high value to predict the risk of restenosis or thrombosis after stent implantation, and to study geometrical and hemodynamical changes. Methods: Two image modalities have been employed to generate the bifurcation models: computer tomography angiography (CTA) to obtain the 3D trajectory of vessels, and 2D conventional coronary angiography (CCA) to obtain radius information of the vessel lumen, due to its better contrast and image resolution. In addition, CCA can be acquired right before and after the intervention in the operation room; therefore, the combination of CTA and CCA allows the generation of realistic preprocedure and postprocedure models of coronary bifurcations. The method proposed is semiautomatic, based on landmarks manually placed on both image modalities. Results: A comparative study of the models obtained with the proposed method with models manually obtained using only CTA, shows more reliable results when both modalities are used together. The authors show that using preprocedure CTA and postprocedure CCA, realistic postprocedure models can be obtained. Analysis carried out of the Murray's law in all patient bifurcations shows the geometric improvement of PCI in our models, better than using manual models from CTA alone. An experiment using a cardiac phantom also shows the feasibility of the proposed method. Conclusions: The authors have shown that fusion of CTA and CCA is feasible for realistic generation of coronary bifurcation models before and after PCI. The method proposed is efficient, and relies on minimal user interaction, and therefore is of high value to study geometric and

  8. Three-dimensional virtual surgery models for percutaneous coronary intervention (PCI) optimization strategies

    Science.gov (United States)

    Wang, Hujun; Liu, Jinghua; Zheng, Xu; Rong, Xiaohui; Zheng, Xuwei; Peng, Hongyu; Silber-Li, Zhanghua; Li, Mujun; Liu, Liyu

    2015-06-01

    Percutaneous coronary intervention (PCI), especially coronary stent implantation, has been shown to be an effective treatment for coronary artery disease. However, in-stent restenosis is one of the longstanding unsolvable problems following PCI. Although stents implanted inside narrowed vessels recover normal flux of blood flows, they instantaneously change the wall shear stress (WSS) distribution on the vessel surface. Improper stent implantation positions bring high possibilities of restenosis as it enlarges the low WSS regions and subsequently stimulates more epithelial cell outgrowth on vessel walls. To optimize the stent position for lowering the risk of restenosis, we successfully established a digital three-dimensional (3-D) model based on a real clinical coronary artery and analysed the optimal stenting strategies by computational simulation. Via microfabrication and 3-D printing technology, the digital model was also converted into in vitro microfluidic models with 3-D micro channels. Simultaneously, physicians placed real stents inside them; i.e., they performed “virtual surgeries”. The hydrodynamic experimental results showed that the microfluidic models highly inosculated the simulations. Therefore, our study not only demonstrated that the half-cross stenting strategy could maximally reduce restenosis risks but also indicated that 3-D printing combined with clinical image reconstruction is a promising method for future angiocardiopathy research.

  9. Assessment of collateral artery function and growth in a pig model of stepwise coronary occlusion

    NARCIS (Netherlands)

    de Groot, Daphne; Grundmann, Sebastian; Timmers, Leo; Pasterkamp, Gerard; Hoefer, Imo E.

    2011-01-01

    de Groot D, Grundmann S, Timmers L, Pasterkamp G, Hoefer IE. Assessment of collateral artery function and growth in a pig model of stepwise coronary occlusion. Am J Physiol Heart Circ Physiol 300: H408-H414, 2011. First published October 15, 2010; doi: 10.1152/ajpheart.00070.2010.-Therapeutic stimul

  10. Coronary microembolization with normal epicardial coronary arteries and no visible infarcts on nitrobluetetrazolium chloride-stained specimens: Evaluation with cardiac magnetic resonance imaging in a swine model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hang; Yun, Hong; Zeng, Meng Su [Dept. of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai (China); Ma, Jian Ying; Chen, Zhang Wei; Chang, Shu Fu [Dept. of Cardiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Cardiovascular Diseases, Shanghai (China)

    2016-02-15

    To assess magnetic resonance imaging (MRI) features of coronary microembolization in a swine model induced by small-sized microemboli, which may cause microinfarcts invisible to the naked eye. Eleven pigs underwent intracoronary injection of small-sized microspheres (42 µm) and catheter coronary angiography was obtained before and after microembolization. Cardiac MRI and measurement of cardiac troponin T (cTnT) were performed at baseline, 6 hours, and 1 week after microembolization. Postmortem evaluation was performed after completion of the imaging studies. Coronary angiography pre- and post-microembolization revealed normal epicardial coronary arteries. Systolic wall thickening of the microembolized regions decreased significantly from 42.6 ± 2.0% at baseline to 20.3 ± 2.3% at 6 hours and 31.5 ± 2.1% at 1 week after coronary microembolization (p < 0.001 for both). First-pass perfusion defect was visualized at 6 hours but the extent was largely decreased at 1 week. Delayed contrast enhancement MRI (DE-MRI) demonstrated hyperenhancement within the target area at 6 hours but not at 1 week. The microinfarcts on gross specimen stained with nitrobluetetrazolium chloride were invisible to the naked eye and only detectable microscopically. Increased cTnT was observed at 6 hours and 1 week after microembolization. Coronary microembolization induced by a certain load of small-sized microemboli may result in microinfarcts invisible to the naked eye with normal epicardial coronary arteries. MRI features of myocardial impairment secondary to such microembolization include the decline in left ventricular function and myocardial perfusion at cine and first-pass perfusion imaging, and transient hyperenhancement at DE-MRI.

  11. The role of neutrophil gelatinase-associated lipocalin in predicting acute kidney injury in patients undergoing off-pump coronary artery bypass graft: A pilot study

    Directory of Open Access Journals (Sweden)

    Vishal Jain

    2016-01-01

    Full Text Available Objective: Acute kidney injury (AKI is a commonly encountered postoperative complication after cardiac surgery especially in high risk patients. AKI though seen more commonly after conventional on pump coronary artery bypass surgery (CCABG, is not uncommon after off pump coronary bypass surgery (OPCAB. Various biomarkers have shown promise over last one decade as an early marker for predicting AKI postoperatively. NGAL is one such biomarker whose concentration is increased in urine after any nephrotoxic and ischemic insult. The objective of this study was to assess the role of urine NGAL in predicting AKI after OPCAB in patients with increased risk of developing AKI. Design: A prospective cohort study. Setting: A clinical study in a multi specialty hospital. Participants: Eighty patients. Materials and Methods: study was approved by the hospital research ethics committee. 80 patients posted for OPCAB with an increased risk of developing AKI defined as having a Cleveland Clinic Foundation Acute renal failure scoring System score of ≥6 were included in the study. Patients with coronary angiography (CAG within 48 hrs prior to surgery, pre-existing AKI, preoperative renal replacement therapy (RRT and CKD stage 5 were excluded. Urine NGAL level before the start of surgery baseline and at 4 hrs post surgery were done. Renal function tests were assessed on the day of surgery (4 hrs post surgery and on the next three days. Result: Seven patients developed AKI as defined by acute kidney infection network (AKIN and risk injury failure loss end stage (RIFLE criteria for AKI. NGAL value at 4 hrs in patients who developed AKI was significantly higher than in those patients who did not develop AKI (P < 0.05. Conclusion: urine NGAL is an early biomarker of acute kidney injury in patients undergoing OPCAB surgeries. However, large multicentre studies may be needed to confirm it.

  12. Assessment Of Coronary Artery Aneurysms Using Transluminal Attenuation Gradient And Computational Modeling In Kawasaki Disease Patients

    Science.gov (United States)

    Grande Gutierrez, Noelia; Kahn, Andrew; Shirinsky, Olga; Gagarina, Nina; Lyskina, Galina; Fukazawa, Ryuji; Owaga, Shunichi; Burns, Jane; Marsden, Alison

    2015-11-01

    Kawasaki Disease (KD) can result in coronary artery aneurysms (CAA) in up to 25% of patients, putting them at risk of thrombus formation, myocardial infarction and sudden death. Clinical guidelines recommend CAA diameter >8 mm as the arbitrary criterion for initiating systemic anticoagulation. KD patient specific modeling and flow simulations suggest that hemodynamic data can predict regions at increased risk of thrombosis. Transluminal Attenuation Gradient (TAG) is determined from the change in radiological attenuation per vessel length and has been proposed as a non-invasive method for characterizing coronary stenosis from CT Angiography. We hypothesized that CAA abnormal flow could be quantified using TAG. We computed hemodynamics for patient specific coronary models using a stabilized finite element method, coupled numerically to a lumped parameter network to model the heart and vascular boundary conditions. TAG was quantified in the major coronary arteries. We compared TAG for aneurysmal and normal arteries and we analyzed TAG correlation with hemodynamic and geometrical parameters. Our results suggest that TAG may provide hemodynamic data not available from anatomy alone. TAG represents a possible extension to standard CTA that could help to better evaluate the risk of thrombus formation in KD.

  13. Decision Tree Model for Non-Fatal Road Accident Injury

    Directory of Open Access Journals (Sweden)

    Fatin Ellisya Sapri

    2017-02-01

    Full Text Available Non-fatal road accident injury has become a great concern as it is associated with injury and sometimes leads to the disability of the victims. Hence, this study aims to develop a model that explains the factors that contribute to non-fatal road accident injury severity. A sample data of 350 non-fatal road accident cases of the year 2016 were obtained from Kota Bharu District Police Headquarters, Kelantan. The explanatory variables include road geometry, collision type, accident time, accident causes, vehicle type, age, airbag, and gender. The predictive data mining techniques of decision tree model and multinomial logistic regression were used to model non-fatal road accident injury severity. Based on accuracy rate, decision tree with CART algorithm was found to be more accurate as compared to the logistic regression model. The factors that significantly contribute to non-fatal traffic crashes injury severity are accident cause, road geometry, vehicle type, age and collision type.

  14. Fluid-percussion–induced traumatic brain injury model in rats

    OpenAIRE

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in ...

  15. Injury Based on Its Study in Experimental Models

    Directory of Open Access Journals (Sweden)

    M. Mendes-Braz

    2012-01-01

    Full Text Available The present review focuses on the numerous experimental models used to study the complexity of hepatic ischemia/reperfusion (I/R injury. Although experimental models of hepatic I/R injury represent a compromise between the clinical reality and experimental simplification, the clinical transfer of experimental results is problematic because of anatomical and physiological differences and the inevitable simplification of experimental work. In this review, the strengths and limitations of the various models of hepatic I/R are discussed. Several strategies to protect the liver from I/R injury have been developed in animal models and, some of these, might find their way into clinical practice. We also attempt to highlight the fact that the mechanisms responsible for hepatic I/R injury depend on the experimental model used, and therefore the therapeutic strategies also differ according to the model used. Thus, the choice of model must therefore be adapted to the clinical question being answered.

  16. A new model to predict acute kidney injury requiring renal replacement therapy after cardiac surgery

    Science.gov (United States)

    Pannu, Neesh; Graham, Michelle; Klarenbach, Scott; Meyer, Steven; Kieser, Teresa; Hemmelgarn, Brenda; Ye, Feng; James, Matthew

    2016-01-01

    Background: Acute kidney injury after cardiac surgery is associated with adverse in-hospital and long-term outcomes. Novel risk factors for acute kidney injury have been identified, but it is unknown whether their incorporation into risk models substantially improves prediction of postoperative acute kidney injury requiring renal replacement therapy. Methods: We developed and validated a risk prediction model for acute kidney injury requiring renal replacement therapy within 14 days after cardiac surgery. We used demographic, and preoperative clinical and laboratory data from 2 independent cohorts of adults who underwent cardiac surgery (excluding transplantation) between Jan. 1, 2004, and Mar. 31, 2009. We developed the risk prediction model using multivariable logistic regression and compared it with existing models based on the C statistic, Hosmer–Lemeshow goodness-of-fit test and Net Reclassification Improvement index. Results: We identified 8 independent predictors of acute kidney injury requiring renal replacement therapy in the derivation model (adjusted odds ratio, 95% confidence interval [CI]): congestive heart failure (3.03, 2.00–4.58), Canadian Cardiovascular Society angina class III or higher (1.66, 1.15–2.40), diabetes mellitus (1.61, 1.12–2.31), baseline estimated glomerular filtration rate (0.96, 0.95–0.97), increasing hemoglobin concentration (0.85, 0.77–0.93), proteinuria (1.65, 1.07–2.54), coronary artery bypass graft (CABG) plus valve surgery (v. CABG only, 1.25, 0.64–2.43), other cardiac procedure (v. CABG only, 3.11, 2.12–4.58) and emergent status for surgery booking (4.63, 2.61–8.21). The 8-variable risk prediction model had excellent performance characteristics in the validation cohort (C statistic 0.83, 95% CI 0.79–0.86). The net reclassification improvement with the prediction model was 13.9% (p < 0.001) compared with the best existing risk prediction model (Cleveland Clinic Score). Interpretation: We have developed

  17. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.

    Science.gov (United States)

    Xiong, F L; Chong, C K

    2007-01-01

    This study employed particle image velocimetry (PIV) to validate a numerical model in a complementary approach to quantify hemodynamic factors in distal coronary anastomoses and to gain more insights on their relationship with anastomotic geometry. Instantaneous flow fields and wall shear stresses (WSS) were obtained from PIV measurement in a modified life-size silastic anastomosis model adapted from a conventional geometry by incorporating a smooth graft-artery transition. The results were compared with those predicted by a concurrent numerical model. The numerical method was then used to calculate cycle-averaged WSS (WSS(cyc)) and spatial wall shear stress gradient (SWSSG), two critical hemodynamic factors in the pathogenesis of intimal thickening (IT), to compare the conventional and modified geometries. Excellent qualitative agreement and satisfactory quantitative agreement with averaged normalized error in WSS between 0.8% and 8.9% were achieved between the PIV experiment and numerical model. Compared to the conventional geometry, the modified geometry produces a more uniform WSS(cyc) distribution eliminating both high and low WSS(cyc) around the toe, critical in avoiding IT. Peak SWSSG on the artery floor of the modified model is less than one-half that in the conventional case, and high SWSSG at the toe is eliminated. The validated numerical model is useful for modeling unsteady coronary anastomotic flows and elucidating the significance of geometry regulated hemodynamics. The results suggest the clinical relevance of constructing smooth graft-artery transition in distal coronary anastomoses to improve their hemodynamic performance.

  18. Evaluation of occupant models for rear impact injury analysis

    NARCIS (Netherlands)

    Wu, W.P.; Griffioen, J.; Marshall, R.

    1999-01-01

    Occupant injury in automobile rear-end collisions is becoming one of the most costly and aggravating traffic safety problems. Designing seat and head restraints to help limit injury associated with rear-end impact can become more efficient by using new mathematical modeling techniques. Using the

  19. Ventricular Fibrillation Waveform Changes during Controlled Coronary Perfusion Using Extracorporeal Circulation in a Swine Model

    Science.gov (United States)

    Kaufman, Christopher L.; Baetiong, Alvin; Radhakrishnan, Jeejabai

    2016-01-01

    Background Several characteristics of the ventricular fibrillation (VF) waveform have been found predictive of successful defibrillation and hypothesized to reflect the myocardial energy state. In an open-chest swine model of VF, we modeled “average CPR” using extracorporeal circulation (ECC) and assessed the time course of coronary blood flow, myocardial metabolism, and myocardial structure in relation to the amplitude spectral area (AMSA) of the VF waveform without artifacts related to chest compression. Methods VF was induced and left untreated for 8 minutes in 16 swine. ECC was then started adjusting its flow to maintain a coronary perfusion pressure of 10 mmHg for 10 minutes. AMSA was calculated in the frequency domain and analyzed continuously with a 2.1 s timeframe and a Tukey window that moved ahead every 0.5 s. Results AMSA progressively declined during untreated VF. With ECC, AMSA increased from 7.0 ± 1.9 mV·Hz (at minute 8) to 12.8 ± 3.3 mV·Hz (at minute 14) (p < 0.05) without subsequent increase and showing a modest correlation with coronary blood flow of borderline statistical significance (r = 0.489, p = 0.0547). Myocardial energy measurements showed marked reduction in phosphocreatine and moderate reduction in ATP with increases in ADP, AMP, and adenosine along with myocardial lactate, all indicative of ischemia. Yet, ischemia did not resolve during ECC despite a coronary blood flow of ~ 30% of baseline. Conclusion AMSA increased upon return of coronary blood flow during ECC. However, the maximal level was reached after ~ 6 minutes without further change. The significance of the findings for determining the optimal timing for delivering an electrical shock during resuscitation from VF remains to be further explored. PMID:27536996

  20. Structural Model of psychological risk and protective factors affecting on quality of life in patients with coronary heart disease: A psychocardiology model

    OpenAIRE

    Zohreh Khayyam Nekouei; Alireza Yousefy; Hamid Taher Neshat Doost; Gholamreza Manshaee; Masoumeh Sadeghei

    2014-01-01

    Background: Conducted researches show that psychological factors may have a very important role in the etiology, continuity and consequences of coronary heart diseases. This study has drawn the psychological risk and protective factors and their effects in patients with coronary heart diseases (CHD) in a structural model. It aims to determine the structural relations between psychological risk and protective factors with quality of life in patients with coronary heart disease. Materials and M...

  1. A mouse model of human repetitive mild traumatic brain injury

    OpenAIRE

    Kane, Michael J; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an imp...

  2. Potential Effect of L-Carnitine on the Prevention of Myocardial Injury after Coronary Artery Bypass Graft Surgery

    Directory of Open Access Journals (Sweden)

    Farzaneh Dastan

    2015-10-01

    Full Text Available Background: L-carnitine has been demonstrated to confer cardiac protection against ischemia reperfusion injury in animals. This study evaluates the effects of L-carnitine administration on cardiac biomarkers after coronary artery bypass graft (CABG surgery.Methods: One hundred thirty-four patients undergoing elective CABG surgery, without a history of myocardial ischemia or previous L-carnitine treatment, were enrolled and randomly assigned to an L-carnitine group ([n = 67], 3000 mg/d, started 2 days preoperatively and continued for 2 days after surgery or a control group (n = 67. CK-MB (creatine kinase, muscle- brain subunits and troponin T (TnT levels were assessed in all the patients before surgery as baseline levels and at 8 and 24 hours postoperatively.Results: Our study included 134 patients (99 [73.8%] males at a mean ± SD age of 59.94 ± 8.61 years who were candidates for CABG and randomized them into control or L-carnitine groups. The baseline demographic characteristics, including age (60.01 ± 9.23 in the L-carnitine group vs. 59.88 ± 7.98 in the control group and sex (54 [80.6%] in the L-carnitine group vs. 45 [67.2%] in the control group did not show any significant differences (p value=0.93 and 0.08, respectively. Patients in the L-carnitine group had lower levels of CK-MB (mean ± SD, 25.06 ± 20.29 in the L-carnitine group vs. 24.26 ± 14.61 in the control group, but the difference was not significant (p value = 0.28. TnT levels also showed no significant differences between the two groups (399.50 ± 378.91 in the L-carnitine group vs. 391.48 ± 222.02 in the control group; p value = 0.34. Conclusion: In this population of intermediate- to high-risk patients undergoing CABG surgery, L-carnitine did not reduce CK-MB and TnT levels.

  3. A validated 3D microstructure-based constitutive model of coronary artery adventitia.

    Science.gov (United States)

    Chen, Huan; Guo, Xiaomei; Luo, Tong; Kassab, Ghassan S

    2016-07-01

    A structure-based model that accurately predicts micro- or macromechanical behavior of blood vessels is necessary to understand vascular physiology. Based on recently measured microstructural data, we propose a three-dimensional microstructural model of coronary adventitia that incorporates the elastin and collagen distributions throughout the wall. The role of ground substance was found to be negligible under physiological axial stretch λz = 1.3, based on enzyme degradation of glycosaminoglycans in swine coronary adventitia (n = 5). The thick collagen bundles of outer adventitia (n = 4) were found to be undulated and unengaged at physiological loads, whereas the inner adventitia consisted of multiple sublayers of entangled fibers that bear the majority of load at higher pressures. The microstructural model was validated against biaxial (inflation and extension) experiments of coronary adventitia (n = 5). The model accurately predicted the nonlinear responses of the adventitia, even at high axial force (axial stretch ratio λz = 1.5). The model also enabled a reliable estimation of material parameters of individual fibers that were physically reasonable. A sensitivity analysis was performed to assess the effect of using mean values of the distributions for fiber orientation and waviness as opposed to the full distributions. The simplified mean analysis affects the fiber stress-strain relation, resulting in incorrect estimation of mechanical parameters, which underscores the need for measurements of fiber distribution for a rigorous analysis of fiber mechanics. The validated structure-based model of coronary adventitia provides a deeper understanding of vascular mechanics in health and can be extended to disease conditions.

  4. Risk-prediction model for ischemic stroke in patients hospitalized with an acute coronary syndrome (from the global registry of acute coronary events [GRACE]).

    Science.gov (United States)

    Park, Kay Lee; Budaj, Andrzej; Goldberg, Robert J; Anderson, Frederick A; Agnelli, Giancarlo; Kennelly, Brian M; Gurfinkel, Enrique P; Fitzgerald, Gordon; Gore, Joel M

    2012-09-01

    The risk of stroke in patients hospitalized with an acute coronary syndrome (ACS) ranges from ischemic stroke in patients with ACS to help guide clinicians in the acute management of these high-risk patients. Data were obtained from 63,118 patients enrolled from April 1999 to December 2007 in the Global Registry of Acute Coronary Events (GRACE), a multinational registry involving 126 hospitals in 14 countries. A regression model was developed to predict the occurrence of in-hospital ischemic stroke in patients hospitalized with an ACS. The main study outcome was the development of ischemic stroke during the index hospitalization for an ACS. Eight risk factors for stroke were identified: older age, atrial fibrillation on index electrocardiogram, positive initial cardiac biomarkers, presenting systolic blood pressure ≥ 160 mm Hg, ST-segment change on index electrocardiogram, no history of smoking, higher Killip class, and lower body weight (c-statistic 0.7). The addition of coronary artery bypass graft surgery and percutaneous coronary intervention into the model increased the prediction of stroke risk. In conclusion, the GRACE stroke risk score is a simple tool for predicting in-hospital ischemic stroke risk in patients admitted for the entire spectrum of ACS, which is widely applicable to patients in various hospital settings and will assist in the management of high-risk patients with ACS. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Comparison of iodinated contrast media for the assessment of atherosclerotic plaque attenuation values by CT coronary angiography: Observations in an ex vivo model

    NARCIS (Netherlands)

    L. la Grutta (Ludovico); M. Galia (Massimo); G. Gentile; G. Lo Re (G.); E. Grassedonio (Emanuele); F. Coppolino; E. Maffei (Erica); E. Maresi (E.); A. Lo Casto (A.); F. Cademartiri (Filippo); M. Midiri (Massimo)

    2013-01-01

    textabstractObjective: To compare the influence of different iodinated contrast media with several dilutions on plaque attenuation in an ex vivo coronary model studied by multislice CT coronary angiography. Methods: In six ex vivo left anterior descending coronary arteries immersed in oil, CT (slice

  6. Reconstruction of coronary artery centrelines from x-ray rotational angiography using a probabilistic mixture model

    Science.gov (United States)

    Ćimen, Serkan; Gooya, Ali; Frangi, Alejandro F.

    2016-03-01

    Three-dimensional reconstructions of coronary arterial trees from X-ray rotational angiography (RA) images have the potential to compensate the limitations of RA due to projective imaging. Most of the existing model based reconstruction algorithms are either based on forward-projection of a 3D deformable model onto X-ray angiography images or back-projection of 2D information extracted from X-ray angiography images to 3D space for further processing. All of these methods have their shortcomings such as dependency on accurate 2D centerline segmentations. In this paper, the reconstruction is approached from a novel perspective, and is formulated as a probabilistic reconstruction method based on mixture model (MM) representation of point sets describing the coronary arteries. Specifically, it is assumed that the coronary arteries could be represented by a set of 3D points, whose spatial locations denote the Gaussian components in the MM. Additionally, an extra uniform distribution is incorporated in the mixture model to accommodate outliers (noise, over-segmentation etc.) in the 2D centerline segmentations. Treating the given 2D centreline segmentations as data points generated from MM, the 3D means, isotropic variance, and mixture weights of the Gaussian components are estimated by maximizing a likelihood function. Initial results from a phantom study show that the proposed method is able to handle outliers in 2D centreline segmentations, which indicates the potential of our formulation. Preliminary reconstruction results in the clinical data are also presented.

  7. Finite element modeling of blast lung injury in sheep.

    Science.gov (United States)

    Gibbons, Melissa M; Dang, Xinglai; Adkins, Mark; Powell, Brian; Chan, Philemon

    2015-04-01

    A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.

  8. Examination of outcome after mild traumatic brain injury: the contribution of injury beliefs and Leventhal's common sense model.

    Science.gov (United States)

    Snell, Deborah L; Hay-Smith, E Jean C; Surgenor, Lois J; Siegert, Richard J

    2013-01-01

    Associations between components of Leventhal's common sense model of health behaviour (injury beliefs, coping, distress) and outcome after mild traumatic brain injury (MTBI) were examined. Participants (n = 147) were recruited within three months following MTBI and assessed six months later, completing study questionnaires at both visits (Illness Perceptions Questionnaire Revised, Brief COPE, Hospital Anxiety and Depression Scale). Outcome measures included the Rivermead Post-Concussion Symptoms Questionnaire and Rivermead Head Injury Follow-Up Questionnaire. Univariate and multivariate (logistic regression) analyses examined associations between injury beliefs, coping and distress at baseline, and later outcome. Participants endorsing stronger injury identity beliefs (p model. Consistent with Leventhal's model, participant beliefs about their injury and recovery had significant associations with outcome over time. Coping also appeared to have important associations with outcome but more research is required to examine these. Current reassurance-based interventions may be improved by targeting variables such as injury beliefs, coping and adjustment soon after injury.

  9. Neuroinflammation in animal models of traumatic brain injury

    Science.gov (United States)

    Chiu, Chong-Chi; Liao, Yi-En; Yang, Ling-Yu; Wang, Jing-Ya; Tweedie, David; Karnati, Hanuma K.; Greig, Nigel H.; Wang, Jia-Yi

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI. PMID:27382003

  10. Modeling Blast-Related Brain Injury

    Science.gov (United States)

    2008-12-01

    02139 D. Moore Defense and Veterans Brain Injury Center (WRAMC) 6900 Georgia Ave. NW, Washington, DC 20307 L. Noels University of Liege Chemin des...chevreuils 1, B4000 Liege , Belgium ABSTRACT Recent military conflicts in Iraq and Afghanistan have highlighted the wartime effect of traumatic brain in

  11. A Nonparametric Shape Prior Constrained Active Contour Model for Segmentation of Coronaries in CTA Images

    Science.gov (United States)

    Wang, Yin; Jiang, Han

    2014-01-01

    We present a nonparametric shape constrained algorithm for segmentation of coronary arteries in computed tomography images within the framework of active contours. An adaptive scale selection scheme, based on the global histogram information of the image data, is employed to determine the appropriate window size for each point on the active contour, which improves the performance of the active contour model in the low contrast local image regions. The possible leakage, which cannot be identified by using intensity features alone, is reduced through the application of the proposed shape constraint, where the shape of circular sampled intensity profile is used to evaluate the likelihood of current segmentation being considered vascular structures. Experiments on both synthetic and clinical datasets have demonstrated the efficiency and robustness of the proposed method. The results on clinical datasets have shown that the proposed approach is capable of extracting more detailed coronary vessels with subvoxel accuracy. PMID:24803950

  12. Modeling of Stenotic Coronary Artery and Implications of Plaque Morphology on Blood Flow

    Directory of Open Access Journals (Sweden)

    Carlos Moreno

    2013-01-01

    Full Text Available A diseased coronary artery has been modeled to study the implications of plaque morphology on the fluid dynamics. In our previous study, we have successfully classified the coronary plaques of 42 patients who underwent intravascular ultrasound (IVUS into four-types (Type I, Type II, Type III, and Type IV based on the plaque morphology. In this study, we demonstrate that, for the same degree of stenosis (height of the plaques, hemodynamics parameters are strongly dependent on the plaque shape. This study is the first one to clearly demonstrate that in addition to wall shear stress, presence of turbulence and location of transition from laminar to turbulence state are additional hemodynamics parameters to identify plaques vulnerable to rupture.

  13. A Nonparametric Shape Prior Constrained Active Contour Model for Segmentation of Coronaries in CTA Images

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2014-01-01

    Full Text Available We present a nonparametric shape constrained algorithm for segmentation of coronary arteries in computed tomography images within the framework of active contours. An adaptive scale selection scheme, based on the global histogram information of the image data, is employed to determine the appropriate window size for each point on the active contour, which improves the performance of the active contour model in the low contrast local image regions. The possible leakage, which cannot be identified by using intensity features alone, is reduced through the application of the proposed shape constraint, where the shape of circular sampled intensity profile is used to evaluate the likelihood of current segmentation being considered vascular structures. Experiments on both synthetic and clinical datasets have demonstrated the efficiency and robustness of the proposed method. The results on clinical datasets have shown that the proposed approach is capable of extracting more detailed coronary vessels with subvoxel accuracy.

  14. On the statistical modelling of coronary arteriographic data : Dynamics of coronary atherosclerosis related to systemic and focal parameters

    NARCIS (Netherlands)

    Zwinderman, AH; Jukema, JW; Van Boven, AJ; Reiber, JHC

    1997-01-01

    Existing methods to analyse data from repeated arteriographic progression/regression studies are restrictive and do not fully explore the dynamics of coronary artherosclerosis. We present a new approach making a distinction between new occlusions, new lesions, and growth of existing lesions, Random

  15. Mathematical modelling of atheroma plaque formation and development in coronary arteries

    Science.gov (United States)

    Cilla, Myriam; Peña, Estefanía; Martínez, Miguel A.

    2014-01-01

    Atherosclerosis is a vascular disease caused by inflammation of the arterial wall, which results in the accumulation of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This process is commonly referred to as plaque formation. The evolution of the atherosclerosis disease, and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood phenomenon. This work presents a mathematical model to reproduce atheroma plaque growth in coronary arteries. This model uses the Navier–Stokes equations and Darcy's law for fluid dynamics, convection–diffusion–reaction equations for modelling the mass balance in the lumen and intima, and the Kedem–Katchalsky equations for the interfacial coupling at membranes, i.e. endothelium. The volume flux and the solute flux across the interface between the fluid and the porous domains are governed by a three-pore model. The main species and substances which play a role in early atherosclerosis development have been considered in the model, i.e. LDL, oxidized LDL, monocytes, macrophages, foam cells, smooth muscle cells, cytokines and collagen. Furthermore, experimental data taken from the literature have been used in order to physiologically determine model parameters. The mathematical model has been implemented in a representative axisymmetric geometrical coronary artery model. The results show that the mathematical model is able to qualitatively capture the atheroma plaque development observed in the intima layer. PMID:24196695

  16. Mathematical modelling of atheroma plaque formation and development in coronary arteries.

    Science.gov (United States)

    Cilla, Myriam; Peña, Estefanía; Martínez, Miguel A

    2014-01-06

    Atherosclerosis is a vascular disease caused by inflammation of the arterial wall, which results in the accumulation of low-density lipoprotein (LDL) cholesterol, monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This process is commonly referred to as plaque formation. The evolution of the atherosclerosis disease, and in particular the influence of wall shear stress on the growth of atherosclerotic plaques, is still a poorly understood phenomenon. This work presents a mathematical model to reproduce atheroma plaque growth in coronary arteries. This model uses the Navier-Stokes equations and Darcy's law for fluid dynamics, convection-diffusion-reaction equations for modelling the mass balance in the lumen and intima, and the Kedem-Katchalsky equations for the interfacial coupling at membranes, i.e. endothelium. The volume flux and the solute flux across the interface between the fluid and the porous domains are governed by a three-pore model. The main species and substances which play a role in early atherosclerosis development have been considered in the model, i.e. LDL, oxidized LDL, monocytes, macrophages, foam cells, smooth muscle cells, cytokines and collagen. Furthermore, experimental data taken from the literature have been used in order to physiologically determine model parameters. The mathematical model has been implemented in a representative axisymmetric geometrical coronary artery model. The results show that the mathematical model is able to qualitatively capture the atheroma plaque development observed in the intima layer.

  17. Porcine Models of Accelerated Coronary Atherosclerosis: Role of Diabetes Mellitus and Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Damir Hamamdzic

    2013-01-01

    Full Text Available Animal models of atherosclerosis have proven to be an invaluable asset in understanding the pathogenesis of the disease. However, large animal models may be needed in order to assess novel therapeutic approaches to the treatment of atherosclerosis. Porcine models of coronary and peripheral atherosclerosis offer several advantages over rodent models, including similar anatomical size to humans, as well as genetic expression and development of high-risk atherosclerotic lesions which are similar to humans. Here we review the four models of porcine atherosclerosis, including the diabetic/hypercholesterolemic model, Rapacz-familial hypercholesterolemia pig, the (PCSK9 gain-of-function mutant pig model, and the Ossabaw miniature pig model of metabolic syndrome. All four models reliably represent features of human vascular disease.

  18. Examining Pedestrian Injury Severity Using Alternative Disaggregate Models

    DEFF Research Database (Denmark)

    Abay, Kibrom Araya

    2013-01-01

    to the choice of these models. The empirical analysis reveals that detailed road user characteristics such as crime history of drivers and momentary activities of road users at the time of the accident provides an interesting insight in the injury severity analysis. Likewise, the alternative analytical...... specification of the models reveals that some of the conventionally employed fixed parameters injury severity models could underestimate the effect of some important behavioral attributes of the accidents. For instance, the standard ordered logit model underestimated the marginal effects of some...

  19. Reproduction of an animal model of landmine blast injuries

    Directory of Open Access Journals (Sweden)

    Sen ZHANG

    2014-03-01

    Full Text Available Objective To reproduce an animal model of landmine blast injuries for studying its mechanism and characteristics. Methods Fifteen healthy New Zealand white rabbits (body weight 1.9-2.4 kg were prepared as experimental animals. Punctiform burster was used to simulate the landmine, and it was electrically detonated far away to produce landmine blast injuries on unilateral hind limb of rabbits in upright state. The vital signs before and 5min, 15min, 30min, 45min, 1h, 2h, 3h, 6h, 9h and 12h after injuries were recorded. Autopsy of dead animals was performed immediately and the survivors were sacrificed for pathological examination 6h and 12h after the injury. Macroscopic and microscopic changes in the injured limb and distant organs were observed. Fifteen random adult body weights were generated by random number table, and the explosive energy of M14 landmine (about 29g TNT explosive energy was simulated, to compare the ratio of explosive force equivalent to weight calculated between experimental animals and randomly selected adults. Results No significant change in blood pressure was observed at different time points before and after injuries. A broom-like change was found in the injured limb by the general observation. The subareas and pathological changes of injured limb coincided with the typical limb injuries produced by landmine explosion. Damage in different degrees was found in distant organs, and the wound characteristics and injury of major organs were in accordance with the reports of relevant literature. The ratio of explosive equivalent to weight of experimental animals (0.50±0.04g TNT/kg was similar to that of randomly selected adults (0.51±0.05g TNT/kg. Conclusion The present animal model could simulate the landmine explosive injuries, and may be used in research of landmine explosive injuries. DOI: 10.11855/j.issn.0577-7402.2014.01.14

  20. Coronary Artery Ligation and Intramyocardial Injection in a Murine Model of Infarction

    OpenAIRE

    Virag, Jitka A.I.; Lust, Robert M.

    2011-01-01

    Mouse models are a valuable tool for studying acute injury and chronic remodeling of the myocardium in vivo. With the advent of genetic modifications to the whole organism or the myocardium and an array of biological and/or synthetic materials, there is great potential for any combination of these to assuage the extent of acute ischemic injury and impede the onset of heart failure pursuant to myocardial remodeling. Here we present the methods and materials used to reliably perform this micros...

  1. [Development of forecasting models for fatal road traffic injuries].

    Science.gov (United States)

    Tan, Aichun; Tian, Danping; Huang, Yuanxiu; Gao, Lin; Deng, Xin; Li, Li; He, Qiong; Chen, Tianmu; Hu, Guoqing; Wu, Jing

    2014-02-01

    To develop the forecasting models for fatal road traffic injuries and to provide evidence for predicting the future trends on road traffic injuries. Data on the mortality of road traffic injury including factors as gender and age in different countries, were obtained from the World Health Organization Mortality Database. Other information on GDP per capita, urbanization, motorization and education were collected from online resources of World Bank, WHO, the United Nations Population Division and other agencies. We fitted logarithmic models of road traffic injury mortality by gender and age group, including predictors of GDP per capita, urbanization, motorization and education. Sex- and age-specific forecasting models developed by WHO that including GDP per capita, education and time etc. were also fitted. Coefficient of determination(R(2)) was used to compare the performance between our modes and WHO models. 2 626 sets of data were collected from 153 countries/regions for both genders, between 1965 and 2010. The forecasting models of road traffic injury mortality based on GDP per capita, motorization, urbanization and education appeared to be statistically significant(P forecasting models that we developed seemed to be better than those developed by WHO.

  2. Effects of 60 minutes of hyperoxia followed by normoxia before coronary artery bypass grafting on the inflammatory response profile and myocardial injury

    Directory of Open Access Journals (Sweden)

    Karu Inga

    2012-09-01

    Full Text Available Abstract Background Ischemic preconditioning induces tolerance against ischemia-reperfusion injury prior a sustained ischemic insult. In experimental studies, exposure to hyperoxia for a limited time before ischemia induces a low-grade systemic oxidative stress and evokes an (ischemic preconditioning-like effect of the myocardium. We hypothesised that pre-treatment by hyperoxia favours enchanced myocardial protection described by decreased release of cTn T in the 1st postoperative morning and reduces the release of inflammatory cytokines. Methods Forty patients with stable coronary artery disease underwent coronary artery bypass grafting with cardiopulmonary bypass. They were ventilated with 40 or >96% oxygen for 60 minutes followed by by 33 (18–59 min normoxia before cardioplegia. Results In the 1st postoperative morning concentrations of cTnT did not differ between groups ((0.44 (0.26-0.55 ng/mL in control and 0.45 (0.37-0.71 ng/mL in hyperoxia group. Sixty minutes after declamping the aorta, ratios of IL-10/IL-6 (0.73 in controls and 1.47 in hyperoxia, p = 0.03 and IL-10/TNF-α (2.91 and 8.81, resp., p = 0.015 were significantly drifted towards anti-inflammatory, whereas interleukins 6, 8and TNF-α and interferon-γ showed marked postoperative rise, but no intergroup differences were found. Conclusions Pre-treatment by 60 minutes of hyperoxia did not reduce postoperative leak of cTn T in patients undergoing coronary artery bypass surgery. In the hyperoxia group higher release of anti-inflammatory IL-10 caused drifting of IL-10/IL-6 and IL-10/TNF-α towards anti-inflammatory.

  3. Assessment of electrical burn injury using structured illumination in an in-vivo electrical injury model

    Science.gov (United States)

    Nguyen, Thu T. A.; Basiri, Ali; Shupp, J. W.; Moffatt, L. T.; Jordan, M. H.; Jeng, J. C.; Leto, E.; Ramella-Roman, J. C.

    2011-03-01

    Electrical injury is a devastating and hard to treat clinical lesion. Fully understanding the pathophysiology of electrical trauma is still a challenge for clinicians and scientists. Further elucidating the natural history of this form of tissue injury could be helpful in improving limb salvage and offering stage-appropriate therapy. Multi-spectral imaging technique is a non-invasive technology that can be used to determine optical properties of tissues in and adjacent to injury. Images at different wavelengths can provide essential information related to the pathophysiological condition of the tissue. To promote the applicability of this technique in medical diagnosis, we built a complete experimental model of electrical injury. In this model, electrical injuries were created by a reliable high-tension shock system at preset voltage or current. A thermal camera recorded the change of skin temperature during the electrical shock. Then, a high-resolution spectral imaging system based on structured illumination was used to capture images for post analysis to extrapolate optical properties of the tissue. To test accuracy, this imaging system was calibrated by using a set of epoxy phantoms with known optical properties. In this paper, the results of experiments conducted on rats and discussions on the systemic changes in tissue optical properties before and after electrical shock are presented.

  4. Longitudinal Examination of Resilience after Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2017-07-19

    To evaluate the trajectory of resilience during the first year following a moderate-severe TBI, factors associated with resilience at 3, 6 and 12-months post-injury, and changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N = 195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3, 6, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year post-injury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to non-minority status, absence of pre-injury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017. Published by Elsevier Inc.

  5. TAK-242 Protects Against Apoptosis in Coronary Microembolization-Induced Myocardial Injury in Rats by Suppressing TLR4/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xian-tao Wang

    2017-03-01

    Full Text Available Background/Aims: Myocardial apoptosis is heavily implicated in the myocardial injury caused by coronary microembolization (CME, and toll-like receptor 4 (TLR4 is considered to be involved in this apoptotic cascade. Therefore, the present study was designed to investigate the role of TLR4/NF-κB signaling pathway regulated by TAK-242, a selective TLR4 signal transduction inhibitor, in the myocardial apoptosis after CME in rats. Methods: Forty-five rats were randomized (random number into three groups: sham, CME and CME + TAK-242 (n = 15 per group.CME was induced by injecting polyethylene microspheres (42µm into the left ventricular except the sham group. CME + TAK-242 group was treated with TAK-242 (2mg/kg via the tail vein 30 minutes before CME modeling. Cardiac function was evaluated 6 hours after operation. Tissue biopsy was stained with HBFP to measure the size of micro-infarction area. TUNEL staining was used to detect myocardial apoptosis. Western blot and qPCR were used to evaluate the expression of TLR4, MyD88, NF-κB p65, p-IκBα and Cleaved caspase-3. Results: Cardiac function in the CME group and CME + TAK-242 group were significantly decreased compared with the sham group (P < 0.05 and the micro-infarction area, the apoptotic index, the expression of TLR4, NF-κB p65, p-IκBα and Cleaved caspase-3 were increased significantly (P < 0.05. Cardiac function in the CME + TAK-242 group was significantly improved compared with the CME group (P < 0.05 and the micro-infarction area, the apoptotic index, the expression of TLR4, MyD88, NF-κB p65, p-IκBα and Cleaved caspase-3 were decreased significantly (P < 0.05. Conclusions: TAK-242 can effectively improve CME-induced cardiac dysfunction by regulating TLR4/NF-κB signaling pathway and then reducing the myocardial apoptosis.

  6. A Bayesian hierarchical model for accident and injury surveillance.

    Science.gov (United States)

    MacNab, Ying C

    2003-01-01

    This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time

  7. Examining Pedestrian Injury Severity Using Alternative Disaggregate Models

    DEFF Research Database (Denmark)

    Abay, Kibrom Araya

    2013-01-01

    This paper investigates the injury severity of pedestrians considering detailed road user characteristics and alternative model specification using a high-quality Danish road accident data. Such detailed and alternative modeling approach helps to assess the sensitivity of empirical inferences...... to the choice of these models. The empirical analysis reveals that detailed road user characteristics such as crime history of drivers and momentary activities of road users at the time of the accident provides an interesting insight in the injury severity analysis. Likewise, the alternative analytical...

  8. Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data

    Science.gov (United States)

    Fung, George S. K.; Segars, W. Paul; Taguchi, Katsuyuki; Fishman, Elliot K.; Tsui, Benjamin M. W.

    2006-03-01

    A detailed four-dimensional model of the coronary artery tree has great potential in a wide variety of applications especially in biomedical imaging. We developed a computer generated three-dimensional model for the coronary arterial tree based on two datasets: (1) gated multi-slice computed tomography (MSCT) angiographic data obtained from a normal human subject and (2) statistical morphometric data obtained from porcine hearts. The main coronary arteries and heart structures were segmented from the MSCT data to define the initial segments of the vasculature and geometrical details of the boundaries. An iterative rule-based computer generation algorithm was then developed to extend the coronary artery tree beyond the initial segmented branches. The algorithm was governed by the following factors: (1) the statistical morphometric measurements of the connectivities, lengths, and diameters of the arterial segments, (2) repelling forces from other segments and boundaries, and (3) optimality principles to minimize the drag force at each bifurcation in the generated tree. Using this algorithm, the segmented coronary artery tree from the MSCT data was optimally extended to create a 3D computational model of the largest six orders of the coronary arterial tree. The new method for generating the 3D model is effective in imposing the constraints of anatomical and physiological characteristics of coronary vasculature. When combined with the 4D NCAT phantom, a computer model for the human anatomy and cardiac and respiratory motions, the new model will provide a unique tool to study cardiovascular characteristics and diseases through direct and medical imaging simulation studies.

  9. Evaluation of coronary blood flow velocity during cardiac arrest with circulation maintained through mechanical chest compressions in a porcine model

    Directory of Open Access Journals (Sweden)

    Wagner Henrik

    2011-12-01

    Full Text Available Abstract Background Mechanical chest compressions (CCs have been shown capable of maintaining circulation in humans suffering cardiac arrest for extensive periods of time. Reports have documented a visually normalized coronary blood flow during angiography in such cases (TIMI III flow, but it has never been actually measured. Only indirect measurements of the coronary circulation during cardiac arrest with on-going mechanical CCs have been performed previously through measurement of the coronary perfusion pressure (CPP. In this study our aim was to correlate average peak coronary flow velocity (APV to CPP during mechanical CCs. Methods In a closed chest porcine model, cardiac arrest was established through electrically induced ventricular fibrillation (VF in eleven pigs. After one minute, mechanical chest compressions were initiated and then maintained for 10 minutes upon which the pigs were defibrillated. Measurements of coronary blood flow in the left anterior descending artery were made at baseline and during VF with a catheter based Doppler flow fire measuring APV. Furthermore measurements of central (thoracic venous and arterial pressures were also made in order to calculate the theoretical CPP. Results Average peak coronary flow velocity was significantly higher compared to baseline during mechanical chests compressions and this was observed during the entire period of mechanical chest compressions (12 - 39% above baseline. The APV slowly declined during the 10 min period of mechanical chest compressions, but was still higher than baseline at the end of mechanical chest compressions. CPP was simultaneously maintained at > 20 mmHg during the 10 minute episode of cardiac arrest. Conclusion Our study showed good correlation between CPP and APV which was highly significant, during cardiac arrest with on-going mechanical CCs in a closed chest porcine model. In addition APV was even higher during mechanical CCs compared to baseline. Mechanical

  10. Constructing Model of Relationship among Behaviors and Injuries to Products Based on Large Scale Text Data on Injuries

    Science.gov (United States)

    Nomori, Koji; Kitamura, Koji; Motomura, Yoichi; Nishida, Yoshifumi; Yamanaka, Tatsuhiro; Komatsubara, Akinori

    In Japan, childhood injury prevention is urgent issue. Safety measures through creating knowledge of injury data are essential for preventing childhood injuries. Especially the injury prevention approach by product modification is very important. The risk assessment is one of the most fundamental methods to design safety products. The conventional risk assessment has been carried out subjectively because product makers have poor data on injuries. This paper deals with evidence-based risk assessment, in which artificial intelligence technologies are strongly needed. This paper describes a new method of foreseeing usage of products, which is the first step of the evidence-based risk assessment, and presents a retrieval system of injury data. The system enables a product designer to foresee how children use a product and which types of injuries occur due to the product in daily environment. The developed system consists of large scale injury data, text mining technology and probabilistic modeling technology. Large scale text data on childhood injuries was collected from medical institutions by an injury surveillance system. Types of behaviors to a product were derived from the injury text data using text mining technology. The relationship among products, types of behaviors, types of injuries and characteristics of children was modeled by Bayesian Network. The fundamental functions of the developed system and examples of new findings obtained by the system are reported in this paper.

  11. Simultaneous modelling of operative mortality and long-term survival after coronary artery bypass surgery.

    Science.gov (United States)

    Ghahramani, M; Dean, C B; Spinelli, J J

    2001-07-15

    Typical analyses of lifetime data treat the time to death or failure as the response variable and use a variety of modelling strategies such as proportional hazards or fully parametric, to investigate the relationship between the response and covariates. In certain circumstances it may be more natural to view the distribution of the response variable as consisting of two or more parts since the survival curve appears segmented. This article addresses such a scenario and we propose a model for simultaneously investigating the effects of covariates over the two segments. The model is an analogue of that proposed by Lambert for zero-inflated Poisson regression. The application is central to the model development and is concerned with survival after coronary artery bypass surgery. Here operative mortality, defined as death within 30 days after surgery, and long-term mortality, are viewed as distinct outcomes. For the application considered, the survivor function displays much steeper descent during the first 30 days after surgery, that is, for operative mortality, than after this period. An investigation of the effects of covariates on operative and long-term mortality after coronary artery bypass surgery illustrates the usefulness of the proposed model.

  12. Granulocyte colony-stimulating factor ameliorates coronary artery elastin breakdown in a mouse model of Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    Liu Junfeng; Chen Zhi; Du Zhongdong; Lu Dunxiang

    2014-01-01

    Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of the endothelial progenitor cells (EPCs).The aim of the present study was to evaluate the modulatory effect of granulocyte colony stimulating factor (G-CSF) on EPCs and elastin breakdown of coronary arteries in a KD mouse model.Methods A Lactobacillus casei cell wall extract (LCWE)-induced KD model was established in C57BL/6 mice that were subsequently administrated with recombinant human G-CSF (rhG-CSF).Nω-nitro-L-arginine methyl ester (L-NAME) was administrated for the negative intervention.Evaluations included coronary artery lesions,EPC number and functions,and the plasma concentration of nitric oxide (NO).Results Elastin breakdown was found in the coronary arteries of model mice 56 days after injection of LCWE.The number of circulating EPCs,plasma concentration of NO,and functions of bone marrow EPCs,including proliferation,adhesion,and migration abilities,were all lower in the KD model group compared with those in the control group.After administration of rhG-CSF,the number of circulating EPCs and plasma concentration of NO were increased significantly compared with those in the KD model group.There were also increases in the functional indexes of EPCs.Furthermore,rhG-CSF administration improved the elastin breakdown effectively.However,these protective effects of rhG-CSF on coronary arteries were attenuated by L-NAME.Conclusion The present study indicated that the administration of G-CSF prevents elastin breakdown of the coronary arteries by enhancing the number and functions of EPCs via the NO system,and then accelerates the repair of coronary artery lesions in the KD.

