WorldWideScience

Sample records for coronal magnetic loops

  1. Slipping magnetic reconnection in coronal loops.

    Science.gov (United States)

    Aulanier, Guillaume; Golub, Leon; Deluca, Edward E; Cirtain, Jonathan W; Kano, Ryouhei; Lundquist, Loraine L; Narukage, Noriyuki; Sakao, Taro; Weber, Mark A

    2007-12-07

    Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments.

  2. Association of solar coronal loops to photospheric magnetic field

    Science.gov (United States)

    Pradeep Chitta, Lakshmi; Peter, Hardi; Solanki, Sami

    2017-08-01

    Magnetic connectivity and its evolution from the solar photosphere to the corona will play a crucial role in the energetics of the solar atmosphere. To explore this connectivity, we use high spatial resolution magnetic field observations of an active region from the balloon-borne SUNRISE telescope, in combination with the observations of coronal loops imaged in extreme ultraviolet by SDO/AIA. We show that photospheric magnetic field at the base of coronal loops is rapidly evolving through small-scale flux emergence and cancellation events with rates on the order of 10^15 Mx/s. When observed at high spatial resolution better than 0.5 arcsec, we find that basically all coronal loops considered so far are rooted in the photosphere above small-scale opposite polarity magnetic field patches. In the photosphere, the magnetic field threading coronal loops is interacting with opposite polarity parasitic magnetic concentrations leading to dynamic signatures in the upper atmosphere. Chromospheric small-scale jets aligned to coronal loops are observed at these locations. We will present preliminary results from 3D MHD simulations of coronal loops driven by realistic magneto-convection and discuss what role the magnetic interactions at coronal loop footpoints could play in the evolution of coronal loops and their heating.

  3. Magnetic Field in the Gravitationally Stratified Coronal Loops

    Indian Academy of Sciences (India)

    B. N. Dwivedi; A. K. Srivastava

    2015-03-01

    We study the effect of gravitational stratification on the estimation of magnetic fields in the coronal loops. By using the method of MHD seismology of kink waves for the estimation of magnetic field of coronal loops, we derive a new formula for the magnetic field considering the effect of gravitational stratification. The fast-kink wave is a potential diagnostic tool for the estimation of magnetic field in fluxtubes. We consider the eleven kink oscillation cases observed by TRACE between July 1998 and June 2001. We calculate magnetic field in the stratified loops (str) and compare them with the previously calculated absolute magnetic field (abs). The gravitational stratification efficiently affects the magnetic field estimation in the coronal loops as it affects also the properties of kink waves. We find ≈22% increment in the magnetic field for the smallest ( = 72 Mm) while ≈42% increment in the absolute magnetic field for the longest ( = 406 Mm) coronal loops. The magnetic fields str and abs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities. We find that damping time of kink waves due to phase-mixing is less in the case of gravitationally stratified loops compared to nonstratified ones. This indicates the more rapid damping of kink waves in the stratified loops. In conclusion, we find that the gravitational stratification efficiently affects the estimation of magnetic field and damping time estimation especially in the longer coronal loops.

  4. A unified theory of electrodynamic coupling in coronal magnetic loops - The coronal heating problem

    Science.gov (United States)

    Ionson, J. A.

    1984-01-01

    The coronal heating problem is studied, and it is demonstrated that Ionson's (1982) LRC approach results in a unified theory of coronal heating which unveils a variety of new heating mechanisms and which links together previously proposed mechanisms. Ionson's LRC equation is rederived, focusing on various aspects that were not clarified in the original article and incorporating new processes that were neglected. A parameterized heating rate is obtained. It is shown that Alfvenic surface wave heating, stochastic magnetic pumping, resonant electrodynamic heating, and dynamical dissipation emerge as special cases of a much more general formalism. This generalized theory is applied to solar coronal loops and it is found that active region and large scale loops are underdamped systems. Young active region loops and (possibly) bright points are found to be overdamped systems.

  5. In What Magnetic Environment Are Coronal Loop Plasmas Located?

    Science.gov (United States)

    Lim, Daye; Choe, Gwang-Son

    2017-08-01

    As for coronal loops, there is a conventional wisdom that the plasma is confined inside magnetic flux tubes. However, a plasma pressure profile, which decreases from the center of a flux rope to its periphery, can be ideal MHD interchange unstable if field line ends are freely movable. In the solar corona, the strong line-tying condition impedes the interchange of the positions of elementary flux tubes, but ubiquitous magnetic reconnection processes can change plasma distribution in such a way that the system moves to a more stable state with a lower energy. In this study, we investigate the plasma redistribution in the merging process of many small flux ropes possibly representing loop strands, by an MHD simulation. We have found that the redistributed plasma is more concentrated between flux ropes rather than near the center of individual flux ropes. When flux ropes initially have different amounts of twists, the plasma tends to accumulate in less twisted regions. As larger and larger flux ropes are formed by successive merging processes, the ratio of poloidal flux to toroidal flux in a merged flux rope becomes smaller and smaller, i.e., field lines are less and less twisted. Our study may explain why the observed coronal loops appear very little twisted and quite well ordered in spite of continuous entangling motions in the photosphere and below.

  6. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    Science.gov (United States)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  7. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Science.gov (United States)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  8. Vector Magnetic Field Measurements along a Cooled Stereo-imaged Coronal Loop

    Science.gov (United States)

    Schad, T. A.; Penn, M. J.; Lin, H.; Judge, P. G.

    2016-12-01

    The variation of the vector magnetic field along structures in the solar corona remains unmeasured. Using a unique combination of spectropolarimetry and stereoscopy, we infer and compare the vector magnetic field structure and three-dimensional morphology of an individuated coronal loop structure undergoing a thermal instability. We analyze spectropolarimetric data of the He i λ10830 triplet (1s2s{}3{S}1-1s2p{}3{P}{2,1,0}) obtained at the Dunn Solar Telescope with the Facility Infrared Spectropolarimeter on 2011 September 19. Cool coronal loops are identified by their prominent drainage signatures in the He i data (redshifts up to 185 km s-1). Extinction of EUV background radiation along these loops is observed by both the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Extreme Ultraviolet Imager on board spacecraft A of the Solar Terrestrial Relations Observatory, and is used to stereoscopically triangulate the loop geometry up to heights of 70 Mm (0.1R Sun) above the solar surface. The He i polarized spectra along this loop exhibit signatures indicative of atomic-level polarization, as well as magnetic signatures through the Hanle and Zeeman effects. Spectropolarimetric inversions indicate that the magnetic field is generally oriented along the coronal loop axis, and provide the height dependence of the magnetic field intensity. The technique we demonstrate is a powerful one that may help better understand the thermodynamics of coronal fine-structure magnetism.

  9. Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields.

    Science.gov (United States)

    Rappazzo, A F; Velli, M

    2011-06-01

    The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy EMk[Please see symbol]) [Please see symbol] k[Please see symbol](-2.7) exceeds kinetic energy EK(k[Please see symbol])[Please see symbol]k[Please see symbol](-0.6). Increments scale as δbℓ ~/= ℓ(-0.85) and δuℓ ~/= ℓ(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.

  10. Solar coronal loops associated with small-scale mixed polarity surface magnetic fields

    CERN Document Server

    Chitta, L P; Solanki, S K; Barthol, P; Gandorfer, A; Gizon, L; Hirzberger, J; Riethmueller, T L; van Noort, M; Rodriguez, J Blanco; Iniesta, J C Del Toro; Suarez, D Orozco; Schmidt, W; Pillet, V Martinez; Knoelker, M

    2016-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment (IMaX) instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite polarity magnetic elements very close to the larger dominant polarity. These opposite polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca II H images obtained from the S...

  11. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    Science.gov (United States)

    Long, David; Perez-Suarez, David; Valori, Gherardo

    2016-05-01

    First observed by SOHO/EIT, "EIT waves" are strongly associated with the initial evolution of coronal mass ejections (CMEs) and after almost 20 years of investigation a consensus is being reached which interprets them as freely-propagating waves produced by the rapid expansion of a CME in the low corona. An "EIT wave" was observed on 6 July 2012 to erupt from active region AR11514 into a particularly structured corona that included multiple adjacent active regions as well as an adjacent trans-equatorial loop system anchored at the boundary of a nearby coronal hole. The eruption was well observed by SDO/AIA and CoMP, allowing the effects of the "EIT wave" on the trans-equatorial loop system to be studied in detail. In particular, it was possible to characterise the oscillation of the loop system using Doppler velocity measurements from CoMP. These Doppler measurements were used to estimate the magnetic field strength of the trans-equatorial loop system via coronal seismology. It was then possible to compare these inferred magnetic field values with extrapolated magnetic field values derived using a Potential Field Source Surface extrapolation as well as the direct measurements of magnetic field provided by CoMP. These results show that the magnetic field strength of loop systems in the solar corona may be estimated using loop seismology.

  12. Resonant absorption of kink magnetohydrodynamic waves by a magnetic twist in coronal loops

    Science.gov (United States)

    Ebrahimi, Zanyar; Karami, Kayoomars

    2016-10-01

    There is ample evidence of twisted magnetic structures in the solar corona. This motivates us to consider the magnetic twist as the cause of Alfvén frequency continuum in coronal loops, which can support the resonant absorption as a rapid damping mechanism for the observed coronal kink magnetohydrodynamic (MHD) oscillations. We model a coronal loop with a straight cylindrical magnetic flux tube, which has constant but different densities in the interior and exterior regions. The magnetic field is assumed to be constant and aligned with the cylinder axis everywhere except for a thin layer near the boundary of the flux tube, which has an additional small magnetic field twist. Then, we investigate a number of possible instabilities that may arise in our model. In the thin tube thin boundary approximation, we derive the dispersion relation and solve it analytically to obtain the frequencies and damping rates of the fundamental (l = 1) and first/second overtone (l = 2, 3) kink (m = 1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can cause deviations from P1/P2 = 2 and P1/P3 = 3, which are comparable with the observations.

  13. Fundamental-Mode Oscillations of Two Coronal Loops within a Solar Magnetic Arcade

    CERN Document Server

    Jain, Rekha; Hindman, B W

    2015-01-01

    We analyse intensity variations, as measured by the Atmospheric Imaging Assembly (AIA) in the 171 {\\AA} passband, in two coronal loops embedded within a single coronal magnetic arcade. We detect oscillations in the fundamental mode with periods of roughly 2 minutes and decay times of 5 minutes. The oscillations were initiated by interaction of the arcade with a large wavefront issuing from a flare site. Further, the power spectra of the oscillations evince signatures consistent with oblique propagation to the field lines and for the existence of a 2-D waveguide instead of a 1-D one.

  14. Resonant absorption of kink MHD waves by magnetic twist in coronal loops

    CERN Document Server

    Ebrahimi, Z

    2015-01-01

    There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.

  15. DETECTION OF A FINE-SCALE DISCONTINUITY OF PHOTOSPHERIC MAGNETIC FIELDS ASSOCIATED WITH SOLAR CORONAL LOOP BRIGHTENINGS

    Energy Technology Data Exchange (ETDEWEB)

    Song, Donguk; Chae, Jongchul; Park, Soyoung [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Cho, Kyung-Suk; Lim, Eun-Kyung [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ahn, Kwangsu; Cao, Wenda [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States)

    2015-09-10

    We present the transient brightening of a coronal loop and an associated fine-scale magnetic discontinuity detected in the photosphere. Utilizing the high-resolution data taken with the Fast Imaging Solar Spectrograph and InfraRed Imaging Magnetograph of the New Solar Telescope at Big Bear Solar Observatory, we detect a narrow lane of intense horizontal magnetic field representing a magnetic discontinuity. It was visible as a dark lane partially encircling a pore in the continuum image, and was located near one of the footpoints of a small coronal loop that experienced transient brightenings. The horizontal field strength gradually increased before the loop brightening, and then rapidly decreased in the impulsive phase of the brightening, suggesting the increase of the magnetic non-potentiality at the loop footpoint and the sudden release of magnetic energy via magnetic reconnection. Our results support the nanoflare theory that coronal heating events are caused by magnetic reconnection events at fine-scale magnetic discontinuities.

  16. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  17. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    Science.gov (United States)

    Long, D. M.; Valori, G.; Pérez-Suárez, D.; Morton, R. J.; Vásquez, A. M.

    2017-07-01

    Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims: An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods: Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results: The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ≈ 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of ≈1-9 G and ≈3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively. A movie associated to Figs. 1 and 2 is available at http://www.aanda.org

  18. Vector magnetic field measurements along a cooled stereo-imaged coronal loop

    CERN Document Server

    Schad, Thomas A; Lin, Haosheng; Judge, Philip G

    2016-01-01

    The variation of the vector magnetic field along structures in the solar corona remains unmeasured. Using a unique combination of spectropolarimetry and stereoscopy, we infer and compare the vector magnetic field structure and three-dimensional morphology of an individuated coronal loop structure undergoing a thermal instability. We analyze spectropolarimetric data of the He I 10830 {\\AA} triplet ($1s2s{\\ }^{3}S_{1} - 1s2p{\\ }^{3}P_{2,1,0}$) obtained at the Dunn Solar Telescope with the Facility Infrared Spectropolarimeter on 19 September 2011. Cool coronal loops are identified by their prominent drainage signatures in the He I data (redshifts up to 185 km sec$^{-1}$). Extinction of EUV background radiation along these loops is observed by both the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory and the Extreme Ultraviolet Imager onboard spacecraft A of the Solar Terrestrial Relations Observatory, and is used to stereoscopically triangulate the loop geometry up to heights of 70 Mm ($0.1$ $...

  19. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  20. Using Coronal Loops to Reconstruct the Magnetic Field of an Active Region Before and After a Major Flare

    CERN Document Server

    Malanushenko, A; DeRosa, M L; Wheatland, M S

    2013-01-01

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the nonpotential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of AR 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around time of major flare activity on 2011/02/15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly (HMI and AIA, respectively) onboard the Solar Dynamics Observatory (SDO). The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input, and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a t...

  1. Damped transverse oscillations of interacting coronal loops

    CERN Document Server

    Soler, Roberto

    2015-01-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...

  2. Validation of a Scaling Law for the Coronal Magnetic Field Strengths and Loop Lengths of Solar and Stellar Flares

    CERN Document Server

    Namekata, Kosuke; Watanabe, Kyoko; Asai, Ayumi; Shibata, Kazunari

    2016-01-01

    Shibata & Yokoyama (1999, 2002) proposed a method of estimating the coronal magnetic field strengths ($B$) and magnetic loop lengths ($L$) of solar and stellar flares, on the basis of magnetohydrodynamic simulations of the magnetic reconnection model. Using the scaling law provided by Shibata & Yokoyama (1999, 2002), $B$ and $L$ are obtained as functions of the emission measure ($EM=n^2L^3$) and temperature ($T$) at the flare peak. Here, $n$ is the coronal electron density of the flares. This scaling law enables the estimation of $B$ and $L$ for unresolved stellar flares from the observable physical quantities $EM$ and $T$, which is helpful for studying stellar surface activities. To apply this scaling law to stellar flares, we discuss its validity for spatially resolved solar flares. $EM$ and $T$ were calculated from GOES soft X-ray flux data, and $B$ and $L$ are theoretically estimated using the scaling law. For the same flare events, $B$ and $L$ were also observationally estimated with images taken...

  3. Measurements of TRACE 171A Twisting Coronal Loop Fans about a Twisted Magnetic Flux Tube Originating From Below the Photosphere

    Science.gov (United States)

    Nightingale, R. W.; Ma, G.; Ji, E.

    2009-12-01

    In our previous studies of rotating sunspots about their umbral centers over the past decade, we have been measuring the rotation at the photosphere of the cross sections of large, twisted magnetic flux tubes passing through from below. Many such rotating sunspots have been found and reported in the literature and at earlier meetings [e.g., Brown et al., Sol. Phys. 216, 79, 2003; Yan et al., ApJ 682, L65, 2008; Nightingale et al., Fall AGU Mtg. 2007]. Here we are attempting to measure the rotation of 1 million degree K EUV loops seen in TRACE 171A images emerging from what may be a large 6000 deg K magnetic flux tube (invisible at EUV), which may be the extension of the associated rotating sunspot up in the corona, for active region 9114 on August 8 - 10, 2000. These nonpotential EUV loops appear to be attached at their other end to nonrotating opposite polarity magnetic flux regions and also appear to be flipping around like a twisted jump rope that is attached to a wall at one end. In movies of these twisted coronal loop fans the rotation appears obvious, but is difficult to measure, because of the constant motion and change of intensity of the fans, which tend to obscure each other and the apparent tube center. We will show movies over the 3 days of the twisted loop fans, and details and first results of our measurements, which appear to be similar to those previously found for the associated rotating sunspot down at the photosphere. We will discuss how the twisted magnetic flux tube energizes the corona, carrying energy up from beneath the photosphere. This work was supported by NASA under the TRACE contract NAS5-38099.

  4. Blind Stereoscopy of the Coronal Magnetic Field

    CERN Document Server

    Aschwanden, Markus J; Malanushenko, Anna

    2015-01-01

    We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: (i) automated pattern recognition of coronal loops in EUV images, (ii) automated pairing of corresponding loop patterns from two different aspect angles, and (iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code develo...

  5. Validation of a scaling law for the coronal magnetic field strength and loop length of solar and stellar flares

    Science.gov (United States)

    Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Shibata, Kazunari

    2017-02-01

    Shibata and Yokoyama (1999, ApJ, 526, L49; 2002, ApJ, 577, 422) proposed a method of estimating the coronal magnetic field strength (B) and magnetic loop length (L) of solar and stellar flares, on the basis of magnetohydrodynamic simulations of the magnetic reconnection model. Using the scaling law provided by Shibata and Yokoyama (1999, ApJ, 526, L49; 2002, ApJ, 577, 422), we obtain B and L as functions of the emission measure (EM = n2L3) and temperature (T) at the flare peak. Here, n is the coronal electron density of the flares. This scaling law enables the estimation of B and L for unresolved stellar flares from the observable physical quantities EM and T, which is helpful for studying stellar surface activities. To apply this scaling law to stellar flares, we discuss its validity for spatially resolved solar flares. Quantities EM and T are calculated from GOES (Geostationary Operational Environmental Satellite) soft X-ray flux data, and B and L are theoretically estimated using the scaling law. For the same flare events, B and L were also observationally estimated with images taken by the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) Magnetogram and Atmospheric Imaging Assembly (AIA) 94 Å pass band. As expected, a positive correlation was found between the theoretically and observationally estimated values. We interpret this result as indirect evidence that flares are caused by magnetic reconnection. Moreover, this analysis makes us confident about the validity of applying this scaling law to stellar flares as well as solar flares.

  6. A magnetohydrodynamic theory of coronal loop transients

    Science.gov (United States)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  7. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  8. Bootstrapping the Coronal Magnetic Field with STEREO

    Science.gov (United States)

    Aschwanden, Markus J.

    2010-05-01

    The 3D coronal magnetic field obtained from stereoscopically triangulated loops has been compared with standard photospheric magnetogram extrapolations. We found a large misalignment of 20-40 deg, depending on the complexity of an AR (Sandman et al. 2009; DeRosa et al. 2009). These studies prove that the magnetic field in the photosphere is not force-free and fundamentally cannot reproduce the coronal magnetic field. Bootstrapping with coronal loop 3D geometries are required to improve modeling of the coronal field. Such coronal field bootstrapping methods are currently developed using stereoscopically triangulated loops from STEREO/EUVI and preliminary results show already a significantly reduced misalignment of 10-20 deg.

  9. Transverse Oscillations in a Coronal Loop Triggered by a Jet

    Science.gov (United States)

    Sarkar, S.; Pant, V.; Srivastava, A. K.; Banerjee, D.

    2016-11-01

    We detect and analyse transverse oscillations in a coronal loop, lying at the south-east limb of the Sun as seen from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The jet is believed to trigger transverse oscillations in the coronal loop. The jet originates from a region close to the coronal loop on 19 September 2014 at 02:01:35 UT. The length of the loop is estimated to be between 377 - 539 Mm. Only one complete oscillation is detected with an average period of about 32±5 min. Using magnetohydrodynamic (MHD) seismologic inversion techniques, we estimate the magnetic field inside the coronal loop to be between 2.68 - 4.5 G. The velocity of the hot and cool components of the jet is estimated to be 168 km s^{-1} and 43 km s^{-1}, respectively. The energy density of the jet is found to be greater than the energy density of the oscillating coronal loop. We therefore conclude that the jet triggered transverse oscillations in the coronal loop. To our knowledge, this is the first coronal loop seismology study using the properties of a jet propagation to trigger oscillations.

  10. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  11. Coronal heating in multiple magnetic threads

    CERN Document Server

    Tam, K V; Browning, P K; Cargill, P J

    2015-01-01

    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this ...

  12. Polarisation of microwave emission from reconnecting twisted coronal loops

    CERN Document Server

    Gordovskyy, Mykola; Kontar, Eduard

    2016-01-01

    Magnetic reconnection and particle acceleration due to the kink instability in twisted coronal loops can be a viable scenario for confined solar flares. Detailed investigation of this phenomenon requires reliable methods for observational detection of magnetic twist in solar flares, which may not be possible solely through extreme UV and soft X-ray thermal emission. The gradient of microwave polarisation across flaring loops can serve as one of the detection criteria. The aim of this study is to investigate the effect of magnetic twist in flaring coronal loops on the polarisation of gyro-synchrotron microwave emission, and determine whether microwave emission polarisation could provide a means for observational detection. We use time-dependent magnetohydrodynamic and test-particle models, developed using LARE3D and GCA codes to investigate twisted coronal loops relaxing following the kink-instability, and calculate synthetic microwave emission maps (I and V Stokes components) using GX simulator. It is found t...

  13. Energy Release in Driven Twisted Coronal Loops

    Science.gov (United States)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  14. Transverse oscillations in a coronal loop triggered by a jet

    CERN Document Server

    Sarkar, S; Srivastava, A K; Banerjee, D

    2016-01-01

    We detect and analyse transverse oscillations in a coronal loop, lying at the south east limb of the Sun as seen from the \\textit{{Atmospheric Imaging Assembly}} (AIA) onboard \\textit{{Solar Dynamics Observatory}} (SDO). The jet is believed to trigger transverse oscillations in the coronal loop. The jet originates from a region close to the coronal loop on 19$^{\\rm th}$ September 2014 at 02:01:35 UT. The length of the loop is estimated to be between 377-539~Mm. Only one complete oscillation is detected with an average period of about $32\\pm5$~min. Using MHD seismologic inversion techniques, we estimate the magnetic field inside the coronal loop to be between $2.68 -4.5$~G. The velocity of the hot and cool components of the jet is estimated to be 168~km~s$^{-1}$ and 43~km~s$^{-1}$, respectively. The energy density of the jet is found to be greater than the energy density of the oscillating coronal loop. Therefore, we conclude that the jet {triggered} transverse oscillations in the coronal loop. To our knowledg...

  15. Current systems of coronal loops in 3D MHD simulations

    CERN Document Server

    Warnecke, Jörn; Bingert, Sven; Peter, Hardi

    2016-01-01

    We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down. We analyse a three-dimensional MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux a coronal loop formes self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipola...

  16. Standing Kink modes in three-dimensional coronal loops

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, D. J.; De Moortel, I., E-mail: dpascoe@mcs.st-andrews.ac.uk [School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom)

    2014-04-01

    So far, the straight flux tube model proposed by Edwin and Roberts is the most commonly used tool in practical coronal seismology, in particular, to infer values of the (coronal) magnetic field from observed, standing kink mode oscillations. In this paper, we compare the period predicted by this basic model with three-dimensional (3D) numerical simulations of standing kink mode oscillations, as the period is a crucial parameter in the seismological inversion to determine the magnetic field. We perform numerical simulations of standing kink modes in both straight and curved 3D coronal loops and consider excitation by internal and external drivers. The period of oscillation for the displacement of dense coronal loops is determined by the loop length and the kink speed, in agreement with the estimate based on analytical theory for straight flux tubes. For curved coronal loops embedded in a magnetic arcade and excited by an external driver, a secondary mode with a period determined by the loop length and external Alfvén speed is also present. When a low number of oscillations is considered, these two periods can result in a single, non-resolved (broad) peak in the power spectrum, particularly for low values of the density contrast for which the two periods will be relatively similar. In that case (and for this particular geometry), the presence of this additional mode would lead to ambiguous seismological estimates of the magnetic field strength.

  17. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    CHEN PengFei

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  18. Coronal Loops: Observations and Modeling of Confined Plasma

    Directory of Open Access Journals (Sweden)

    Fabio Reale

    2014-07-01

    Full Text Available Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC and impulsive (DC heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  19. Coronal loops above an Active Region - observation versus model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2014-01-01

    We conducted a high-resolution numerical simulation of the solar corona above a stable active region. The aim is to test the field-line braiding mechanism for a sufficient coronal energy input. We also check the applicability of scaling laws for coronal loop properties like the temperature and density. Our 3D-MHD model is driven from below by Hinode observations of the photosphere, in particular a high-cadence time series of line-of-sight magnetograms and horizontal velocities derived from the magnetograms. This driving applies stress to the magnetic field and thereby delivers magnetic energy into the corona, where currents are induced that heat the coronal plasma by Ohmic dissipation. We compute synthetic coronal emission that we directly compare to coronal observations of the same active region taken by Hinode. In the model, coronal loops form at the same places as they are found in coronal observations. Even the shapes of the synthetic loops in 3D space match those found from a stereoscopic reconstruction ...

  20. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  1. High-spatial-resolution microwave and related observations as diagnostics of coronal loops

    Science.gov (United States)

    Holman, Gordon D.

    1986-01-01

    High spatial resolution microwave observations of coronal loops, together with theoretical models for the loop emission, can provide detailed information about the temperature, density, and magnetic field within the loop, as well as the environment around the loop. The capability for studying magnetic fields is particularly important, since there is no comparable method for obtaining direct information about coronal magnetic fields. Knowledge of the magnetic field strength and structure in coronal loops is important for understanding both coronal heating and flares. With arc-second-resolution microwave observations from the Very Large Array (VLA), supplemental high-spectral-resolution microwave data from a facility such as the Owens Valley frequency-agile interferometer, and the ability to obtain second-of-arc resolution EUV aor soft X ray images, the capability already exists for obtaining much more detailed information about coronal plasma and magnetic structures than is presently available. This capability is discussed.

  2. Diagnostics of Coronal Heating in Active-region Loops

    Science.gov (United States)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  3. SIMULATIONS OF SOLAR JETS CONFINED BY CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Wyper, P. F. [Oak Ridge Associated Universities, Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States); DeVore, C. R., E-mail: peter.f.wyper@nasa.gov, E-mail: c.richard.devore@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771 (United States)

    2016-03-20

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that both the conditions for initiation and the subsequent dynamics are highly sensitive to the ratio L/N. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ratios, and share many of the features of open-field jets, while smaller L/N ratios produce shorter-duration, less energetic jets that are affected by reflections from the far-loop footpoint. We quantify the transition between these behaviors and show that our model replicates key qualitative and quantitative aspects of both quiet Sun and active-region loop jets. We also find that the reconnection between the closed dome and surrounding coronal loop is very extensive: the cumulative reconnected flux at least matches the total flux beneath the dome for small L/N, and is more than double that value for large L/N.

  4. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  5. Low-frequency modulations in the solar microwave radiation as a possible indicator of inductive interaction of coronal magnetic loops

    Science.gov (United States)

    Khodachenko, M. L.; Zaitsev, V. V.; Kislyakov, A. G.; Rucker, H. O.; Urpo, S.

    2005-04-01

    Low-frequency (LF) modulations of 37GHz microwave radiation during solar flares, recorded at the Metsähovi Radio Observatory, are considered. A fast Fourier transformation with a sliding window is used to obtain the dynamic spectra of the LF pulsations. We pay attention to the LFdynamic spectra having a specific multi-track structure, which is supposed to be an indication of a complex multi-loop composition of a flaring region. Application of the equivalent electric circuit models of the loops including the effects of electromagnetic inductive interaction in groups of slowly growing current-carrying magnetic loops allows us to explain and reproduce the main dynamical features of the observed LF modulation dynamic spectra. Each loop is considered as an equivalent electric circuit with variable parameters (resistance, capacitance and inductive coefficients) which depend on shape, scale, position of the loop with respect to other loops, as well as on the plasma parameters and value of the total longitudinal current in the magnetic tube.

  6. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  7. The Fundamental Structure of Coronal Loops

    Science.gov (United States)

    Winebarger, Amy; Warren, Harry; Cirtain, Jonathan; Kobayashi, Ken; Korreck, Kelly; Golub, Leon; Kuzin, Sergey; Walsh, Robert; DePontieu, Bart; Title, Alan; Weber, Mark

    2012-01-01

    During the past ten years, solar physicists have attempted to infer the coronal heating mechanism by comparing observations of coronal loops with hydrodynamic model predictions. These comparisons often used the addition of sub ]resolution strands to explain the observed loop properties. On July 11, 2012, the High Resolution Coronal Imager (Hi ]C) was launched on a sounding rocket. This instrument obtained images of the solar corona was 0.2 ]0.3'' resolution in a narrowband EUV filter centered around 193 Angstroms. In this talk, we will compare these high resolution images to simultaneous density measurements obtained with the Extreme Ultraviolet Imaging Spectrograph (EIS) on Hinode to determine whether the structures observed with Hi ]C are resolved.

  8. Role of Magnetic Carpet in Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma; Diksha Chaudhary

    2008-03-01

    One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in the solar corona. The separate kinds of coronal loops may also be heated by different mechanisms. Using data from instruments onboard the Solar and Heliospheric Observatory (SOHO) and from the more recent Transition Region and Coronal Explorer (TRACE) scientists have identified small regions of mixed polarity, termed magnetic carpet contributing to solar activity on a short time scale. Magnetic loops of all sizes rise into the solar corona, arising from regions of opposite magnetic polarity in the photosphere. Energy released when oppositely directed magnetic fields meet in the corona is one likely cause for coronal heating. There is enough energy coming up from the loops of the “magnetic carpet” to heat the corona to its known temperature.

  9. A Bayesian Approach to Period Searching in Solar Coronal Loops

    Science.gov (United States)

    Scherrer, Bryan; McKenzie, David

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  10. Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology

    CERN Document Server

    Wang, Tongjiang

    2010-01-01

    Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modeling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems ...

  11. The Coronal Loop Inventory Project: Expanded Analysis and Results

    Science.gov (United States)

    Schmelz, J. T.; Christian, G. M.; Chastain, R. A.

    2016-11-01

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated from the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.

  12. Fast-sausage oscillations in coronal loops with smooth boundary

    Science.gov (United States)

    Lopin, I.; Nagorny, I.

    2014-12-01

    Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.

  13. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Science.gov (United States)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO/HMI, SDO/AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  14. Are Coronal Loops Isothermal or Multithermal? Yes!

    CERN Document Server

    Schmelz, J T; Rightmire, L A; Kimble, J A; Del Zanna, G; Cirtain, J W; DeLuca, E E; Mason, H E

    2009-01-01

    Surprisingly few solar coronal loops have been observed simultaneously with TRACE and SOHO/CDS, and even fewer analyses of these loops have been conducted and published. The SOHO Joint Observing Program 146 was designed in part to provide the simultaneous observations required for in-depth temperature analysis of active region loops and determine whether these loops are isothermal or multithermal. The data analyzed in this paper were taken on 2003 January 17 of AR 10250. We used TRACE filter ratios, emission measure loci, and two methods of differential emission measure analysis to examine the temperature structure of three different loops. TRACE and CDS observations agree that Loop 1 is isothermal with Log T $=$ 5.85, both along the line of sight as well as along the length of the loop leg that is visible in the CDS field of view. Loop 2 is hotter than Loop 1. It is multithermal along the line of sight, with significant emission between 6.2 $<$ Log T $<$ 6.4, but the loop apex region is out of the CDS ...

  15. Equilibrium models of coronal loops that involve curvature and buoyancy

    CERN Document Server

    Hindman, Bradley W

    2013-01-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  16. Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy

    Science.gov (United States)

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  17. Coronal heating by the partial relaxation of twisted loops

    CERN Document Server

    Bareford, Michael; Browning, Philippa

    2012-01-01

    Context: Relaxation theory offers a straightforward method for estimating the energy that is released when a magnetic field becomes unstable, as a result of continual convective driving. Aims: We present new results obtained from nonlinear magnetohydrodynamic (MHD) simulations of idealised coronal loops. The purpose of this work is to determine whether or not the simulation results agree with Taylor relaxation, which will require a modified version of relaxation theory applicable to unbounded field configurations. Methods: A three-dimensional (3D) MHD Lagrangian-remap code is used to simulate the evolution of a line-tied cylindrical coronal loop model. This model comprises three concentric layers surrounded by a potential envelope; hence, being twisted locally, each loop configuration is distinguished by a piecewise-constant current profile. Initially, all configurations carry zero-net-current fields and are in ideally unstable equilibrium. The simulation results are compared with the predictions of helicity ...

  18. Thermal and non-thermal emission from reconnecting twisted coronal loops

    CERN Document Server

    Pinto, R; Browning, P K; Vilmer, N

    2016-01-01

    Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us est...

  19. Competition between shock and turbulent heating in coronal loop system

    Science.gov (United States)

    Matsumoto, Takuma

    2016-11-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  20. Competition between shock and turbulent heating in coronal loop system

    CERN Document Server

    Matsumoto, Takuma

    2016-01-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfv\\'{e}n waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfv\\'{e}n waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The i...

  1. Propagating magnetohydrodynamics waves in coronal loops.

    Science.gov (United States)

    De Moortel, I

    2006-02-15

    High cadence Transition Region and Coronal Explorer (TRACE) observations show that outward propagating intensity disturbances are a common feature in large, quiescent coronal loops, close to active regions. An overview is given of measured parameters of such longitudinal oscillations in coronal loops. The observed oscillations are interpreted as propagating slow magnetoacoustic waves and are unlikely to be flare-driven. A strong correlation, between the loop position and the periodicity of the oscillations, provides evidence that the underlying oscillations can propagate through the transition region and into the corona. Both a one- and a two-dimensional theoretical model of slow magnetoacoustic waves are presented to explain the very short observed damping lengths. The results of these numerical simulations are compared with the TRACE observations and show that a combination of the area divergence and thermal conduction agrees well with the observed amplitude decay. Additionally, the usefulness of wavelet analysis is discussed, showing that care has to be taken when interpreting the results of wavelet analysis, and a good knowledge of all possible factors that might influence or distort the results is a necessity.

  2. MHD modeling of coronal loops: the transition region throat

    CERN Document Server

    Guarrasi, M; Orlando, S; Mignone, A; Klimchuk, J A

    2014-01-01

    The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. We study the area response with a time-dependent 2D MHD loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. We find that the area can change substantially with the quasi-steady heating rate, e.g. by ~40% at 0.5 MK as the loop temperature varies between 1 and 4 MK, and, therefore, affects the interpretation of DEM(T) curves.

  3. Bootstrapping the Coronal Magnetic Field with STEREO/EUVI

    Science.gov (United States)

    Aschwanden, Markus; Sandman, Anne

    2010-05-01

    The 3D coronal magnetic field obtained from stereoscopically triangulated loops has been compared with standard photospheric magnetogram extrapolations. We found a large misalignment of 20-40 deg, depending on the complexity of an AR (Sandman et al. 2009; DeRosa et al. 2009). These studies prove that the magnetic field in the photosphere is not force-free and fundamentally cannot reproduce the coronal magnetic field. Bootstrapping with coronal loop 3D geometries are required to improve modeling of the coronal field. Such coronal field bootstrapping methods are currently developed using stereoscopically triangulated loops from STEREO/EUVI and preliminary results show already a significantly reduced misalignment of 10-20 deg.

  4. An Ab Initio approach to Solar Coronal Loops

    CERN Document Server

    Gudiksen, B V

    2004-01-01

    Data from recent numerical simulations of the solar corona and transition region are analysed and the magnetic field connection between the low corona and the photosphere is found to be close to that of a potential field. The fieldline to fieldline displacements follow a power law distribution with typical displacements of just a few Mm. Three loops visible in emulated Transition Region And Coronal Explorer (TRACE) filters are analysed in detail and found to have significantly different heating rates and distributions thereof, one of them showing a small scale heating event. The dynamical structure is complicated even though all the loops are visible in a single filter along most of their lengths. None of the loops are static, but are in the process of evolving into loops with very different characteristics. Differential Emission Measure (DEM) curves along one of the loops illustrate that DEM curves have to be treated carefully if physical characteristics are to be extracted.

  5. Coronal "wave": Magnetic Footprint Of A Cme?

    Science.gov (United States)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  6. Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop

    CERN Document Server

    Kontar, E P; MacKinnon, A L

    2008-01-01

    A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density.Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution ($\\sim 0.2"$) for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with unprecedented vertical resolution of $\\sim$ 150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km. Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around $140\\pm 30$ km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of m...

  7. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    Science.gov (United States)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  8. Soft X-ray emission in flaring coronal loops

    CERN Document Server

    Pinto, R F; Brun, A S

    2014-01-01

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  9. Observational Signatures of Coronal Loop Heating and Cooling Driven by Footpoint Shuffling

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Ugarte-Urra, I; Warren, H P; Rappazzo, A F; Velli, M

    2016-01-01

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50000 km length and axial magnetic field intensities ranging from 0.01...

  10. Energy release in driven twisted coronal loops

    CERN Document Server

    Bareford, M R; Browning, P K; Hood, A W

    2015-01-01

    In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with different initial configurations. In all considered cases, energy release is triggered by the ideal kink instability, which is itself the result of applying footpoint rotation to an initially potential field. The main goal of this work is to establish the influence of the field topology and various thermodynamic effects on the energy release process. Specifically, we investigate convergence of the magnetic field at the loop footpoints, atmospheric stratification, as well as thermal conduction. In all cases, the application of vortical driving at the footpoints of an initally potential field leads to an internal kink instability. With the exception of the curved loop with high footpoint convergence, the global geometry of the loop change little during the simulation. Footpoint convergence, curvature and atmospheric structure clearly influences the rapidity with which a loop achieves instability as well as the size of t...

  11. Unresolved Fine-scale Structure in Solar Coronal Loop-tops

    Science.gov (United States)

    Scullion, E.; Rouppe van der Voort, L.; Wedemeyer, S.; Antolin, P.

    2014-12-01

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  12. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  13. 3D MHD modeling of twisted coronal loops

    CERN Document Server

    Reale, F; Guarrasi, M; Mignone, A; Peres, G; Hood, A W; Priest, E R

    2016-01-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube, in the solar atmosphere extending from the high-beta chromosphere to the low-beta corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ~30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (~3 MK) after ~2/3 hr. Upflows from the chromosphere up to ~100 km/s fill the core of the flux tube to densities above 10^9 cm^-3. More heating is released in the low corona than the high corona and is finely ...

  14. 3D MHD modeling of twisted coronal loops

    Science.gov (United States)

    Reale, F.; Orlando, S.; Guarrasi, M.; Mignone, A.; Peres, G.; Hood, A. W.; Priest, E. R.

    2016-10-01

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high-β chromosphere to the low-β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s‑1 fill the core of the flux tube to densities above 109 cm‑3. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  15. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  16. Numerical simulations of transverse oscillations in radiatively cooling coronal loops

    CERN Document Server

    Magyar, N; Marcu, A

    2015-01-01

    We aim to study the influence of radiative cooling on the standing kink oscillations of a coronal loop. Using the FLASH code, we solved the 3D ideal magnetohydrodynamic equations. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling...

  17. Radio Pulsating Structures with Coronal Loop Contraction

    Science.gov (United States)

    Kallunki, J.; Pohjolainen, S.

    2012-10-01

    We present a multi-wavelength study of a solar eruption event on 20 July 2004, comprising observations in Hα, EUV, soft X-rays, and in radio waves with a wide frequency range. The analyzed data show both oscillatory patterns and shock wave signatures during the impulsive phase of the flare. At the same time, large-scale EUV loops located above the active region were observed to contract. Quasi-periodic pulsations with ˜ 10 and ˜ 15 s oscillation periods were detected both in microwave - millimeter waves and in decimeter - meter waves. Our calculations show that MHD oscillations in the large EUV loops - but not likely in the largest contracting loops - could have produced the observed periodicity in radio emission, by triggering periodic magnetic reconnection and accelerating particles. As the plasma emission in decimeter - meter waves traces the accelerated particle beams and the microwave emission shows a typical gyrosynchrotron flux spectrum (emission created by trapped electrons within the flare loop), we find that the particles responsible for the two different types of emission could have been accelerated in the same process. Radio imaging of the pulsed decimetric - metric emission and the shock-generated radio type II burst in the same wavelength range suggest a rather complex scenario for the emission processes and locations. The observed locations cannot be explained by the standard model of flare loops with an erupting plasmoid located above them, driving a shock wave at the CME front.

  18. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    CERN Document Server

    Chen, Feng

    2015-01-01

    Coronal seismology is extensively used to estimate properties of the corona, e.g. the coronal magnetic field strength are derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. From the simulation of the corona above an active region we synthesise extreme ultraviolet (EUV) emission from the model corona. From this we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5s and a damping tim...

  19. Coronal Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; Weber, M.

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.

  20. A unified view of coronal loop contraction and oscillation in flares

    CERN Document Server

    Russell, Alexander J B; Fletcher, Lyndsay

    2015-01-01

    Context: Transverse loop oscillations and loop contractions are commonly associated with solar flares, but the two types of motion have traditionally been regarded as separate phenomena. Aims: We present an observation of coronal loops contracting and oscillating following onset of a flare. We aim to explain why both behaviours are seen together and why only some of the loops oscillate. Methods: A time sequence of SDO/AIA 171 \\r{A} images is analysed to identify positions of coronal loops following the onset of M6.4 flare SOL2012-03-09T03:53. We focus on five loops in particular, all of which contract during the flare, with three of them oscillating as well. A simple model is then developed for contraction and oscillation of a coronal loop. Results: We propose that coronal loop contractions and oscillations can occur in a single response to removal of magnetic energy from the corona. Our model reproduces the various types of loop motion observed and explains why the highest loops oscillate during their contra...

  1. Magnetic shuffling of coronal downdrafts

    Science.gov (United States)

    Petralia, A.; Reale, F.; Orlando, S.

    2017-02-01

    Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption. Aims: We study the possible back-effect of the magnetic field on the propagation of confined flows. Methods: We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker. Results: The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front. Conclusions: Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example. Movies associated to Figs. 2 and 3 are available at http://www.aanda.org

  2. Standing sausage modes in coronal loops with plasma flow

    CERN Document Server

    Li, Bo; Xia, Li-Dong; Yu, Hui

    2014-01-01

    Magnetohydrodynamic waves are important for diagnosing the physical parameters of coronal plasmas. Field-aligned flows appear frequently in coronal loops.We examine the effects of transverse density and plasma flow structuring on standing sausage modes trapped in coronal loops, and examine their observational implications. We model coronal loops as straight cold cylinders with plasma flow embedded in a static corona. An eigen-value problem governing propagating sausage waves is formulated, its solutions used to construct standing modes. Two transverse profiles are distinguished, one being the generalized Epstein distribution (profile E) and the other (N) proposed recently in Nakariakov et al.(2012). A parameter study is performed on the dependence of the maximum period $P_\\mathrm{max}$ and cutoff length-to-radius ratio $(L/a)_{\\mathrm{cutoff}}$ in the trapped regime on the density parameters ($\\rho_0/\\rho_\\infty$ and profile steepness $p$) and flow parameters (magnitude $U_0$ and profile steepness $u$). For e...

  3. Mini-filament Eruption as the Initiation of a Jet along Coronal Loops

    Science.gov (United States)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-10-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST Hα images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  4. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    Science.gov (United States)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  5. Unravelling the Components of a Multi-thermal Coronal Loop using Magnetohydrodynamic Seismology

    Science.gov (United States)

    Krishna Prasad, S.; Jess, D. B.; Klimchuk, J. A.; Banerjee, D.

    2017-01-01

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multithermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multithermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  6. Unravelling the components of a multi-thermal coronal loop using magnetohydrodynamic seismology

    CERN Document Server

    Prasad, S Krishna; Klimchuk, J A; Banerjee, D

    2016-01-01

    Coronal loops, constituting the basic building blocks of the active Sun, serve as primary targets to help understand the mechanisms responsible for maintaining multi-million Kelvin temperatures in the solar and stellar coronae. Despite significant advances in observations and theory, our knowledge on the fundamental properties of these structures is limited. Here, we present unprecedented observations of accelerating slow magnetoacoustic waves along a coronal loop that show differential propagation speeds in two distinct temperature channels, revealing the multi-stranded and multi-thermal nature of the loop. Utilizing the observed speeds and employing nonlinear force-free magnetic field extrapolations, we derive the actual temperature variation along the loop in both channels, and thus are able to resolve two individual components of the multi-thermal loop for the first time. The obtained positive temperature gradients indicate uniform heating along the loop, rather than isolated footpoint heating.

  7. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    Science.gov (United States)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  8. Jet phenomena above null points of the coronal magnetic field

    Science.gov (United States)

    Filippov, B.; Koutchmy, S.; Golub, L.

    2009-12-01

    Short-lived plasma jets of various scales, from giant X-ray jets more than 300 Mm in extent to numerous small jets with sizes typical of macrospicules, are the phenomena observed in the solar corona in extreme ultraviolet and X-ray emission. Small jets are particularly prominent in polar coronal holes. They are close neighbors of tiny bright loops and coincide in time with their sudden brightening and increase in size. The geometric shape of the jets and their location suggest that they arise near singular null points of the coronal magnetic field. These points appear in coronal holes due to the emergence of small bipolar or unipolar magnetic structures within large-scale unipolar cells. Polar jets show a distinct vertical plasma motion in a coronal hole that introduces significant momentum and mass into the solar wind flow. Investigating the dynamics of polar jets can elucidate certain details in the problem of fast solar wind acceleration.

  9. Numerical simulations of impulsively generated magnetosonic waves in a coronal loop

    NARCIS (Netherlands)

    Ogrodowczyk, R.; Murawski, K.

    2006-01-01

    We consider impulsively excited magnetosonic waves in a highly magnetized coronal loop that is approximated by a straight plasma slab of enhanced mass density. Numerical results reveal that wavelet spectra of time signatures of these waves possess characteristic shapes that depend on the position of

  10. Numerical simulations of impulsively generated magnetosonic waves in a coronal loop

    NARCIS (Netherlands)

    Ogrodowczyk, R.; Murawski, K.

    2006-01-01

    We consider impulsively excited magnetosonic waves in a highly magnetized coronal loop that is approximated by a straight plasma slab of enhanced mass density. Numerical results reveal that wavelet spectra of time signatures of these waves possess characteristic shapes that depend on the position of

  11. Non-inductive current driven by Alfvén waves in solar coronal loops

    Science.gov (United States)

    Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1996-08-01

    It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.

  12. Transverse, Propagating Velocity Perturbations in Solar Coronal Loops

    CERN Document Server

    De Moortel, I; Wright, A N; Hood, A W

    2015-01-01

    This short review paper gives an overview of recently observed transverse, propagating velocity perturbations in coronal loops. These ubiquitous perturbations are observed to undergo strong damping as they propagate. Using 3D numerical simulations of footpoint-driven transverse waves propagating in a coronal plasma with a cylindrical density structure, in combination with analytical modelling, it is demonstrated that the observed velocity perturbations can be understood in terms of coupling of different wave modes in the inhomogeneous boundaries of the loops. Mode coupling in the inhomogeneous boundary layers of the loops leads to the coupling of the transversal (kink) mode to the azimuthal (Alfven) mode, observed as the decay of the transverse kink oscillations. Both the numerical and analytical results show the spatial profile of the damped wave has a Gaussian shape to begin with, before switching to exponential decay at large heights. In addition, recent analysis of CoMP (Coronal Multi-channel Polarimeter)...

  13. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  14. Decay-less kink oscillations in coronal loops

    Science.gov (United States)

    Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.

    2013-12-01

    Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org

  15. Quantifying the Significance of Substructure in Coronal Loops

    Science.gov (United States)

    McKeough, K. B. D.; Kashyap, V.; McKillop, S.

    2014-12-01

    A method to infer the presence of small-scale substructure in SDO/AIA (Atmospheric Imaging Assembly on the Solar Dynamics Observatory) images of coronal loops is developed. We can classify visible loop structure based on this propensity to show substructure which puts constraints on contemporary solutions to the coronal heating problem. The method uses the Bayesian algorithm Low-count Image Reconstruction and Analysis (LIRA) to infer the multi-scale component of the loops which describes deviations from a smooth model. The increase in contrast of features in this multi-scale component is determined using a statistic that estimates the sharpness across the image. Regions with significant substructure are determined using p-value upper bounds. We are able to locate substructure visible in Hi-C (High-Resolution Coronal Imager) data that are not salient features in the corresponding AIA image. Looking at coronal loops at different regions of the Sun (e.g., low-lying structure and loops in the upper corona) we are able to map where detectable substructure exists and thus the influence of the nanoflare heating process. We acknowledge support from AIA under contract SP02H1701R from Lockheed-Martin to SAO.

  16. First 3D Reconstructions of Coronal Loops with the STEREO A+B Spacecraft: IV. Magnetic Modeling with Twisted Force-Free Fields

    CERN Document Server

    Aschwanden, Markus J; Nitta, Nariaki V; Lemen, James R; DeRosa, Marc L; Malanushenko, Anna

    2012-01-01

    The three-dimensional (3D) coordinates of stereoscopically triangulated loops provide strong constraints for magnetic field models of active regions in the solar corona. Here we use STEREO/A and B data from some 500 stereoscopically triangulated loops observed in four active regions (2007 Apr 30, May 9, May 19, Dec 11), together with SOHO/MDI line-of-sight magnetograms. We measure the average misalignment angle between the stereoscopic loops and theoretical magnetic field models, finding a mismatch of $\\mu=19^\\circ-46^\\circ$ for a potential field model, which is reduced to $\\mu=14^\\circ-19^\\circ$ for a non-potential field model parameterized by twist parameters. The residual error is commensurable with stereoscopic measurement errors ($\\mu_{SE} \\approx 8^\\circ-12^\\circ$). We developed a potential field code that deconvolves a line-of-sight magnetogram into three magnetic field components $(B_x, B_y, B_z)$, as well as a non-potential field forward-fitting code that determines the full length of twisted loops (...

  17. Relating magnetic reconnection to coronal heating.

    Science.gov (United States)

    Longcope, D W; Tarr, L A

    2015-05-28

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related--i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, [Formula: see text], is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature.

  18. New analytical and numerical models of solar coronal loop: I. Application to forced vertical kink oscillations

    CERN Document Server

    Murawski, K; Kraskiewicz, J; Srivastava, A K

    2014-01-01

    Aims. We construct a new analytical model of a solar coronal loop that is embedded in a gravitationally stratified and magnetically confined atmosphere. On the basis of this analytical model, we devise a numerical model of solar coronal loops. We adopt it to perform the numerical simulations of its vertical kink oscillations excited by an external driver. Methods. Our model of the solar atmosphere is constructed by adopting a realistic temperature distribution and specifying the curved magnetic field lines that constitute a coronal loop. This loop is described by 2D, ideal magnetohydro- dynamic equations that are numerically solved by the FLASH code. Results. The vertical kink oscillations are excited by a periodic driver in the vertical component of velocity, acting at the top of the photosphere. For this forced driver with its amplitude 3 km/s, the excited oscillations exhibit about 1.2 km/s amplitude in their velocity and the loop apex oscillates with its amplitude in displacement of about 100 km. Conclusi...

  19. Three-Dimensional MHD Models of Waves and Flows in Coronal Active Region Loops

    Science.gov (United States)

    Ofman, L.; Wang, T.; Davila, J. M.

    2011-12-01

    Recent observations show that slow magnetosonic waves are present in active region loops, and are often associated with subsonic up-flows of coronal material. In order to study the relation between up-flows and waves we develop a 3D MHD model of an idealized bi-polar active region with flows in coronal loops. The model is initiated with a dipole magnetic field and gravitationally stratified isothermal atmosphere. To model the effects of flares, coronal material is injected in small-scale regions at the base of the model active region. The up-flows have sub-sonic speeds of ˜100 km/s and are steady or periodic, producing higher density loops by filling magnetic flux-tubes with injected material. We find that the up-flows produce fast and slow magnetosonic waves that propagate in the coronal loops. We perform a parametric study of up-flow magnitude and periodicity, and the relation with the resulting waves. As expected, we find that the up-flow speed decreases with loop height due to the diverge of the flux tubes, while the slow magnetosonic speed is independent of height. When the amplitude of the driving pulses is increased above the sound speed, we find that slow shocks are produced in the loops. Using the results of the 3D MHD model we show that observed slow magnetosonic waves in active region loops can be driven by impulsive flare-produced up-flows at the transition region/corona interface of active regions.

  20. A closer look at a coronal loop rooted in a sunspot umbra

    CERN Document Server

    Chitta, L P; Young, P R

    2015-01-01

    Extreme UV (EUV) and X-ray loops in the solar corona connect regions of enhanced magnetic activity, but usually they are not rooted in the dark umbrae of sunspots. This is because there the strong magnetic field suppresses convection and thus the Poynting flux of magnetic energy into the upper atmosphere is not significant within the umbra, as long as there are no light bridges, umbral dots. Here we report a rare observation of a coronal loop rooted in the dark umbra of a sunspot without any traces of light bridges or umbral dots. We used the slit-jaw images and spectroscopic data from the IRIS and concentrate on the line profiles of O IV and Si IV that show persistent strong redshifted components in the loop rooted in the umbra. Using the ratios of O IV, we can estimate the density and thus investigate the mass flux. The coronal context and temperature diagnostics of these observations is provided through the EUV channels of the AIA. The coronal loop, embedded within cooler downflows, is hosting supersonic d...

  1. Unresolved fine-scale structure in solar coronal loop-tops

    CERN Document Server

    Scullion, Eamon; Wedemeyer, Sven; Antolin, Patrick

    2014-01-01

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer sub-structures within coronal loop cross sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop sub-structures, through taking advantage of the resolving power of the Swedish 1- m Solar Telescope (SST) / CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory (SDO) / Atmospheric Image Assembly (AIA). High resolution imaging of the chromospheric H-alpha 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in H-alpha...

  2. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  3. Standing sausage modes in coronal loops with plasma flow

    Science.gov (United States)

    Li, Bo; Chen, Shao-Xia; Xia, Li-Dong; Yu, Hui

    2014-08-01

    Context. Magnetohydrodynamic waves are important for diagnosing the physical parameters of coronal plasmas. Field-aligned flows appear frequently in coronal loops. Aims: We examine the effects of transverse density and plasma flow structuring on standing sausage modes trapped in coronal loops, and examine their observational implications in the context of coronal seismology. Methods: We model coronal loops as straight cold cylinders with plasma flow embedded in a static corona. An eigen-value problem governing propagating sausage waves is formulated and its solutions are employed to construct standing modes. Two transverse profiles are distinguished, and are called profiles E and N. A parameter study is performed on the dependence of the maximum period Pmax and cutoff length-to-radius ratio (L/a)cutoff in the trapped regime on the density parameters (ρ0/ρ∞ and profile steepness p) and the flow parameters (its magnitude U0 and profile steepness u). Results: For either profile, introducing a flow reduces Pmax obtainable in the trapped regime relative to the static case. The value of Pmax is sensitive to p for profile N, but is insensitive to p for profile E. By far the most important effect a flow introduces is to reduce the capability for loops to trap standing sausage modes: (L/a)cutoff may be substantially reduced in the case with flow relative to the static one. In addition, (L/a)cutoff is smaller for a stronger flow, and for a steeper flow profile when the flow magnitude is fixed. Conclusions: If the density distribution can be described by profile N, then measuring the sausage mode period can help deduce the density profile steepness. However, this practice is not feasible if profile E more accurately describes the density distribution. Furthermore, even field-aligned flows with magnitudes substantially smaller than the ambient Alfvén speed can make coronal loops considerably less likely to support trapped standing sausage modes. Appendix A is available in

  4. From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    CERN Document Server

    Judge, Philip G; Landi, Enrico

    2013-01-01

    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possibl...

  5. MAGNETOHYDRODYNAMIC SEISMOLOGY OF A CORONAL LOOP SYSTEM BY THE FIRST TWO MODES OF STANDING KINK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Hao, Q.; Cheng, X.; Chen, P. F.; Ding, M. D. [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210046 (China); Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Srivastava, A. K.; Dwivedi, B. N., E-mail: guoyang@nju.edu.cn [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-01

    We report the observation of the first two harmonics of the horizontally polarized kink waves excited in a coronal loop system lying southeast of AR 11719 on 2013 April 11. The detected periods of the fundamental mode (P {sub 1}), its first overtone (P {sub 2}) in the northern half, and that in the southern one are 530.2 ± 13.3, 300.4 ± 27.7, and 334.7 ± 22.1 s, respectively. The periods of the first overtone in the two halves are the same considering uncertainties in the measurement. We estimate the average electron density, temperature, and length of the loop system as (5.1 ± 0.8) × 10{sup 8} cm{sup –3}, 0.65 ± 0.06 MK, and 203.8 ± 13.8 Mm, respectively. As a zeroth-order estimation, the magnetic field strength, B = 8.2 ± 1.0 G, derived by the coronal seismology using the fundamental kink mode matches with that derived by a potential field model. The extrapolation model also shows the asymmetric and nonuniform distribution of the magnetic field along the coronal loop. Using the amplitude profile distributions of both the fundamental mode and its first overtone, we observe that the antinode positions of both the fundamental mode and its first overtone shift toward the weak field region along the coronal loop. The results indicate that the density stratification and the temperature difference effects are larger than the magnetic field variation effect on the period ratio. On the other hand, the magnetic field variation has a greater effect on the eigenfunction of the first overtone than the density stratification does for this case.

  6. Free Magnetic Energy and Coronal Heating

    Science.gov (United States)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  7. Turbulent cross-field transport of non-thermal electrons in coronal loops: theory and observations

    CERN Document Server

    Bian, N; McKinnon, A

    2011-01-01

    A fundamental problem in astrophysics is the interaction between magnetic turbulence and charged particles. It is now possible to use \\emph{Ramaty High Energy Solar Spectroscopic Imager (RHESSI)} observations of hard X-rays (HXR) emitted by electrons to identify the presence of turbulence and to estimate the magnitude of the magnetic field line diffusion coefficient at least in dense coronal flaring loops.} {We discuss the various possible regimes of cross-field transport of non-thermal electrons resulting from broadband magnetic turbulence in coronal loops. The importance of the Kubo number $K$ as a governing parameter is emphasized and results applicable in both the large and small Kubo number limits are collected.} {Generic models, based on concepts and insights developed in the statistical theory of transport, are applied to the coronal loops and to the interpretation of hard X-ray imaging data in solar flares. The role of trapping effects, which become important in the non-linear regime of transport, is ...

  8. Modeling solar coronal bright point oscillations with multiple nanoflare heated loops

    CERN Document Server

    Chandrashekhar, K

    2015-01-01

    Intensity oscillations of coronal bright points (BPs) have been studied for past several years. It has been known for a while that these BPs are closed magnetic loop like structures. However, initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but modeling of such BPs have not been explored so far. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field line extrapolation of available data (Chandrashekhar et al. 2013), and set this as the length of our simulated loops. We produce intensity like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers di...

  9. Nanoflares and MHD turbulence in coronal loops: a hybrid shell model.

    Science.gov (United States)

    Nigro, Giuseppina; Malara, Francesco; Carbone, Vincenzo; Veltri, Pierluigi

    2004-05-14

    A model to describe injection, due to footpoint motions, storage, and dissipation of MHD turbulence in coronal loops, is presented. The model is based on the use of the shell technique in the wave vector space applied to the set of reduced MHD equations. Numerical simulation showed that the energy injected is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions among these fluctuations give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. The statistical analysis performed on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics.

  10. MHD modeling of coronal loops: injection of high-speed chromospheric flows

    CERN Document Server

    Petralia, A; Orlando, S; Klimchuk, J A

    2014-01-01

    Observations reveal a correspondence between chromospheric type II spicules and bright upwardly moving fronts in the corona observed in the EUV band. However, theoretical considerations suggest that these flows are unlikely to be the main source of heating in coronal magnetic loops. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes, and the possible production of emission in the EUV band. We simulate the propagation of a dense $10^4$ K chromospheric jet upwards along a coronal loop, by means of a 2-D cylindrical MHD model, including gravity, radiative losses, thermal conduction and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool ($\\sim 0.8$ MK) corona, linked through a steep transition region. In our reference model, the jet's initial speed is 70 km/s, its initial density is $10^{11}$ cm$^{-3}$, and the ambient uniform magnetic field is 10 G. We explore also other values of jet speed and density in 1-...

  11. Forward Modelling of Standing Kink Modes in Coronal Loops I. Synthetic Views

    CERN Document Server

    Yuan, Ding

    2016-01-01

    Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar plasma. In this study, we synthesise the \\ion{Fe}{9} $\\lambda171.073$ emission of a coronal loop supporting a standing kink MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which dominate the plasma inside and outside the flux tube, respectively. At the loop edges, the line-of-sight integrates relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory variations at half ...

  12. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. I. SYNTHETIC VIEWS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar plasma. In this study, we synthesize the Fe ix λ171.073 Å emission of a coronal loop supporting a standing kink MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which dominate the plasma inside and outside of the flux tube, respectively. At the loop edges, the line of sight integrates relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory variations at half of the kink period. The quadrupole term can be directly observed as a pendular motion at the front view.

  13. Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops

    Science.gov (United States)

    Mikhalyaev, B. B.; Bembitov, D. B.

    2014-11-01

    We consider a model of a coronal loop that is a cylindrical magnetic tube with two surface electric currents. Its principal sausage mode has no cut-off in the long-wavelength limit. For typical coronal conditions, the period of the mode is between one and a few minutes. The sausage mode of flaring loops could cause long-period pulsations observed in microwave and hard X-ray ranges. There are other examples of coronal oscillations: long-period pulsations of active-region quiet loops in the soft X-ray emission are observed. We assume that these can also be caused by sausage waves. The question arises of how the sausage waves are generated in quiet loops. We assume that they can be generated by torsional oscillations. This process can be described in the framework of the nonlinear three-wave interaction formalism. The periods of interacting torsional waves are similar to the periods of torsional oscillations observed in the solar atmosphere. The timescale of the sausage-wave excitation is not much longer than the periods of interacting waves, so that the sausage wave is excited before torsional waves are damped.

  14. THERMAL STRUCTURE OF CORONAL LOOPS AS SEEN WITH NORIKURA CORONAGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Singh, Jagdev [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India); Ichimoto, K., E-mail: krishna@iiap.res.in [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8417 (Japan)

    2013-03-10

    The thermal structure of a coronal loop, both along and across the loop, is vital in determining the exact plasma heating mechanism. High-resolution spectroscopic observations of the off-limb corona were made using the 25 cm Norikura coronagraph, located at Norikura, Japan. Observations on a number of days were made simultaneously in four forbidden iron emission lines, namely, the [Fe XI] 7892 A line, the [Fe XIII] 10747 A and 10798 A lines, and the [Fe XIV] 5303 A line and on some days made only in the [Fe XI] 7892 A and [Fe X] 6374 A lines. Using temperature sensitive emission line ratios [Fe XIV] 5303 A/[Fe XIII] 10747 A and [Fe XI] 7892 A/[Fe X] 6374 A, we compute the electron temperatures along 18 different loop structures observed on different days. We find a significant negative temperature gradient in all of the structures observed in Fe XIV and Fe XIII and a positive temperature gradient in the structures observed in Fe XI and Fe X. Combining these results with the previous investigations by Singh and his collaborators, we infer that the loop tops, in general, appear hotter when observed in colder lines and colder when observed in relatively hotter lines as compared to their coronal foot points. We suggest that this contrasting trend observed in the temperature variation along the loop structures can be explained by a gradual interaction of different temperature plasma. The exact mechanism responsible for this interaction must be investigated further and has the potential to constrain loop heating models.

  15. Forward Modelling of Standing Kink Modes in Coronal Loops II. Applications

    CERN Document Server

    Yuan, Ding

    2016-01-01

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modelling) of the observables into the thermal and magnetic structures of the plasma. However, owing to the limited availability of observables, this is an ill-posed issue. Forward Modelling is to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and t...

  16. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  17. Damped large amplitude oscillations in a solar prominence and a bundle of coronal loops

    CERN Document Server

    Zhang, Quanhao; Liu, Rui; Shen, Chenglong; Zhang, Min; Gou, Tingyu; Liu, Jiajia; Liu, Kai; Zhou, Zhenjun; Wang, Shui

    2016-01-01

    We investigate the evolutions of two prominences (P1,P2) and two bundles of coronal loops (L1,L2), observed with SDO/AIA near the east solar limb on 2012 September 22. It is found that there were large-amplitude oscillations in P1 and L1, but no detectable motions in P2 and L2. These transverse oscillations were triggered by a large-scale coronal wave, originating from a large flare in a remote active region behind the solar limb. By carefully comparing the locations and heights of these oscillating and non-oscillating structures, we conclude that the propagating height of the wave is between 50 Mm and 130 Mm. The wave energy deposited in the oscillating prominence and coronal loops is at least of the order of $10^{28}$ erg. Furthermore, local magnetic field strength and Alfv\\'{e}n speeds are derived from the oscillating periods and damping time scales, which are extracted from the time series of the oscillations. It is demonstrated that oscillations can be used in not only coronal seismology, but also reveal...

  18. The structure of fast sausage waves in current-carrying coronal loops

    Science.gov (United States)

    Bembitov, D. B.; Mikhalyaev, B. B.; Ruderman, M. S.

    2014-09-01

    We study fast sausage waves in a model coronal loop that consists of a cylindrical core with axial magnetic field and coaxial annulus with purely azimuthal magnetic field. The magnetic field is discontinuous at the tube and core boundaries, and there are surface currents with the opposite directions on these boundaries. The principal mode of fast sausage waves in which the magnetic pressure perturbation has no nodes in the radial direction can exist for arbitrary wavelength. The results for the fundamental radial mode of sausage waves are applied to the interpretation of observed periodic pulsations of microwave emission in flaring loops with periods of a few tens of seconds. Radial plasma motion has opposite directions at the tube and core boundaries. This leads to the periodic contraction and expansion of the annulus. We assume that the principal mode of fast sausage waves in the current-carrying coronal loops is able to produce a current sheet. However, the nonlinear analysis is needed to confirm this conjecture.

  19. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  20. Periods and damping rates of fast sausage oscillations in multi-shelled coronal loops

    CERN Document Server

    Chen, Shao-Xia; Xia, Li-Dong; Yu, Hui

    2015-01-01

    Standing sausage modes are important in interpreting quasi-periodic pulsations in the lightcurves of solar flares. Their periods and damping times play an important role in seismologically diagnosing key parameters like the magnetic field strength in regions where flare energy is released. Usually such applications are based on theoretical results neglecting unresolved fine structures in magnetized loops. However, the existence of fine structuring is suggested on both theoretical and observational grounds. Adopting the framework of cold magnetohydrodynamics (MHD), we model coronal loops as magnetized cylinders with a transverse equilibrium density profile comprising a monolithic part and a modulation due to fine structuring in the form of concentric shells. The equation governing the transverse velocity perturbation is solved with an initial-value-problem approach, and the effects of fine structuring on the periods $P$ and damping times $\\tau$ of global, leaky, standing sausage modes are examined. A parameter...

  1. Turbulent pitch-angle scattering and diffusive transport of hard-X-ray producing electrons in flaring coronal loops

    CERN Document Server

    Kontar, E P; Emslie, A G; Vilmer, N

    2013-01-01

    Recent observations from {\\em RHESSI} have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high energy electrons are confined to the coronal region of the source, we consider turbulent pitch angle scattering of fast electrons off low frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop and ...

  2. Hydrodynamics of the plasma confined inside coronal loops: flare and microflare models

    Science.gov (United States)

    Betta, R.; Peres, G.; Reale, F.; Serio, S.