  13. Impact of benazepril on contrast-induced acute kidney injury for patients with mild to moderate renal insufficiency undergoing percutaneous coronary intervention

    Institute of Scientific and Technical Information of China (English)

    LI Xi-ming; CONG Hong-liang; LI Ting-ting; HE Li-jun; ZHOU Yu-jie

    2011-01-01

    Background The role of angiotensin-converting enzyme inhibitors (ACEI) in contrast-induced acute kidney injury (CI-AKI) is controversial. Some studies pointed out that it was effective in the prevention of CI-AKI, while some concluded that it was one risk for CI-AKI, especially for patients with pre-existing renal impairment. The purpose of this study was to assess the influence of benazepril administration on the development of CI-AKI in patients with mild to moderate renal insufficiency undergoing coronary intervention.Methods One hundred and fourteen patients with mild to moderate impairment of renal function were enrolled before coronary angioplasty, who were randomly assigned to benazepril group (n=52) and control group (n=62). In the benazepril group, the patients received benazepril tablets 10 mg per day at least for 3 days before procedure. CI-AKI was defined as an increase of≥25% in creatinine over the baseline value or increase of 0.5 mg/L within 72 hours of angioplasty.Results Patients were well matched with no significant differences at baseline in all measured parameters between two groups. The incidence of CI-AKI was lower by 64% in the benazepril group compared with control group but without statistical significance (3.45% vs. 9.68%, P=0.506). Compared with benazepril group, estimated glomerular filtration rate (eGFR) level significantly decreased from (70.64+16.38) ml·min-1·1.73 m-2 to (67.30+11.99) ml·min-1·1.73 m-2 in control group (P=0.038). There was no significant difference for the post-procedure decreased eGFR from baseline (△eGFR)between two groups (benazepril group (0.67+12.67) ml·min-1·1.73 m-2 vs. control group (-3.33±12.39) ml·min-1·1.73 m-2,P=0.092). In diabetic subgroup analysis, △eGFR in benazepril group was slightly lower than that in the control group, but the difference was not statistically significant.Conclusions Benazepril has a protective effect on mild to moderate impairment of renal function during

  14. Prediction of coronary plaque location on arteries having myocardial bridge, using finite element models.

    Science.gov (United States)

    Nikolić, Dalibor; Radović, Miloš; Aleksandrić, Srđan; Tomašević, Miloje; Filipović, Nenad

    2014-11-01

    This study was performed to evaluate the influences of the myocardial bridges on the plaque initializations and progression in the coronary arteries. The wall structure is changed due to the plaque presence, which could be the reason for multiple heart malfunctions. Using simplified parametric finite element model (FE model) of the coronary artery having myocardial bridge and analyzing different mechanical parameters from blood circulation through the artery (wall shear stress, oscillatory shear index, residence time), we investigated the prediction of "the best" position for plaque progression. We chose six patients from the angiography records and used data from DICOM images to generate FE models with our software tools for FE preprocessing, solving and post-processing. We found a good correlation between real positions of the plaque and the ones that we predicted to develop at the proximal part of the myocardial bridges with wall shear stress, oscillatory shear index and residence time. This computer model could be additional predictive tool for everyday clinical examination of the patient with myocardial bridge.

  15. Structural equation modeling of pesticide poisoning, depression, safety, and injury.

    Science.gov (United States)

    Beseler, Cheryl L; Stallones, Lorann

    2013-01-01

    The role of pesticide poisoning in risk of injuries may operate through a link between pesticide-induced depressive symptoms and reduced engagement in safety behaviors. The authors conducted structural equation modeling of cross-sectional data to examine the pattern of associations between pesticide poisoning, depressive symptoms, safety knowledge, safety behaviors, and injury. Interviews of 1637 Colorado farm operators and their spouses from 964 farms were conducted during 1993-1997. Pesticide poisoning was assessed based on a history of ever having been poisoned. The Center for Epidemiologic Studies-Depression scale was used to assess depressive symptoms. Safety knowledge and safety behaviors were assessed using ten items for each latent variable. Outcomes were safety behaviors and injuries. A total of 154 injuries occurred among 1604 individuals with complete data. Pesticide poisoning, financial problems, health, and age predicted negative affect/somatic depressive symptoms with similar effect sizes; sex did not. Depression was more strongly associated with safety behavior than was safety knowledge. Two safety behaviors were significantly associated with an increased risk of injury. This study emphasizes the importance of financial problems and health on depression, and provides further evidence for the link between neurological effects of past pesticide poisoning on risk-taking behaviors and injury.

  16. Risk model for suspected acute coronary syndrome is of limited value in an emergency department

    DEFF Research Database (Denmark)

    Mogensen, Christian Backer; Christiansen, Maja; Jørgensen, Jess Bjerre

    2015-01-01

    INTRODUCTION: Among patients with acute chest pain, acute coronary syndrome (ACS) is seen only in a minority of the patients, which raises the question, whether it is possible to separate a group with a high risk of ACS for admission to a cardiac care unit (CCU) from those with a low risk who would...... be treated at an emergency department (ED). The aim of this study was to describe a risk stratification model for a Danish context. METHODS: This was a historic prospective cohort study of patients with suspicion of ACS. The patient was defined as a low-risk patient and admitted to the ED if: 1...

  17. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    Science.gov (United States)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  18. The incidence of kidney injury for patients treated with a high-potency versus moderate-potency statin regimen after an acute coronary syndrome.

    Science.gov (United States)

    Sarma, Amy; Cannon, Christopher P; de Lemos, James; Rouleau, Jean L; Lewis, Eldrin F; Guo, Jianping; Mega, Jessica L; Sabatine, Marc S; O'Donoghue, Michelle L

    2014-05-01

    Observational studies have raised concerns that high-potency statins increase the risk of acute kidney injury. We therefore examined the incidence of kidney injury across 2 randomized trials of statin therapy. PROVE IT-TIMI 22 enrolled 4162 subjects after an acute coronary syndrome (ACS) and randomized them to atorvastatin 80 mg/day versus pravastatin 40 mg/day. A-to-Z enrolled 4497 subjects after ACS and randomized them to a high-potency (simvastatin 40 mg/day × 1 months, then simvastatin 80 mg/day) versus a delayed moderate-potency statin strategy (placebo × 4 months, then simvastatin 20 mg/day). Serum creatinine was assessed centrally at serial time points. Adverse events (AEs) relating to kidney injury were identified through database review. Across both trials, mean serum creatinine was similar between treatment arms at baseline and throughout follow-up. In A-to-Z, the incidence of a 1.5-fold or ≥ 0.3 mg/dL rise in serum creatinine was 11.4% for subjects randomized to a high-potency statin regimen versus 12.4% for those on a delayed moderate-potency regimen (odds ratio [OR], 0.91; 95% confidence interval [CI], 0.76 to 1.10; P=0.33). In PROVE IT-TIMI 22, the incidence was 9.4% for subjects randomized to atorvastatin 80 mg/day and 10.6% for subjects randomized to pravastatin 40 mg/day (OR, 0.88; 95% CI, 0.71 to 1.09; P=0.25). Consistent results were observed for different kidney injury thresholds and in individuals with diabetes mellitus or with moderate renal dysfunction. The incidence of kidney injury-related adverse events (AEs) was not statistically different for patients on a high-potency versus moderate-potency statin regimen (OR, 1.06; 95% CI, 0.68 to 1.67; P=0.78). For patients enrolled in 2 large randomized trials of statin therapy after ACS, the use of a high-potency statin regimen did not increase the risk of kidney injury.

  19. Unipolar Depression and the Progression of Coronary Artery Disease : Toward an Integrative Model

    NARCIS (Netherlands)

    Ormel, Johan; de Jonge, Peter

    2011-01-01

    Background: Despite extensive research on the relationship between depression and coronary artery disease (CAD) after an acute coronary syndrome (ACS), causal interpretations are still difficult. This uncertainty has led to much confusion regarding screening and treatment for depression in CAD

  20. IL-1β is Crucial for Induction of Coronary Artery Inflammation in a Mouse Model of Kawasaki Disease

    Science.gov (United States)

    Lee, Young Ho; Schulte, Danica J.; Shimada, Kenichi; Chen, Shuang; Crother, Timothy R.; Chiba, Norika; Fishbein, Michael C.; Lehman, Thomas J.A.; Arditi, Moshe

    2012-01-01

    Background Kawasaki disease (KD) is the most common cause of acute vasculitis and acquired cardiac disease in US children. Untreated, children may develop coronary artery aneurysms, myocardial infarction and sudden death as a result of the illness. Up to a third of KD patients fail to respond to intravenous gammaglobulin (IVIG), the standard therapy, and alternative treatments are being investigated. Genetic studies have indicated a possible role for IL-1β in KD. We therefore explored the role of IL-1β in a murine model of KD. Methods and Results Using an established mouse model of KD that involves injection of Lactobacillus casei cell wall extract (LCWE), we investigated the role of IL- 1β and caspase-1 (activated by the inflammasome and required for IL-1β maturation) in coronary arteritis, and evaluated the efficacy of IL-1 receptor antagonist (IL-1Ra) as a potential treatment. LCWE-induced IL-1β maturation and secretion was dependent on the NLRP3 inflammasome in macrophages. Both caspase1-deficient and IL-1R-deficient mice were protected from LCWE-induced coronary lesions. Injection of recombinant IL-1β to caspase-1-deficient mice restored the ability of LCWE to cause coronary lesions in response to LCWE. Furthermore, daily injections of the IL-1Ra prevented LCWE-mediated coronary lesions, up to three days after LCWE injection. Conclusions Our results strongly suggest that caspase-1 and IL-1β play critical roles in the development of coronary lesions in this KD mouse model, blocked by IL-1Ra. Therefore, anti-IL-1β treatment strategies may constitute an effective, more targeted treatment of KD to prevent coronary lesions. PMID:22361326

  1. On the necessity of modelling fluid-structure interaction for stented coronary arteries.

    Science.gov (United States)

    Chiastra, Claudio; Migliavacca, Francesco; Martínez, Miguel Ángel; Malvè, Mauro

    2014-06-01

    Although stenting is the most commonly performed procedure for the treatment of coronary atherosclerotic lesions, in-stent restenosis (ISR) remains one of the most serious clinical complications. An important stimulus to ISR is the altered hemodynamics with abnormal shear stresses on endothelial cells generated by the stent presence. Computational fluid dynamics is a valid tool for studying the local hemodynamics of stented vessels, allowing the calculation of the wall shear stress (WSS), which is otherwise not directly possible to be measured in vivo. However, in these numerical simulations the arterial wall and the stent are considered rigid and fixed, an assumption that may influence the WSS and flow patterns. Therefore, the aim of this work is to perform fluid-structure interaction (FSI) analyses of a stented coronary artery in order to understand the effects of the wall compliance on the hemodynamic quantities. Two different materials are considered for the stent: cobalt-chromium (CoCr) and poly-l-lactide (PLLA). The results of the FSI and the corresponding rigid-wall models are compared, focusing in particular on the analysis of the WSS distribution. Results showed similar trends in terms of instantaneous and time-averaged WSS between compliant and rigid-wall cases. In particular, the difference of percentage area exposed to TAWSS lower than 0.4Pa between the CoCr FSI and the rigid-wall cases was about 1.5% while between the PLLA cases 1.0%. The results indicate that, for idealized models of a stented coronary artery, the rigid-wall assumption for fluid dynamic simulations appears adequate when the aim of the study is the analysis of near-wall quantities like WSS.

  2. Perinatal Cerebellar Injury in Human and Animal Models

    Directory of Open Access Journals (Sweden)

    Valerie Biran

    2012-01-01

    Full Text Available Cerebellar injury is increasingly recognized through advanced neonatal brain imaging as a complication of premature birth. Survivors of preterm birth demonstrate a constellation of long-term neurodevelopmental deficits, many of which are potentially referable to cerebellar injury, including impaired motor functions such as fine motor incoordination, impaired motor sequencing and also cognitive, behavioral dysfunction among older patients. This paper reviews the morphogenesis and histogenesis of the human and rodent developing cerebellum, and its more frequent injuries in preterm. Most cerebellar lesions are cerebellar hemorrhage and infarction usually leading to cerebellar abnormalities and/or atrophy, but the exact pathogenesis of lesions of the cerebellum is unknown. The different mechanisms involved have been investigated with animal models and are primarily hypoxia, ischemia, infection, and inflammation Exposure to drugs and undernutrition can also induce cerebellar abnormalities. Different models are detailed to analyze these various disturbances of cerebellar development around birth.

  3. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models.

    Science.gov (United States)

    Maluf, Miguel Angel; Gomes, Walter José; Bras, Ademir Massarico; Araújo, Thiago Cavalcante Vila Nova de; Mota, André Lupp; Cardoso, Caio Cesar; Coutinho, Rafael Viana dos S

    2015-01-01

    Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art.

  4. Cardiovascular Surgery Residency Program: Training Coronary Anastomosis Using the Arroyo Simulator and UNIFESP Models

    Directory of Open Access Journals (Sweden)

    Miguel Angel Maluf

    2015-10-01

    Full Text Available ABSTRACT OBJECTIVE: Engage the UNIFESP Cardiovascular Surgery residents in coronary anastomosis, assess their skills and certify results, using the Arroyo Anastomosis Simulator and UNIFESP surgical models. METHODS: First to 6th year residents attended a weekly program of technical training in coronary anastomosis, using 4 simulation models: 1. Arroyo simulator; 2. Dummy with a plastic heart; 3. Dummy with a bovine heart; and 4. Dummy with a beating pig heart. The assessment test was comprised of 10 items, using a scale from 1 to 5 points in each of them, creating a global score of 50 points maximum. RESULTS: The technical performance of the candidate showed improvement in all items, especially manual skill and technical progress, critical sense of the work performed, confidence in the procedure and reduction of the time needed to perform the anastomosis after 12 weeks practice. In response to the multiplicity of factors that currently influence the cardiovascular surgeon training, there have been combined efforts to reform the practices of surgical medical training. CONCLUSION: 1 - The four models of simulators offer a considerable contribution to the field of cardiovascular surgery, improving the skill and dexterity of the surgeon in training. 2 - Residents have shown interest in training and cooperate in the development of innovative procedures for surgical medical training in the art.

  5. Experimental coronary sclerosis induced by immobilization of rabbits: A new model of arteriosclerosis

    Science.gov (United States)

    Tyavokin, V. V.; Tjawokin, W. W.

    1980-01-01

    A new method for producing arteriosclerosis with coronary insufficiency in rabbits by means of immobilization is described and discussed. The experimentally induced atherosclerosis develops due to hypodynamics imposed by the reduced muscular activity without overloading with exogenous cholesterol. The atherosclerosis and coronary insufficiency are associated. With variations in the duration and extent of immobilization, coronary insufficiency alone or with atherosclerosis can be produced.

  6. In silico coronary wave intensity analysis: application of an integrated one-dimensional and poromechanical model of cardiac perfusion.

    Science.gov (United States)

    Lee, Jack; Nordsletten, David; Cookson, Andrew; Rivolo, Simone; Smith, Nicolas

    2016-12-01

    Coronary wave intensity analysis (cWIA) is a diagnostic technique based on invasive measurement of coronary pressure and velocity waveforms. The theory of WIA allows the forward- and backward-propagating coronary waves to be separated and attributed to their origin and timing, thus serving as a sensitive and specific cardiac functional indicator. In recent years, an increasing number of clinical studies have begun to establish associations between changes in specific waves and various diseases of myocardium and perfusion. These studies are, however, currently confined to a trial-and-error approach and are subject to technological limitations which may confound accurate interpretations. In this work, we have developed a biophysically based cardiac perfusion model which incorporates full ventricular-aortic-coronary coupling. This was achieved by integrating our previous work on one-dimensional modelling of vascular flow and poroelastic perfusion within an active myocardial mechanics framework. Extensive parameterisation was performed, yielding a close agreement with physiological levels of global coronary and myocardial function as well as experimentally observed cumulative wave intensity magnitudes. Results indicate a strong dependence of the backward suction wave on QRS duration and vascular resistance, the forward pushing wave on the rate of myocyte tension development, and the late forward pushing wave on the aortic valve dynamics. These findings are not only consistent with experimental observations, but offer a greater specificity to the wave-originating mechanisms, thus demonstrating the value of the integrated model as a tool for clinical investigation.

  7. Impact injury prediction by FE human body model

    Directory of Open Access Journals (Sweden)

    Hynčík L.

    2008-12-01

    Full Text Available The biomechanical simulations as powerful instruments are used in many areas such as traffic, medicine, sport, army etc. The simulations are often performed with models, which are based on the Finite Element Method. The great ability of FE deformable models of human bodies is to predict the injuries during accidents. Due to its modular implementation of thorax and abdomen FE models, human articulated rigid body model ROBBY, which was previously developed at the University of West Bohemia in cooperation with ESI Group (Engineering Simulation for Industry, can be used for this purpose. ROBBY model representing average adult man is still being improved to obtain more precise model of human body with the possibility to predict injuries during accidents. Recently, new generated thoracic model was embedded into ROBBY model and this was subsequently satisfactorily validated. In this study the updated ROBBY model was used and injury of head and thorax were investigated during frontal crashes simulated by virtue of two types of sled tests with various types of restraint system (shoulder belt, lap belt and airbag. The results of the simulation were compared with the experimental ones.

  8. Human body modeling in injury biomechanics

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Horst, M.J. van der; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling is widely used for crash-safety research and design. However, most occupant models used in crash simulations are based on crash dummies and thereby inherit their apparent limitations. This paper describes a mathematical model of the real human body for impact loading. A combin

  9. Podocyte Injury and Albuminuria in Experimental Hyperuricemic Model Rats

    Science.gov (United States)

    Asakawa, Shinichiro; Morimoto, Chikayuki; Shiraishi, Takeshi; Nakamura, Takashi; Tamura, Yoshifuru; Kumagai, Takanori; Hosoyamada, Makoto

    2017-01-01

    Although hyperuricemia is shown to accelerate chronic kidney disease, the mechanisms remain unclear. Accumulating studies also indicate that uric acid has both pro- and antioxidant properties. We postulated that hyperuricemia impairs the function of glomerular podocytes, resulting in albuminuria. Hyperuricemic model was induced by oral administration of 2% oxonic acid, a uricase inhibitor. Oxonic acid caused a twofold increase in serum uric acid levels at 8 weeks when compared to control animals. Hyperuricemia in this model was associated with the increase in blood pressure and the wall-thickening of afferent arterioles as well as arcuate arteries. Notably, hyperuricemic rats showed significant albuminuria, and the podocyte injury marker, desmin, was upregulated in the glomeruli. Conversely, podocin, the key component of podocyte slit diaphragm, was downregulated. Structural analysis using transmission electron microscopy confirmed podocyte injury in this model. We found that urinary 8-hydroxy-2′-deoxyguanosine levels were significantly increased and correlated with albuminuria and podocytopathy. Interestingly, although the superoxide dismutase mimetic, tempol, ameliorated the vascular changes and the hypertension, it failed to reduce albuminuria, suggesting that vascular remodeling and podocyte injury in this model are mediated through different mechanisms. In conclusion, vasculopathy and podocytopathy may distinctly contribute to the kidney injury in a hyperuricemic state. PMID:28337250

  10. A Numerical Multiscale Framework for Modeling Patient-Specific Coronary Artery Bypass Surgeries

    Science.gov (United States)

    Ramachandra, Abhay B.; Kahn, Andrew; Marsden, Alison

    2014-11-01

    Coronary artery bypass graft (CABG) surgery is performed to revascularize diseased coronary arteries, using arterial, venous or synthetic grafts. Vein grafts, used in more than 70% of procedures, have failure rates as high as 50% in less than 10 years. Hemodynamics is known to play a key role in the mechano-biological response of vein grafts, but current non-invasive imaging techniques cannot fully characterize the hemodynamic and biomechanical environment. We numerically compute hemodynamics and wall mechanics in patient-specific 3D CABG geometries using stabilized finite element methods. The 3D patient-specific domain is coupled to a 0D lumped parameter circulatory model and parameters are tuned to match patient-specific blood pressures, stroke volumes, heart rates and heuristic flow-split values. We quantify differences in hemodynamics between arterial and venous grafts and discuss possible correlations to graft failure. Extension to a deformable wall approximation will also be discussed. The quantification of wall mechanics and hemodynamics is a necessary step towards coupling continuum models in solid and fluid mechanics with the cellular and sub-cellular responses of grafts, which in turn, should lead to a more accurate prediction of the long term outcome of CABG surgeries, including predictions of growth and remodeling.

  11. The coronary heart team.

    Science.gov (United States)

    Yanagawa, Bobby; Puskas, John D; Bhatt, Deepak L; Verma, Subodh

    2017-09-01

    The concept of a Coronary Heart Team has generated increased interest, including support from major practice guidelines. Here, we review the rationale and the published experience of Coronary Heart Teams. A Coronary Heart Team should be led by both cardiology and cardiac surgery with a shared decision-making approach. The team should incorporate data from anatomic and clinical risk prediction models to offer individualized care. Most teams focus on management of complex patients and those with indications for both coronary artery bypass graft and percutaneous coronary intervention. The potential benefits of a Coronary Heart Team include balanced decision-making, greater adherence to evidence-based practice guidelines, as well as promoting greater collegiality and exchange of knowledge between specialties. Single-center series have demonstrated consistency in decision-making by Coronary Heart Teams but prospective data demonstrating improved patient outcomes and/or cost effectiveness are necessary. The concept of a Coronary Heart Team is gaining traction for patients with complex coronary artery disease. There is a growing literature in support of Coronary Heart Teams but comparative and prospective data demonstrating improved patient outcomes are needed.

  12. Expanding pedestrian injury risk to the body region level: how to model passive safety systems in pedestrian injury risk functions.

    Science.gov (United States)

    Niebuhr, Tobias; Junge, Mirko; Achmus, Stefanie

    2015-01-01

    Assessment of the effectiveness of advanced driver assistance systems (ADAS) plays a crucial role in accident research. A common way to evaluate the effectiveness of new systems is to determine the potentials for injury severity reduction. Because injury risk functions describe the probability of an injury of a given severity conditional on a technical accident severity (closing speed, delta V, barrier equivalent speed, etc.), they are predestined for such evaluations. Recent work has stated an approach on how to model the pedestrian injury risk in pedestrian-to-passenger car accidents as a family of functions. This approach gave explicit and easily interpretable formulae for the injury risk conditional on the closing speed of the car. These results are extended to injury risk functions for pedestrian body regions. Starting with a double-checked German In-depth Accident Study (GIDAS) pedestrian-to-car accident data set (N = 444) and a functional-anatomical definition of the body regions, investigations on the influence of specific body regions on the overall injury severity will be presented. As the measure of injury severity, the ISSx, a rescaled version of the well-known Injury Severity Score (ISS), was used. Though traditional ISS is computed by summation of the squares of the 3 most severe injured body regions, ISSx is computed by the summation of the exponentials of the Abbreviated Injury Scale (AIS) severities of the 3 most severely injured body regions. The exponentials used are scaled to fit the ISS range of values between 0 and 75. Three body regions (head/face/neck, thorax, hip/legs) clearly dominated abdominal and upper extremity injuries; that is, the latter 2 body regions had no influence at all on the overall injury risk over the range of technical accident severities. Thus, the ISSx is well described by use of the injury codes from the same body regions for any pedestrian injury severity. As a mathematical consequence, the ISSx becomes explicitly

  13. Injury prevention risk communication: A mental models approach

    DEFF Research Database (Denmark)

    Austin, Laurel Cecelia; Fischhoff, Baruch

    2012-01-01

    Individuals' decisions and behaviour can play a critical role in determining both the probability and severity of injury. Behavioural decision research studies peoples' decision-making processes in terms comparable to scientific models of optimal choices, providing a basis for focusing...... interventions on the most critical opportunities to reduce risks. That research often seeks to identify the ‘mental models’ that underlie individuals' interpretations of their circumstances and the outcomes of possible actions. In the context of injury prevention, a mental models approach would ask why people...... and create an expert model of the risk situation, interviewing lay people to elicit their comparable mental models, and developing and evaluating communication interventions designed to close the gaps between lay people and experts. This paper reviews the theory and method behind this research stream...

  14. Quantification of the uncertainty in coronary CTA plaque measurements using dynamic cardiac phantom and 3D-printed plaque models

    Science.gov (United States)

    Richards, Taylor; Sturgeon, Gregory M.; Ramirez-Giraldo, Juan Carlos; Rubin, Geoffrey; Segars, Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to quantify the accuracy of coronary computed tomography angiography (CTA) stenosis measurements using newly developed physical coronary plaque models attached to a base dynamic cardiac phantom (Shelley Medical DHP-01). Coronary plaque models (5 mm diameter, 50% stenosis, and 32 mm long) were designed and 3D-printed with tissue equivalent materials (calcified plaque with iodine enhanced lumen). Realistic cardiac motion was achieved by fitting known cardiac motion vectors to left ventricle volume-time curves to create synchronized heart motion profiles executed by the base cardiac phantom. Realistic coronary CTA acquisition was accomplished by synthesizing corresponding ECG waveforms for gating and reconstruction purposes. All scans were acquired using a retrospective gating technique on a dual-source CT system (Siemens SOMATOM FLASH) with 75ms temporal resolution. Multi-planar reformatted images were reconstructed along vessel centerlines and the enhanced lumens were manually segmented by 5 independent operators. On average, the stenosis measurement accuracy was 0.9% positive bias for the motion free condition (0 bpm). The measurement accuracy monotonically decreased to 18.5% negative bias at 90 bpm. Contrast-tonoise (CNR), vessel circularity, and segmentation conformity also decreased monotonically with increasing heart rate. These results demonstrate successful implementation of the base cardiac phantom with 3D-printed coronary plaque models, adjustable motion profiles, and coordinated ECG waveforms. They further show the utility of the model to ascertain metrics of coronary CT accuracy and image quality under a variety of plaque, motion, and acquisition conditions.

  15. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    Science.gov (United States)

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparison of models for predicting outcomes in patients with coronary artery disease focusing on microsimulation

    Directory of Open Access Journals (Sweden)

    Masoud Amiri

    2012-01-01

    Full Text Available Background: Physicians have difficulty to subjectively estimate the cardiovascular risk of their patients. Using an estimate of global cardiovascular risk could be more relevant to guide decisions than using binary representation (presence or absence of risk factors data. The main aim of the paper is to compare different models of predicting the progress of a coronary artery diseases (CAD to help the decision making of physician. Methods: There are different standard models for predicting risk factors such as models based on logistic regression model, Cox regression model, dynamic logistic regression model, and simulation models such as Markov model and microsimulation model. Each model has its own application which can or cannot use by physicians to make a decision on treatment of each patient. Results: There are five main common models for predicting of outcomes, including models based on logistic regression model (for short-term outcomes, Cox regression model (for intermediate-term outcomes, dynamic logistic regression model, and simulation models such as Markov and microsimulation models (for long-term outcomes. The advantages and disadvantages of these models have been discussed and summarized. Conclusion: Given the complex medical decisions that physicians face in everyday practice, the multiple interrelated factors that play a role in choosing the optimal treatment, and the continuously accumulating new evidence on determinants of outcome and treatment options for CAD, physicians may potentially benefit from a clinical decision support system that accounts for all these considerations. The microsimulation model could provide cardiologists, researchers, and medical students a user-friendly software, which can be used as an intelligent interventional simulator.

  17. A clinical model to identify patients with high-risk coronary artery disease.

    Science.gov (United States)

    Yang, Yelin; Chen, Li; Yam, Yeung; Achenbach, Stephan; Al-Mallah, Mouaz; Berman, Daniel S; Budoff, Matthew J; Cademartiri, Filippo; Callister, Tracy Q; Chang, Hyuk-Jae; Cheng, Victor Y; Chinnaiyan, Kavitha; Cury, Ricardo; Delago, Augustin; Dunning, Allison; Feuchtner, Gudrun; Hadamitzky, Martin; Hausleiter, Jörg; Karlsberg, Ronald P; Kaufmann, Philipp A; Kim, Yong-Jin; Leipsic, Jonathon; LaBounty, Troy; Lin, Fay; Maffei, Erica; Raff, Gilbert L; Shaw, Leslee J; Villines, Todd C; Min, James K; Chow, Benjamin J W

    2015-04-01

    This study sought to develop a clinical model that identifies patients with and without high-risk coronary artery disease (CAD). Although current clinical models help to estimate a patient's pre-test probability of obstructive CAD, they do not accurately identify those patients with and without high-risk coronary anatomy. Retrospective analysis of a prospectively collected multinational coronary computed tomographic angiography (CTA) cohort was conducted. High-risk anatomy was defined as left main diameter stenosis ≥50%, 3-vessel disease with diameter stenosis ≥70%, or 2-vessel disease involving the proximal left anterior descending artery. Using a cohort of 27,125, patients with a history of CAD, cardiac transplantation, and congenital heart disease were excluded. The model was derived from 24,251 consecutive patients in the derivation cohort and an additional 7,333 nonoverlapping patients in the validation cohort. The risk score consisted of 9 variables: age, sex, diabetes, hypertension, current smoking, hyperlipidemia, family history of CAD, history of peripheral vascular disease, and chest pain symptoms. Patients were divided into 3 risk categories: low (≤7 points), intermediate (8 to 17 points) and high (≥18 points). The model was statistically robust with area under the curve of 0.76 (95% confidence interval [CI]: 0.75 to 0.78) in the derivation cohort and 0.71 (95% CI: 0.69 to 0.74) in the validation cohort. Patients who scored ≤7 points had a low negative likelihood ratio (risk CAD was 1% in patients with ≤7 points and 16.7% in those with ≥18 points. We propose a scoring system, based on clinical variables, that can be used to identify patients at high and low pre-test probability of having high-risk CAD. Identification of these populations may detect those who may benefit from a trial of medical therapy and those who may benefit most from an invasive strategy. Copyright © 2015 American College of Cardiology Foundation. Published by

  18. Investigation of Management Models in Elite Athlete Injuries

    Directory of Open Access Journals (Sweden)

    Shen-Kai Chen

    2005-05-01

    Full Text Available This cross-sectional study investigated management models among elite athletes participating in sports including baseball, basketball, soccer, volleyball, tennis, softball, football, handball, track and field, swimming, judo, tae-kwon-do, gymnastics, archery, and weight lifting at the Tsoying National Sport Training Center. Data were collected by questionnaire. Of the 393 athletes investigated, 56% were male and 44% were female, with an average age of 20.9 years and average length of athletic experience of 9.8 years. At the time of the survey, 74.8% had sporting injuries and were being treated with Chinese and/or Western medicine. Among injured athletes, 14.5% chose Western treatment, 8.1% chose Chinese medicine, and 75.4% received combined treatment. There were various reasons for choosing the management model. Most athletes had ordinary self-recognition of sports injury prevention. Their qualified ability for sports injury prevention was 70%. This ability was significantly correlated with age, education, and sports experience. Within Taiwan's current medical and social environment, elite athletes prefer a combination of Eastern and Western treatments for sports injuries. Each of the medical approaches are widely accepted by elite athletes and their coaches. Doctors trained in Western medicine should learn these alternative treatment methods and apply them effectively in athletes, so that a better medical network can be established.

  19. Fingernail Injuries and NASA's Integrated Medical Model

    Science.gov (United States)

    Kerstman, Eric; Butler, Doug

    2008-01-01

    The goal of space medicine is to optimize both crew health and performance. Currently, expert opinion is primarily relied upon for decision-making regarding medical equipment and supplies flown in space. Evidence-based decisions are preferred due to mass and volume limitations and the expense of space flight. The Integrated Medical Model (IMM) is an attempt to move us in that direction!

  20. [HEALING MODEL RESEARCH OF ROTATOR CUFF INJURY IN CANINE].

    Science.gov (United States)

    Ye, Wei; Bao, Nirong; Zhaq, Jianning

    2016-04-01

    To compare the difference of rotator cuff healing between different types of injury andbetween different repair methods, and to explore the animal model to accurately simulate the restorative process afterrepair of rotator cuff injury. Twelve adult male beagle dogs (weighing, 10-15 kg) were divided into 3 groups (n = 4) according to different processing methods: acute rotator cuff injury+Mason-Allen suture repair (group A), huge rotator cuff injury+Mason-Allen suture repair (group B), and huge rotator cuff injury+Mason-Allen combined with autogenous semitendinosus expansion suture repair (group C). The external fixation was used for immobilization after repair. After operation, the general situation of the animals was observed, and the infraspinatus tendon was harvested for gross observation at 6 weeks after operation. The biomechanical test of limit load and histological observation of tendon fibers were carried out. All the animals survived to the end of the experiment. All incisions healed well and no infection occurred. Gross observation showed more scar tissues at the end of infraspinatus muscle tendon than normal tendon in group A; no obvious tendon tissue was observed at the end of infraspinatus muscle tendon in group B; the infraspinatus muscle tendon was covered with some white scar tissue, but the tendon and the general direction could be observed in group C. The limit load of groups A, B, and C were (223.75 ± 24.28), (159.25 ± 34.87), and (233.25 ± 14.24) N respectively, group B was significantly lower than groups A and C (P 0.05). Histological observation showed normal arrangement of tendon fibers in group A; tendon fibers arranged disorderly in group B and tendon cells were significantly less than those of group A; tendon fibers arranged in neat in group C and tendon cells were more than those of group B. Canine autologous semitendinosus expansion repair of massive rotator cuff injury immobilization model can better simulate the clinical rotator

  1. Investigations with GMC2021 in experimental models predictive of antimigraine activity and coronary side-effect potential

    NARCIS (Netherlands)

    Saxena, P.R; Heiligers, J.P C; Maassen Vandenbrink, A; Bax, W.A; Barf, T.A; Wikström, H.V

    1996-01-01

    Several acutely acting antimigraine drugs, including sumatriptan and other second generation 5-HT1D receptor agonists, have the ability to constrict porcine carotid arteriovenous anastomoses as well as the human isolated coronary artery. These two experimental models seem to serve as indicators, res

  2. A coronary heart disease risk model for predicting the effect of potent antiretroviral therapy in HIV-1 infected men

    DEFF Research Database (Denmark)

    May, Margaret; Sterne, Jonathan A C; Shipley, Martin;

    2007-01-01

    Many HIV-infected patients on highly active antiretroviral therapy (HAART) experience metabolic complications including dyslipidaemia and insulin resistance, which may increase their coronary heart disease (CHD) risk. We developed a prognostic model for CHD tailored to the changes in risk factors...

  3. Using a Markov simulation model to assess the impact of changing trends in coronary heart disease incidence on requirements for coronary artery revascularization procedures in Western Australia

    Directory of Open Access Journals (Sweden)

    Knuiman Matthew

    2010-01-01

    Full Text Available Abstract Background The population incidence of coronary heart disease (CHD has been declining in Australia and many other countries. This decline has been due to reduced population levels of risk factors for CHD and improved medical care for those at higher risk of CHD. However, there are signs that there may be a slowing down or even reversal in the decline of CHD incidence due to the 'obesity epidemic' and other factors and this will have implications for the requirements for surgical treatments for those with CHD. Methods Using a validated Markov simulation model applied to the population of Western Australia, different CHD incidence trend scenarios were developed to explore the effect of changing CHD incidence on requirements for coronary artery bypass graft (CABG and percutaneous coronary interventions (PCI, together known as coronary artery revascularization procedures (CARPs. Results The most dominant component of CHD incidence is the risk of CHD hospital admission for those with no history of CHD and if this risk leveled off and the trends in all other risks continued unchanged, then the projected numbers of CABGs and PCIs are only minimally changed. Further, the changes in the projected numbers remained small even when this risk was increased by 20 percent (although it is an unlikely scenario. However, when the other CHD incidence components that had also been declining, namely, the risk of CABG and that of CHD death for those with no history of CHD, were also projected to level off as these were declining in 1998-2000 and the risk of PCI for those with no history of CHD (which was already increasing was projected to further increase by 5 percent, it had a substantial effect on the projected numbers of CARPs. Conclusion There needs to be dramatic changes to several CHD incidence components before it has a substantial impact on the projected requirements for CARPs. Continued monitoring of CHD incidence and also the mix of initial

  4. Modelling Future Coronary Heart Disease Mortality to 2030 in the British Isles.

    Science.gov (United States)

    Hughes, John; Kabir, Zubair; Bennett, Kathleen; Hotchkiss, Joel W; Kee, Frank; Leyland, Alastair H; Davies, Carolyn; Bandosz, Piotr; Guzman-Castillo, Maria; O'Flaherty, Martin; Capewell, Simon; Critchley, Julia

    2015-01-01

    Despite rapid declines over the last two decades, coronary heart disease (CHD) mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI), Republic of Ireland (RoI) and Scotland. CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year) to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i) smoking prevalence and (ii) physical inactivity rates of up to 15% by 2030; relative decreases in (iii) dietary salt intake of up to 30% by 2030 and (iv) dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted. Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84). In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses. Feasible reductions in four cardiovascular risk factors (already achieved elsewhere) could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity.

  5. Modelling Future Coronary Heart Disease Mortality to 2030 in the British Isles.

    Directory of Open Access Journals (Sweden)

    John Hughes

    Full Text Available Despite rapid declines over the last two decades, coronary heart disease (CHD mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI, Republic of Ireland (RoI and Scotland.CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i smoking prevalence and (ii physical inactivity rates of up to 15% by 2030; relative decreases in (iii dietary salt intake of up to 30% by 2030 and (iv dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted.Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84. In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses.Feasible reductions in four cardiovascular risk factors (already achieved elsewhere could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity.

  6. Myocardial contrast echocardiography to assess perfusion in a mouse model of ischemia/reperfusion injury

    Science.gov (United States)

    Hossack, John A.; Li, Yinbo; Christensen, Jonathan P.; Yang, Zequan; French, Brent A.

    2004-04-01

    Noninvasive approaches for measuring anatomical and physiological changes resulting from myocardial ischemia / reperfusion injury in the mouse heart have significant value since the mouse provides a practical, low-cost model for modeling human heart disease. In this work, perfusion was assessed before, during and after an induced closed- chest, coronary ischemic event. Ultrasound contrast agent, similar to MP1950, in a saline suspension, was injected via cannulated carotid artery as a bolus and imaged using a Siemens Sequoia 512 scanner and a 15L8 intraoperative transducer operating in second harmonic imaging mode. Image sequences were transferred from the scanner to a PC for analysis. Regions of interest were defined in septal and anterior segments of the myocardium. During the ischemic event, when perfusion was diminished in the anterior segment, mean video intensity in the affected segment was reduced by one half. Furthermore, following reperfusion, hyperemia (enhanced blood flow) was observed in the anterior segment. Specifically, the mean video intensity in the affected segment was increased by approximately 50% over the original baseline level prior to ischemia. Following the approach of Kaul et al., [1], gamma variate curves were fitted to the time varying level of mean video intensity. This foundation suggests the possibility of quantifying myocardial blood flow in ischemic regions of a mouse heart using automated analysis of contrast image data sets. An improved approach to perfusion assessment using the destruction-reperfusion approach [2] is also presented.

  7. The effect of cyclosporin-A on peri-operative myocardial injury in adult patients undergoing coronary artery bypass graft surgery: a randomised controlled clinical trial

    Science.gov (United States)

    Hausenloy, DJ; Kunst, G; Boston-Griffiths, E; Kolvekar, S; Chaubey, S; John, L; Desai, J; Yellon, DM

    2014-01-01

    Objective Cyclosporin-A (CsA) has been reported to reduce myocardial infarct size in both the experimental and clinical settings. This protective effect is dependent on its ability to prevent the opening of the mitochondrial permeability transition pore, a critical determinant of cell death in the setting of acute ischaemia-reperfusion injury. Whether CsA can reduce the extent of peri-operative myocardial injury (PMI) in patients undergoing coronary artery bypass graft (CABG) surgery is unknown, and is investigated in this randomised controlled clinical trial. Methods 78 adult patients undergoing elective CABG surgery were randomised to receive either an intravenous bolus of CsA (2.5 mg/kg) or placebo administered after induction of anaesthesia and prior to sternotomy. PMI was assessed by measuring serum cardiac enzymes, troponin T (cTnT) and CK-MB at 0, 6, 12, 24, 48 and 72 h after surgery. Results There was no significant difference in mean peak cTnT levels between control (n=43) and CsA treatment (n=40) patients (0.56±0.06 ng/mL with control vs 0.35±0.05 ng/mL with CsA; p=0.07). However, in higher-risk patients with longer cardiopulmonary bypass times, there was a significant reduction in PMI with CsA therapy (p=0.049), with a reduced postoperative cTnT rise by 0.03 ng/mL for every 10 min, when compared with control. Conclusions In patients with longer cardiopulmonary bypass times, a single intravenous bolus of CsA administered prior to CABG surgery reduced the extent of PMI. PMID:24488610

  8. [Factor models of the Beck Depression Inventory-II. Validation with coronary patients and a critique of Ward's model].

    Science.gov (United States)

    del Pino Pérez, Antonio; Ibáñez Fernández, Ignacio; Bosa Ojeda, Francisco; Dorta González, Ruth; Gaos Miezoso, María Teresa

    2012-02-01

    The objective of this study was to validate in a sample of 205 coronary patients a factor model for the BDI-II, especially a model that would allow for modeling of depressive symptoms after explicitly removing bias related to somatic symptoms of depression that would overlap those of heart disease. Exploratory and confirmatory factor analyses for ordinal data were conducted. A one-factor model, six correlated two-factor models and, derivatives thereof, seven models with a single General Depression factor and two uncorrelated factors, were analyzed. Exploratory analysis extracted two factors, Somatic-affective and Cognitive. Confirmatory factor analyses showed the worst fit for the one-factor model. Two-factor models were surpassed in goodness of fit by the models of general-factor and group factors. Among these, the General, Somatic-affective and Cognitive (G-Sa-C) model of Beck with students is noteworthy. The reduced General, Somatic and Cognitive (G-S-C) model of Ward showed the worst goodness of fit. Our model surpasses the cutoff criteria of all fit indexes. We conclude that the inclusion of a general-factor and group factors in all the models surpasses the results of G-S-C model and, therefore, questions it. The G-Sa-C model is strengthened.

  9. Lack of cardioprotection from metabolic support with glutamine or glutamate in a porcine coronary occlusion model

    DEFF Research Database (Denmark)

    Kristensen, Jens; Mæng, Michael; Mortensen, Ulrik;

    2005-01-01

    OBJECTIVE: Previous experimental studies indicate that glutamine or glutamate may provide cardioprotection by improving the oxidative metabolism in myocardial ischemia. We investigated the effect of glutamine or glutamate, given during reperfusion, on resulting infarct size and hemodynamic recovery...... vascular resistance, while glutamate preserved cardiac output during infusion. CONCLUSION: Substrate supplementation with the anaplerotic precursors glutamine and glutamate is ineffective as adjunctive therapy for severe myocardial ischemia. Beneficial effects documented in less complex experimental....... DESIGN: A porcine coronary occlusion model was applied. Infusions were initiated 15 min before reperfusion and supplemented with intracoronary bolus doses at reperfusion. The primary outcome measure was infarct size in relation to area at risk determined by a standard tissue staining procedure. Secondary...

  10. Experimental model of cutaneous radiation injury in rabbits

    OpenAIRE

    Meirelles,Rafael Panisi de Campos; Hochman, Bernardo; Helene Junior,Americo; Lellis,Rute; Fraga, Murillo Francisco Pires; Ferreira, Lydia Masako

    2013-01-01

    PURPOSE: To describe an experimental model of cutaneous radiation injury in rabbits. METHODS: On this study eight six-month-old New Zealand male rabbits, with an average weight of 2.5kg were used. They were distributed in four groups (n=2 per group). The control group did not receive radiotherapy and the others received one radiotherapy session of 2000, 3000 and 4500 cGy, respectively. Photographic analysis and histopathological evaluation of the irradiated areas were carried out. RESULTS: Af...

  11. Combined Injury Modeling: Radiation and Burn Workshop Report

    Science.gov (United States)

    2010-10-01

    when radiation exposure is combined with burn. For instance, in the Chernobyl accident, hepatic encephalopathy was a major cause of death in patients...for radiation injury that block apoptosis and have demonstrated increased survival in animal models (Whitnall and Pellmar 2007). Cell loss also... Animal studies are needed to resolve this information gap. However, Institutional Animal Care and Use Committee (IACUC) approval for these types

  12. Intramural coronary delivery of advanced antisense oligonucleotides reduces neointimal formation in the porcine stent restenosis model.

    Science.gov (United States)

    Kipshidze, Nicholas N; Kim, Han Soo; Iversen, Patrick; Yazdi, Hamid A; Bhargava, Balram; New, Gishel; Mehran, Roxana; Tio, Fermin; Haudenschild, Christian; Dangas, George; Stone, Gregg W; Iyer, Sriram; Roubin, Gary S; Leon, Martin B; Moses, Jeffrey W

    2002-05-15

    We evaluated the long-term influence of intramural delivery of advanced c-myc neutrally charged antisense oligonucleotides (Resten-NG) on neointimal hyperplasia after stenting in a pig model. Neointimal hyperplasia after percutaneous coronary interventions is one of the key components of the restenotic process. The c-myc is a critical cell division cycle protein involved in the formation of neointima. In short-term experiments, different doses (from 500 microg to 5 mg) of Resten-NG or saline were delivered to the stent implantation site with an infiltrator delivery system (Interventional Technologies, San Diego, California). Animals were euthanized at 2, 6 and 18 h after interventions, and excised vessels were analyzed for c-myc expression by Western blot. In long-term experiments, either saline or a dose of 1, 5 or 10 mg of Resten-NG was delivered in the same fashion, and animals were euthanized at 28 days after the intervention. Western blot analysis demonstrated inhibition of c-myc expression and was dose dependent. Morphometry showed that the intimal area was 3.88 +/- 1.04 mm(2) in the control. There was statistically significant reduction of intimal areas in the 5 and 10 mg groups (2.01 +/- 0.66 and 1.95 +/- 0.91, respectively, p 0.5) in comparison with control. This study demonstrated that intramural delivery of advanced c-myc neutrally charged antisense morpholino compound completely inhibits c-myc expression and dramatically reduces neointimal formation in a dose dependent fashion in a porcine coronary stent restenosis model, while allowing for complete vascular healing.

  13. Deformable known component model-based reconstruction for coronary CT angiography

    Science.gov (United States)

    Zhang, X.; Tilley, S.; Xu, S.; Mathews, A.; McVeigh, E. R.; Stayman, J. W.

    2017-03-01

    Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.

  14. Experimental model for civilian ballistic brain injury biomechanics quantification.

    Science.gov (United States)

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A; Guan, Yabo; Gennarelli, Thomas A

    2007-01-01

    Biomechanical quantification of projectile penetration using experimental head models can enhance the understanding of civilian ballistic brain injury and advance treatment. Two of the most commonly used handgun projectiles (25-cal, 275 m/s and 9 mm, 395 m/s) were discharged to spherical head models with gelatin and Sylgard simulants. Four ballistic pressure transducers recorded temporal pressure distributions at 308kHz, and temporal cavity dynamics were captured at 20,000 frames/second (fps) using high-speed digital video images. Pressures ranged from 644.6 to -92.8 kPa. Entry pressures in gelatin models were higher than exit pressures, whereas in Sylgard models entry pressures were lower or equivalent to exit pressures. Gelatin responded with brittle-type failure, while Sylgard demonstrated a ductile pattern through formation of micro-bubbles along projectile path. Temporary cavities in Sylgard models were 1.5-2x larger than gelatin models. Pressures in Sylgard models were more sensitive to projectile velocity and diameter increase, indicating Sylgard was more rate sensitive than gelatin. Based on failure patterns and brain tissue rate-sensitive characteristics, Sylgard was found to be an appropriate simulant. Compared with spherical projectile data, full-metal jacket (FMJ) projectiles produced different temporary cavity and pressures, demonstrating shape effects. Models using Sylgard gel and FMJ projectiles are appropriate to enhance understanding and mechanisms of ballistic brain injury.

  15. Experimental model of cutaneous radiation injury in rabbits.

    Science.gov (United States)

    Meirelles, Rafael Panisi de Campos; Hochman, Bernardo; Helene Junior, Americo; Lellis, Rute; Fraga, Murillo Francisco Pires; Ferreira, Lydia Masako

    2013-11-01

    To describe an experimental model of cutaneous radiation injury in rabbits. On this study eight six-month-old New Zealand male rabbits, with an average weight of 2.5 kg were used. They were distributed in four groups (n=2 per group). The control group did not receive radiotherapy and the others received one radiotherapy session of 2000, 3000 and 4500 cGy, respectively. Photographic analysis and histopathological evaluation of the irradiated areas were carried out. After 30 days, the animals from the control group had all their hair grown. In spite of that, the animals from group 2000 cGy had a 60-day alopecia and from group 3000 cGy, a 90-day alopecia. After the 30th day, the 3000 cGy group demonstrated 90-day cutaneous radiation injuries, graded 3 and 4. One of the animals from group 4500 cGy died on the 7th day with visceral necrosis. The other from the same group had total skin necrosis. A progressive reduction of glands and blood vessels count and an increase on collagen deposition was observed. The proposed experimental model is reproductable. This study suggests that the dosage 4500 cGy is excessive and the 3000 cGy is the most effective for this experimental model of cutaneous radiation injury in rabbits.

  16. Experimental model of cutaneous radiation injury in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Meirelles, Rafael Panisi de Campos [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Medicina; Hochman, Bernardo [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Medicina. Dept. de Cirurgia; Helene Junior, Americo; Fraga, Murillo Francisco Pires [Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo (FCMSCSP), SP (Brazil). Dept. de Cirurgia. Divisao de Cirurgia Plastica; Lellis, Rute [Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo (FCMSCSP), SP (Brazil). Divisao de Patologia; Ferreira, Lydia Masako, E-mail: rpcmeirelles@yahoo.com.br, E-mail: lydia.dcir@epm.br [Universidade Federal de Sao Paulo (EPM/UNIFESP), SP (Brazil). Escola Paulista de Mediciana. Divisao de Cirugia Plastica

    2013-07-01

    Purpose: to describe an experimental model of cutaneous radiation injury in rabbits. Methods: on this study eight six-month-old New Zealand male rabbits, with an average weight of 2.5kg were used. They were distributed in four groups (n=2 per group). The control group did not receive radiotherapy and the others received one radiotherapy session of 2000, 3000 and 4500 cGy, respectively. Photographic analysis and histopathological evaluation of the irradiated areas were carried out. Results: after 30 days, the animals from the control group had all their hair grown. In spite of that, the animals from group 2000 cGy had a 60-day alopecia and from group 3000 cGy, a 90-day alopecia. After the 30th day, the 3000cGy group demonstrated 90-day cutaneous radiation injuries, graded 3 and 4. One of the animals from group 4500 cGy died on the 7th day with visceral necrosis. The other from the same group had total skin necrosis. A progressive reduction of glands and blood vessels count and an increase on collagen deposition was observed. Conclusion: The proposed experimental model is reproducible. This study suggests that the dosage 4500cGy is excessive and the 3000 cGy is the most effective for this experimental model of cutaneous radiation injury in rabbits. (author)

  17. Contaminated open fracture and crush injury:a murine model

    Institute of Scientific and Technical Information of China (English)

    Shawn R Gilbert; Justin Camara; Richard Camara; Lynn Duffy; Ken Waites; Hyunki Kim; Kurt Zinn

    2015-01-01

    Modern warfare has caused a large number of severe extremity injuries, many of which become infected. In more recent conflicts, a pattern of co-infection with Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus has emerged. We attempted to recreate this pattern in an animal model to evaluate the role of vascularity in contaminated open fractures. Historically, it has been observed that infected bones frequently appear hypovascular, but vascularity in association with bone infection has not been examined in animal models. Adult rats underwent femur fracture and muscle crush injury followed by stabilization and bacterial contamination with A. baumannii complex and methicillin-resistant Staphylococcus aureus. Vascularity and perfusion were assessed by microCT angiography and SPECT scanning, respectively, at 1, 2 and 4 weeks after injury. Quantitative bacterial cultures were also obtained. Multi-bacterial infections were successfully created, with methicillin-resistant S. aureus predominating. There was overall increase in blood flow to injured limbs that was markedly greater in bacteria-inoculated limbs. Vessel volume was greater in the infected group. Quadriceps atrophy was seen in both groups, but was greater in the infected group. In this animal model, infected open fractures had greater perfusion and vascularity than non-infected limbs.

  18. Rabbit model of radiation-induced lung injury

    Institute of Scientific and Technical Information of China (English)

    Zhen-Zong Du; Hua Ren; Jian-Fei Song; Li-Fei Zhang; Feng Lin; Hai-Yong Wang

    2013-01-01

    Objective:To explore the feasibility of establishing an animal model of chronic radiation-induced lung injury.Methods:Twenty-eightNewZealand white rabbits were randomly divided into3 groups(the right lung irradiation group, the whole lung irradiation group and the control group).Animal model of radiation-induced lung injury was established by high-does radiotherapy in the irradiation groups, then all rabbits underwentCT and pathological examinations at1,2,4,8,12,16 weeks, respectively after radiation.Results:Within4 weeks of irradiation, some rabbits in the right lung irradiation group and whole lung irradiation group died. CT and pathological examinations all showed acute radiation pneumonitis.At8-12 weeks after irradiation,CT scanning showed ground glass samples signs, patchy shadows and fibrotic stripes. Pathological examination showed the fibrosis pulmonary alveolar wall thickened obviously. Conclusions:The clinical animal model of chronic radiation-induced lung injury which corresponds to practical conditions in clinic can be successfully established.

  19. Study of Clinical Practical Model of Urinary System Injury

    Directory of Open Access Journals (Sweden)

    Gang Li

    2015-01-01

    Full Text Available Background: In order to improve the clinical treatment level of urinary system injury, it is necessary to build up an animal model of urinary system wound, which is not only analogous to real clinical practice, but also simple and practical. Methods: We have developed the third generation of firearm fragment wound generator based on the first and the second producer. The best explosive charge of the blank cartridge was selected by gradient powder loading experiments. The firearm fragment injuries were made to the bulbous urethra of 10 New Zealand male rabbits. One week preoperatively and 2, 4 and 8 weeks postoperatively, all the animals underwent urethroscopy and urethrography. At 2, 4 and 8 weeks postoperatively, two animals were randomly selected and killed, and the urethra was cut off for pathological examination. Results: The shooting distance of the third generation of firearm fragment wound generator is 2 cm. The best explosive charge of the blank cartridge is 1 g of nitrocotton. All rabbits survived the procedures and stayed alive until they were killed. Injuries were limited to bulbous urethra and distal urethra. Round damaged areas, 1-1.5 cm in length, on the ventral wall were observed. Ureteroscopy results showed that canal diameter gradually shrank by over 50% in 9 rabbits. The rate of success was 90%. Urethrography result noted that a 1-1.3 cm stricture was formed at the bulbous urethra. Histology results of injured stricture urethra showed that fibrous connective tissue hyperplasia and hyaline degeneration caused further stricture in the canal. Conclusions: The third generation of firearm fragment wound generator imitates the bullet firing process and is more accurate and repeatable. The corresponding rabbit model of traumatic complex urethral stricture simulates the real complex clinical conditions. This animal model provides a standardized platform for clinical researches on treating traumatic injuries to the urinary system.

  20. Coronary Motion Modeling for CTA to X-Ray Angiography Registration

    NARCIS (Netherlands)

    C.T. Metz (Coert)

    2011-01-01

    textabstractThe goal of the work described in this thesis is to develop and validate techniques to make 3D coronary computed tomography angiography available during percutaneous coronary interventions. The accurate alignment of the preoperative image with the intraoperative situation is very challen

  1. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model.

    Science.gov (United States)

    McIntosh, T K; Vink, R; Noble, L; Yamakami, I; Fernyak, S; Soares, H; Faden, A L

    1989-01-01

    Experimental fluid-percussion models produce brain injury by rapidly injecting saline into the closed cranium. In the present study we characterize the physiological, histopathological and neurological responses to mechanical brain injury in the rat produced by lateral fluid-percussion injury of graded severity. Physiological experiments (n = 105) demonstrated that all levels of injury produced an acute and transient systemic hypertension and bradycardia. Acute hypertension followed by significant hypotension occurred at higher magnitudes of injury. Post-injury suppression of electroencephalographic amplitude was related to the severity of injury. An increase in slow wave (delta/theta) electroencephalographic activity with a concomitant decrease in alpha/beta electroencephalographic activity were observed only at moderate and high magnitude of injury and were correlated with a worsened neurological outcome (r = 0.84; P less than 0.05) and increased mortality (r = 0.66; P less than 0.05). Alterations in brainstem auditory-evoked potentials were also observed only at the higher levels of injury. Histopathological analysis revealed that the extent of post-injury hemorrhage, cavitation and vascular disruption (as measured by extravasation of Evans Blue dye) was greater at the higher magnitudes of injury. Neurological scoring performed over a 4-week post-injury period demonstrated that lateral fluid-percussion brain injury produces a chronic neurological deficit that is directly related to the severity of injury. Survival was also significantly reduced at the higher magnitudes of injury. These data demonstrate that the lateral model of fluid-percussion injury in the rat reproduces many of the features of head injury observed in other models and species and may therefore be a useful experimental model for the study of the pathophysiology of traumatic brain injury.

  2. Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts.

    Science.gov (United States)

    Franklyn, Melanie; Fildes, Brian; Zhang, Liying; Yang, King; Sparke, Laurie

    2005-11-01

    Previous studies have shown that both excessive linear and rotational accelerations are the cause of head injuries. Although the head injury criterion has been beneficial as an indicator of head injury risk, it only considers linear acceleration, so there is a need to consider both types of motion in future safety standards. Advanced models of the head/brain complex have recently been developed to gain a better understanding of head injury biomechanics. While these models have been verified against laboratory experimental data, there is a lack of suitable real-world data available for validation. Hence, using two computer models of the head/brain, the objective of the current study was to reconstruct four real-world crashes with known head injury outcomes in a full-vehicle crash laboratory, simulate head/brain responses using kinematics obtained during these reconstructions, and to compare the results predicted by the models against the actual injuries sustained by the occupant. Cases where the occupant sustained no head injuries (AIS 0) and head injuries of severity AIS 4, AIS 5, and multiple head injuries were selected. Data collected from a 9-accelerometer skull were input into the Wayne State University Head Injury Model (WSUHIM) and the NHTSA Simulated Injury Monitor (SIMon). The results demonstrated that both models were able to predict varying injury severities consistent with the difference in AIS injury levels in the real-world cases. The WSUHIM predicted a slightly higher injury threshold than the SIMon, probably due to the finer mesh and different software used for the simulations, and could also determine regions of the brain which had been injured. With further validation, finite element models can be used to establish an injury criterion for each type of brain injury in the future.

  3. Large animal models of human cauda equina injury and repair:evaluation of a novel goat model

    Institute of Scientific and Technical Information of China (English)

    Wen-tao Chen; Bao-guo Jiang; Pei-xun Zhang; Feng Xue; Xiao-feng Yin; Cao-yuan Qi; Jun Ma; Bo Chen; You-lai Yu; Jiu-xu Deng

    2015-01-01

    Previous animal studies of cauda equina injury have primarily used rat models, which display signiifcant differences from humans. Furthermore, most studies have focused on electrophysio-logical examination. To better mimic the outcome after surgical repair of cauda equina injury, a novel animal model was established in the goat. Electrophysiological, histological and magnetic resonance imaging methods were used to evaluate the morphological and functional outcome after cauda equina injury and end-to-end suture. Our results demonstrate successful establish-ment of the goat experimental model of cauda equina injury. This novel model can provide detailed information on the nerve regenerative process following surgical repair of cauda equina injury.

  4. Robust human body model injury prediction in simulated side impact crashes.

    Science.gov (United States)

    Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D

    2016-01-01

    This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.

  5. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Enming Joe Su

    2015-10-01

    Full Text Available Current therapies for Traumatic brain injury (TBI focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC within the brain can promote BBB permeability through PDGF receptor α (PDGFRα signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 minutes after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 hours, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC measurements, and with the preservation of cognitive function. Finally, analysis of CSF from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα.

  6. A rabbit model of graded primary mechanical injury to brainstem

    Institute of Scientific and Technical Information of China (English)

    YU Yong-min; WANG Xiao-wei; XUE Hai-bin; XIA Peng; LI Hong-wei; DAI Guo-xin; JI Xiao-yuan; ZHAO Hui; YIN Zhi-yong

    2012-01-01

    Objective:To introduce a new animal model of graded mechanical primary brainstem injury (BSI).Methods:Altogether 45 rabbits were subjected to BSI by type Ⅱ biological impact machine designed by the Third Military Medical University.The animals were divided into 4 experimental groups (n=10) and 1 control group (n=5) according to different magnitudes of impact pressure imposed on the occipital nodule:Group 1,500-520 kPa; Group 2,520-540 kPa; Group 3,540-560 kPa; Group 4,560-580 kPa and Group 5,0 kPa with 20 kPa increase in each grade.The impact depth was a constant 0.5 cm.After injury,the clinical symptoms and signs as well as pathological changes were observed.Results:Rabbits in Group 1 revealed mild physiological reaction of BSI.They had localized cerebral contusion with punctate hemorrhage and subarachnoid hemorrhage (SAH) was limited to the peripheral tissues at the impact area.In Group 2,obvious physiological reaction was observed.Local pathological lesions reached the superficial layer ofbrainstem tissues; focal hemorrhage and girdleshaped SAH in basilar pon were observed under microscope.In Group 3,BSI was more severe with a long respiratory depression.Pathological lesions reached the inner portion of brainstem with massive hemorrhage and the whole brainstem was wrapped by subarachnoid hematoma.In Group 4,most rabbits died due to severe BSI.Pathological lesions deepened to the central brainstem with wide pathological change,rapture of the medulla oblongata central canal.Group 5 was the control group,with normal brainstem structure and no lesion observed.Conclusion:This model successfully simulates different levels ofbrainstem mechanical injury and clearly shows the subsequent pathological changes following injury.It takes two external parameters (impact pressure and depth) and has a similar injury mechanism to clinical accelerating BSI.Moreover it is reproducible and stable,thus being beneficial for exploring pathophysiological mechanism,diagnosis and

  7. Validity of Global Registry of Acute Coronary Events in Acute Coronary Syndrome Prediction Model for In-hospital Mortality in A Sub-population of Chongqing

    Institute of Scientific and Technical Information of China (English)

    Khalill Ramjane; Han LEI; Jing CHANG

    2009-01-01

    Objectives To determine the validity and applicability of the global registry of acute coronary events (GRACE) pre-diction model for in-hospital mortality in all forms of acute coronary syndrome (ACS) in a sub population of Chongqing. Methods Data of 669 ACS patients were collected retrospectively from Jan 2005 to Apr 2008 and were re-corded on a standardized case report form. For each patient the GRACE risk score (GRACE RS) was calculated (using the GRACE calculator available from the grace website) using specific variables collected at admission. Patients with missing data and those transferred from other hospitals were excluded. Receiver operating characteristic (ROC) curves were plotted for the GRACE risk score. Results Among 576 ACS patients, 98 (17.01%), 36 (6. 25 %), and 442 (76. 74 %) presented with ST-elevation myocardial infarction (MI), non-ST elevation MI and unstable angina, re-spectively. The GRACE risk score could not be determined in 91 (9. 3 %) patients due to missing data or for patients who were transferred from other hospitals and were excluded from the analysis. The median GRACE risk score was 133 (interquartile range: 92 - 174) and, the in-hospital rates of death and death/(re-) MI were 6. 1% and 7.6 %, respec-tively. The GRACE risk score demonstrated excellent discrimination (c-statistic = 0. 86, 95 % CI 0. 79 - 0. 91, P < 0. 001) for in-hospital death/ (re) -MI. Conclusions The GRACE RS study had a good predictive accuracy for death or MI across the wide range of ACS in this population. It may be a useful risk stratification tool that helps identify high-risk patients who will benefit most from myocardial revascularization and low risk patients who may be spared from un-dergoing more aggressive interventional treatment.

  8. Comparison of risk of acute kidney injury after primary percutaneous coronary interventions with the transradial approach versus the transfemoral approach (from the PRIPITENA urban registry).

    Science.gov (United States)

    Cortese, Bernardo; Sciahbasi, Alessandro; Sebik, Rodrigo; Rigattieri, Stefano; Alonzo, Alessandro; Silva-Orrego, Pedro; Belloni, Flavia; Seregni, Romano G; Giovannelli, Francesca; Tespili, Maurizio; Ricci, Roberto; Berni, Andrea

    2014-09-15

    The risk of acute kidney injury (AKI) is a major issue after percutaneous coronary interventions (PCIs), especially in the setting of ST-elevation myocardial infarction. Preliminary data from large retrospective registries seem to show a reduction of AKI when a transradial (TR) approach for PCI is adopted. Little is known about the relation between vascular access and AKI after emergent PCI. We here report the results of the Primary PCI from Tevere to Navigli (PRIPITENA), a retrospective database of primary PCI performed at high-volume centers in the urban areas of Rome and Milan. Primary end point of this study was the occurrence of AKI in the TR and transfemoral (TF) access site groups. Secondary end points were major adverse cardiovascular events, stent thrombosis, and Thrombolysis in Myocardial Infarction major and minor bleedings. The database included 1,330 patients, 836 treated with a TR and 494 with a TF approach. After a propensity-matched analysis performed to exclude possible confounders, we identified 450 matched patients (225 TR and 225 TF). The incidence of AKI in the 2 matched groups was lower in patients treated with TR primary PCI (8.4% vs 16.9%, p = 0.007). Major adverse cardiovascular events and stent thrombosis were not different among study groups, whereas major bleedings were more often seen in the TF group. At multivariate analysis, femoral access was an independent predictor of AKI (odds ratio 1.654, 95% confidence interval 1.084 to 2.524, p = 0.042). In conclusion, in this database of primary PCI, the risk of AKI was lower with a TR approach, and the TF approach was an independent predictor for the occurrence of this complication.

  9. Effects of avitriptan, a new 5 HT(1B/1D) receptor agonist, in experimental models predictive of antimigraine activity and coronary side-effect potential

    NARCIS (Netherlands)

    P.R. Saxena (Pramod Ranjan); P.A.M. de Vries (Peter); W. Wang (Wei); J.P. Heiligers (Jan); A. Maassen VanDenBrink (Antoinette); W.A. Bax (Willem); F.D. Yocca (Frank)

    1997-01-01

    markdownabstractAbstract Several acutely acting antimigraine drugs, including ergotamine and sumatriptan, have the ability to constrict porcine arteriovenous anastomoses as well as the human isolated coronary artery. These two experimental models seem to serve as indicators, respectively, for the

  10. Energy loss and coronary flow simulation following hybrid stage I palliation: a hypoplastic left heart computational fluid dynamic model.

    Science.gov (United States)

    Shuhaiber, Jeffrey H; Niehaus, Justin; Gottliebson, William; Abdallah, Shaaban

    2013-08-01

    The theoretical differences in energy losses as well as coronary flow with different band sizes for branch pulmonary arteries (PA) in hypoplastic left heart syndrome (HLHS) remain unknown. Our objective was to develop a computational fluid dynamic model (CFD) to determine the energy losses and pulmonary-to-systemic flow rates. This study was done for three different PA band sizes. Three-dimensional computer models of the hybrid procedure were constructed using the standard commercial CFD softwares Fluent and Gambit. The computer models were controlled for bilateral PA reduction to 25% (restrictive), 50% (intermediate) and 75% (loose) of the native branch pulmonary artery diameter. Velocity and pressure data were calculated throughout the heart geometry using the finite volume numerical method. Coronary flow was measured simultaneously with each model. Wall shear stress and the ratio of pulmonary-to-systemic volume flow rates were calculated. Computer simulations were compared at fixed points utilizing echocardiographic and catheter-based metric dimensions. Restricting the PA band to a 25% diameter demonstrated the greatest energy loss. The 25% banding model produced an energy loss of 16.76% systolic and 24.91% diastolic vs loose banding at 7.36% systolic and 17.90% diastolic. Also, restrictive PA bands had greater coronary flow compared with loose PA bands (50.2 vs 41.9 ml/min). Shear stress ranged from 3.75 Pascals with restrictive PA banding to 2.84 Pascals with loose banding. Intermediate PA banding at 50% diameter achieved a Qp/Qs (closest to 1) at 1.46 systolic and 0.66 diastolic compared with loose or restrictive banding without excess energy loss. CFD provides a unique platform to simulate pressure, shear stress as well as energy losses of the hybrid procedure. PA banding at 50% provided a balanced pulmonary and systemic circulation with adequate coronary flow but without extra energy losses incurred.

  11. Differential Progressive Remodeling of Coronary and Cerebral Arteries and Arterioles in an Aortic Coarctation Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Heather N. Hayenga

    2012-11-01

    Full Text Available OBJECTIVES: Effects of hypertension on arteries and arterioles often manifest first as a thickened wall, with associated changes in passive material properties (e.g., stiffness or function (e.g., cellular phenotype, synthesis and removal rates, and vasomotor responsiveness. Less is known, however, regarding the relative evolution of such changes in vessels from different vascular beds.METHODS: We used an aortic coarctation model of hypertension in the mini-pig to elucidate spatiotemporal changes in geometry and wall composition (including layer-specific thicknesses as well as presence of collagen, elastin, smooth muscle, endothelial, macrophage, and hematopoietic cells in three different arterial beds, specifically aortic, cerebral, and coronary, and vasodilator function in two different arteriolar beds, the cerebral and coronary.RESULTS: Marked geometric and structural changes occurred in the thoracic aorta and left anterior descending coronary artery within 2 weeks of the establishment of hypertension and continued to increase over the 8-week study period. In contrast, no significant changes were observed in the middle cerebral arteries from the same animals. Consistent with these differential findings at the arterial level, we also found a diminished nitric oxide-mediated dilation to adenosine at 8 weeks of hypertension in coronary arterioles, but not cerebral arterioles.CONCLUSION: These findings, coupled with the observation that temporal changes in wall constituents and the presence of macrophages differed significantly between the thoracic aorta and coronary arteries, confirm a strong differential progressive remodeling within different vascular beds. Taken together, these results suggest a spatiotemporal progression of vascular remodeling, beginning first in large elastic arteries and delayed in distal vessels.

  12. Particles deposition induced by the magnetic field in the coronary bypass graft model

    Energy Technology Data Exchange (ETDEWEB)

    Bernad, Sandor I., E-mail: sandor.bernad@upt.ro [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania); Totorean, Alin F. [Department of Mechanical Machines, Equipment and Transportation, Politehnica University of Timisoara, RO-300222 Timisoara (Romania); Vekas, Ladislau, E-mail: vekas.ladislau@gmail.com [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania)

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region. - Highlights: • Particularity of the particle targeting in the bypass graft anastomosis. • Hemodynamic characteristics influence about the particle deposition. • Particle accumulation induces changes of the flow field in the graft anastomosis. • Bypass graft geometries influence the particle deposition.

  13. Particles deposition induced by the magnetic field in the coronary bypass graft model

    Science.gov (United States)

    Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.

  14. Kidney injury associated with telavancin dosing regimen in an animal model.

    Science.gov (United States)

    Tam, Vincent H; Ledesma, Kimberly R; Bowers, Dana R; Zhou, Jian; Truong, Luan D

    2015-05-01

    The elevation of serum creatinine levels is a concern with telavancin therapy. We examined the onset of kidney injury associated with telavancin in an animal model. Urine samples were collected at baseline and daily to determine the concentrations of kidney injury molecule 1 (KIM-1), a marker for early kidney injury. When a clinically relevant exposure of telavancin was given daily to rats, some differences in kidney injury were attributed to the dosing regimen. Further investigations of alternative telavancin dosing regimens are warranted.

  15. Computer modeling of restenosis and heating stent thermal effects in the coronary artery

    OpenAIRE

    Zdravković-Petrović, Nataša; Nikolić, Dalibor; Milošević, Žarko; Themis, Exarchos; Parodi, Oberdan; Filipović, Nenad; id_orcid 0000-0001-9964-5615

    2013-01-01

    The understanding and the prediction of the evolution of atherosclerotic plaques either into vulnerable plaques or into stable plaques are very important for the medical community. Stents in the coronary arteries are routinely used in the management of patients with angina or myocardial infarction where percutaneous coronary intervention is the clinically appropriate procedure. In this study we analysed stent deployment in the specific patient and simulation of the temperature distribution fo...

  16. Augmented TLR2 Expression on Monocytes in both Human Kawasaki Disease and a Mouse Model of Coronary Arteritis

    OpenAIRE

    I-Chun Lin; Ho-Chang Kuo; Ying-Jui Lin; Feng-Shen Wang; Lin Wang; Shun-Chen Huang; Shao-Ju Chien; Chien-Fu Huang; Chih-Lu Wang; Hong-Ren Yu; Rong-Fu Chen; Yang, Kuender D.

    2012-01-01

    BACKGROUND: Kawasaki disease (KD) of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE)-induced coronary arteritis. METHODS: Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globul...

  17. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury.

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T; Estrada, Jonathan B; Franck, Christian

    2016-08-02

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  18. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-08-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  19. Study of Clinical Practical Model of Urinary System Injury

    Institute of Scientific and Technical Information of China (English)

    Gang Li; Yuan-Yi Wu; Wei-Jun Fu; Ying-Xin Jia; Bing-Hong Zhang; Yong-De Xu; Zhong-Xin Wang

    2015-01-01

    Background:In order to improve the clinical treatment level of urinary system injury,it is necessary to build up an animal model of urinary system wound,which is not only analogous to real clinical practice,but also simple and practical.Methods:We have developed the third generation of firearm fragment wound generator based on the first and the second producer.The best explosive charge of the blank cartridge was selected by gradient powder loading experiments.The firearm fragment injuries were made to the bulbous urethra of 10 New Zealand male rabbits.One week preoperatively and 2,4 and 8 weeks postoperatively,all the animals underwent urethroscopy and urethrography.At 2,4 and 8 weeks postoperatively,two animals were randomly selected and killed,and the urethra was cut off for pathological examination.Results:The shooting distance of the third generation of firearm fragment wound generator is 2 cm.The best explosive charge of the blank cartridge is 1 g of nitrocotton.All rabbits survived the procedures and stayed alive until they were killed.Injuries were limited to bulbous urethra and distal urethra.Round damaged areas,1-1.5 cm in length,on the ventral wall were observed.Ureteroscopy results showed that canal diameter gradually shrank by over 50% in 9 rabbits.The rate of success was 90%.Urethrography result noted that a 1-1.3 cm stricture was formed at the bulbous urethra.Histology results of injured stricture urethra showed that fibrous connective tissue hyperplasia and hyaline degeneration caused further stricture in the canal.Conclusions:The third generation of firearm fragment wound generator imitates the bullet firing process and is more accurate and repeatable.The corresponding rabbit model of traumatic complex urethral stricture simulates the real complex clinical conditions.This animal model provides a standardized platform for clinical researches on treating traumatic injuries to the urinary system.

  20. Development of Experimental Tissue Models for Blast Injury

    Science.gov (United States)

    Butler, Benjamin; Bo, Chiara; Williams, Alun; Jardine, Andy; Brown, Katherine

    2013-06-01

    There is a pressing need to better understand the relationship between the intensity of a blast wave and the clinical consequences for victims of an explosion. In order to quantitatively study how these factors correlate with one another, blast injury tissue models are being developed. Sections of larynx, trachea and pulmonary tissue were excised from a recently sacrificed pig and maintained on ice prior to testing. The samples were subjected to strain rates of between 0.001 s-1 and 1000 s-1 in the laboratory by using a Split Hopkinson Pressure Bar and quasi-static testing apparatus. During high strain rate testing, samples were housed in a polycarbonate chamber which permitted experimentation on tissue held in fluid. Data were analysed using 1, 2 and 3 wave analysis software in Matlab to yield information about the material properties of both undamaged and damaged tissues. In addition, macroscopic changes in tissue organization were also visualized using histopathological techniques. This work is being extended to cellular and animal models to derive more detailed information about the underlying molecular changes relating to blast-induced damage and repair. The Royal British Legion Centre for Blast Injury Studies.

  1. Development of an Animal Model of Thoracolumbar Burst Fracture Induced Acute Spinal Cord Injury

    Science.gov (United States)

    2015-05-01

    AWARD NUMBER: W81XWH-14-2-0013 TITLE: DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE- INDUCED ACUTE SPINAL CORD INJURY...2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY 5b...controlled spinal cord impactor for use in large animal models of SCI in order to more reliably recreate the human injury. A custom designed spinal cord

  2. High-intensity interval training in patients with coronary heart disease: Prescription models and perspectives.

    Science.gov (United States)

    Ribeiro, Paula A B; Boidin, Maxime; Juneau, Martin; Nigam, Anil; Gayda, Mathieu

    2017-01-01

    Recently, high-intensity interval training (HIIT) has emerged as an alternative and/or complementary exercise modality to continuous aerobic exercise training (CAET) in CHD patients. However, the literature contains descriptions of many HIIT protocols with different stage durations, nature of recovery and intensities. In this review, we discuss the most recent forms of validated HIIT protocols in patients with coronary heart disease (CHD) and how to prescribe and use them during short- and long-term (phase II and III) cardiac rehabilitation programs. We also compare the superior and/or equivalent short- and long-term effects of HIIT versus CAET on aerobic fitness, cardiovascular function, and quality of life; their efficiency, safety, and tolerance; and exercise adherence. Short interval HIIT was found beneficial for CHD patients with lower aerobic fitness and would ideally be used in initiation and improvement stages. Medium and/or long interval HIIT protocols may be beneficial for CHD patients with higher aerobic fitness, and would be ideally used in the improvement and maintenance stages because of their high physiological stimulus. Finally, we propose progressive individualized models of HIIT programs (phase II to III) for patients with CHD and how to ideally use them according to the clinical status of patients and phase of the cardiac rehabilitation program.

  3. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis.

    Science.gov (United States)

    Wang, Liang; Wu, Zheyang; Yang, Chun; Zheng, Jie; Bach, Richard; Muccigrosso, David; Billiar, Kristen; Maehara, Akiko; Mintz, Gary S; Tang, Dalin

    2015-01-01

    Atherosclerotic plaque progression is believed to be associated with mechanical stress conditions. Patient follow-up in vivo intravascular ultrasound coronary plaque data were acquired to construct fluid-structure interaction (FSI) models with cyclic bending to obtain flow wall shear stress (WSS), plaque wall stress (PWS) and strain (PWSn) data and investigate correlations between plaque progression measured by wall thickness increase (WTI), cap thickness increase (CTI), lipid depth increase (LDI) and risk factors including wall thickness (WT), WSS, PWS, and PWSn. Quarter average values (n = 178-1016) of morphological and mechanical factors from all slices were obtained for analysis. A predictive method was introduced to assess prediction accuracy of risk factors and identify the optimal predictor(s) for plaque progression. A combination of WT and PWS was identified as the best predictor for plaque progression measured by WTI. Plaque WT had best overall correlation with WTI (r = -0.7363, p WTI: (r = -0.3208, p < 1E-10); cap thickness: (r = 0.4541, p < 1E-10); CTI: (r = -0.1719, p = 0.0190); LD: (r = -0.2206, p < 1E-10); LDI: r = 0.1775, p < 0.0001). WSS had mixed correlation results.

  4. Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis.

    Directory of Open Access Journals (Sweden)

    I-Chun Lin

    Full Text Available BACKGROUND: Kawasaki disease (KD of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE-induced coronary arteritis. METHODS: Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globulin (IVIG treatment at the Kaohsiung Chang Gung Memorial Hospital from 2001 to 2009. Blood samples from KD patients were collected before and after IVIG treatment, and cardiovascular abnormalities were examined by transthoracic echocardiography. Wild-type male BALB/c mice (4-week-old were intraperitoneally injected with LCWE (1 mg/mL to induce coronary arteritis. The induced immune response in mice was examined on days 1, 3, 7, and 14 post injections, and histopathology studies were performed on days 7 and 14. RESULTS: Both human KD patients and LCWE-treated mice developed coronary arteritis, myocarditis, valvulitis, and pericarditis, as well as elevated plasma levels of interleukin (IL-2, IL-6, IL-10, monocyte chemoattractant protein (MCP-1, and tumor necrosis factor (TNF-α in acute phase. Most of these proinflammatory cytokines declined to normal levels in mice, whereas normal levels were achieved in patients only after IVIG treatment, with a few exceptions. Toll-like receptor (TLR-2, but not TLR4 surface enhancement on circulating CD14+ monocytes, was augmented in KD patients before IVIG treatment and in LCWE-treated mice, which declined in patients after IVIG treatment. CONCLUSION: This result suggests that that not only TLR2 augmentation on CD14+ monocytes might be an inflammatory marker for both human KD patients and LCWE-induced CAL mouse model but also this model is feasible for studying therapeutic strategies of coronary arteritis in human KD by

  5. Augmented TLR2 expression on monocytes in both human Kawasaki disease and a mouse model of coronary arteritis.

    Science.gov (United States)

    Lin, I-Chun; Kuo, Ho-Chang; Lin, Ying-Jui; Wang, Feng-Shen; Wang, Lin; Huang, Shun-Chen; Chien, Shao-Ju; Huang, Chien-Fu; Wang, Chih-Lu; Yu, Hong-Ren; Chen, Rong-Fu; Yang, Kuender D

    2012-01-01

    Kawasaki disease (KD) of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE)-induced coronary arteritis. Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globulin (IVIG) treatment at the Kaohsiung Chang Gung Memorial Hospital from 2001 to 2009. Blood samples from KD patients were collected before and after IVIG treatment, and cardiovascular abnormalities were examined by transthoracic echocardiography. Wild-type male BALB/c mice (4-week-old) were intraperitoneally injected with LCWE (1 mg/mL) to induce coronary arteritis. The induced immune response in mice was examined on days 1, 3, 7, and 14 post injections, and histopathology studies were performed on days 7 and 14. Both human KD patients and LCWE-treated mice developed coronary arteritis, myocarditis, valvulitis, and pericarditis, as well as elevated plasma levels of interleukin (IL)-2, IL-6, IL-10, monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α in acute phase. Most of these proinflammatory cytokines declined to normal levels in mice, whereas normal levels were achieved in patients only after IVIG treatment, with a few exceptions. Toll-like receptor (TLR)-2, but not TLR4 surface enhancement on circulating CD14+ monocytes, was augmented in KD patients before IVIG treatment and in LCWE-treated mice, which declined in patients after IVIG treatment. This result suggests that that not only TLR2 augmentation on CD14+ monocytes might be an inflammatory marker for both human KD patients and LCWE-induced CAL mouse model but also this model is feasible for studying therapeutic strategies of coronary arteritis in human KD by modulating TLR2-mediated immune activation on CD14

  6. Virtual Resting Pd/Pa From Coronary Angiography and Blood Flow Modelling: Diagnostic Performance Against Fractional Flow Reserve.

    Science.gov (United States)

    Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Bourantas, Christos V; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Serruys, Patrick W; Michalis, Lampros K

    2017-05-03

    Fractional flow reserve (FFR) has been established as a useful diagnostic tool. The distal coronary pressure to aortic pressure (Pd/Pa) ratio at rest is a simpler physiologic index but also requires the use of the pressure wire, whereas recently proposed virtual functional indices derived from coronary imaging require complex blood flow modelling and/or are time-consuming. Our aim was to test the diagnostic performance of virtual resting Pd/Pa using routine angiographic images and a simple flow model. Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by FFR. The resting Pd/Pa for each lesion was assessed by computational fluid dynamics. The discriminatory power of virtual resting Pd/Pa against FFR (reference: ≤0.80) was high (area under the receiver operator characteristic curve [AUC]: 90.5% [95% CI: 85.4-95.6%]). Diagnostic accuracy, sensitivity and specificity for the optimal virtual resting Pd/Pa cut-off (≤0.94) were 84.9%, 90.4% and 81.6%, respectively. Virtual resting Pd/Pa demonstrated superior performance (pvirtual resting Pd/Pa and FFR (r=0.69, pVirtual resting Pd/Pa using routine angiographic data and a simple flow model provides fast functional assessment of coronary lesions without requiring the pressure-wire and hyperaemia induction. The high diagnostic performance of virtual resting Pd/Pa for predicting FFR shows promise for using this simple/fast virtual index in clinical practice. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Microsimulation Modeling of Coronary Heart Disease: Maximizing the Impact of Nonprofit Hospital-Based Interventions.

    Science.gov (United States)

    Orenstein, Peggy Vadillo; Shi, Lu

    We use microsimulation to forecast changes in coronary heart disease (CHD) among adults 45 or above over a 20-year time horizon in Los Angeles County (N = 3.4 million), a county with 12 635 CHD deaths in 2010. We simulate individuals' life course and calibrate CHD trends to observed trends in the past. Using the Health Forecasting Community Health Simulation Model, we simulate CHD prevalence and CHD mortality in 2 CHD prevention scenarios: (1) "comprehensive hypertension intervention" and (2) "gradual reduction of the average adult body mass index back to the year 2000 level." We use microsimulation methodology so that nonprofit hospitals can easily use our model to forecast intervention results in their specific hospital catchment area. Our baseline model (without intervention) forecasts an increase in CHD prevalence that will reach 13.01% among those 45+ in Los Angeles County in 2030. Under scenario 1, the increase in CHD prevalence is slower (12.47% in 2030), and the prevalence in scenario 2 reaches 12.83% in 2030. The baseline scenario projects a number of 21 300 CHD deaths in 2030, whereas there will be 20 070 CHD deaths under scenario 1 and 20 970 CHD deaths under scenario 2. At the population level, the CHD mortality outcome, as compared with the metric of CHD prevalence, might be more sensitive to preventive lifestyle interventions. Both CHD prevalence and CHD mortality might be more sensitive to the hypertension intervention than to the obesity reduction in the time horizon of 20 years.

  8. Prognosis in moderate and severe traumatic brain injury : External validation of the IMPACT models and the role of extracranial injuries

    NARCIS (Netherlands)

    Lingsma, Hester; Andriessen, Teuntje M. J. C.; Haitsema, Iain; Horn, Janneke; van der Naalt, Joukje; Franschman, Gaby; Maas, Andrew I. R.; Vos, Pieter E.; Steyerberg, Ewout W.

    BACKGROUND: Several prognostic models to predict outcome in traumatic brain injury (TBI) have been developed, but few are externally validated. We aimed to validate the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) prognostic models in a recent unselected patient

  9. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  10. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    Science.gov (United States)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  11. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    OpenAIRE

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. ...

  12. Prognostic Impact of Combined Contrast-Induced Acute Kidney Injury and Hypoxic Liver Injury in Patients with ST Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: Results from INTERSTELLAR Registry.

    Directory of Open Access Journals (Sweden)

    Sang-Don Park

    Full Text Available Besides contrast-induced acute kidney injury(CI-AKI, adscititious vital organ damage such as hypoxic liver injury(HLI may affect the survival in patients with ST-elevation myocardial infarction (STEMI. We sought to evaluate the prognostic impact of CI-AKI and HLI in STEMI patients who underwent primary percutaneous coronary intervention (PCI.A total of 668 consecutive patients (77.2% male, mean age 61.3±13.3 years from the INTERSTELLAR STEMI registry who underwent primary PCI were analyzed. CI-AKI was defined as an increase of ≥0.5 mg/dL in serum creatinine level or 25% relative increase, within 48h after the index procedure. HLI was defined as ≥2-fold increase in serum aspartate transaminase above the upper normal limit on admission. Patients were divided into four groups according to their CI-AKI and HLI states. Major adverse cardiovascular and cerebrovascular events (MACCE defined as a composite of all-cause mortality, non-fatal MI, non-fatal stroke, ischemia-driven target lesion revascularization and target vessel revascularization were recorded.Over a mean follow-up period of 2.2±1.6 years, 94 MACCEs occurred with an event rate of 14.1%. The rates of MACCE and all-cause mortality were 9.7% and 5.2%, respectively, in the no organ damage group; 21.3% and 21.3% in CI-AKI group; 18.5% and 14.6% in HLI group; and 57.7% and 50.0% in combined CI-AKI and HLI group. Survival probability plots of composite MACCE and all-cause mortality revealed that the combined CI-AKI and HLI group was associated with the worst prognosis (p<0.0001 for both.Combined CI-AKI after index procedure and HLI on admission is associated with poor clinical outcomes in patients with STEMI who underwent primary PCI. (INTERSTELLAR ClinicalTrials.gov number, NCT02800421..

  13. Major risk-stratification models fail to predict outcomes in patients with multivessel coronary artery disease undergoing simultaneous hybrid procedure

    Institute of Scientific and Technical Information of China (English)

    WANG Hao-ran; ZHENG Zhe; XIONG Hui; XU Bo; LI Li-huan; GAO Run-lin; HU Sheng-shou

    2013-01-01

    Background The hybrid procedure for coronary heart disease combines minimally invasive coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI) and is an alternative to revascularization treatment.We sought to assess the predictive value of four risk-stratification models for risk assessment of major adverse cardiac and cerebrovascular events (MACCE) in patients with multivessel disease undergoing hybrid coronary revascularization.Methods The data of 120 patients were retrospectively collected and the SYNTAX score,EuroSCORE,SinoSCORE and the Global Risk Classification (GRC) calculated for each patient.The outcomes of interest were 2.7-year incidences of MACCE,including death,myocardial infarction,stroke,and any-vessel revascularization.Results During a mean of 2.7-year follow-up,actuarial survival was 99.17%,and no myocardial infarctions occurred.The discriminatory power (area under curve (AUC)) of the SYNTAX score,EuroSCORE,SinoSCORE and GRC for 2.7-year MACCE was 0.60 (95% confidence interval 0.42-0.77),0.65 (0.47-0.82),0.57 (0.39-0.75) and 0.65 (0.46-0.83),respectively.The calibration characteristics of the SYNTAX score,EuroSCORE,SinoSCORE and GRC were 3.92 (P=0.86),5.39 (P=0.37),13.81 (P=0.32) and 0.02 (P=0.89),respectively.Conclusions In patients with multivessel disease undergoing a hybrid procedure,the SYNTAX score,EuroSCORE,SinoSCORE and GRC were inaccurate in predicting MACCE.Modifying risk-stratification models to improve the predictive value for a hybrid procedure is needed.

  14. Balloon Occlusion Types in the Treatment of Coronary Perforation during Percutaneous Coronary Intervention

    Directory of Open Access Journals (Sweden)

    Xiangfei Wang

    2014-01-01

    Full Text Available Coronary artery perforation is an uncommon complication in patients with coronary heart disease undergoing percutaneous coronary intervention. However, pericardial tamponade following coronary artery perforation may be lethal, and prompt treatment is crucial in managing such patients. Balloon occlusion and the reversal of anticoagulant activity are the common methods used to prevent cardiac tamponade by reducing the amount of bleeding. Herein, we discuss the pros and cons of currently used occlusion types for coronary perforation. Optimal balloon occlusion methods should reduce the amount of bleeding and ameliorate subsequent myocardial ischemia injury, even during cardiac surgery.

  15. Establishment of a blunt impact-induced brain injury model in rabbits

    Directory of Open Access Journals (Sweden)

    LI Kui

    2012-04-01

    Full Text Available 【Abstract】 Objective: To establish an animal model to replicate the blunt impact brain injury in forensic medicine. Methods: Twenty-four New Zealand white rabbits were randomly divided into control group (n=4, minor injury group (n=10 and severe injury group (n=10. Based on the BIM-Ⅱ Horizontal Bio-impact Machine, self-designed iron bar was used to produce blunt brain injury. Two rabbits from each injury group were randomly selected to monitor the change of intracranial pressure (ICP during the impact-ing process by pressure microsensors. Six hours after injury, all the rabbits were dissected to observe the injury mor-phology and underwent routine pathological examination. Results: Varying degrees of nervous system positive signs were observed in all the injured rabbits. Within 6 hours, the mortality rate was 1/10 in the minor injury group and 6/10 in the severe injury group. Morphological changes con-sisted of different levels of scalp hematoma, skull fracture, epidural hematoma, subdural hematoma, subarachnoid hemo-rrhage and brain injury. At the moment of hitting, the ICP was greater in severe injury group than in mild injury group; and within the same group, the impact side showed positive pressure while the opposite side showed negative pressure. Conclusions: Under the rigidly-controlled experimen-tal condition, this animal model has a good reproducibility and stable results. Meanwhile, it is able to simulate the mor-phology of iron strike-induced injury, thus can be used to study the mechanism of blunt head injury in forensic medicine. Key words: Brain injuries; Forensic medicine; Wounds, nonpenetrating; Models, animal; Rabbits

  16. Childhood dental injuries: a resiliency model of adaptation.

    Science.gov (United States)

    Porritt, Jenny M; Rodd, Helen D; Baker, Sarah R

    2015-07-01

    There is a paucity of research examining how children and their families adapt to traumatic dental injuries. This study examined how clinical and psychosocial factors influence adaptation to this oral stressor using a theoretical framework of resiliency and adaptation. Children with traumatised permanent teeth, who were attending a UK dental hospital, completed questionnaires at baseline and at a 6 month follow-up. Child questionnaires assessed coping styles, social support, and quality of life outcomes. Parents were also asked to complete questionnaires, which assessed previous stressors/strains on the family, social support, healthcare satisfaction, and family impacts. Data related to the child's dental injury were collected from clinical notes. Structural equation modelling and regression analyses were employed to analyse data. One hundred and eight children and 113 parents participated at baseline. Children's gender, coping style, social support, and family functioning significantly predicted children's oral health-related quality of life. Parents' satisfaction with their children's dental care significantly predicted parental quality of life outcomes. Children's close friend support and healthcare satisfaction remained significant predictors of positive outcomes at follow-up. The findings revealed important psychosocial factors that influence child and family adaptation to childhood dental trauma. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries.

    Science.gov (United States)

    Cao, J; Rittgers, S E

    1998-01-01

    Asymmetric 75% and 95% area reduction, transparent Sylgard stenotic models were operated under internal carotid artery (ICA) [Womersley parameter, alpha=5.36, Re(mean) =213 and 180, respectively, and Re(peak)=734 and 410, respectively] and left anterior descending coronary artery (LAD) flow wave forms (alpha=2.65, Re(mean)=59 and 57, respectively, and Re(peak)= 137 and 94, respectively) to evaluate the effect of these conditions on particle residence times downstream of the stenoses. Amberlite particles (1.05 g/cm3, 400 microm) were added to the fluid to simulate platelets and their motion through the stenotic region and were traced using a laser light sheet flow visualization method with pseudo-color display. Two-dimensional (2D) particle motions were recorded and particle washout in the stenotic throat and downstream section were computed for all cases. All four model cases demonstrated jetting through the stenosis which followed an arching pattern around a large separation zone downstream. Considerable mixing was observed within these vortex regions during high flow phases. Particle washout profiles showed no clear trend between the degrees of stenosis although particles downstream of the stenoses tended to remain longer for LAD conditions. The critical washout cycle (1% of particles remaining downstream of the stenosis), however, was longer for the 95% stenoses cases under each flow condition due to the larger protected region immediately downstream and maximal for the LAD 95% case. Results of this study suggest that particle residence times downstream of 75% and 95% stenoses (approximately 3-6 s for ICA and approximately 8-10 s for LAD) exceed the minimum time for platelet adhesion (approximately 1 s) for at least 1% of cells and, thus, may be sufficient to initiate thrombus formation under resting conditions.

  18. Construction of an odds model of coronary heart disease using published information: the Cardiovascular Health Improvement Model (CHIME

    Directory of Open Access Journals (Sweden)

    Potts Henry WW

    2008-10-01

    Full Text Available Abstract Background There is a need for a new cardiovascular disease model that includes a wider range of relevant risk factors, in particular lifestyle factors, to aid targeting of interventions and improve population models of the impact of cardiovascular disease and preventive strategies. The model needs to be applicable to a wider population including different ethnic groups, different countries and to those with and without cardiovascular disease. This paper describes the construction of the Cardiovascular Health Improvement Model that aims to meet these requirements. Method An odds model is used. Information was taken from 2003 mortality statistics for England and Wales, the Health Survey for England 2003 and published data on relative risk in those with and without CVD and mean blood pressure values in hypertensives. The odds ratios used were taken from the INTERHEART study. Results A worked example is given calculating the 10-year coronary heart disease risk for a 57 year-old non-diabetic male with no personal or family history of cardiovascular disease, who smokes 30 cigarettes a day and has a systolic blood pressure of 137 mmHg, a total cholesterol (TC of 6.2 mmol/l, a high density lipoprotein (HDL of 1.3 mol/l, and a body mass index of 21. He neither drinks regularly nor exercises. He can give no reliable information about his mental health or fruit and vegetable intake. His 10-year risk of CHD death is 2.47%. Conclusion This paper demonstrates a method for developing a CHD risk model. Further improvements could be made to the model with additional information. The method is applicable to other causes of death.

  19. A Multivariate Model for Prediction of Obstructive Coronary Disease in Patients with Acute Chest Pain: Development and Validation

    Directory of Open Access Journals (Sweden)

    Luis Cláudio Lemos Correia

    Full Text Available Abstract Background: Currently, there is no validated multivariate model to predict probability of obstructive coronary disease in patients with acute chest pain. Objective: To develop and validate a multivariate model to predict coronary artery disease (CAD based on variables assessed at admission to the coronary care unit (CCU due to acute chest pain. Methods: A total of 470 patients were studied, 370 utilized as the derivation sample and the subsequent 100 patients as the validation sample. As the reference standard, angiography was required to rule in CAD (stenosis ≥ 70%, while either angiography or a negative noninvasive test could be used to rule it out. As predictors, 13 baseline variables related to medical history, 14 characteristics of chest discomfort, and eight variables from physical examination or laboratory tests were tested. Results: The prevalence of CAD was 48%. By logistic regression, six variables remained independent predictors of CAD: age, male gender, relief with nitrate, signs of heart failure, positive electrocardiogram, and troponin. The area under the curve (AUC of this final model was 0.80 (95% confidence interval [95%CI] = 0.75 - 0.84 in the derivation sample and 0.86 (95%CI = 0.79 - 0.93 in the validation sample. Hosmer-Lemeshow's test indicated good calibration in both samples (p = 0.98 and p = 0.23, respectively. Compared with a basic model containing electrocardiogram and troponin, the full model provided an AUC increment of 0.07 in both derivation (p = 0.0002 and validation (p = 0.039 samples. Integrated discrimination improvement was 0.09 in both derivation (p < 0.001 and validation (p < 0.0015 samples. Conclusion: A multivariate model was derived and validated as an accurate tool for estimating the pretest probability of CAD in patients with acute chest pain.

  20. Impact of coronary tortuosity on coronary pressure: numerical simulation study.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available BACKGROUND: Coronary tortuosity (CT is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. METHODS: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA and coronary tortuosity number (CTN on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. RESULTS: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. CONCLUSIONS: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.

  1. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gordic, Sonja; Husarik, Daniela B.; Alkadhi, Hatem [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Desbiolles, Lotus; Leschka, Sebastian [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Sedlmair, Martin; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Manka, Robert [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Hospital Zurich, University of Zurich, Clinic of Cardiology, Zurich (Switzerland); University and ETH Zurich, Institute for Biomedical Engineering, Zurich (Switzerland); Plass, Andre; Maisano, Francesco [University Hospital Zurich, University of Zurich, Clinic for Cardiovascular Surgery, Zurich (Switzerland); Wildermuth, Simon [Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland)

    2016-02-15

    To evaluate the potential of advanced modeled iterative reconstruction (ADMIRE) for optimizing radiation dose of high-pitch coronary CT angiography (CCTA). High-pitch 192-slice dual-source CCTA was performed in 25 patients (group 1) according to standard settings (ref. 100 kVp, ref. 270 mAs/rot). Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). In another 25 patients (group 2), high-pitch CCTA protocol parameters were adapted according to results from group 1 (ref. 160 mAs/rot), and images were reconstructed with ADMIRE level 4. In ten patients of group 1, vessel sharpness using full width at half maximum (FWHM) analysis was determined. Image quality was assessed by two independent, blinded readers. Interobserver agreements for attenuation and noise were excellent (r = 0.88/0.85, p < 0.01). In group 1, ADMIRE level 4 images were most often selected (84 %, 21/25) as preferred data set; at this level noise reduction was 40 % compared to FBP. Vessel borders showed increasing sharpness (FWHM) at increasing ADMIRE levels (p < 0.05). Image quality in group 2 was similar to that of group 1 at ADMIRE levels 2-3. Radiation dose in group 2 (0.3 ± 0.1 mSv) was significantly lower than in group 1 (0.5 ± 0.3 mSv; p < 0.05). In a selected population, ADMIRE can be used for optimizing high-pitch CCTA to an effective dose of 0.3 mSv. (orig.)

  2. New animal model for the study of postmenopausal coronary and cerebral artery function: the Watanabe heritable hyperlipidemic rabbit fed on a diet avoiding phytoestrogens

    DEFF Research Database (Denmark)

    Dalsgaard, T; Larsen, C R; Mortensen, A

    2002-01-01

    to treatment for 16 weeks with either 17 beta-estradiol or placebo. The chow used was semi-synthetic, thereby avoiding the influence of phytoestrogens. Ring segments of cerebral and coronary arteries were mounted for isometric tension recordings in myographs. The passive and active length-tension relationships...... in the proximal coronary arteries. No changes were observed for the passive length-tension relationships. CONCLUSIONS: Long-term treatment with 17 beta-estradiol lowered the electromechanical tonus of atherosclerotic coronary arteries proximally, where the atherosclerosis is most developed. This could be one......OBJECTIVE: To evaluate the effect of estrogen replacement therapy (ERT) on the functional characteristics of coronary and cerebral arteries in a new rabbit model for postmenopausal vascular function. METHODS: Female ovariectomized Watanabe heritable hyperlipidemic (WHHL) rabbits were randomized...