    The plasma contained in coronal loops behaves macroscopically like a fluid and its dynamics and evolution may be described by hydrodynamics provided mass, momentum and energy transport occurs only along magnetic field lines. In fact, coronal loops are very often observed not to change their geometry during a flare, and this suggests that the magnetic field structure may basically act to confine the plasma while chromospheric plasma evaporation and temperature increase cause the increase in brightness. In other words, though the source of the energy release in loops may be of magnetic origin, the subsequent loops response may be adequately described by hydrodynamics in those instances in which the global magnetic field does not change. We have developed such a hydrodynamic model (Peres et al. 1982), which takes into account the main physical effects such as gravity, viscosity, ionization, radiative losses and thermal conduction and which is capable of giving a correct description of the steep and dynamic transition region between the chromosphere and the corona (Betta et al. 1997). Here we show how a plasma confined inside coronal loops responds when it is subject to impulsive heating. We simulate flares by creating a sudden energy release in a localized position along the loop (although the plasma dynamics does not depend crucially on the position of energy release). The initial configuration consists of a loop in hydrostatic equilibrium and steady-state energy balance (i.e.,in which there is an average heating which balances radiation losses and thermal conduction). The hydrodynamic calculations show the formation of an evaporation front propagating from the chromosphere to the corona, while the temperature increases in the loop from the top towards the footpoints anchored in the photosphere and the transition region moves progressively downwards. When the heating is switched off the plasma cools slowly during the decay phase of the flare until a thermal

  3. Magnetic Topology of Coronal Hole Linkages

    CERN Document Server

    Titov, V S; Linker, J A; Lionello, R; Antiochos, S K

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open flux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the field with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. It is known that such topologies are extremely favorable for magnetic reconnection, because they allow this process to occur over the entire length of the separators rather than being confined to a small region around the...

  4. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Science.gov (United States)

    Froment, C.; Auchère, F.; Aulanier, G.; Mikić, Z.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory/EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  5. Magnetic structure of Coronal Mass Ejections

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    We present several models of the magnetic structure of solar coronal mass ejections (CMEs). First, we model CMEs as expanding force-free magnetic structures. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, while the field structures remain force-free. Second, expansion of a CME can drive resistive dissipation within the CME changing the ionization states of different ions. We fit in situ measurements of ion charge states to the resistive spheromak solutions. Finally, we consider magnetic field structures of fully confined stable magnetic clouds containing both toroidal and poloidal magnetic fields and having no surface current sheets. Expansion of such clouds may lead to sudden onset of reconnection events.

  6. Network Coronal Bright Points: Coronal Heating Concentrations Found in the Solar Magnetic Network

    Science.gov (United States)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe xii coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.

  7. Soft X-ray emission in kink-unstable coronal loops

    Science.gov (United States)

    Pinto, R. F.; Vilmer, N.; Brun, A. S.

    2015-04-01

    Context. Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink-unstable twisted flux-ropes provide a source of magnetic energy that can be released impulsively and may account for the heating of the plasma in flares. Aims: We investigate the temporal, spectral, and spatial evolution of the properties of the thermal continuum X-ray emission produced in such kink-unstable magnetic flux-ropes and discuss the results of the simulations with respect to solar flare observations. Methods: We computed the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops based on a series of magnetohydrodynamical numerical simulations. The numerical setup consisted of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, computed the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduced the X-ray emission properties of the plasma during the whole flaring episode. Results: During the initial (linear) phase of the instability, plasma heating is mostly adiabatic (as a result of compression). Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (up to more than 20 MK), to a quick enhancement of X-ray emission, and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures higher than 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events, but cools down globally by thermal conduction. The total thermal X-ray emission slowly fades away during this phase, and the high

  8. Giant coronal loops dominate the quiescent X-ray emission in rapidly rotating M stars

    CERN Document Server

    Cohen, O; Garraffo, C; Saar, S H; Wolk, S J; Kashyap, V L; Drake, J J; Pillitteri, I

    2016-01-01

    Observations indicate that magnetic fields in rapidly rotating stars are very strong, on both small and large scales. What is the nature of the resulting corona? Here we seek to shed some light on this question. We use the results of an anelastic dynamo simulation of a rapidly rotating fully-convective M-star to drive a physics-based model for the stellar corona. We find that due to the several kilo Gauss large-scale magnetic fields at high latitudes, the corona and its X-ray emission are dominated by star-size large hot loops, while the smaller, underlying colder loops are not visible much in the X-ray. Based on this result we propose that, in rapidly rotating stars, emission from such coronal structures dominates the quiescent, cooler but saturated X-ray emission.

  9. 3-D numerical simulations of coronal loops oscillations

    Directory of Open Access Journals (Sweden)

    M. Selwa

    2009-10-01

    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  10. Effects of field-aligned flows on standing kink and sausage modes supported by coronal loops

    CERN Document Server

    Chen, S -X; Xia, L -D; Chen, Y -J; Yu, H

    2013-01-01

    Fundamental standing modes and their overtones play an important role in coronal seismology. We examine how a significant field-aligned flow affects standing modes supported by coronal loops, modeled here as cold magnetic slabs. Of particular interest are the period ratios of the fundamental to its $(n-1)$-th overtone ($P_1/nP_n$) for both kink and sausage modes, and the threshold half-width-to-length ratio for sausage modes. For standing kink modes, the flow significantly reduces $P_1/nP_n$ in general, the effect being particularly strong for larger $n$ and when the density contrast $\\rho_0/\\rho_e$ between loops and their surroundings is weak. That said, even when $\\rho_0/\\rho_e$ approaches infinity, this effect is still substantial, reducing the minimal $P_1/nP_n$ by up to 13.7% (24.5%) for $n=2$ ($n=4$) relative to the static case, when the Alfv\\'en Mach number $M_A$ reaches 0.8 where $M_A$ measures the loop flow speed in units of the internal Alfv\\'en speed. For standing sausage modes, though not negligib...

  11. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  12. The Generation of Coronal Loop Waves below the Photosphere by p-Mode Forcing

    CERN Document Server

    Hindman, Bradley W

    2008-01-01

    Recent observations of coronal-loop waves by TRACE and within the corona as a whole by CoMP clearly indicate that the dominant oscillation period is 5 minutes, thus implicating the solar p modes as a possible source. We investigate the generation of tube waves within the solar convection zone by the buffeting of p modes. The tube waves--in the form of longitudinal sausage waves and transverse kink waves--are generated on the many magnetic fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing, the tube waves freely propagate up and down the tubes, since the tubes act like light fibers and form a waveguide for these magnetosonic waves. Those waves that propagate upward pass through the photosphere and enter the upper atmosphere where they can be measured as loop oscillations and other forms of propagating coronal waves. We treat the magnetic fibrils as vertically aligned, thin flux tubes and compute the energy flux of tube waves that can generated and driven in...

  13. The Magnetic Structure of H-alpha Macrospicules in Solar Coronal Holes

    Science.gov (United States)

    Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakurai, T.

    2004-01-01

    Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated back to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic field of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of Ha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar coronal holes in 6 days of image- processed full-disk Ha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions are driven by explosive reconnection events in the magnetic network.

  14. Sigmoid-to-Flux-Rope Transition Leading to A Loop-Like Coronal Mass Ejection

    CERN Document Server

    Liu, Rui; Wang, Shuo; Deng, Na; Wang, Haimin

    2010-01-01

    Sigmoids are one of the most important precursor structures for solar eruptions. In this Letter, we study a sigmoid eruption on 2010 August 1 with EUV data obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). In AIA 94 \\AA\\ (Fe XVIII; 6 MK), topological reconfiguration due to tether-cutting reconnection is unambiguously observed for the first time, i.e., two opposite J-shaped loops reconnect to form a continuous S-shaped loop, whose central portion is dipped and aligned along the magnetic polarity inversion line (PIL), and a compact loop crossing the PIL. A causal relationship between photospheric flows and coronal tether-cutting reconnections is evidenced by the detection of persistent converging flows toward the PIL using line-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board SDO. The S-shaped loop remains in quasi-equilibrium in the lower corona for about 50 minutes, with the central dipped portion rising slowly at ~10 km s-1. ...

  15. Modeling Solar Coronal Bright-point Oscillations with Multiple Nanoflare Heated Loops

    Science.gov (United States)

    Chandrashekhar, K.; Sarkar, Aveek

    2015-09-01

    Intensity oscillations of coronal bright points (BPs) have been studied for the past several years. It has been known for a while that these BPs are closed magnetic loop-like structures. However, the initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but so far modeling such BPs has not been explored. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field-line extrapolation of available data, and set this as the length of our simulated loops. We produce intensity-like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers different background subtractions, one can extract adiabatic standing modes from the intensity time-series data as well, both from the observed and simulated data.

  16. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu [High Altitude Observatory, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  17. MAGNETIC FLUX SUPPLEMENT TO CORONAL BRIGHT POINTS

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China); Madjarska, Maria S., E-mail: z.huang@sdu.edu.cn [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2016-02-10

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of an MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.

  18. Kink oscillations of cooling coronal loops with variable cross-section

    Science.gov (United States)

    Ruderman, M. S.; Shukhobodskiy, A. A.; Erdélyi, R.

    2017-06-01

    We study kink waves and oscillations in a thin expanding magnetic tube in the presence of flow. The tube consists of a core region and a thin transitional region at the tube boundary. In this region the plasma density monotonically decreases from its value in the core region to the value outside the tube. Both the plasma density and velocity of background flow vary along the tube and in time. Using the multiscale expansions we derive the system of two equations describing the kink oscillations. When there is no transitional layer the oscillations are described by the first of these two equations. We use this equation to study the effect of plasma density variation with time on kink oscillations of an expanding tube with a sharp boundary. We assume that the characteristic time of the density variation is much greater than the characteristic time of kink oscillations. Then we use the Wentzel-Kramer-Brillouin (WKB) method to derive the expression for the adiabatic invariant, which is the quantity that is conserved when the plasma density varies. The general theoretical results are applied to the kink oscillations of coronal magnetic loops. We consider an expanding loop with the half-circle shape and assume that the plasma temperature inside a loop decays exponentially with time. We numerically calculated the dependences of the fundamental mode frequency, the ratio of frequencies of the first overtone and fundamental mode, and the oscillation amplitude on time. We obtained that the oscillation frequency and amplitude increase and the frequency ratio decreases due to cooling. The amplitude increase is stronger for loops with a greater expansion factor. This effect is also more pronounced for higher loops. However, it is fairly moderate even for loops that are quite high.

  19. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  20. Multiscale Modeling of Solar Coronal Magnetic Reconnection

    Science.gov (United States)

    Antiochos, Spiro K.; Karpen, Judith T.; DeVore, C. Richard

    2010-01-01

    Magnetic reconnection is widely believed to be the primary process by which the magnetic field releases energy to plasma in the Sun's corona. For example, in the breakout model for the initiation of coronal mass ejections/eruptive flares, reconnection is responsible for the catastrophic destabilizing of magnetic force balance in the corona, leading to explosive energy release. A critical requirement for the reconnection is that it have a "switch-on' nature in that the reconnection stays off until a large store of magnetic free energy has built up, and then it turn on abruptly and stay on until most of this free energy has been released. We discuss the implications of this requirement for reconnection in the context of the breakout model for CMEs/flares. We argue that it imposes stringent constraints on the properties of the flux breaking mechanism, which is expected to operate in the corona on kinetic scales. We present numerical simulations demonstrating how the reconnection and the eruption depend on the effective resistivity, i.e., the effective Lundquist number, and propose a model for incorporating kinetic flux-breaking mechanisms into MHO calculation of CMEs/flares.

  1. Structure of solar coronal loops: from miniature to large-scale

    CERN Document Server

    Peter, H; Klimchuk, J A; de Forest, C; Cirtain, J W; Golub, L; Winebarger, A R; Kobayashi, K; Korreck, K E

    2013-01-01

    We will use new data from the High-resolution Coronal Imager (Hi-C) with unprecedented spatial resolution of the solar corona to investigate the structure of coronal loops down to 0.2 arcsec. During a rocket flight Hi-C provided images of the solar corona in a wavelength band around 193 A that is dominated by emission from Fe XII showing plasma at temperatures around 1.5 MK. We analyze part of the Hi-C field-of-view to study the smallest coronal loops observed so far and search for the a possible sub-structuring of larger loops. We find tiny 1.5 MK loop-like structures that we interpret as miniature coronal loops. These have length of the coronal segment above the chromosphere of only about 1 Mm and a thickness of less than 200 km. They could be interpreted as the coronal signature of small flux tubes breaking through the photosphere with a footpoint distance corresponding to the diameter of a cell of granulation. We find loops that are longer than 50 Mm to have a diameter of about 2 arcsec or 1.5 Mm, consist...

  2. Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a 2.5-dimensional (2.5-D) ideal MHD model, this paper ana lyzes the equilibrium properties of coronal magnetic flux ropes in a bipolar ambient magnetic field. It is found that the geometrical features of the magnetic flux rope,including the height of the rope axis, the half-width of the rope, and the length of the vertical current sheet below the rope, are determined by a single magnetic parameter, the magnetic helicity, which is the sum of the self-helicity of the rope and the mutual helicity between the rope field and the ambient magnetic field. All the geometrical parameters increase monotonically with increasing magnetic helicity.The implication of this result in solar active phenomena is briefly discussed.

  3. The effect of compressive viscosity on the slow mode oscillations of inhomogeneous solar coronal loops

    Directory of Open Access Journals (Sweden)

    A. Abedini

    2014-04-01

    Full Text Available In this paper, the effect of compressive viscosity on the slow mode oscillation of solar corona loops is studied. The coronal loops medium are considered in low beta condition, uniform magnetic field in the presence of gravitational stratification and temperature gradient. Two-dimensional Magneto-Hydro-Dynamics (MHD equations are perturbed about the equilibrium and thenthese equations are linearized and ultimately a second order differential equation is obtained for velocity perturbation by stretching method. In considering the appropriate boundary conditions for the differential equationis solved analytically and numerically. Oscillation Modes obtained from numerical solutions with real data from satellites such as SOHO, TRACE and SDO are compared. Results show that the gravitational layering, fluctuations in the corona loop for frequency values greater than the cutoff frequency occurs. In small longitudes, viscosity damping is strong . Since the observations confirms strong damping of oscillations corona, can be said viscosity alone can justify the oscillation damping in elongated loops, the oscillation period is between 2 and 48 min, corresponds to the actual data.

  4. Coronal loop detection and salient contour group extraction from solar images

    Science.gov (United States)

    Durak, Nurcan

    2011-01-01

    This dissertation addresses two different problems: 1) coronal loop detection from solar images: and 2) salient contour group extraction from cluttered images. In the first part, we propose two different solutions to the coronal loop detection problem. The first solution is a block-based coronal loop mining method that detects coronal loops from solar images by dividing the solar image into fixed sized blocks, labeling the blocks as "Loop" or "Non-Loop", extracting features from the labeled blocks, and finally training classifiers to generate learning models that can classify new image blocks. The block-based approach achieves 64% accuracy in 10-fold cross validation experiments. To improve the accuracy and scalability, we propose a contour-based coronal loop detection method that extracts contours from cluttered regions, then labels the contours as "Loop" and "Non-Loop", and extracts geometric features from the labeled contours. The contour-based approach achieves 85% accuracy in 10-fold cross validation experiments, which is a 20% increase compared to the block-based approach. In the second part, we propose a method to extract semi-elliptical open curves from cluttered regions. Our method consists of the following steps: obtaining individual smooth contours along with their saliency measures; then starting from the most salient contour, searching for possible grouping options for each contour; and continuing the grouping until an optimum solution is reached. Our work involved the design and development of a complete system for coronal loop mining in solar images, which required the formulation of new Gestalt perceptual rules and a systematic methodology to select and combine them in a fully automated judicious manner using machine learning techniques that eliminate the need to manually set various weight and threshold values to define an effective cost function. After finding salient contour groups, we close the gaps within the contours in each group and perform

  5. Coronal loop physical parameters from the analysis of multiple observed transverse oscillations

    CERN Document Server

    Ramos, A Asensio

    2013-01-01

    The analysis of quickly damped transverse oscillations of solar coronal loops using magneto-hydrodynamic seismology allow us to infer physical parameters that are difficult to measure otherwise. Under the assumption that such damped oscillations are due to the resonant conversion of global modes into Alfven oscillations of the tube surface, we carry out a global seismological analysis of a large set of coronal loops. A Bayesian hierarchical method is used to obtain distributions for coronal loop physical parameters by means of a global analysis of a large number of observations. The resulting distributions summarise global information and constitute data-favoured information that can be used for the inversion of individual events. The results strongly suggest that internal Alfven travel times along the loop are larger than 100 s and smaller than 540 s with 95% probability. Likewise, the density contrast between the loop interior and the surrounding is larger than 2.3 and below 6.9 with 95% probability.

  6. Periods and Damping Rates of Fast Sausage Oscillations in Multishelled Coronal Loops

    Science.gov (United States)

    Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-08-01

    Standing sausage modes are important in interpreting quasi-periodic pulsations in the light curves of solar flares. Their periods and damping times play an important role in seismologically diagnosing key parameters like the magnetic field strength in regions where flare energy is released. Usually, such applications are based on theoretical results neglecting unresolved fine structures in magnetized loops. However, the existence of fine structuring is suggested on both theoretical and observational grounds. Adopting the framework of cold magnetohydrodynamics (MHD), we model coronal loops as magnetized cylinders with a transverse equilibrium density profile comprising a monolithic part and a modulation due to fine structuring in the form of concentric shells. The equation governing the transverse velocity perturbation is solved with an initial-value-problem approach, and the effects of fine structuring on the periods P and damping times τ of global, leaky, standing sausage modes are examined. A parameter study shows that fine structuring, be it periodically or randomly distributed, brings changes of only a few percents to P and τ when there are more than about ten shells. The monolithic part, its steepness in particular, plays a far more important role in determining P and τ. We conclude that when measured values of P and τ of sausage modes are used for seismological purposes, it is justified to use theoretical results where the effects due to fine structuring are neglected.

  7. Manifestation of large-scale kink oscillations of coronal loops in the low frequency modulations of solar microwave emission

    Science.gov (United States)

    Khodachenko, Maxim; Kislyakova, Kristina; Zaqarashvili, Teimuraz; Kislyakov, Albert; Panchenko, Mykhaylo; Zaitsev, Valerii; Rucker, Helmut

    Very-low-frequency fluctuations (¡ 0.01 Hz) of solar microwave radiation were analysed by means of a "sliding window" Fourier transform combined with the Wigner-Ville technique. In view of the fact that slow variations of the magnetic field in the radiation source, as well as a large-scale motion of the source, can modulate the intensity of the received radio signal, we considered large-scale kink-type oscillatory motions of coronal loops which were accompanied also by periodic magnetic stress, created near the loops footpoints during each inclination of loop, i.e. two times per the oscillation cycle. In such cases a properly located observer, besides of the modulation caused by motion of the emission diagram pattern at the main oscillation frequency, may see also modulation at a double frequency of the loop oscillation as well as much weaker higher harmonics. Therefore, the presence in the very-low-frequency spectra of the lines at the main and double frequency of the loop oscillation ("modulation pairs") may indicate about a kink-type oscillatory dynamics of the loop. Special attention in the present study has been paid to the analysis of modulations of microwave emission recorded at the same time when TRACE EUV telescope observed large scale oscillations of coronal loops. The applied data analysis technique, besides of the modulations connected with loop kink oscillations seen by TRACE, enables to detect also the modulations associated with kink oscillations of smaller (invisible for TRACE) loops. Acknowledgements: MLK and TZ acknowledge Austrian Fond zur Fürderung der wissenschaftlichen Forschung (project P21197-N16); MP and HOR acknowledge Austrian Fond zur Fürderung der wissenschaftlichen Forschung (project P20680-N16).

  8. Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections

    CERN Document Server

    Priest, Eric; Janvier, Miho

    2016-01-01

    During eruptive solar flares and coronal mass ejections, a non-pot{\\-}ential magnetic arcade with much excess magnetic energy goes unstable and reconnects. It produces a twisted erupting flux rope and leaves behind a sheared arcade of hot coronal loops. We suggest that: the twist of the erupting flux rope can be determined from conservation of magnetic flux and magnetic helicity and equipartition of magnetic helicity. It depends on the geometry of the initial pre-eruptive structure. Two cases are considered, in the first of which a flux rope is not present initially but is created during the eruption by the reconnection. In the second case, a flux rope is present under the arcade in the pre-eruptive state, and the effect of the eruption and reconnection is to add an amount of magnetic helicity that depends on the fluxes of the rope and arcade and the geometry.

  9. OBSERVATIONS OF LINEAR POLARIZATION IN A SOLAR CORONAL LOOP PROMINENCE SYSTEM OBSERVED NEAR 6173 Å

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Hilaire, Pascal; Martínez Oliveros, Juan-Carlos; Hudson, Hugh S.; Krucker, Säm; Bain, Hazel [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Couvidat, Sébastien, E-mail: shilaire@ssl.berkeley.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-05-10

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to ∼20% at an altitude of ∼33 Mm, about the maximum amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2 × 10{sup 14} g. At 15 Mm altitude, the brightest part of the loop was 3(±0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm). We estimate the free electron density of the white-light loop system to possibly be as high as 1.8 × 10{sup 12} cm{sup –3}.

  10. A New Method for Coronal Magnetic Field Reconstruction

    Science.gov (United States)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung

    2017-08-01

    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between

  11. The effects of Kelvin-Helmholtz instability on resonance absorption layers in coronal loops

    Science.gov (United States)

    Karpen, Judith T.; Dahlburg, Russell B.; Davila, Joseph M.

    1994-01-01

    One of the long-standing uncertainties in the wave-resonance theory of coronal heating is the stability of the resonance layer. The wave motions in the resonance layer produce highly localized shear flows which vary sinusoidally in time with the resonance period. This configuration is potentially susceptible to the Kelvin-Helmholtz instability (KHI), which can enhance small-scale structure and turbulent broadening of shear layers on relatively rapid ideal timescales. We have investigated numerically the response of a characteristic velocity profile, derived from resonance absorption models, to finite fluid perturbations comparable to photospheric fluctuations. We find that the KHI primarily should affect long (approximately greater than 6 x 10(exp 4) km) loops where higher velocity flows (M approximately greater than 0.2) exist in resonance layers of order 100 km wide. There, the Kelvin-Helmholtz growth time is comparable to or less than the resonance quarter-period, and the potentially stabilizing magnetic effects are not felt until the instability is well past the linear growth stage. Not only is the resonance layer broadened by the KHI, but also the convective energy transport out of the resonance layer is increased, thus adding to the efficiency of the wave-resonance heating process. In shorter loops, e.g., those in bright points and compact flares, the stabilization due to the magnetic field and the high resonance frequency inhibit the growth of the Kelvin-Helmholtz instability beyond a minimal level.

  12. The coronal magnetic field reversal observed by the SOLARC instrument

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High-sensitivity measurements for mapping coronal magnetic field have become possible since the recent development of infrared detection techniques. One urgent task that arises from the routine infrared observations is to interpret what the Stokes signals could indicate for coronal magnetic fields. It is the first time for us to successfully reveal the coronal field structure above a simple and stable sunspot on the photosphere using profiles of full Stokes parameters. In this paper, the author further points out the deficiency in any conclusions/judgements just based on incomplete polarization data. A magnetic flux reversal feature, observed from circular polarization data, may correspond to one or more coronal tubes with their front or farside arching apex there, more complicated than people imagined before. To exactly locate the infrared radiation sources, we need both circular and linear polarization data for an integrated analysis of them.

  13. Scaling laws of coronal loops compared to a 3D MHD model of an Active Region

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2016-01-01

    Context. The structure and heating of coronal loops are investigated since decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and the coronal heating. Aims. We test such scaling laws against a large-scale 3D MHD model of the Solar corona, which became feasible with nowadays high-performance computing. Methods. We drive an active region simulation a with photospheric observations and found strong similarities to the observed coronal loops in X-rays and EUV wavelength. A 3D reconstruction of stereoscopic observations showed that our model loops have a realistic spatial structure. We compare scaling laws to our model data extracted along an ensemble of field lines. Finally, we fit a new scaling law that represents well hot loops and also cooler structures, which was not possible before only based on observations. Results. Our model data gives some support for scaling laws that were established for hot and EUV-emissive coronal loops. For the RTV scali...

  14. Characterizing the Properties of Coronal Magnetic Null Points

    Science.gov (United States)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  15. Coronal Magnetic Flux Ropes in Quadrupolar Magnetic Fields

    Science.gov (United States)

    Zhang, Yingzhi; Hu, Youqiu; Wang, Jingxiu

    Using a 2.5-D, time-dependent ideal MHD model in spherical coordinates, we carry out a numerical study of the equilibrium properties of coronal magnetic flux ropes in a quadrupolar background magnetic field. For such a flux rope system, a catastrophic occurs: the flux rope is detached from the photosphere and jumps to a finite altitude with a vertical current sheet below. There is a transversal current sheet formed above the rope, and the whole system stays in quasi-equilibrium. We argue that the additional Lorentz force provided by the transversal current sheet on the flux rope plays an important role in keeping the system in quasi-equilibrium in the corona.

  16. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    Science.gov (United States)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  17. Heating and cooling of coronal loops observed by SDO

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2015-11-01

    Context. One of the most prominent processes to have been suggested as heating the corona to well above 106 K builds on nanoflares, which are short bursts of energy dissipation. Aims: We compare observations to model predictions to test the validity of the nanoflare process. Methods: Using extreme UV data from AIA/SDO and HMI/SDO line-of-sight magnetograms, we study the spatial and temporal evolution of a set of loops in active region AR 11850. Results: We find a transient brightening of loops in emission from Fe xviii forming at about 7.2 MK, while at the same time these loops dim in emission from lower temperatures. This points to a fast heating of the loop that goes along with evaporation of material that we observe as apparent upward motions in the image sequence. After this initial phase lasting some 10 min, the loops brighten in a sequence of AIA channels that show progressively cooler plasma, indicating that this cooling of the loops lasts about one hour. A comparison to the predictions from a 1D loop model shows that this observation supports the nanoflare process in (almost) all aspects. In addition, our observations show that the loops get broader while getting brighter, which cannot be understood in a 1D model. Movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  18. Photospheric magnetic field of an eroded-by-solar-wind coronal mass ejection

    Science.gov (United States)

    Palacios, J.; Cid, C.; Saiz, E.; Guerrero, A.

    2017-10-01

    We have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.

  19. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    Science.gov (United States)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  20. Plasma sloshing in pulse-heated solar and stellar coronal loops

    CERN Document Server

    Reale, F

    2016-01-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here hydrodynamic loop modeling shows that several large amplitude oscillations (~ 20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter that the sound crossing time of the flaring loop. The reason is that the plasma has not enough time to reach pressure equilibrium during the heating and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical MHD waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  1. The temporal evolution of coronal loops observed by GOES-SXI

    CERN Document Server

    Fuentes, M C L; Mandrini, C H

    2006-01-01

    We study the temporal evolution of coronal loops using data from the Solar X-ray Imager (SXI) on board of GOES-12. This instrument allows us to follow in detail the full lifetime of coronal loops. The observed light curves suggest three somewhat distinct evolutionary phases: rise, main, and decay. The durations and characteristic timescales of these phases are much longer than a cooling time and indicate that the loop-averaged heating rate increases slowly, reaches a maintenance level, and then decreases slowly. This suggests that a single heating mechanism operates for the entire lifetime of the loop. For monolithic loops, the loop-averaged heating rate is the intrinsic energy release rate of the heating mechanism. For loops that are bundles of impulsively heated strands, it is an indication of the frequency of occurrence of individual heating events, or nanoflares. We show that the timescale of the loop-averaged heating rate is proportional to the timescale of the observed intensity variation. The ratios of...

  2. Estimate of Coronal Magnetic Field Strength Using Plasmoid Acceleration Measurement

    Science.gov (United States)

    Choe, G.; Lee, K.; Jang, M.

    2010-12-01

    A method of estimating the lower bound of coronal magnetic field strength in the neighborhood of an ejecting plasmoid is presented. Based on the assumption that the plasma ejecta is within a magnetic island, an analytical expression for the force acting on the ejecta is derived. A rather simple calculation shows that the vertical force acting on a cylinder-like volume, whose lateral surface is a flux surface and whose magnetic axis is parallel to the horizontal, is just the difference in total pressure (magnetic pressure plus plasma pressure) below and above the volume. The method is applied to a limb coronal mass ejection event, and a lower bound of the magnetic field strength just below the CME core is estimated. The method is expected to provide useful information on the strength of reconnecting magnetic field if applied to X-ray plasma ejecta.

  3. Determining Physical Characteristics of Coronal Loops Through Differential Emission Measure Analysis

    Science.gov (United States)

    Cirtain, J. W.; Schemlz, J. T.; Allen, J. D.; Hubbard, P. J.

    2001-05-01

    Through the use of differential emission measure curves for points along coronal loops on the limb, physical characteristics can be determined that will help further constrain current theoretical models. This study used data obtained from observations taken on 20 Apr 1998 and 13 Nov 1997 by both the Solar and Heliospheric Observatory Coronal Diagnostic Spectrometer and the Yohkoh Soft X-ray Telescope. Pixel coordinates were established for multiple points along each loop, and the intensities of different spectral lines were calculated for each pixel. Differential emission measures curves were constructed for each of the chosen points, and the density and pressure at each position was determined. Radiative and conductive losses are also calculated from the data. The arc length of the loop was measured and the temperature scale heights for specific ions were calculated and compared to the observed heights above the limb. A significant intensity is measured for the O V line at 629.73 angstroms with a peak formation temperature of T = .26 MK in both loops about 50 scale heights above the limb. In order to account for these O V intensities, the oxygen abundance must be enhanced by a factor of 10 to 40 above normal coronal values; or the cool end (below 1 MK) of the differential emission measure curves must turn up again, even for the pixels at the top of the loops, well off the limb.

  4. Analysis of Two Coronal Loops with Combined TRACE and SOHO/CDS Data

    Science.gov (United States)

    Scott, J. T.; Martens, P. C. H.; Cirtain, J. W.

    2008-11-01

    We use an innovative research technique to analyze combined images from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) and the Transition Region and Coronal Explorer (TRACE). We produce a high spatial and temporal resolution simulated CDS raster or “composite” map from TRACE data and use this composite map to jointly analyze data from both instruments. We show some of the advantages of using the “composite” map method for coronal loop studies. We investigate two postflare loop structures. We find cool material (250 000 K) concentrated at the tips or apex of the loops. This material is found to be above its scale height and therefore not in hydrostatic equilibrium. The exposure times of the composite map and TRACE images are used to give an estimate of another loop’s cooling time. The contribution to the emission in the TRACE images for the spectral lines present in its narrow passband is estimated by using the CDS spectral data and CHIANTI to derive synthetic spectra. We obtain cospatial and cotemporal data collected by both instruments in SOHO Joint Observations Program (JOP) 146 and show how the combination of these data can be utilized to obtain more accurate measurements of coronal plasmas than if analyzed individually.

  5. Fast Magnetoacoustic Waves in a Fan Structure Above a Coronal Magnetic Null Point

    Science.gov (United States)

    Mészárosová, H.; Dudík, J.; Karlický, M.; Madsen, F. R. H.; Sawant, H. S.

    2013-04-01

    We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P=10 - 83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the coronal magnetic null point. We estimate the plasma parameters in the studied radio sources and find them consistent with the presented scenario involving the coronal magnetic null point.

  6. Statistical Evidence for the Existence of Alfv\\'enic Turbulence in Solar Coronal Loops

    CERN Document Server

    Liu, Jiajia; De Moortel, Ineke; Threlfall, James; Bethge, Christian

    2014-01-01

    Recent observations have demonstrated that waves which are capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which time and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfv\\'enic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study [De Moortel et al., ApJL, 782:L34, 2014] by analyzing thirty-seven clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter (CoMP) instrument. We observe Alfv\\'enic perturbations with phase speeds which range from 250-750 km/s and periods from 140-270 s for the chosen loops. While excesses of high frequency wave-power are observed near the apex of some loops (tentatively supporting the onset of Alfv\\'enic turbu...

  7. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Cheng, X., E-mail: hqsong@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China)

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  8. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    Science.gov (United States)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  9. Evidence of Non-Thermal Particles in Coronal Loops Heated Impulsively by Nanoflares

    CERN Document Server

    Testa, Paola; Allred, Joel; Carlsson, Mats; Reale, Fabio; Daw, Adrian; Hansteen, Viggo; Martinez-Sykora, Juan; Liu, Wei; DeLuca, Ed; Golub, Leon; McKillop, Sean; Reeves, Kathy; Saar, Steve; Tian, Hui; Lemen, Jim; Title, Alan; Boerner, Paul; Hurlburt, Neal; Tarbell, Ted; Wuelser, J P; Kleint, Lucia; Kankelborg, Charles; Jaeggli, Sarah

    2014-01-01

    The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "coronal nanoflares". The accelerated electrons deposit a sizable fraction of their energy in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona.

  10. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    Science.gov (United States)

    Mészárosová, H.; Rybák, J.; Kashapova, L.; Gömöry, P.; Tokhchukova, S.; Myshyakov, I.

    2016-09-01

    Aims: We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. Methods: The complex microwave dynamic spectrum and the expanding loop images were analyzed with the help of SDO/AIA/HMI, RHESSI, and the STEREO/SECCHI-EUVI data processing software, wavelet analysis methods, the GX Simulator tool, and the NAFE method. Results: We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz s-1. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal loop with twisted sub-structures observed in the 131, 94, and 193 Å SDO/AIA channels. Their slit-time diagrams were compared with the location of the radio source at 5.7 GHz to realize that the EUV intensity of the expanding loop increased just before the radio source triggering. We reveal two EUV bidirectional flows that are linked with the start time of the loop expansion. Their positions were close to the radio source and propagated with velocities within a range of 30-117 km s-1. Conclusions: We demonstrate that periodic regime of the electron acceleration in a model of the quasi-periodic magnetic reconnection might be able to explain physical properties and behavior of the sub

  11. Interpretation of the coronal magnetic field configuration of the Sun

    CERN Document Server

    Li, Bo; Yu, Hui

    2012-01-01

    The origin of the heliospheric magnetic flux on the Sun, and hence the origin of the solar wind, is a topic of hot debate.While the prevailing view is that the solar wind originates from outside coronal streamer helmets, there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field, it is difficult to resolve the conflict between the two scenarios without doubt.We present two 2-dimensional, Alfv\\'enic-turbulence-based models of the solar corona and solar wind, one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the FeXIII 10747\\AA\\ line, where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints, especially those on the magnetic flux dis...