  3. Effect of short-term high-dose atorvastatin on systemic inflammatory response and myocardial ischemic injury in patients with unstable angina pectoris undergoing percutaneous coronary intervention

    Institute of Scientific and Technical Information of China (English)

    Sun Fei; Yin Zhao; Shi Quanxing; Zhao Bei; Wang Shouli

    2014-01-01

    Background Percutaneous coronary intervention (PCI) could develop periprocedural myocardial infarction and inflammatory response and statins can modify inflammatory responses property.The aim of this study was to evaluate whether short-term high-dose atorvastatin therapy can reduce inflammatory response and myocardial ischemic injury elicited by PCI.Methods From March 2012 to May 2014,one hundred and sixty-five statin-naive patients with unstable angina referred for PCI at Department of Cardiology of the 306th Hospital,were enrolled and randomized to 7-day pretreatment with atorvastatin 80 mg/d as high dose group (HD group,n=56) or 20 mg/d as normal dose group (ND group,n=57) or an additional single high loading dose (80 mg) followed 6-day atorvastatin 20 mg/d as loading dose group (LD group,n=52).Plasma C-reactive protein (CRP) and interleukin-6 (IL-6) levels were determined before intervention and at 5 minutes,24 hours,48 hours,72 hours,and 7 days after intervention.Creatine kinase-myocardial isoenzyme (CK-MB) and cardiac troponin I (cTnl) were measured at baseline and then 24 hours following PCI.Results Plasma CRP and IL-6 levels increased from baseline after PCI in all groups.CRP reached a maximum at 48 hours and IL-6 level reached a maximum at 24 hours after PCI.Plasma CRP levels at 24 hours after PCI were significantly lower in the HD group ((9.14±3.02) mg/L) than in the LD group ((11.06±3.06) mg/L) and ND group ((12.36±3.08) mg/L,P <0.01); this effect persisted for 72 hours.IL-6 levels at 24 hours and 48 hours showed a statistically significant decrease in the HD group ((16.19±5.39) ng/L and (14.26±4.12) ng/L,respectively)) than in the LD group ((19.26±6.34) ng/L and (16.03±4.08) ng/L,respectively,both P <0.05) and ND group ((22.24±6.98) ng/L and (17.24±4.84) ng/L,respectively).IL-6 levels at 72 hours and 7 days showed no statistically significant difference among the study groups.Although PCI caused a significant increase in CK-MB and cTnl at

  4. Dietary manipulation and social isolation alter disease progression in a murine model of coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Yumiko Nakagawa-Toyama

    Full Text Available BACKGROUND: Mice with a deficiency in the HDL receptor SR-BI and low expression of a modified apolipoprotein E gene (SR-BI KO/ApoeR61(h/h called 'HypoE' when fed an atherogenic, 'Paigen' diet develop occlusive, atherosclerotic coronary arterial disease (CHD, myocardial infarctions (MI, and heart dysfunction and die prematurely (50% mortality ~40 days after initiation of this diet. Because few murine models share with HypoE mice these cardinal, human-like, features of CHD, HypoE mice represent a novel, small animal, diet-inducible and genetically tractable model for CHD. To better describe the properties of this model, we have explored the effects of varying the composition and timing of administration of atherogenic diets, as well as social isolation vs. group housing, on these animals. METHODOLOGY/PRINCIPAL FINDINGS: HypoE mice were maintained on a standard lab chow diet (control until two months of age. Subsequently they received one of three atherogenic diets (Paigen, Paigen without cholate, Western or control diet for varying times and were housed in groups or singly, and we determined the plasma cholesterol levels, extent of cardiomegaly and/or survival. The rate of disease progression could be reduced by lowering the severity of the atherogenic diet and accelerated by social isolation. Disease could be induced by Paigen diets either containing or free of cholate. We also established conditions under which CHD could be initiated by an atherogenic diet and then subsequently, by replacing this diet with standard lab chow, hypercholesterolemia could be reduced and progression to early death prevented. CONCLUSIONS/SIGNIFICANCE: HypoE mice provide a powerful, surgery-free, diet-'titratable' small animal model that can be used to study the onset of recovery from occlusive, atherosclerotic CHD and heart failure due to MI. HypoE mice can be used for the analysis of the effects of environment (diet, social isolation on a variety of features of

  5. Surgical sealant in the prevention of early vein graft injury in an ex vivo model

    NARCIS (Netherlands)

    Stooker, W; Niessen, HWM; Jansen, EK; Fritz, J; Wildevuur, WR; Van Hinsbergh, VWM; Wildevuur, CRH; Eijsman, L

    2003-01-01

    Background: The amelioration of the adaptation process (arterialisation) of the vein graft wall to the arterial circulation in coronary artery bypass surgery by using extravascular support is clearly established in animal models and in in vitro and ex vivo set-ups. This support consists of some form

  6. Reconstruction of Head Injury Cases Arising from Falls Using the UCD Brain Trauma Model

    OpenAIRE

    Doorly, Mary C.; Horgan, T. J.; Gilchrist, M. D.

    2005-01-01

    While Road Traffic Accidents continue to be the largest contributor to head injury, falls are usually second in prevalence. This paper looks at numerical modelling techniques, namely multibody body dynamics and finite element methods, in order to reconstruct two real-life accident cases arising from falls. Various modelling strategies are explored, and the results are compared with existing published brain injury tolerance levels.

  7. 贫血对冠心病患者冠状动脉介入治疗术后急性造影剂肾损伤的影响%Impact of anemia on development of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions

    Institute of Scientific and Technical Information of China (English)

    李文华; 李东野; 徐通达; 朱红; 赵延斌

    2011-01-01

    Objective The aim of the present study was to assess the influence of anemia on devel-opment of contrast-induced acute kidney injury ( AKI) after percutaneous coronary intervention.Methods The subject group consisted of 1026 patients who had undergone coronary intervention procedure between January 1,2008 and October 31,2009. A nonionic,low osmolality contrast agent was used in our la-boratory at this time. Serum creatinine values were measured before and within 48 h of administration of con-trast agents. Contrast-induced nephropathy was defined as an increase of 0. 5 mg/dl or 25% in serum creati-nine concentration over baseline within 48 h of angiography, anemia as hemoglobin ( Hb) 0.05) ]. Multivariate Logistic regression analysis found that baseline eGFR and baseline hemoglobin were independent predictors of AKI. When presence of anemia was introduced into the multivariate model instead of baseline hemoglobin, it was also showed a significant association with AKI. Conclusions Anemia increases the incidence of AKI in patients with moderate renal dysfunction. Patients with both preexisting renal insufficiency and anemia are at high risk of AKI. Baseline eGFR and baseline hemoglobin (or anemia) are independent predictors of AKI.

  8. Establishment of a blunt impact-induced brain injury model in rabbits

    Institute of Scientific and Technical Information of China (English)

    LI Kui; CAO Yun-xing; YANG Yong-qiang; YIN Zhi-yong; ZHAO Hui; WANG Li-jun

    2012-01-01

    Objective: To establish an animal model to replicate the blunt impact brain injury in forensic medicine.Methods:Twenty-four New Zealand white rabbits were randomly divided into control group (n=4),minor injury group (n=10) and severe injury group (n=10).Based on the BIM- Ⅱ Horizontal Bio-impact Machine,self-designed iron bar was used to produce blunt brain injury.Two rabbits from each injury group were randomly selected to monitor the change ofintracranial pressure (ICP) during the impacting process by pressure microsensors.Six hours after injury,all the rabbits were dissected to observe the injury morphology and underwent routine pathological examination.Results: Varying degrees of nervous system positive signs were observed in all the injured rabbits.Within 6 hours,the mortality rate was 1/10 in the minor injury group and 6/10 in the severe injury group.Morphological changes consisted of different levels of scalp hematoma,skull fracture,epiduraI hematoma,subdural hematoma,subarachnoid hemorrhage and brain injury.At the moment of hitting,the ICP was greater in severe injury group than in mild injury group; and within the same group,the impact side showed positive pressure while the opposite side showed negative pressure.Conclusions:Under the rigidly-controlled experimental condition,this animal model has a good reproducibility and stable results.Meanwhile,it is able to simulate the morphology of iron strike-induced injury,thus can be used to study the mechanism of blunt head injury in forensic medicine.

  9. Development of a Novel Translational Model of Vibration Injury to the Spine to Study Acute Injury in Vivo

    Science.gov (United States)

    2012-10-01

    Cervical Biomechanics : A Quantitative Anatomy Study. Northeast Bioengineering Conference, Philadelphia, PA, March 2012. 3. Baig HA, Guarino BB, Jaumard...Gohkale AJ, Guarino BB, Winkelstein BA. The Rat as a Viable Model for Human Cervical Biomechanics : A Quantitative Anatomy Study. Northeast...will integrate findings across all tasks of this work. 15. SUBJECT TERMS Pain, vibration, spine, transmissibility, biomechanics , injury 16

  10. Topical negative pressure effects on coronary blood flow in a sternal wound model

    DEFF Research Database (Denmark)

    Lindstedt, Sandra; Malmsjö, Malin; Gesslein, Bodil

    2008-01-01

    Several studies have suggested that mediastinitis is a strong predictor for poor long-term survival after coronary artery bypass surgery (CABG). In those studies, several conventional wound-healing techniques were used. Previously, we have shown no difference in long-term survival between CABG...

  11. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Minmin Li

    2015-01-01

    Full Text Available The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2 and cyclooxygenase- (COX- 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models.

  12. Does a "continuous care model" affect the quality of life of patients undergoing coronary artery bypass grafting?

    Science.gov (United States)

    Razmjoee, Nasrin; Ebadi, Abbas; Asadi-Lari, Mohsen; Hosseini, Marziyeh

    2017-03-01

    The physical and mental needs of patients with coronary heart disease are affected by both the disease and the heart surgery in different ways. Such diverse needs require different approaches. A continuous care model, which involves orientation, sensitization, control, and evaluation, may favorably influence patient outcomes following coronary artery bypass grafting (CABG). We were interested to ascertain whether a continuous care model might lead to improved quality of life, compared with a routine care model, in patients undergoing CABG. A total of 66 patients scheduled for CABG were identified and randomized to receive either continuous care (based on the continuous care model) or routine postoperative management for 2 months. The subjects' quality of life and its physical and mental dimensions were measured by the 12-item Short-Form Health Survey. Each dimension was scored between 0 and 100, and higher scores indicated better quality of life. One and 2 months after the intervention, the scores of quality of life and its two dimensions were significantly higher in the intervention group than in the control group (P care model can promote health-related quality of life in patients after CABG.

  13. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  14. Considerations for the optimization of induced white matter injury preclinical models

    Directory of Open Access Journals (Sweden)

    Abdullah Shafique Ahmad

    2015-08-01

    Full Text Available The white matter injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in the imaging technologies in the field of stroke have confirmed that white matter injury plays an important role in the prognosis of stroke and suggest that white matter protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of white matter injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective white matter injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective white matter ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly the ratio of white matter to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general white matter injury in animal models (stroke and non-stroke related and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.

  15. CT coronary angiography vs. invasive coronary angiography in CHD

    Directory of Open Access Journals (Sweden)

    Anja Hagen

    2012-04-01

    Full Text Available Scientific background: Various diagnostic tests including conventional invasive coronary angiography and non-invasive computed tomography (CT coronary angiography are used in the diagnosis of coronary heart disease (CHD. Research questions: The present report aims to evaluate the clinical efficacy, diagnostic accuracy, prognostic value cost-effectiveness as well as the ethical, social and legal implications of CT coronary angiography versus invasive coronary angiography in the diagnosis of CHD. Methods: A systematic literature search was conducted in electronic data bases (MEDLINE, EMBASE etc. in October 2010 and was completed with a manual search. The literature search was restricted to articles published from 2006 in German or English. Two independent reviewers were involved in the selection of the relevant publications. The medical evaluation was based on systematic reviews of diagnostic studies with invasive coronary angiography as the reference standard and on diagnostic studies with intracoronary pressure measurement as the reference standard. Study results were combined in a meta-analysis with 95 % confidence intervals (CI. Additionally, data on radiation doses from current non-systematic reviews were taken into account. A health economic evaluation was performed by modelling from the social perspective with clinical assumptions derived from the meta-analysis and economic assumptions derived from contemporary German sources. Data on special indications (bypass or in-stent-restenosis were not included in the evaluation. Only data obtained using CT scanners with at least 64 slices were considered. Results: No studies were found regarding the clinical efficacy or prognostic value of CT coronary angiography versus conventional invasive coronary angiography in the diagnosis of CHD. Overall, 15 systematic reviews with data from 44 diagnostic studies using invasive coronary angiography as the reference standard (identification of obstructive

  16. Acute reduction of microglia does not alter axonal injury in a mouse model of repetitive concussive traumatic brain injury.

    Science.gov (United States)

    Bennett, Rachel E; Brody, David L

    2014-10-01

    The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. The main inflammatory cells in the brain are microglia, a type of macrophage. This research sought to determine the contribution of microglia to axon degeneration after repetitive closed-skull traumatic brain injury (rcTBI) using CD11b-TK (thymidine kinase) mice, a valganciclovir-inducible model of macrophage depletion. Low-dose (1 mg/mL) valganciclovir was found to reduce the microglial population in the corpus callosum and external capsule by 35% after rcTBI in CD11b-TK mice. At both acute (7 days) and subacute (21 days) time points after rcTBI, reduction of the microglial population did not alter the extent of axon injury as visualized by silver staining. Further reduction of the microglial population by 56%, using an intermediate dose (10 mg/mL), also did not alter the extent of silver staining, amyloid precursor protein accumulation, neurofilament labeling, or axon injury evident by electron microscopy at 7 days postinjury. Longer treatment of CD11b-TK mice with intermediate dose and treatment for 14 days with high-dose (50 mg/mL) valganciclovir were both found to be toxic in this injury model. Altogether, these data are most consistent with the idea that microglia do not contribute to acute axon degeneration after multiple concussive injuries. The possibility of longer-term effects on axon structure or function cannot be ruled out. Nonetheless, alternative strategies directly targeting injury to axons may be a more beneficial approach to concussion treatment than targeting secondary processes of microglial-driven inflammation.

  17. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Science.gov (United States)

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of

  18. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  19. Do iatrogenic serosal injuries result in small bowel perforation in a rabbit model?

    Science.gov (United States)

    Tsai, M C; Candy, G; Costello, M A; Grieve, A D; Brand, M

    2017-06-01

    Surgical dogma dictates that serosal injuries should be repaired during laparotomy as these injuries may result in localised areas of bowel ischaemia and may perforate. No study has investigated whether there is a correlation between the extent of serosal injuries and the risk for perforation under normal physiological conditions. We hypothesized that small bowel serosal injuries do not result in early or late perforation at physiological intraluminal pressures regardless of their size. An in-vivo rabbit small bowel serosal injury model was developed and two experiments were conducted. The first - to determine whether and at which pressures various lengths and circumferences of serosal injuries in small bowel result in immediate bowel perforation - was performed infusing saline into isolated bowel segments with or without a variety of serosal injuries. In the second study - to determine whether or not serosal injuries result in delayed perforation - a range of injuries was created in rabbits and the effect assessed at re-laparotomy 5 days after the creation of the injury. No perforations were observed at the site of serosal injuries at physiological intraluminal pressures. Perforations occurred at 43.7+ 18.6 cmH₂O, 23.3+ 14.4 cmH₂O, and 24.4+ 23.9 cmH₂O for controls, 4 cm long and 100% circumference serosal injuries respectively (p-value = 0.18 for various lengths and 0.71 for various circumferences). No serosal injuries perforated within 72 or 120 hours after creation. Small bowel serosal injuries do not perforate or leak at physiological intraluminal pressures, either at the time of creation or up to 120 hours thereafter.

  20. The fear-avoidance model in whiplash injuries.

    Science.gov (United States)

    Nieto, Rubén; Miró, Jordi; Huguet, Anna

    2009-05-01

    The aim of this work was to study whether fear of movement, and pain catastrophizing predict pain related-disability and depression in sub-acute whiplash patients. Moreover, we wanted to test if fear of movement is a mediator in the relation between catastrophizing and pain-related disability/depression as has been suggested by the fear-avoidance model [Vlaeyen JWS, Kole-Snijders AMJ, Boeren RGB, van Eek H. Fear of movement/(re)injury in chronic low back pain and its relation to behavioral performance. Pain 1995;62:363-72]. The convenience sample used was of 147 sub-acute whiplash patients (pain duration less than 3 months). Two stepwise regression analyses were performed using fear of movement and catastrophizing as the independent variables, and disability and depression as the dependent variables. After controlling for descriptive variables and pain characteristics, catastrophizing and fear of movement were found to be predictors of disability and depression. Pain intensity was a predictor of disability but not of depression. The mediation effect of fear of movement in the relationships between catastrophizing and disability, and between catastrophizing and depression was also supported. The results of this study are in accordance with the fear-avoidance model, and support a biopsychosocial perspective for whiplash disorders.

  1. Blast wave injury prediction models for complex scenarios

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van

    2012-01-01

    Blast waves from explosions can cause lethal injuries to humans. Development of injury criteria has been ongoing for many years, but with the main focus on free field conditions. However, with terrorist actions as a new threat, explosions in urban areas have become of much more interest. Urban areas

  2. Characterizing Discourse Deficits Following Penetrating Head Injury: A Preliminary Model

    Science.gov (United States)

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Hamilton, Mark; Tyler, Elizabeth; Krueger, Frank; Grafman, Jordan

    2013-01-01

    Purpose: Discourse analyses have demonstrated utility for delineating subtle communication deficits following closed head injuries (CHIs). The present investigation examined the discourse performance of a large group of individuals with penetrating head injury (PHI). Performance was also compared across 6 subgroups of PHI based on lesion locale. A…

  3. Blast wave injury prediction models for complex scenarios

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van

    2012-01-01

    Blast waves from explosions can cause lethal injuries to humans. Development of injury criteria has been ongoing for many years, but with the main focus on free field conditions. However, with terrorist actions as a new threat, explosions in urban areas have become of much more interest. Urban areas

  4. BRAIN INJURY BIOMECHANICS IN REAL WORLD VEHICLE ACCIDENT USING MATHEMATICAL MODELS

    Institute of Scientific and Technical Information of China (English)

    YANG Jikuang; XU Wei; OTTE Dietmar

    2008-01-01

    This paper aims at investigating brain injury mechanisms and predicting head injuries in real world accidents. For this purpose, a 3D human head finite element model (HBM-head) was developed based on head-brain anatomy. The HBM head model was validated with two experimental tests. Then the head finite element(FE) model and a multi-body system (MBS) model were used to carry out reconstructions of real world vehicle-pedestrian accidents and brain injuries. The MBS models were used for calculating the head impact conditions in vehicle impacts. The HBM-head model was used for calculating the injury related physical parameters, such as intracranial pressure, stress, and strain. The calculated intracranial pressure and strain distribution were correlated with the injury outcomes observed from accidents. It is shown that this model can predict the intracranial biomechanical response and calculate the injury related physical parameters. The head FE model has good biofidelity and will be a valuable tool for the study of injury mechanisms and the tolerance level of the brain.

  5. miRNA-146a induces vascular smooth muscle cell apoptosis in a rat model of coronary heart disease via NF-κB pathway.

    Science.gov (United States)

    Wu, Z W; Liu, Y F; Wang, S; Li, B

    2015-12-29

    The aim of this study was to investigate the role of miRNA-146a in modulating the function of vascular smooth muscle cells in a rat model of coronary heart disease. Vascular smooth muscle cells were isolated and cultured from the rat coronary heart disease model and normal rats (controls). miRNA-146a levels were measured in vascular smooth muscle cells obtained from rats with coronary heart disease and control rats. The proliferation, growth, apoptosis, and activation of the NF-κB pathway in the vascular smooth muscle cells were detected using the MTT assay and flow cytometry, respectively. The role of the NF-κB pathway in modulating the apoptosis of vascular smooth muscle cells was investigated by measuring the reactivity of the cells to an NF-κB pathway inhibitor (TPCA-1). Vascular smooth muscle cells from the disease model exhibited higher levels of miRNA-146a than that by the normal controls (P = 0.0024). The vascular smooth muscle cells obtained from rats with coronary heart disease showed decreased proliferation and growth and increased apoptosis. miRNA-146a overexpression elevated the rate of cell apoptosis. The NF-κB pathway was activated in vascular smooth muscle cells obtained from rats with coronary heart disease. Inhibition of the NF- κB pathway significantly decreased the rate of vascular smooth muscle cell apoptosis in coronary heart disease rats (P = 0.0038). In conclusion, miRNA- 146a was found to induce vascular smooth muscle cell apoptosis in rats with coronary heart disease via the activation of the NF-κB signal pathway.

  6. Plasma microRNA profiles in rat models of hepatocellular injury, cholestasis, and steatosis.

    Directory of Open Access Journals (Sweden)

    Yu Yamaura

    Full Text Available MicroRNAs (miRNAs are small RNA molecules that function to modulate the expression of target genes, playing important roles in a wide range of physiological and pathological processes. The miRNAs in body fluids have received considerable attention as potential biomarkers of various diseases. In this study, we compared the changes of the plasma miRNA expressions by acute liver injury (hepatocellular injury or cholestasis and chronic liver injury (steatosis, steatohepatitis and fibrosis using rat models made by the administration of chemicals or special diets. Using miRNA array analysis, we found that the levels of a large number of miRNAs (121-317 miRNAs were increased over 2-fold and the levels of a small number of miRNAs (6-35 miRNAs were decreased below 0.5-fold in all models except in a model of cholestasis caused by bile duct ligation. Interestingly, the expression profiles were different between the models, and the hierarchical clustering analysis discriminated between the acute and chronic liver injuries. In addition, miRNAs whose expressions were typically changed in each type of liver injury could be specified. It is notable that, in acute liver injury models, the plasma level of miR-122, the most abundant miRNA in the liver, was more quickly and dramatically increased than the plasma aminotransferase level, reflecting the extent of hepatocellular injury. This study demonstrated that the plasma miRNA profiles could reflect the types of liver injury (e.g. acute/chronic liver injury or hepatocellular injury/cholestasis/steatosis/steatohepatitis/fibrosis and identified the miRNAs that could be specific and sensitive biomarkers of liver injury.

  7. Evaluation of Axonal Strain as a Predictor for Mild Traumatic Brain Injuries Using Finite Element Modeling.

    Science.gov (United States)

    Giordano, Chiara; Kleiven, Svein

    2014-11-01

    Finite element (FE) models are often used to study the biomechanical effects of traumatic brain injury (TBI). Measures based on mechanical responses, such as principal strain or invariants of the strain tensor, are used as a metric to predict the risk of injury. However, the reliability of inferences drawn from these models depends on the correspondence between the mechanical measures and injury data, as well as the establishment of accurate thresholds of tissue injury. In the current study, a validated anisotropic FE model of the human head is used to evaluate the hypothesis that strain in the direction of fibers (axonal strain) is a better predictor of TBI than maximum principal strain (MPS), anisotropic equivalent strain (AESM) and cumulative strain damage measure (CSDM). An analysis of head kinematics-based metrics, such as head injury criterion (HIC) and brain injury criterion (BrIC), is also provided. Logistic regression analysis is employed to compare binary injury data (concussion/no concussion) with continuous strain/kinematics data. The threshold corresponding to 50% of injury probability is determined for each parameter. The predictive power (area under the ROC curve, AUC) is calculated from receiver operating characteristic (ROC) curve analysis. The measure with the highest AUC is considered to be the best predictor of mTBI. Logistic regression shows a statistical correlation between all the mechanical predictors and injury data for different regions of the brain. Peaks of axonal strain have the highest AUC and determine a strain threshold of 0.07 for corpus callosum and 0.15 for the brainstem, in agreement with previously experimentally derived injury thresholds for reversible axonal injury. For a data set of mild TBI from the national football league, the strain in the axonal direction is found to be a better injury predictor than MPS, AESM, CSDM, BrIC and HIC.

  8. A Risk-Scoring Model to Predict One-year Major Adverse Cardiac Events after Percutaneous Coronary Intervention

    Directory of Open Access Journals (Sweden)

    Seyed-Ebrahim Kassaian

    2015-12-01

    Full Text Available Background: The aim of the present study was to develop a scoring system for predicting 1-year major adverse cardiac events (MACE, including mortality, target vessel or target lesion revascularization, coronary artery bypass graft surgery, and non-fatal myocardial infarction after percutaneous coronary intervention (PCI.Methods: The data were extracted from a single center PCI registry. The score was created based on the clinical, procedural, and laboratory characteristics of 8206 patients who underwent PCI between April 2004 and October 2009. Consecutive patients undergoing PCI between November 2009 and February 2011 (n= 2875 were included as a validation data set. Results: Diabetes mellitus, increase in the creatinine level, decrease in the left ventricular ejection fraction, presentation with the acute coronary syndrome, number of diseased vessels, primary PCI, PCI on the left anterior descending artery and saphenous vein graft, and stent type and diameter were identified as the predictors of the outcome and used to develop the score (R² = 0.795. The models had adequate goodness of fit (Hosmer-Lemeshow statistic; p value = 0.601 and acceptable ability of discrimination (c-statistics = 0.63. The score categorized the individual patients as low-, moderate-, and high-risk for the occurrence of MACE. The validation of the model indicated a good agreement between the observed and expected risks.Conclusion: An individual risk-scoring system based on both clinical and procedural variables can be used conveniently to predict 1-year MACE after PCI. Risk classification based on this score can assist physicians in decision-making and postprocedural health care. 

  9. Early cyclosporin A treatment retards axonal degeneration in an experimental peripheral nerve injection injury model

    Institute of Scientific and Technical Information of China (English)

    Ibrahim Erkutlu; Mehmet Alptekin; Sirma Geyik; Abidin Murat Geyik; Inan Gezgin; Abdulvahap Gk

    2015-01-01

    Injury to peripheral nerves during injections of therapeutic agents such as penicillin G potas-sium is common in developing countries. It has been shown that cyclosporin A, a powerful immunosuppressive agent, can retard Wallerian degeneration after peripheral nerve crush injury. However, few studies are reported on the effects of cyclosporin A on peripheral nerve drug in-jection injury. This study aimed to assess the time-dependent efifcacy of cyclosporine-A as an immunosuppressant therapy in an experimental rat nerve injection injury model established by penicillin G potassium injection. The rats were randomly divided into three groups based on the length of time after nerve injury induced by cyclosporine-A administration (30 minutes, 8 or 24 hours). The compound muscle action potentials were recorded pre-injury, early post-injury (within 1 hour) and 4 weeks after injury and compared statistically. Tissue samples were taken from each animal for histological analysis. Compared to the control group, a significant im-provement of the compound muscle action potential amplitude value was observed only when cyclosporine-A was administered within 30 minutes of the injection injury (P < 0.05); at 8 or 24 hours after cyclosporine-A administration, compound muscle action potential amplitude was not changed compared with the control group. Thus, early immunosuppressant drug therapy may be a good alternative neuroprotective therapy option in experimental nerve injection injury induced by penicillin G potassium injection.

  10. Early cyclosporin A treatment retards axonal degeneration in an experimental peripheral nerve injection injury model

    Directory of Open Access Journals (Sweden)

    Ibrahim Erkutlu

    2015-01-01

    Full Text Available Injury to peripheral nerves during injections of therapeutic agents such as penicillin G potassium is common in developing countries. It has been shown that cyclosporin A, a powerful immunosuppressive agent, can retard Wallerian degeneration after peripheral nerve crush injury. However, few studies are reported on the effects of cyclosporin A on peripheral nerve drug injection injury. This study aimed to assess the time-dependent efficacy of cyclosporine-A as an immunosuppressant therapy in an experimental rat nerve injection injury model established by penicillin G potassium injection. The rats were randomly divided into three groups based on the length of time after nerve injury induced by penicillin G potassium administration (30 minutes, 8 or 24 hours. The compound muscle action potentials were recorded pre-injury, early post-injury (within 1 hour and 4 weeks after injury and compared statistically. Tissue samples were taken from each animal for histological analysis. Compared to the control group, a significant improvement of the compound muscle action potential amplitude value was observed only when cyclosporine-A was administered within 30 minutes of the injection injury (P < 0.05; at 8 or 24 hours after cyclosporine-A administration, compound muscle action potential amplitude was not changed compared with the control group. Thus, early immunosuppressant drug therapy may be a good alternative neuroprotective therapy option in experimental nerve injection injury induced by penicillin G potassium injection.

  11. Kidney Injury Associated with Telavancin Dosing Regimen in an Animal Model

    Science.gov (United States)

    Ledesma, Kimberly R.; Bowers, Dana R.; Zhou, Jian; Truong, Luan D.

    2015-01-01

    The elevation of serum creatinine levels is a concern with telavancin therapy. We examined the onset of kidney injury associated with telavancin in an animal model. Urine samples were collected at baseline and daily to determine the concentrations of kidney injury molecule 1 (KIM-1), a marker for early kidney injury. When a clinically relevant exposure of telavancin was given daily to rats, some differences in kidney injury were attributed to the dosing regimen. Further investigations of alternative telavancin dosing regimens are warranted. PMID:25712358

  12. Echocardiographic assessment of coronary artery flow in normal canines and model dogs with myocardial infarction.

    Science.gov (United States)

    Park, Nohwon; Kim, Jaehwan; Lee, Miyoung; Lee, Soyun; Song, Sunhye; Lee, Seungjun; Kim, Soyoung; Park, Yangwoo; Eom, Kidong

    2014-01-01

    This study was conducted to evaluate the usefulness of coronary arterial profiles from normal dogs (11 animals) and canines (six dogs) with experimental myocardial infarction (MI) induced by ligation of the left coronary artery (LCA). Blood velocity of the LCA and right coronary artery (RCA) were evaluated following transthoracic pulsed-wave Doppler echocardiography. The LCA was observed as an infundibular shape, located adjacent to the sinus of Valsalva. The RCA appeared as a tubular structure located 12 o'clock relative to the aorta. In normal dogs, the LCA and RCA mean peak diastolic velocities were 20.84 ± 3.24 and 19.47 ± 2.67 cm/sec, respectively. The LCA and RCA mean diastolic deceleration times were 0.91 ± 0.14 sec and 1.13 ± 0.20 sec, respectively. In dogs with MI, the LCA had significantly (p < 0.01) lower peak velocities (14.82 ± 1.61 cm/sec) than the RCA (31.61 ± 2.34 cm/sec). The RCA had a significantly (p < 0.01) rapid diastolic deceleration time (0.71 ± 0.06 sec) than that found in the LCA (1.02 ± 0.22 sec) of MI dogs. In conclusion, these profiles may serve as a differential factor for evaluating cardiomyopathy in dogs.

  13. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model

    NARCIS (Netherlands)

    B.H.M. Heijnen; I.H. Straatsburg; N.D. Padilla; G.J. Mierlo; C.E. Hack; T.M. van Gulik

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 10

  14. Coronary artery anatomy of the goat.

    Science.gov (United States)

    Lipovetsky, G; Fenoglio, J J; Gieger, M; Srinivasan, M R; Dobelle, W H

    1983-05-01

    The coronary arteries of the goat heart were studied using angiographic techniques and molds of the coronary vessel trees. Blood supplies to the left and right ventricles, interventricular septum, atrioventricular node, and apex of the caprine heart were studied. The goat possesses a left dominant pattern of coronary supply with relatively uniform coronary anatomy and may provide a good large animal model for testing cardiovascular assist devices.

  15. Utilization and cost of a new model of care for managing acute knee injuries: the Calgary acute knee injury clinic

    Directory of Open Access Journals (Sweden)

    Lau Breda HF

    2012-12-01

    Full Text Available Abstract Background Musculoskeletal disorders (MSDs affect a large proportion of the Canadian population and present a huge problem that continues to strain primary healthcare resources. Currently, the Canadian healthcare system depicts a clinical care pathway for MSDs that is inefficient and ineffective. Therefore, a new inter-disciplinary team-based model of care for managing acute knee injuries was developed in Calgary, Alberta, Canada: the Calgary Acute Knee Injury Clinic (C-AKIC. The goal of this paper is to evaluate and report on the appropriateness, efficiency, and effectiveness of the C-AKIC through healthcare utilization and costs associated with acute knee injuries. Methods This quasi-experimental study measured and evaluated cost and utilization associated with specific healthcare services for patients presenting with acute knee injuries. The goal was to compare patients receiving care from two clinical care pathways: the existing pathway (i.e. comparison group and a new model, the C-AKIC (i.e. experimental group. This was accomplished through the use of a Healthcare Access and Patient Satisfaction Questionnaire (HAPSQ. Results Data from 138 questionnaires were analyzed in the experimental group and 136 in the comparison group. A post-hoc analysis determined that both groups were statistically similar in socio-demographic characteristics. With respect to utilization, patients receiving care through the C-AKIC used significantly less resources. Overall, patients receiving care through the C-AKIC incurred 37% of the cost of patients with knee injuries in the comparison group and significantly incurred less costs when compared to the comparison group. The total aggregate average cost for the C-AKIC group was $2,549.59 compared to $6,954.33 for the comparison group (p Conclusions The Calgary Acute Knee Injury Clinic was able to manage and treat knee injured patients for less cost than the existing state of healthcare delivery. The

  16. A common-sense model of injury perceptions.

    Science.gov (United States)

    Shiloh, Shoshana; Heruti, Irit; Leichtentritt, Ronit

    2016-08-01

    The aim of this study was to clarify the difference between perceptions of injury and illness. A qualitative study using semi-structured interviews was conducted with 38 individuals who had been injured in the past, 8 medical psychologists, 62 graduate psychology students, and 19 health professionals treating injured patients. Data were analyzed by modified analytic induction and constant comparison methods. Common-sense perceptions of injury overlapped with some perceptions of illness, and 4 new themes were elicited. It was concluded that there are themes unique to injury perceptions that should be recognized in research as well as in clinical interventions.

  17. Development of a Coronary Heart Disease Risk Prediction Model for Type 1 Diabetes: The Pittsburgh CHD in Type 1 Diabetes Risk Mode

    NARCIS (Netherlands)

    Zgibor, J.C.; Ruppert, K.; Orchard, T.J.; Soedamah-Muthu, S.S.; Fuller, J.H.; Chaturvedi, N.; Roberts, M.S.

    2010-01-01

    Aim - To create a coronary heart disease (CHD) risk prediction model specific to type 1 diabetes. Methods - Development of the model used data from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC). EDC subjects had type 1 diabetes diagnosed between 1950 and 1980, received their

  18. Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model of ST-Segment Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Jason A. Bartos, MD, PhD

    2016-06-01

    Full Text Available Poloxamer 188 (P188 is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. This study compared intracoronary (IC infusion of P188 immediately after reperfusion with delayed infusion through a peripheral intravenous catheter in a porcine model of ST-segment elevation myocardial infarction (STEMI. STEMI was induced in 55 pigs using 45 min of endovascular coronary artery occlusion. Pigs were then randomized to 4 groups: control, immediate IC P188, delayed peripheral P188, and polyethylene glycol infusion. Heart tissue was collected after 4 h of reperfusion. Assessment of mitochondrial function or infarct size was performed. Mitochondrial yield improved significantly with IC P188 treatment compared with control animals (0.25% vs. 0.13%, suggesting improved mitochondrial morphology and survival. Mitochondrial respiration and calcium retention were also significantly improved with immediate IC P188 compared with control animals (complex I respiratory control index: 7.4 vs. 3.7; calcium retention: 1,152 nmol vs. 386 nmol. This benefit was only observed with activation of complex I of the mitochondrial respiratory chain, suggesting a specific effect from ischemia and reperfusion on this complex. Infarct size and serum troponin I were significantly reduced by immediate IC P188 infusion (infarct size: 13.9% vs. 41.1%; troponin I: 19.2 μg/l vs. 77.4 μg/l. Delayed P188 and polyethylene glycol infusion did not provide a significant benefit. These results demonstrate that intracoronary infusion of P188 immediately upon reperfusion significantly reduces cellular and mitochondrial injury after ischemia and reperfusion in this clinically relevant porcine model of STEMI. The timing and route of delivery were critical to achieve the benefit.

  19. Protective effects of sitagliptin on myocardial injury and cardiac function in an ischemia/reperfusion rat model.

    Science.gov (United States)

    Chang, Guanglei; Zhang, Peng; Ye, Lin; Lu, Kai; Wang, Ying; Duan, Qin; Zheng, Aihua; Qin, Shu; Zhang, Dongying

    2013-10-15

    The purpose of this study is to investigate the effects and the underlying mechanisms of sitagliptin pretreatment on myocardial injury and cardiac function in myocardial ischemia/reperfusion (I/R) rat model. The rat model of myocardial I/R was constructed by coronary occlusion. Rats were pretreated with sitagliptin (300 mg/kg/day) for 2 weeks, and then subjected to 30 min ischemia and 2h reperfusion. The release of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB), cardiac function and cardiomyocyte apoptosis were evaluated. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in heart and glucagon-like peptide-1 (GLP-1) level in plasma were measured. Western blot analysis was performed to detect the target proteins of sitagliptin. Our results showed that sitagliptin pretreatment decreased LDH and CK-MB release, and MDA level in I/R rats. More importantly, we revealed for the first time that sitagliptin pretreatment decreased cardiomyocyte apoptosis while increased the levels of GSH-Px and SOD in heart. Sitagliptin also increased GLP-1 level and enhanced cardiac function in I/R rats. Furthermore, sitagliptin pretreatment up-regulated Akt(serine473) and Bad(serine136) phosphorylation, reduced the ratio of Bax/Bcl-2, and decreased expression levels of cleaved caspase-3 and caspase-3. Interestingly, the above observed effects of sitagliptin were all abolished when co-administered with GLP-1 receptor antagonist exendin-(9-39) or PI3K inhibitor LY294002. Taken together, our data indicate that sitagliptin pretreatment could reduce myocardial injury and improve cardiac function in I/R rats by reducing apoptosis and oxidative damage. The underlying mechanism might be the activation of PI3K/Akt signaling pathway by GLP-1/GLP-1 receptor. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  20. Computational Modelling of Multi-folded Balloon Delivery Systems for Coronary Artery Stenting: Insights into Patient-Specific Stent Malapposition.

    Science.gov (United States)

    Ragkousis, Georgios E; Curzen, Nick; Bressloff, Neil W

    2015-08-01

    Despite the clinical effectiveness of coronary artery stenting, percutaneous coronary intervention or "stenting" is not free of complications. Stent malapposition (SM) is a common feature of "stenting" particularly in challenging anatomy, such as that characterized by long, tortuous and bifurcated segments. SM is an important risk factor for stent thrombosis and recently it has been associated with longitudinal stent deformation. SM is the result of many factors including reference diameter, vessel tapering, the deployment pressure and the eccentric anatomy of the vessel. For the purpose of the present paper, virtual multi-folded balloon models have been developed for simulated deployment in both constant and varying diameter vessels under uniform pressure. The virtual balloons have been compared to available compliance charts to ensure realistic inflation response at nominal pressures. Thereafter, patient-specific simulations of stenting have been conducted aiming to reduce SM. Different scalar indicators, which allow a more global quantitative judgement of the mechanical performance of each delivery system, have been implemented. The results indicate that at constant pressure, the proposed balloon models can increase the minimum stent lumen area and thereby significantly decrease SM.

  1. Development of an Animal Model of Thoracolumbar Burst Fracture-Induced Acute Spinal Cord Injury

    Science.gov (United States)

    2016-07-01

    AWARD NUMBER: W81XWH-14-2-0013 TITLE: DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY 5b. GRANT...Rodent research has led to many advances in SCI treatment, but successful clinical translation remains limited. Here we describe a large animal model

  2. A rapid lateral fluid percussion injury rodent model of traumatic brain injury and post-traumatic epilepsy.

    Science.gov (United States)

    Hameed, Mustafa Q; Goodrich, Grant S; Dhamne, Sameer C; Amandusson, Asa; Hsieh, Tsung-Hsun; Mou, Danlei; Wang, Yingpeng; Rotenberg, Alexander

    2014-05-07

    Traumatic brain injury is a leading cause of acquired epilepsy. Initially described in 1989, lateral fluid percussion injury (LFPI) has since become the most extensively used and well-characterized rodent traumatic brain injury and post-traumatic epilepsy model. Universal findings, particularly seizures that reliably develop after an initial latent period, are evident across studies from multiple laboratories. However, the LFPI procedure is a two-stage process, requiring initial surgical attachment of a skull fluid cannula and then reanesthesia for delivery of the epidural fluid pressure wave. We now describe a modification of the original technique, termed 'rapid lateral fluid percussion injury' (rLFPI), which allows for a one-stage procedure and thus shorter operating time and reduced anesthesia exposure. Anesthetized male Long-Evans rats were subjected to rLFPI through a length of plastic tubing fitted with a pipette tip cannula with a 4-mm aperture. The cannula opening was positioned over a craniectomy of slightly smaller diameter and exposed dura such that the edges of the cannula fit tightly when pressed to the skull with a micromanipulator. Fluid percussion was then delivered immediately thereafter, in the same surgery session. rLFPI resulted in nonlethal focal cortical injury in all animals. We previously demonstrated that the rLFPI procedure resulted in post-traumatic seizures and regional gliosis, but had not examined other histopathologic elements. Now, we show apoptotic cell death confined to the perilesional cortex and chronic pathologic changes such as ipsilesional ventriculomegaly that are seen in the classic model. We conclude that the rLFPI method is a viable alternative to classic LFPI, and--being a one-stage procedure--has the advantage of shorter experiment turnaround and reduced exposure to anesthetics.

  3. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2013-07-01

    rats induces structural changes in brain regions associated with reward/risk circuitry including the nucleus accumbens, amygdala, hippocampus , and...to injury, animals underwent surgical implantation of a chronic indwelling venous catheter under isoflurane anesthesia with morphine pretreatment. A

  4. Coronary artery fistula

    Science.gov (United States)

    Congenital heart defect - coronary artery fistula; Birth defect heart - coronary artery fistula ... A coronary artery fistula is often congenital, meaning that it is present at birth. It generally occurs when one of the coronary arteries ...

  5. Descriptive modeling of longitudinal outcome measures in traumatic brain injury: a National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems study.

    Science.gov (United States)

    Pretz, Christopher R; Kozlowski, Allan J; Dams-O'Connor, Kristen; Kreider, Scott; Cuthbert, Jeffery P; Corrigan, John D; Heinemann, Allen W; Whiteneck, Gale

    2013-03-01

    Establishing accurate mathematical models of outcome measures is essential in understanding change throughout the rehabilitation process. The goal of this study is to identify the best-fitting descriptive models for a set of commonly adopted outcome measures found within the Traumatic Brain Injury Model Systems National Database where the modeling is based on data submission through 2011 and the complete range of recorded time points since injury for each individual, where time points range from admission to rehabilitation to 20 years postinjury. The statistical methodology and the application of the methodology contained herein may be used to assist researchers and clinicians in (1) modeling the outcome measures considered, (2) modeling various portions of these outcomes by stratification and/or truncating time periods, (3) modeling longitudinal outcome measures not considered, and (4) establishing models as a necessary precursor in conducting individual growth curve analysis.

  6. Effect of pre- and posttreatment of losartan in feline model of myocardial ischemic-reperfusion injury.

    Science.gov (United States)

    Kumari, R; Manchanda, S C; Maulik, S K

    2004-01-01

    This study investigated the differential effect of losartan, an AT1 receptor blocker, when administered in pre- and postischemic phases, on the biochemical, hemodynamic and oxidative stress associated with regional ischemic-reperfusion injury in cat. Losartan (5 microg/kg/min) or normal saline was administered intravenously in open chest barbiturate anesthetized cats, 15 min before and 10 min after the occlusion of the left anterior descending (LAD) coronary artery. The LAD was occluded for 15 min followed by 60 min reperfusion. In the saline treated group, there was significant depression of hemodynamic functions, i.e., mean arterial pressure (MAP), heart rate (HR), left ventricular end diastolic pressure (LVEDP) and left ventricular (LV) peak (+/-) dP/dt, along with depletion of adenosine triphosphate (ATP) of the affected myocardium. Oxidative stress during reperfusion injury was evidenced by significant increase in plasma thiobarbituric acid reactive substances (TBARS) accompanied by significant reduction in myocardial superoxide dismutase (SOD) activities. In both treatment groups, losartan caused recovery of all the hemodynamic parameters and repletion of ATP along with no significant change in plasma TBARS and myocardial SOD activity. There was no effect on catalase activity. Results from the study suggest that the effects of pre- and posttreatment of losartan are comparable in functional recovery of the heart from ischemic-reperfusion injury. (c) 2004 Prous Science. All rights reserved.

  7. Effect of Circular ANRIL on the Inflammatory Response of Vascular Endothelial Cells in a Rat Model of Coronary Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Chun-Li Song

    2017-07-01

    Full Text Available Background/Aims: This study aims to investigate the role of circular antisense non-coding RNA at the INK4 locus (cANRIL in the inflammatory response of vascular endothelial cells (ECs in a rat model of coronary atherosclerosis (AS. A rat model of AS was established with rats that were injected with a large dose of vitamin D3 and fed a high-fat diet. Methods: Sixty Wistar rats were randomly assigned into control, model, empty vector, over-expressed cANRIL and low-expressed cANRIL groups (12 rats in each group. Sixteen weeks later, the ultrastructure of their coronary arteries was observed via transmission electron microscopy. Rat serum lipid levels were analyzed using an automatic biochemical analyzer, and their atherogenic index (AI values were calculated. Hematoxylin and eosin staining was used to observe the endothelial morphology of rats. Additionally, rat EC apoptosis was tested via a TUNEL assay. Enzyme-linked immunosorbent assays (ELISAs were applied to measure serum levels of interleukin-1 (IL-1, IL-6, matrix metalloproteinase-9 (MMP-9 and C-reactive protein (CRP. The cANRIL, Bax, bcl-2 and caspase-3 mRNA expression levels were measured with a quantitative real-time polymerase chain reaction (qRT-PCR. The protein expression levels of Bax, bcl-2 and caspase-3 were detected using immunohistochemistry. Results: In the control group, ECs were closely arranged with normal structures, and there was no proliferation. In the model, empty vector and over-expressed cANRIL groups, some cells were not present, and atherosclerotic plaques and thrombi appeared. However, in the under-expressed cANRIL group, the cells had a normal structure. Compared with the model and empty vector groups, the levels of total cholesterol (CHOL, triglycerides (TGs, low density lipoprotein (LDL, IL-1, IL-6, MMP-9, CRP, cANRIL, Bax, and caspase-3, AI values, and rates of EC apoptosis decreased in the low-expressed cANRIL group, while HDL (high density lipoprotein levels and

  8. Using a Markov simulation model to assess the impact of changing trends in coronary heart disease incidence on requirements for coronary artery revascularization procedures in Western Australia

    OpenAIRE

    Knuiman Matthew; Mannan Haider R; Hobbs Michael

    2010-01-01

    Abstract Background The population incidence of coronary heart disease (CHD) has been declining in Australia and many other countries. This decline has been due to reduced population levels of risk factors for CHD and improved medical care for those at higher risk of CHD. However, there are signs that there may be a slowing down or even reversal in the decline of CHD incidence due to the 'obesity epidemic' and other factors and this will have implications for the requirements for surgical tre...

  9. Establishment of a mechanical injury model of rat hippocampal neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; CAO Fei; PAN De-sheng; LIU Wei-guo; HU Wei-wei; ZHENG Xiu-jue; ZHAO Xue-qun; L(U) Shi-ting

    2006-01-01

    Objective:To establish a simple, reproducible, and practical mechanical injury model of hippocampal neurons of Sprague-Dawley rats in vitro.Methods: Hippocampal neurons isolated from1-2-day old rats were cultured in vitro. Mild, moderate and severe mechanical injuries were delivered to the neurons by syringe needle tearing, respectively. The control neurons were treated identically with the exception of trauma. Cell damage was assessed by measuring the Propidium Iodide(PI) uptaking at different time points (0.5, 1, 6, 12 and24 hours) after injury. The concentration of neuron specific enolase was also measured at some time points.Results: Pathological examination showed that degeneration, degradation and necrosis occurred in the injured cultured neurons. Compared with the control group, the ratio of PI-positive cells in the injured groups increased significantly after 30 minutes of injury (P <0.05). More severe the damage was, more PI-positive neurons were detected. Compared with the control group,the concentration of neuron specific enolase in the injured culture increased significantly after 1 hour of injury (P <0.05).Conclusions: The established model of hippocampal neuron injury in vitro can be repeated easily and can simulate the damage mechanism of traumatic brain injury,which can be used in the future research of traumatic brain injury.

  10. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  11. Rosuvastatin reduces neointima formation in a rat model of balloon injury

    Directory of Open Access Journals (Sweden)

    Preusch MR

    2010-11-01

    Full Text Available Abstract Background Processes of restenosis, following arterial injury, are complex involving different cell types producing various cytokines and enzymes. Among those enzymes, smooth muscle cell-derived matrix metalloproteinases (MMPs are thought to take part in cell migration, degrading of extracellular matrix, and neointima formation. MMP-9, also known as gelatinase B, is expressed immediately after vascular injury and its expression and activity can be inhibited by statins. Using an established in vivo model of vascular injury, we investigated the effect of the HMG-CoA reductase inhibitor rosuvastatin on MMP-9 expression and neointima formation. Materials and methods 14-week old male Sprague Dawley rats underwent balloon injury of the common carotid artery. Half of the animals received rosuvastatin (20 mg/kg body weight/day via oral gavage, beginning 3 days prior to injury. Gelatinase activity and neointima formation were analyzed 3 days and 14 days after balloon injury, respectively. 14 days after vascular injury, proliferative activity was assessed by staining for Ki67. Results After 14 days, animals in the rosuvastatin group showed a decrease in total neointima formation (0.194 ± 0.01 mm2 versus 0.124 ± 0.02 mm2, p Conclusions Rosuvastatin attenuates neointima formation without affecting early MMP-9 activity in a rat model of vascular injury.

  12. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available PURPOSE: Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury. METHODS: Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28. RESULTS: The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats. CONCLUSION: Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  13. Bacterial translocation and intestinal injury in experimental necrotizing enterocolitis model.

    Science.gov (United States)

    Ciftci, I; Ozdemir, M; Aktan, M; Aslan, K

    2012-01-01

    To study the occurrence of bacterial translocation and to assess the impact of breastfeeding on bacterial translocation in the animal model of necrotizing enterocolitis. A total of 20 neonate Sprague-Dawley rats were enrolled in the study. Rats were randomly allocated into either control or study group just after birth. Ten newborn rats in the control group were left with their mother to be breast-fed. In contrary, necrotizing enterocolitis group consisted of neonates that were separated from their mothers, housed in an incubator and were gavaged with a special rodent formula three times daily. Survival rates, weight changes, and morphologic scoring obtained after microscopic evaluation were determined as microbiologic evaluation criteria. All the rats in the control group survived, while 1 (10 %) rat died in the necrotizing enterocolitis group. Mortality rates of the two groups were similar. All the formula-fed animals in the necrotizing enterocolitis group had significant weight loss compared to the breast milk-fed rats in the control group (p<0.05). A total of 7 (70 %) and 2 (20 %) E. coli growths were identified in the bowel lumen, liver, and spleen of necrotizing enterocolitis and control groups, respectively. This difference was statistically significant. In peritoneal smear cultures, a total of 3 (30 %) growths were detected in the necrotizing enterocolitis group and 1 (10 %) growth in the control group. As the result of a disturbance in the intestinal flora and impairment of the intestinal barrier in necrotizing enterocolitis, microrganisms in the bowel pass through the intestinal barrier and reach the liver and the spleen via the hematogenous route. This condition is closely related to the impairment of physiological and functional features of the intestinal barrier and is independent from the degree of intestinal injury. Bacterial translocation should be remembered in cases suspected of necrotizing enterocolitis, and a rapid and effective treatment

  14. [Experimental model of severe local radiation injuries of the skin after X-rays].

    Science.gov (United States)

    Kotenko, K V; Moroz, B B; Nasonova, T A; Dobrynina, O A; LIpengolz, A A; Gimadova, T I; Deshevoy, Yu B; Lebedev, V G; Lyrschikova, A V; Eremin, I I

    2013-01-01

    The experimental model of severe local radiation injuries skin under the influence of a relatively soft X-rays on a modified device RAP 100-10 produced by "Diagnostica-M" (Russia) was proposed. The model can be used as pre-clinical studies in small experimental animals in order to improve the treatment of local radiation injuries, especially in the conditions of application of cellular therapy.

  15. Pharmacological Attenuation of Myocardial Reperfusion Injury in a Closed-Chest Porcine Model

    DEFF Research Database (Denmark)

    Ekeløf, Sarah; Rosenberg, Jacob; Jensen, Jan Skov;

    2014-01-01

    Myocardial ischemia-reperfusion injury is a clinical challenge in interventional cardiology, and at the moment, no pharmacological agent is universally accepted in the prevention. In order to prevent inappropriate clinical trials, a potential pharmacological agent should be proved reproducibly...... effective in clinically relevant experimental studies before initiation of human studies. The closed-chest porcine model is a promising experimental model of ischemia-reperfusion injury. The purpose of this systematic review was to describe the pharmacological treatments evaluated in the closed...

  16. A Mechanistic End-to-End Concussion Model That Translates Head Kinematics to Neurologic Injury

    Directory of Open Access Journals (Sweden)

    Laurel J. Ng

    2017-06-01

    Full Text Available Past concussion studies have focused on understanding the injury processes occurring on discrete length scales (e.g., tissue-level stresses and strains, cell-level stresses and strains, or injury-induced cellular pathology. A comprehensive approach that connects all length scales and relates measurable macroscopic parameters to neurological outcomes is the first step toward rationally unraveling the complexity of this multi-scale system, for better guidance of future research. This paper describes the development of the first quantitative end-to-end (E2E multi-scale model that links gross head motion to neurological injury by integrating fundamental elements of tissue and cellular mechanical response with axonal dysfunction. The model quantifies axonal stretch (i.e., tension injury in the corpus callosum, with axonal functionality parameterized in terms of axonal signaling. An internal injury correlate is obtained by calculating a neurological injury measure (the average reduction in the axonal signal amplitude over the corpus callosum. By using a neurologically based quantity rather than externally measured head kinematics, the E2E model is able to unify concussion data across a range of exposure conditions and species with greater sensitivity and specificity than correlates based on external measures. In addition, this model quantitatively links injury of the corpus callosum to observed specific neurobehavioral outcomes that reflect clinical measures of mild traumatic brain injury. This comprehensive modeling framework provides a basis for the systematic improvement and expansion of this mechanistic-based understanding, including widening the range of neurological injury estimation, improving concussion risk correlates, guiding the design of protective equipment, and setting safety standards.

  17. In-Vitro Evaluation of Coronary Stents and 64-Detector-Row Computed Tomography Using a Newly Developed Model of Coronary Artery Stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, T.; Scheuermann, T.; Ulzheimer, S.; Mohrs, O.K.; Kuehling, M.; Albrecht, P.E.; Voigtlaender, T.; Barkhausen, J.; Schmermund, A. (Cardiovascular Center Bethanien (CCB), Frankfurt (DE))

    2008-02-15

    Background: Stent implantation is the predominant therapy for non-surgical myocardial revascularization in patients with coronary artery disease. However, despite substantial advances in multidetector computed tomography (MDCT) coronary imaging, a reliable detection of coronary in-stent restenosis is currently not possible. Purpose: To examine the ability of 64-detector-row CT to detect and to grade in-stent stenosis in coronary stents using a newly developed ex-vivo vessel phantom with a realistic CT density pattern, artificial stenosis, and a thorax phantom. Material and Methods: Four different stents (Liberte and Lunar ROX, Boston Scientific; Driver, Medtronic; Multi-Link Vision, Guidant) were examined. The stents were placed on a polymer tube with a diameter of 2.5, 3.0, 3.5, or 4.0 mm. Different degrees of stenosis (0%, 30%, 50%, 70-80%) were created inside the tube. For quantitative analysis, attenuation values were measured in the non-stenotic vessel outside the stent, in the non-stenotic vessel inside the stent, and in the stenotic area inside the stent. The grade of stenosis was visually assessed by two observers. Results: All stents led to artificial reduction of attenuation, the least degree of which was found in the Liberte stent (11.3+-10.2 HU) and the Multi-Link Vision stent (17.6+-17.9 HU; P 0.25). Overall, the non-stenotic vessel was correctly diagnosed in 55.5%, the low-grade stenosis in 58.3%, the intermediate stenosis in 63.8%, and the high-grade stenosis in 80.5%. In the 3.0-, 3.5-, and 4.0-mm vessels, in none of the cases was a non-stenotic or low-grade stenotic vessel misdiagnosed as intermediate or high-grade stenosis. The average deviation from the real grade of stenosis was 0.40 for the Liberte stent, 0.46 for the Lunar ROX stent, 0.45 for the Driver stent, and 0.58 for the Multi-Link Vision stent. Conclusion: Our ex-vivo data show that non-stenotic stents and low-grade in-stent stenosis can be reliably differentiated from intermediate and

  18. Deferoxamine improves neurological function in a rat model of experimental spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yanting Wang; Shaoji Yuan; Fachen Wang; Rong Hu; Jiangkai Lin; Zisheng Liu; Hua Feng

    2011-01-01

    A rat model of spinal cord injury was established using modified Allen's method and treated with the ferric iron-chelating agent, deferoxamine. Hematoxylin-eosin, Nissl and Perl's Prussian blue staining, at 7-14 days following spinal cord injury, showed that following deferoxamine treatment, glial cells proliferation increased significantly, nerve cell morphology was improved and hemosiderin was significantly reduced in the injury region. At 1-56 days following injury, Basso, Beattie, and Bres nahan Locomotor Rating Scale scores were increased, while latencies of somatosensory-evoked potentials and motor-evoked potentials were decreased. Results demonstrate that deferoxamine can promote neurological functional recovery after experi-mental spinal cord injury in rats.

  19. Dendritic development of hippocampal CA1 pyramidal cells in a neonatal hypoxia-ischemia injury model.

    Science.gov (United States)

    Zhao, Yan Dong; Ou, Shan; Cheng, Sai Yu; Xiao, Zhi; He, Wen Juan; Zhang, Jin Hai; Ruan, Huai Zhen

    2013-09-01

    It is believed that neonatal hypoxia-ischemia (HI) brain injury causes neuron loss and brain functional defects. However, the effect of HI brain injury on dendritic development of the remaining pyramidal cells of the hippocampus and the reaction of contralateral hippocampal neurons require further studies. The Morris water maze and Golgi-Cox staining were used to evaluate the learning and memory and dendritic morphology of pyramidal cells. The results of Golgi-Cox staining showed CA1 pyramidal neurons of HI injury models with fewer bifurcations and shorter dendrite length than the naive control group. The density of dendritic spines of hippocampal CA1 pyramidal neurons was significantly lower in the HI brain injury group than in controls. With respect to hippocampal function, the HI brain injury group presented cognitive deficits in the reference memory task and probe trail. In the HI group, the pyramidal cells of left hippocampus that did not experienced ischemia but did experience hypoxia had more complex dendrites and higher density of spine than the HI injury side and control. The functional implementation of injured hippocampus might depend mainly on the hypertrophy of contralateral hippocampus after HI brain injury. Corticosterone can partially prevent the hippocampal pyramidal cells from HI injury and reduce the difference of the bilateral hippocampus pyramidal cells, but there was no improvement in learning and memory.

  20. Progesterone Treatment Shows Benefit in Female Rats in a Pediatric Model of Controlled Cortical Impact Injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available We recently showed that progesterone treatment can reduce lesion size and behavioral deficits after moderate-to-severe bilateral injury to the medial prefrontal cortex in immature male rats. Whether there are important sex differences in response to injury and progesterone treatment in very young subjects has not been given sufficient attention. Here we investigated progesterone's effects in the same model of brain injury but with pre-pubescent females.Twenty-eight-day-old female Sprague-Dawley rats received sham (n = 14 or controlled cortical impact (CCI (n = 21 injury, were given progesterone (8 mg/kg body weight or vehicle injections on post-injury days (PID 1-7, and underwent behavioral testing from PID 9-27. Brains were evaluated for lesion size at PID 28.Lesion size in vehicle-treated female rats with CCI injury was smaller than that previously reported for similarly treated age-matched male rats. Treatment with progesterone reduced the effect of CCI on extent of damage and behavioral deficits.Pre-pubescent female rats with midline CCI injury to the frontal cortex have reduced morphological and functional deficits following progesterone treatment. While gender differences in susceptibility to this injury were observed, progesterone treatment produced beneficial effects in young rats of both sexes following CCI.

  1. A hybrid finite mixture model for exploring heterogeneous ordering patterns of driver injury severity.

    Science.gov (United States)

    Ma, Lu; Wang, Guan; Yan, Xuedong; Weng, Jinxian

    2016-04-01

    Debates on the ordering patterns of crash injury severity are ongoing in the literature. Models without proper econometrical structures for accommodating the complex ordering patterns of injury severity could result in biased estimations and misinterpretations of factors. This study proposes a hybrid finite mixture (HFM) model aiming to capture heterogeneous ordering patterns of driver injury severity while enhancing modeling flexibility. It attempts to probabilistically partition samples into two groups in which one group represents an unordered/nominal data-generating process while the other represents an ordered data-generating process. Conceptually, the newly developed model offers flexible coefficient settings for mining additional information from crash data, and more importantly it allows the coexistence of multiple ordering patterns for the dependent variable. A thorough modeling performance comparison is conducted between the HFM model, and the multinomial logit (MNL), ordered logit (OL), finite mixture multinomial logit (FMMNL) and finite mixture ordered logit (FMOL) models. According to the empirical results, the HFM model presents a strong ability to extract information from the data, and more importantly to uncover heterogeneous ordering relationships between factors and driver injury severity. In addition, the estimated weight parameter associated with the MNL component in the HFM model is greater than the one associated with the OL component, which indicates a larger likelihood of the unordered pattern than the ordered pattern for driver injury severity.

  2. A model for creating a single stretch injury in murine biarticular muscle.

    Science.gov (United States)

    Brickson, Stacey L; McCabe, Ronald P; Pala, Adam W; Vanderby, Ray

    2014-04-05

    We developed a single stretch injury model to create damage near the musculotendinous junction (MTJ) of the gastrocnemius muscle in mice. Our hypothesis was that magnitude of muscle injury could be controlled by stepped shortening of the Achilles tendon (AT) prior to a lengthening contraction. Increased shortening would result in a greater isometric torque deficit and morphological damage 24 hours post-injury. Sixteen mice were randomly assigned to sham or injury predicated on stepped increases in AT shortening. The AT was exposed and placed in a customized stainless steel roller-clamp system to achieve a specific level of shortening; 0 mm (resting length), 0.7 mm or 1.4 mm. Plantar flexors were stimulated to tetany with a needle electrode and then actively lengthened at 450°/sec from neutral to 75° of dorsiflexion. Passive and isometric torques were measured pre- and immediately post-injury. Isometric torque was measured again 24 h post-injury. Peak isokinetic torque was recorded during eccentric injury. Injury resulted in decreased passive and immediate absolute isometric torque only when induced with AT shortening. The percentage of pre-injury isometric torque was significantly lower in the AT shortened groups immediately and 24 h post-injury, but was unaffected by the level of shortening. Relative isometric torque deficits were noted in the 0 mm group only 24 h post-injury. Peak isokinetic torque during injury was similar in all groups. Histological evaluation 24 h post-injury revealed increased morphological damage near the MTJ in the AT shortened groups. Single stretch with AT shortening created morphological damage near the MTJ and isometric torque deficits immediately and 24 h post-injury, but the magnitude of damage could not be titrated with stepped increases in AT shortening. This model provides an opportunity to utilize transgenic mice in order to elucidate inflammatory mediators that promote regeneration and inhibit fibrosis in order to

  3. A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency

    Directory of Open Access Journals (Sweden)

    Igor Khalin

    2016-01-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI.

  4. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology. 2011;44:158-164. Rochat L...well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and Pappagallo, 2005; Koob and Volkow, 2010). Physical dependence

  5. Opioid Abuse After Traumatic Brain Injury: Evaluation Using Rodet Models

    Science.gov (United States)

    2014-07-01

    impulsivity relates to compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology...mechanism for the continued misuse/abuse of opioid drugs as well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and

  6. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Fraser Richard

    2009-10-01

    Full Text Available Abstract The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233 for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features. Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.

  7. Evaluating the Framingham hypertension risk prediction model in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study.

    Science.gov (United States)

    Carson, April P; Lewis, Cora E; Jacobs, David R; Peralta, Carmen A; Steffen, Lyn M; Bower, Julie K; Person, Sharina D; Muntner, Paul

    2013-12-01

    A prediction model was developed in the Framingham Heart Study (FHS) to evaluate the short-term risk of hypertension. Our goal was to determine the predictive ability of the FHS hypertension model in a cohort of young adults advancing into middle age and compare it with the predictive ability of prehypertension and individual components of the FHS model. We studied 4388 participants, aged 18 to 30 years without hypertension at baseline, enrolled in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, who participated in 2 consecutive examinations occurring 5 years apart between the baseline (1985-1986) and year 25 examination (2010-2011). Weibull regression was used to assess the association of the FHS model overall, individual components of the FHS model, and prehypertension with incident hypertension. During the 25-year follow-up period, 1179 participants developed incident hypertension. The FHS hypertension model (c-index=0.84; 95% confidence interval, 0.83-0.85) performed well in discriminating those who did and did not develop hypertension and was better than prehypertension alone (c-index=0.71; 95% confidence interval, 0.70-0.73). The predicted risk from the FHS hypertension model was systematically lower than the observed hypertension incidence initially (χ(2)=249.4; Padults with a high risk for developing hypertension.

  8. Dexamethasone : Benefit and prejudice for patients undergoing on-pump coronary artery bypass grafting - A study on myocardial, pulmonary, renal, intestinal, and hepatic injury

    NARCIS (Netherlands)

    Morariu, AM; Loef, BG; Aarts, LPHJ; Rietman, GW; Rakhorst, G; van Oeveren, W; Epema, AH

    2005-01-01

    Study objectives: Cardiac surgery with cardiopulmonary bypass (CPB) results in perioperative organ damage caused by the systemic inflammatory response syndrome (SIRS) and ischemia/ reperfusion injury. Administration of corticosteroids before CPB has been demonstrated to inhibit the activation of the

  9. Dexamethasone : Benefit and prejudice for patients undergoing on-pump coronary artery bypass grafting - A study on myocardial, pulmonary, renal, intestinal, and hepatic injury

    NARCIS (Netherlands)

    Morariu, AM; Loef, BG; Aarts, LPHJ; Rietman, GW; Rakhorst, G; van Oeveren, W; Epema, AH

    2005-01-01

    Study objectives: Cardiac surgery with cardiopulmonary bypass (CPB) results in perioperative organ damage caused by the systemic inflammatory response syndrome (SIRS) and ischemia/ reperfusion injury. Administration of corticosteroids before CPB has been demonstrated to inhibit the activation of the

  10. Examining a hypothetical quantitative model for better approximation of culprit coronary artery and site of stenosis on 99mTc-sestamibi gated myocardial perfusion SPECT.

    Science.gov (United States)

    Pal, Sushanta; Sen, Srabani; Das, Debasis; Basu, Sandip

    2016-10-01

    A hypothetical quantitative model of analyzing gated myocardial perfusion SPECT is proposed and examined for the feasibility of its use as a predictor of diseased coronary artery and approximating the site of stenosis to determine whether it could serve as a useful noninvasive complement for coronary angiography. The extent and severity of perfusion defects on rest gated myocardial perfusion imaging SPECT-images were assessed on a five-point scale in a standard 17-segment model and total perfusion deficit was quantified by automated software. The first step was to locate the diseased coronary artery using a quantitative method: for this, the score of each segment belonging to a particular coronary artery was determined using a systematic presumptive approach. After determination of specific coronary artery segments, the scores of the contiguous segments in three short axis slices (apical, middle, and basal) were summed for six subdivisions (anterior, anterolateral, inferolateral, inferior, anteroseptal, and inferoseptal). The site of stenosis was determined from (a) the initial approximation of the involved segments with a defect score of 2-4 and (b) subsequent calculation of the defect score of each of the six subdivisions and allocating the site through a preassigned number for each coronary artery. For each coronary artery, only the subdivision with the highest defect score was considered. Proximal, middle, and distal segments of left anterior descending artery (LAD) were considered to be represented when the summed value of a subdivision within a particular arterial territory was more than or equal to 7, between 5 and 7, 5 and 3, respectively. For the left circumflex and right coronary artery, summed scores (of respective subdivisions) of more than or equal to 5 and between 3 and 5 were preassigned to proximal and distal stenosis, respectively. The results were then correlated with the coronary angiographic data. On coronary angiography, proximal LAD occlusion

  11. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    Science.gov (United States)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  12. Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes.

    Science.gov (United States)

    Sze, N N; Wong, S C

    2007-11-01

    This study attempts to evaluate the injury risk of pedestrian casualties in traffic crashes and to explore the factors that contribute to mortality and severe injury, using the comprehensive historical crash record that is maintained by the Hong Kong Transport Department. The injury, demographic, crash, environmental, geometric, and traffic characteristics of 73,746 pedestrian casualties that were involved in traffic crashes from 1991 to 2004 are considered. Binary logistic regression is used to determine the associations between the probability of fatality and severe injury and all contributory factors. A consideration of the influence of implicit attributes on the trend of pedestrian injury risk, temporal confounding, and interaction effects is progressively incorporated into the predictive model. To verify the goodness-of-fit of the proposed model, the Hosmer-Lemeshow test and logistic regression diagnostics are conducted. It is revealed that there is a decreasing trend in pedestrian injury risk, controlling for the influences of demographic, road environment, and other risk factors. In addition, the influences of pedestrian behavior, traffic congestion, and junction type on pedestrian injury risk are subject to temporal variation.

  13. The application of a mathematical model linking structural and functional connectomes in severe brain injury

    Directory of Open Access Journals (Sweden)

    A. Kuceyeski

    2016-01-01

    Full Text Available Following severe injuries that result in disorders of consciousness, recovery can occur over many months or years post-injury. While post-injury synaptogenesis, axonal sprouting and functional reorganization are known to occur, the network-level processes underlying recovery are poorly understood. Here, we test a network-level functional rerouting hypothesis in recovery of patients with disorders of consciousness following severe brain injury. This hypothesis states that the brain recovers from injury by restoring normal functional connections via alternate structural pathways that circumvent impaired white matter connections. The so-called network diffusion model, which relates an individual's structural and functional connectomes by assuming that functional activation diffuses along structural pathways, is used here to capture this functional rerouting. We jointly examined functional and structural connectomes extracted from MRIs of 12 healthy and 16 brain-injured subjects. Connectome properties were quantified via graph theoretic measures and network diffusion model parameters. While a few graph metrics showed groupwise differences, they did not correlate with patients' level of consciousness as measured by the Coma Recovery Scale — Revised. There was, however, a strong and significant partial Pearson's correlation (accounting for age and years post-injury between level of consciousness and network diffusion model propagation time (r = 0.76, p < 0.05, corrected, i.e. the time functional activation spends traversing the structural network. We concluded that functional rerouting via alternate (and less efficient pathways leads to increases in network diffusion model propagation time. Simulations of injury and recovery in healthy connectomes confirmed these results. This work establishes the feasibility for using the network diffusion model to capture network-level mechanisms in recovery of consciousness after severe brain injury.

  14. The Brazilian Football Association (CBF model for epidemiological studies on professional soccer player injuries

    Directory of Open Access Journals (Sweden)

    Gustavo Goncalves Arliani

    2011-01-01

    Full Text Available OBJECTIVE: This study aims to establish a national methodological model for epidemiological studies on professional soccer player injuries and to describe the numerous relevant studies previously published on this topic. INTRODUCTION: The risk of injury in professional soccer is high. However, previous studies of injury risk in Brazil and other countries have been characterized by large variations in study design and data collection methods as well as definitions of injury, standardized diagnostic criteria, and recovery times. METHODS: A system developed by the Union of European Football for epidemiological studies on professional soccer players is being used as a starting point to create a methodological model for the Brazilian Football Association. To describe the existing studies on professional soccer player injuries, we developed a search strategy to identify relevant epidemiological studies. We included the Latin American and Caribbean Center on Health Sciences and Medline databases in our study. RESULTS: We considered 60 studies from Medline and 16 studies from the Latin American and Caribbean Center on Health Sciences in the final analysis. Twelve studies were selected for final inclusion in this review: seven from the Latin American and Caribbean Center on Health Sciences and five from Medline. We identified a lack of uniformity in the study design, data collection methods, injury definitions, standardized diagnostic criteria, and the definition of recovery time. Based on the information contained within these articles, we developed a model for epidemiological studies for the Brazilian Football Association. CONCLUSIONS: There is no uniform model for epidemiological studies of professional soccer injuries. Here, we propose a novel model to be applied for epidemiological studies of professional soccer player injuries in Brazil and throughout the world.

  15. An economic evaluation of salt reduction policies to reduce coronary heart disease in England: a policy modeling study.

    Science.gov (United States)

    Collins, Marissa; Mason, Helen; O'Flaherty, Martin; Guzman-Castillo, Maria; Critchley, Julia; Capewell, Simon

    2014-07-01

    Dietary salt intake has been causally linked to high blood pressure and increased risk of cardiovascular events. Cardiovascular disease causes approximately 35% of total UK deaths, at an estimated annual cost of £30 billion. The World Health Organization and the National Institute for Health and Care Excellence have recommended a reduction in the intake of salt in people's diets. This study evaluated the cost-effectiveness of four population health policies to reduce dietary salt intake on an English population to prevent coronary heart disease (CHD). The validated IMPACT CHD model was used to quantify and compare four policies: 1) Change4Life health promotion campaign, 2) front-of-pack traffic light labeling to display salt content, 3) Food Standards Agency working with the food industry to reduce salt (voluntary), and 4) mandatory reformulation to reduce salt in processed foods. The effectiveness of these policies in reducing salt intake, and hence blood pressure, was determined by systematic literature review. The model calculated the reduction in mortality associated with each policy, quantified as life-years gained over 10 years. Policy costs were calculated using evidence from published sources. Health care costs for specific CHD patient groups were estimated. Costs were compared against a "do nothing" baseline. All policies resulted in a life-year gain over the baseline. Change4life and labeling each gained approximately 1960 life-years, voluntary reformulation 14,560 life-years, and mandatory reformulation 19,320 life-years. Each policy appeared cost saving, with mandatory reformulation offering the largest cost saving, more than £660 million. All policies to reduce dietary salt intake could gain life-years and reduce health care expenditure on coronary heart disease. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  16. Overcoming the organization-practice barrier in sports injury prevention: A nonhierarchical organizational model.

    Science.gov (United States)

    Dahlström, Ö; Jacobsson, J; Timpka, T

    2015-08-01

    The organization of sports at the national level has seldom been included in scientific discussions of sports injury prevention. The aim of this study was to develop a model for organization of sports that supports prevention of overuse injuries. The quality function deployment technique was applied in seminars over a two-season period to develop a national organizational structure for athletics in Sweden that facilitates prevention of overuse injuries. Three central features of the resulting model for organization of sports at the national level are (a) diminishment of the organizational hierarchy: participatory safety policy design is introduced through annual meetings where actors from different sectors of the sporting community discuss training, injury prevention, and sports safety policy; (b) introduction of a safety surveillance system: a ubiquitous system for routine collection of injury and illness data; and (c) an open forum for discussion of safety issues: maintenance of a safety forum for participants from different sectors of the sport. A nonhierarchical model for organization of sports at the national level - facilitated by modern information technology - adapted for the prevention of overuse injuries has been developed. Further research is warranted to evaluate the new organizational model in prospective effectiveness studies.

  17. Predictors of social integration for individuals with brain injury: An application of the ICF model.

    Science.gov (United States)

    Ditchman, Nicole; Sheehan, Lindsay; Rafajko, Sean; Haak, Christopher; Kazukauskas, Kelly

    2016-01-01

    People with brain injury often experience significant challenges to social and community engagement following injury. The purpose of this study was to investigate factors impacting social integration for adults with brain injury using the International Classification and Functioning, Disability and Health (ICF) as a conceptual model. Adults with brain injury (n = 103) recruited through two US state brain injury associations participated in a survey study. Hierarchical regression analysis was used to examine the predictive impact of components of the ICF model on social integration outcomes. Specifically, demographic (age, gender, SES), disability (severity of functional limitations), personal (disability acceptance, social self-efficacy) and environmental (neighbourhood climate, stigma, social support network) factors were entered as four conceptual groups of predictors to examine the incremental contribution of the variance in social integration explained by each set. As hypothesized, the inclusion of each block of predictors significantly improved the model. The overall regression model explained 41% of the variance in social integration. Specifically, SES (β = 0.25), severity of functional limitations (β = 0.29) and social support network (β = 0.29) emerged as the strongest independent predictors. Findings from this study highlight the importance of adopting a biopsychosocial approach to understanding social integration for people with brain injury.

  18. Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats.

    Science.gov (United States)

    Kagota, Satomi; Maruyama, Kana; Tada, Yukari; Fukushima, Kazuhito; Umetani, Keiji; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2013-07-01

    Metabolic syndrome (MetS) is a combination of clinical disorders that together increase the risk for cardiovascular disease and diabetes. SHRSP.Z-Lepr(fa)/IzmDmcr (SHRSP.ZF) rats with MetS show impaired nitric oxide-mediated relaxation in coronary and mesenteric arteries, and angiotensin II receptor type 1 blockers protect against dysfunction and oxidative-nitrosative stress independently of metabolic effects. We hypothesize that superoxide contributes to functional deterioration in SHRSP.ZF rats. To test our hypothesis, we studied effects of treatment with tempol, a membrane-permeable radical scavenger, on impaired vasodilation in SHRSP.ZF rats. Tempol did not alter body weight, high blood pressure, or metabolic abnormalities, but prevented impairment of acetylcholine-induced and nitroprusside-induced vasodilation in the coronary and mesenteric arteries. Furthermore, tempol reduced the levels of serum thiobarbituric acid reactive substance (TBARS) and 3-nitrotyrosine content in mesenteric arteries. Systemic administration of tempol elevated the expression of soluble guanylate cyclase (sGC) above basal levels in mesenteric arteries of SHRSP.ZF rats. However, acute treatment with tempol or ebselen, a peroxynitrite scavenger, did not ameliorate impaired relaxation of isolated mesenteric arteries. No nitration of tyrosine residues in sGC was observed; however, sGC mRNA expression levels in the arteries of SHRSP.ZF rats were lower than those in the arteries of Wistar-Kyoto rats. Levels of Thr(496)- and Ser(1177)-phosphorylated endothelial nitric oxide synthase (eNOS) were lower in arteries of SHRSP.ZF rats, and acetylcholine decreased Thr(496)-phosphorylated eNOS levels. These results indicated that prolonged superoxide production, leading to oxidative-nitrosative stress, was associated with impaired vasodilation in SHRSP.ZF rats with MetS. Down-regulated sGC expression may be linked to dysfunction, while reduced NO bioavailability/eNOS activity and modified s

  19. Chinese Herbal Medicines Might Improve the Long-Term Clinical Outcomes in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention: Results of a Decision-Analytic Markov Model

    Directory of Open Access Journals (Sweden)

    Shao-Li Wang

    2015-01-01

    Full Text Available Aims. The priority of Chinese herbal medicines (CHMs plus conventional treatment over conventional treatment alone for acute coronary syndrome (ACS after percutaneous coronary intervention (PCI was documented in the 5C trial (chictr.org number: ChiCTR-TRC-07000021. The study was designed to evaluate the 10-year effectiveness of CHMs plus conventional treatment versus conventional treatment alone with decision-analytic model for ACS after PCI. Methods and Results. We constructed a decision-analytic Markov model to compare additional CHMs for 6 months plus conventional treatment versus conventional treatment alone for ACS patients after PCI. Sources of data came from 5C trial and published reports. Outcomes were expressed in terms of quality-adjusted life years (QALYs. Sensitivity analyses were performed to test the robustness of the model. The model predicted that over the 10-year horizon the survival probability was 77.49% in patients with CHMs plus conventional treatment versus 77.29% in patients with conventional treatment alone. In combination with conventional treatment, 6-month CHMs might be associated with a gained 0.20% survival probability and 0.111 accumulated QALYs, respectively. Conclusions. The model suggested that treatment with CHMs, as an adjunctive therapy, in combination with conventional treatment for 6 months might improve the long-term clinical outcome in ACS patients after PCI.

  20. Coronary anomaly: the single coronary artery

    Institute of Scientific and Technical Information of China (English)

    QIN Xu-guang; XIONG Wei-guo; LU Chun-peng; GONG Cheng-jie; SHANG Li-hua

    2010-01-01

    @@ Single coronary artery (SCA), defined as an artery that arises from the arterial trunk and nourishes the entire myocardium, is rare. We report two cases of SCA, one is the right coronary artery (RCA) originating from the middle of left descending artery (LAD), and the other is the left main coronary artery (LMCA) arising from the proximal right coronary artery.

  1. Protective role of adiponectin in a rat model of intestinal ischemia reperfusion injury

    Science.gov (United States)

    Liu, Xu-Hui; Yang, Yue-Wu; Dai, Hai-Tao; Cai, Song-Wang; Chen, Rui-Han; Ye, Zhi-Qiang

    2015-01-01

    AIM: To determine the potential protective role of adiponectin in intestinal ischemia reperfusion (I/R) injury. METHODS: A rat model of intestinal I/R injury was established. The serum level of adiponectin in rats with intestinal I/R injury was determined by enzyme-linked immunosorbent assay (ELISA). The serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured by ELISA. Apoptosis of intestinal cells was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The production of malondialdehyde (MDA) and superoxide dismutase (SOD) and villous injury scores were also measured. RESULTS: Adiponectin was downregulated in the serum of rats with intestinal I/R injury compared with sham rats. No significant changes in the expression of adiponectin receptor 1 and adiponectin receptor 2 were found between sham and I/R rats. Pre-treatment with recombinant adiponectin attenuated intestinal I/R injury. The production of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α, in rats with intestinal I/R injury was reduced by adiponectin pre-treatment. The production of MDA was inhibited, and the release of SOD was restored by adiponectin pre-treatment in rats with intestinal I/R injury. Adiponectin pre-treatment also inhibited cell apoptosis in these rats. Treatment with the AMP-activated protein kinase (AMPK) signaling pathway inhibitor, compound C, or the heme oxygenase 1 (HO-1) inhibitor, Snpp, attenuated the protective effects of adiponectin against intestinal I/R injury. CONCLUSION: Adiponectin exhibits protective effects against intestinal I/R injury, which may involve the AMPK/HO-1 pathway. PMID:26715807

  2. Models of Hemodynamics and Hematopoiesis Following Hemorrhage for Use in Combined Injury Simulations

    Science.gov (United States)

    2016-06-01

    resulting from a nuclear detonation and will assist in medical planning . Hemorrhage, Combined Injury, Ordinary Differential Equation Model, Fluid...Computer models can help predict the resource requirements for attending to casualties and assist in medical planning . Model extensions described in this...first phase, involves the restitution of plasma proteins to support plasma oncotic pressure and continued blood volume expansion. While this increase

  3. A New Model of Erythrocyte Injury in Rats with Xueyu Syndrome and Its Application

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new model of rats with Xueyu Syndrome which was characterized by erythrocyte injury was presented. Observation of morphology and functions of erythrocytes showed that this model could not only be used as a model in Xueyu Syndrome and Huoxuequyu treatment study, but also be used for screening of drugs with the effect of preventing and treating damage of red blood cells.

  4. [Model aeroplanes: a not to be ignored source of complex injuries].

    Science.gov (United States)

    Laback, C; Vasilyeva, A; Rappl, T; Lumenta, D; Giunta, R E; Kamolz, L

    2013-12-01

    With the incidence of work-related injuries decreasing, we continue to observe an unchanged trend in leisure-related accidents. As in any other hobby, model flying devices bear the risk for accidents among builders and flyers ranging from skin lacerations to complicated and even life-threatening injuries. The fast-moving razor-sharp propeller blades predominantly cause trauma to the hands and fingers resulting in typical multiple parallel skin injuries also affecting structures deep to the dermis (e. g., tendons, vessels and nerves). The resultant clinical management involves complex reconstructive surgical procedures and prolonged rehabilitative follow-up. Improving the legal framework (e. g., warnings by the manufacturer) on the one hand, providing informative action and sensitising those affected on the other, should form a basis for an altered prevention strategy to reduce model flying device-related injuries in the future.

  5. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models

    DEFF Research Database (Denmark)

    Wogensen, Elise; Rytter, Hana Malá; Mogensen, Jesper

    2015-01-01

    The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used...... were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted...... injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications...

  6. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice.

    Directory of Open Access Journals (Sweden)

    David Hardy

    Full Text Available A longstanding goal in regenerative medicine is to reconstitute functional tissues or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised.We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite cells (SC and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®.We compared the 4 most commonly used injury models i.e. freeze injury (FI, barium chloride (BaCl2, notexin (NTX and cardiotoxin (CTX. The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models.Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired

  7. The Year in Cardiology 2013: coronary intervention.

    Science.gov (United States)

    Erbel, Raimund; Wijns, William

    2014-02-01

    The year 2013 was rich of new developments in cardiology, and percutaneous coronary intervention (PCI) in particular. This overview article will focus on contributions in the following areas: training for PCI, appropriateness and indications; access site selection, risk scores, peri-procedural myocardial infarction; trial results and long-term follow-up; PCI for specific patient and lesion subsets, including acute coronary syndrome and ST-segment myocardial infarction; prevention of ischemic and reperfusion injury; stent thrombosis and new coronary stents and scaffolds.

  8. A single intracoronary injection of midkine reduces ischemia/reperfusion injury in swine hearts: a novel therapeutic approach for acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Hisaaki eIshiguro

    2011-06-01

    Full Text Available Several growth factors are effective for salvaging myocardium and limiting infarct size in experimental studies with small animals. Their benefit in large animals and feasibility in clinical practice remains to be elucidated. We investigate the cardioprotective effect of midkine (MK in swine subjected to ischemia/reperfusion (I/R. I/R was created in swine by left anterior descending coronary artery occlusion for 45 min using a percutaneous over-the-wire balloon catheter. MK protein was injected as a bolus through the catheter at the initiation of reperfusion (midkine injected group; MKT. Saline was injected in controls (CONT. Survival rate 24h after I/R was significantly higher in MKT than in CONT, whereas infarct size/area at risk was almost 5 times smaller. Echocardiography in MKT revealed a significantly higher percent wall thickening of the interventricular septum, a higher % fractional shortening and a lower E/e’ compared with CONT. LV catheterization in MKT showed a lower LVEDP, and a higher dP/dtmax compared with CONT. TUNEL-positive myocytes and CD45-positive cell infiltration in the peri-infarct area were significantly less in MKT than in CONT. Here, we showed that a single intracoronary injection of MK protein in swine hearts at the onset of reperfusion dramatically reduces infarct size and mortality and ameliorates systolic/diastolic LV function. This beneficial effect is associated with a reduction of apoptotic and inflammatory reactions. MK application during percutaneous coronary intervention may become a promising adjunctive therapy in acute coronary syndromes.

  9. A single intracoronary injection of midkine reduces ischemia/reperfusion injury in Swine hearts: a novel therapeutic approach for acute coronary syndrome.

    Science.gov (United States)

    Ishiguro, Hisaaki; Horiba, Mitsuru; Takenaka, Hiroharu; Sumida, Arihiro; Opthof, Tobias; Ishiguro, Yuko S; Kadomatsu, Kenji; Murohara, Toyoaki; Kodama, Itsuo

    2011-01-01

    Several growth factors are effective for salvaging myocardium and limiting infarct size in experimental studies with small animals. Their benefit in large animals and feasibility in clinical practice remains to be elucidated. We investigated the cardioprotective effect of midkine (MK) in swine subjected to ischemia/reperfusion (I/R). I/R was created by left anterior descending coronary artery occlusion for 45 min using a percutaneous over-the-wire balloon catheter. MK protein was injected as a bolus through the catheter at the initiation of reperfusion [MK-treated (MKT) group]. Saline was injected in controls (CONT). Infarct size/area at risk (24 h after I/R) in MKT was almost five times smaller than in CONT. Echocardiography in MKT revealed a significantly higher percent wall thickening of the interventricular septum, a higher left ventricular (LV) fractional shortening, and a lower E/e(') (ratio of transmitral to annular flow) compared with CONT. LV catheterization in MKT showed a lower LV end-diastolic pressure, and a higher dP/dt(max) compared with CONT. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling-positive myocytes and CD45-positive cell infiltration in the peri-infarct area were significantly less in MKT than in CONT. Here, we demonstrate that a single intracoronary injection of MK protein in swine hearts at the onset of reperfusion dramatically reduces infarct size and ameliorates systolic/diastolic LV function. This beneficial effect is associated with a reduction of apoptotic and inflammatory reactions. MK application during percutaneous coronary intervention may become a promising adjunctive therapy in acute coronary syndromes.

  10. Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in a rat model: activation of nitric oxide system and mitochondrial KATP channel.

    Science.gov (United States)

    Badalzadeh, Reza; Yousefi, Bahman; Majidinia, Maryam; Ebrahimi, Hadi

    2014-11-01

    This study was designed to investigate the anti-arrhythmic effect of diosgenin preconditioning in myocardial reperfusion injury in rat, focusing on the involvement of the nitric oxide (NO) system and mitochondrial ATP-dependent potassium (mitoKATP) channels in this scenario. After isolation of the hearts of male Wister rats, the study was conducted in an isolated buffer-perfused heart model. Global ischemia (for 30 min) was induced by interruption of the aortic supply, which was followed by 90-min reperfusion. Throughout the experiment, the electrocardiograms of hearts were monitored using three golden surface electrodes connected to a data acquisition system. Arrhythmias were assessed based on the Lambeth convention and were categorized as number, duration and incidence of ventricular tachycardia (VT), ventricular fibrillation (VF), and premature ventricular complexes (PVC), and arrhythmic score. Additionally, lactate dehydrogenase (LDH) levels in coronary effluent were estimated colorimetrically. Diosgenin pre-administration for 20 min before ischemia reduced the LDH release into the coronary effluent, as compared with control hearts (P PVC, VT and VF, a reduced duration and incidence of VT and VF, and less severe arrhythmia at reperfusion phase, in comparison with controls. Blocking the mitoKATP channels using 5-hydroxydecanoate as well as inhibiting the NO system through prior administration of L-NAME significantly reduced the positive effects of diosgenin. Our finding showed that pre-administration of diosgenin could provide cardioprotection through anti-arrhythmic effects against ischemia-reperfusion (I/R) injury in isolated rat hearts. In addition, mitoKATP channels and NO system may be the key players in diosgenin-induced cardioprotective mechanisms.

  11. Echocardiographic Evaluation of the Effects of a Single Bolus of Erythropoietin on Reducing Ischemia-Reperfusion Injuries during Coronary Artery Bypass Graft Surgery; A Randomized, Double-Blind, Placebo-Control Study

    Directory of Open Access Journals (Sweden)

    Shervin Ziabakhsh-Tabary

    2014-03-01

    Full Text Available Background: Erythropoietin (EPO is known as a regulating hormone for the production of red blood cells, called erythropoiesis. Some studies have shown that EPO exerts some non-hematopoietic protective effects on ischemia-reperfusion injuries in myocytes. Using echocardiography, we evaluated the effect of EPO infusion on reducing ischemia-reperfusion injuries and improvement of the cardiac function shortly after coronary artery bypass graft surgery (CABG. Methods: Forty-three patients were recruited in this study and randomly divided into two groups: the EPO group, receiving standard medication and CABG surgery plus EPO (700 IU/kg, and the control group, receiving standard medication and CABG surgery plus normal saline (10 cc as placebo. The cardiac function was assessed through echocardiography before as well as at 4 and 30 days after CABG. Results: Echocardiography indicated that the ejection fraction had no differences between the EPO and control groups at 4 days (47.05±6.29 vs. 45.90±4.97; P=0.334 and 30 days after surgery (47.27±28 vs. 46.62±5.7; P=0.69. There were no differences between the EPO and control groups in the wall motion score index at 4 (P=0.83 and 30 days after surgery (P=0.902. In the EPO group, there was a reduction in left ventricular end-systolic and end-diastolic diameters (LVESD and LVEDD, respectively, as compared to the control group. Conclusion: Our results indicated that perioperative exogenous EPO infusion could not improve the ventricular function and wall motion index in the immediate post-CABG weeks. Nevertheless, a reduction in LVEDD and LVESD at 4 days and 30 days after CABG in the EPO group, by comparison with the control group, suggested that EPO correlated with a reduction in the remodeling of myocytes and reperfusion injuries early after CABG. Trial Registration Number: 138809102799N1

  12. Time Series Model of Occupational Injuries Analysis in Ghanaian Mines-A Case Study

    Directory of Open Access Journals (Sweden)

    S.J. Aidoo

    2012-02-01

    Full Text Available This study has modeled occupational injuries at Gold Fields Ghana Limited (GFGL, Tarkwa Mine using time series analysis. Data was collected from the Safety and Environment Department from January 2007 to December 2010. Testing for stationarity condition using line graph from Statistical Package for Social Sciences (SPSS 17.0 edition failed, hence the use of Box-Jenkins method of differencing which tested positive after the first difference. ARIMA (1,1,1 model was then applied in modeling the stationary data and model diagnostic was done to ensure its appropriateness. The model was further used to forecast the occurrence of injuries at GFGL for two year period spanning from January 2011 to December 2012. The results show that occupational injuries for GFGL are going to have a slight upward and downward movement from January 2011 to May 2011, after which there will be stability (almost zero from June 2011 to December 2012.

  13. Coronary collaterals

    NARCIS (Netherlands)

    Koerselman, Jeroen

    2004-01-01

    Cardiovascular diseases, in particular coronary artery disease, are the leading cause of death and disease in industrialized countries. Atherosclerotic changes of the arterial vessel wall constitute one of the major causes for the occurrence of cardiovascular disease. Important risk factors for

  14. Coronary collaterals

    NARCIS (Netherlands)

    Koerselman, Jeroen

    2004-01-01

    Cardiovascular diseases, in particular coronary artery disease, are the leading cause of death and disease in industrialized countries. Atherosclerotic changes of the arterial vessel wall constitute one of the major causes for the occurrence of cardiovascular disease. Important risk factors for card

  15. Recovery of renal function after administration of adipose-tissue-derived stromal vascular fraction in rat model of acute kidney injury induced by ischemia/reperfusion injury.

    Science.gov (United States)

    Lee, Chunwoo; Jang, Myoung Jin; Kim, Bo Hyun; Park, Jin Young; You, Dalsan; Jeong, In Gab; Hong, Jun Hyuk; Kim, Choung-Soo

    2017-03-10

    Acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) injury is a major challenge in critical care medicine. The purpose of this study is to determine the therapeutic effects of the adipose-tissue-derived stromal vascular fraction (SVF) and the optimal route for SVF delivery in a rat model of AKI induced by I/R injury. Fifty male Sprague-Dawley rats were randomly divided into five groups (10 animals per group): sham, nephrectomy control, I/R injury control, renal arterial SVF infusion and subcapsular SVF injection. To induce AKI by I/R injury, the left renal artery was clamped with a nontraumatic vascular clamp for 40 min, and the right kidney was removed. Rats receiving renal arterial infusion of SVF had a significantly reduced increase in serum creatinine compared with the I/R injury control group at 4 days after I/R injury. The glomerular filtration rate of the renal arterial SVF infusion group was maintained at a level similar to that of the sham and nephrectomy control groups at 14 days after I/R injury. Masson's trichrome staining showed significantly less fibrosis in the renal arterial SVF infusion group compared with that in the I/R injury control group in the outer stripe (P renal arterial SVF infusion and subcapsular SVF injection groups compared with the I/R injury control group in the outer stripe (P renal function is effectively rescued from AKI induced by I/R injury through the renal arterial administration of SVF in a rat model.

  16. The development of an experimental model of contaminated muscle injury in rabbits.

    Science.gov (United States)

    Eardley, Will G P; Martin, Kevin R; Taylor, Chris; Kirkman, Emrys; Clasper, Jon C; Watts, Sarah A

    2012-12-01

    Extent of tissue trauma and contamination determine outcome in extremity injury. In contrast to fracture, osteomyelitis, and closed muscle injury studies, there are limited small animal models of extremity muscle trauma and contamination. To address this we developed a model of contaminated muscle injury in rabbits. Twenty-eight anesthetized New Zealand White rabbits underwent open controlled injury of the flexor carpi ulnaris (FCU). Twenty-two animals had subsequent contamination of the injured muscle with Staphylococcus aureus. All animals were sacrificed at 48 hours and the level of muscle injury and contamination determined by quantitative histological and microbiological analysis. A 1-kg mass dropped 300 mm onto the mobilized FCU resulted in localized necrosis of the muscle belly. Delivery of a mean challenge of 3.71 × 10(6) cfu/100 µL S aureus by droplet spread onto the injured muscle produced a muscle contamination of 8.79 × 10(6) cfu/g at 48 hours. Ipsilateral axillary lymph nodes demonstrated clinically significant activation. All animals had normal body temperature and hematological parameters throughout and blood and urinalysis culture at autopsy were negative for organisms. This model allows reproducible muscle injury and contamination with the organism ubiquitous to extremity wound infection at a level sufficient to allow quantitative assessment of subsequent wound care interventions without incurring systemic involvement.

  17. In-vivo measurements of coronary blood flow using 16-slice multidetector spiral computed tomography (MDCT) in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Krug, Kathrin Barbara; Bovenschulte, H. [Klinikum der Koeln Univ. (Germany). Inst. fuer Radiologische Diagnostik; Geissler, H.J. [Klinikum der Koeln Univ. (DE). Klinik und Poliklinik fuer Herz- und Thoraxchirurgie] (and others)

    2009-03-15

    To determine whether CTCA supplemented with CT flow measurements can be used to demonstrate and semiquantitatively evaluate poststenotic coronary blood flow in a porcine model. In 10 thoracotomized pigs, transit time flow meter probes were attached to the aorta and left anterior descending artery (LAD) for real-time blood flow volumetry. A vascular silicone occluder was deployed around the LAD proximal to the probe to create medium-grade (MGS) and high-grade stenoses (HGS). The blood flow was measured by CT without vessel occlusion and distal to the stenoses. Time-density curves were generated from CT data. The curves were evaluated by calculating and cross-plotting the variables ''slope of the density increase'', ''peak density'' and ''slope of the post-peak density decrease'' from the LAD and aortic CT data. The flow in the LAD dropped to 41 % {+-} 9 % (mean {+-} SD) for MGS and 12 % {+-} 6 % for HGS of the baseline. Coronary time-density curves plateaued proportional to luminal narrowing. Unimpaired flow could be differentiated statistically significant from poststenotic flow adjacent to MGS and HGS (p < 0.000 and p < 0.002, respectively). Flow adjacent to MGS and HGS was successfully differentiated for ''slope of the density increase'' and ''slope of the post-peak density decrease'' (p < 0.003 and p < 0.030, respectively). (orig.)

  18. In vitro blood flow model with physiological wall shear stress for hemocompatibility testing-An example of coronary stent testing.

    Science.gov (United States)

    Engels, Gerwin Erik; Blok, Sjoerd Leendert Johannes; van Oeveren, Willem

    2016-09-18

    Hemocompatibility of blood contacting medical devices has to be evaluated before their intended application. To assess hemocompatibility, blood flow models are often used and can either consist of in vivo animal models or in vitro blood flow models. Given the disadvantages of animal models, in vitro blood flow models are an attractive alternative. The in vitro blood flow models available nowadays mostly focus on generating continuous flow instead of generating a pulsatile flow with certain wall shear stress, which has shown to be more relevant in maintaining hemostasis. To address this issue, the authors introduce a blood flow model that is able to generate a pulsatile flow and wall shear stress resembling the physiological situation, which the authors have coined the "Haemobile." The authors have validated the model by performing Doppler flow measurements to calculate velocity profiles and (wall) shear stress profiles. As an example, the authors evaluated the thrombogenicity of two drug eluting stents, one that was already on the market and one that was still under development. After identifying proper conditions resembling the wall shear stress in coronary arteries, the authors compared the stents with each other and often used reference materials. These experiments resulted in high contrast between hemocompatible and incompatible materials, showing the exceptional testing capabilities of the Haemobile. In conclusion, the authors have developed an in vitro blood flow model which is capable of mimicking physiological conditions of blood flow as close as possible. The model is convenient in use and is able to clearly discriminate between hemocompatible and incompatible materials, making it suitable for evaluating the hemocompatible properties of medical devices.

  19. Investigating driver injury severity patterns in rollover crashes using support vector machine models.

    Science.gov (United States)

    Chen, Cong; Zhang, Guohui; Qian, Zhen; Tarefder, Rafiqul A; Tian, Zong

    2016-05-01

    Rollover crash is one of the major types of traffic crashes that induce fatal injuries. It is important to investigate the factors that affect rollover crashes and their influence on driver injury severity outcomes. This study employs support vector machine (SVM) models to investigate driver injury severity patterns in rollover crashes based on two-year crash data gathered in New Mexico. The impacts of various explanatory variables are examined in terms of crash and environmental information, vehicle features, and driver demographics and behavior characteristics. A classification and regression tree (CART) model is utilized to identify significant variables and SVM models with polynomial and Gaussian radius basis function (RBF) kernels are used for model performance evaluation. It is shown that the SVM models produce reasonable prediction performance and the polynomial kernel outperforms the Gaussian RBF kernel. Variable impact analysis reveals that factors including comfortable driving environment conditions, driver alcohol or drug involvement, seatbelt use, number of travel lanes, driver demographic features, maximum vehicle damages in crashes, crash time, and crash location are significantly associated with driver incapacitating injuries and fatalities. These findings provide insights for better understanding rollover crash causes and the impacts of various explanatory factors on driver injury severity patterns.

  20. Cervical Spine Injuries: A Whole-Body Musculoskeletal Model for the Analysis of Spinal Loading

    Science.gov (United States)

    Holsgrove, Timothy P.; Preatoni, Ezio; Gill, Harinderjit S.; Trewartha, Grant

    2017-01-01

    Cervical spine trauma from sport or traffic collisions can have devastating consequences for individuals and a high societal cost. The precise mechanisms of such injuries are still unknown as investigation is hampered by the difficulty in experimentally replicating the conditions under which these injuries occur. We harness the benefits of computer simulation to report on the creation and validation of i) a generic musculoskeletal model (MASI) for the analyses of cervical spine loading in healthy subjects, and ii) a population-specific version of the model (Rugby Model), for investigating cervical spine injury mechanisms during rugby activities. The musculoskeletal models were created in OpenSim, and validated against in vivo data of a healthy subject and a rugby player performing neck and upper limb movements. The novel aspects of the Rugby Model comprise i) population-specific inertial properties and muscle parameters representing rugby forward players, and ii) a custom scapula-clavicular joint that allows the application of multiple external loads. We confirm the utility of the developed generic and population-specific models via verification steps and validation of kinematics, joint moments and neuromuscular activations during rugby scrummaging and neck functional movements, which achieve results comparable with in vivo and in vitro data. The Rugby Model was validated and used for the first time to provide insight into anatomical loading and cervical spine injury mechanisms related to rugby, whilst the MASI introduces a new computational tool to allow investigation of spinal injuries arising from other sporting activities, transport, and ergonomic applications. The models used in this study are freely available at simtk.org and allow to integrate in silico analyses with experimental approaches in injury prevention. PMID:28052130

  1. Risk factors for a pressure-related deep tissue injury: a theoretical model.

    Science.gov (United States)

    Gefen, Amit

    2007-06-01

    Pressure-related deep tissue injury is the term recommended by the United States National Pressure Ulcer Advisory Panel to describe a potentially life-threatening form of pressure ulcers, characterized by the presence of necrotic tissue under intact skin, and associated with prolonged compression of muscle tissue under bony prominences. In this study, a theoretical model was used to determine the relative contributions of the backrest inclination angle during prolonged wheelchair sitting, the muscle tissue stiffness and curvature of the ischial tuberosities (ITs) to the risk for injury in the gluteus muscles that pad the IT bones during sitting. The model is based on Hertz's theory for analysis of contact pressures between a rigid half-sphere (bone) and an elastic half-space (muscle). Hertz's theory is coupled with an injury threshold and damage law for muscle-both obtained in previous studies in rats. The simulation outputs the time-dependent bone-muscle contact pressures and the injured area in the gluteus. We calculated the full-size (asymptotic) injured area in the gluteus and the time for injury onset for different sitting angles alpha (90-150 degrees), muscle tissue long-term shear moduli G (250-1,200 Pa) and bone diameters D (8-18 mm). We then evaluated the sensitivity of model results to variations in these parameters, in order to determine how injury predictions are affected. In reclined sitting (alpha=150 degrees) the full-size injured area was approximately 2.1-fold smaller and the time for injury onset was approximately 1.3-fold longer compared with erect sitting (alpha=90 degrees). For greater G the full-size injured area was smaller but the time for injury onset was shorter, e.g., increasing G from 250 to 1200 Pa decreased the full-size injured area approximately 2.5-fold, but shortened the time for injury onset 6.2-fold. For smaller D the time for injury onset dropped, e.g., decreased approximately 1.5-fold when D decreased from 18 to 8 mm

  2. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury.