  12. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    Science.gov (United States)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  13. Broadband microwave sub-second pulsations in an expanding coronal loop of the 2011 August 10 flare

    CERN Document Server

    Meszarosova, Hana; Kashapova, Larisa; Gomory, Peter; Tokhchukova, Susanna; Myshyakov, Ivan

    2016-01-01

    We studied the characteristic physical properties and behavior of broadband microwave sub-second pulsations observed in an expanding coronal loop during the GOES C2.4 solar flare on 2011 August 10. We found sub-second pulsations and other different burst groups in the complex radio spectrum. The broadband (bandwidth about 1 GHz) sub-second pulsations (temporal period range 0.07-1.49 s, no characteristic dominant period) lasted 70 s in the frequency range 4-7 GHz. These pulsations were not correlated at their individual frequencies, had no measurable frequency drift, and zero polarization. In these pulsations, we found the signatures of fast sausage magnetoacoustic waves with the characteristic periods of 0.7 and 2 s. The other radio bursts showed their characteristic frequency drifts in the range of -262-520 MHz/s. They helped us to derive average values of 20-80 G for the coronal magnetic field strength in the place of radio emission. It was revealed that the microwave event belongs to an expanding coronal l...

  14. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    Science.gov (United States)

    Aschwanden, Markus J.; Reardon, Kevin; Jess, Dave B.

    2016-07-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (≈ 0\\buildrel{\\prime\\prime}\\over{.} 2{--}0\\buildrel{\\prime\\prime}\\over{.} 3), from the Interferometric Bidimensional Spectrometer in the Ca ii 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563 Å line, the Interface Region Imaging Spectrograph in the 2796 Å line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and in chromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures are field-aligned with the best-fit solution by a median misalignment angle of {μ }2≈ 4^\\circ -7° (3) the free energy computed from coronal data may underestimate that obtained from cromospheric data by a factor of ≈ 2-4, (4) the height range of chromospheric features is confined to h≲ 4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ {10}-5{--}{10}-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.

  15. Anomalous Cooling of Coronal Loops with Turbulent Suppression of Thermal Conduction

    Science.gov (United States)

    Bian, Nicolas H.; Watters, Jonathan M.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-12-01

    We investigate the impact of turbulent suppression of parallel heat conduction on the cooling of post-flare coronal loops. Depending on the value of the mean free path {λ }T associated with the turbulent scattering process, we identify four main cooling scenarios. The overall temperature evolution, from an initial temperature in excess of 107 K, is modeled in each case, highlighting the evolution of the dominant cooling mechanism throughout the cooling process. Comparison with observed cooling times allows the value of {λ }T to be constrained, and interestingly this range corresponds to situations where collision-dominated conduction plays a very limited role, or even no role at all, in the cooling of post-flare coronal loops.

  16. Anomalous Cooling of Coronal Loops with Turbulent Suppression of Thermal Conduction

    CERN Document Server

    Bian, Nicolas H; Kontar, Eduard P; Emslie, A Gordon

    2016-01-01

    We investigate the impact of turbulent suppression of parallel heat conduction on the cooling of post-flare coronal loops. Depending on the value of the mean free path $\\lambda_T$ associated with the turbulent scattering process, we identify four main cooling scenarios. The overall temperature evolution, from an initial temperature in excess of $10^7$~K, is modeled in each case, highlighting the evolution of the dominant cooling mechanism throughout the cooling process. Comparison with observed cooling times allows the value of $\\lambda_T$ to be constrained, and interestingly this range corresponds to situations where collision-dominated conduction plays a very limited role, or even no role at all, in the cooling of post-flare coronal loops.

  17. Varying self-inductance and energy storage in a sheared force-free arcade. [of coronal loops

    Science.gov (United States)

    Zuccarello, F.; Burm, H.; Kuperus, M.; Raadu, M.; Spicer, D. S.

    1987-01-01

    An electric circuit analogy is used to model the build-up and storage of magnetic energy in the coronal loops known to exist in the atmosphere of the sun. The present parameterization of magnetic energy storage in an electric circuit analog uses a bulk current I flowing in the circuit and a self-inductance L. Because the self-inductance is determined by the geometry of the magnetic configuration any change in its dimensions will change L. If L is increased, the amount of magnetic energy stored and the rate at which magnetic energy is stored are both increased. One way of increasing L is to shear the magnetic field lines and increase their effective geometrical length. Using the force-free field approximation for a magnetic arcade whose field lines are sheared by photospheric motions, it is demonstrated that the increase of magnetic energy is initially due to the increase of the current intensity I and later mainly due to the increase of the self-inductance.

  18. Bashful ballerina unveiled: Multipole analysis of the coronal magnetic field

    Science.gov (United States)

    Virtanen, I.; Mursula, K.

    2012-12-01

    Heliospheric current sheet (HCS) is the continuum of the coronal magnetic equator, dividing the heliospheric magnetic field (HMF) into two sectors (polarities). Because of its wavy structure, the HCS is often called the ballerina skirt. Several studies have proven that the HCS is southward shifted during about three years in the solar declining phase. This persistent phenomenon, called the bashful ballerina, has been verified by geomagnetic indices since 1930s, by OMNI data base since 1960s, by the WSO PFSS model since mid-1970s and by the Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. We study here the Wilcox Solar Observatory measurements of the photospheric magnetic field and the PFSS extrapolation of the coronal magnetic field. We show that the quadrupole moment of the photospheric magnetic field, which is important for the HCS asymmetry (bashful ballerina), mainly arises from the difference between northern and southern polar field strengths. According to the WSO data the minimum time quadrupole is mainly due to the difference between the highest northern and southern latitude bins. Related studies imply that the southward shift of the HCS is related to the delayed development of southern coronal holes. We also discuss the suggested connection of the HCS asymmetry to sunspot hemispheric asymmetry.

  19. Automated tracing of open-field coronal structures for an optimized large-scale magnetic field reconstruction

    Science.gov (United States)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2014-12-01

    Solar Probe Plus and Solar Orbiter will provide detailed measurements in the inner heliosphere magnetically connected with the topologically complex and eruptive solar corona. Interpretation of these measurements will require accurate reconstruction of the large-scale coronal magnetic field. In a related presentation by S. Jones et al., we argue that such reconstruction can be performed using photospheric extrapolation methods constrained by white-light coronagraph images. Here, we present the image-processing component of this project dealing with an automated segmentation of fan-like coronal loop structures. In contrast to the existing segmentation codes designed for detecting small-scale closed loops in the vicinity of active regions, we focus on the large-scale geometry of the open-field coronal features observed at significant radial distances from the solar surface. The coronagraph images used for the loop segmentation are transformed into a polar coordinate system and undergo radial detrending and initial noise reduction. The preprocessed images are subject to an adaptive second order differentiation combining radial and azimuthal directions. An adjustable thresholding technique is applied to identify candidate coronagraph features associated with the large-scale coronal field. A blob detection algorithm is used to extract valid features and discard noisy data pixels. The obtained features are interpolated using higher-order polynomials which are used to derive empirical directional constraints for magnetic field extrapolation procedures based on photospheric magnetograms.

  20. EUV flickering of solar coronal loops: a new diagnostic of coronal heating

    CERN Document Server

    Tajfirouze, E; Peres, G; Testa, P

    2016-01-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 A and 335 A channels of the Atmospheric Imaging Assembly on-board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 A channel and, viceversa, from the top to the bottom in the 335 A channel. This prediction is confirmed by the observation of a set of aligned neighbouring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nano-flaring ...

  1. EUV FLICKERING OF SOLAR CORONAL LOOPS: A NEW DIAGNOSTIC OF CORONAL HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Peres, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: reale@astropa.unipa.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-02-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 Å and 335 Å channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 Å channel and from the top to the bottom in the 335 Å channel. This prediction is confirmed by the observation of a set of aligned neighboring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nanoflaring regions.

  2. Interpretation of the coronal magnetic field configuration of the Sun

    Institute of Scientific and Technical Information of China (English)

    Bo Li; Xing Li; Hui Yu

    2012-01-01

    The origin of the heliospheric magnetic flux on the Sun,and hence the origin of the solar wind,is a topic of hot debate.While the prevailing view is that the solar wind originates from outside the coronal streamer helmets,there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field,it is difficult to unambiguously resolve the conflict between the two scenarios.We present two 2-dimensional,Alfvénic-turbulence-based models of the solar corona and solar wind,one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the Fe ⅩⅢ 10747(A) line,where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints,especially those on the magnetic flux distribution.Interestingly,the two models provide similar polarized brightness (pB) distributions in the field of view (FOV) of SOHO/LASCO C2 and C3 coronagraphs.In particular,a dome-shaped feature is present in the C2 FOV even for the model without a closed magnetic field.Moreover,both models fit the Ulysses data scaled to 1 AU equally well.We suggest that:1) The pB observations cannot be safely taken as a proxy for the magnetic field topology,as is often implicitly assumed.2) The Ulysses measurements,especially the one showing a nearly uniform distribution with heliocentric latitude of the radial magnetic field,do not rule out the ubiquity of open magnetic fields on the Sun.

  3. Hanle Effect Diagnostics of the Coronal Magnetic Field - A Test Using Realistic Magnetic Field Configurations

    CERN Document Server

    Raouafi, N -E; Wiegelmann, T

    2008-01-01

    Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\\sc{i}} Ly$\\alpha$ and $\\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\\sc{i}} Ly$\\beta$, are useful for such measurements.

  4. THERMAL NON-EQUILIBRIUM REVISITED: A HEATING MODEL FOR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Mok, Yung, E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com, E-mail: mikicz@predsci.com, E-mail: amy.r.winebarger@nasa.gov, E-mail: ymok@uci.edu [Department of Physics and Astronomy, University of California, 4129 Reines Hall, Irvine, CA 92697 (United States)

    2013-08-20

    The location and frequency of events that heat the million-degree corona are still a matter of debate. One potential heating scenario is that the energy release is effectively steady and highly localized at the footpoints of coronal structures. Such an energy deposition drives thermal non-equilibrium solutions in the hydrodynamic equations in longer loops. This heating scenario was considered and discarded by Klimchuk et al. on the basis of their one-dimensional simulations as incapable of reproducing observational characteristics of loops. In this paper, we use three-dimensional simulations to generate synthetic emission images, from which we select and analyze six loops. The main differences between our model and that of Klimchuk et al. concern (1) dimensionality, (2) resolution, (3) geometrical properties of the loops, (4) heating function, and (5) radiative function. We find evidence, in this small set of simulated loops, that the evolution of the light curves, the variation of temperature along the loops, the density profile, and the absence of small-scale structures are compatible with the characteristics of observed loops. We conclude that quasi-steady footpoint heating that drives thermal non-equilibrium solutions cannot yet be ruled out as a viable heating scenario for EUV loops.

  5. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    Science.gov (United States)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  6. The Role of Overlying Magnetic Field in Modeling Coronal Mass Ejections

    Science.gov (United States)

    Olmedo, Oscar; Zhang, J.

    2009-05-01

    Recent models and observations have revealed that the magnetic fields overlying active regions play an important role in the eruption or confinement of flux ropes due to the torus instability. Flux ropes are now generally accepted to be the magnetic configuration of coronal mass ejections (CMEs) but their initiation is still not clear. In this study the external magnetic field profile of the well-developed flux rope model as proposed by James Chen (see J.Chen 1989, 1996) is examined. This external magnetic field represents overlying coronal loops, that may be of bipolar or complex topology with footpoints assumed to originate from an active region, and it is assumed that the only magnetic field component that affects the flux rope evolution is the one that is perpendicular to the flux ropes major axis. In this type of flux rope model, it has been suggested that the flux ropes initiation is driven by poloidal flux injection either of photospheric or coronal origin. Several test profiles are investigated, such as a power law profile, and a polynomial profile that could be thought of as a summation of magnetic multipoles. The gradient index for the prescribed magnetic field profile is studied and it is found that above a critical value the flux rope is eruptive and below this value it is confined, in agreement with observations and simulations. Implications of the results are that the torus instability is the most likely candidate in driving the eruption of flux rope CMEs, and that the distribution of magnetic field has a significant effect on the initiation and acceleration of CMEs.

  7. Spectroscopic Studies of Solar Corona VI: Trend in Line-width Variation of Coronal Emission Lines with Height Independent of the Structure of Coronal Loops

    Indian Academy of Sciences (India)

    Jagdev Singh; Takashi Sakurai; Kiyoshi Ichimoto; S. Muneer

    2006-06-01

    We have obtained spectroscopic observations in coronal emission lines by choosing two lines simultaneously, one [Fe X] 6374 Å and the other [Fe XI] 7892 Å or [Fe XIII] 10747 Å or [Fe XIV] 5303 Å. We found that in 95 per cent of the coronal loops observed in 6374 Å, the FWHM of the emission line increases with height above the limb irrespective of the size, shape and orientation of the loop and that in case of 5303 Å line decreases with height in about 89 per cent of the coronal loops. The FWHM of 7892 Å and 10747 Å emission lines show intermediate behavior. The increase in the FWHM of 6374 Å line with height is the steepest among these four lines.We have also studied the intensity ratio and ratio of FWHM of these lines with respect to those of 6374 Å as a function height above the limb. We found that the intensity ratio of 7892 Å and 10747 Å lines with respect to 6374 Å line increases with height and that of 5303 Å to 6374 Å decreases with height above the limb. This implies that temperature in coronal loops will appear to increase with height in the intensity ratio plots of 7892 Å and 6374 Å; and 10747 Å and 6374 Å whereas it will appear to decrease with height in intensity ratio of 5303 Å to 6374 Å line versus height plot. These findings are up to a height of about 200 arcsec above the limb. The varying ratios with height indicate that relatively hotter and colder plasma in coronal loops interact with each other. Therefore, the observed increase in FWHM with height above the limb of coronal emission lines associated with plasma at about 1 MK may not be due to increase in non-thermal motions caused by coronal waves but due to interaction with the relatively hotter plasma. These findings also do not support the existing coronal loop models, which predict an increase in temperature of the loop with height above the limb.

  8. Can Large Time Delays Observed in Light Curves of Coronal Loops be Explained by Impulsive Heating?

    CERN Document Server

    Lionello, Roberto; Winebarger, Amy R; Linker, Jon A; Mikić, Zoran

    2015-01-01

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower. The time delays between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. Time delays between channels for an active region exhibit a wide range of values, with maxima $>$ 5,000\\,s. These large time delays make up 3-26\\% (depending on the channel pair) of the pixels where a significant, positive time delay is measured. It has been suggested that time delays can be explained by impulsive heating. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in t...

  9. ON THE RELATIONSHIP BETWEEN THE CORONAL MAGNETIC DECAY INDEX AND CORONAL MASS EJECTION SPEED

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yan; Liu Chang; Jing Ju; Wang Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2012-12-10

    Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter called the decay index (i.e., the coronal magnetic gradient of the overlying fields above the eruptive flux ropes) could play an important role in controlling the kinematics of eruptions. Previous studies have identified a threshold range of the decay index that distinguishes between eruptive and confined configurations. Here we advance the study by investigating if there is a clear correlation between the decay index and coronal mass ejection (CME) speed. Thirty-eight CMEs associated with filament eruptions and/or two-ribbon flares are selected using the H{alpha} data from the Global H{alpha} Network. The filaments and flare ribbons observed in H{alpha} associated with the CMEs help to locate the magnetic polarity inversion line, along which the decay index is calculated based on the potential field extrapolation using Michelson Doppler Imager magnetograms as boundary conditions. The speeds of CMEs are obtained from the LASCO C2 CME catalog available online. We find that the mean decay index increases with CME speed for those CMEs with a speed below 1000 km s{sup -1} and stays flat around 2.2 for the CMEs with higher speeds. In addition, we present a case study of a partial filament eruption, in which the decay indices show different values above the erupted/non-erupted part.

  10. Application of a data-driven simulation method to the reconstruction of the coronal magnetic field

    Institute of Scientific and Technical Information of China (English)

    Yu-Liang Fan; Hua-Ning Wang; Han He; Xiao-Shuai Zhu

    2012-01-01

    Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes,it has proven to be efficient in the reconstruction of the solar coronal magnetic field.A recent example is the so-called data-driven simulation method (DDSM),which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou.We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region.To avoid an unnecessary sensitivity to boundary conditions,we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations.In order to incorporate a magnetogram consistently and stably,the bottom boundary conditions are derived from the characteristic method.In our simulation,we change the tangential fields continually from an initial potential field to the vector magnetogram.In the relaxation,the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached.Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time.By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13,we find a topological change after comparing the magnetic field before and after the flare.Some discussions are given regarding the change of magnetic configuration and current distribution.Furthermore,we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode.The comparison shows a relatively good correlation.

  11. Coronal loop hydrodynamics. The solar flare observedon November 12 1980 revisited the UV line emission

    CERN Document Server

    Betta, R M; Reale, F; Serio, S

    2001-01-01

    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the \\FeXXI 1354.1 \\AA line observed with the UVSP) fails to model the flux level and evolution of the \\OV 1371.3 \\AA line.

  12. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-3933 (United States); Alexander, Caroline E.; Winebarger, Amy R., E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com, E-mail: mikicz@predsci.com, E-mail: caroline.e.alexander@nasa.gov, E-mail: amy.r.winebarger@nasa.gov [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35805 (United States)

    2016-02-20

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.

  13. Temporal and spatial relationship of flare signatures and the force-free coronal magnetic field

    CERN Document Server

    Thalmann, Julia K; Su, Yang

    2016-01-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet's lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to pos...

  14. Coronal Loop Temperatures Obtained with Hinode XRT: A Toothpaste-Tube Analogy

    Science.gov (United States)

    Schmelz, J. T.; Saar, S. H.; Weber, M. A.; Deluca, E. E.; Golub, L.

    2009-12-01

    Multi-filter data observed by the Hinode X-Ray Telescope on 10 and 2007 July 13 were used to investigate the thermal properties of coronal loops. At several positions along the loops, differential emission measure analysis revealed a strong peak at log T = 6.1 (which would predict the presence of a TRACE loop) and a much weaker hot component (which we speculated might be a nanoflare signature). TRACE observations, however, did not reveal the predicted loop, so we were forced to re-examine our assumptions. Good differential emission measure results require high- and low-temperature constraints, but our data sets did not contain images from the thinnest and thickest filters, which would be most likely to provide these constraints. Since differential emission measure programs aim to match observed intensities and get low values of χ2, they may place emission measure in high- and low-temperature bins where it does not belong. We draw an analogy to squeezing the toothpaste tube in the middle. Our analysis was repeated for a loop observed on 2007 May 13 when the instrument acquired data in 11 filters and filter combinations, including both the thinnest and thickest filters. These results show that the loop is multi-thermal, with significant emission measure in the range 6.0 < log T < 6.5.

  15. Coronal Loop Oscillations Observed with AIA - Kink-Mode with Cross-Sectional and Density Oscillations

    CERN Document Server

    Aschwanden, Markus J

    2011-01-01

    A detailed analysis of a coronal loop oscillation event is presented, using data from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) for the first time. The loop oscillation event occurred on 2010 Oct 16, 19:05-19:35 UT, was triggered by an M2.9 GOES-class flare, located inside a highly inclined cone of a narrow-angle CME. This oscillation event had a number of unusual features: (i) Excitation of kink-mode oscillations in vertical polarization (in the loop plane); (ii) Coupled cross-sectional and density oscillations with identical periods; (iii) no detectable kink amplitude damping over the observed duration of four kink-mode periods ($P=6.3$ min); (iv) multi-loop oscillations with slightly ($\\approx 10%$) different periods; and (v) a relatively cool loop temperature of $T\\approx 0.5$ MK. We employ a novel method of deriving the electron density ratio external and internal to the oscillating loop from the ratio of Alfv\\'enic speeds deduced from the flare trigger delay and...

  16. Coronal magnetic fields from multiple type II bursts

    Science.gov (United States)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  17. FORWARD MODELING OF PROPAGATING SLOW WAVES IN CORONAL LOOPS AND THEIR FREQUENCY-DEPENDENT DAMPING

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Magyar, Norbert; Yuan, Ding; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in [Center for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, B-3001, Leuven (Belgium)

    2016-03-20

    Propagating slow waves in coronal loops exhibit a damping that depends upon the frequency of the waves. In this study we aim to investigate the relationship of the damping length (L{sub d}) with the frequency of the propagating wave. We present a 3D coronal loop model with uniform density and temperature and investigate the frequency-dependent damping mechanism for the four chosen wave periods. We include the thermal conduction to damp the waves as they propagate through the loop. The numerical model output has been forward modeled to generate synthetic images of SDO/AIA 171 and 193 Å channels. The use of forward modeling, which incorporates the atomic emission properties into the intensity images, allows us to directly compare our results with the real observations. The results show that the damping lengths vary linearly with the periods. We also measure the contributions of the emission properties on the damping lengths by using density values from the simulation. In addition to that we have also calculated the theoretical dependence of L{sub d} with wave periods and showed that it is consistent with the results we obtained from the numerical modeling and earlier observations.

  18. Magnetic Monopole in the Loop Representation

    CERN Document Server

    Leal, L; Leal, Lorenzo; Lopez, Alexander

    2004-01-01

    We quantize the electromagnetic field in the presence of a static magnetic monopole, within the loop-representation formalism. We find that the loop-dependent wave functional becomes multivalued, in the sense that it acquires a dependence on the surfaces bounded by the loop. This generalizes what occurs in quantum mechanics in multiply connected spaces. When Dirac's quantization condition holds, this surface-dependence disappears, together with the effect of the monopole on the electromagnetic field.

  19. Kelvin-Helmholtz instability in an Alfven resonant layer of a solar coronal loop

    Science.gov (United States)

    Uchimoto, E.; Strauss, H. R.; Lawson, W. S.

    1991-01-01

    A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfven resonant layer in an axially bounded, straight cylindrical coronal loop. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfven driving amplitude and inversely proportional to the width of the Alfven resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfven resonant layer width, and decreases at higher azimuthal mode number.

  20. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    OpenAIRE

    Tadesse, Tilaye; Wiegelmann, T.; Gosain, S.; Macneice, P.; Pevtsov, Alexei A.

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the ...

  1. Imaging solar coronal magnetic structures in 3D

    Science.gov (United States)

    Cartledge, N. P.

    The study of solar coronal structures and, in particular prominences, is a key part of understanding the highly complex physical mechanisms occurring in the Sun's atmosphere. Solar prominences are important in their own right and some of the most puzzling questions in solar theory have arisen through their study. For example, how do they form and how is their mass continuously replenished? How can the magnetic field provide their continuous support against gravity over time periods of several months? How can such cool, dense material exist in thermal equilibrium in the surrounding coronal environment? Why do they erupt? A study of their structure and that of the surrounding medium is important in determining the nature of the coronal plasma and magnetic field. Also, prominences are closely associated with other key phenomena such as coronal mass ejections and eruptive solar flares which occur as a prominence loses equilibrium and rises from the solar surface. Our current understanding of these fascinating structures is extremely limited and we know very little about their basic global structure. In fact, recent prominence observations have caused our basic paradigms to be challenged (Priest, 1996) and so we must set up new models in order to gain even a fundamental understanding. Prominences are highly nonlinear, three-dimensional structures. Large feet (or barbs) reach out from the main body of a prominence and reach down to the photosphere where the dense material continuously drains away. These provide a real clue to the three-dimensional nature of the coronal field and its relation to the photospheric field. It is important, therefore, to make stereographic observations of prominences in order to gain a basic understanding of their essentially three-dimensional nature and attempt to formulate new paradigms for their structure and evolution. There is no doubt that the study of prominences in three dimensions is a crucial exercise if we are to develop a better

  2. Off-limb coronal loop dynamics as seen from CDS, EIT and TRACE

    Science.gov (United States)

    Banerjee, D.; O'Shea, E.; Doyle, J. G.

    Observations have revealed the existence of weak transient disturbances in extended coronal loop systems These propagating disturbances PDs originate from small scale brightenings at the footpoints of the loops and propagate upward along the loops In all cases observed the projected propagation speed is close to but below the expected sound speed in the loops This suggest that the PDs could be interpreted as slow mode MHD waves Interpreting the oscillation in terms of different wave modes and or plasma motions always depend on the line of sight as we observe in the limb or on the center of the disk The JOP 165 campaign will address some of these questions MDI and TRACE photospheric and UV imaging of TRACE and SPIRIT have been acquired simultaneously with high temporal and spatial coverage along with the spectroscopic data from CDS EIT was operated in the shutterless mode to achieve high Cadence Some of the off-limb active region dynamics and oscillations observed during this JOP campaign will be focussed in this presentation Plasma condensations and temporal variations in active region loops will be also addressed

  3. Implosion of coronal loops during the impulsive phase of a solar flare

    CERN Document Server

    Simões, P J A; Hudson, H S; Russell, A J B

    2013-01-01

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray (HXR) and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the Coronal Mass Ejection (CME) and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare ...

  4. Self modulation of slow magnetosonic waves and turbulence generation in solar coronal loops

    Science.gov (United States)

    Sharma, R. P.; Sharma, Prachi; Yadav, Nitin

    2017-01-01

    A mechanism based on turbulence for solar coronal heating has been introduced in the present work. Turbulence is considered as an important tool for heating. In the present work, turbulence generation takes place due to the nonlinear interaction of the magnetohydrodynamic waves. Slow magnetosonic waves get localized due to the density perturbations, which are assumed to be present in the background. These perturbations are associated with the low frequency slow magnetosonic waves that are supposed to be propagating in the coronal environment. The dynamics of high (0.01 Hz) and low frequency (0.001 Hz) slow magnetosonic waves have been studied by the two-fluid model and simulate numerically with the pseudo-spectral method. The power law index having a value of nearly -5/3 is obtained, which represents Kolmogorov scaling before the first break point. Based on the fact that the energy flux calculated from the Kolmogorov scaling is sufficient to heat the coronal loops as mentioned in the literature, the proposed interaction can be considered a source for turbulence generation having Kolmogorov scaling.

  5. Heat flux in a non-Maxwellian plasma. [in realistic solar coronal loop

    Science.gov (United States)

    Ljepojevic, N. N.; Macneice, P.

    1989-01-01

    A hybrid numerical scheme is applied to solve the Landau equation for the electron distribution function over all velocity space. Evidence is presented for the first time of the degree and character of the failure of the classical Spitzer-Haerm heat flux approximation in a realistic solar coronal loop structure. In the loop model used, the failure is so severe at some points that the role of the heat flux in the plasma's energy balance is completely misinterpreted. In the lower corona the Spitzer-Haerm approximation predicts that the heat flux should act as an energy source, whereas the more accurate distribution functions calculated here show this to be an energy sink.

  6. Thermal Non-equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    Science.gov (United States)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-08-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  7. THE EFFECTS OF LINE-OF-SIGHT INTEGRATION ON MULTISTRAND CORONAL LOOP OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Moortel, I.; Pascoe, D. J., E-mail: ineke@mcs.st-and.ac.uk [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)

    2012-02-10

    Observations have shown that transverse oscillations are present in a multitude of coronal structures. It is generally assumed that these oscillations are driven by (sub)surface footpoint motions. Using fully three-dimensional MHD simulations, we show that these footpoint perturbations generate propagating kink (Alfvenic) modes which couple very efficiently into (azimuthal) Alfven waves. Using an ensemble of randomly distributed loops, driven by footpoint motions with random periods and directions, we compare the absolute energy in the numerical domain with the energy that is 'visible' when integrating along the line of sight (LOS). We show that the kinetic energy derived from the LOS Doppler velocities is only a small fraction of the actual energy provided by the footpoint motions. Additionally, the superposition of loop structures along the LOS makes it nearly impossible to identify which structure the observed oscillations are actually associated with and could impact the identification of the mode of oscillation.

  8. Thermal Non-Equilibrium Revealed by Periodic Pulses of Random Amplitudes in Solar Coronal Loops

    CERN Document Server

    Auchère, F; Bocchialini, K; Buchlin, E; Solomon, J

    2016-01-01

    We recently detected variations in extreme ultraviolet intensity in coronal loops repeating with periods of several hours. Models of loops including stratified and quasi-steady heating predict the development of a state of thermal non-equilibrium (TNE): cycles of evaporative upflows at the footpoints followed by falling condensations at the apex. Based on Fourier and wavelet analysis, we demonstrate that the observed periodic signals are indeed not signatures of vibrational modes. Instead, superimposed on the power law expected from the stochastic background emission, the power spectra of the time series exhibit the discrete harmonics and continua expected from periodic trains of pulses of random amplitudes. These characteristics reinforce our earlier interpretation of these pulsations as being aborted TNE cycles.

  9. Observations of multiple blobs in homologous solar coronal jets in closed loops

    CERN Document Server

    Zhang, Q M; Su, Y N

    2016-01-01

    Coronal bright points (CBPs) and jets are ubiquitous small-scale brightenings that are often associated with each other. In this paper, we report our multiwavelength observations of two groups of homologous jets. The first group was observed by the EUVI aboard the behind STEREO spacecraft in 171 {\\AA} and 304 {\\AA} on 2014 September 10, from a location where data from the SDO could not observe. The jets (J1$-$J6) recurred for six times with intervals of 5$-$15 minutes. They originated from the same primary CBP (BP1) and propagated in the northeast direction along large-scale, closed coronal loops. Two of the jets (J3 and J6) produced sympathetic CBPs (BP2 and BP3) after reaching the remote footpoints of the loops. The time delays between the peak times of BP1 and BP2 (BP3) are 240$\\pm$75 s (300$\\pm75$ s). The jets were not coherent. Instead, they were composed of bright and compact blobs. The sizes and apparent velocities of the blobs are 4.5$-$9 Mm and 140$-$380 km/s, respectively. The arrival times of the m...

  10. Filament Shape Versus Coronal Potential Magnetic Field Structure

    CERN Document Server

    Filippov, Boris

    2015-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H$\\alpha$ chromospheric images. We found that the most of the filament material is enclosed between two polarity inversion lines (PILs), one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the {\\it STEREO} spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disk observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that th...

  11. Magnetic fields, plasmas, and coronal holes - The inner solar system

    Science.gov (United States)

    Burlaga, L. F.

    1979-01-01

    Recent results concerning streams and magnetic fields in the inner solar system are reviewed. Observations have shown that MHD streams are bounded by thin shear layers within 1 AU, probably because they originate in coronal holes which have sharp boundaries. The properties of Alfvenic fluctuations in streams cannot be fully explained on the basis of the hypothesis that they are plane, transverse Alfven waves. A more complete and accurate description might be that they represent nonplanar general Alfven waves weakly coupled to a compressive mode and moving through a medium containing tangential discontinuities and other convected inhomogeneities.

  12. Imaging coronal magnetic-field reconnection in a solar flare

    CERN Document Server

    Su, Yang; Holman, Gordon D; Dennis, Brian R; Wang, Tongjiang; Temmer, Manuela; Gan, Weiqun

    2013-01-01

    Magnetic-field reconnection is believed to play a fundamental role in magnetized plasma systems throughout the Universe1, including planetary magnetospheres, magnetars and accretion disks around black holes. This letter present extreme ultraviolet and X-ray observations of a solar flare showing magnetic reconnection with a level of clarity not previously achieved. The multi-wavelength extreme ultraviolet observations from SDO/AIA show inflowing cool loops and newly formed, outflowing hot loops, as predicted. RHESSI X-ray spectra and images simultaneously show the appearance of plasma heated to >10 MK at the expected locations. These two data sets provide solid visual evidence of magnetic reconnection producing a solar flare, validating the basic physical mechanism of popular flare models. However, new features are also observed that need to be included in reconnection and flare studies, such as three-dimensional non-uniform, non-steady and asymmetric evolution.

  13. Magnetic reconnection in the interior of interplanetary coronal mass ejections.

    Science.gov (United States)

    Fermo, R L; Opher, M; Drake, J F

    2014-07-18

    Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ∇ × B = λB with λ a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration.

  14. Loop Modeling of Coronal X-Ray Emission from Ar-Lacertae

    Science.gov (United States)

    Ottmann, R.

    1993-06-01

    We fitted a hydrostatic loop model (including the effects of increasing cross section and of gravitation) to the pulse height spectra of the RS CVn binary AR Lac, which were obtained in June 1990 by the PSPC detector on board the ROSAT spacecraft. This observation of the quiescent emission comprises 18 spectra between binary phases -0.9 to 0.6. As resulting loop parameters we find a maximum temperature of ˜28 106 K, a length of ˜30 1010 cm, an expansion factor of ˜2, and a binary filling factor of ≲10%, without showing a significant variation with orbital phase. However, a temperature decrease prior to phase 0.5 (secondary eclipse) appears to be present. The magnetic fields required to confine these extended low-pressure loops are only about two times larger than the solar magnetic fields, but the energy input per loop seems to exceed the solar value by about 2-3 orders of magnitude. The loop parameters are consistent with the active region model of AR Lac deduced for the same observation by Ottmann et al. (1992). Especially, the extended loops should be associated with the K star, and the combined spectrum should either be dominated by the K star spectrum or be a blend of the spectra of the G and K star. The loop depth below chromosphere is in agreement with the convection zone depth, predicted from computations about stellar evolution after the main sequence.

  15. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    CERN Document Server

    Jones, Shaela I; Uritsky, Vadim M

    2015-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in space physics. It provides energy for coronal heating, controls the release of coronal mass ejections (CMEs), and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field - an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints which could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  16. Phase speed and frequency-dependent damping of longitudinal intensity oscillations in coronal loop structures observed with AIA/SDO

    CERN Document Server

    Abedini, A

    2016-01-01

    Longitudinal intensity oscillations along coronal loops that are interpreted as signatures of magneto-acoustic waves are observed frequently in different coronal structures. The aim of this paper is to estimate the physical parameters of the slow waves and the quantitative dependence of these parameters on their frequencies in the solar corona loops that are situated above active regions with the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamic Observatory (SDO). The observed data on 2012-Feb-12, consisting of 300 images with an interval of 24 seconds in the 171 $\\rm{\\AA}$ and 193 $\\rm{\\AA}$ passbands is analyzed for evidence of propagating features as slow waves along the loop structures. Signatures of longitudinal intensity oscillations that are damped rapidly as they travel along the loop structures were found, with periods in the range of a few minutes to few tens of minutes. Also, the projected (apparent) phase speeds, projected damping lengths, damping times and damping qualities of filtered int...