    Science.gov (United States)

    Deutsch, M; Graffeo, C S; Rokosh, R; Pansari, M; Ochi, A; Levie, E M; Van Heerden, E; Tippens, D M; Greco, S; Barilla, R; Tomkötter, L; Zambirinis, C P; Avanzi, N; Gulati, R; Pachter, H L; Torres-Hernandez, A; Eisenthal, A; Daley, D; Miller, G

    2015-05-07

    Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.

  3. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats.

    Science.gov (United States)

    Kharatishvili, I; Nissinen, J P; McIntosh, T K; Pitkänen, A

    2006-06-30

    Although traumatic brain injury is a major cause of symptomatic epilepsy, the mechanism by which it leads to recurrent seizures is unknown. An animal model of posttraumatic epilepsy that reliably reproduces the clinical sequelae of human traumatic brain injury is essential to identify the molecular and cellular substrates of posttraumatic epileptogenesis, and perform preclinical screening of new antiepileptogenic compounds. We studied the electrophysiologic, behavioral, and structural features of posttraumatic epilepsy induced by severe, non-penetrating lateral fluid-percussion brain injury in rats. Data from two independent experiments indicated that 43% to 50% of injured animals developed epilepsy, with a latency period between 7 weeks to 1 year. Mean seizure frequency was 0.3+/-0.2 seizures per day and mean seizure duration was 113+/-46 s. Behavioral seizure severity increased over time in the majority of animals. Secondarily-generalized seizures comprised an average of 66+/-37% of all seizures. Mossy fiber sprouting was increased in the ipsilateral hippocampus of animals with posttraumatic epilepsy compared with those subjected to traumatic brain injury without epilepsy. Stereologic cell counts indicated a loss of dentate hilar neurons ipsilaterally following traumatic brain injury. Our data suggest that posttraumatic epilepsy occurs with a frequency of 40% to 50% after severe non-penetrating fluid-percussion brain injury in rats, and that the lateral fluid percussion model can serve as a clinically-relevant tool for pathophysiologic and preclinical studies.

  4. The Prevalence of Risk Factors of Coronary Artery Disease in the Patients who Underwent Coronary Artery Bypass Graft, Shiraz, Iran: Suggesting a Model

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ostovan

    2014-12-01

    Full Text Available Background: Cardiovascular diseases are the main cause of 40% of deaths in Iran annually. Many patients undergoing coronary artery bypass graft surgery have previous cardiovascular risk factors which could be prevented. Objectives: The present study aimed to assess the prevalence of cardiovascular risk factors in the patients undergoing coronary artery bypass graft surgery. Materials and Methods: In this cross-sectional (descriptive – analytical study, a data collecting form was used. A total of 246 patients were selected from six hospitals of Shiraz using random stratification. Descriptive statistics were presented through figures and tables and t-test was used to analyze the continuous variables. All the statistical analyses were performed using the SPSS statistical software (version 15.0. Besides, P < 0.05 was considered as statistically significant. Results: Among the study patients, only 11.67% had no risk factors and 88.33% had one or more risk factors. The most common risk factors observed in the patients were hypertension, obesity and overweight, hyperlipidemia, and diabetes mellitus. The results showed a significant difference between males and females regarding the prevalence of hypertension (P = 0.001, diabetes (P = 0.028, hypercholesterolemia (P = 0.020, and cigarette smoking (P = 0.001. In addition, the patients' mean levels of cholesterol, LDL, triglyceride, and fasting blood sugar were higher than the acceptable level, while that of HDL was lower than the accepted level. Conclusions:: These patients are recommended to be trained regarding lifestyle changes. Also, prevention strategies can play an important role in reducing patient morbidity and mortality.

  5. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injury

    NARCIS (Netherlands)

    Kiers, H.D.; Boogaard, M.H.W.A. van den; Schoenmakers, M.C.J.; Hoeven, J.G. van der; Swieten, H.A. van; Heemskerk, S.; Pickkers, P.

    2013-01-01

    BACKGROUND: Cardiac surgery-related acute kidney injury (CS-AKI) results in increased morbidity and mortality. Different models have been developed to identify patients at risk of CS-AKI. While models that predict dialysis and CS-AKI defined by the RIFLE criteria are available, their predictive powe

  6. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    Science.gov (United States)

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  7. A multivariate random-parameters Tobit model for analyzing highway crash rates by injury severity.

    Science.gov (United States)

    Zeng, Qiang; Wen, Huiying; Huang, Helai; Pei, Xin; Wong, S C

    2017-02-01

    In this study, a multivariate random-parameters Tobit model is proposed for the analysis of crash rates by injury severity. In the model, both correlation across injury severity and unobserved heterogeneity across road-segment observations are accommodated. The proposed model is compared with a multivariate (fixed-parameters) Tobit model in the Bayesian context, by using a crash dataset collected from the Traffic Information System of Hong Kong. The dataset contains crash, road geometric and traffic information on 224 directional road segments for a five-year period (2002-2006). The multivariate random-parameters Tobit model provides a much better fit than its fixed-parameters counterpart, according to the deviance information criteria and Bayesian R(2), while it reveals a higher correlation between crash rates at different severity levels. The parameter estimates show that a few risk factors (bus stop, lane changing opportunity and lane width) have heterogeneous effects on crash-injury-severity rates. For the other factors, the variances of their random parameters are insignificant at the 95% credibility level, then the random parameters are set to be fixed across observations. Nevertheless, most of these fixed coefficients are estimated with higher precisions (i.e., smaller variances) in the random-parameters model. Thus, the random-parameters Tobit model, which provides a more comprehensive understanding of the factors' effects on crash rates by injury severity, is superior to the multivariate Tobit model and should be considered a good alternative for traffic safety analysis.

  8. Cyclist activity and injury risk analysis at signalized intersections: a Bayesian modelling approach.

    Science.gov (United States)

    Strauss, Jillian; Miranda-Moreno, Luis F; Morency, Patrick

    2013-10-01

    This study proposes a two-equation Bayesian modelling approach to simultaneously study cyclist injury occurrence and bicycle activity at signalized intersections as joint outcomes. This approach deals with the potential presence of endogeneity and unobserved heterogeneities and is used to identify factors associated with both cyclist injuries and volumes. Its application to identify high-risk corridors is also illustrated. Montreal, Quebec, Canada is the application environment, using an extensive inventory of a large sample of signalized intersections containing disaggregate motor-vehicle traffic volumes and bicycle flows, geometric design, traffic control and built environment characteristics in the vicinity of the intersections. Cyclist injury data for the period of 2003-2008 is used in this study. Also, manual bicycle counts were standardized using temporal and weather adjustment factors to obtain average annual daily volumes. Results confirm and quantify the effects of both bicycle and motor-vehicle flows on cyclist injury occurrence. Accordingly, more cyclists at an intersection translate into more cyclist injuries but lower injury rates due to the non-linear association between bicycle volume and injury occurrence. Furthermore, the results emphasize the importance of turning motor-vehicle movements. The presence of bus stops and total crosswalk length increase cyclist injury occurrence whereas the presence of a raised median has the opposite effect. Bicycle activity through intersections was found to increase as employment, number of metro stations, land use mix, area of commercial land use type, length of bicycle facilities and the presence of schools within 50-800 m of the intersection increase. Intersections with three approaches are expected to have fewer cyclists than those with four. Using Bayesian analysis, expected injury frequency and injury rates were estimated for each intersection and used to rank corridors. Corridors with high bicycle volumes

  9. Coronary Artery Stent Evaluation Using a Vascular Model at 64-Detector Row CT: Comparison between Prospective and Retrospective ECG-Gated Axial Scans

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shigeru; Furui, Shigeru; Kaminaga, Tatsuro; Miyazawa, Akiyoshi; Ueno, Yasunari; Konno, Kumiko [Teikyo University School of Medicine, Tokyo (Japan); Kuwahara, Sadatoshi; Mehta, Dhruv [Philips Electronics Japan, Ltd. Medical Systems, Tokyo (Japan)

    2009-06-15

    We wanted to evaluate the performance of prospective electrocardiogram (ECG)-gated axial scans for assessing coronary stents as compared with retrospective ECG-gated helical scans. As for a vascular model of the coronary artery, a tube of approximately 2.5-mm inner diameter was adopted and as for stents, three (Bx-Velocity, Express2, and Micro Driver) different kinds of stents were inserted into the tube. Both patent and stenotic models of coronary artery were made by instillating different attenuation (396 vs. 79 Hounsfield unit [HU]) of contrast medium within the tube in tube model. The models were scanned with two types of scan methods with a simulated ECG of 60 beats per minute and using display field of views (FOVs) of 9 and 18 cm. We evaluated the in-stent stenosis visually, and we measured the attenuation values and the diameter of the patent stent lumen. The visualization of the stent lumen of the vascular models was improved with using the prospective ECG-gated axial scans and a 9-cm FOV. The inner diameters of the vascular models were underestimated with mean measurement errors of -1.10 to -1.36 mm. The measurement errors were smaller with using the prospective ECG-gated axial scans (Bx-Velocity and Express2, p < 0.0001; Micro Driver, p = 0.0004) and a 9-cm FOV (all stents: p < 0.0001), as compared with the other conditions, respectively. The luminal attenuation value was overestimated in each condition. For the luminal attenuation measurement, the use of prospective ECG-gated axial scans provided less measurement error compared with the retrospective ECG-gated helical scans (all stents: p < 0.0001), and the use of a 9-cm FOV tended to decrease the measurement error. The visualization of coronary stents is improved by the use of prospective ECG-gated axial scans and using a small FOV with reduced blooming artifacts and increased spatial resolution.

  10. Computational Modeling of Traffic Related Thoracic Injury of a 10-Year-Old Child Using Subject-Specific Modeling Technique.

    Science.gov (United States)

    Zhu, Feng; Jiang, Binhui; Hu, Jingwen; Wang, Yulong; Shen, Ming; Yang, King H

    2016-01-01

    Traffic injuries have become a major health-related issue to school-aged children. To study this type of injury with numerical simulations, a finite element model was developed to represent the full body of a 10-year-old (YO) child. The model has been validated against test data at both body-part and full-body levels in previous studies. Representing only the average 10-YO child, this model did not include subject-specific attributes, such as the variations in size and shape among different children. In this paper, a new modeling approach was used to morph this baseline model to a subject-specific model, based on anthropometric data collected from pediatric subjects. This mesh-morphing method was then used to rapidly morph the baseline mesh into the subject-specific geometry while maintaining a good mesh quality. The morphed model was subsequently applied to simulate a real-world motor vehicle crash accident. A lung injury observed in the accident was well captured by the subject-specific model. The findings of this study demonstrate the feasibility of the proposed morphing approach to develop subject-specific human models, and confirm their capability in prediction of traffic injuries.

  11. An Examination of Concussion Injury Rates in Various Models of Football Helmets in NCAA Football Athletes

    Institute of Scientific and Technical Information of China (English)

    Ryan Moran; Tracey Covassin

    2015-01-01

    While newer, advanced helmet models have been designed with the intentions of decreasing concussions, very little research exists on injury rates in various football helmets at the collegiate level. The aim of this study was to examine concussion injury rates in various models of football helmets in collegiate football athletes. In addition, to compare injury rates of newer, advanced football helmets to older, traditional helmets among collegiate football athletes, a total of 209 concussions and 563,701 AEs (athlete-exposures) among 2,107 collegiate football athletes in seven helmet models were included in the analyses. Concussion injury rates revealed that the Riddell Revolution~ had the highest rate of 0.41 concussions per 1,000 AEs. The Schutt ION 4DTM helmet had the lowest rate of 0.25 concussions per 1,000 AEs. These newer helmet models did not significantly differ from one another (P = 0.74), however, all models significantly differed from the older, traditional helmet model (P 〈 0.001). The findings of this study suggest that concussion rates do not differ between newer and more advanced helmet models. More importantly, there are currently no helmets available to prevent concussions from occurring in football athletes.

  12. Budi Iman Santoso Assessment (BISA: a model for predicting levator ani injury after vaginal delivery

    Directory of Open Access Journals (Sweden)

    Budi I. Santoso

    2012-05-01

    Full Text Available Background: There have been no attempts or studies to integrate various risk factors that can be utilized to predict levator ani injury caused by vaginal delivery. This study was aimed to establish an index measurement system by using various risk factors for predicting levator ani injury in vaginal delivery.Methods: A prospective cohort was conducted at two hospitals in Jakarta between 2010 and 2011. The subjects were nulipara pregnant women without levator ani injury during pregnancy and vaginal birth. Levator ani injury was evaluated using 4D USG during pregnancy and three months after delivery. The variables studied were age, body mass index, mode of delivery, fetal birth weight, episiotomy, perineum rupture and duration of second stage labor. Prediction model was analyzed using logistic regression analysis.Results: There were 182 recruited subjects of which 124 subjects were eligible and only 104 subjects could be analyzed. Incidence of levator ani injury at three months after delivery was 15.4% (95% CI: 8.6-23%. Two prediction models were obtained. The first consisted of fetal birth weight (OR= 5.36, 95% CI: 1.08-26.59, episiotomy (OR= 5.41, 95% CI: 0.94-31.18, and duration of second stage labor (OR= 15.27, 95% CI: 3.15-73.96. The second model consisted of duration of second stage labor (OR= 9.51, 95% CI: 1.23-68.10 and perineum rupture (OR= 142.70, 95% CI: 14.13-1440.78.Conclusion: Fetal birth weight, episiotomy and duration of second stage labor could predict levator ani injury for model 1; while the variables of prediction for model 2 were duration of second stage labor and perineum rupture. (Med J Indones. 2012;21:102-7Keywords: Levator ani, prediction model

  13. A clinical decision model identifies patients at risk for delayed diagnosed injuries after high-energy trauma.

    Science.gov (United States)

    Snoek, Anniek; Dekker, Maaike; Lagrand, Tjerk; Epema, Anniek; van der Ploeg, Tjeerd; van den Brand, J G H

    2013-06-01

    Tertiary trauma survey is widely implemented in trauma care to identify all injuries in trauma patients. However, various studies consistently show that some trauma patients have missed injuries. In this study, we developed a clinical decision model to identify patients who are at risk for delayed diagnosed injuries. During a period of 18 months, we collected the medical records of all the adult patients who presented after a high-energy trauma at the emergency department of a Dutch trauma centre. The type of trauma, patient characteristics, the radiology studies performed, Glasgow Coma Scale, Revised Trauma Score, and Injury Severity Score (ISS) were registered. We thoroughly screened all medical records for delayed diagnosed injuries. Stepwise logistic regression analysis was used to identify the variables associated with the outcome delayed diagnosed injuries and to develop a clinical prediction model. We included 475 patients. Thirteen (2.7%) patients with delayed diagnosed injuries were identified. Stepwise logistic regression analysis revealed several models with the ISS, ICU admittance, and CT-head as predictive variables. The model we proposed with the ISS could identify patients who are at a risk for delayed diagnosed injuries with a sensitivity of 92.3% and a specificity of 86.4%. Our newly developed clinical decision model can identify patients who are at a risk for delayed diagnosed injuries and who should undergo an intensified search for potential unidentified injuries.

  14. A Translational Study of a New Therapeutic Approach for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin into Reperfused Myocardium Reduces Ischemia-Reperfusion Injury in a Preclinical Porcine Model

    Science.gov (United States)

    Ichimura, Kenzo; Matoba, Tetsuya; Nakano, Kaku; Tokutome, Masaki; Honda, Katsuya; Koga, Jun-ichiro; Egashira, Kensuke

    2016-01-01

    Background There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction, for which interventional reperfusion therapy is hampered by ischemia-reperfusion (IR) injury. We recently reported that bioabsorbable poly(lactic acid/glycolic acid) (PLGA) nanoparticle-mediated treatment with pitavastatin (pitavastatin-NP) exerts a cardioprotective effect in a rat IR injury model by activating the PI3K-Akt pathway and inhibiting inflammation. To obtain preclinical proof-of-concept evidence, in this study, we examined the effect of pitavastatin-NP on myocardial IR injury in conscious and anesthetized pig models. Methods and Results Eighty-four Bama mini-pigs were surgically implanted with a pneumatic cuff occluder at the left circumflex coronary artery (LCx) and telemetry transmitters to continuously monitor electrocardiogram as well as to monitor arterial blood pressure and heart rate. The LCx was occluded for 60 minutes, followed by 24 hours of reperfusion under conscious conditions. Intravenous administration of pitavastatin-NP containing ≥ 8 mg/body of pitavastatin 5 minutes before reperfusion significantly reduced infarct size; by contrast, pitavastatin alone (8 mg/body) showed no therapeutic effects. Pitavastatin-NP produced anti-apoptotic effects on cultured cardiomyocytes in vitro. Cardiac magnetic resonance imaging performed 4 weeks after IR injury revealed that pitavastatin-NP reduced the extent of left ventricle remodeling. Importantly, pitavastatin-NP exerted no significant effects on blood pressure, heart rate, or serum biochemistry. Exploratory examinations in anesthetized pigs showed pharmacokinetic analysis and the effects of pitavastatin-NP on no-reflow phenomenon. Conclusions NP-mediated delivery of pitavastatin to IR-injured myocardium exerts cardioprotective effects on IR injury without apparent adverse side effects in a preclinical conscious pig model. Thus, pitavastatin-NP represents a novel therapeutic

  15. A kinetic energy model of two-vehicle crash injury severity.

    Science.gov (United States)

    Sobhani, Amir; Young, William; Logan, David; Bahrololoom, Sareh

    2011-05-01

    An important part of any model of vehicle crashes is the development of a procedure to estimate crash injury severity. After reviewing existing models of crash severity, this paper outlines the development of a modelling approach aimed at measuring the injury severity of people in two-vehicle road crashes. This model can be incorporated into a discrete event traffic simulation model, using simulation model outputs as its input. The model can then serve as an integral part of a simulation model estimating the crash potential of components of the traffic system. The model is developed using Newtonian Mechanics and Generalised Linear Regression. The factors contributing to the speed change (ΔV(s)) of a subject vehicle are identified using the law of conservation of momentum. A Log-Gamma regression model is fitted to measure speed change (ΔV(s)) of the subject vehicle based on the identified crash characteristics. The kinetic energy applied to the subject vehicle is calculated by the model, which in turn uses a Log-Gamma Regression Model to estimate the Injury Severity Score of the crash from the calculated kinetic energy, crash impact type, presence of airbag and/or seat belt and occupant age. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Internal vacuum-assisted closure device in the swine model of severe liver injury

    Directory of Open Access Journals (Sweden)

    Everett Christopher B

    2012-12-01

    Full Text Available Abstract Objectives The authors present a novel approach to nonresectional therapy in major hepatic trauma utilizing intraabdominal perihepatic vacuum assisted closure (VAC therapy in the porcine model of Grade V liver injury. Methods A Grade V injury was created in the right lobe of the liver in a healthy pig. A Pringle maneuver was applied (4.5 minutes total clamp time and a vacuum assisted closure device was placed over the injured lobe and connected to suction. The device consisted of a perforated plastic bag placed over the liver, followed by a 15 cm by 15cm VAC sponge covered with a nonperforated plastic bag. The abdomen was closed temporarily. Blood loss, cardiopulmonary parameters and bladder pressures were measured over a one-hour period. The device was then removed and the animal was euthanized. Results Feasibility of device placement was demonstrated by maintenance of adequate vacuum suction pressures and seal. VAC placement presented no major technical challenges. Successful control of ongoing liver hemorrhage was achieved with the VAC. Total blood loss was 625 ml (20ml/kg. This corresponds to class II hemorrhagic shock in humans and compares favorably to previously reported estimated blood losses with similar grade liver injuries in the swine model. No post-injury cardiopulmonary compromise or elevated abdominal compartment pressures were encountered, while hepatic parenchymal perfusion was maintained. Conclusion These data demonstrate the feasibility and utility of a perihepatic negative pressure device for the treatment of hemorrhage from severe liver injury in the porcine model.

  17. Modeling brain injury response for rotational velocities of varying directions and magnitudes.

    Science.gov (United States)

    Weaver, Ashley A; Danelson, Kerry A; Stitzel, Joel D

    2012-09-01

    An estimated 1.7 million people in the United States sustain a traumatic brain injury (TBI) annually. To investigate the effects of rotational motions on TBI risk and location, this study modeled rotational velocities of five magnitudes and 26 directions of rotation using the Simulated Injury Monitor finite element brain model. The volume fraction of the total brain exceeding a predetermined strain threshold, the Cumulative Strain Damage Measure (CSDM), was investigated to evaluate global model response. To evaluate regional response, this metric was computed relative to individual brain structures and termed the Structure Cumulative Strain Damage Measure (SCSDM). CSDM increased as input magnitude increased and varied with the direction of rotation. CSDM was 0.55-1.7 times larger in simulations with transverse plane rotation compared to those without transverse plane rotation. The largest SCSDM in the cerebrum and brainstem occurred with rotations in the transverse and sagittal planes, respectively. Velocities causing medial rotation of the cerebellum resulted in the largest SCSDM in this structure. For velocities of the same magnitude, injury risk calculated from CSDM varied from 0 to 97% with variations in the direction of rotation. These findings demonstrate injury risk, as estimated by CSDM and SCSDM, is affected by the direction of rotation and input magnitude, and these may be important considerations for injury prediction.

  18. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma

    Directory of Open Access Journals (Sweden)

    Meli Rosaria

    2011-04-01

    Full Text Available Abstract Background Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI. The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Results Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis. In this study we clearly demonstrated that administration of MK801 attenuated all inflammatory parameters. In fact 24 hours after injury, the degree of spinal cord inflammation and tissue injury (evaluated as histological score, infiltration of neutrophils, NF-κB activation, iNOS, cytokines levels (TNF-α and IL-1β, neurotrophin expression were markedly reduced by MK801 treatment. Moreover, in a separate set of experiments, we have demonstrated that MK801 treatment significantly improved the recovery of locomotory function. Conclusions Blockade of NMDA by MK801 lends support to the potential importance of NMDA antagonists as therapeutic agents in the treatment of acute spinal cord injury.

  19. Nonessential Role for the NLRP1 Inflammasome Complex in a Murine Model of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Thomas Brickler

    2016-01-01

    Full Text Available Traumatic brain injury (TBI elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1β (IL-1β. The inflammasome is a multiprotein complex consisting of nucleotide-binding domain and leucine-rich repeat containing proteins (NLR, caspase-1, and apoptosis-associated speck-like protein (ASC. ASC is upregulated after TBI and is critical in coupling the proteins during complex formation resulting in IL-1β cleavage. To directly test whether inflammasome activation contributes to acute TBI-induced damage, we assessed IL-1β, IL-18, and IL-6 expression, contusion volume, hippocampal cell death, and motor behavior recovery in Nlrp1−/−, Asc−/−, and wild type mice after moderate controlled cortical impact (CCI injury. Although IL-1β expression is significantly attenuated in the cortex of Nlrp1−/− and Asc−/− mice following CCI injury, no difference in motor recovery, cell death, or contusion volume is observed compared to wild type. These findings indicate that inflammasome activation does not significantly contribute to acute neural injury in the murine model of moderate CCI injury.

  20. Modelling the effect on injuries and fatalities when changing mode of transport from car to bicycle.

    Science.gov (United States)

    Nilsson, Philip; Stigson, Helena; Ohlin, Maria; Strandroth, Johan

    2017-03-01

    Several studies have estimated the health effects of active commuting, where a transport mode shift from car to bicycle reduces risk of mortality and morbidity. Previous studies mainly assess the negative aspects of bicycling by referring to fatalities or police reported injuries. However, most bicycle crashes are not reported by the police and therefore hospital reported data would cover a much higher rate of injuries from bicycle crashes. The aim of the present study was to estimate the effect on injuries and fatalities from traffic crashes when shifting mode of transport from car to bicycle by using hospital reported data. This present study models the change in number of injuries and fatalities due to a transport mode change using a given flow change from car to bicycle and current injury and fatality risk per distance for bicyclists and car occupants. show that bicyclists have a much higher injury risk (29 times) and fatality risk (10 times) than car occupants. In a scenario where car occupants in Stockholm living close to their work place shifts transport mode to bicycling, injuries, fatalities and health loss expressed in Disability-Adjusted Life Years (DALY) were estimated to increase. The vast majority of the estimated DALY increase was caused by severe injuries and fatalities and it tends to fluctuate so that the number of severe crashes may exceed the estimation with a large margin. Although the estimated increase of traffic crashes and DALY, a transport mode shift is seen as a way towards a more sustainable society. Thus, this present study highlights the need of strategic preventive measures in order to minimize the negative impacts from increased bicycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Recombinant erythropoietin is neuroprotective in a novel mouse oxidative injury model.

    Science.gov (United States)

    Juul, Sandra E; McPherson, Ronald J; Bammler, Theodor K; Wilkerson, Jasmine; Beyer, Richard P; Farin, Federico M

    2008-01-01

    To identify neuroprotective changes in gene expression, we developed a neonatal mouse model of moderate to severe oxidative brain injury and hypothesized that recombinant erythropoietin (rEpo) would decrease the expression of proapoptotic and proinflammatory genes 24 and 48 h, respectively, after injury and increase the expression of neurogenic and angiogenic genes 168 h after injury. Postnatal day 10 BALB-c mice underwent sham surgery or right common carotid artery occlusion followed by alternating hypoxia and hyperoxia and were then treated with rEpo (5,000 U/kg s.c.) or saline (vehicle) daily for up to three doses. At death, gross brain injury was assessed, then hippocampus, cortex, and thalamus were isolated for RNA or protein extraction. Microarray analysis, real-time polymerase chain reaction, and Bio-Plex suspension array system validation were performed. rEpo decreased both incidence and severity of brain injury (median injury score 3 vs. 0, p < 0.0001) and reduced the injury-induced increases in interleukin-1alpha and interleukin-6 gene expression (p < 0.001), with corresponding effects on protein translation. Similarly, the expression of caspase-1, caspase-4, and caspase-6 and of p53 was increased by brain injury at 24 h, but mitigated by rEpo (p < 0.01). The interleukin-10 expression was higher in the rEpo-treated animals. Apoptotic and proinflammatory gene expression persisted for 168 h. There was no increase in angiogenic gene expression at the time points studied.

  2. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury.

    Science.gov (United States)

    Kakuni, Masakazu; Morita, Mayu; Matsuo, Kentaro; Katoh, Yumiko; Nakajima, Miki; Tateno, Chise; Yokoi, Tsuyoshi

    2012-10-02

    Troglitazone (Tro) is a thiazolidinedione antidiabetic drug that was withdrawn from the market due to its association with idiosyncratic severe liver injury. Tro has never induced liver injury in experimental animals in vivo. It was assumed that the species differences between human and experimental animals in the pharmaco- or toxicokinetics of Tro might be associated with these observations. In this study, we investigated whether a chimeric mouse with a humanized liver that we previously established, whose replacement index with human hepatocytes is up to 92% can reproduce Tro-induced liver injury. When the chimeric mice were orally administered Tro for 14 or 23 days (1000mg/kg/day), serum alanine aminotransferase (ALT) was significantly increased by 2.1- and 3.6-fold, respectively. Co-administration of l-buthionine sulfoximine (10mM in drinking water), an inhibitor of glutathione (GSH) synthesis, unexpectedly prevented the Tro-dependent increase of ALT, which suggests that the GSH scavenging pathway will not be involved in Tro-induced liver injury. To elucidate the mechanism of the onset of liver injury, hepatic GSH content, the level of oxidative stress markers and phase I and phase II drug metabolizing enzymes were determined. However, these factors were not associated with Tro-induced liver injury. An immune-mediated reaction may be associated with Tro-induced liver toxicity in vivo, because the chimeric mouse is derived from an immunodeficient SCID mouse. In conclusion, we successfully reproduced Tro-induced liver injury using chimeric mice with a humanized liver, which provides a new animal model for studying idiosyncratic drug-induced liver injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  4. Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-12-1-0629 TITLE: Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology...30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 12109018 TATRC Novel Genetic Models to Study the Role of Inflammation in Brain Injury...another avenue in which brain injury can occur and often a consequence of TBI. Comparing results from TBI and stroke studies will be important is

  5. Education and risk of coronary heart disease: assessment of mediation by behavioral risk factors using the additive hazards model.

    Science.gov (United States)

    Nordahl, Helene; Rod, Naja Hulvej; Frederiksen, Birgitte Lidegaard; Andersen, Ingelise; Lange, Theis; Diderichsen, Finn; Prescott, Eva; Overvad, Kim; Osler, Merete

    2013-02-01

    Educational-related gradients in coronary heart disease (CHD) and mediation by behavioral risk factors are plausible given previous research; however this has not been comprehensively addressed in absolute measures. Questionnaire data on health behavior of 69,513 participants, 52 % women, from seven Danish cohort studies were linked to registry data on education and incidence of CHD. Mediation by smoking, low physical activity, and body mass index (BMI) on the association between education and CHD were estimated by applying newly proposed methods for mediation based on the additive hazards model, and compared with results from the Cox proportional hazards model. Short (vs. long) education was associated with 277 (95 % CI: 219, 336) additional cases of CHD per 100,000 person-years at risk among women, and 461 (95 % CI: 368, 555) additional cases among men. Of these additional cases 17 (95 % CI: 12, 22) for women and 37 (95 % CI: 28, 46) for men could be ascribed to the pathway through smoking. Further, 39 (95 % CI: 30, 49) cases for women and 94 (95 % CI: 79, 110) cases for men could be ascribed to the pathway through BMI. The effects of low physical activity were negligible. Using contemporary methods, the additive hazards model, for mediation we indicated the absolute numbers of CHD cases prevented when modifying smoking and BMI. This study confirms previous claims based on the Cox proportional hazards model that behavioral risk factors partially mediates the effect of education on CHD, and the results seems not to be particularly model dependent.

  6. The Effect of Using Peplau's Therapeutic Relationship Model on Anxiety of Coronary Artery Bypass Graft Surgery Candidates

    Directory of Open Access Journals (Sweden)

    Maghsoodi

    2014-08-01

    Full Text Available Background Anxiety is a one of the psychological aftereffect of cardiac surgery, which affects the outcome of treatment. One of the most effective ways to reduce anxiety is to train and establish a targeted relationship based on a functional model. Objectives The present study aimed to determine the effect of Peplau's therapeutic relationship model on anxiety of patients who were candidate for coronary artery bypass graft surgery (CABG. Patients and Methods In this clinical trial, 74 patients were enrolled according to eligibility criteria and were randomly allocated to intervention and control groups of 37 people. We evaluated anxiety of the patients using the Beck anxiety inventory before, immediately after, and two and four months after intervention. Based on Peplau's therapeutic relationship model, therapeutic communication sessions were conducted in four phases during seven sessions. Data analysis was performed with the statistical test of covariance analysis using SPSS version 16. Results The results of our study showed that after therapeutic communication, the mean score of anxiety decreased from 30.35 to 25.38 in the intervention group (P < 0.001, while the scores decreased from 33.22 to 31.46 in the control group. Furthermore, the mean score of anxiety in the intervention group decreased at two and four months after the intervention. Conclusions The findings showed a positive effect of therapeutic relationship based on Peplau's model on reducing anxiety of patients undergoing CABG. Therefore, health care teams, including nurses, should take advantage of appropriate communication with patients in their care procedures. In that regard, Peplau's communication model is recommended as a simple, low-cost, and efficient method.

  7. Coronary artery rupture in blunt thoracic trauma: a case report and review of literature

    OpenAIRE

    Abu-Hmeidan, Jareer Heider; Arrowaili, Arief Ismael; Yousef, Raid Said; Alasmari, Sami; Kassim, Yasser M; Aldakhil Allah, Hamad Hamad; Aljenaidel, Abdullah Mohammed; Alabdulqader, Abdullah Abdulmohsen; Alrashed, Muath Hamad; Alkhinjar, Mulfi Ibrahim; Al-Shammari, Nawwaf Rahi

    2016-01-01

    Background Blunt thoracic trauma can rarely result in coronary artery injury. Blunt trauma can result in occlusion of any of the coronary arteries or can lead to its rupture and bleeding. Traumatic coronary artery occlusion can lead to myocardial infarction, while its rupture and bleeding can result in hemopericardium and cardiac tamponade, and can be rapidly fatal. Survival after coronary artery rupture in blunt thoracic trauma is exceedingly rare. Case Presentation We present a case of a yo...

  8. Optimization of a simplified automobile finite element model using time varying injury metrics.

    Science.gov (United States)

    Gaewsky, James P; Danelson, Kerry A; Weaver, Caitlin M; Stitzel, Joel D

    2014-01-01

    In 2011, frontal crashes resulted in 55% of passenger car injuries with 10,277 fatalities and 866,000 injuries in the United States. To better understand frontal crash injury mechanisms, human body finite element models (FEMs) can be used to reconstruct Crash Injury Research and Engineering Network (CIREN) cases. A limitation of this method is the paucity of vehicle FEMs; therefore, we developed a functionally equivalent simplified vehicle model. The New Car Assessment Program (NCAP) data for our selected vehicle was from a frontal collision with Hybrid III (H3) Anthropomorphic Test Device (ATD) occupant. From NCAP test reports, the vehicle geometry was created and the H3 ATD was positioned. The material and component properties optimized using a variation study process were: steering column shear bolt fracture force and stroke resistance, seatbelt pretensioner force, frontal and knee bolster airbag stiffness, and belt friction through the D-ring. These parameters were varied using three successive Latin Hypercube Designs of Experiments with 130-200 simulations each. The H3 injury response was compared to the reported NCAP frontal test results for the head, chest and pelvis accelerations, and seat belt and femur forces. The phase, magnitude, and comprehensive error factors, from a Sprague and Geers analysis were calculated for each injury metric and then combined to determine the simulations with the best match to the crash test. The Sprague and Geers analyses typically yield error factors ranging from 0 to 1 with lower scores being more optimized. The total body injury response error factor for the most optimized simulation from each round of the variation study decreased from 0.466 to 0.395 to 0.360. This procedure to optimize vehicle FEMs is a valuable tool to conduct future CIREN case reconstructions in a variety of vehicles.

  9. A new minimally invasive experimental spinal cord injury model in rabbits.

    Science.gov (United States)

    Baydin, A; Cokluk, C; Aydin, K

    2007-06-01

    The aim of this experimental study was to evaluate the effectivity of epidural microballoon inflation into the unroofed spinal column for the creation of a new experimental spinal cord injury model in rabbits. 10 New Zealand white rabbits were used for this study. Before operation and after anasthesia with 50 mg/kg ketamine and 8 mg/kg xylazine, spinal evoked potentials (SEP) were recorded in all rabbits. A midline skin incision was done on the lomber skin at the level of L1-L4. Paravertebral muscles were dissected bilaterally. A microhemilaminotomy was done in the right L3 lamina close to the midline by using Midas-rex micro-diamond drill instruments. The ligamentum flavum was opened and removed with microscissors. A microballoon was inserted into the spinal column between the bone and dura mater to the level of T12. The microballoon was inflated by using a pressure- and volume-controlled microballoon inflation device. Pre-injury and post-injury SEPs were recorded. The microballoon was deflated 15 minutes later and removed completely from the epidural space. 24 hours later the SEP study was repeated. Following microballoon inflation the SEP waves dropped to the basal level. All rabbits were paraplegic after the operation. In conclusion, this experimental study demonstrated that the microballoon inflation technique is a very successful method for the evaluation of spinal cord injury in rabbits. Unroofing of the spinal column is extremely important because decompression may be an effective treatment in spinal cord injury. Also the traumatic effect of aneurysm clips represents a different type of injury to the spinal cord. This new model may be used in experimental studies of spinal cord injury in rabbits.

  10. Apyrase treatment of myocardial infarction according to a clinically applicable protocol fails to reduce myocardial injury in a porcine model

    Directory of Open Access Journals (Sweden)

    Otto Andreas

    2010-01-01

    Full Text Available Abstract Background Ectonucleotidase dependent adenosine generation has been implicated in preconditioning related cardioprotection against ischemia-reperfusion injury, and treatment with a soluble ectonucleotidase has been shown to reduce myocardial infarct size (IS when applied prior to induction of ischemia. However, ectonucleotidase treatment according to a clinically applicable protocol, with administration only after induction of ischemia, has not previously been evaluated. We therefore investigated if treatment with the ectonucleotidase apyrase, according to a clinically applicable protocol, would reduce IS and microvascular obstruction (MO in a large animal model. Methods A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min, in 16 anesthetized pigs (40-50 kg. The pigs were randomized to 40 min of 1 ml/min intracoronary infusion of apyrase (10 U/ml, n = 8 or saline (0.9 mg/ml, n = 8, twenty minutes after balloon inflation. Area at risk (AAR was evaluated by ex vivo SPECT. IS and MO were evaluated by ex vivo MRI. Results No differences were observed between the apyrase group and saline group with respect to IS/AAR (75.7 ± 4.2% vs 69.4 ± 5.0%, p = NS or MO (10.7 ± 4.8% vs 11.4 ± 4.8%, p = NS, but apyrase prolonged the post-ischemic reactive hyperemia. Conclusion Apyrase treatment according to a clinically applicable protocol, with administration of apyrase after induction of ischemia, does not reduce myocardial infarct size or microvascular obstruction.

  11. Aberrant LncRNA Expression Profile in a Contusion Spinal Cord Injury Mouse Model

    Directory of Open Access Journals (Sweden)

    Ya Ding

    2016-01-01

    Full Text Available Long noncoding RNAs (LncRNAs play a crucial role in cell growth, development, and various diseases related to the central nervous system. However, LncRNA differential expression profiles in spinal cord injury are yet to be reported. In this study, we profiled the expression pattern of LncRNAs using a microarray method in a contusion spinal cord injury (SCI mouse model. Compared with a spinal cord without injury, few changes in LncRNA expression levels were noted 1 day after injury. The differential changes in LncRNA expression peaked 1 week after SCI and subsequently declined until 3 weeks after injury. Quantitative real-time polymerase chain reaction (qRT-PCR was used to validate the reliability of the microarray, demonstrating that the results were reliable. Gene ontology (GO analysis indicated that differentially expressed mRNAs were involved in transport, cell adhesion, ion transport, and metabolic processes, among others. Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment analysis showed that the neuroactive ligand-receptor interaction, the PI3K-Akt signaling pathway, and focal adhesions were potentially implicated in SCI pathology. We constructed a dynamic LncRNA-mRNA network containing 264 LncRNAs and 949 mRNAs to elucidate the interactions between the LncRNAs and mRNAs. Overall, the results from this study indicate for the first time that LncRNAs are differentially expressed in a contusion SCI mouse model.

  12. A spatial generalized ordered response model to examine highway crash injury severity.

    Science.gov (United States)

    Castro, Marisol; Paleti, Rajesh; Bhat, Chandra R

    2013-03-01

    This paper proposes a flexible econometric structure for injury severity analysis at the level of individual crashes that recognizes the ordinal nature of injury severity categories, allows unobserved heterogeneity in the effects of contributing factors, as well as accommodates spatial dependencies in the injury severity levels experienced in crashes that occur close to one another in space. The modeling framework is applied to analyze the injury severity sustained in crashes occurring on highway road segments in Austin, Texas. The sample is drawn from the Texas Department of Transportation (TxDOT) crash incident files from 2009 and includes a variety of crash characteristics, highway design attributes, driver and vehicle characteristics, and environmental factors. The results from our analysis underscore the value of our proposed model for data fit purposes as well as to accurately estimate variable effects. The most important determinants of injury severity on highways, according to our results, are (1) whether any vehicle occupant is ejected, (2) whether collision type is head-on, (3) whether any vehicle involved in the crash overturned, (4) whether any vehicle occupant is unrestrained by a seat-belt, and (5) whether a commercial truck is involved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Atorvastatin Inhibits Myocardial Apoptosis in a Swine Model of Coronary Microembolization by Regulating PTEN/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2016-01-01

    Full Text Available Background/Aims: Phosphatase and tensin homolog deleted on chromosome ten (PTEN has been recognized as a promoter of apoptosis in various tissues, and revealed to be up-regulated in circumstances of coronary microembolization (CME. However, whether this functional protein could be modified by pretreatment of atorvastatin in models of CME has not been disclosed yet. Methods: Swine CME was induced by intra-coronary injection of inertia plastic microspheres (diameter 42 μm into left anterior descending coronary, with or without pretreatment of atorvastatin or PTEN siRNA. Echocardiologic measurements, pathologic examination, TUNEL staining and western blotting were applied to assess their functional, morphological and molecular effects in CME. Results: PTEN were aberrantly up-regulated in cardiomyocytes following CME, with both the mRNA and protein levels increased after CME modeling. Pretreatment with atorvastatin could attenuate the induction of PTEN. Furthermore, down-regulation of PTEN in vivo via siRNA was associated with an improved cardiac function, attenuated myocardial apoptosis, and concomitantly inhibited expressions of key proapoptotic proteins such as Bax, cleaved-caspase-3. Interestingly, atorvastatin could markedly attenuate PTEN expression and therefore partially reverse cardiac dysfunction and attenuate the apoptosis of the myocardium following CME. Conclusion: Modulation of PTEN was probably as a potential mechanism involved in the beneficial effects of pretreatment of atorvastatin to cardiac function and apoptosis in large animal models of CME.

  14. Comparison of model-based and expert-rule based electrocardiographic identification of the culprit artery in patients with acute coronary syndrome.

    Science.gov (United States)

    Kamphuis, Vivian P; Wagner, Galen S; Pahlm, Olle; Man, Sumche; Olson, Charles W; Bacharova, Ljuba; Swenne, Cees A

    2015-01-01

    Culprit coronary artery assessment in the triage ECG of patients with suspected acute coronary syndrome (ACS) is relevant a priori knowledge preceding percutaneous coronary intervention (PCI). We compared a model-based automated method (Olson method) with an expert-rule based method for the culprit artery assessment. In each of the 53 patients who were admitted with the working diagnosis of suspected ACS, scheduled for emergent angiography with a view on revascularization as initial treatment and subsequently found to have an angiographically documented completely occluded culprit artery, culprit artery location was assessed in the preceding ECG by both the model-based Olson method and the expert-rule based method that considered either visual or computer-measured J-point amplitudes. ECG culprit artery estimations were compared with the angiographic culprit lesion locations. Proportions of correct classifications were compared by a Z test at the 5% significance level. The Olson method performed slightly, but not significantly, better, when the expert-rule based method used visual assessment of J-point amplitudes (88.7% versus 81.1% correct; P=0.28). However, the Olson method performed significantly better when the expert-rule based method used computer-measured J-point amplitudes (88.7% versus 71.7% correct; P<0.05). The automated model-based Olson method performed at least at the level of expert cardiologists using a manual rule-based method. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. COMPARISON OF THE EFFECTS OF AGING AND IL-6 ON THE HEPATIC INFLAMMATORY RESPONSE IN TWO MODELS OF SYSTEMIC INJURY: SCALD INJURY VERSUS I.P. LPS ADMINISTRATION

    Science.gov (United States)

    Gomez, Christian R.; Nomellini, Vanessa; Baila, Horea; Oshima, Kiyoko; Kovacs, Elizabeth J.

    2011-01-01

    Regardless of age, a marked elevation in circulating IL-6 levels correlates with increased mortality after injury or an inflammatory challenge. We previously reported that aged IL-6 knockout mice given LPS have improved survival and reduced inflammatory response than LPS-treated aged wild type (WT) mice. Herein, we analyzed the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: dorsal scald (burn) injury versus intraperitoneal LPS administration. At 24 h after burn injury, circulating alanine aminotransferase and hepatic neutrophil accumulation were comparable regardless of age or IL-6 deficiency. However, at this same time point, these indicators of liver damage, in addition to hepatic levels of KC, a neutrophil chemoattractant, were increased in aged WT mice given LPS relative to young WT mice given LPS. The hepatic injury was drastically reduced in aged IL-6 knockout mice given LPS as compared with LPS-exposed aged WT mice. Our results suggest that the nature of the insult will determine the degree of remote injury in aged animals. In addition, the role of IL-6 as a contributing factor of tissue injury may be insult specific. PMID:18636046

  16. Comparison of the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: scald injury versus i.p. LPS administration.

    Science.gov (United States)

    Gomez, Christian R; Nomellini, Vanessa; Baila, Horea; Oshima, Kiyoko; Kovacs, Elizabeth J

    2009-02-01

    Regardless of age, a marked elevation in circulating IL-6 levels correlates with increased mortality after injury or an inflammatory challenge. We previously reported that aged IL-6 knockout mice given LPS have improved survival and reduced inflammatory response than LPS-treated aged wild type (WT) mice. Herein, we analyzed the effects of aging and IL-6 on the hepatic inflammatory response in two models of systemic injury: dorsal scald (burn) injury versus intraperitoneal LPS administration. At 24 h after burn injury, circulating alanine aminotransferase and hepatic neutrophil accumulation were comparable regardless of age or IL-6 deficiency. However, at this same time point, these indicators of liver damage, in addition to hepatic levels of KC, a neutrophil chemoattractant, were increased in aged WT mice given LPS relative to young WT mice given LPS. The hepatic injury was drastically reduced in aged IL-6 knockout mice given LPS as compared with LPS-exposed aged WT mice. Our results suggest that the nature of the insult will determine the degree of remote injury in aged animals. In addition, the role of IL-6 as a contributing factor of tissue injury may be insult specific.

  17. [Stent implantation as initial coronary interventional therapy? A theoretical model on clinical and economical consequences of in-stent restenosis].

    Science.gov (United States)

    Pfund, A; Wendland, G; Baer, F; Lauterbach, K; Höpp, H W

    2000-08-01

    The reduction of acute complications and late restenosis compared to conventional PTCA has led to a rapid increase in stent implantation as initial treatment for coronary stenosis. As a result, in-stent restenosis has become an important clinical and economical problem, especially the diffuse form, which is much more likely to reappear. In order to compare the consequences of initial stenting and initial angioplasty, we developed an analytic model, considering the differences between diffuse and focal in-stent restenosis. The simulation based on the optimized therapeutic proceeding following an elective 1-vessel revascularization of a 60-year-old patient, dealing with probabilities for acute complications and late restenosis taken from the literature and in-hospital costs obtained from 200 elective interventions. In the stent group 71.0% of patients were free of any target lesion-related event, compared to 60.2% in the PTCA group. Catheter reintervention was necessary for 32.1% of the patients initially treated with angioplasty and for 17.6% of the initially stented patients, whereas 7.7% of the stent patients had to undergo elective bypass surgery as final treatment compared to 2.8% in the PTCA arm. Long-term medical costs for initial stenting (6,237 Euros) were 14% higher than for conventional PTCA (5,345 Euros). Taking also into consideration the indirect costs (loss of productivity) for a collective with an employment rate of 50%, the difference between stent implantation (9,067 Euros) and angioplasty (8,581 Euros) is smaller. Initial treatment of coronary stenosis by stent implantation decreases the rate of repeat revascularization compared to initial PTCA, but there is a greater likelihood that elective bypass surgery will become necessary. This difference in following treatment is related to the occurrence of diffuse in-stent restenosis. When calculating the long-term costs stenting still appeared to be more expensive than PTCAA because the savings in

  18. Marked Acceleration of Atherosclerosis following Lactobacillus casei induced Coronary Arteritis in a Mouse Model of Kawasaki Disease

    Science.gov (United States)

    Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe

    2012-01-01

    Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430

  19. Contribution of Trans-Fatty Acid Intake to Coronary Heart Disease Burden in Australia: A Modelling Study

    Directory of Open Access Journals (Sweden)

    Jason H. Y. Wu

    2017-01-01

    Full Text Available Trans-fatty acids (TFAs intake has been consistently associated with a higher risk of coronary heart disease (CHD mortality. We provided an updated assessment of TFA intake in Australian adults in 2010 and conducted modeling to estimate CHD mortality attributable to TFA intake. Data of the 2011–2012 National Nutrition and Physical Activity Survey was used to assess TFA intake. The CHD burden attributable to TFA was calculated by comparing the current level of TFA intake to a counterfactual setting where consumption was lowered to a theoretical minimum distribution of 0.5% energy. The average TFA intake among adults was 0.59% energy, and overall 10% of adults exceeded the World Health Organization (WHO recommended limit of 1% energy. Education and income were moderately and inversely associated with TFA intake (p-value ≤ 0.001, with one in seven adults in the lowest income and education quintile having >1% energy from TFA. Australia had 487 CHD deaths (95% uncertainty interval, 367–615 due to TFA exposure, equivalent to 1.52% (95% uncertainty limits: 1.15%–1.92% of all CHD mortality. The relative impact of TFA exposure on CHD mortality in Australia is limited, but, in absolute terms, still substantial. Policies aimed at reducing industrial TFA exposure can reduce socioeconomic inequalities in health and may therefore be desirable.

  20. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  1. Assessment of coronary artery lesions in children with Kawasaki disease: evaluation of MSCT in comparison with 2-D echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yanlin; Wang, Hong; Yu, Xianyi; Chen, Rui [Shengjing Hospital of China Medical University, Department of Pediatrics, Shenyang (China); Hou, Yang [Shengjing Hospital of China Medical University, Department of Radiology, Shenyang (China)

    2009-11-15

    Transthoracic two-dimensional echocardiography is an effective method for detecting coronary arterial injury in Kawasaki disease. However, its accuracy in the diagnosis of coronary arterial lesions is limited. To investigate the value of multislice spiral CT for coronary angiography for observing the coronary arterial injury caused by infantile Kawasaki disease. Coronary angiography, using a 64-slice spiral CT scanner, and 2-D echocardiography were performed in 48 children with Kawasaki disease in whom the position, internal diameter, and length of each coronary artery were measured. MSCT showed coronary artery injury in 15 of the 48 children. Among these 15 children, 20 coronary artery branches showed complications, including the left coronary artery branches in 15 (31.2%) and the right coronary artery branches in 5 (10.4%). Complications in the left coronary artery branches included dilation in 12 (25.0%) and stenosis, calcification and the combination of the two in one each, and the right coronary artery branches showed dilation; two branches also showed beaded changes. MSCT also showed dilation in the left anterior descending arteries in two children. These children showed no abnormality on 2-D echocardiography. MSCT is a valuable examination method for detecting coronary artery injury in Kawasaki disease. (orig.)

  2. A novel dehydroepiandrosterone analog improves functional recovery in a rat traumatic brain injury model.

    Science.gov (United States)

    Malik, Amir S; Narayan, Raj K; Wendling, Woodrow W; Cole, Russell W; Pashko, Laura L; Schwartz, Arthur G; Strauss, Kenneth I

    2003-05-01

    The purpose of this study was to investigate the efficacy of a novel steroid, fluasterone (DHEF, a dehydroepiandrosterone (DHEA) analog), at improving functional recovery in a rat model of traumatic brain injury (TBI). The lateral cortical impact model was utilized in two studies of efficacy and therapeutic window. DHEF was given (25 mg/kg, intraperitoneally) at the initial time point and once a day for 2 more days. Study A included four groups: sham injury, vehicle treated (n = 22); injured, vehicle treated (n = 30); injured, pretreated (5-10 min prior to injury, n = 24); and injured, posttreated (initial dose 30 min postinjury, n = 15). Study B (therapeutic window) included five groups: sham injury, vehicle treated (n = 17); injured, vehicle treated (n = 26); and three posttreatment groups: initial dose at 30 min (n = 18), 2 h (n = 23), or 12 h (n = 16) postinjury. Three criteria were used to grade functional recovery. In study A, DHEF improved beam walk performance both with pretreatment (79%) and 30-min posttreatment group (54%; p memory (Morris water maze) and neurological reflexes both revealed significant improvements in all DHEF treatment groups. In cultured rat mesangial cells, DHEF (and DHEA) potently inhibited interleukin-1beta-induced cyclooxygenase-2 (COX2) mRNA and prostaglandin (PGE2) production. In contrast, DHEF treatment did not alter injury-induced COX2 mRNA levels in the cortex or hippocampus. However, DHEF (and DHEA) relaxed ex vivo bovine middle cerebral artery preparations by about 30%, with an IC(50) approximately 40 microM. This was a direct effect on the vascular smooth muscle, independent of the endothelial cell layer. Fluasterone (DHEF) treatments improved functional recovery in a rat TBI model. Possible mechanisms of action for this novel DHEA analog are discussed. These findings suggest an exciting potential use for this agent in the clinical treatment of traumatic brain injury.

  3. Adipose Tissue Drives Response to Ischemia-Reperfusion Injury in a Murine Pressure Sore Model.

    Science.gov (United States)

    Gust, Madeleine J; Hong, Seok Jong; Fang, Robert C; Lanier, Steven T; Buck, Donald W; Nuñez, Jennifer M; Jia, Shengxian; Park, Eugene D; Galiano, Robert D; Mustoe, Thomas A

    2017-05-01

    Ischemia-reperfusion injury contributes significantly to the pathogenesis of chronic wounds such as pressure sores and diabetic foot ulcers. The authors' laboratory has previously developed a cyclical murine ischemia-reperfusion injury model. The authors here use this model to determine factors underlying tissue response to ischemia-reperfusion injury. C57BL/6 mice were subjected to cycles of ischemia-reperfusion that varied in number (one to four cycles) and duration of ischemia (1 to 2 hours). For each ischemia-reperfusion condition, the following variables were analyzed: (1) digital photographs for area of necrosis; (2) hematoxylin and eosin staining and immunohistochemistry for inflammatory infiltrate; and (3) expression of inflammatory markers by quantitative polymerase chain reaction. In addition, human adipocytes and fibroblasts were cultured in vitro under conditions of hypoxia and reoxygenation, and expression of inflammatory markers was analyzed by quantitative polymerase chain reaction. Increases in both ischemia-reperfusion cycle number and ischemia duration correlated with increased areas of epithelial necrosis both grossly and histologically, and with an increase in cellularity and neutrophil density. This increased inflammatory infiltrate and a significant increase in the expression of proinflammatory markers (Hmox1, interleukin-6, interleukin-1, and monocyte chemoattractant protein-1) was observed in adipose tissue subjected to ischemia-reperfusion injury, but not in dermis. These results were mirrored in human adipose tissue. The authors further characterize a novel, reproducible murine model of ischemia-reperfusion injury. The results of their study indicate that adipose tissue is less tolerant of ischemia-reperfusion than dermal tissue. Rather than being an "innocent bystander," adipose tissue plays an active role in driving the inflammatory response to ischemia-reperfusion injury.

  4. Reproduction and evaluation of a rat model of inhalation lung injury caused by black gunpowder smog

    Directory of Open Access Journals (Sweden)

    Yi-fan LIU

    2013-09-01

    Full Text Available Objective To reproduce and evaluate a rat model of inhalation lung injury caused by black gunpowder smog. Methods The smog composition was analyzed and a rat model of inhalation lung injury was reproduced. Forty two healthy male Wistar rats were randomly divided into normal control (NC group and 1h, 2h, 6h, 24h, 48h and 96h after inhalation group (n=6. The arterial blood gas, wet to dry weight ratio (W/D of lung, leukocyte count, and protein concentration in broncho-alveolar lavage fluid (BALF were determined. Macroscopic and microscopic changes in lung tissue were observed. Results The composition of black gunpowder smog was composed mainly of CO2 and CO, and their concentrations remained stable within 12 minutes. Smog inhalation caused a significant hypoxemia, the concentration of blood COHb reached a peak value 1h, and the W/D of lung reached peak value 2h after inhalation (P<0.05. The amount of leukocytes and content of protein in BALF increased significantly within 24h after inhalation (P<0.05. Histopathological observation showed diffuse hemorrhage, edema and inflammatory cell infiltration in lung tissue as manifestations of acute lung injury, and the injury did not recover at 96h after inhalation. Conclusion The rat model of inhalation lung injury can be reproduced using black gunpowder smog, and it has the advantages of its readiness for reproduction, reliability and stability, and it could be used for the experiment of inhalation injury in a battlefield environment.

  5. An Actor-Partner Interdependence Model of Acquired Brain Injury Patient Impairments and Caregiver Psychosocial Functioning

    DEFF Research Database (Denmark)

    Perrin, Paul B; Norup, Anne; Caracuel, Alfonso

    2017-01-01

    OBJECTIVE: The purpose of this study was to use actor-partner interdependence modeling (APIM) to examine the simultaneous effects of both acquired brain injury (ABI) patient and caregiver ratings of patient impairments on both patient and caregiver ratings of caregiver psychosocial dysfunction. M...

  6. Alpha glucocorticoid receptor expression in different experimental rat models of acute lung injury

    OpenAIRE

    Bertorelli,Giuseppina; Pesci, Alberto; Peveri, Silvia; Mergoni, Mario; Corradi, Attilio; Cantoni, Anna Maria; Tincani, Giovanni; Bobbio, Antonio; Rusca, Michele; Carbognani, Paolo

    2008-01-01

    Alpha glucocorticoid receptor expression in different experimental rat models of acute lung injury correspondence: Corresponding author. Tel.: +390521703883; fax: +390521703493. (Carbognani, Paolo) (Carbognani, Paolo) Dipartimento di Clinica Medica - Nefrologia e Scienze della Prevenzione--> , University of Parma--> - ITALY (Bertorelli, Giuseppina) Dipartimento di Clinica Medica - Nefrologia e Scienze della...

  7. Variability in Ozone-Induced Pulmonary Injury and Inflammation in Healthy and Cardiovascular Compromised Rat Models

    Science.gov (United States)

    The molecular bases for variability in air pollutant-induced pulmonary injury due to underlying cardiovascular (CVD) and/or metabolic diseases are unknown. We hypothesized that healthy and genetic CVD-prone rat models will exhibit exacerbated response to acute ozone exposure depe...

  8. Adaptations to exercise training and contraction-induced muscle injury in animal models of muscular dystrophy.

    Science.gov (United States)

    Carter, Gregory T; Abresch, R Ted; Fowler, William M

    2002-11-01

    This article reviews the current status of exercise training and contraction-induced muscle-injury investigations in animal models of muscular dystrophy. Most exercise-training studies have compared the adaptations of normal and dystrophic muscles with exercise. Adaptation of diseased muscle to exercise occurs at many levels, starting with the extracellular matrix, but also involves cytoskeletal architecture, muscle contractility, repair mechanisms, and gene regulation. The majority of exercise-injury investigations have attempted to determine the susceptibility of dystrophin-deficient muscles to contraction-induced injury. There is some evidence in animal models that diseased muscle can adapt and respond to mechanical stress. However, exercise-injury studies show that dystrophic muscles have an increased susceptibility to high mechanical forces. Most of the studies involving exercise training have shown that muscle adaptations in dystrophic animals were qualitatively similar to the adaptations observed in control muscle. Deleterious effects of the dystrophy usually occur only in older animals with advanced muscle fiber degeneration or after high-resistive eccentric training. The main limitations in applying these conclusions to humans are the differences in phenotypic expression between humans and genetically homologous animal models and in the significant biomechanical differences between humans and these animal models.

  9. Models of the Opiate System in Self-Injurious Behavior: A Reply.

    Science.gov (United States)

    Demet, Edward M.; Sandman, Curt A.

    1991-01-01

    This paper answers criticism (EC 601 030) of the authors' work regarding opioid explanations of self-injurious behavior. Possible withdrawal effects are ruled out as an explanation, in favor of opioid excess leading to sensory depression and addiction to relative excesses of opioid activity in the brain. Alternative models of consequences of…

  10. Evaluating a Training Intervention for Assessing Nonsuicidal Self-Injury: The HIRE Model

    Science.gov (United States)

    Rutt, Corrine C.; Buser, Trevor J.; Buser, Juleen K.

    2016-01-01

    The authors evaluated the effectiveness of a brief training intervention with graduate counseling students who used the HIRE (history, interest in change, reasons for engaging in the behavior, and exposure to risk; Buser & Buser, 2013b) model for the informal assessment of nonsuicidal self-injury. The intervention group demonstrated…

  11. Comparative Testing of Hemostatic Dressing in a Large Animal Model (Sus Scorofa) with Severe hepatic Injuries

    Science.gov (United States)

    2013-12-02

    hemostatic dressings in a large animal model (Sus scrofa ) with severe hepatic injuries PRINCIPAL INVESTIGATOR (PI) / TRAINING COORDINATOR (TC): Capt...to Date Sus scrofa 36 18 18 Note. Many fewer animals than approved were used because one of the original treatment groups (Lypressin- soaked gauze

  12. Virtual testing of driver OOP scenarios: effect of modeling detail on injury response

    NARCIS (Netherlands)

    Bosch-Rekveldt, M.G.C.; Hoof, J.F.A.M. van

    2004-01-01

    This study investigates the relevance of certain parameters for virtual testing of the driver's side OOP problem and attempts to answer the following questions: Which level of detail is needed in the airbag models to assess occupants' injury values for OOP scenarios? What is the influence of the air

  13. Establishing a Reproducible Hypertrophic Scar following Thermal Injury: A Porcine Model

    Directory of Open Access Journals (Sweden)

    Scott J. Rapp, MD

    2015-02-01

    Conclusions: Deep partial-thickness thermal injury to the back of domestic swine produces an immature hypertrophic scar by 10 weeks following burn with thickness appearing to coincide with the location along the dorsal axis. With minimal pig to pig variation, we describe our technique to provide a testable immature scar model.

  14. Co-administration of the flavanol (−)-epicatechin with doxycycline synergistically reduces infarct size in a model of ischemia reperfusion injury by inhibition of mitochondrial swelling

    Science.gov (United States)

    Ortiz-Vilchis, Pilar; Yamazaki, Katrina Go; Rubio-Gayosso, Ivan; Ramirez-Sanchez, Israel; Calzada, Claudia; Romero-Perez, Diego; Ortiz, Alicia; Meaney, Eduardo; Taub, Pam; Villarreal, Francisco; Ceballos, Guillermo

    2016-01-01

    (−)-Epicatechin (EPI) is cardioprotective in the setting of ischemia/reperfusion (IR) injury and doxycycline (DOX) is known to preserve cardiac structure/function after myocardial infarction (MI). The main objective of this study was to examine the effects of EPI and DOX co-administration on MI size after IR injury and to determine if cardioprotection may involve the mitigation of mitochondrial swelling. For this purpose, a rat model of IR was used. Animals were subjected to a temporary 45 min occlusion of the left anterior descending coronary artery. Treatment consisted of a single or double dose of EPI (10 mg/kg) combined with DOX (5 mg/kg). The first dose was given 15 min prior to reperfusion and the second 12 h post-MI. The effects of EPI +/− DOX on mitochondrial swelling (i.e. mPTP opening) were determined using isolated mitochondria exposed to calcium overload and data examined using isobolographic analysis. To ascertain for the specificity of EPI effects on mitochondrial swelling other flavonoids were also evaluated. Single dose treatment reduced MI size by ~46% at 48 h and 44% at three weeks. Double dosing evidenced a synergistic, 82% reduction at 3 weeks. EPI plus DOX also inhibited mitochondrial swelling in a synergic manner thus, possibly accounting for the cardioprotective effects whereas limited efficacy was observed with the other flavonoids. Given the apparent lack of toxicity in humans, the combination of EPI and DOX may have clinical potential for the treatment of myocardial IR injury. PMID:25281837

  15. Role of microglia in a mouse model of paediatric traumatic brain injury.

    Science.gov (United States)

    Chhor, Vibol; Moretti, Raffaella; Le Charpentier, Tifenn; Sigaut, Stephanie; Lebon, Sophie; Schwendimann, Leslie; Oré, Marie-Virginie; Zuiani, Chiara; Milan, Valentina; Josserand, Julien; Vontell, Regina; Pansiot, Julien; Degos, Vincent; Ikonomidou, Chrysanthy; Titomanlio, Luigi; Hagberg, Henrik; Gressens, Pierre; Fleiss, Bobbi

    2016-11-04

    The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.

  16. Predictors of work injury in underground mines——an application of a logistic regression model

    Institute of Scientific and Technical Information of China (English)

    E S. Pau

    2009-01-01

    Mine accidents and injuries are complex and generally characterized by several factors starting from personal to technical, and technical to social characteristics. In this study, an attempt has been made to identify the various factors responsible for work related injuries in mines and to estimate the risk of work injury to mine workers. The prediction of work injury in mines was done by a step-by-step multivariate logistic regression modeling with an application to case study mines in India. In total, 18 variables were considered in this study. Most of the variables are not directly quantifiable. Instruments were developed to quantify them through a questionnaire type survey. Underground mine workers were randomly selected for the survey. Responses from 300 participants were used for the analysis. Four variables, age, negative affectivity, job dissatisfaction, and physical hazards, bear significant discriminating power for risk of injury to the workers, comparing between cases and controls in a multivariate situation while controlling all the personal and socio-technical variables. The analysis reveals that negatively affected workers are 2.54 times more prone to injuries than the less negatively affected workers and this factor is a more impOrtant risk factor for the case-study mines. Long term planning through identification of the negative individuals, proper counseling regarding the adverse effects of negative behaviors and special training is urgently required. Care should be taken for the aged and experienced workers in terms of their job responsibility and training requirements. Management should provide a friendly atmosphere during work to increase the confidence of the injury prone miners.

  17. Traumatic neuroma in continuity injury model in rodents: a preliminary report.

    Science.gov (United States)

    Alant, Jacob; Kemp, Stephen; Webb, Aubrey; Midha, Rajiv

    2010-08-01

    Consistent with EBSJ's commitment to fostering quality research, we are pleased to feature some of the most highly rated abstracts from the 8th Annual AOSpine North America Fellows Forum in Banff Canada. Enhancing the quality of evidence in spine care means acknowledging and supporting the efforts of young researchers within our AOSpine North America network. We look forward to seeing more from these promising researchers in the future.  Basic science research report Introduction:  Spinal nerve-injury management and prevention constitute a substantial proportion of a spinal surgeon's practice. Functional recovery after peripheral nerve injuries is often unsatisfactory and to optimize the outcomes, an intimate understanding of these injuries is required. Sunderland classified peripheral nerve injuries into five grades.1 Grade 1 (neurapraxia) and grade 2 (axonal disruption) injuries usually recover with no or insignificant functional deficits within weeks to a few months, respectively. Injuries that are most difficult to manage clinically are the often mixed grade 3 (endoneurial disruption) and grade 4 (perineurial disruption) lesions where spontaneous functional recovery is limited or absent, resulting in neuroma in continuity (NIC). Traumatic NIC is characterized by aberrant intra- and extra- fascicular axonal regeneration and scar formation within an unsevered injured nerve, resulting in impaired and erroneous end-organ reinnervation.2,3 Animal models reproducing grade 1, 2, 3, and 5 lesions have been developed, but to our knowledge a clinically relevant rodent model of NIC has not been developed.4,5,6,7,8 The effective peripheral nerve regeneration and resilience of rodents make it challenging to recreate the NIC scenario.  Our goal was to develop a practical rodent model for focal traumatic NIC, demonstrating the characteristic histological features, supported by concordant functional deficits. Such a model may help us to identify this injury pattern

  18. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  19. Magnetic resonance imaging and pathologic studies on lateral fluid percussion injury as a model of focal brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Liang; Nagaoka, Tsukasa; Ohno, Kikuo; Tominaga, Ben; Nariai, Tadashi; Hirakawa, Kimiyoshi [Tokyo Medical and Dental Univ. (Japan). Faculty of Medicine; Kuroiwa, Toshihiko; Takakuda, Kazuo; Miyairi, Hiroo

    1996-09-01

    In this study, morphologic changes in brain lesions initiated by moderate lateral fluid percussion injury in rats were investigated chronologically using high-resolution magnetic resonance imaging (MRI) and histopathologic methods. Rats were subjected to moderate fluid percussion injury (average 2.80{+-}0.48 atmospheres) over the exposed dura overlying the right parietal cortex. MRI obtained in vivo were compared with corresponding pathologic findings at 1, 6, and 24 h and at 3, 6, 14 and 80 days after injury. T2-weighted images showed scattered low-signal intensity in the injured cortex within a few hours after injury, whereas histologic findings revealed intraparenchymal hemorrhages. T2-weighted images of the ipsilateral cerebral cortex and/or corpus callosum showed a high-signal-intensity area 4 h after injury. The high-signal-intensity area became largest in size between 6 and 24 h, then declined gradually, and almost disappeared 14 days after injury. Histologic examination revealed pyknosis, retraction of the cell body of neurons with vacuolated neuropile in the corresponding regions 6 and 24 h after injury, and cystic necrosis 14 days after injury. The location and extent of these pathologic changes were depicted accurately by MRI in vivo. In the hippocampus, pyknosis and retraction of the cell body of pyramidal neurons were observed on the injured side 24 h after injury, and the number of neurons in the CA1 and CA2-CA3 regions decreased significantly on the same side by 14 days after injury. It is concluded that morphologic changes in the brain following experimental traumatic brain injury in rats are detectable in vivo by high-resolution MRI, and that MRI may be useful for the evaluation of treatment effects in experimental brain injury. (author)

  20. From the battlefield to the laboratory: the use of clinical data analysis in developing models of lower limb blast injury.

    Science.gov (United States)

    Ramasamy, Arul; Newell, N; Masouros, S

    2014-06-01

    A key weapon in the insurgents' armamentarium against coalition and local security forces in Iraq and Afghanistan has been the use of anti-vehicle mines and improvised explosive devices (IEDs). Often directed against vehicle-borne troops, these devices, once detonated, transfer considerable amounts of energy through the vehicle to the occupants. This results in severe lower limb injuries that are frequently limb threatening. Fundamental to designing novel mitigation strategies is a requirement to understand the injury mechanism by developing appropriate injury modelling tools that are underpinned by the analysis of contemporary battlefield casualty data. This article aims to summarise our understanding of the clinical course of lower limb blast injuries from IEDs and its value in developing unique injury modelling test-beds to evaluate and produce the next generation of protective equipment for reducing the devastating effects of blast injury.

  1. Sodium ferulate inhibits neointimal hyperplasia in rat balloon injury model.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available BACKGROUND/AIM: Neointimal formation after vessel injury is a complex process involving multiple cellular and molecular processes. Inhibition of intimal hyperplasia plays an important role in preventing proliferative vascular diseases, such as restenosis. In this study, we intended to identify whether sodium ferulate could inhibit neointimal formation and further explore potential mechanisms involved. METHODS: Cultured vascular smooth muscle cells (VSMCs isolated from rat thoracic aorta were pre-treated with 200 µmol/L sodium ferulate for 1 hour and then stimulated with 1 µmol/L angiotensin II (Ang II for 1 hour or 10% serum for 48 hours. Male Sprague-Dawley rats subjected to balloon catheter insertion were administrated with 200 mg/kg sodium ferulate (or saline for 7 days before sacrificed. RESULTS: In presence of sodium ferulate, VSMCs exhibited decreased proliferation and migration, suppressed intracellular reactive oxidative species production and NADPH oxidase activity, increased SOD activation and down-regulated p38 phosphorylation compared to Ang II-stimulated alone. Meanwhile, VSMCs treated with sodium ferulate showed significantly increased protein expression of smooth muscle α-actin and smooth muscle myosin heavy chain protein. The components of Notch pathway, including nuclear Notch-1 protein, Jagged-1, Hey-1 and Hey-2 mRNA, as well as total β-catenin protein and Cyclin D1 mRNA of Wnt signaling, were all significantly decreased by sodium ferulate in cells under serum stimulation. The levels of serum 8-iso-PGF2α and arterial collagen formation in vessel wall were decreased, while the expression of contractile markers was increased in sodium ferulate treated rats. A decline of neointimal area, as well as lower ratio of intimal to medial area was observed in sodium ferulate group. CONCLUSION: Sodium ferulate attenuated neointimal hyperplasia through suppressing oxidative stress and phenotypic switching of VSMCs.

  2. Altered mucosal immune response after acute lung injury in a murine model of Ataxia Telangiectasia.

    Science.gov (United States)

    Eickmeier, Olaf; Kim, Su Youn; Herrmann, Eva; Döring, Constanze; Duecker, Ruth; Voss, Sandra; Wehner, Sibylle; Hölscher, Christoph; Pietzner, Julia; Zielen, Stefan; Schubert, Ralf

    2014-05-29

    Ataxia telangiectasia (A-T) is a rare but devastating and progressive disorder characterized by cerebellar dysfunction, lymphoreticular malignancies and recurrent sinopulmonary infections. In A-T, disease of the respiratory system causes significant morbidity and is a frequent cause of death. We used a self-limited murine model of hydrochloric acid-induced acute lung injury (ALI) to determine the inflammatory answer due to mucosal injury in Atm (A-T mutated)- deficient mice (Atm(-/-)). ATM deficiency increased peak lung inflammation as demonstrated by bronchoalveolar lavage fluid (BALF) neutrophils and lymphocytes and increased levels of BALF pro-inflammatory cytokines (e.g. IL-6, TNF). Furthermore, bronchial epithelial damage after ALI was increased in Atm(-/-) mice. ATM deficiency increased airway resistance and tissue compliance before ALI was performed. Together, these findings indicate that ATM plays a key role in inflammatory response after airway mucosal injury.

  3. Hypothermia ameliorates gastrointestinal ischemic injury sustained in a porcine cardiac arrest model

    Institute of Scientific and Technical Information of China (English)

    LU Yi; WANG Shuo; LI Chun-sheng

    2012-01-01

    Background During cardiac arrest,the gastrointestinal tract is sensitive to ischemia.Protection of the gastrointestinal tract is a critical factor in determining prognosis following cardiopulmonary resuscitation (CPR).This study seeks to determine the extent of gastrointestinal tract injury and the potential protective effect of inducing hypothermia following a porcine cardiac arrest model and CPR.Methods Ventricular fibrillation was induced by programmed electrical stimulation in 16 male domestic pigs (n=8 per group).Four minutes after ventricular fibrillation,CPR was performed.Pigs that successfully restored spontaneous circulation then received intravenous infusions of saline at either 4C or room temperature to produce hypothermic and control conditions respectively.Serum diamine oxidase and gastrointestinal adenosine triphosphate enzyme activity were determined and histopathology of the gastrointestinal tract was performed by light microscopy and electron microscopy.Results Significant injury of the gastrointestinal tract after CPR was found.Na+-K+ and Ca2+ adenosine triphosphate enzyme activity in the gastric tissue were significantly high in animals receiving hypothermia treatment compared to controls.Hypothermia also significantly reduced serum diamine oxidase after CPR compared to the control group.Moreover,severe injury sustained by the gastrointestinal tissue was significantly ameliorated under hypothermic conditions compared to controls.Conclusions Gastrointestinal injury and abnormal energy metabolism are strikingly evident following CPR.Hypothermia,which is induced by an infusion of 4C saline,can rapidly reduce internal body temperature,improve energy metabolism,and ameliorate injury to the gastrointestinal mucosa after CPR.

  4. NF-kB activation as a biomarker of light injury using a transgenic mouse model

    Science.gov (United States)

    Pocock, Ginger M.; Boretsky, Adam; Wang, Heuy-Ching; Golden, Dallas; Gupta, Praveena; Vargas, Gracie; Oliver, Jeffrey W.; Motamedi, Massoud

    2012-03-01

    The spatial and temporal activation of NF-kB (p65) was monitored in the retina of a transgenic mouse model (cis-NFkB-EGFP) in vivo after receiving varying grades of laser induced thermal injury in one eye. Baseline images of the retinas from 26 mice were collected prior to injury and up to five months post-exposure using a Heidelberg Spectralis HRA confocal scanning laser ophthalmoscope (cSLO) with a spectral domain optical coherence tomographer (SDOCT). Injured and control eyes were enucleated at discrete time points following laser exposure for cryosectioning to determine localization of NF-kB dependent enhanced green fluorescent protein (EGFP) reporter gene expression within the retina using fluorescence microscopy. In addition, EGFP basal expression in brain and retinal tissue from the cis-NFkB-EGFP was characterized using two-photon imaging. Regions of the retina exposed to threshold and supra-threshold laser damage evaluated using fluorescence cSLO showed increased EGFP fluorescence localized to the exposed region for a duration that was dependent upon the degree of injury. Fluorescence microscopy of threshold damage revealed EGFP localized to the outer nuclear region and retinal pigment epithelial layer. Basal expression of EGFP imaged using two-photon microscopy was heterogeneously distributed throughout brain tissue and confined to the inner retina. Results show cis-NF-kB-EGFP reporter mouse can be used for in vivo studies of light induced injury to the retina and possibly brain injury.

  5. BTEB2 antisense RNA inhibits intimal hyperplasia in a rat carotid balloon injury model

    Institute of Scientific and Technical Information of China (English)

    LI De; HE Guo-xiang; TANG Bing; TANG Bo

    2006-01-01

    Objective: To investigate the effects of basic transcriptional element binding protein-2(BTEB2) antisense RNA on vascular smooth muscle cells (VSMCs) proliferation and the neointimal formation after carotid balloon injury in rats. Methods: The cultured VSMCs were transfected with an adenoviral vector containing BTEB2 antisense gene, Ad ASBTEB2. Effects of BTEB2 antisense RNA on the expression of BTEB2 were investigated by Western blot analysis. The cell cycle was analyzed using flow cytometry. Ad ASBTEB2, control adenoviral vector Ad. LacZ or PBS was transduced into the rat carotid artery after balloon injury. The expression of BTEB2 at 7, 14, and 21 d after gene transfer was detected by immunohistochemistry and neointima-to-media (I/M) area ratio at these time points was calculated. Results: The cell cycle was arrested in G0/G1 phase and the expression of BETB2 was downregulated after transfection with Ad ASBTEB2. Ad ASBTEB2 treatment reduced I/M area ratios on day 7, 14, and 21 after injury by 45%, 50% and 53% respectively, whereas the Ad LacZ treatment did not significantly alter these ratios compared with control group. Conclusion: BTEB2 antisense RNA mediated by adenoviral vector inhibits proliferation of VSMCs and significantly reduces neointimal hyperplasia in the rat carotid balloon injury model. BTEB2 antisense RNA is a potential therapeutic approach to preventing neointimal formation after balloon injury.

  6. Model System for Live Imaging of Neuronal Responses to Injury and Repair

    Directory of Open Access Journals (Sweden)

    Mathieu Gravel

    2011-11-01

    Full Text Available Although it has been well established that induction of growth-associated protein-43 (GAP-43 during development coincides with axonal outgrowth and early synapse formation, the existence of neuronal plasticity and neurite outgrowth in the adult central nervous system after injuries is more controversial. To visualize the processes of neuronal injury and repair in living animals, we generated reporter mice for bioluminescence and fluorescence imaging bearing the luc (luciferase and gfp (green fluorescent protein reporter genes under the control of the murine GAP-43 promoter. Reporter functionality was first observed during the development of transgenic embryos. Using in vivo bioluminescence and fluorescence imaging, we visualized induction of the GAP-43 signals from live embryos starting at E10.5, as well as neuronal responses to brain and peripheral nerve injuries (the signals peaked at 14 days postinjury. Moreover, three-dimensional analysis of the GAP-43 bioluminescent signal confirmed that it originated from brain structures affected by ischemic injury. The analysis of fluorescence signal at cellular level revealed colocalization between endogenous protein and the GAP-43-driven gfp transgene. Taken together, our results suggest that the GAP-43-luc/gfp reporter mouse represents a valid model system for real-time analysis of neurite outgrowth and the capacity of the adult nervous system to regenerate after injuries.

  7. A multiscale approach to blast neurotrauma modeling:Part II: Methodology for inducing blast injury to in vitro models

    Directory of Open Access Journals (Sweden)

    Gwen B. Effgen

    2012-02-01

    Full Text Available Due to the prominent role of improvised explosive devices (IEDs in wounding patterns of U.S. war-fighters in Iraq and Afghanistan, blast injury has risen to a new level of importance and is recognized to be a major cause of injuries to the brain. However, an injury risk-function for microscopic, macroscopic, behavioral, and neurological deficits has yet to be defined. While operational blast injuries can be very complex and thus difficult to analyze, a simplified blast injury model would facilitate studies correlating biological outcomes with blast biomechanics to define tolerance criteria. Blast-induced traumatic brain injury (bTBI results from the translation of a shock wave in air, such as that produced by an IED, into a pressure wave within the skull-brain complex. Our blast injury methodology recapitulates this phenomenon in vitro, allowing for control of the injury biomechanics via a compressed-gas shock tube used in conjunction with a custom-designed, fluid-filled receiver that contains the living culture. The receiver converts the air shock wave into a fast-rising pressure transient with minimal reflections, mimicking the intracranial pressure history in blast. We have developed an organotypic hippocampal slice culture model that exhibits cell death when exposed to a 530  17.7 kPa peak overpressure with a 1.026 ± 0.017 ms duration and 190 ± 10.7 kPa-ms impulse in-air. We have also injured a simplified in vitro model of the blood-brain barrier, which exhibits disrupted integrity immediately following exposure to 581  10.0 kPa peak overpressure with a 1.067 ms ± 0.006 ms duration and 222 ± 6.9 kPa-ms impulse in-air. To better prevent and treat bTBI, both the initiating biomechanics and the ensuing pathobiology must be understood in greater detail. A well-characterized, in vitro model of bTBI, in conjunction with animal models, will be a powerful tool for developing strategies to mitigate the risks of bTBI.

  8. Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation

    Science.gov (United States)

    Kiapour, Ali; Kiapour, Ata M.; Kaul, Vikas; Quatman, Carmen E.; Wordeman, Samuel C.; Hewett, Timothy E.; Demetropoulos, Constantine K.; Goel, Vijay K.

    2014-01-01

    Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury. PMID:24763546

  9. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.

    Science.gov (United States)

    Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K

    1994-02-01

    This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.

  10. A life course approach to injury prevention: a "lens and telescope" conceptual model

    Science.gov (United States)

    2011-01-01

    Background Although life course epidemiology is increasingly employed to conceptualize the determinants of health, the implications of this approach for strategies to reduce the burden of injuries have received little recognition to date. Methods The authors reviewed core injury concepts and the principles of the life course approach. Based on this understanding, a conceptual model was developed, to provide a holistic view of the mechanisms that underlie the accumulation of injury risk and their consequences over the life course. Results A "lens and telescope" model is proposed that particularly draws on (a) the extended temporal dimension inherent in the life course approach, with links between exposures and outcomes that span many years, or even generations, and (b) an ecological perspective, according to which the contexts in which individuals live are critical, as are changes in those contexts over time. Conclusions By explicitly examining longer-term, intergenerational and ecological perspectives, life course concepts can inform and strengthen traditional approaches to injury prevention and control that have a strong focus on proximal factors. The model proposed also serves as a tool to identify intervention strategies that have co-benefits for other areas of health. PMID:21899775

  11. Increased intestinal protein permeability in a model of lung injury induced by phorbol myristate acetate.

    Science.gov (United States)

    St John, R C; Mizer, L A; Weisbrode, S E; Dorinsky, P M

    1991-11-01

    Multiple nonpulmonary organ failure is a frequent complication of the adult respiratory distress syndrome (ARDS), and contributes significantly to the high mortality rate associated with this disorder. Although previous studies suggest that systemic organ injury may be an integral component of ARDS, little is known about the specific functional alterations that occur in these target organs. The present study was designed, therefore, to test the hypothesis that endothelial damage, as assessed by microvascular permeability changes, develops in systemic organs in a model of acute lung injury. To test this postulate, the microvascular permeability for total protein was estimated using the steady-state relationship between the lymph (CL) to plasma (Cp) protein concentration ratio (i.e., CL/Cp) and lymph flow in autoperfused cat ileum preparations. Specifically, CL/Cp was measured in five cats, 2 h after acute lung injury was induced by intravenously administered phorbol myristate acetate (PMA), 15 micrograms/kg, and the results were compared with those of seven time-matched control animals. Prior to PMA infusion, the PaO2/FIO2 ratio was 451 +/- 28 in both groups and remained unchanged (486 +/- 26) in the control group. By contrast, the PaO2/FIO2 ratio fell to 275 +/- 95 after PMA infusion (p less than 0.05). In addition, whereas CL/Cp was 0.099 +/- 0.008 in the control animals, it increased to 0.36 +/- 0.06 in the PMA-injured animals (p less than 0.01). In summary, this study demonstrated that in this model of acute lung injury produced by PMA-induced activation of circulating inflammatory cells, both acute lung injury and systemic organ injury (i.e., morphologic and permeability alterations) occurred.

  12. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.

    Science.gov (United States)

    He, Xiaoming; Bhowmick, Sankha; Bischof, John C

    2009-07-01

    The Arrhenius and thermal isoeffective dose (TID) models are the two most commonly used models for predicting hyperthermic injury. The TID model is essentially derived from the Arrhenius model, but due to a variety of assumptions and simplifications now leads to different predictions, particularly at temperatures higher than 50 degrees C. In the present study, the two models are compared and their appropriateness tested for predicting hyperthermic injury in both the traditional hyperthermia (usually, 43-50 degrees C) and thermal surgery (or thermal therapy/thermal ablation, usually, >50 degrees C) regime. The kinetic parameters of thermal injury in both models were obtained from the literature (or literature data), tabulated, and analyzed for various prostate and kidney systems. It was found that the kinetic parameters vary widely, and were particularly dependent on the cell or tissue type, injury assay used, and the time when the injury assessment was performed. In order to compare the capability of the two models for thermal injury prediction, thermal thresholds for complete killing (i.e., 99% cell or tissue injury) were predicted using the models in two important urologic systems, viz., the benign prostatic hyperplasia tissue and the normal porcine kidney tissue. The predictions of the two models matched well at temperatures below 50 degrees C. At higher temperatures, however, the thermal thresholds predicted using the TID model with a constant R value of 0.5, the value commonly used in the traditional hyperthermia literature, are much lower than those predicted using the Arrhenius model. This suggests that traditional use of the TID model (i.e., R=0.5) is inappropriate for predicting hyperthermic injury in the thermal surgery regime (>50 degrees C). Finally, the time-temperature relationships for complete killing (i.e., 99% injury) were calculated and analyzed using the Arrhenius model for the various prostate and kidney systems.

  13. Methodology of the Access to Care and Timing Simulation Model for Traumatic Spinal Cord Injury Care.

    Science.gov (United States)

    Santos, Argelio; Fallah, Nader; Lewis, Rachel; Dvorak, Marcel F; Fehlings, Michael G; Burns, Anthony Scott; Noonan, Vanessa K; Cheng, Christiana L; Chan, Elaine; Singh, Anoushka; Belanger, Lise M; Atkins, Derek

    2017-03-12

    Despite the relatively low incidence, the management and care of persons with traumatic spinal cord injury (tSCI) can be resource intensive and complex, spanning multiple phases of care and disciplines. Using a simulation model built with a system level view of the healthcare system allows for prediction of the impact of interventions on patient and system outcomes from injury through to community reintegration after tSCI. The Access to Care and Timing (ACT) project developed a simulation model for tSCI care using techniques from operations research and its development has been described previously. The objective of this article is to briefly describe the methodology and the application of the ACT Model as it was used in several of the articles in this focus issue. The approaches employed in this model provide a framework to look into the complexity of interactions both within and among the different SCI programs, sites and phases of care.

  14. Studies on blast traumatic brain injury using in-vitro model with shock tube.

    Science.gov (United States)

    Arun, Peethambaran; Spadaro, John; John, Jennifer; Gharavi, Robert B; Bentley, Timothy B; Nambiar, Madhusoodana P

    2011-06-11

    One of the major limitations in studying the mechanisms of blast-induced traumatic brain injury (bTBI) or screening therapeutics for protection is the lack of suitable laboratory model systems that can closely mimic the complex blast exposure. Although animal models of bTBI that use shock tubes to mimic blast exposure are available, no high throughput shock tube-based in-vitro models have been reported. Here, we report an in-vitro bTBI model using a compressed air-driven shock tube and mouse neuroblastoma/rat glioblastoma hybrid cells (NG108-15) or SH-SY5Y human neuroblastoma cells in tissue culture plates. Our data showed significant neurobiological effects with decreased adenosine triphosphate levels, increased cellular injury, lactate dehydrogenase release, and reactive oxygen species formation after blast exposure.

  15. Toll-like receptor 4 dependent responses to lung injury in a murine model of pulmonary contusion

    OpenAIRE

    2009-01-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We previously demonstrated that toll-like receptor 2 participates in the inflammatory response to lung injury. We hypothesized that the toll-like receptor 4, in a MyD88-dependent manner, may also participate in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinical...

  16. Influence of local peroxisome proliferator-activated receptor gamma (PPARγ) activation of restenosis/in-stent restenosis following experimental coronary intervention in the porcine stent model

    OpenAIRE

    Klinowski, Jens

    2011-01-01

    Background: Coronary heart disease (CHD) remains the main cause of mortality in the industrial countries. In approximately 80% of all coronary interventions, coronary stents are inserted. Bare metal stents (BMS) show a restenosis rate of around 10 – 30%, and with drug eluting stents (DES) the restenosis rate drops to 5 – 10%. Coronary restenosis following percutaneous coronary intervention (PCI) represents a serious problem, both clinically and economically. Patients with Diabetes mellitus...

  17. Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain

    Science.gov (United States)

    2011-02-17

    brain and spinal cord injury, is the largest contributor to a poor neurological outcome in survivors of brain and spinal cord trauma. Microscale...anatomical features of a 50th percentile male head, including the brain, falx and tentorium, cerebral spinal fluid (CSF), duramater, piamater, facial...discretized finite elements. (b) Sections of the head model; the right half of the head model is shown with the brain, the meningeal layers (dura

  18. Development of prognostic models for patients with traumatic brain injury: a systematic review.

    Science.gov (United States)

    Gao, Jinxi; Zheng, Zhaocong

    2015-01-01

    Outcome prediction following traumatic brain injury (TBI) is a widely investigated field of research. Several outcome prediction models have been developed for prognosis after TBI. There are two main prognostic models: International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury (IMPACT) prognosis calculator and the Corticosteroid Randomization after Significant Head Injury (CRASH) prognosis calculator. The prognosis model has three or four levels: (1) model A included age, motor GCS, and pupil reactivity; (2) model B included predictors from model A with CT characteristics; and (3) model C included predictors from model B with laboratory parameters. In consideration of the fact that interventions after admission, such as ICP management also have prognostic value for outcome predictions and may improve the models' performance, Yuan F et al developed another prediction model (model D) which includes ICP. With the development of molecular biology, a handful of brain injury biomarkers were reported that may improve the predictive power of prognostic models, including neuron-specific enolase (NSE), glial fibrillary acid protein (GFAP), S-100β protein, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), myelin basic protein (MBP), cleaved tau protein (C-tau), spectrin breakdown products (SBDPs), and ubiquitin C-terminal hydrolase-L1 (UCH-L1), and sex hormones. A total of 40 manuscripts reporting 11 biomarkers were identified in the literature. Many substances have been implicated as potential biomarkers for TBI; however, no single biomarker has shown the necessary sensitivity and specificity for predicting outcome. The limited number of publications in this field underscores the need for further investigation. Through fluid biomarker analysis, the advent of multi-analyte profiling technology has enabled substantial advances in the diagnosis and treatment of a variety of conditions. Application of this technology to create a bio

  19. Kidney injury biomarkers in hypertensive, diabetic, and nephropathy rat models treated with contrast media.

    Science.gov (United States)

    Rouse, Rodney L; Stewart, Sharron R; Thompson, Karol L; Zhang, Jun

    2013-01-01

    Contrast-induced nephropathy (CIN) refers to a decline in renal function following exposure to iodinated contrast media (CM). The present study was initiated to explore the role of known human risk factors (spontaneous hypertension, diabetes, protein-losing nephropathy) on CIN development in rodent models and to determine the effect of CM administration on kidney injury biomarkers in the face of preexisting kidney injury. Spontaneously hypertensive rats (hypertension), streptozotocin-treated Sprague Dawley rats (diabetes), and Dahl salt-sensitive rats (protein-losing nephropathy) were given single intravenous injections of the nonionic, low osmolar contrast medium, iohexol. Blood urea nitrogen (BUN), serum creatinine (sCr), and urinary biomarkers; albumin, lipocalin 2 (Lcn-2), osteopontin (Opn), kidney injury molecule 1 (Kim-1), renal papillary antigen 1 (Rpa-1), α-glutathione S-transferase (α-Gst), µ-glutathione S-transferase (µ-Gst), and beta-2 microglobulin (β2m) were measured in disease models and appropriate controls to determine the response of these biomarkers to CM administration. Each disease model produced elevated biomarkers of kidney injury without CM. Preexisting histopathology was exacerbated by CM but little or no significant increases in biomarkers were observed. When 1.5-fold or greater sCr increases from pre-CM were used to define true positives, receiver-operating characteristic curve analysis of biomarker performance showed sCr was the best predictor of CIN across disease models. β2m, Lcn-2, and BUN were the best predictors of histopathology defined kidney injury.

  20. Multi-modal approach for investigating brain and behavior changes in an animal model of traumatic brain injury.

    Science.gov (United States)

    Heffernan, Meghan E; Huang, Wei; Sicard, Kenneth M; Bratane, Bernt T; Sikoglu, Elif M; Zhang, Nanyin; Fisher, Marc; King, Jean A

    2013-06-01

    Use of novel approaches in imaging modalities is needed for enhancing diagnostic and therapeutic outcomes of persons with a traumatic brain injury (TBI). This study explored the feasibility of using functional magnetic resonance imaging (fMRI) in conjunction with behavioral measures to target dynamic changes in specific neural circuitries in an animal model of TBI. Wistar rats were randomly assigned to one of two groups (traumatic brain injury/sham operation). TBI rats were subjected to the closed head injury (CHI) model. Any observable motor deficits and cognitive deficits associated with the injury were measured using beam walk and Morris water maze tests, respectively. fMRI was performed to assess the underlying post-traumatic cerebral anatomy and function in acute (24 hours after the injury) and chronic (7 and 21 days after the injury) phases. Beam walk test results detected no significant differences in motor deficits between groups. The Morris water maze test indicated that cognitive deficits persisted for the first week after injury and, to a large extent, resolved thereafter. Resting state functional connectivity (rsFC) analysis detected initially diminished connectivity between cortical areas involved in cognition for the TBI group; however, the connectivity patterns normalized at 1 week and remained so at the 3 weeks post-injury time point. Taken together, we have demonstrated an objective in vivo marker for mapping functional brain changes correlated with injury-associated cognitive behavior deficits and offer an animal model for testing potential therapeutic interventions options.

  1. Distinct Differences on Neointima Formation in Immunodeficient and Humanized Mice after Carotid or Femoral Arterial Injury

    Science.gov (United States)

    Moser, Jill; van Ark, Joris; van Dijk, Marcory C.; Greiner, Dale L.; Shultz, Leonard D.; van Goor, Harry; Hillebrands, Jan-Luuk

    2016-01-01

    Percutaneous coronary intervention is widely adopted to treat patients with coronary artery disease. However, restenosis remains an unsolved clinical problem after vascular interventions. The role of the systemic and local immune response in the development of restenosis is not fully understood. Hence, the aim of the current study was to investigate the role of the human immune system on subsequent neointima formation elicited by vascular injury in a humanized mouse model. Immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl(NSG) mice were reconstituted with human (h)PBMCs immediately after both carotid wire and femoral cuff injury were induced in order to identify how differences in the severity of injury influenced endothelial regeneration, neointima formation, and homing of human inflammatory and progenitor cells. In contrast to non-reconstituted mice, hPBMC reconstitution reduced neointima formation after femoral cuff injury whereas hPBMCs promoted neointima formation after carotid wire injury 4 weeks after induction of injury. Neointimal endothelium and smooth muscle cells in the injured arteries were of mouse origin. Our results indicate that the immune system may differentially respond to arterial injury depending on the severity of injury, which may also be influenced by the intrinsic properties of the arteries themselves, resulting in either minimal or aggravated neointima formation. PMID:27759053

  2. Improving CCTA-based lesions' hemodynamic significance assessment by accounting for partial volume modeling in automatic coronary lumen segmentation.

    Science.gov (United States)

    Freiman, Moti; Nickisch, Hannes; Prevrhal, Sven; Schmitt, Holger; Vembar, Mani; Maurovich-Horvat, Pál; Donnelly, Patrick; Goshen, Liran

    2017-03-01

    The goal of this study was to assess the potential added benefit of accounting for partial volume effects (PVE) in an automatic coronary lumen segmentation algorithm that is used to determine the hemodynamic significance of a coronary artery stenosis from coronary computed tomography angiography (CCTA). Two sets of data were used in our work: (a) multivendor CCTA datasets of 18 subjects from the MICCAI 2012 challenge with automatically generated centerlines and 3 reference segmentations of 78 coronary segments and (b) additional CCTA datasets of 97 subjects with 132 coronary lesions that had invasive reference standard FFR measurements. We extracted the coronary artery centerlines for the 97 datasets by an automated software program followed by manual correction if required. An automatic machine-learning-based algorithm segmented the coronary tree with and without accounting for the PVE. We obtained CCTA-based FFR measurements using a flow simulation in the coronary trees that were generated by the automatic algorithm with and without accounting for PVE. We assessed the potential added value of PVE integration as a part of the automatic coronary lumen segmentation algorithm by means of segmentation accuracy using the MICCAI 2012 challenge framework and by means of flow simulation overall accuracy, sensitivity, specificity, negative and positive predictive values, and the receiver operated characteristic (ROC) area under the curve. We also evaluated the potential benefit of accounting for PVE in automatic segmentation for flow simulation for lesions that were diagnosed as obstructive based on CCTA which could have indicated a need for an invasive exam and revascularization. Our segmentation algorithm improves the maximal surface distance error by ~39% compared to previously published method on the 18 datasets from the MICCAI 2012 challenge with comparable Dice and mean surface distance. Results with and without accounting for PVE were comparable. In contrast

  3. Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature.

    Science.gov (United States)

    Yokobori, Shoji; Nakae, Ryuta; Yokota, Hiroyuki; Spurlock, Markus S; Mondello, Stefania; Gajavelli, Shyam; Bullock, Ross M

    2016-05-25

    The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.

  4. The Current State of Knowledge of Hepatic Ischemia-Reperfusion Injury Based on Its Study in Experimental Models

    Science.gov (United States)

    Mendes-Braz, M.; Elias-Miró, M.; Jiménez-Castro, M. B.; Casillas-Ramírez, A.; Ramalho, F. S.; Peralta, C.

    2012-01-01

    The present review focuses on the numerous experimental models used to study the complexity of hepatic ischemia/reperfusion (I/R) injury. Although experimental models of hepatic I/R injury represent a compromise between the clinical reality and experimental simplification, the clinical transfer of experimental results is problematic because of anatomical and physiological differences and the inevitable simplification of experimental work. In this review, the strengths and limitations of the various models of hepatic I/R are discussed. Several strategies to protect the liver from I/R injury have been developed in animal models and, some of these, might find their way into clinical practice. We also attempt to highlight the fact that the mechanisms responsible for hepatic I/R injury depend on the experimental model used, and therefore the therapeutic strategies also differ according to the model used. Thus, the choice of model must therefore be adapted to the clinical question being answered. PMID:22649277

  5. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2016-01-01

    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  6. Anisometry anterior cruciate ligament sport injury mechanism study: a finite element model with optimization method.

    Science.gov (United States)

    Na, Li; Wang, Wei; Ye, Bin; Wu, Song

    2014-06-01

    ACL damage is one the most frequent causes of knee injuries and thus has long been the focus of research in biomechanics and sports medicine. Due to the anisometric geometry and functional complexity of the ACL in the knee joint, it is usually difficult to experimentally study the biomechanics of ACLs. Anatomically ACL geometry was obtained from both MR images and anatomical observations. The optimal material parameters of the ACL were obtained by using an optimization-based material identification method that minimized the differences between experimental results from ACL specimens and FE simulations. The optimal FE model simulated biomechanical responses of the ACL during complex combined injury-causing knee movements, it predicted stress concentrations on the top and middle side of the posterolateral (PL) bundles. This model was further validated by a clinical case of ACL injury diagnosed by MRI and arthroscope, it demonstrated that the locations of rupture in the patient's knee corresponded to those where the stresses and moments were predicted to be concentrated. The result implies that varus rotation played a contributing but secondary role in injury under combined movements, the ACL elevation angle, is positive correlated with the tensional loading tolerance of the ACL.

  7. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Institute of Scientific and Technical Information of China (English)

    Juan Felipe Diaz Quiroz; Yuping Li; Conrado Aparicio; Karen Echeverri

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel ther-apies, this is in part due to the complexity of the injury and the diffculty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrixin vitro and when injured, the cells respond as they doin vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells atfer exposure to drugs.

  8. Thymoquinone protects end organs from abdominal aorta ischemia/reperfusion injury in a rat model

    Directory of Open Access Journals (Sweden)

    Mehmet Salih Aydin

    2015-02-01

    Full Text Available Introduction: Previous studies have demonstrated that thymoquinone has protective effects against ischemia reperfusion injury to various organs like lungs, kidneys and liver in different experimental models. Objective: We aimed to determine whether thymoquinone has favorable effects on lung, renal, heart tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Methods: Thirty rats were divided into three groups as sham (n=10, control (n=10 and thymoquinone (TQ treatment group (n=10. Control and TQ-treatment groups underwent abdominal aorta ischemia for 45 minutes followed by a 120-min period of reperfusion. In the TQ-treatment group, thymoquinone was given 5 minutes. before reperfusion at a dose of 20 mg/kg via an intraperitoneal route. Total antioxidant capacity, total oxidative status (TOS, and oxidative stress index (OSI in blood serum were measured and lung, kidney, and heart tissue histopathology were evaluated with light microscopy. Results: Total oxidative status and oxidative stress index activity in blood samples were statistically higher in the control group compared to the sham and TQ-treatment groups (P<0.001 for TOS and OSI. Control group injury scores were statistically higher compared to sham and TQ-treatment groups (P<0.001 for all comparisons. Conclusion: Thymoquinone administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta ischemia-reperfusion rat model.