  17. The initiation of coronal mass ejections by magnetic flux emergence

    Science.gov (United States)

    Dubey, G.; van der Holst, B.; Poedts, S.

    2006-12-01

    Aims.The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of computational Magneto-Hydro-Dynamics (MHD). Methods: .The initial configuration includes a magnetic flux rope that is embedded in a gravitationally stratified solar atmosphere with a background dipole magnetic field in spherical, axi-symmetric geometry. The flux rope is in equilibrium due to an image current below the photosphere. An emerging magnetic flux triggering mechanism is used to make this equilibrium configuration unstable. Results: . When the magnetic flux emerges within the filament below the flux rope this results in a catastrophic behavior similar to earlier, more simple models. As a result, the flux rope rises and a current sheet forms below it. It is shown that the magnetic reconnection in the current sheet below the flux rope in combination with the outward curvature forces results in a fast ejection of the flux rope as observed for solar CMEs. We have done a parameter study of the effect of the flux emergence rate on the velocity and the acceleration of the resulting CMEs.

  18. Effect of a Radiation Cooling and Heating Function on Standing Longitudinal Oscillations in Coronal Loops

    Science.gov (United States)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J.

    2016-06-01

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  19. The Sun's Global Photospheric and Coronal Magnetic Fields: Observations and Models

    Directory of Open Access Journals (Sweden)

    Duncan Mackay

    2012-11-01

    Full Text Available In this review, our present day understanding of the Sun’s global photospheric and coronal magnetic fields is discussed from both observational and theoretical viewpoints. Firstly, the large-scale properties of photospheric magnetic fields are described, along with recent advances in photospheric magnetic flux transport models. Following this, the wide variety of theoretical models used to simulate global coronal magnetic fields are described. From this, the combined application of both magnetic flux transport simulations and coronal modeling techniques to describe the phenomena of coronal holes, the Sun’s open magnetic flux and the hemispheric pattern of solar filaments is discussed. Finally, recent advances in non-eruptive global MHD models are described. While the review focuses mainly on solar magnetic fields, recent advances in measuring and modeling stellar magnetic fields are described where appropriate. In the final section key areas of future research are identified.

  20. Propagating slow magneto-acoustic waves in coronal loops as seen from trace and cds

    Science.gov (United States)

    Prasad Samayamanthula, Krishna; Banerjee, Dipankar; Gupta, Girjesh R.

    Propagating intensity disturbances along various Active region loop structures with projected speeds less than and close to acoustic speeds, now commonly called magneto-acoustic waves, are proposed to be photospheric p-modes leaking into solar atmosphere. Though there is a wide range of periodicities observed, the 3 min. and 5 min. periodicities, which are character-istic of sunspot umbral and penumbral regions lifted their importance of study. Simultaneous observations of these waves at different heights from photosphere, through transition region to corona will give us direct evidence for their involvement and contribution to coronal heating. AR 10457 had been extensively studied for the presence of such propagating oscillations, when it is on-disk, on 11th September 2003, using the CDS/SoHO, TRACE, and MDI data of JOP 165 campaign. Different periodicities are found and the resonance feature in the periodicity is observed in few locations, but the speeds are found to be quite low(< 20 km/s). Comparison will be made between sunspot and non-sunspot linked open structures. There is also a signature of decelerating propagation in a structure. Significance of the results in the context of coronal heating and future observations with SDO will be discussed.

  1. Coronal Flux Rope Equilibria in Closed Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; You-Qiu Hu

    2003-01-01

    Using a 2.5-dimensional ideal MHD model in Cartesian coordinates, weinvestigate the equilibrium properties of coronal magnetic flux ropes in backgroundmagnetic fields that are completely closed. The background fields are produced by adipole, a quadrupole, and an octapole, respectively, located below the photosphereat the same depth. A magnetic flux rope is then launched from below the photo-sphere, and its magnetic properties, i.e., the annular magnetic flux φp and the axialmagnetic flux φz, are controlled by a single emergence parameter. The whole sys-tem eventually evolves into equilibrium, and the resultant flux rope is characterizedby three geometrical parameters: the height of the rope axis, the half-width of therope, and the length of the vertical current sheet below the rope. It is found thatthe geometrical parameters increase monotonically and continuously with increasingφ p and φz: no catastrophe occurs. Moreover, there exists a steep segment in theprofiles of the geometrical parameters versus either φp or φz, and the faster thebackground field decays with height, the larger both the gradient and the growthamplitude within the steep segment will be.

  2. Relationship Between Solar Wind Speed and Coronal Magnetic Field Properties

    CERN Document Server

    Fujiki, Ken'ichi; Iju, Tomoya; Hakamada, Kazuyuki; Kojima, Masayoshi

    2015-01-01

    We have studied the relationship between the solar-wind speed $[V]$ and the coronal magnetic-field properties (a flux expansion factor [$f$] and photospheric magnetic-field strength [$B_{\\mathrm{S}}$]) at all latitudes using data of interplanetary scintillation and solar magnetic field obtained for 24 years from 1986 to 2009. Using a cross-correlation analyses, we verified that $V$ is inversely proportional to $f$ and found that $V$ tends to increase with $B_{\\mathrm{S}}$ if $f$ is the same. As a consequence, we find that $V$ has extremely good linear correlation with $B_{\\mathrm{S}}/f$. However, this linear relation of $V$ and $B_{\\mathrm{S}}/f$ cannot be used for predicting the solar-wind velocity without information on the solar-wind mass flux. We discuss why the inverse relation between $V$ and $f$ has been successfully used for solar-wind velocity prediction, even though it does not explicitly include the mass flux and magnetic-field strength, which are important physical parameters for solar-wind accele...

  3. Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath

    Science.gov (United States)

    Kato, Yoshiaki; Steiner, Oskar; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats

    2016-08-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.

  4. Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Welsch, Brian T.; Fisher, George H.

    2016-08-01

    The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.

  5. The calculation of coronal magnetic field and density of nonthermal electrons in the 2003 October 27 microwave burst

    Institute of Scientific and Technical Information of China (English)

    Guang-Li Huang; Jian-Ping Li; Qi-Wu Song

    2013-01-01

    Based on Dulk and Marsh's approximate theory about nonthermal gyrosynchrotron radiation,one simple impulsive microwave burst with a loop-like structure is selected for radio diagnostics of the coronal magnetic field and column density of nonthermal electrons,which are calculated from the brightness temperature,polarization degree,and spectral index,as well as the turnover frequency,observed by using the Nobeyama Radioheliograph and the Nobeyama Radio Polarimeters,respectively.Very strong variations (up to one or two orders of magnitude) of the calculated transverse and longitudinal magnetic fields with respect to the line-of-sight,as well as the calculated electron column density,appear in the looptop and footpoint sources during the burst.The absolute magnitude and varied range of the transverse magnetic field are evidently larger than those of the longitudinal magnetic field.The time evolution of the transverse magnetic field is always anti-correlated with that of the longitudinal magnetic field,but positively correlated with that of the electron column density.These results strongly support the idea that quantifying the energy released in a flare depends on a reconstruction of the coronal magnetic field,especially for the transverse magnetic field,and they are basically consistent with the recent theoretical and observational studies on the photospheric magnetic field in solar flares.

  6. Coronal Seismology -- Achievements and Perspectives

    Science.gov (United States)

    Ruderman, Michael

    Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the

  7. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    OpenAIRE

    Song, Hongqiang; Zhang, Jie; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which suppor...

  8. North south asymmetry in the coronal and photospheric magnetic fields

    Science.gov (United States)

    Virtanen, I.; Mursula, K.

    2013-12-01

    Several recent studies have shown that the Heliospheric current sheet (HCS) is southward shifted during about three years in the solar declining phase (the so-called bashful ballerina phenomenon). We study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO) measurements of the photospheric magnetic field since 1976 and the potential field source surface (PFSS) model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since 1970s, bashful ballerina phenomenon is a consequence of g02 quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g02-term from different latitudes. In the case of a north-south asymmetric flux production this is seen as a quadrupole contribution traveling towards higher latitudes. When the quadrupole term is largest the main contribution comes from the polar latitudes. At least during the four recent solar cycles the g02-term arises because the magnitude of the southern polar field is larger than in the north in the declining phase of the cycle. Magnetic flux is transported polewards by the meridional flow and it is most likely that besides the north-south asymmetric production of the magnetic flux, also the asymmetric transportation may significantly contribute to the observed asymmetry of polar field intensities. The overall activity during solar cycle is not significantly different in the northern and southern hemispheres, but hemispheres tend to develop in a different phase.

  9. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    CERN Document Server

    Kumar, Pankaj

    2015-01-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 {\\AA}) arcade loops observed by the SDO/AIA. The wave was associated with an impulsive/compact flare, near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060-760 km/s within ~3-4 minute. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km/s, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  10. 3D simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops

    CERN Document Server

    Kuznetsov, Alexey A; Fleishman, Gregory D

    2011-01-01

    Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A 3D model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles a...

  11. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    CERN Document Server

    Tadesse, Tilaye; Gosain, S; MacNeice, P; Pevtsov, Alexei A

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the first time, synoptic maps of photospheric vector magnetic field synthesized from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. We solve the nonlinear force-free field equations using optimizatio...

  12. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    Science.gov (United States)

    Montes-Solís, María; Arregui, Iñigo

    2017-09-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  13. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    Science.gov (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  14. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions and Coronal Holes in their Causal Relation

    CERN Document Server

    Golubeva, Elena

    2016-01-01

    North-south asymmetry of sunspot activity resulted in an asynchronous reversal of the Sun's polar fields in the current cycle. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope aboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory are analyzed here to study a causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the...

  15. CHROMOSPHERIC AND CORONAL OBSERVATIONS OF SOLAR FLARES WITH THE HELIOSEISMIC AND MAGNETIC IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Oliveros, Juan-Carlos; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal; Bain, Hazel [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States); Lindsey, Charles [North West Research Associates, CORA Division, Boulder, CO 80301 (United States); Bogart, Rick; Couvidat, Sebastien; Scherrer, Phil [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-01-10

    We report observations of white-light ejecta in the low corona, for two X-class flares on 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared (chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles {sup c}oronal rain{sup ,} appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 ± 8 km s{sup –1}. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.

  16. Coronal magnetic field and the plasma beta determined from radio and multiple satellite observations

    CERN Document Server

    Iwai, Kazumasa; Nozawa, Satoshi; Takahashi, Takuya; Sawada, Shinpei; Kitagawa, Jun; Miyawaki, Shun; Kashiwagi, Hirotaka

    2014-01-01

    We derived the coronal magnetic field, plasma density, and temperature from the observation of polarization and intensity of radio thermal free-free emission using the Nobeyama Radioheliograph (NoRH) and extreme ultraviolet (EUV) observations. We observed a post-flare loop on the west limb 11 April 2013. The line-of-sight magnetic field was derived from the circularly polarized free-free emission observed by NoRH. The emission measure and temperature were derived from the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The derived temperature was used to estimate the emission measure from the NoRH radio free-free emission observations. The derived density from NoRH was larger than that determined using AIA, which can be explained by the fact that the low temperature plasma is not within the temperature coverage of the AIA filters used in this study. We also discuss the other observation of the post-flare loops by the EUV Imager onboard the Solar Terrestrial Relations Observatory (...

  17. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    CERN Document Server

    Takasao, Shinsuke

    2016-01-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in the flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both of QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares, such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-...

  18. Relationship Between Solar Coronal X-Ray Brightness and Active Region Magnetic Fields: A Study Using High Resolution Observations

    CERN Document Server

    Hazra, Soumitra; Ravindra, B

    2014-01-01

    By utilizing high resolution observations of nearly co-temporal and co-spatial SOT spectropolarimeter and XRT coronal X-ray data onboard Hinode, we revisit the contentious issue of the relationship between global magnetic quantities and coronal X-ray intensity. Co-aligned vector magnetogram and X-ray data are used for this study. We find that there is no pixel-to-pixel correlation between the observed loop brightness and magnetic quantities. However, the X-ray brightness is well correlated with the integrated magnetic quantities such as total unsigned magnetic flux, total unsigned vertical current, area integrated square of the vertical magnetic field and horizontal magnetic fields. Comparing all these quantities we find that the total magnetic flux correlates well with the observed integrated X-ray brightness, though there is some differences in the strength of the correlation when we use the X-ray data from different filters. While we get a good correlation between X-ray brightness and total unsigned vertic...

  19. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Inhester, B. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Plank-Str. 2, D-37191 Katlenburg-Lindau (Germany); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Davila, J., E-mail: maxim.i.kramar@nasa.gov, E-mail: Joseph.M.Davila@nasa.gov, E-mail: inhester@mps.mpg.de, E-mail: lin@ifa.hawaii.edu [NASA-GSFC, Code 671, Greenbelt, MD 20771 (United States)

    2013-09-20

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.

  20. Catastrophe of coronal magnetic flux ropes in fully open magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI; Guoqiang(李国强); HU; Youqiu(胡友秋)

    2002-01-01

    The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single "emergence parameter". For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field.

  1. Above-the-loop-top Oscillation and Quasi-periodic Coronal Wave Generation in Solar Flares

    Science.gov (United States)

    Takasao, Shinsuke; Shibata, Kazunari

    2016-06-01

    Observations revealed that various kinds of oscillations are excited in solar flare regions. Quasi-periodic pulsations (QPPs) in flare emissions are commonly observed in a wide range of wavelengths. Recent observations have found that fast-mode magnetohydrodynamic (MHD) waves are quasi-periodically emitted from some flaring sites (quasi-periodic propagating fast-mode magnetoacoustic waves; QPFs). Both QPPs and QPFs imply a cyclic disturbance originating from the flaring sites. However, the physical mechanisms remain puzzling. By performing a set of two-dimensional MHD simulations of a solar flare, we discovered the local oscillation above the loops filled with evaporated plasma (above-the-loop-top region) and the generation of QPFs from such oscillating regions. Unlike all previous models for QPFs, our model includes essential physics for solar flares such as magnetic reconnection, heat conduction, and chromospheric evaporation. We revealed that QPFs can be spontaneously excited by the above-the-loop-top oscillation. We found that this oscillation is controlled by the backflow of the reconnection outflow. The new model revealed that flare loops and the above-the-loop-top region are full of shocks and waves, which is different from the previous expectations based on a standard flare model and previous simulations. In this paper, we show the QPF generation process based on our new picture of flare loops and will briefly discuss a possible relationship between QPFs and QPPs. Our findings will change the current view of solar flares to a new view in which they are a very dynamic phenomenon full of shocks and waves.

  2. A New Method for Modeling the Coronal Magnetic Field with STEREO and Submerged Dipoles

    Science.gov (United States)

    Sandman, A. W.; Aschwanden, M. J.

    2011-06-01

    Recent magnetic modeling efforts have shown substantial misalignment between theoretical models and observed coronal loop morphology as observed by STEREO/EUVI, regardless of the type of model used. Both potential field and non-linear force-free field (NLFFF) models yielded overall misalignment angles of 20 - 40 degrees, depending on the complexity of the active region (Sandman et al., Solar Phys. 259, 1, 2009; DeRosa et al., Astrophys. J. 696, 1780, 2009) We demonstrate that with new, alternative forward-fitting techniques, we can achieve a significant reduction in the misalignment angles compared with potential field source surface (PFSS) models and NLFFF models. Fitting a series of submerged dipoles to the field directions of stereoscopically triangulated loops in four active regions (30 April, 9 May, 19 May, and 11 December 2007), we find that 3 - 5 dipoles per active region yield misalignment angles of ˜ 11° - 18°, a factor of two smaller than those given by previously established extrapolation methods. We investigate the spatial and temporal variation of misalignment angles with subsets of loops for each active region, as well as loops observed prior to and following a flare and filament eruption, and find that the spatial variation of median misalignment angles within an active region (up to 75%) exceeds the temporal variation associated with the flare (up to 40%). We also examine estimates of the stereoscopic error of our analysis. The corrected values yield a residual misalignment of 7° - 13°, which is attributed to the non-potentiality due to currents in the active regions.

  3. Fast magnetoacoustic waves in a fan structure above the coronal magnetic null point

    CERN Document Server

    Meszarosova, H; Karlicky, M; Madsen, F R H; Sawant, H S

    2013-01-01

    We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using the SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P = 10-83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the co...

  4. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    CERN Document Server

    Aschwanden, M J; Jess, D

    2016-01-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (0.1") from the Interferometric Bidimensional Spectrometer (IBIS) in the Ca II 8542 A line, the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument in the H-alpha 6563 A line, the Interface Region Imaging Spectrograph (IRIS) in the 2796 A line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly (AIA) in coronal (171 A, etc.) and in chromospheric (304 A) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-Current Approximation Non-Linear Force Free Field (VCA-NLFFF) code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constrainin...

  5. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  6. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Science.gov (United States)

    Kramar, Maxim; Airapetian, Vladimir; Lin, Haosheng

    2016-08-01

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R_⊙ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ˜ 2.5 R_⊙. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  7. Comparing Coronal and Heliospheric Magnetic Fields over Several Solar Cycles

    Science.gov (United States)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K.

    2017-01-01

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO/MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p, of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 RS gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 RS) during solar minima and lowest values (2.6 RS–2.7 RS) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  8. Mechanical Equilibrium of Hot, Large-Scale Magnetic Loops on T Tauri Stars

    CERN Document Server

    Aarnio, Alicia; Jardine, Moira; Gregory, Scott G

    2011-01-01

    The most extended, closed magnetic loops inferred on T Tauri stars confine hot, X-ray emitting plasma at distances from the stellar surface beyond the the X-ray bright corona and closed large-scale field, distances comparable to the corotation radius. Mechanical equilibrium models have shown that dense condensations, or "slingshot prominences", can rise to great heights due to their density and temperatures cooler than their environs. On T Tauri stars, however, we detect plasma at temperatures hotter than the ambient coronal temperature. By previous model results, these loops should not reach the inferred heights of tens of stellar radii where they likely no longer have the support of the external field against magnetic tension. In this work, we consider the effects of a stellar wind and show that indeed, hot loops that are negatively buoyant can attain a mechanical equilibrium at heights above the typical extent of the closed corona and the corotation radius.

  9. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  10. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions, and Coronal Holes in Their Causal Relation

    Science.gov (United States)

    Golubeva, E. M.; Mordvinov, A. V.

    2016-12-01

    The peculiar development of solar activity in the current cycle resulted in an asynchronous reversal of the Sun's polar fields. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand the processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope onboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory are analyzed here to study the causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the south polar coronal hole was formed from an ensemble of coronal holes that came into existence after the decay of multiple activity complexes observed during 2014.

  11. Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines

    CERN Document Server

    Raouafi, N E; Gibson, S; Fineschi, S; Solanki, S K

    2016-01-01

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Ly-$\\alpha$ and the He I 10830 {\\AA} lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magne...

  12. Coronal Holes and Open Magnetic Flux over Cycles 23 and 24

    Science.gov (United States)

    Lowder, Chris; Qiu, Jiong; Leamon, Robert

    2017-01-01

    As the observational signature of the footprints of solar magnetic field lines open into the heliosphere, coronal holes provide a critical measure of the structure and evolution of these lines. Using a combination of Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT), Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), and Solar Terrestrial Relations Observatory/Extreme Ultraviolet Imager (STEREO/EUVI A/B) extreme ultraviolet (EUV) observations spanning 1996 - 2015 (nearly two solar cycles), coronal holes are automatically detected and characterized. Coronal hole area distributions show distinct behavior in latitude, defining the domain of polar and low-latitude coronal holes. The northern and southern polar regions show a clear asymmetry, with a lag between hemispheres in the appearance and disappearance of polar coronal holes.

  13. Engineering magnetic nanostructures with inverse hysteresis loops

    Institute of Scientific and Technical Information of China (English)

    Beatriz Mora; Nastassia Soriano; Carolina Redondo; Alberto Arteche; David Navas; Rafael Morales

    2016-01-01

    Top-down lithography techniques allow the fabrication of nanostructured elements with novel spin configurations,which provide a new route to engineer and manipulate the magnetic response of sensors and electronic devices and understand the role of fundamental interactions in materials science.In this study, shallow nanostructure-pattemed thin films were designed to present inverse magnetization curves,i.e.,an anomalous magnetic mechanism characterized by a negative coercivity and negative remanence.This procedure involved a method for manipulating the spin configuration that yielded a negative coercivity after the patterning of a single material layer.Patterned NiFe thin films with trench depths between 15%-25% of the total film thickness exhibited inverse hysteresis loops for a wide angular range of the applied field and the trench axis.A model based on two exchange-coupled subsystems accounts for the experimental results and thus predicts the conditions for the appearance of this magnetic behavior.The findings of the study not only advance our understanding of patterning effects and confined magnetic systems but also enable the local design and control of the magnetic response of thin materials with potential use in sensor engineering.

  14. Reflection Of Propagating Slow Magneto-acoustic Waves In Hot Coronal Loops : Multi-instrument Observations and Numerical Modelling

    CERN Document Server

    Mandal, Sudip; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom

    2016-01-01

    Slow MHD waves are important tools for understanding the coronal structures and dynamics. In this paper, we report a number of observations, from X-Ray Telescope (XRT) on board HINODE and SDO/AIA of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and the temperature of the loop plasma by performing DEM analysis on the AIA image sequence. The estimated speed of propagation is comparable or lower than the local sound speed suggesting it to be a propagating slow wave. The intensity perturbation amplitudes, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observati...

  15. Modeling coronal magnetic field using spherical geometry: cases with several active regions

    CERN Document Server

    Tadesse, Tilaye; Olson, K; MacNeice, P J

    2013-01-01

    The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections(CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface(photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term...

  16. Coronal Holes

    CERN Document Server

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  17. Coronal loop seismology using damping of standing kink oscillations by mode coupling. II. additional physical effects and Bayesian analysis

    Science.gov (United States)

    Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.

    2017-04-01

    Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.

  18. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    CERN Document Server

    Kramar, Maxim; Lin, Haosheng

    2016-01-01

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from $1.5$ to $4\\ \\mathrm{R}_\\odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 \\AA \\ band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $\\sim 2.5 \\ \\mathrm{R}_\\odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the a...

  19. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Simulating Flux Ropes with the Flux Rope Insertion Method

    Science.gov (United States)

    Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.; Fan, Y.

    2015-12-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital or understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from Fan & Gibson emerging flux rope simulation. The goal is to reproduce the flux rope structure from a given time step of the MHD simulations based only on the photospheric magnetogram and synthetic forward modeled coronal emission obtained from the same step of the MHD simulation. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. Then we compare the synthetic coronal emission with the shape of the current distribution and field lines from the models to come up with a best fit. This fit is then tested using the statistical methods developed by our team.

  20. Coronal Partings

    CERN Document Server

    Nikulin, Igor F

    2015-01-01

    The basic observational properties of the 'coronal partings'--the special type of the coronal magnetic structures, identified by a comparison of the coronal X-ray images and solar magnetograms--are considered. They represent channels inside the unipolar large-scale magnetic fields, formed by the rows of magnetic arcs directed to the neighboring fields of opposite polarity. The most important characteristics of the partings are revealed. It is found that--from the evolutionary and spatial point of view--the partings can transform to the coronal holes and visa versa. The classes of global, intersecting, and complex partings are identified.

  1. Future space missions and ground observatory for measurements of coronal magnetic fields

    Science.gov (United States)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  2. Non-Maxwellian distribution functions in flaring coronal loops - Comparison of Landau-Fokker-Planck and BGK solutions

    Science.gov (United States)

    Ljepojevic, N. N.; Macneice, P.

    1988-01-01

    The high-velocity tail of the electron distribution has been calculated by solving the high-velocity form of the Landau equation for a thermal structure representative of a flaring coronal loop. These calculations show an enhancement of the tail population above Maxwellian for electrons moving down the temperature gradient. The results obtained are used to test the reliability of the BGK approximation. The comparison shows that the BGK technique can estimate contributions to the heat flux from the high-energy tail to within an order of magnitude.

  3. The relationship between the magnetic field and the coronal activities in the polar region

    Science.gov (United States)

    Shimojo, Masumi

    The image of the polar region of the sun is changing based on the observations taken by the three telescopes aboard the Hinode satellite. Based on the data of Solar Optical Telescope (SOT) aboard Hinode, Tsuneta et al. (2007) reported that there are many localized magnetic poles in the polar region, and the magnetic strength of the magnetic poles is over thousand Gauss. They called the strong magnetic pole in the polar region "kG-pathce". And, Cirtain, et al. (2007) and Savcheva, et al. (2007) presented that the occurrence rate of X-ray jets in the polar region is very high and 10 events/hour. Their result was obtained by the high resolution observations by X-ray Telescope (XRT) aboard Hinode. These results are very important for understanding the fast solar wind that blows from the polar region. On the other hand, in order to understand the activities in the polar region, it is very important to investigate the relationship between the magnetic environments and the coronal structures/activities. In the paper, for the purpose, we aligned the photospheric images (G-band, Stoke-IQUV of FeI), the chromospheric images (Ca II H line, Stokes-V of Na) and coronal images (X-ray) obtained by Hinode, and investigate the relationship. Basically, the co-alignment process was done based on the alignment information of the telescopes reported by Shimizu et al. (2007). And, we aligned the images using the curve of the solar limb, finally. As the result of the co-alignments, we found the following things. 1) On most kG-patches in the polar coronal hole, there is any coronal structure. 2) X-ray jets in the polar coronal hole are not always associated with the kG-patches. Some X-ray jets are associated with very weak magnetic field. And, the jets are strongly associated with the emerging/cancelling magnetic flux. The first one suggests that the coronal heating is not effective only in the magnetic field strong, such as the center of the sunspot. The second result indicates that the

  4. Predicting the magnetic vectors within coronal mass ejections arriving at Earth

    CERN Document Server

    Savani, N P; Szabo, A; Mays, M L; Thompson, B J; Richardson, I G; Evans, R; Pulkkinen, A; Nieves-Chinchilla, T

    2015-01-01

    The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment, leading to disruptions to, for example, power grids and satellite navigation. Unfortunately, forecasting magnetic vectors within coronal mass ejections remains elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and...

  5. Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event

    CERN Document Server

    van Driel-Gesztelyi, L; Torok, T; Pariat, E; Green, L M; Williams, D R; Carlyle, J; Valori, G; Demoulin, P; Kliem, B; Long, D M; Matthews, S A; Malherbe, J -M

    2014-01-01

    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the ...

  6. Modelling of Nonthermal Microwave Emission From Twisted Magnetic Loops

    CERN Document Server

    Sharykin, I N

    2016-01-01

    Microwave gyrosynchrotron radio emission generated by nonthermal electrons in twisted magnetic loops is modelled using the recently developed simulation tool GX Simulator. We consider isotropic and anisotropic pitch-angle distributions. The main scope of the work is to understand impact of the magnetic field twisted topology on resulted radio emission maps. We have found that nonthermal electrons inside twisted magnetic loops produce gyrosynchrotron radio emission with peculiar polarization distribution. The polarization sign inversion line is inclined relatively to the axis of the loop. Radio emission source is more compact in the case of less twisted loop, considering anisotropic pitch-angle distribution of nonthermal electrons.

  7. Solar Coronal Mass Ejection as a Result of Magnetic Helicity Accumulation in the Corona

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mei

    2011-01-01

    Coronal mass ejections (CMEs) are a major form of solar activities. A CME takes away 10^15-16 g of plasma from solar low corona, to disturb the near-Earth space if the CME direction is favorable. Here we summarize our understandings and reasoning that lead us to conclude that CMEs are the unavoidable products of magnetic helicity accumulation in the corona. Our study puts the formation of magnetic flux ropes and CME eruptions as natural and unavoidable results of coronal evolution.

  8. Minor magnetization loops in two-dimensional dipolar Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)

    2011-05-15

    The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.

  9. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  10. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  11. An estimate of the coronal magnetic field near a solar coronal mass ejection from low-frequency radio observations

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, K.; Ramesh, R.; Kishore, P.; Kathiravan, C. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034 (India); Gopalswamy, N., E-mail: khariharan@iiap.res.in [Solar Physics Laboratory, NASA/GSFC, Code 671, Greenbelt, MD (United States)

    2014-11-01

    We report ground-based, low-frequency (<100 MHz) radio imaging, spectral, and polarimeter observations of the type II radio burst associated with the solar coronal mass ejection (CME) that occurred on 2013 May 2. The spectral observations indicate that the burst has fundamental (F) and harmonic (H) emission components with split-band and herringbone structures. The imaging observations at 80 MHz indicate that the H component of the burst was located close to leading edge of the CME at a radial distance of r ≈ 2 R {sub ☉} in the solar atmosphere. The polarimeter observations of the type II burst, also at 80 MHz, indicate that the peak degree of circular polarization (dcp) corresponding to the emission generated in the corona ahead of and behind the associated MHD shock front are ≈0.05 ± 0.02 and ≈0.1 ± 0.01, respectively. We calculated the magnetic field B in the above two coronal regions by adopting the empirical relationship between the dcp and B for the harmonic plasma emission and the values are ≈(0.7-1.4) ± 0.2 G and ≈(1.4-2.8) ± 0.1 G, respectively.

  12. Imaging and Spectroscopic Observations of a Transient Coronal Loop: Evidence for the Non-Maxwellian $\\kappa$-Distributions

    CERN Document Server

    Dudik, Jaroslav; Dzifcakova, Elena; Del Zanna, Giulio; Williams, David R; Karlicky, Marian; Mason, Helen E; Lorincik, Juraj; Kotrc, Pavel; Farnik, Frantisek; Zemanova, Alena

    2015-01-01

    We report on the SDO/AIA and Hinode/EIS observations of a transient coronal loop. The loop brightens up in the same location after the disappearance of an arcade formed during a B8.9-class microflare three hours earlier. EIS captures this loop during its brightening phase as observed in most of the AIA filters. We use the AIA data to study the evolution of the loop, as well as to perform the DEM diagnostics as a function of $\\kappa$. Fe XI--XIII lines observed by EIS are used to perform the diagnostics of electron density and subsequently the diagnostics of $\\kappa$. Using ratios involving the Fe XI 257.772\\AA selfblend, we diagnose $\\kappa$ $\\lesssim$ 2, i.e., an extremely non-Maxwellian distribution. Using the predicted Fe line intensities derived from the DEMs as a function of $\\kappa$, we show that, with decreasing $\\kappa$, all combinations of ratios of line intensities converge to the observed values, confirming the diagnosed $\\kappa$ $\\lesssim$ 2. These results represent the first positive diagnostics ...

  13. Standing sausage modes in curved coronal slabs

    Science.gov (United States)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  14. Structural properties of the solar flare-producing coronal current system developed in an emerging magnetic flux tube

    Science.gov (United States)

    Magara, Tetsuya

    2017-02-01

    The activity of a magnetic structure formed in the solar corona depends on a coronal current system developed in the structure, which determines how an electric current flows in the corona. To investigate structural properties of the coronal current system responsible for producing a solar flare, we perform magnetohydrodynamic simulation of an emerging magnetic flux tube which forms a coronal magnetic structure. Investigation using fractal dimensional analysis and electric current streamlines reveals that the flare-producing coronal current system relies on a specific coronal current structure of two-dimensional spatiality, which has a sub-region where a nearly anti-parallel magnetic field configuration is spontaneously generated. We discuss the role of this locally generated anti-parallel magnetic field configuration in causing the reconnection of a three-dimensional magnetic field, which is a possible mechanism for producing a flare. We also discuss how the twist of a magnetic flux tube affects structural properties of a coronal current system, showing how much volume current flux is carried into the corona by an emerging flux tube. This gives a way to evaluate the activity of a coronal magnetic structure.

  15. Interaction between emerging magnetic flux and the ambient solar coronal field

    Science.gov (United States)

    Cheung, M.; Derosa, M.

    2008-12-01

    We study the interaction between emerging magnetic flux and pre-existing coronal field by means of numerical simulations using the magneto-frictional method. By advancing the induction equation, the magneto-frictional method models the coronal magnetic field as a quasi-static sequence of non-linear force- free field configurations evolving in response to photospheric driving. A general feature of the simulations is the spontaneous formation of tangential discontinuities, interfaces where the field line torsional coefficient changes abruptly across separate domains of connectivity. Since the method evolves the vector potential, we can follow the evolution of the relative magnetic helicity and examine its relation to the magnetic free energy. Other tools, such as the squashing factor of Titov and Démoulin, are also used to study the topology of the field configurations.

  16. Polarimetry of the HI Lyman-alpha for coronal magnetic field diagnostics

    Science.gov (United States)

    Fineschi, Silvano; Hoover, Richard B.; Zukic, Muamer; Kim, Jongmin; Walker, Arthur B. C., Jr.; Baker, Phillip, C.

    1993-01-01

    We discuss and analyze the possible sources of observational and instrumental uncertainty that can be encountered in measuring magnetic fields of the solar corona through polarimetric observations of the Hanle effect of the coronal Ly-alpha line. The Hanle effect is the modification of the linear polarization of a resonantly scattered line, due to the presence of a magnetic field. Simulated observations are used to examine how polarimetric measurements of this effect are affected by the line-of-sight integration, the electron collisions, and the Ly-alpha geocorona. We plan to implement the coronal magnetic field diagnostics via the Ly-alpha Hanle effect using an all-reflecting Ly-alpha coronagraph/polarimeter (Ly-alphaCoPo) which employs reflecting multilayer mirrors, polarizers, and filters. We discuss here the requirements for such an instrument, and analyze the sources of instrumental uncertainty for polarimetric observations of the coronal Ly-alpha Hanle effect. We conclude that the anticipated polarization signal from the corona and the expected performance of the Ly-alphaCoPo instrument are such that the Ly-alpha Hanle effect method for coronal field diagnostics is feasible.

  17. Testing a Solar Coronal Magnetic Field Extrapolation Code with the Titov-Demoulin Magnetic Flux Rope Model

    CERN Document Server

    Jiang, Chaowei

    2015-01-01

    In the solar corona, magnetic flux rope is believed to be a fundamental structure accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of magnetic field from boundary data is the primary way to obtain fully three-dimensional magnetic information of the corona. As a result, the ability of reliable recovering coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code (CESE-MHD-NLFFF, Jiang & Feng 2012) is examined with an analytical magnetic flux rope model proposed by Titov & Demoulin (1999), which consists of a bipolar magnetic configuration holding an semi-circular line-tied flux rope in force-free equilibrium. By using only the vector field in the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field is reconstructed with high accuracy. Especially, the magnetic topological interfaces formed between the flux rop...

  18. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    Directory of Open Access Journals (Sweden)

    Gabriel Ionel Dima

    2016-04-01

    Full Text Available Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST is completed in 2019.

  19. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    Science.gov (United States)

    Dima, Gabriel; Kuhn, Jeffrey; Berdyugina, Svetlana

    2016-04-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  20. A numerical study of the thermal stability of low-lying coronal loops

    Science.gov (United States)

    Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.

    1986-01-01

    The nonlinear evolution of loops that are subjected to a variety of small but finite perturbations was studied. Only the low-lying loops are considered. The analysis was performed numerically using a one-dimensional hydrodynamical model developed at the Naval Research Laboratory. The computer codes solve the time-dependent equations for mass, momentum, and energy transport. The primary interest is the active region filaments, hence a geometry appropriate to those structures was considered. The static solutions were subjected to a moderate sized perturbation and allowed to evolve. The results suggest that both hot and cool loops of the geometry considered are thermally stable against amplitude perturbations of all kinds.

  1. A Non-radial Eruption in a Quadrupolar Magnetic Configuration with a Coronal Null

    CERN Document Server

    Sun, Xudong; Liu, Yang; Chen, Qingrong; Hayashi, Keiji

    2012-01-01

    We report one of several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory (SDO). A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Non-linear force-free field (NLFFF) extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated ~2e31 erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60 degrees with respect to the radial direction, forming a jet-like, inverted-Y shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reco...

  2. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  3. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves

    CERN Document Server

    Jess, D B; Ryans, R S I; Christian, D J; Keys, P H; Mathioudakis, M; Mackay, D H; Prasad, S Krishna; Banerjee, D; Grant, S D T; Yau, S; Diamond, C

    2016-01-01

    Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult since the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G. A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwa...

  4. Buoyant Magnetic Loops Generated by Global Convective Dynamo Action

    CERN Document Server

    Nelson, Nicholas J; Brun, A Sacha; Miesch, Mark S; Toomre, Juri

    2012-01-01

    Our global 3D simulations of convection and dynamo action in a Sun-like star reveal that persistent wreaths of strong magnetism can be built within the bulk of the convention zone. Here we examine the characteristics of buoyant magnetic structures that are self-consistently created by dynamo action and turbulent convective motions in a simulation with solar stratification but rotating at three times the current solar rate. These buoyant loops originate within sections of the magnetic wreaths in which turbulent flows amplify the fields to much larger values than is possible through laminar processes. These amplified portions can rise through the convective layer by a combination of magnetic buoyancy and advection by convective giant cells, forming buoyant loops. We measure statistical trends in the polarity, twist, and tilt of these loops. Loops are shown to preferentially arise in longitudinal patches somewhat reminiscent of active longitudes in the Sun, although broader in extent. We show that the strength o...

  5. Magnetic Properties of Metric Noise Storms Associated with Coronal Mass Ejections

    Institute of Scientific and Technical Information of China (English)

    Ya-Yuan Wen; Jing-Xiu Wang; Yu-Zong Zhang

    2007-01-01

    Using Nan(c)ay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14,2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.

  6. The free energies of partially open coronal magnetic fields

    Science.gov (United States)

    Low, B. C.; Smith, D. F.

    1993-01-01

    A simple model of the low corona is examined in terms of a static polytropic atmosphere in equilibrium with a global magnetic field. The question posed is whether magnetostatic states with partially open magnetic fields may contain magnetic energies in excess of those in fully open magnetic fields. Based on the analysis presented here, it is concluded that the cross-field electric currents in the pre-eruption corona are a viable source of the bulk of the energies in a mass ejection and its associated flare.

  7. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    CERN Document Server

    Song, Hongqiang; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this letter, we present an intriguing observation of a solar eruptive event occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the \\textit{Solar Dynamic Observatory}, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-fo...

  8. Comparison of a Global Magnetic Evolution Model with Observations of Coronal Mass Ejections

    CERN Document Server

    Yeates, A R; Nandy, Dibyendu; Mackay, D H; Martens, P C H; van Ballegooijen, A A

    2009-01-01

    The relative importance of different initiation mechanisms for coronal mass ejections (CMEs) on the Sun is uncertain. One possible mechanism is the loss of equilibrium of coronal magnetic flux ropes formed gradually by large-scale surface motions. In this paper, the locations of flux rope ejections in a recently-developed quasi-static global evolution model are compared with observed CME source locations over a 4.5-month period in 1999. Using EUV data, the low-coronal source locations are determined unambiguously for 98 out of 330 CMEs. Despite the incomplete observations, positive correlation (with coefficient up to 0.49) is found between the distributions of observed and simulated ejections, but only when binned into periods of one month or longer. This binning timescale corresponds to the time interval at which magnetogram data are assimilated into the coronal simulations, and the correlation arises primarily from the large-scale surface magnetic field distribution; only a weak dependence is found on the m...

  9. Polar Coronal Hole Ephemeral Regions, the Fast Solar Wind and the Global Magnetic Dynamo

    Science.gov (United States)

    Cirtain, Jonathan W.

    2010-01-01

    The X-Ray Telescope aboard Hinode has been regularly observing both the north and south solar polar coronal holes from November 2006 through March 2009. We use the observations of emerged flux regions within the coronal hole as evidenced by small x-ray bright points to study the physical properties of these regions. The width of the emerged flux region loop footpoints, the duration of the x-ray emission lifetime for the emerged flux region, the latitude of formation and whether an x-ray or EUV jet was observed were all recorded. In the present work we detail these observations and show a dependence on the width of the emerged flux region (bright point) to the number of x-ray jets observed. The distribution of base width is then related to a power law for number of emerged flux regions as a function of base width.

  10. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  11. The Strength and Radial Profile of the Coronal Magnetic Field from the Standoff Distance of a Coronal Mass Ejection-driven Shock

    Science.gov (United States)

    Gopalswamy, Nat; Yashiro, Seiji

    2011-07-01

    We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfvén Mach number, and hence the Alfvén speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from ~48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.

  12. The Strength and Radial Profile of the Coronal Magnetic Field from the Standoff Distance of a Coronal Mass Ejection-Driven Shock

    Science.gov (United States)

    Gopalswamy, Nat; Yashiro, Seiji

    2011-01-01

    We determine the coronal magnetic field strength in the heliocentric distance range 6-23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from approximately 48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.

  13. Chromospheric and coronal manifestations of photospheric cancelling magnetic fields

    Science.gov (United States)

    Panasenco, Olga; Martin, Sara F.; Engvold, Oddbjorn

    We discuss observable changes in solar features interpreted as evidences of the transfer of magnetic fields from the photosphere to the chromosphere and corona. In the photospheric level, new or decayed active region magnetic fields of opposite polarity encounter each other and cancel along a pre-existing polarity reversal boundary. Concurrently, in the chromospheric level of the solar atmosphere, the cancelling fields appear to lead to the creation and maintenance of a filament channel. The channel is identified by systematic changes in the orientation of fibrils in the chromosphere. We deduce that invisible extensions of the magnetic fields of the chromospheric fibrils into the corona could represent the beginning of the formation of a filament cavity in the low corona, before and/or during the initial appearance of a filament threads. When the filament channel is fully developed, such that there is a local magnetic field aligned with the polarity reversal boundary, the cancelling fields are then associated with the transfer of plasma, as well as magnetic field, into the low corona. We suggest this plasma is observed as new filament threads.

  14. Determination of the Structure of the Coronal Magnetic Field Using Microwave Polarization Measurements

    Science.gov (United States)

    Bogod, V. M.; Yasnov, L. V.

    2016-11-01

    An analysis of the oscillatory motions and wave processes in active regions requires knowledge of the structure of the magnetic fields in the chromosphere and corona. We study the magnetic field structure of active regions at coronal heights, as they are determined by means of multiwave observations of polarized radio emission of active regions in the microwave range. Two methods, a stereoscopic method and the analysis of the radio spectrum are used. The method of stereoscopy rotation allows estimating the height of radio sources in a stable active region relative to the photosphere, based on its apparent motion in the image plane recorded over several days of observation. At various times one-dimensional scans at multiple frequencies spanning the 5.98 - 15.95 GHz frequency range from the RATAN-600 instrument are used. The gyroresonance emission mechanism, which is sensitive to the coronal magnetic field strength, is applied to convert the radio source estimated heights at various frequencies, h(f), to information as regards magnetic field vs. height, B(h). Diagrams of longitude - height of some polarized radio sources revealed multiple reversals, suggestive of a spiral magnetic structure. In all cases, the magnetic field strength maintains high values (800 - 1000 G) at the highest altitudes analysed, which reflects a relatively weak divergence in the field of magnetic flux tubes (in the height range 8 - 14 Mm) responsible for the main part of the radio emission of active regions.

  15. Measuring coronal magnetic fields with remote sensing observations of shock waves

    CERN Document Server

    Bemporad, Alessandro; Frassati, Federica; Fineschi, Silvano

    2016-01-01

    Recent works demonstrated that remote sensing observations of shock waves propagating into the corona and associated with major solar eruptions can be used to derive the strength of coronal magnetic fields met by the shock over a very large interval of heliocentric distances and latitudes. This opinion article will summarize most recent results obtained on this topic and will discuss the weaknesses and strengths of these techniques to open a constructive discussion with the scientific community.

  16. Magnetic Flux Cancelation as the Trigger of Solar Quiet-region Coronal Jets

    Science.gov (United States)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Chakrapani, Prithi

    2016-11-01

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  17. EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tongjiang; Ofman, Leon; Provornikova, Elena [Department of Physics, Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Davila, Joseph M., E-mail: tongjiang.wang@nasa.gov [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20770 (United States)

    2015-09-20

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is presented. A time sequence of 131 Å images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ∼12 minutes and a decay time of ∼9 minutes. The measured phase speed of 500 ± 50 km s{sup −1} matches the sound speed in the heated loop of ∼10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet channels, and find that they are nearly in phase. The measured polytropic index from the temperature and density perturbations is 1.64 ± 0.08 close to the adiabatic index of 5/3 for an ideal monatomic gas. The interpretation based on a 1D linear MHD model suggests that the thermal conductivity is suppressed by at least a factor of 3 in the hot flare loop at 9 MK and above. The viscosity coefficient is determined by coronal seismology from the observed wave when only considering the compressive viscosity dissipation. We find that to interpret the rapid wave damping, the classical compressive viscosity coefficient needs to be enhanced by a factor of 15 as the upper limit.

  18. Evaluation of standoff distance method to determine the coronal magnetic field using CME-driven shocks

    Science.gov (United States)

    Suresh, K.; Shanmugaraju, A.; Syed Ibrahim, M.

    2016-11-01

    We have analyzed the propagation characteristics of four limb coronal mass ejections (CMEs) with their shocks. These CMEs were observed in 18 frames up to 18 solar radii using LASCO white light images. Gopalswamy and Yashiro (Astrophys. J. 736:L17, 2011) introduced the standoff distance method (SOD) to find the magnetic field in the corona using CME-driven shock. In this paper, we have used this technique to determine the magnetic field strength and to study the propagation/shock formation condition of these CMEs at 18 different locations. Since the thickness of shock sheath (standoff distance or SOD) is not constant around CME, we estimate the shock parameters and their variation in large and small SOD regions of the shock. The Mach number ranges from 1.7 to 2.8 and Alfvén speed varies from 197 to 857 km s^{-1}. Finally, we estimate the magnetic field variation in the corona. The magnetic field strength ranges from 4.9 to 26.2 mG from 8.3 to 17.5 solar radii. The estimated magnetic field strength in this study is consistent with the literature value (7.6 to 45.8 mG from Gopalswamy and Yashiro (Astrophys. J. 736:L17, 2011), and 6 to 105 mG from Kim et al. (Astrophys. J. 746:118, 2012)) and it smoothly follows the general coronal magnetic field profile.

  19. Back-reaction on the Solar Surface Associated with Coronal Magnetic Restructuring in Solar Eruptions

    Science.gov (United States)

    Wang, Haimin; Liu, C.

    2010-05-01

    Solar eruptions have been understood as the result of magnetic reconnection in solar corona, therefore most models of flares and coronal mass ejections assume that photospheric magnetic fields are anchored and do not have rapid, irreversible changes associated with the eruptions. Recently, we note the work by Hudson, Fisher and Welsch (2008, ASP, 383, 221), who quantitatively assessed the back reaction on the photosphere and solar interior by the coronal field evolution required to release flare energy, and made the prediction that after flares, the photospheric magnetic fields turn to a more horizontal state. Here we summarize our studies of several papers and a few new events that describe changes of magnetic fields associated with flares. For the events that vector magnetograms are available, we indeed find a rapid increase of transverse magnetic fields near the polarity inversion line associated with large flares. For the other events that only line-of-sight magnetograms are present, we always observe that limb-ward flux increases while disk-ward flux decreases rapidly and irreversibly associated with flares, which also indirectly supports the theory of Hudson, Fisher and Welsch. Finally, we discuss the possible relationship between the rapid changes of photospheric magnetic fields and the excitation of seismic waves, the so-called sunquakes (Kosovichev and Zharkova, 1998, Nature, 393, 317).

  20. Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath

    CERN Document Server

    Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats

    2016-01-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab "pump" the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in ...

  1. The effect of limited spatial resolution of stellar surface magnetic field maps on MHD wind and coronal X-ray emission models

    CERN Document Server

    Garraffo, C; Drake, J J; Downs, C

    2012-01-01

    We study the influence of the spatial resolution on scales of $5\\deg$ and smaller of solar surface magnetic field maps on global magnetohydrodynamic solar wind models, and on a model of coronal heating and X-ray emission. We compare the solutions driven by a low-resolution Wilcox Solar Observatory magnetic map, the same map with spatial resolution artificially increased by a refinement algorithm, and a high-resolution Solar and Heliospheric Observatory Michelson Doppler Imager map. We find that both the wind structure and the X-ray morphology are affected by the fine-scale surface magnetic structure. Moreover, the X-ray morphology is dominated by the closed loop structure between mixed polarities on smaller scales and shows significant changes between high and low resolution maps. We conclude that three-dimensional modeling of coronal X-ray emission has greater surface magnetic field spatial resolution requirements than wind modeling, and can be unreliable unless the dominant mixed polarity magnetic flux is p...

  2. Energy of coronal mass ejections and large-scale structure of solar magnetic fields

    Science.gov (United States)

    Ivanov, E. V.

    2016-12-01

    The relationship between variations of the energy and linear velocity of coronal mass ejections (CME) and the typical dimensions of structural elements of the large-scale solar magnetic field structure (LSMFS) is investigated for the period of 1996-2014. It is shown that the maximum linear velocity and maximum energy of CME correspond to the values of the effective solar multipole index n 4.0-4.4. These values determine the maximum size of the complexes of active regions, which, together with the observed maximum values of magnetic field intensity in the complexes, limit the possible maximum CME energy.

  3. Volvulus of the gall bladder diagnosed by ultrasonography, computed tomography, coronal magnetic resonance imaging and magnetic resonance cholangio-pancreatography

    Institute of Scientific and Technical Information of China (English)

    Nobuhisa Matsuhashi; Chihiro Tanaka; Atsushi Misao; Shinji Ogura; Shinichi Satake; Kazunori Yawata; Eri Asakawa; Takashi Mizoguchi; Masayuki Kanematsu; Hiroshi Kondo; Ichiro Yasuda; Kenichi Nonaka

    2006-01-01

    A 54-year-old woman was admitted to our hospital with the complaint of right upper quadrant pain. Upon physical examination the vital signs of the patient were within normal ranges. Ultrasonography and computed tomography (CT) examination of the abdomen was obtained, which demonstrated a large dilatated cystic structure, measuring approximately 68.6 mm ×48.6 mm, with marked distension and inflammation.Additionally, the enhanced CT was characterized by the non-enhanced wall of the gallbladder. As the third examination in this study, magnetic resonance imaging(MRI), namely coronal MRI and magnetic resonance cholangio-pancreatography (MRCP), were performed.The MRCP demonstrated a dilatation of the gallbladder but detected no neck of the gallbladder. Simple cholecystectomy was performed. Macroscopic findings included a distended and gangrenous gallbladder, and closer examination revealed a counterclockwise torsion of 360 degrees on the gallbladder mesentery. Coronal MRI and MRCP showing characteristic radiography may be useful in making a definitive diagnosis.

  4. Electrodynamic Processes in Solar Magnetic Loops and their Relation to the Low-Frequency Modulations of Solar Microwave Emissions

    Science.gov (United States)

    Khodachenko, M. L.; Rucker, H. O.; Kislyakov, A. G.; Zaitsev, V. V.; Urpo, S.

    The spectral and temporal evolutions of the low-frequency (LF) pulsations modulating the solar microwave radiation (37 GHz) recorded at the Metsähovi Radio Observatory were studied by means of the data analysis algorithm based on a fast Fourier transformation with a sliding window. Attention is paid to the fact that the intensity of microwave radiation of solar flares, produced by the electron gyrosynchrotron mechanism, is dependent on a value of the background magnetic field (Dulk, 1985). Thus, slow variations of the magnetic field associated with disturbances of the electric current in a radiating source, should modulate the intensity of the microwave radiation. The dynamic spectra of the LF pulsations, quite often contain several spectral tracks, which can be interpreted as an indication that the radiation is produced in a system consisting of several closely located magnetic loops involved in a common global dynamical process. Application of the equivalent electric circuit models of the loops with inclusion of the effects of electromagnetic inductive interaction in groups of slowly growing current-carrying magnetic loops allows to explain and reproduce the main dynamical features of the observed LF modulation dynamic spectra. Detailed derivation of the equivalent electric circuit equation for a coronal magnetic loop is provided.

  5. A Non-radial Eruption in a Quadrupolar Magnetic Configuration with a Coronal Null

    Science.gov (United States)

    Sun, Xudong; Hoeksema, J. Todd; Liu, Yang; Chen, Qingrong; Hayashi, Keiji

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated ~2 × 1031 erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60° with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  6. A NON-RADIAL ERUPTION IN A QUADRUPOLAR MAGNETIC CONFIGURATION WITH A CORONAL NULL

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Hayashi, Keiji [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Chen Qingrong, E-mail: xudong@sun.stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated {approx}2 Multiplication-Sign 10{sup 31} erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60 Degree-Sign with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  7. Low-lying magnetic loops in the solar internetwork

    CERN Document Server

    Gonzalez, M J Martinez; Collados, M; Solanki, S K

    2007-01-01

    The aim of this work is to study the structure of the magnetic field vector in the internetwork and search for the presence of small-scale loops. We invert 1.56 micron spectropolarimetric observations of internetwork regions at disc centre by applying the SIR code. This allows us to recover the atmospheric parameters that play a role in the formation of these spectral lines. We are mainly interested in the structure of the magnetic field vector. We find that many opposite polarity elements of the internetwork are connected by short (2-6''), low-lying (photospheric) loops. These loops connect at least the 10-20 % of the internetwork flux visible in our data. Also we have some evidence that points towards a dynamic scenario which can be produced by the emergence of internetwork magnetic flux.

  8. A comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation

    Directory of Open Access Journals (Sweden)

    Xueshang eFeng

    2016-03-01

    Full Text Available This paper presents a comparative study of divergence cleaning methods of magnetic field in the solar coronal three-dimensional numerical simulation. For such purpose, the diffusive method, projection method, generalized Lagrange multiplier method and constrained-transport method are used. All these methods are combined with a finite-volume scheme based on a six-component grid system in spherical coordinates. In order to see the performance between the four divergence cleaning methods, solar coronal numerical simulation for Carrington rotation 2056 has been studied. Numerical results show that the average relative divergence error is around $10^{-4.5}$ for the constrained-transport method, while about $10^{-3.1}- 10^{-3.6}$ for the other three methods. Although there exist some differences in the average relative divergence errors for the four employed methods, our tests show they can all produce basic structured solar wind.

  9. Deep coronal hole associated with quiescent filament

    Science.gov (United States)

    Kesumaningrum, Rasdewita; Herdiwidjaya, Dhani

    2014-03-01

    We present a study of the morphology of quiescent filament observed by H-alpha Solar Telescope at Bosscha Observatory in association with coronal hole observed by Atmospheric Imaging Assembly (AIA) instrument in 193 Å from Solar Dynamics Observatory. H-alpha images were processed by imaging softwares, namely Iris 5.59 and ImageJ, to enhance the signal to noise ratio and to identify the filament features associated with coronal hole. For images observed on October 12, 2011, November 14, 2011 and January 2, 2012, we identified distinct features of coronal holes above the quiescent filaments. This associated coronal holes have filament-like morphology with a thick long thread as it's `spine', defined as Deep Coronal Hole. Because of strong magnetic field of sunspot, these filaments and coronal holes emerged far from active region and lasted for several days. It is interesting as for segmented filament, deep coronal holes above the filaments lasted for a quite long period of time and merged. This association between filament and deep coronal hole can be explained by filament magnetic loop.

  10. Three-loop QED vacuum polarization and the four-loop muon anomalous magnetic moment

    CERN Document Server

    Baikov, P A

    1995-01-01

    Three--loop contributions to massive QED vacuum polarization are evaluated by a combination of analytical and numerical techniques. The first three Taylor coefficients, at small q^2, are obtained analytically, using d\\/--dimensional recurrence relations. Combining these with analytical input at threshold, and at large q^2, an accurate Pad\\'e approximation is obtained, for all q^2. Inserting this in the one--loop diagram for the muon anomalous magnetic moment, we find reasonable agreement with four--loop, single--electron--loop, muon--anomaly contributions, recently re--evaluated by Kinoshita, using 8--dimensional Monte--Carlo integration. We believe that our new method is at least two orders of magnitude more accurate than the Monte--Carlo approach, whose uncertainties appear to have been underestimated, by a factor of 6.

  11. Magnetic reconnection and tearing in a 3D current sheet about a solar coronal null

    Science.gov (United States)

    Pontin, David; Wyper, Peter

    2014-06-01

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We discuss the nature of flux transfer during reconnection an isolated coronal null point, that occurs across the fan plane when a current sheet forms about the null. We then go on to discuss the breakup of the current sheet via a non-linear tearing-type instability and show that the instability threshold corresponds to a Lundquist number comparable to the 2D case. We also discuss the resulting topology of the magnetic field, which involves a layer in which open and closed magnetic fields are effectively mixed, with implications for particle transport.

  12. Electric current variations and 3D magnetic configuration of coronal jets

    Science.gov (United States)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  13. Where is the chromospheric response to conductive energy input from a hot pre-flare coronal loop?

    CERN Document Server

    Battaglia, Marina; Simões, Paulo J A

    2014-01-01

    Before the onset of a flare is observed in hard X-rays there is often a prolonged pre-flare or pre-heating phase with no detectable hard X-ray emission but pronounced soft X-ray emission suggesting that energy is being released and deposited into the corona and chromosphere already at this stage. This work analyses the temporal evolution of coronal source heating and the chromospheric response during this pre-heating phase to investigate the origin and nature of early energy release and transport during a solar flare. Simultaneous X-ray, EUV, and microwave observations of a well observed flare with a prolonged pre-heating phase are analysed to study the time evolution of the thermal emission and to determine the onset of particle acceleration. During the 20 minutes duration of the pre-heating phase we find no hint of accelerated electrons, neither in hard X-rays nor in microwave emission. However, the total energy budget during the pre-heating phase suggests that energy must be supplied to the flaring loop to...

  14. ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET?

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J. [Department of Astronomy, University of California, Berkeley, CA 94720-7450 (United States); Welsch, B. T.; Li, Y. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2012-10-10

    Coronal mass ejections (CMEs) are powered by magnetic energy stored in non-potential (current-carrying) coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from overlying fields that confine the proto-ejecta. In studies of global potential (current-free) models of coronal magnetic fields-Potential Field Source Surface (PFSS) models-it has been reported that model field strengths above flare sites tend to be weaker when CMEs occur than when eruptions fail to occur. This suggests that potential field models might be useful to quantify magnetic confinement. One straightforward implication of this idea is that a decrease in model field strength overlying a possible eruption site should correspond to diminished confinement, implying an eruption is more likely. We have searched for such an effect by post facto investigation of the time evolution of model field strengths above a sample of 10 eruption sites. To check if the strengths of overlying fields were relevant only in relatively slow CMEs, we included both slow and fast CMEs in our sample. In most events we study, we find no statistically significant evolution in either (1) the rate of magnetic field decay with height, (2) the strength of overlying magnetic fields near 50 Mm, or (3) the ratio of fluxes at low and high altitudes (below 1.1 R{sub Sun }, and between 1.1 and 1.5 R{sub Sun }, respectively). We did observe a tendency for overlying field strengths and overlying flux to increase slightly, and their rates of decay with height to become slightly more gradual, consistent with increased confinement. The fact that CMEs occur regardless of whether the parameters we use to quantify confinement are increasing or decreasing suggests that either (1) the parameters that we derive from PFSS models do not accurately characterize the actual large-scale field in CME source regions, (2) systematic evolution in the large-scale magnetic

  15. Experimental investigation of magnetically confined plasma loops

    Energy Technology Data Exchange (ETDEWEB)

    Tenfelde, Jan

    2012-12-11

    Arch-shaped magnetic flux tubes generated in a pulsed-power plasma experiment were investigated with a variety of diagnostics concerning their expansion properties. Specifically, the expansion velocity was of interest, which is observed as constant for a wide range of experimental parameters. An MHD transport mechanism is investigated as possible cause of a uniform arch cross section: Axial transport of poloidal magnetic flux along the plasma may cause a pinch force leading to a uniform diameter along the arch. Despite numerous experimental findings at a very similar experimental setup, no indication for the relevance of this process could be found. Instead, magnetic probe data showed that the plasma current in the apex region is constant. A constant expansion velocity was observed for considerably different experimental conditions. This included different plasma source designs with fundamentally different toroidal magnetic field topology and variation of the working gas, which lead to plasma densities lower by an order of magnitude. Inside the current channel of the arch, Alfven velocities were estimated. To this end, plasma density profiles obtained from interferometry were inverted to obtain local densities, which were in turn verified by means of Stark broadening of hydrogen Balmer lines. Furthermore, measurements of multiple components of the magnetic field of the plasma arch were performed. An estimate for the conductivity was obtained from Spitzer's formula for fully ionized plasma using electron temperatures obtained from elementary optical emission spectroscopy. From the presented data of ccd imaging, magnetic field probes, and to lesser extent, interferometry, the underlying assumption of residual plasma (and considerable plasma currents through it) below the actual arch structure is very plausible. Rough estimates of the electric field strength along the arch and results of the magnetic field measurements showed, that the detected expansion

  16. Helioseismic and Magnetic Imager observations of linear polarization from a loop prominence system

    CERN Document Server

    Saint-Hilaire, Pascal; Oliveros, Juan-Carlos Martínez; Hudson, Hugh S; Krucker, Säm; Bain, Hazel; Couvidat, Sébastien

    2014-01-01

    White-light observations by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager of a loop-prominence system occurring in the aftermath of an X-class flare on 2013 May 13 near the eastern solar limb show a linearly polarized component, reaching up to $\\sim$20% at an altitude of $\\sim$33 Mm, about the maximal amount expected if the emission were due solely to Thomson scattering of photospheric light by the coronal material. The mass associated with the polarized component was 8.2$\\times$10$^{14}$ g. At 15 Mm altitude, the brightest part of the loop was 3(+/-0.5)% linearly polarized, only about 20% of that expected from pure Thomson scattering, indicating the presence of an additional unpolarized component at wavelengths near Fe I (617.33 nm), probably thermal emission. We estimated the free electron density of the white-light loop system to possibly be as high as 1.8$\\times$10$^{12}$ cm$^{-3}$.

  17. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    Science.gov (United States)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  18. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    Science.gov (United States)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15–2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  19. Constraining the Solar Coronal Magnetic Field Strength using Split-band Type II Radio Burst Observations

    Science.gov (United States)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C.; Gopalswamy, N.

    2016-11-01

    We report on low-frequency radio (85-35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  20. Coronal Magnetic Field Measurement from EUV Images Made by the Solar Dynamics Observatory

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Nitta, Nariaki; Akiyama, Sachiko; Makela, Pertti; Yashiro, Seiji

    2012-01-01

    By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly we determine the Alfven speed and the magnetic field strength in the inner corona at a heliocentric distance of approx. 1.4 Rs The basic measurements are the shock standoff distance (Delta R) ahead of the CME flux rope, the radius of curvature of the flux rope (R(sub c)), and the shock speed. We first derive the Alfvenic Mach number (M) using the relationship, Delta R/R(sub c) = 0.81[(gamma-1) M(exp 2) + 2] / [(gamma +1)(M2 - 1)], where gamma is the only parameter that needed to be assumed. For gamma = 4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of approx. 300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived from the radio dynamic spectrum was found to be consistent with that derived from the theory of fast-mode MHD shocks. From the measured shock speed and the derived Mach number, we found the Alfven speed to increase from approx 140 km/s to 460 km/s over the distance range 1.2-1.5 Rs. By deriving the upstream plasma density from the emission frequency of the associated type II radio burst, we determined the coronal magnetic field to be in the range 1.3-1.5 G. The derived magnetic field values are consistent with other estimates in a similar distance range. This work demonstrates that the EUV imagers, in the presence of radio dynamic spectra, can be used as coronal magnetometers

  1. Magnetic Reconnection Under Solar Coronal Conditions with the 2.513 AMR Resistive MHD Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-Hua; FENG Xue-Shang; WANG Yi; YANG Li-Ping

    2011-01-01

    @@ The evolutionary process of magnetic reconnection under solar coronal conditions is investigated with our recently developed 2.513 adaptive mesh refinement(AMR) resistive magneto hydrodynamics(MHD) model.We reveal the successive fragmentation and merging of plasmoids in a long-thin current sheet with Lundquist number Rm=5.0×10(4).It is found that several big magnetic islands are formed eventually, with many slow-mode shocks bounding around the outflow regions.The multi-scale hierarchical-like structures of the magnetic reconnection are well resolved by the model and the AMR technique of the model can capture many fine pictures(e.g., the near-singular diffusion regions) of the development and simultaneously it can save a great deal of computing resources.

  2. Role of Loss of Equilibrium and Magnetic Reconnection in Coronal Eruptions: Resistive and Hall MHD simulations

    Science.gov (United States)

    Yang, H.; Bhattacharjee, A.; Forbes, T. G.

    2008-12-01

    It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.

  3. Magnetic Flux Cancellation as the Trigger of Solar Quiet-Region Coronal Jets

    CERN Document Server

    Panesar, Navdeep K; Moore, Ronald L; Chakrapani, Prithi

    2016-01-01

    We report observations of ten random on-disk solar quiet region coronal jets found in high resolution Extreme Ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However the trigger of these eruptions is still unknown. In the present study we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line-of-sight photospheric magnetic field we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the ten cases, the opposite-polari...

  4. North south asymmetry in the photospheric and coronal magnetic fields observed by different instruments

    Science.gov (United States)

    Virtanen, Ilpo; Mursula, Kalevi

    2015-04-01

    Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.

  5. Near-Sun and 1 AU magnetic field of coronal mass ejections: A parametric study

    CERN Document Server

    Patsourakos, S

    2016-01-01

    Aims. The magnetic field of coronal mass ejections (CMEs) determines their structure, evolution, and energetics, as well as their geoeffectiveness. However, we currently lack routine diagnostics of the near-Sun CME magnetic field, which is crucial for determining the subsequent evolution of CMEs. Methods. We recently presented a method to infer the near-Sun magnetic field magnitude of CMEs and then extrapolate it to 1 AU. This method uses relatively easy to deduce observational estimates of the magnetic helicity in CME-source regions along with geometrical CME fits enabled by coronagraph observations. We hereby perform a parametric study of this method aiming to assess its robustness. We use statistics of active region (AR) helicities and CME geometrical parameters to determine a matrix of plausible near-Sun CME magnetic field magnitudes. In addition, we extrapolate this matrix to 1 AU and determine the anticipated range of CME magnetic fields at 1 AU representing the radial falloff of the magnetic field in t...

  6. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  7. Photospheric and coronal magnetic fields in 1974 - 2015: A comparison of six magnetographs

    Science.gov (United States)

    Virtanen, I. I.; Mursula, K.

    2015-12-01

    Photospheric magnetic field has been measured since 1950s and digital synoptic data exists since 1970s. We study the long-term development of photospheric and coronal magnetic fields, using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field and the the potential field source surface (PFSS) model. We pay particular attention to the occurrence of the hemispheric asymmetry of the coronal field. The solar and heliospheric magnetic fields are systematically north-south asymmetric. The southward shift of the heliospheric current sheet (HCS) (the so-called Bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. Multipole analysis of the photospheric magnetic field has shown that the Bashful ballerina is mainly due to the g02 quadrupole term, which is oppositely signed to the dipole moment and reflects the larger magnitude of the southern polar field. The six data sets are in general in a good agreement with each other, but the different spatial resolution causes difference some in results. Moreover, there are number of deviations in different individual data sets that are not related to resolution, e.g., in WSO data and in the current version of Kitt Peak 512 channel magnetograph data. We note that the two lowest harmonic coefficients do not scale with the overall magnitude of photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding factor in dipole strength is typically less than two. Scaling also depends on the harmonic coefficient. This should be noted, e.g., when using synoptic maps as input for coronal models. We find that, despite the differences between the six different data sets, especially in the measurements at the highest latitudes, they all support the southward shift of the HCS. At the moment

  8. ROAM: a Radial-basis-function Optimization Approximation Method for diagnosing the three-dimensional coronal magnetic field

    CERN Document Server

    Dalmasse, K; Gibson, S E; Fan, Y; Flyer, N

    2016-01-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 $\\AA$ and 10798 $\\AA$ lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analogue. Speed and efficiency are obtained by comb...