  9. The Effects of Vitamin D on Gentamicin-Induced Acute Kidney Injury in Experimental Rat Model

    Directory of Open Access Journals (Sweden)

    Ender Hur

    2013-01-01

    Full Text Available Introduction. Acute kidney injury (AKI pathogenesis is complex. Findings of gentamicin nephrotoxicity are seen in 30% of the AKI patients. Vitamin D has proven to be effective on renin expression, inflammatory response, oxidative stress, apoptosis, and atherosclerosis. We aimed to investigate the effect of vitamin D in an experimental rat model of gentamicin-induced AKI. Methods. Thirty nonuremic Wistar albino rats were divided into 3 groups: Control group, 1 mL saline intramuscular (im daily; Genta group, gentamicin 100 mg/kg/day (im; Genta + vitamin D, gentamicin 100 mg/kg/day (im in addition to 1α, 25 (OH2D3 0.4 mcg/kg/day subcutaneously for 8 days. Blood pressures and 24-hour urine were measured. Blood urea and creatinine levels and urine tubular injury markers were measured. Renal histology was semiquantitatively assessed. Results. Urea, creatinine and urine neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 were all increased in Genta group indicating AKI model. Systolic blood pressure decreased, but urine volume and glutathione increased in Genta + Vit D group compared to Control group. Histological scores indicating tubular injury increased in Genta and Genta + Vit D groups. Conclusions. Vitamin D does not seem to be effective on histological findings although it has some beneficial effects via RAS system and a promising effect on antioxidant system.

  10. Raman spectroscopic investigation of spinal cord injury in a rat model

    Science.gov (United States)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  11. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Science.gov (United States)

    Diaz Quiroz, Juan Felipe; Li, Yuping; Aparicio, Conrado; Echeverri, Karen

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs. PMID:28123426

  12. Effect of minimized perfusion circuit on brain injury markers carnosinase and brain-type fatty binding protein in coronary artery bypass grafting patients.

    Science.gov (United States)

    Pahari, Dipak R; Gu, Y John; van Oeveren, Willem; El-Essawi, Aschraf; Harringer, Wolfgang; Brouwer, René M H

    2013-02-01

    A minimized perfusion circuit (MPC) has proven to be superior to the conventional circulatory perfusion bypass (CCPB) as it reduces the blood-material interaction and hemodilution. Until now not much is known about impact these different perfusion systems have on the brain. The objective of this study is to determine carnosinase and brain-type fatty binding protein (BFABP) activity as novel specific biomarkers for ischemic brain tissue damage and how their activity differs during and after MPC and CCPB as well as to compare the inflammatory response of both perfusion systems. In a prospective pilot study, 28 patients undergoing coronary artery bypass grafting were randomly divided into an MPC group (n = 14) and a CCPB group (n = 14). Blood samples were taken before, during, and after operation until the fifth postoperative day. The brain biomarker carnosinase was determined by measuring the rate of histidine production from the substrate homocarnosine, whereas BFABP and interleukin-6 were determined by enzyme-linked immunosorbent assay (ELISA). C-reactive protein (CRP) and endothelin-1 were determined by enzyme immunoassay. The mean serum carnosinase activity was significantly higher in MPC (0.57 ± 0.34 nM histidine/mL/min) as compared with the CCPB group (0.36 ± 0.13 nM histidine/mL/min) at the end of operation (P = 0.02). The BFABP did not show any difference between the two groups in the immediate postoperative period until the second postoperative day. From that time point onward, it showed a steep increase in the CCPB group (581.3 ± 157.11 pg/mL) as compared with the concentrations in the MPC group (384.6 ± 39 pg/mL) (P = 0.04). The inflammation markers interleukin-6 and CRP showed a similar pattern in both groups without significant difference. In contrast, the leukocyte count on operation day and endothelin-1 on the first postoperative day were significantly higher in the CCPB group (P = 0.01, P = 0

  13. Protective Effects of HDL Against Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Gomaraschi, Monica; Calabresi, Laura; Franceschini, Guido

    2016-01-01

    Several lines of evidence suggest that, besides being a strong independent predictor of the occurrence of primary coronary events, a low plasma high density lipoprotein (HDL) cholesterol level is also associated with short- and long-term unfavorable prognosis in patients, who have recovered from a myocardial infarction, suggesting a direct detrimental effect of low HDL on post-ischemic myocardial function. Experiments performed in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury have clearly shown that HDL are able to preserve cardiac function when given before ischemia or at reperfusion; the protective effects of HDL against I/R injury have been also confirmed in other tissues and organs, as brain and hind limb. HDL were shown to act on coronary endothelial cells, by limiting the increase of endothelium permeability and promoting vasodilation and neoangiogenesis, on white blood cells, by reducing their infiltration into the ischemic tissue and the release of pro-inflammatory and matrix-degrading molecules, and on cardiomyocytes, by preventing the activation of the apoptotic cascade. Synthetic HDL retains the cardioprotective activity of plasma-derived HDL and may become a useful adjunctive therapy to improve clinical outcomes in patients with acute coronary syndromes or undergoing coronary procedures.

  14. Adapting a Markov Monte Carlo simulation model for forecasting the number of coronary artery revascularisation procedures in an era of rapidly changing technology and policy.

    Science.gov (United States)

    Mannan, Haider R; Knuiman, Matthew; Hobbs, Michael

    2008-06-25

    Treatments for coronary heart disease (CHD) have evolved rapidly over the last 15 years with considerable change in the number and effectiveness of both medical and surgical treatments. This period has seen the rapid development and uptake of statin drugs and coronary artery revascularization procedures (CARPs) that include Coronary Artery Bypass Graft procedures (CABGs) and Percutaneous Coronary Interventions (PCIs). It is difficult in an era of such rapid change to accurately forecast requirements for treatment services such as CARPs. In a previous paper we have described and outlined the use of a Markov Monte Carlo simulation model for analyzing and predicting the requirements for CARPs for the population of Western Australia (Mannan et al, 2007). In this paper, we expand on the use of this model for forecasting CARPs in Western Australia with a focus on the lack of adequate performance of the (standard) model for forecasting CARPs in a period during the mid 1990s when there were considerable changes to CARP technology and implementation policy and an exploration and demonstration of how the standard model may be adapted to achieve better performance. Selected key CARP event model probabilities are modified based on information relating to changes in the effectiveness of CARPs from clinical trial evidence and an awareness of trends in policy and practice of CARPs. These modified model probabilities and the ones obtained by standard methods are used as inputs in our Markov simulation model. The projected numbers of CARPs in the population of Western Australia over 1995-99 only improve marginally when modifications to model probabilities are made to incorporate an increase in effectiveness of PCI procedures. However, the projected numbers improve substantially when, in addition, further modifications are incorporated that relate to the increased probability of a PCI procedure and the reduced probability of a CABG procedure stemming from changed CARP preference

  15. Adapting a Markov Monte Carlo simulation model for forecasting the number of Coronary Artery Revascularisation Procedures in an era of rapidly changing technology and policy

    Directory of Open Access Journals (Sweden)

    Knuiman Matthew

    2008-06-01

    Full Text Available Abstract Background Treatments for coronary heart disease (CHD have evolved rapidly over the last 15 years with considerable change in the number and effectiveness of both medical and surgical treatments. This period has seen the rapid development and uptake of statin drugs and coronary artery revascularization procedures (CARPs that include Coronary Artery Bypass Graft procedures (CABGs and Percutaneous Coronary Interventions (PCIs. It is difficult in an era of such rapid change to accurately forecast requirements for treatment services such as CARPs. In a previous paper we have described and outlined the use of a Markov Monte Carlo simulation model for analyzing and predicting the requirements for CARPs for the population of Western Australia (Mannan et al, 2007. In this paper, we expand on the use of this model for forecasting CARPs in Western Australia with a focus on the lack of adequate performance of the (standard model for forecasting CARPs in a period during the mid 1990s when there were considerable changes to CARP technology and implementation policy and an exploration and demonstration of how the standard model may be adapted to achieve better performance. Methods Selected key CARP event model probabilities are modified based on information relating to changes in the effectiveness of CARPs from clinical trial evidence and an awareness of trends in policy and practice of CARPs. These modified model probabilities and the ones obtained by standard methods are used as inputs in our Markov simulation model. Results The projected numbers of CARPs in the population of Western Australia over 1995–99 only improve marginally when modifications to model probabilities are made to incorporate an increase in effectiveness of PCI procedures. However, the projected numbers improve substantially when, in addition, further modifications are incorporated that relate to the increased probability of a PCI procedure and the reduced probability of a CABG

  16. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury.

    Science.gov (United States)

    Divani, Afshin A; Murphy, Amanda J; Meints, Joyce; Sadeghi-Bazargani, Homayoun; Nordberg, Jessica; Monga, Manoj; Low, Walter C; Bhatia, Prerana M; Beilman, Greg J; SantaCruz, Karen S

    2015-07-15

    Blast-induced traumatic brain injury (bTBI) is the "signature" injury of the recent Iraq and Afghanistan wars. Here, we present a novel method to induce bTBI using shock wave (SW) lithotripsy. Using a lithotripsy machine, Wistar rats (N = 70; 408.3 ± 93 g) received five SW pulses to the right side of the frontal cortex at 24 kV and a frequency of 60 Hz. Animals were then randomly divided into three study endpoints: 24 h (n = 25), 72 h (n = 19) and 168 h (n = 26). Neurological and behavioral assessments (Garcia's test, beam walking, Rotarod, and elevated plus maze) were performed at the baseline, and further assessments followed at 3, 6, 24, 72, and 168 h post-injury, if applicable. We performed digital subtraction angiography (DSA) to assess presence of cerebral vasospasm due to induced bTBI. Damage to brain tissue was assessed by an overall histological severity (OHS) score based on depth of injury, area of hemorrhage, and extent of axonal injury. Except for beam walking, OHS was significantly correlated with the other three outcome measures with at least one of their assessments during the first 6 h after the experiment. OHS manifested the highest absolute correlation coefficients with anxiety at the baseline and 6 h post-injury (r(baseline) = -0.75, r(6hrs) = 0.85; p<0.05). Median hemispheric differences for contrast peak values (obtained from DSA studies) for 24, 72, and 168 h endpoints were 3.45%, 3.05% and 0.2%, respectively, with statistically significant differences at 1 versus 7 d (p<0.05) and 3 versus 7 d (p<0.01). In this study, we successfully established a preclinical rat model of bTBI with characteristics similar to those observed in clinical cases. This new method may be useful for future investigations aimed at understanding bTBI pathophysiology.

  17. Models in injury biomechanics for improved passive vehicle safety

    NARCIS (Netherlands)

    Wismans, J.S.H.M.

    1996-01-01

    Thorough knowledge of the characteristics of the human body and its behaviour under extreme loading conditions is essential in order to prevent the serious consequences of road and other accidents. In order to study the human body response five type of models for the human body can be distinguished:

  18. Models in injury biomechanics for improved passive vehicle safety

    NARCIS (Netherlands)

    Wismans, J.S.H.M.

    1996-01-01

    Thorough knowledge of the characteristics of the human body and its behaviour under extreme loading conditions is essential in order to prevent the serious consequences of road and other accidents. In order to study the human body response five type of models for the human body can be distinguished:

  19. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin......, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized...... to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  20. Protective effects of batimastat against hemorrhagic injuries in delayed jellyfish envenomation syndrome models.

    Science.gov (United States)

    Wang, Beilei; Liu, Dan; Liu, Guoyan; Zhang, Xin; Wang, Qianqian; Zheng, Jiemin; Zhou, Yonghong; He, Qian; Zhang, Liming

    2015-12-15

    Previously, we established delayed jellyfish envenomation syndrome (DJES) models and proposed that the hemorrhagic toxins in jellyfish tentacle extracts (TE) play a significant role in the liver and kidney injuries of the experimental model. Further, we also demonstrated that metalloproteinases are the central toxic components of the jellyfish Cyanea capillata (C. capillata), which may be responsible for the hemorrhagic effects. Thus, metalloproteinase inhibitors appear to be a promising therapeutic alternative for the treatment of hemorrhagic injuries in DJES. In this study, we examined the metalloproteinase activity of TE from the jellyfish C. capillata using zymography analyses. Our results confirmed that TE possessed a metalloproteinase activity, which was also sensitive to heat. Then, we tested the effect of metalloproteinase inhibitor batimastat (BB-94) on TE-induced hemorrhagic injuries in DJES models. Firstly, using SR-based X-ray microangiography, we found that BB-94 significantly improved TE-induced hepatic and renal microvasculature alterations in DJES mouse model. Secondly, under synchrotron radiation micro-computed tomography (SR-μCT), we also confirmed that BB-94 reduced TE-induced hepatic and renal microvasculature changes in DJES rat model. In addition, being consistent with the imaging results, histopathological and terminal deoxynucleotidyl transferase-mediated UTP end labeling (TUNEL)-like staining observations also clearly corroborated this hypothesis, as BB-94 was highly effective in neutralizing TE-induced extensive hemorrhage and necrosis in DJES rat model. Although it may require further clinical studies in the near future, the current study opens up the possibilities for the use of the metalloproteinase inhibitor, BB-94, in the treatment of multiple organ hemorrhagic injuries in DJES.

  1. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Institute of Scientific and Technical Information of China (English)

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background:Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI),and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury,reduce lung impairs,and enhance the repair of VILI.However,whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown.This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI.Methods:Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg).MSCs were given before or after ventilation.The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation,and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation.Results:Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration,inflammatory chemokines (tumor necrosis factor-alpha,interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid,and injury score of the lung tissue.These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity,production of radical oxygen series.MSC intervention especially pretreatment attenuated subsequent lung injury,systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation.Conclusions:MV causes profound lung injury and PMN-predominate inflammatory responses.The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  2. Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents.

    Science.gov (United States)

    Gastaldi, D; Sassi, V; Petrini, L; Vedani, M; Trasatti, S; Migliavacca, F

    2011-04-01

    The main drawback of a conventional stenting procedure is the high risk of restenosis. The idea of a stent that "disappears" after having fulfilled its mission is very intriguing and fascinating, since it can be expected that the stent mass decreases in time to allow the gradual transmission of the mechanical load to the surrounding tissues owing to controlled dissolution by corrosion. Magnesium and its alloys are appealing materials for designing biodegradable stents. The objective of this work is to develop, in a finite element framework, a model of magnesium degradation that is able to predict the corrosion rate, thus providing a valuable tool for the design of bioresorbable stents. Continuum damage mechanics is suitable for modeling several damage mechanisms, including different types of corrosion. In this study, the damage is assumed to be the superposition of stress corrosion and uniform microgalvanic corrosion processes. The former describes the stress-mediated localization of the corrosion attack through a stress-dependent evolution law, while the latter affects the free surface of the material exposed to an aggressive environment. Comparisons with experimental tests show that the developed model can reproduce the behavior of different magnesium alloys subjected to static corrosion tests. The study shows that parameter identification for a correct calibration of the model response on the results of uniform and stress corrosion experimental tests is reachable. Moreover, three-dimensional stenting procedures accounting for interaction with the arterial vessel are simulated, and it is shown how the proposed modeling approach gives the possibility of accounting for the combined effects of an aggressive environment and mechanical loading.

  3. Effect of injury on S1 dorsal root ganglia in an experimental model of neuropathic faecal incontinence.

    LENUS (Irish Health Repository)

    Peirce, C

    2011-08-01

    An experimental model of neuropathic faecal incontinence has recently been established. This study aimed to quantify and compare the effect of crush and compression injury on first-order sensory neurones of the inferior rectal nerve (IRN) using a nuclear marker of axonal injury, activating transcription factor (ATF) 3.

  4. Development of A Novel Murine Model of Combined Radiation and Peripheral Tissue Trauma Injuries.

    Science.gov (United States)

    Antonic, Vlado; Jackson, Isabel L; Ganga, Gurung; Shea-Donohue, Terez; Vujaskovic, Zeljko

    2017-02-01

    Detonation of a 10-kiloton nuclear bomb in an urban setting would result in >1 million casualties, the majority of which would present with combined injuries. Combined injuries, such as peripheral tissue trauma and radiation exposure, trigger inflammatory events that lead to multiple organ dysfunction (MOD) and death, with gastrointestinal (GI) and pulmonary involvement playing crucial roles. The objective of this study was to develop an animal model of combined injuries, peripheral tissue trauma (TBX animal model) combined with total body irradiation with 5% bone marrow shielding (TBI/BM5) to investigate if peripheral tissue trauma contributes to reduced survival. Male C57BL/6J mice were exposed to TBX10%, irradiation (TBI/BM5), or combined injuries (TBX10% + TBI/BM5). Experiments were conducted to evaluate mortality at day 7 after TBI/BM5. Serial euthanasia was performed at day 1, 3 and 6 or 7 after TBI/BM5 to evaluate the time course of pathophysiologic processes in combined injuries. Functional tests were performed to assess pulmonary function and GI motility. Postmortem samples of lungs and jejunum were collected to assess tissue damage. Results indicated higher lethality and shorter survival in the TBX10% +T BI/BM5 group than in the TBX10% or TBI/BM5 groups (day 1 vs. day 7 and 6, respectively). TBI/BM5 alone had no effects on the lungs but significantly impaired GI function at day 6. As expected, in the animals that received severe trauma (TBX10%), we observed impairment in lung function and delay in GI transit in the first 3 days, effects that decreased at later time points. Trauma combined with radiation (TBX10% + TBI/BM5) significantly augmented impairment of the lung and GI function in comparison to TBX10% and TBI/BM5 groups at 24 h. Histologic evaluation indicated that combined injuries caused greater tissue damage in the intestines in TBX10% + TBI/BM5 group when compared to other groups. We describe here the first combined tissue trauma

  5. Transmission line matrix modelling of thermal injuries to skin.

    Science.gov (United States)

    Aliouat Bellia, S; Saidane, A; Hamou, A; Benzohra, M; Saiter, J M

    2008-08-01

    A numerical model based on the transmission line matrix method is presented for the quantitative prediction of skin burn resulting from exposure of a specific region of human skin surface to a high temperature heat source. Transient temperatures were numerically estimated by Pennes' bioheat equation, and the damage function denoting the extent of burn was calculated using the Arrhenius assumptions for protein damage rate. A two-dimensional transmission line matrix model was used to predict the effects of exposure time and structure thicknesses on the transient temperature distribution and damage extent. Compared with other numerical sources the transmission line matrix results revealed good agreement, suggesting that this method may be an effective tool for the thermal diagnostic of burns.

  6. Investigation of Management Models in Elite Athlete Injuries

    OpenAIRE

    Chen, Shen-Kai; Cheng, Yun-Min; Huang, Peng-Ju; Chou, Pei-Hsi; Lin, Yen-chung; Hong, Yu-Jue

    2005-01-01

    This cross-sectional study investigated management models among elite athletes participating in sports including baseball, basketball, soccer, volleyball, tennis, softball, football, handball, track and field, swimming, judo, tae-kwon-do, gymnastics, archery, and weight lifting at the Tsoying National Sport Training Center. Data were collected by questionnaire. Of the 393 athletes investigated, 56% were male and 44% were female, with an average age of 20.9 years and average length of athletic...

  7. Lack of acute cardioprotective effect from preischaemic erythropoietin administration in a porcine coronary occlusion model

    DEFF Research Database (Denmark)

    Kristensen, Jens; Mæng, Michael; Rehling, Michael;

    2005-01-01

    by myocardial perfusion imaging (MPI) and postmortem by a histochemical procedure (at 150 min of reperfusion). RESULTS: IS/AAR did not differ significantly between control (C), EPO1 and EPO2 groups, neither measured by MPI (mean+/-SD for C: 0.87+/-0.13; EPO1: 0.92+/-0.08; EPO2: 0.87+/-0.11), nor histochemically...... of reperfusion in our porcine model....

  8. Patient-specific computer modelling of coronary bifurcation stenting: the John Doe programme.

    Science.gov (United States)

    Mortier, Peter; Wentzel, Jolanda J; De Santis, Gianluca; Chiastra, Claudio; Migliavacca, Francesco; De Beule, Matthieu; Louvard, Yves; Dubini, Gabriele

    2015-01-01

    John Doe, an 81-year-old patient with a significant distal left main (LM) stenosis, was treated using a provisional stenting approach. As part of an European Bifurcation Club (EBC) project, the complete stenting procedure was repeated using computational modelling. First, a tailored three-dimensional (3D) reconstruction of the bifurcation anatomy was created by fusion of multislice computed tomography (CT) imaging and intravascular ultrasound. Second, finite element analysis was employed to deploy and post-dilate the stent virtually within the generated patient-specific anatomical bifurcation model. Finally, blood flow was modelled using computational fluid dynamics. This proof-of-concept study demonstrated the feasibility of such patient-specific simulations for bifurcation stenting and has provided unique insights into the bifurcation anatomy, the technical aspects of LM bifurcation stenting, and the positive impact of adequate post-dilatation on blood flow patterns. Potential clinical applications such as virtual trials and preoperative planning seem feasible but require a thorough clinical validation of the predictive power of these computer simulations.

  9. A novel, stable and reproducible acute lung injury model induced by oleic acid in immature piglet

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; LING Feng; ZHANG Yan-bo; LIU Ai-jun; LIU Dong-hai; QIAO Chen-hui; WANG Qiang; LIU Ying-long

    2011-01-01

    Background Young children are susceptible to pulmonary injury,and acute lung injury (ALl) often results in a high mortality and financial costs in pediatric patients.A good ALl model will help us to gain a better understanding of the real pathophysiological picture and to evaluate novel treatment approaches to acute respiratory distress syndrome (ARDS) more accurately and liberally.This study aimed to establish a hemodynamically stable and reproducible model with ALl in piglet induced by oleic acid.Methods Six Chinese mini-piglets were used to establish ALl models by oleic acid.Hemodynamic and pulmonary function data were measured.Histopathological assessment was performed.Results Mean blood pressure,heart rate (HR),cardiac output (CO),central venous pressure (CVP) and left atrial pressure (LAP) were sharply decreased after oleic acid given,while the mean pulmonary arterial pressure (MPAP) was increased in comparison with baseline (P <0.05).pH,arterial partial pressure of O2 (PaO2),PaO2/inspired O2 fraction (FiO2) and lung compliance decreased,while PaCO2 and airway pressure increased in comparison with baseline (P <0.05).The lung histology showed severe inflammation,hyaline membranes,intra-alveolar and interstitial hemorrhage.Conclusion This experiment established a stable model which allows for a diversity of studies on early lung injury.

  10. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage

    Science.gov (United States)

    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

    2012-01-01

    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073

  11. Effect of Zofenopril on regeneration of sciatic nerve crush injury in a rat model

    Directory of Open Access Journals (Sweden)

    Kalender Ali

    2009-06-01

    Full Text Available Abstract Background Zofenopril is an antioxidant agent which has been shown to have beneficial effects in hypertension and heart failure. The aim of this study was to test the effects of Zofenopril on nerve regeneration and scarring in a rat model of peripheral nerve crush injury. Methods Twenty-one adult Sprague-Dawley rats underwent a surgical procedure involving right sciatic nerve crush injury. 15 mg/kg Zofenopril was administered orally to seven rats in group Z for seven days. Seven rats in group S received saline orally for seven days. Seven rats in the control group C received no drug after crush injury. Fourteenth and 42nd days after injury, functional and electromyography assessments of nerves were performed. Functional recovery was analyzed using a walking track assessment, and quantified using the sciatic functional index (SFI. After these evaluations, all rats were sacrificed and microscopic evaluations were performed. Results The Sciatic functional Index (SFI in group Z on 14th day is different significantly from group S and group C (p = 0.037. But on 42nd day there was no difference between groups (p = 0.278. The statistical analyses of electromyelographic (EMG studies showed that the latency in group Z is significantly different from group S (p = 0.006 and group C (p = 0.045. But on 42nd day there was no difference between groups like SFI (p = 0.147. The amplitude was evaluated better in group Z than others (p Conclusion Our results demonstrate that Zofenopril promotes the regeneration of peripheral nerve injuries in rat models.

  12. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    Science.gov (United States)

    Hirsova, Petra; Ibrahim, Samar H; Bronk, Steven F; Yagita, Hideo; Gores, Gregory J

    2013-01-01

    Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  13. Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    Full Text Available Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.

  14. A finite element model investigation of gunshot injury.

    Science.gov (United States)

    Raul, Jean-Sébastien; Deck, Caroline; Meyer, Franck; Geraut, Annie; Willinger, Rémy; Ludes, Bertrand

    2007-03-01

    Multiple gunshot suicide can be a controversial subject mainly because of wrong opinions concerning immediate incapacitation or alleged backwards hurling. For the last 20 years, experts in medicine and physics have tried to demonstrate what really happens during a gunshot wound. Different methods have been used to achieve this aim such as basic physics or the use of empirical evidence. In this paper, using a finite element model of the human head, we demonstrate that no incapacitation or backwards hurling can occur from a gunshot fired between the eyes which did not enter the cerebrum.

  15. Analysing recent socioeconomic trends in coronary heart disease mortality in England, 2000-2007: a population modelling study.

    Directory of Open Access Journals (Sweden)

    Madhavi Bajekal

    Full Text Available BACKGROUND: Coronary heart disease (CHD mortality in England fell by approximately 6% every year between 2000 and 2007. However, rates fell differentially between social groups with inequalities actually widening. We sought to describe the extent to which this reduction in CHD mortality was attributable to changes in either levels of risk factors or treatment uptake, both across and within socioeconomic groups. METHODS AND FINDINGS: A widely used and replicated epidemiological model was used to synthesise estimates stratified by age, gender, and area deprivation quintiles for the English population aged 25 and older between 2000 and 2007. Mortality rates fell, with approximately 38,000 fewer CHD deaths in 2007. The model explained about 86% (95% uncertainty interval: 65%-107% of this mortality fall. Decreases in major cardiovascular risk factors contributed approximately 34% (21%-47% to the overall decline in CHD mortality: ranging from about 44% (31%-61% in the most deprived to 29% (16%-42% in the most affluent quintile. The biggest contribution came from a substantial fall in systolic blood pressure in the population not on hypertension medication (29%; 18%-40%; more so in deprived (37% than in affluent (25% areas. Other risk factor contributions were relatively modest across all social groups: total cholesterol (6%, smoking (3%, and physical activity (2%. Furthermore, these benefits were partly negated by mortality increases attributable to rises in body mass index and diabetes (-9%; -17% to -3%, particularly in more deprived quintiles. Treatments accounted for approximately 52% (40%-70% of the mortality decline, equitably distributed across all social groups. Lipid reduction (14%, chronic angina treatment (13%, and secondary prevention (11% made the largest medical contributions. CONCLUSIONS: The model suggests that approximately half the recent CHD mortality fall in England was attributable to improved treatment uptake. This benefit

  16. Garroteamento da artéria coronária na revascularização do miocárdio: Relação entre o grau de aterosclerose e a lesão vascular: estudo experimental Occlusion of coronary artery in myocardial revascularization: Relationship between the degree of atherosclerosis and vascular injury: an experimental study

    Directory of Open Access Journals (Sweden)

    Luís Roberto Gerola

    1987-04-01

    Full Text Available As anastomoses safena ou mamária-coronária, sendo suturas realizadas em vasos de fino calibre, necessitam de condições ideais para sua realização. Mesmo em circulação extracorpórea e pinçamento aórtico, pode persistir sangramento pela arteriotomia coronária, obrigando o cirurgião a realizar algumas manobras, entre elas os garroteamentos proximal e distai, para conseguir um campo exangue. Mais recentemente, face à possibilidade de se executar a revascularização miocárdica sem circulação extracorpórea, tornou-se fundamental dispor-se de um método que possibilite a oclusão temporária da artéria coronária para a realização das anastomoses. Com esta preocupação, foi realizado um estudo experimental, procurando avaliar seis métodos de hemostasia temporária, aplicados em artérias com graus variáveis de aterosclerose. O modelo experimental utilizado foi a artéria coronária direita, em cadáver. O estudo histológico, aplicando as colorações de hematoxilina-ecosina, Weigert e hematoxilina fosfotúngstica, permitiu a determinação objetiva da intensidade da aterosclerose na artéria coronária e os padrões e graus de lesões causados à parede arterial pelos métodos utilizados para sua oclusão temporária. Nessa amostra, os resultados sugerem uma tendência de relacionamento direto entre a gravidade da lesão arterial induzida pelo garroteamento e a severidade da aterosclerose coronária, independente do tipo de dispositivo utilizado para a interrupção do fluxo coronário.Coronary artery surgery, specially when performed without cardiopulmonary bypass, needs an "atraumatic" method that allows temporary coronary occlusion with minimal injury to the vessel wall. An experimental study was performed using the right coronary artery of cadaver hearts in order to evaluate the methods of "atraumatic" clamping of arteries with variable degrees of atherosclerosis. The vessels were evaluated histologically both for

  17. Low level of high-density lipoprotein cholesterol predicts contrast induced-acute kidney injury after percutaneous coronary interventions in patients with coronary heart disease%低水平高密度脂蛋白胆固醇是经皮冠脉介入术后急性肾损伤的危险因素

    Institute of Scientific and Technical Information of China (English)

    陈永利; 许静; 刘园园; 杨世诚; 丛洪良; 付乃宽

    2014-01-01

    目的 探讨低水平高密度脂蛋白胆固醇(high-density lipoprotein cholesterol,HDL-C)与冠心病患者经皮冠状动脉介入术(percutaneous coronary intervention,PCI)后对比剂诱导的急性肾损伤(contrast induced-acute kidney injury,CI-AKI)的关系.方法 选取天津市胸科医院心内科2009年1月至2011年5月行PCI术的冠心病患者共1500例,于术前及术后72 h内测定其血肌酐水平.入选标准:均为汉族人群,年龄及性别不限;排除标准:既往有恶性肿瘤、泌尿系统感染、肾脏切除手术、腹膜或血液透析治疗或术前两周内曾应用过对比剂.CI-AKI定义为应用对比剂后24 ~ 72 h血清肌酐水平较原有基础升高超过25%或绝对值升高44.2 μmol/L以上,并排除其他影响肾功能的原因.低水平HDL-C定义为HDL-C<1.04 mmol/L.应用单因素分析及多元Logistic回归分析确定CI-AKI及低水平HDL-C的危险因素.结果 在1500例行PCI术的冠心病患者中,共有246例(16.4%)发生了CI-AKI,低水平HDL-C组与正常水平HDL-C组的CI-AKI发病率分别为21.5%和13.3% (P<0.01).进一步分析发现,伴有慢性肾脏疾病者,CI-AKI发病率在低水平HDL-C组与正常水平HDL-C组分别为39.8%和26.5%(P<0.05),而在不伴有慢性肾脏疾病者分别为9.7%和17.7%(P<0.01),差异均具有统计学意义.多元Logistic回归分析显示,低水平HDL-C是冠心病患者PCI术后CI-AKI发生的危险因素,超重、吸烟及贫血是该类患者低水平HDL-C的预测因子.结论 与HDL-C水平正常者相比,低水平HDL-C者PCI术后CI-AKI的发病率显著升高.无论是否伴有慢性肾脏疾病,低水平HDL-C均是冠心病患者PCI术后发生CI-AKI的危险因素.超重、吸烟及贫血是低水平HDL-C的预测因子.%Objective To investigate the relationship of low level of high-density lipoprotein cholesterol to contrast induced-acute kidney injury (CI-AKI) after percutaneous coronary intervention (PCI) in patients

  18. Concussion in professional football: morphology of brain injuries in the NFL concussion model--part 16.

    Science.gov (United States)

    Hamberger, Anders; Viano, David C; Säljö, Annette; Bolouri, Hayde

    2009-06-01

    An animal model of concussions in National Football League players has been described in a previous study. It involves a freely moving 300-g Wistar rat impacted on the side of the head at velocities of 7.4 to 11.2 m/s with a 50-g impactor. The impact causes a 6% to 28% incidence of meningeal hemorrhages and 0.1- to 0.3-mm focal petechiae depending on the impact velocity. This study addresses the immunohistochemical responses of the brain. Twenty-seven tests were conducted with a 50-g impactor and velocities of 7.4, 9.3, or 11.2 m/s. The left temporal region of the helmet-protected head was hit 1 or 3 times. Thirty-one additional tests were conducted with a 100-g impactor. Diffuse axonal injury in distant regions of the brain was assessed with immunohistochemistry for NF-200, the heaviest neurofilament subunit, and glial fibrillary acidic protein, an intermediate filament protein in astrocytes. Hemorrhages were analyzed by unspecific peroxidase. There were 10 controls. A single impact at 7.4 and 9.3 m/s velocity with the 50-g impactor causes minimal neuronal injury and astrocytosis. Repeat impacts with 11.2 m/s velocity and more than 9.3-m/s impacts with 100 g cause diffuse axonal injury and distant injury bilaterally in the cerebral cortex, the subcortical, the white matter, the hippocampus CA1, the corpus callosum, and the striatum, as indicated by NF-200 accumulation in neuronal perikarya 10 days after impact. It also causes reactive astrocytosis in the midline regions of the cerebral cortex and periventricularly. Regions with erythrocyte-loaded blood capillaries indicated brain edema in regions of the cerebral cortex, the brainstem, and the cerebellum. When the immunohistochemical results are extrapolated to professional football players, concussions result in no or minimal brain injury. Repeat impacts at higher velocity or with a heavier mass impactor cause extensive and distant diffuse axonal injury. Based on this model, the threshold for diffuse axonal injury

  19. Developing predictive models for return to work using the Military Power, Performance and Prevention (MP3) musculoskeletal injury risk algorithm: a study protocol for an injury risk assessment programme.

    Science.gov (United States)

    Rhon, Daniel I; Teyhen, Deydre S; Shaffer, Scott W; Goffar, Stephen L; Kiesel, Kyle; Plisky, Phil P

    2016-11-24

    Musculoskeletal injuries are a primary source of disability in the US Military, and low back pain and lower extremity injuries account for over 44% of limited work days annually. History of prior musculoskeletal injury increases the risk for future injury. This study aims to determine the risk of injury after returning to work from a previous injury. The objective is to identify criteria that can help predict likelihood for future injury or re-injury. There will be 480 active duty soldiers recruited from across four medical centres. These will be patients who have sustained a musculoskeletal injury in the lower extremity or lumbar/thoracic spine, and have now been cleared to return back to work without any limitations. Subjects will undergo a battery of physical performance tests and fill out sociodemographic surveys. They will be followed for a year to identify any musculoskeletal injuries that occur. Prediction algorithms will be derived using regression analysis from performance and sociodemographic variables found to be significantly different between injured and non-injured subjects. Due to the high rates of injuries, injury prevention and prediction initiatives are growing. This is the first study looking at predicting re-injury rates after an initial musculoskeletal injury. In addition, multivariate prediction models appear to have move value than models based on only one variable. This approach aims to validate a multivariate model used in healthy non-injured individuals to help improve variables that best predict the ability to return to work with lower risk of injury, after a recent musculoskeletal injury. NCT02776930. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Heparanase Mediates Intestinal Inflammation and Injury in a Mouse Model of Sepsis.

    Science.gov (United States)

    Chen, Song; He, Ying; Hu, Ziwei; Lu, Siyu; Yin, Xiaohan; Ma, Xiaochun; Lv, Chuanzhu; Jin, Guiyun

    2017-04-01

    Heparanase, a heparan sulfate (HS)-specific endoglycosidase, plays an important role in inflammation and mediates acute pulmonary and renal injuries during sepsis. To explore its role in septic intestinal injury, a non-anticoagulant heparanase inhibitor, N-desulfated/re- N-acetylated heparin (NAH), was administrated to a mouse sepsis model induced by cecal ligation and puncture (CLP). Immunohistochemical staining revealed massive shedding of HS from the intestinal mucosal surfaces after CLP, and effective inhibition of heparanase by NAH was confirmed by markedly reduced HS shedding. Following CLP, intestinal expression of heparanase was increased, whereas pretreatment with NAH reduced the sepsis-induced upregulation of heparanase expression. Meanwhile, CLP led to shedding of syndecan-1 and upregulated expression of proteases such as matrix metalloprotease-9 and urokinase-type plasminogen activator in the intestine, whereas NAH markedly suppressed syndecan-1 shedding and protease upregulation following CLP. In addition, pretreatment with NAH attenuated intestinal injury, inhibited neutrophil infiltration and suppressed the production of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) in the intestine during sepsis, and it also significantly reduced the elevation of inflammatory cytokines in the serum 24 hr after CLP. Our findings demonstrate that the activation of intestinal heparanase contributes to intestinal injury during early sepsis by facilitating the destruction of mucosal epithelial glycocalyx and promoting inflammatory responses.

  1. 7, 8-dihydroxycoumarin improves neurological function in a mouse model of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Jianshi Du; Qing Zhao; Yingli Zhang; Yu Wang; Ming Ma

    2012-01-01

    In the present study, a mouse model of sciatic nerve injury was treated with intraperitoneal injection of 7, 8-dihydroxycoumarin (10, 5, or 2.5 mg/kg per day). Western blot and real-time PCR results showed that growth associated protein 43 expression was significantly increased in the L4-6 segments of the spinal cord. The amplitude and velocity of motor nerve conduction in the sciatic nerve were significantly increased in model mice. In addition, the appearance of the myelin sheath in the injured sciatic nerve was regular, with an even thickness and clear outline, and the surrounding fibroplasia was not obvious. Our results indicate that 7, 8-dihydroxycoumarin can promote the repair of injured nerve by upregulating growth associated protein 43 expression in the corresponding spinal cord segments of mice with sciatic nerve injury.

  2. Rosiglitazone dampens pulmonary inflammation in a porcine model of acute lung injury.

    Science.gov (United States)

    Mirakaj, Valbona; Mutz, Christian; Vagts, Dierk; Henes, Janek; Haeberle, Helene A; Husung, Susanne; König, Tony; Nöldge-Schomburg, Gabriele; Rosenberger, Peter

    2014-08-01

    The hallmarks of acute lung injury (ALI) are the compromised alveolar-capillary barrier and the extravasation of leukocytes into the alveolar space. Given the fact that the peroxisome proliferator-activated receptor-γ agonist rosiglitazone holds significant anti-inflammatory properties, we aimed to evaluate whether rosiglitazone could dampen these hallmarks of local pulmonary inflammation in a porcine model of lung injury. For this purpose, we used a model of lipopolysaccharide (LPS, 50 μg/kg)-induced ALI. One hundred twenty minutes following the infusion of LPS, we started the exposure to rosiglitazone through inhalation or infusion. We found that intravenous rosiglitazone significantly controlled local pulmonary inflammation as determined through the expression of cytokines within the alveolar compartment. Furthermore, we found a significant reduction of the protein concentration and neutrophil activity within the alveolar space. In summary, we therefore conclude that the treatment with rosiglitazone might dampen local pulmonary inflammation during the initial stages of ALI.

  3. Relationship of Hypertension to Coronary Atherosclerosis and Cardiac Events in Patients With Coronary Computed Tomographic Angiography.

    Science.gov (United States)

    Nakanishi, Rine; Baskaran, Lohendran; Gransar, Heidi; Budoff, Matthew J; Achenbach, Stephan; Al-Mallah, Mouaz; Cademartiri, Filippo; Callister, Tracy Q; Chang, Hyuk-Jae; Chinnaiyan, Kavitha; Chow, Benjamin J W; DeLago, Augustin; Hadamitzky, Martin; Hausleiter, Joerg; Cury, Ricardo; Feuchtner, Gudrun; Kim, Yong-Jin; Leipsic, Jonathon; Kaufmann, Philipp A; Maffei, Erica; Raff, Gilbert; Shaw, Leslee J; Villines, Todd C; Dunning, Allison; Marques, Hugo; Pontone, Gianluca; Andreini, Daniele; Rubinshtein, Ronen; Bax, Jeroen; Jones, Erica; Hindoyan, Niree; Gomez, Millie; Lin, Fay Y; Min, James K; Berman, Daniel S

    2017-08-01

    Hypertension is an atherosclerosis factor and is associated with cardiovascular risk. We investigated the relationship between hypertension and the presence, extent, and severity of coronary atherosclerosis in coronary computed tomographic angiography and cardiac events risk. Of 17 181 patients enrolled in the CONFIRM registry (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) who underwent ≥64-detector row coronary computed tomographic angiography, we identified 14 803 patients without known coronary artery disease. Of these, 1434 hypertensive patients were matched to 1434 patients without hypertension. Major adverse cardiac events risk of hypertension and non-hypertensive patients was evaluated with Cox proportional hazards models. The prognostic associations between hypertension and no-hypertension with increasing degree of coronary stenosis severity (nonobstructive or obstructive ≥50%) and extent of coronary artery disease (segment involvement score of 1-5, >5) was also assessed. Hypertension patients less commonly had no coronary atherosclerosis and more commonly had nonobstructive and 1-, 2-, and 3-vessel disease than the no-hypertension group. During a mean follow-up of 5.2±1.2 years, 180 patients experienced cardiac events, with 104 (2.0%) occurring in the hypertension group and 76 (1.5%) occurring in the no-hypertension group (hazard ratios, 1.4; 95% confidence intervals, 1.0-1.9). Compared with no-hypertension patients without coronary atherosclerosis, hypertension patients with no coronary atherosclerosis and obstructive coronary disease tended to have higher risk of cardiac events. Similar trends were observed with respect to extent of coronary artery disease. Compared with no-hypertension patients, hypertensive patients have increased presence, extent, and severity of coronary atherosclerosis and tend to have an increase in major adverse cardiac events. © 2017 American Heart Association, Inc.

  4. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury

    NARCIS (Netherlands)

    van der Meer, P; Lipsic, E; Henning, RH; de Boer, RA; Suurmeijer, AJH; van Veldhuisen, DJ; van Gilst, WH

    2004-01-01

    Recent studies show that erythropoietin (EPO) plays a protective role in brain ischemia. In this condition, administration of EPO protects neurons from ischemic damage. Recently, it has been shown that in patients with chronic heart failure (CHF), EPO treatment improved cardiac function. In the pres

  5. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lautamaeki, Riikka; Higuchi, Takahiro; Merrill, Jennifer; Voicu, Corina; Bengel, Frank M. [Johns Hopkins Medical Institutions, Department of Radiology, Division of Nuclear Medicine, Baltimore, MD (United States); George, Richard T.; Kitagawa, Kakuya; DiPaula, Anthony; Lima, Joao A.C. [Johns Hopkins Medical Institutions, Department of Medicine, Division of Cardiology, Baltimore, MD (United States); Nekolla, Stephan G. [Technischen Universitaet Muenchen, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Munich (Germany); Lardo, Albert C. [Johns Hopkins Medical Institutions, Department of Medicine, Division of Cardiology, Baltimore, MD (United States); Johns Hopkins Medical Institutions, Department of Biomedical Engineering, Baltimore, MD (United States)

    2009-04-15

    Absolute quantification of myocardial blood flow expands the diagnostic potential of PET for assessment of coronary artery disease. {sup 82}Rb has significantly contributed to increasing utilization of PET; however, clinical studies are still mostly analysed qualitatively. The aim of this study was to reevaluate the feasibility of {sup 82}Rb for flow quantification, using hybrid PET-CT in an animal model of coronary stenosis. Nine dogs were prepared with experimental coronary artery stenosis. Dynamic PET was performed for 8 min after {sup 82}Rb(1480-1850 MBq) injection during adenosine-induced vasodilation. Microspheres were injected simultaneously for reference flow measurements. CT angiography was used to determine the myocardial regions related to the stenotic vessel. Two methods for flow calculation were employed: a two-compartment model including a spill-over term, and a simplified retention index. The two-compartment model data were in good agreement with microsphere flow (y=0.84x+0.20; r=0.92, p<0.0001), although there was variability in the physiological flow range <3 ml/g per minute (y=0.54x+0.53; r=0.53, p=0.042). Results from the retention index also correlated well with microsphere flow (y=0.47x+0.52; r=0.75, p=0.0004). Error increased with higher flow, but the correlation was good in the physiological range (y=0.62x+0.29; r=0.84, p=0.0001). Using current state-of-the-art PET-CT systems, quantification of myocardial blood flow is feasible with {sup 82}Rb. A simplified approach based on tracer retention is practicable in the physiological flow range. These results encourage further testing of the robustness and usefulness in the clinical context of cardiac hybrid imaging. (orig.)

  6. Restenosis of the coronary stenotic lesions treated by holmium:YAG laser coronary angioplasty

    Science.gov (United States)

    Miyazaki, Shunichi; Nonogi, Hiroshi; Goto, Yoichi; Itoh, Akira; Ozono, Keizaburo; Daikoku, Satoshi; Haze, Kazuo

    1994-07-01

    Clinical efficacy of newly developed Holmium YAG laser coronary angioplasty (HLCA) was assessed for 30 patients with angina. There were 12 near left main trunk (LMT) lesions and 4 aorto- ostial lesions. Adjunctive balloon angioplasty was performed for 25 of 30 lesions. Delivered energy ranged from 1.5 to 2.5 watts/pulse and the total exposure time ranged from 6 to 55 seconds. External diameter of laser catheter was 1.5 mm for 13 lesions, 1.4 mm for 17 lesions, and 1.7 mm for 5 lesions. Laser success, defined as 20% reduction of stenotic ratio, was obtained in 21 of 30 (70%) and overall procedural success rate was 93%. There were 3 cases with acute coronary occlusions relieved by adjunctive balloon angioplasty and one coronary perforation without manifestation of cardiac tamponade. There were no large coronary dissection which involved more than 5 mm of the coronary artery. Follow up coronary angiography after 3 months showed restenosis in 14 of 27 patients (52%). Percent stenosis after lasering (56%) was similar to that at 3 months after (62%). HLCA is acutely effective treatment for lesions near LMT, because of low incidence of large coronary dissection. However, angiographical restenosis rate is high at 3 months after HLCA. This may be attributed to the relatively large residual stenosis after the procedure and vessel injury caused by shock wave.

  7. Experimental Models of Status Epilepticus and Neuronal Injury for Evaluation of Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Ramkumar Kuruba

    2013-09-01

    Full Text Available This article describes current experimental models of status epilepticus (SE and neuronal injury for use in the screening of new therapeutic agents. Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. SE is an emergency condition associated with continuous seizures lasting more than 30 min. It causes significant mortality and morbidity. SE can cause devastating damage to the brain leading to cognitive impairment and increased risk of epilepsy. Benzodiazepines are the first-line drugs for the treatment of SE, however, many people exhibit partial or complete resistance due to a breakdown of GABA inhibition. Therefore, new drugs with neuroprotective effects against the SE-induced neuronal injury and degeneration are desirable. Animal models are used to study the pathophysiology of SE and for the discovery of newer anticonvulsants. In SE paradigms, seizures are induced in rodents by chemical agents or by electrical stimulation of brain structures. Electrical stimulation includes perforant path and self-sustaining stimulation models. Pharmacological models include kainic acid, pilocarpine, flurothyl, organophosphates and other convulsants that induce SE in rodents. Neuronal injury occurs within the initial SE episode, and animals exhibit cognitive dysfunction and spontaneous seizures several weeks after this precipitating event. Current SE models have potential applications but have some limitations. In general, the experimental SE model should be analogous to the human seizure state and it should share very similar neuropathological mechanisms. The pilocarpine and diisopropylfluorophosphate models are associated with prolonged, diazepam-insensitive seizures and neurodegeneration and therefore represent paradigms of refractory SE. Novel mechanism-based or clinically relevant models are essential to identify new therapies for SE and neuroprotective interventions.

  8. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    Science.gov (United States)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  9. Translational atherosclerosis research: From experimental models to coronary artery disease in humans.

    Science.gov (United States)

    Gleissner, Christian A

    2016-05-01

    Atherosclerosis is the leading cause of death worldwide. Research on the pathophysiological mechanisms of atherogenesis has made tremendous progress over the past two decades. However, despite great advances there is still a lack of therapies that reduce adverse cardiovascular events to an acceptable degree. This review addresses successes, but also questions, challenges, and chances regarding the translation of basic science results into clinical practice, i.e. the capability to apply the results of basic and/or clinical research in order to design therapies suitable to improve patient outcome. Specifically, it discusses problems in translating findings from the most broadly used murine models of atherosclerosis into clinically feasible therapies and strategies potentially improving the results of clinical trials. Most likely, the key to success will be a multimodal approach employing novel imaging methods as well as large scale screening tools-summarized as "omics" approach. Using individually tailored therapies, plaque stabilization and regression could prevent adverse cardiovascular events thereby improving outcome of a large number of patients.

  10. Effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury

    DEFF Research Database (Denmark)

    Jepsen, Cecilie Heerdegen; deMoya, Marc A; Perner, Anders;

    2014-01-01

    BACKGROUND: In isolated traumatic brain injury (TBI), little is known about the endothelial response and the effects of endothelial glycocalyx shedding. We have previously shown that treatment with valproic acid (VPA) improves outcomes following TBI and hemorrhagic shock.In this model, we...... hypothesized that severe isolated TBI would cause shedding of the endothelial glycocalyx, as measured by serum syndecan-1 (sSDC-1) levels. We further hypothesized that VPA treatment would reduce this response and reduce lesion size volume. METHODS: Forty Sprague-Dawley rats were allocated to TBI + VPA (n = 8......), TBI + saline vehicle control infusion (n = 8), sham + saline vehicle control infusion (n = 6), or sham + VPA (n = 8). TBI animals were subjected to severe controlled cortical impact and killed 6 hours after injury. VPA 300 mg/kg was given as an intravenous bolus 30 minutes after injury. Serum samples...

  11. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.

  12. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Carol Chen-Scarabelli; Richard Knight; Pratik R Agrawal; Louis Saravolatz; Cadigia Abuniat; Gabriele Scarabelli; Anastasis Stephanou; Leena Loomba; Jagat Narula; Tiziano M Scarabelli

    2014-01-01

    A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cyto-plasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated cata-bolic cellular‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protec-tive mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the va-riability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic ma-nipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.

  13. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury.

    Science.gov (United States)

    da Silva, Léa Bueno Lucas; Palma, Patrícia Viana Bonini; Cury, Patrícia Maluf; Bueno, Valquiria

    2007-12-15

    Ischemia-reperfusion injury is a common early event in kidney transplantation and contributes to a delay in organ function. Acute tubular necrosis, impaired kidney function and organ leukocyte infiltration are the major findings. The therapeutic potential of stem cells has been the focus of recent research as these cells possess capabilities such as self-renewal, multipotent differentiation and aid in regeneration after organ injury. FTY720 is a new synthetic compound that has been associated with preferential migration of blood lymphocytes to peripheral lymph nodes instead of inflammatory sites. Bone marrow stem cells (BMSC) and/or FTY720 were used as therapy to promote recovery of tubule cells and avoid inflammation at the renal site, respectively. Mice were submitted to renal ischemia-reperfusion injury and were either treated with two doses of FTY720, 10x10(6) BMSC, or both in order to compare the therapeutic effect with non-treated and control animals. Renal function and structure were investigated as were cell numbers in peripheral blood and spleen. Activation and apoptosis markers were also evaluated in splenocytes using flow cytometry. We found that the combined therapy (FTY720+BMSC) was associated with more significant changes in renal function and structure after ischemia-reperfusion injury when compared with the other groups. Also a decrease at cell numbers and prevention of spleen cells activation and apoptosis was observed. In conclusion, in our model it was not possible to demonstrate the potential of stem cells alone or in combination with FTY720 to promote early kidney recovery after ischemia-reperfusion injury.

  14. Microwave and magnetic (M2 proteomics of a mouse model of mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Teresa M. Evans

    2014-06-01

    Full Text Available Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI. However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave and magnetic (M2 proteomics of ipsilateral brain tissue, as previously described