  9. X-RAY AND EUV OBSERVATIONS OF SIMULTANEOUS SHORT AND LONG PERIOD OSCILLATIONS IN HOT CORONAL ARCADE LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2015-05-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6–12 keV) and extreme-ultraviolet (EUV) channels (131, 94, 1600, 304 Å) observed by the Fermi Gamma-ray Burst Monitor and Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), respectively, during a C-class flare. The estimated periods of oscillation and decay time in the X-ray channel (6–12 keV) were about 202 and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 Å channels. Simultaneously, AIA hot channels (94 and 131 Å) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km s{sup −1} for about 115 Mm of loop length, which is roughly consistent with the sound speed at the temperature about 10–16 MK (480–608 km s{sup −1}). These EUV oscillations are consistent with the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Doppler-shift oscillations interpreted as the global standing slow magnetoacoustic wave excited by a flare. The flare occurred at one of the footpoints of the arcade loops, where the magnetic topology was a 3D fan-spine with a null-point. Repetitive reconnection at this footpoint could have caused the periodic acceleration of non-thermal electrons that propagated to the opposite footpoint along the arcade and that are precipitating there, causing the observed 202 s periodicity. Other possible interpretations, e.g., the second harmonics of the slow mode, are also discussed.

  10. Geometry of solar coronal rays

    Science.gov (United States)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field

  11. Solar magnetic activity cycles, coronal potential field models and eruption rates

    CERN Document Server

    Petrie, G J D

    2013-01-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003-6 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the ...

  12. Influence of Non-Potential Coronal Magnetic Topology on Solar-Wind Models

    CERN Document Server

    Edwards, S J; Bocquet, F -X; Mackay, D H

    2015-01-01

    By comparing a magneto-frictional model of the low coronal magnetic field to a potential-field source-surface model, we investigate the possible impact of non-potential magnetic structure on empirical solar-wind models. These empirical models (such as Wang-Sheeley-Arge) estimate the distribution of solar-wind speed solely from the magnetic-field structure in the low corona. Our models are computed in a domain between the solar surface and 2.5 solar radii, and are extended to 0.1 AU using a Schatten current-sheet model. The non-potential field has a more complex magnetic skeleton and quasi-separatrix structures than the potential field, leading to different sub-structure in the solar-wind speed proxies. It contains twisted magnetic structures that can perturb the separatrix surfaces traced down from the base of the heliospheric current sheet. A significant difference between the models is the greater amount of open magnetic flux in the non-potential model. Using existing empirical formulae this leads to higher...

  13. North-South asymmetry in the magnetic deflection of polar coronal hole jets

    CERN Document Server

    Nistico', Giuseppe; Patsourakos, Spiros; Bothmer, Volker; Nakariakov, Valery M

    2015-01-01

    Measurements of the magnetic field in the interplanetary medium, of the sunspots area, and of the heliospheric current sheet position, reveal a possible North-South asymmetry in the magnetic field of the Sun. We study the North-South asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure, we can assume that magnetic field controls the dynamics of plasma. On average, jets during their propagation follow the magnetic field lines, highlighting its local direction. The average jet deflection is studied both in the plane perpendicular to the line of sight, and, for a reduced number of jets, in three dimensional space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole We measured the position angles at 1 rs and at 2 rs of the 79 jets from the catalogue of Nistico et al 2009., based on the S...

  14. Solar coronal and magnetic field observations near the time of the 1988 March 18 solar eclipse

    Science.gov (United States)

    Sime, D. G.; Fisher, R. R.; Mickey, D. L.

    1988-01-01

    Observations made during the interval March 1-31, 1988, are presented which were designed to provide a synoptic context in which data from the March 18, 1988, total solar eclipse can be interpreted. Daily observations made with the Mark III K-coronameter and the H-alpha prominence monitor at the Mauna Loa Solar Observatory, along with photographic records of the Sun in H-alpha from the flare patrol at Mees Solar Observatory on Haleakala, Maui, are included. Observations of the longitudinal component of the photospheric magnetic field made at Mees Solar Observatory were also gathered around the period of the eclipse. Together with the white-light image of the corona at the eclipse, these coronal and magnetic field observations assembled into synoptic maps for this epoch, are presented. On the basis of these observations, an interpretation of the global density distribution of the corona at the time of the eclipse is constructed.

  15. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    OpenAIRE

    Marco Coïsson; Gabriele Barrera; Federica Celegato; Alessandra Manzin; Franco Vinai; Paola Tiberto

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction ...

  16. Review Article: MHD Wave Propagation Near Coronal Null Points of Magnetic Fields

    Science.gov (United States)

    McLaughlin, J. A.; Hood, A. W.; de Moortel, I.

    2011-07-01

    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfvén speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfvén wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfvén-speed profile. In a β=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfvén wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfvén wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfvén wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.

  17. MHD simulation of solar wind and multiple coronal mass ejections with internal magnetic flux ropes

    Science.gov (United States)

    Shiota, Daiko

    2017-08-01

    Solar wind and CMEs are the main drivers of various types of space weather disturbance. The profile of IMF Bz is the most important parameter for space weather forecasts because various magnetospheric disturbances are caused by the southward IMF brought on the Earth. Recently, we have developed MHD simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields on the basis of observations of photospheric magnetic fields and coronal images. The MHD simulation is therefore capable of predicting the time profile of the IMF at the Earth, in relation to the passage of a magnetic cloud within a CME. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003. The results of a simulation successfully reproduced the arrival at the Earth’s position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm, and provided an implication of the observed complex time profile of the solar wind parameters at the Earth as a result of the interaction of a few specific CMEs.

  18. Coronal Heating Driven by Magnetic-gradient Pumping Mechanism in Solar Plasmas

    CERN Document Server

    Tan, Baolin

    2014-01-01

    The solar coronal heating is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with considerable magnetic gradient from solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism and try to explain the formation of hot plasma upflows, such as the hot type II spicules and hot plasma ejections, etc. In MGP mechanism, the magnetic gradients drive the energetic particles to move upwards from the underlying solar atmosphere and form hot upflows. These upflow energetic particles deposit in corona and make it becoming very hot. Roughly estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km/s in chromosphere and about 130 km/s in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them and deposit in the corona. The deposition of energetic particles will make the corona become...

  19. On the Origin of Coronal Mass Ejections: How Does the Emergence of a Magnetic Flux Rope Reorganize the Solar Corona?

    Science.gov (United States)

    Roussev, I. I.; Galsgaard, K.; Lugaz, N.; Sokolov, I.

    2010-12-01

    The physical causes leading to the occurrence of Coronal Mass Ejections (CMEs) on the Sun have been debated for almost four decades now. One of the leading mechanisms suggests that a CME may occur as the result of the emergence of a twisted magnetic flux rope from the convection zone into the solar corona. This process have been investigated by a number of researchers over the years, and it has been demonstrated that an eruption of the coronal magnetic field can in principle occur. The majority of these studies, however, involve some ad-hoc prescription of the electric field at the photosphere resembling flux emergence, and they neglect the ambient coronal magnetic field. In addition, most of these flux-emergence simulations are performed in a Cartesian domain, which extends only to a few dozen pressure scale-heights into the corona. Thus, it is difficult to assess the role of boundary driving and limited computational domain on the resulting evolution of the erupting coronal magnetic field. In this paper, we present a new model of CMEs that mitigates these two effects. To achieve this, we couple the "local" magnetic-flux-emergence (MFE) model of Archontis et al. (2004) with a global MHD model of the solar corona and solar wind. The model coupling is performed using the Space Weather Modeling Framework. In the coupled model, the MFE simulation provides time-dependent boundary conditions for all MHD quantities into the global model, where the physical coupling is done at the photospheric boundary. The physical evolution of the system is followed using the BATS-R-US "ideal" MHD code well beyond the complete emergence of the magnetic flux from the convection zone. We discuss the dynamics of the flux emergence process and the related response of the pre-existing coronal magnetic field in the context of CME production.

  20. Coronal structure analysis based on the potential field source surface modeling and total solar eclipse observation

    Science.gov (United States)

    Muhamad, Johan; Mumtahana, Farahhati; Sutastio, Heri; Imaduddin, Irfan; Putri, Gerhana P.

    2016-11-01

    We constructed global coronal magnetic fields of the Sun during the Total Solar Eclipse (TSE) 9 March 2016 by using Potential Field Source Surface (PFSS) model. Synoptic photospheric magnetogram data from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) was used as a boundary condition to extrapolate the coronal magnetic fields of the Sun. This extrapolated structure was analyzed by comparing the alignment of the fields from the model with coronal structure from the observation. We also used observational data of coronal structure during the total solar eclipse to know how well the model agree with the observation. As a result, we could identify several coronal streamers which were produced by the large closed loops in the lower regime of the corona. This result verified that the PFSS extrapolation can be used as a tool to model the inner corona with several constraints. We also discussed how the coronal structure can be used to deduce the phase of the solar cycle.

  1. Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma

    Indian Academy of Sciences (India)

    Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar

    2008-03-01

    We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.

  2. Major electron events and coronal magnetic configurations of the related solar active regions

    CERN Document Server

    Li, C; Matthews, S A; Dai, Y; Tang, Y H

    2013-01-01

    A statistical survey of 26 major electron events during the period 2002 February through the end of solar cycle 23 is presented. We have obtained electron solar onset times and the peak flux spectra for each event by fitting to a powerlaw spectrum truncated by an exponential high-energy tail. We also derived the coronal magnetic configurations of the related solar active regions (ARs) from the potential-field source-surface model. It is found that (1) 10 of the 11 well-connected open field-line events are prompt events whose solar onset times coincide with the maxima of flare emission and 13 of the 14 closed field-line events are delayed events. (2) A not-wellconnected open field-line event and one of the closed field-line events are prompt events, they are both associated with large-scale coronal disturbances or dimming. (3)An averaged harder spectrum is found in open field-line events compared with the closed ones. Specifically, the averaged spectral index is of 1.6 +/- 0.3 in open field-line events and of ...

  3. Intrinsic Instability of Coronal Streamers

    CERN Document Server

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  4. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  5. Effect of Size of the Computational Domain on Spherical Nonlinear Force-Free Modeling of Coronal Magnetic Field Using SDO/HMI Data

    CERN Document Server

    Tadesse, Tilaye; MacNeice, Peter

    2014-01-01

    The solar coronal magnetic field produces solar activity, including extremely energetic solar flares and coronal mass ejections (CMEs). Knowledge of the structure and evolution of the magnetic field of the solar corona is important for investigating and understanding the origins of space weather. Although the coronal field remains difficult to measure directly, there is considerable interest in accurate modeling of magnetic fields in and around sunspot regions on the Sun using photospheric vector magnetograms as boundary data. In this work, we investigate effects of the size of the domain chosen for coronal magnetic field modeling on resulting model solution. We apply spherical Optimization procedure to vector magnetogram data of Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) with four Active Region observed on 09 March 2012 at 20:55UT. The results imply that quantities like magnetic flux density, electric current density and free magnetic energy density of ARs of interest are...

  6. A WebGL Tool for Visualizing the Topology of the Sun's Coronal Magnetic Field

    Science.gov (United States)

    Duffy, A.; Cheung, C.; DeRosa, M. L.

    2012-12-01

    We present a web-based, topology-viewing tool that allows users to visualize the geometry and topology of the Sun's 3D coronal magnetic field in an interactive manner. The tool is implemented using, open-source, mature, modern web technologies including WebGL, jQuery, HTML 5, and CSS 3, which are compatible with nearly all modern web browsers. As opposed to the traditional method of visualization, which involves the downloading and setup of various software packages-proprietary and otherwise-the tool presents a clean interface that allows the user to easily load and manipulate the model, while also offering great power to choose which topological features are displayed. The tool accepts data encoded in the JSON open format that has libraries available for nearly every major programming language, making it simple to generate the data.

  7. A test of magnetic field draping induced Bz perturbations ahead of fast coronal mass ejecta

    Science.gov (United States)

    Mccomas, D. J.; Gosling, J. T.; Bame, S. J.; Smith, E. J.; Cane, H. V.

    1989-01-01

    ICE plasma and magnetic field data are examined to look for observational evidence of IMF draping ahead of fast coronal mass ejections (CMEs). The utility of the draping model for predicting the Bz perturbations and hence geomagnetic activity associated with the sheath regions ahead of such CMEs is also examined. A simple prediction scheme based on the upstream radial field component is developed and a set of interplanetary shock events previously associated with interplanetary type II bursts, and hence solar source locations, is used. Of 17 events the radial component predictor developed here correctly predicts the direction considered of the Bz perturbations for 13 events (76 percent). While this result is certainly not conclusive, it is considered to be supportive of the draping scenario.

  8. Testing Circuit Models for the Energies of Coronal Magnetic Field Configurations

    CERN Document Server

    Wheatland, M S

    2003-01-01

    Circuit models involving bulk currents and inductances are often used to estimate the energies of coronal magnetic field configurations, in particular configurations associated with solar flares. The accuracy of circuit models is tested by comparing calculated energies of linear force-free fields with specified boundary conditions with corresponding circuit estimates. The circuit models are found to provide reasonable (order of magnitude) estimates for the energies of the non-potential components of the fields, and to reproduce observed functional dependences of the energies. However, substantial departure from the circuit estimates is observed for large values of the force-free parameter, and this is attributed to the influence of the non-potential component of the field on the path taken by the current.

  9. The Strength and Radial Profile of Coronal Magnetic Field from the Standoff Distance of a CME-driven Shock

    CERN Document Server

    Gopalswamy, Nat

    2011-01-01

    We determine the coronal magnetic field strength in the heliocentric distance range 6 to 23 solar radii (Rs) by measuring the shock standoff distance and the radius of curvature of the flux rope during the 2008 March 25 coronal mass ejection (CME) imaged by white-light coronagraphs. Assuming the adiabatic index, we determine the Alfven Mach number, and hence the Alfven speed in the ambient medium using the measured shock speed. By measuring the upstream plasma density using polarization brightness images, we finally get the magnetic field strength upstream of the shock. The estimated magnetic field decreases from ~48 mG around 6 Rs to 8 mG at 23 Rs. The radial profile of the magnetic field can be described by a power law in agreement with other estimates at similar heliocentric distances.

  10. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States)

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  11. Solar magnetic activity cycles, coronal potential field models and eruption rates

    Science.gov (United States)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  12. Review article: MHD wave propagation near coronal null points of magnetic fields

    CERN Document Server

    McLaughlin, J A; De Moortel, I; 10.1007/s11214-010-9654-y

    2010-01-01

    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a $\\beta=0$ plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the di...

  13. A Numerical Study of Long-Range Magnetic Impacts during Coronal Mass Ejections

    CERN Document Server

    Jin, M; Cheung, M C M; DeRosa, M L; Nitta, N V; Title, A M

    2016-01-01

    With the global view and high-cadence observations from SDO/AIA and STEREO, many spatially separated solar eruptive events appear to be coupled. However, the mechanisms for "sympathetic" events are still largely unknown. In this study, we investigate the impact of an erupting flux rope on surrounding solar structures through large-scale magnetic coupling. We build a realistic environment of the solar corona on 2011 February 15 using a global magnetohydrodynamics (MHD) model and initiate coronal mass ejections (CMEs) in active region (AR) 11158 by inserting Gibson-Low analytical flux ropes. We show that a CME's impact on the surrounding structures depends not only on the magnetic strength of these structures and their distance to the source region, but also on the interaction between the CME with the large-scale magnetic field. Within the CME expansion domain where the flux rope field directly interacts with the solar structures, expansion-induced reconnection often modifies the overlying field, thereby increa...

  14. Inference of Magnetic Field in the Coronal Streamer Invoking Kink Wave Motions generated by Multiple EUV Waves

    CERN Document Server

    Srivastava, A K; Ofman, Leon; Dwivedi, B N

    2016-01-01

    Using MHD seismology by observed kink waves, the magnetic field profile of a coronal streamer has been investigated. STEREO-B/EUVI temporal image data on 7 March 2012 shows an evolution of two consecutive EUV waves that interact with the footpoint of a coronal streamer evident in the co-spatial and co-temporal STEREO-B/COR-I observations. The evolution of EUV waves is clearly evident in STEREO-B/EUVI, and its energy exchange with coronal streamer generates kink oscillations. We estimate the phase velocities of the kink wave perturbations by tracking it at different heights of the coronal streamer. We also estimate the electron densities inside and outside the streamer using SSI of polarized brightness images in STEREO-B/COR-1 observations. Taking into account the MHD theory of kink waves in a cylindrical waveguide, their observed properties at various heights, and density contrast of the streamer, we estimate the radial profile of magnetic field within this magnetic structure. Both the kink waves diagnose the...

  15. Anomalous-plasmoid-ejection-induced secondary magnetic reconnection: modeling solar flares and coronal mass ejections by laser–plasma experiments

    Institute of Scientific and Technical Information of China (English)

    Quanli; Dong; Dawei; Yuan; Shoujun; Wang; Xun; Liu; Yutong; Li; Xiaoxuan; Lin; Huigang; Wei; Jiayong; Zhong; Shaoen; Jiang; Yongkun; Ding; Bobin; Jiang; Kai; Du; Yongjian; Tang; Mingyang; Yu; Xiantu; He; Neng; Hua; Zhanfeng; Qiao; Kuixi; Huang; Ming; Chen; Jianqiang; Zhu; Gang; Zhao; Zhengming; Sheng; Jie; Zhang

    2013-01-01

    The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings.In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense,and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.

  16. LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Upendra [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur 313001 (India); Joshi, Bhuwan; Moon, Yong-Jae [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Veronig, Astrid M. [Kanzelhöhe Observatory/Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria)

    2015-07-01

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.

  17. Coronal influence on dynamos

    CERN Document Server

    Warnecke, Jörn

    2013-01-01

    We report on turbulent dynamo simulations in a spherical wedge with an outer coronal layer. We apply a two-layer model where the lower layer represents the convection zone and the upper layer the solar corona. This setup is used to study the coronal influence on the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three times the solar radius and changing the magnetic Reynolds number, we find that dynamo action benefits from the additional coronal extent in terms of higher magnetic energy in the saturated stage. The flux of magnetic helicity can play an important role in this context.

  18. Simulations of magnetic hysteresis loops at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland and Labrador A1B 3X7 (Canada); Ek, J. van [Western Digital Corporation, San Jose, California 94588 (United States); Mercer, J. I. [Department of Computer Science, Memorial University of Newfoundland, St. John' s, Newfoundland and Labrador A1B 3X7 (Canada)

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  19. Planar magnetic structures in coronal mass ejection-driven sheath regions

    Energy Technology Data Exchange (ETDEWEB)

    Palmerio, Erika; Kilpua, Emilia K.J. [Helsinki Univ. (Finland). Dept. of Physics; Savani, Neel P. [Maryland Univ., Baltimore County, MD (United States). Goddard Planetary Heliophysics Inst. (GPHI); NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-05-01

    Planar magnetic structures (PMSs) are periods in the solar wind during which interplanetary magnetic field vectors are nearly parallel to a single plane. One of the specific regions where PMSs have been reported are coronal mass ejection (CME)-driven sheaths. We use here an automated method to identify PMSs in 95 CME sheath regions observed in situ by the Wind and ACE spacecraft between 1997 and 2015. The occurrence and location of the PMSs are related to various shock, sheath, and CME properties. We find that PMSs are ubiquitous in CME sheaths; 85% of the studied sheath regions had PMSs with the mean duration of 6 h. In about one-third of the cases the magnetic field vectors followed a single PMS plane that covered a significant part (at least 67 %) of the sheath region. Our analysis gives strong support for two suggested PMS formation mechanisms: the amplification and alignment of solar wind discontinuities near the CME-driven shock and the draping of the magnetic field lines around the CME ejecta. For example, we found that the shock and PMS plane normals generally coincided for the events where the PMSs occurred near the shock (68% of the PMS plane normals near the shock were separated by less than 20 from the shock normal), while deviations were clearly larger when PMSs occurred close to the ejecta leading edge. In addition, PMSs near the shock were generally associated with lower upstream plasma beta than the cases where PMSs occurred near the leading edge of the CME. We also demonstrate that the planar parts of the sheath contain a higher amount of strong southward magnetic field than the non-planar parts, suggesting that planar sheaths are more likely to drive magnetospheric activity.

  20. Using Polar Coronal Hole Area Measurements to Determine the Solar Polar Magnetic Field Reversal in Solar Cycle 24

    Science.gov (United States)

    Karna, N.; Webber, S.A. Hess; Pesnell, W.D.

    2014-01-01

    An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.

  1. Electron Acceleration at a Coronal Shock Propagating Through a Large-scale Streamer-like Magnetic Field

    CERN Document Server

    Kong, Xiangliang; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang

    2016-01-01

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front dur...

  2. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Cohen, Ofer [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yashiro, Seiji [Interferometrics Inc., Herndon, VA 20171 (United States); Gopalswamy, Nat, E-mail: jdrake@cfa.harvard.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  3. The first observed stellar X-ray flare oscillation: Constraints on the flare loop length and the magnetic field

    CERN Document Server

    Mitra-Kraev, U; Williams, D R; Kraev, E

    2005-01-01

    We present the first X-ray observation of an oscillation during a stellar flare. The flare occurred on the active M-type dwarf AT Mic and was observed with XMM-Newton. The soft X-ray light curve (0.2-12 keV) is investigated with wavelet analysis. The flare's extended, flat peak shows clear evidence for a damped oscillation with a period of around 750 s, an exponential damping time of around 2000 s, and an initial, relative peak-to-peak amplitude of around 15%. We suggest that the oscillation is a standing magneto-acoustic wave tied to the flare loop, and find that the most likely interpretation is a longitudinal, slow-mode wave, with a resulting loop length of (2.5 +- 0.2) e10 cm. The local magnetic field strength is found to be (105 +- 50) G. These values are consistent with (oscillation-independent) flare cooling time models and pressure balance scaling laws. Such a flare oscillation provides an excellent opportunity to obtain coronal properties like the size of a flare loop or the local magnetic field stre...

  4. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    Science.gov (United States)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  5. Fast magnetic twister and plasma perturbations in a three-dimensional coronal arcade

    Energy Technology Data Exchange (ETDEWEB)

    Murawski, K. [Group of Astrophysics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, A. K. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Musielak, Z. E., E-mail: kmur@kft.umcs.lublin.pl, E-mail: asrivastava.app@iitbhu.ac.in, E-mail: zmusielak@uta.edu, E-mail: musielak@kis.uni-freiburg.de [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2014-06-10

    We present results of three-dimensional (3D) numerical simulations of a fast magnetic twister excited above a foot-point of the potential solar coronal arcade that is embedded in the solar atmosphere with the initial VAL-IIIC temperature profile, which is smoothly extended into the solar corona. With the use of the FLASH code, we solve 3D ideal magnetohydrodynamic equations by specifying a twist in the azimuthal component of magnetic field in the solar chromosphere. The imposed perturbation generates torsional Alfvén waves as well as plasma swirls that reach the other foot-point of the arcade and partially reflect back from the transition region. The two vortex channels are evident in the generated twisted flux-tube with a fragmentation near its apex which results from the initial twist as well as from the morphology of the tube. The numerical results are compared to observational data of plasma motions in a solar prominence. The comparison shows that the numerical results and the data qualitatively agree even though the observed plasma motions occur over comparatively large spatio-temporal scales in the prominence.

  6. Fast Magnetic Twister and Plasma Perturbations in a 3-D Coronal Arcade

    CERN Document Server

    Murawski, K; Musielak, Z E

    2014-01-01

    We present results of 3-D numerical simulations of a fast magnetic twister excited above a foot-point of the potential solar coronal arcade that is embedded in the solar atmosphere with the initial VAL-IIIC temperature profile, which is smoothly extended into the solar corona. With the use of the FLASH code, we solve 3-D ideal magnetohydrodynamic equations by specifying a twist in the azimuthal component of magnetic field in the solar chromosphere. The imposed perturbation generates torsional Alfv\\'en waves as well as plasma swirls that reach the other foot-point of the arcade and partially reflect back from the transition region. The two vortex channels are evident in the generated twisted flux-tube with a fragmentation near its apex that results from the initial twist as well as from the morphology of the tube. The numerical results are compared to observational data of plasma motions in a solar prominence. The comparison shows that the numerical results and the data qualitatively agree even though the obse...

  7. The response of small SQUID pickup loops to magnetic fields

    Science.gov (United States)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Holland, Connor M.; Fung, Y.-K.-K.; Huber, Martin E.; Ketchen, Mark B.; Ralph, Daniel C.; Gibson, Gerald W., Jr.; Moler, Kathryn A.

    2016-12-01

    In the past, magnetic images acquired using scanning superconducting quantum interference device (SQUID) microscopy have been interpreted using simple models for the sensor point spread function. However, more complicated modeling is needed when the characteristic dimensions of the field sensitive areas in these sensors become comparable to the London penetration depth. In this paper we calculate the response of SQUIDs with deep sub-micron pickup loops to different sources of magnetic fields by solving coupled London’s and Maxwell’s equations using the full sensor geometry. Tests of these calculations using various field sources are in reasonable agreement with experiments. These calculations allow us to more accurately interpret sub-micron spatial resolution data obtained using scanning SQUID microscopy.

  8. 冕洞内矢量磁场的分布和演化%Distribution and Evolution of Vector Magnetic Fields in Coronal Holes

    Institute of Scientific and Technical Information of China (English)

    杨书红

    2012-01-01

    With the observations from the SOHO, Hinode, STEREO, and SDO, we investigate some aspects of CHs in detail for the first time, such as the evolution of vector magnetic field and magnetic nonpotentiality in CHs, and obtain a series of results. (1) Response of the solar atmosphere to the magnetic field distribution and evolution in a CH. We study the magnetic fields in a CH and at the CH boundary, and present the corresponding atmospheric response of different overlying layers to the magnetic field distribution and evolution. We also quantitatively analyze the relationship between the magnetic flux density and atmospheric emissions at different wavelengths. (2) Evolution of dipoles in an equatorial CH and its effect on the decay of the CH. We investigate the evolution of dipolar magnetic fields in an equatorial CH region. In the CH, the submergence of initial loops after their emergence is observed for the first time. The area where the dipoles are located becomes a place of mixed polarities instead of the unipolar fields, resulting in the change of the overlying corona from a CH area to a quiet region. (3) Distribution of vector magnetic fields and magnetic nonpotentiality of CHs. We investigate the vector magnetic fields, current densities, and current helicities in two CHs, and compare them with two quiet regions. We find that: (i) in the areas where the large current helicities are concentrated, there are strong vertical and horizontal field elements; (ii) the mean current density in the magnetic flux concentrations with the vertical fields stronger than 100 Gs is as large as (0.012 0.001) Am-2, consistent with that in the flare productive active regions; (iii) the magnetic fields in both the CHs and the quiet regions are nonpotential. (4) SDO observations of magnetic reconnection at CH boundaries. At the CH boundaries, we find many coronal jets as the signatures of magnetic reconnection, below which the magnetic emergence and cancellation are observed. We study

  9. Analysis of EM dataset with several sensor configurations obtained by the loop-loop EM survey on magnetic anomalies

    Science.gov (United States)

    CHOI, J.; Yi, M. J.; Sasaki, Y.; Son, J.; Nam, M. J.

    2015-12-01

    Most of mineral mines in Korea are located in rugged mountain area embedding small-scale anomalies. Loop-loop EM survey system can be a better choice for exploring those mines because no ground contact is required and portable loops are freely positioned. Survey design is very important for detecting small amount of mineral deposits efficiently and spatial limits of survey lines should be considered. Along a same survey line, surveys with different separations between a transmitter and a receiver are applicable. EM responses are calculated in a layered-earth model embedding magnetic anomalies and analyses considering electric conductivity and magnetic permeability are made for the loop-loop EM survey data. Combining EM dataset with multi-frequency and multi-separation slightly enhanced a reconstructed image. Loop-loop EM survey using PROMOIS system was conducted on a small magnetite mine. Inversion with and without considering magnetic permeability was conducted for EM data with multi-frequency and multi-separation between a transmitter and a receiver.

  10. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina

    Science.gov (United States)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-06-01

    Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.

  11. A Numerical Study of Long-range Magnetic Impacts during Coronal Mass Ejections

    Science.gov (United States)

    Jin, M.; Schrijver, C. J.; Cheung, M. C. M.; DeRosa, M. L.; Nitta, N. V.; Title, A. M.

    2016-03-01

    With the global view and high-cadence observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly and Solar TErrestrial RElations Observatory, many spatially separated solar eruptive events appear to be coupled. However, the mechanisms for “sympathetic” events are still largely unknown. In this study, we investigate the impact of an erupting flux rope on surrounding solar structures through large-scale magnetic coupling. We build a realistic environment of the solar corona on 2011 February 15 using a global magnetohydrodynamics model and initiate coronal mass ejections (CMEs) in active region 11158 by inserting Gibson-Low analytical flux ropes. We show that a CME’s impact on the surrounding structures depends not only on the magnetic strength of these structures and their distance to the source region, but also on the interaction between the CME and the large-scale magnetic field. Within the CME expansion domain where the flux rope field directly interacts with the solar structures, expansion-induced reconnection often modifies the overlying field, thereby increasing the decay index. This effect may provide a primary coupling mechanism underlying the sympathetic eruptions. The magnitude of the impact is found to depend on the orientation of the erupting flux rope, with the largest impacts occurring when the flux rope is favorably oriented for reconnecting with the surrounding regions. Outside the CME expansion domain, the influence of the CME is mainly through field line compression or post-eruption relaxation. Based on our numerical experiments, we discuss a way to quantify the eruption impact, which could be useful for forecasting purposes.

  12. A NUMERICAL STUDY OF LONG-RANGE MAGNETIC IMPACTS DURING CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Schrijver, C. J.; Cheung, M. C. M.; DeRosa, M. L.; Nitta, N. V.; Title, A. M., E-mail: jinmeng@lmsal.com [Lockheed Martin Solar and Astrophysics Lab, Palo Alto, CA 94304 (United States)

    2016-03-20

    With the global view and high-cadence observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly and Solar TErrestrial RElations Observatory, many spatially separated solar eruptive events appear to be coupled. However, the mechanisms for “sympathetic” events are still largely unknown. In this study, we investigate the impact of an erupting flux rope on surrounding solar structures through large-scale magnetic coupling. We build a realistic environment of the solar corona on 2011 February 15 using a global magnetohydrodynamics model and initiate coronal mass ejections (CMEs) in active region 11158 by inserting Gibson–Low analytical flux ropes. We show that a CME’s impact on the surrounding structures depends not only on the magnetic strength of these structures and their distance to the source region, but also on the interaction between the CME and the large-scale magnetic field. Within the CME expansion domain where the flux rope field directly interacts with the solar structures, expansion-induced reconnection often modifies the overlying field, thereby increasing the decay index. This effect may provide a primary coupling mechanism underlying the sympathetic eruptions. The magnitude of the impact is found to depend on the orientation of the erupting flux rope, with the largest impacts occurring when the flux rope is favorably oriented for reconnecting with the surrounding regions. Outside the CME expansion domain, the influence of the CME is mainly through field line compression or post-eruption relaxation. Based on our numerical experiments, we discuss a way to quantify the eruption impact, which could be useful for forecasting purposes.

  13. Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability

    Science.gov (United States)

    Zender, J. J.; Kariyappa, R.; Giono, G.; Bergmann, M.; Delouille, V.; Damé, L.; Hochedez, J.-F.; Kumara, S. T.

    2017-09-01

    Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims: We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods: The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results: Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions: Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying

  14. Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: two-loop approximation.

    Science.gov (United States)

    Jurčišinová, E; Jurčišin, M; Remecký, R

    2011-10-01

    The turbulent magnetic Prandtl number in the framework of the kinematic magnetohydrodynamic (MHD) turbulence, where the magnetic field behaves as a passive vector field advected by the stochastic Navier-Stokes equation, is calculated by the field theoretic renormalization group technique in the two-loop approximation. It is shown that the two-loop corrections to the turbulent magnetic Prandtl number in the kinematic MHD turbulence are less than 2% of its leading order value (the one-loop value) and, at the same time, the two-loop turbulent magnetic Prandtl number is the same as the two-loop turbulent Prandtl number obtained in the corresponding model of a passively advected scalar field. The dependence of the turbulent magnetic Prandtl number on the spatial dimension d is investigated and the source of the smallness of the two-loop corrections for spatial dimension d=3 is identified and analyzed.

  15. Turbulent coronal heating and the distribution of nanoflares

    CERN Document Server

    Dmitruk, P; Dmitruk, Pablo; Gomez, Daniel O.

    1997-01-01

    We perform direct numerical simulations of an externally driven two-dimensional magnetohydrodynamic system over extended periods of time to simulate the dynamics of a transverse section of a solar coronal loop. A stationary and large-scale magnetic forcing was imposed, to model the photospheric motions at the magnetic loop footpoints. A turbulent stationary regime is reached, which corresponds to energy dissipation rates consistent with the heating requirements of coronal loops. The temporal behavior of quantities such as the energy dissipation rate show clear indications of intermittency, which are exclusively due to the strong nonlinearity of the system. We tentatively associate these impulsive events of magnetic energy dissipation to the so-called nanoflares. A statistical analysis of these events yields a power law distribution as a function of their energies with a negative slope of 1.5, which is consistent with those obtained for flare energy distributions reported from X-ray observations.

  16. Large-scale contraction and subsequent disruption of coronal loops during various phases of the M6.2 flare associated with the confined flux rope eruption

    CERN Document Server

    Kushwaha, Upendra; Veronig, Astrid M; Moon, Yong-Jae

    2015-01-01

    We present a detailed multi-wavelength study of the M6.2 flare which was associated with a confined eruption of a prominence using TRACE, RHESSI, and NoRH observations. The pre-flare phase of this event is characterized by spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ~20 Mm for an extended span of ~30 min. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR) (up to 25 keV) and microwave (MW) sources from low-lying loops in the core of the flaring region which together with X-ray spectra indicate strong localized heating in the source region before the filament activation and associated M-class flare. With the onset of the impulsive phase of the M6.2 flare, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation with the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down ...

  17. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  18. The Role of Magnetic Helicity in the Structure and Heating of the Sun's Corona

    CERN Document Server

    Knizhnik, Kalman J

    2016-01-01

    Two of the most important features of the solar atmosphere are its hot, smooth coronal loops and the concentrations of magnetic shear, known as filament channels, that reside above photospheric polarity inversion lines (PILs). The shear observed in filament channels represents magnetic helicity, while the smoothness of the coronal loops indicates an apparent lack of magnetic helicity in the rest of the corona. At the same time, models that attempt to explain the high temperatures observed in these coronal loops require magnetic energy, in the form of twist, to be injected at the photosphere. In addition to magnetic energy, this twist also represents magnetic helicity. Unlike magnetic energy, magnetic helicity is conserved under reconnection, and is consequently expected to accumulate and be observed in the corona. However, filament channels, rather than the coronal loops, are the locations in the corona where magnetic helicity is observed, and it manifests itself in the form of shear, rather than twist. This ...

  19. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.

  20. Two-Step Coronal Transport of Solar Flare Particles from Magnetic Multipolarity Sources in a Flare Region

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Nian; WANG Shi-Jin

    2001-01-01

    The transport of solar flare particles in the corona is studied. Considering the problems in terms of the character istics of a sunspot group producing solar cosmic rays and solar flare processes, we find that formation of the fast propagation process is associated with annihilation of sunspots in the group with magnetic multipolarity. The slower propagation process depends on magnetic irregularities in the corona, and the evolution of the transport is related to the flare processes. Equations for the coronal transport are proposed and their initial and boundary conditions are given. The predicted results agree with the main observational features.

  1. The role of current loop in harmonic generation from magnetic metamaterials in two polarizations

    CERN Document Server

    Sajedian, Iman; Zakery, Abdolnasser; Rho, Junsuk

    2016-01-01

    In this paper, we investigate the role of the current loop in the generation of second and third harmonic signals from magnetic metamaterials. We will show that the fact that the current loop in the magnetic resonance acts as a source for nonlinear effects and it consists of two orthogonal parts, leads to the generation of two harmonic signals in two orthogonal polarizations.

  2. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    Directory of Open Access Journals (Sweden)

    Yi Li

    2015-07-01

    Full Text Available The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  3. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Li, Qiulin; Liu, Wei, E-mail: liuw@mail.tsinghua.edu.cn [School of Material Science and Engineering, Tsinghua University, Beijing, 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Xu, Ben [School of Material Science and Engineering, Tsinghua University, Beijing, 100084 (China); Hu, Shenyang; Li, Yulan [Energy Materials Division, Pacific Northwest National Laboratory, Richland, WA, 99352 (United States)

    2015-07-15

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  4. Formation of Magnetic Flux Ropes during Confined Flaring Well Before the Onset of a Pair of Major Coronal Mass Ejections

    CERN Document Server

    Chintzoglou, Georgios; Vourlidas, Angelos

    2015-01-01

    NOAA Active Region (AR) 11429 was the source of twin super-fast Coronal Mass Ejections (CMEs). The CMEs took place within a hour from each other, with the onset of the first taking place in the beginning of March 7, 2012. This AR fulfills all the requirements for a "super active region"; namely, Hale's law incompatibility and a $\\delta$-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ($D_{st}=-143$ nT) was associated with one of these events. Magnetic Flux Ropes (MFRs) are twisted magnetic structures in the corona, best seen in $\\sim$10 MK hot plasma emission and are often considered the core of erupting structures. However, their "dormant" existence in the solar atmosphere (i.e. prior to eruptions), is an open question. Aided by multi-wavelength observations (SDO/HMI/AIA and STEREO EUVI B) and a Non-Linear Force-Free (NLFFF) model for the coronal magnetic field, our work uncovers two separate, weakly-twisted magnetic flux systems which suggest the existence of pre-eruption MF...

  5. The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Model the Buildup of Free Magnetic Energy in the Solar Corona

    Science.gov (United States)

    Fisher, G. H.; Abbett, W. P.; Bercik, D. J.; Kazachenko, M. D.; Lynch, B. J.; Welsch, B. T.; Hoeksema, J. T.; Hayashi, K.; Liu, Y.; Norton, A. A.; Dalda, A. Sainz; Sun, X.; DeRosa, M. L.; Cheung, M. C. M.

    2015-06-01

    The most violent space weather events (eruptive solar flares and coronal mass ejections) are driven by the release of free magnetic energy stored in the solar corona. Energy can build up on timescales of hours to days, and then may be suddenly released in the form of a magnetic eruption, which then propagates through interplanetary space, possibly impacting the Earth's space environment. Can we use the observed evolution of the magnetic and velocity fields in the solar photosphere to model the evolution of the overlying solar coronal field, including the storage and release of magnetic energy in such eruptions? The objective of CGEM, the Coronal Global Evolutionary Model, funded by the NASA/NSF Space Weather Modeling program, is to develop and evaluate such a model for the evolution of the coronal magnetic field. The evolving coronal magnetic field can then be used as a starting point for magnetohydrodynamic (MHD) models of the corona, which can then be used to drive models of heliospheric evolution and predictions of magnetic field and plasma density conditions at 1AU.

  6. Numerical Simulation of DC Coronal Heating

    Science.gov (United States)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  7. The Coronal Global Evolutionary Model (CGEM): Using HMI Vector Magnetogram and Doppler Data to Model the Buildup of Free Magnetic Energy in the Solar Corona

    CERN Document Server

    Fisher, George H; Bercik, David J; Kazachenko, Maria D; Lynch, Benjamin J; Welsch, Brian T; Hoeksema, J Todd; Hayashi, Keiji; Liu, Yang; Norton, Aimee A; Dalda, Alberto Sainz; Sun, Xudong; DeRosa, Marc L; Cheung, Mark C M

    2015-01-01

    The most violent space weather events (eruptive solar flares and coronal mass ejections) are driven by the release of free magnetic energy stored in the solar corona. Energy can build up on timescales of hours to days, and then may be suddenly released in the form of a magnetic eruption, which then propagates through interplanetary space, possibly impacting the Earth's space environment. Can we use the observed evolution of the magnetic and velocity fields in the solar photosphere to model the evolution of the overlying solar coronal field, including the storage and release of magnetic energy in such eruptions? The objective of CGEM, the Coronal Global Evolutionary Model, funded by the NASA/NSF Space Weather Modeling program, is to develop and evaluate such a model for the evolution of the coronal magnetic field. The evolving coronal magnetic field can then be used as a starting point for magnetohydrodynamic (MHD) models of the corona, which can then be used to drive models of heliospheric evolution and predi...

  8. Flux Rope Formation Preceding Coronal Mass Ejection Onset

    CERN Document Server

    Green, L M

    2009-01-01

    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.

  9. Interposition of the posterior cruciate ligament into the medial compartment of the knee joint on coronal magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Su; Yoon, Young Cheol; Park, Ki Jeong; Wang, Joon Ho [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choe, Bong Keun [Dept. of Preventive Medicine, Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2016-04-15

    The purpose of our study was to evaluate the overall prevalence and clinical significance of interposition of the posterior cruciate ligament (PCL) into the medial compartment of the knee joint in coronal magnetic resonance imaging (MRI). We retrospectively reviewed 317 consecutive patients referred for knee MRI at our institution between October 2009 and December 2009. Interposition of the PCL into the medial compartment of the knee joint on proton coronal MRI was evaluated dichotomously (i.e., present or absent). We analyzed the interposition according to its prevalence as well as its relationship with right-left sidedness, gender, age, and disease categories (osteoarthritis, anterior cruciate ligament tear, and medial meniscus tear). Prevalence of interposition of PCL into the medial compartment of the knee joint was 47.0% (149/317). There was no right (50.0%, 83/166) to left (43.7%, 66/151) or male (50.3%, 87/173) to female (43.1%, 62/144) differences in the prevalence. There was no significant association between the prevalence and age, or the disease categories. Interposition of the PCL into the medial compartment of the knee joint is observed in almost half of patients on proton coronal MRI of the knee. Its presence is not associated with any particular factors including knee pathology and may be regarded as a normal MR finding.

  10. X-ray and EUV Observations of Simultaneous Short and Long Period Oscillations in Hot Coronal Arcade Loops

    CERN Document Server

    Kumar, Pankaj; Cho, Kyung-Suk

    2015-01-01

    We report decaying quasi-periodic intensity oscillations in the X-ray (6-12 keV) and extreme ultraviolet (EUV) channels (131, 94, 1600, 304 \\AA) observed by the Fermi GBM (Gamma-ray Burst Monitor) and SDO/AIA, respectively, during a C-class flare. The estimated period of oscillation and decay time in the X-ray channel (6-12 keV) was about 202 s and 154 s, respectively. A similar oscillation period was detected at the footpoint of the arcade loops in the AIA 1600 and 304 \\AA channels. Simultaneously, AIA hot channels (94 and 131 \\AA) reveal propagating EUV disturbances bouncing back and forth between the footpoints of the arcade loops. The period of the oscillation and decay time were about 409 s and 1121 s, respectively. The characteristic phase speed of the wave is about 560 km/s for about 115 Mm loop length, which is roughly consistent with the sound speed at the temperature about 10-16 MK (480-608 km/s). These EUV oscillations are consistent with the SOHO/SUMER Doppler-shift oscillations interpreted as the...

  11. A Comparison of Solar Energetic Particle Events with 1 AU Magnetic Field Connections to Solar Coronal Holes

    Science.gov (United States)

    Kahler, Stephen W.; Arge, C. N.; Akiyama, S.; Gopalswamy, N.

    2012-05-01

    The observed properties of solar energetic particle (SEP) events are known to depend on the source locations and speeds of their associated coronal mass ejections (CMEs). However, the CME characteristics cannot account for a great deal of the variability in SEP event intensities and time scales. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1 AU magnetic footpoints may be an important factor in SEP events. We use a group of E 20 MeV SEP events with origins near solar central meridian to look for possible CH effects. The CH connections from 1 AU are determined from the 4-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic field maps and the Wang-Sheeley-Arge model of solar wind propagation. The observed in situ magnetic field polarities and solar wind speeds at SEP event onsets test the forecast accuracies to select the best SEP/CH connection events for analysis. The SEP event properties are then compared with the relative locations and separations of the CMEs and the 1 AU footpoints to determine whether and how the CHs may affect SEP events.

  12. An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations

    CERN Document Server

    Raja, K Sasikumar; Hariharan, K; Kathiravan, C; Wang, T J

    2016-01-01

    We report ground based, low frequency heliograph (80 MHz), spectral (85-35 MHz) and polarimeter (80 and 40 MHz) observations of drifting, non-thermal radio continuum associated with the `halo' coronal mass ejection (CME) that occurred in the solar atmosphere on 2013 March 15. The magnetic field strengths ($B$) near the radio source were estimated to be $B \\approx 2.2 \\pm 0.4$ G at 80 MHz and $B \\approx 1.4 \\pm 0.2$ G at 40 MHz. The corresponding radial distances ($r$) are $r \\approx 1.9~R_{\\odot}$ (80 MHz) and $r \\approx 2.2~R_{\\odot}$ (40 MHz).

  13. The role of current loop in harmonic generation from magnetic metamaterials in two polarizations

    Science.gov (United States)

    Sajedian, Iman; Kim, Inki; Zakery, Abdolnasser; Rho, Junsuk

    2017-10-01

    In this paper, we investigate the role of current loop in the generation of second and third harmonic signals from magnetic metamaterials and we are clarifying why two polarized harmonics are generated from magnetic metamaterials. We show that the current loop formed in the magnetic resonant frequency acts as a source for nonlinear effects. The current loop that has a circular shape can be divided into two orthogonal parts, where each of these parts acts as a source for generating a harmonic signal parallel to itself. The type of harmonic signal is determined by the metamaterial's inversion symmetry in that direction. This claim is also supported by the experimental results of another group.

  14. SHIELDING OF A UNIFORM ALTERNATING MAGNETIC FIELD USING A CIRCULAR PASSIVE LOOP

    Directory of Open Access Journals (Sweden)

    V. S. Grinchenko

    2015-04-01

    Full Text Available The magnetic and electromagnetic shields are used to reduce the magnetic field in local spaces. Usually these shields are implemented in the form of a box or a cylinder. At the same time the magnetic field reduction in local spaces by means of passive loops is not considered in detail yet. So, the present study considers shielding capabilities of a circular passive loop. The authors have performed an analytical and numerical modeling of a process of a uniform harmonic magnetic field shielding. The simulated results permit to find out the spatial distribution of the shielded magnetic field. Dependencies of shielding effectiveness on the passive loop radius and cross-section are determined. Moreover, the non-monotonic behavior of the loop radius dependence is shown. We have substantiated that the shielded volume of a circular passive loop is advisable to limit by the sphere with a half loop radius. Presented results give parameters of the circular passive loop that reduces the rms value of the magnetic flux density by 30 %.

  15. Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves

    CERN Document Server

    Wang, Tongjiang; Sun, Xudong; Provornikova, Elena; Davila, Joseph M

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) is presented. A time sequence of 131 A images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ~12 min and a decay time of ~9 min. The measured phase speed of 500$\\pm$50 km/s matches the sound speed in the heated loop of ~10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet (EUV) channels, and find that they are nearly in phase.The measured polytropic index from the temperature and density perturbations is 1.64$\\pm$0.08 close to the adiabatic index ...

  16. Coronal Diffusion-weighted Magnetic Resonance Imaging of the Kidney: Agreement with Axial Diffusion-weighted Magnetic Imaging in Terms of Apparent Diffusion Coefficient Values

    Institute of Scientific and Technical Information of China (English)

    Hai-Yi Wang; Jia Wang; Ye-Huan Tang; Hui-Yi Ye; Lin Ma

    2015-01-01

    Background:Coronal diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient (ADC) values have gradually become applied (following conventional axial DW-MRI) in the renal analysis.To explore whether data obtained using coronal DW-MRI are comparable with those derived using axial DW-MRI,this preliminary study sought to assess the agreement in renal ADC values between coronal DW-MRI and axial DW-MRI.Methods:Thirty-four healthy volunteers were enrolled in the study; written consents were obtained.All subjects underwent respiratory-triggered axial and coronal DW-MRI using a 1.5-MR system with b values of 0 and 800 s/mm2.The signal-to-noise ratios (SNRs) of the two DW-MRI sequences were measured and statistically compared using the paired t-test.The extent of agreement of ADC values of the upper pole,mid-pole,and lower pole of the kidney; the mean ADC values of the left kidney and right kidney; and the mean ADC values of the bilateral kidneys were evaluated via calculation of intraclass correlation coefficients (ICCs) or Bland-Altman method between the two DW-MRI sequences.Results:The SNR of coronal DW-MR images was statistically inferior to that of axial DW-MR images (P < 0.001).The ICCs of the ADC values of each region of interest,and the mean ADC values of bilateral kidneys,between the two sequences,were greater than 0.5,and the mean ADCs of the bilateral kidneys demonstrated the highest ICC (0.869; 95% confidence interval:0.739-0.935).In addition,94.1% (32/34),94.1% (32/34),and 97.1% (31/34) of the ADC bias was inside the limits of agreement in terms of the mean ADC values of the left kidneys,right kidneys,and bilateral kidneys when coronal and axial DWI-MRI were compared.Conclusions:ADC values derived using coronal DW-MRI exhibited moderate-to-good agreement to those of axial DW-MRI,rendering the former an additional useful DW-MRI method,and causing the ADC values derived using the two types of DW-MRI to be comparable.

  17. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  18. Microwave Negative Bursts as Indications of Reconnection between Eruptive Filaments and Large-Scale Coronal Magnetic Environment

    CERN Document Server

    Grechnev, V; Uralov, A; Chertok, I; Kochanov, A

    2013-01-01

    Low-temperature plasma ejected in solar eruptions can screen active regions as well as quiet solar areas. Absorption phenomena can be observed in microwaves as 'negative bursts' and in different spectral domains. We analyze two very different recent events with such phenomena and present an updated systematic view of solar events associated with negative bursts. Related filament eruptions can be normal, without essential changes of shape and magnetic configuration, and 'anomalous'. The latter are characterized by disintegration of an eruptive filament and dispersal of its remnants as a cloud over a large part of solar disk. Such phenomena can be observed as giant depressions in the He II 304 A line. One of possible scenarios for an anomalous eruption is proposed in terms of reconnection of filament's internal magnetic fields with external large-scale coronal surrounding.

  19. Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Hervé, A.; Loveless, R.

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/...

  20. Factors Affecting the Squareness of Hysteresis Loops of Sintered NdFeB Magnets

    Institute of Scientific and Technical Information of China (English)

    Wang Zhanyong; Wang Xianying; Jin Minglin

    2007-01-01

    Investigation into the magnets with different squareness of hysteresis loop (SHL) reveals that the microstructure of sintered NdFeB magnets has great effects on the SHL of the magnets. The abnormal grain growth deteriorates the SHL seriously. The shape of the grain and the grain boundary affect the intensity of demagnetization field, and consequently on the SHL. The added elements have effects on the phase structures and distributions in the magnets, which influences the uniform of demagnetization field.

  1. Self-Regulation of Solar Coronal Heating Process via Collisionless Reconnection Condition

    CERN Document Server

    Uzdensky, Dmitri A

    2007-01-01

    I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the plasma marginally collisionless. The mechanism is based on the coupling between two effects. First, coronal density controls the plasma collisionality and hence the transition between the slow collisional Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the newly-reconnected loops. As a result, statistically, the density fluctuates around some critical level, comparable to that observed in the corona. In the long run, coronal heating can be represented by repeating cycles of fast reconnection events (nano-flares), evaporation episodes, and long periods of slow magnetic stress build-up and radiative cooling of the coronal plasma.

  2. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  3. LOW-FREQUENCY MAGNETIC FIELD SHIELDING BY A CIRCULAR PASSIVE LOOP AND CLOSED SHELLS

    Directory of Open Access Journals (Sweden)

    V.S. Grinchenko

    2016-05-01

    Full Text Available Purpose. To analyze the shielding factors for a circular passive loop and conductive closed shells placed in a homogeneous low-frequency magnetic field. Methodology. We have obtained simplified expressions for the shielding factors for a circular passive loop and a thin spherical shell. In addition, we have developed the numerical model of a thin cubical shell in a magnetic field, which allows exploring its shielding characteristics. Results. We have obtained dependences of the shielding factors for passive loops and shells on the frequency of the external field. Analytically determined frequency of the external magnetic field, below which field shielding of a passive loop is expedient to use, above which it is advisable to use a shielding shell.

  4. Coronal dynamics

    Science.gov (United States)

    Nakariakov, V. M.

    2007-07-01

    The lectures present the foundation of solar coronal physics with the main emphasis on the MHD theory and on wave and oscillatory phenomena. We discuss major challenges of the modern coronal physics; the main plasma structures observed in the corona and the conditions for their equilibrium; phenomenology of large scale long period oscillatory coronal phenomena and their theoretical modelling as MHD waves. The possibility of the remote diagnostics of coronal plasmas with the use of MHD oscillations is demonstrated.

  5. Variations of the 3-D coronal magnetic field associated with the X3.4-class solar flare event of AR 10930

    CERN Document Server

    He, Han; Yan, Yihua; Chen, P F; Fang, Cheng

    2016-01-01

    The variations of the 3-D coronal magnetic fields associated with the X3.4-class flare of active region 10930 are studied in this paper. The coronal magnetic field data are reconstructed from the photospheric vector magnetograms obtained by the Hinode satellite and using the nonlinear force-free field extrapolation method developed in our previous work (He et al., 2011). The 3-D force-free factor $\\alpha$, 3-D current density, and 3-D magnetic energy density are employed to analyze the coronal data. The distributions of $\\alpha$ and current density reveal a prominent magnetic connectivity with strong negative $\\alpha$ values and strong current density before the flare. This magnetic connectivity extends along the main polarity inversion line and is found to be totally broken after the flare. The distribution variation of magnetic energy density reveals the redistribution of magnetic energy before and after the flare. In the lower space of the modeling volume the increase of magnetic energy dominates, and in t...

  6. Mechanisms of Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma

    2006-06-01

    The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar corona. Recent observations show that Magnetic Carpet is a potential candidate for solar coronal heating.

  7. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  8. Nonlinear Dynamics of the Parker Scenario for Coronal Heating

    CERN Document Server

    Rappazzo, A F; Einaudi, G; Dahlburg, R B

    2007-01-01

    The Parker or field line tangling model of coronal heating is studied comprehensively via long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field lines are barely entangled, nevertheless current sheets (corresponding to the original tangential discontinuities hypothesized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that transfers energy from the scale of convective motions ($\\sim 1,000 km$) down to the dissipative scales, where it is finally converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the associated magnetic reconnection gives rise to impulsive ``bursty'' heating ...

  9. Electron contribution to the muon anomalous magnetic moment at four loops

    Science.gov (United States)

    Kurz, Alexander; Liu, Tao; Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2016-03-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections (see Ref. [1]), the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher-order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a byproduct, we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  10. Electron contribution to the muon anomalous magnetic moment at four loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik

    2016-02-15

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.

  11. Closed loop simulation for a magnetic gradiometry mission

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    While measuring the magnetic field gradient tensor in space is a major technical challenge, the importance of magnetic gradiometry has been recognized already several decades. In the near future the Swarm satellite mission will for the first time measure the East-West gradient of the magnetic field...... performed a simulation of a full magnetic gradiometry mission, emphasizing on the benefits of measuring the full gradient tensor in addition to the three field components. Using simulated orbits from a low Earth-orbiting satellite, synthetic data of the magnetic field vector and of the nine elements...... the scientific benefit of measurements of the gradient tensor in space....

  12. Polyakov loop and heavy quark entropy in strong magnetic fields from holographic black hole engineering

    CERN Document Server

    Critelli, Renato; Finazzo, Stefano I; Noronha, Jorge

    2016-01-01

    We investigate the temperature and magnetic field dependence of the Polyakov loop and heavy quark entropy in a bottom-up Einstein-Maxwell-dilaton (EMD) holographic model for the strongly coupled quark-gluon plasma (QGP) that quantitatively matches lattice data for the $(2+1)$-flavor QCD equation of state at finite magnetic field and physical quark masses. We compare the holographic EMD model results for the Polyakov loop at zero and nonzero magnetic fields and the heavy quark entropy at vanishing magnetic field with the latest lattice data available for these observables and find good agreement for temperatures $T\\gtrsim 150$ MeV and magnetic fields $eB\\lesssim 1$ GeV$^2$. Predictions for the behavior of the heavy quark entropy at nonzero magnetic fields are made that could be readily tested on the lattice.

  13. How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    CERN Document Server

    Wiegelmann, T; Inhester, B; Tadesse, T; Sun, X; Hoeksema, J T

    2012-01-01

    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field m...

  14. 5-loop Konishi from linearized TBA and the XXX magnet

    CERN Document Server

    Balog, Janos

    2010-01-01

    Using the linearized TBA equations recently obtained in [arXiv:1002.1711] we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Luscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  15. 5-loop Konishi from linearized TBA and the XXX magnet

    Science.gov (United States)

    Balog, János; Hegedüs, Árpád

    2010-06-01

    Using the linearized TBA equations recently obtained in arXiv:1002.1711 we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Lüscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  16. 5-loop Konishi from linearized TBA and the XXX magnet

    OpenAIRE

    Balog, Janos(Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, MTA Lendület Holographic QFT Group, 1525, Budapest 114, P.O.B. 49, Hungary); Hegedus, Arpad

    2010-01-01

    Using the linearized TBA equations recently obtained in [arXiv:1002.1711] we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Luscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  17. Implications of mass and energy loss due to coronal mass ejections on magnetically-active stars

    CERN Document Server

    Drake, Jeremy J; Yashiro, Seiji; Gopalswamy, Nat

    2013-01-01

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power law relationships between the 1-8 AA flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE=kE^-alpha. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of alpha and are very large: M_dot ~ 5x10^-10 M_sun/yr and E_dot ~ 0.1L_sun. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence >~ 10^31 erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energ...

  18. Simulations of Gyrosynchrotron Microwave Emission from an Oscillating 3D Magnetic Loop

    CERN Document Server

    Kuznetsov, Alexey; Reznikova, Veronika

    2015-01-01

    Radio observations of solar flares often reveal various periodic or quasi-periodic oscillations. Most likely, these oscillations are caused by magnetohydrodynamic (MHD) oscillations of flaring loops which modulate the emission. Interpretation of the observations requires comparing them with simulations. We simulate the gyrosynchrotron radio emission from a semi-circular (toroidal-shaped) magnetic loop containing sausage-mode MHD oscillations. The aim is to detect the observable signatures specific to the considered MHD mode and to study their dependence on the various source parameters. The MHD waves are simulated using a linear three-dimensional model of a magnetized plasma cylinder; both standing and propagating waves are considered. The curved loop is formed by replicating the MHD solutions along the plasma cylinder and bending the cylinder; this model allows us to study the effect of varying the viewing angle along the loop. The radio emission is simulated using a three-dimensional model and its spatial a...

  19. EXTERNAL-LOOP AIRLIFT MAGNETICALLY STABILIZED BED--MINIMUM STABILIZATION AND FLUIDIZATION CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Jordan Hristov

    2005-01-01

    Experimental study of an airlift with a magnetically stabilized bed in the riser bottom has been performed.External magnetic field allows easy control of magnetized bed structure and liquid circulation rate. Minimum stabilization and fluidization conditions have been determined experimentally and by a three-line graphical method. Semi-empirical data correlations of sections of the experimental curves have been performed. Scaling relationships known from non-magnetic airlift are applicable too, but with the assumption that the magnetic field affects the loop friction coefficient only.

  20. Simulations of Gyrosynchrotron Microwave Emission from an Oscillating 3D Magnetic Loop

    Science.gov (United States)

    Kuznetsov, A. A.; Van Doorsselaere, T.; Reznikova, V. E.

    2015-04-01

    Radio observations of solar flares often reveal various periodic or quasi-periodic oscillations. Most likely, these oscillations are caused by magnetohydrodynamic (MHD) oscillations of flaring loops which modulate the emission. Interpreting the observations requires comparing them with simulations. We simulated the gyrosynchrotron radio emission from a semicircular (toroidal-shaped) magnetic loop containing sausage-mode MHD oscillations. The aim was to detect the observable signatures specific to the considered MHD mode and to study their dependence on the various source parameters. The MHD waves were simulated using a linear three-dimensional model of a magnetized plasma cylinder; both standing and propagating waves were considered. The curved loop was formed by replicating the MHD solutions along the plasma cylinder and bending the cylinder; this model allowed us to study the effect of varying the viewing angle along the loop. The radio emission was simulated using a three-dimensional model, and its spatial and temporal variations were analyzed. We considered several loop orientations and different parameters of the magnetic field, plasma, and energetic electrons in the loop. In the model with low plasma density, the intensity oscillations at all frequencies are synchronous (with the exception of a narrow spectral region below the spectral peak). In the model with high plasma density, the emission at low frequencies (where the Razin effect is important) oscillates in anti-phase with the emissions at higher frequencies. The oscillations at high and low frequencies are more pronounced in different parts of the loop (depending on the loop orientation). The layers where the line-of-sight component of the magnetic field changes sign can produce additional peculiarities in the oscillation patterns.

  1. Coronal energy input and dissipation in a solar active region 3D MHD model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2015-01-01

    Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...

  2. Electron contribution to the muon anomalous magnetic moment at four loops

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Smirnov, Alexander; Smirnov, Vladimir; Steinhauser, Matthias

    2016-01-01

    We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections (see Ref. \\cite{Kurz:2015bia}) the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order includin...

  3. A Statistical Model of Current Loops and Magnetic Monopoles

    Energy Technology Data Exchange (ETDEWEB)

    Ayyer, Arvind, E-mail: arvind@math.iisc.ernet.in [Indian Institute of Science, Department of Mathematics (India)

    2015-12-15

    We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs.

  4. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  5. 3D reconstruction methods of coronal structures by radio observations

    Science.gov (United States)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  6. Plasma and Magnetic Field Characteristics of Solar Coronal Mass Ejections in Relation to Geomagnetic Storm Intensity and Variability

    CERN Document Server

    Liu, Ying D; Wang, Rui; Yang, Zhongwei; Zhu, Bei; Liu, Yi A; Luhmann, Janet G; Richardson, John D

    2015-01-01

    The largest geomagnetic storms of solar cycle 24 so far occurred on 2015 March 17 and June 22 with $D_{\\rm st}$ minima of $-223$ and $-195$ nT, respectively. Both of the geomagnetic storms show a multi-step development. We examine the plasma and magnetic field characteristics of the driving coronal mass ejections (CMEs) in connection with the development of the geomagnetic storms. A particular effort is to reconstruct the in situ structure using a Grad-Shafranov technique and compare the reconstruction results with solar observations, which gives a larger spatial perspective of the source conditions than one-dimensional in situ measurements. Key results are obtained concerning how the plasma and magnetic field characteristics of CMEs control the geomagnetic storm intensity and variability: (1) a sheath-ejecta-ejecta mechanism and a sheath-sheath-ejecta scenario are proposed for the multi-step development of the 2015 March 17 and June 22 geomagnetic storms, respectively; (2) two contrasting cases of how the CM...

  7. Heavy lepton contribution to the anomalous magnetic moment of the muon and the electron at four loops in QED

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander; Liu, Tao; Marquard, Peter; Steinhauser, Matthias [Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)

    2013-07-01

    We present results for the QED contribution from a heavy lepton loop to the anomalous magnetic moment of the muon and the electron. Exploiting the strong hierarchy between the tau, muon and electron masses (m{sub τ} >>m{sub μ} >>m{sub e}), we use the method of asymptotic expansion which leads to on-shell and vacuum integrals up to three and four loops, respectively. Analytic results are presented up to four loops for the muon anomalous moment involving virtual τ-lepton loops and for the electron magnetic moment involving τ- and μ-lepton loops.

  8. Impulsively Driven Waves And Flows In Coronal Active Regions

    Science.gov (United States)

    Ofman, Leon; Wang, T.; Davila, J. M.; Liu, W.

    2012-05-01

    Recent SDO/AIA and Hinode EIS observations indicate that both (super) fast and slow magnetosonic waves are present in active region (AR) magnetic structures. Evidence for fast (100-300 km/s) impulsive flows is found in spectroscopic and imaging observations of AR loops. The super-fast waves were observed in magnetic funnels of ARs. The observations suggest that waves and flow are produced by impulsive events, such as (micro) flares. We have performed three-dimensional magnetohydrodynamic (3D MHD) simulations of impulsively generated flows and waves in coronal loops of a model bi-polar active region (AR). The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with impulsively driven flow at the coronal base of the AR in localized magnetic field structures. We model the excitation of the flows in hot (6MK) and cold (1MK) active region plasma, and find slow and fast magnetosonic waves produced by these events. We also find that high-density (compared to surrounding corona) loops are produced as a result of the upflows. We investigate the parametric dependence between the properties of the impulsive flows and the waves. The results of the 3D MHD modeling study supports the conjecture that slow magnetosonic waves are often produced by impulsive upflows along the magnetic field, and fast magnetosonic waves can result from impulsive transverse field line perturbations associated with reconnection events. The waves and flows can be used for diagnostic of AR structure and dynamics.

  9. Chromospheric magnetic reconnection: Two-fluid simulations of coalescing current loops

    CERN Document Server

    Smith, P D

    2008-01-01

    Aims: To investigate magnetic reconnection rates during the coalescence of two current loops in the solar chromosphere, by altering the neutral-hydrogen to proton density ratio, ioniziation/recombination coefficients, collision frequency and relative helicity of the loops. Methods: 2.5D numerical simulations of the chromosphere were conducted using a newly developed two-fluid (ion-neutral) numerical code. Developed from the Artificial Wind scheme, the numerical code includes the effects of ion-neutral collisions, ionization/recombination, thermal/resistive diffusivity and collisional/resistive heating. Results: It was found that the rates of magnetic reconnection strongly depend on the neutral-hydrogen to proton density ratio; increasing the density ratio by a thousand-fold decreased the rate of magnetic reconnection by twenty-fold. This result implies that magnetic reconnection proceeds significantly faster in the upper chromosphere, where the density of ions (protons) and neutral-hydrogen is comparable, tha...

  10. Analysis of a Fully Packed Loop Model Arising in a Magnetic Coulomb Phase

    Science.gov (United States)

    Jaubert, L. D. C.; Haque, M.; Moessner, R.

    2011-10-01

    The Coulomb phase of spin ice, and indeed the Ic phase of water ice, naturally realize a fully packed two-color loop model in 3D. We present a detailed analysis of the statistics of these loops: we find loops spanning the system multiple times hosting a finite fraction of all sites while the average loop length remains finite. We contrast the behavior with an analogous 2D model. We connect this body of results to properties of polymers, percolation and insights from Schramm-Loewner evolution processes. We also study another extended degree of freedom, called worms, which appear as “Dirac strings” in spin ice. We discuss implications of these results for the efficiency of numerical cluster algorithms, and address implications for the ordering properties of a broader class of magnetic systems, e.g., with Heisenberg spins, such as CsNiCrF6 or ZnCr2O4.

  11. SOLAR JET–CORONAL HOLE COLLISION AND A CLOSELY RELATED CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Du, Guohui; Li, Chuanyang, E-mail: ruishengzheng@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209, Weihai (China)

    2016-03-10

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using high-quality imaging data from the Atmospheric Imaging Assembly/Solar Dynamics Observatory, we show a well-observed coronal jet event, in which the part of the jet with embedding coronal loops runs into a nearby coronal hole (CH) and gets bounced in the opposite direction. This is evidenced by the flat shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME with an initially narrow and jet-like front is observed by the LASCO C2 coronagraph propagating along the direction of the post-collision jet. We also observe some 304 Å dark material flowing from the jet–CH interaction region toward the CME. We thus suggest that the jet and the CME are physically connected, with the jet–CH collision and the large-scale magnetic topology of the CH being important in defining the eventual propagating direction of this particular jet–CME eruption.

  12. 2D cellular automaton model for the evolution of active region coronal plasmas

    CERN Document Server

    Fuentes, Marcelo López

    2016-01-01

    We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in t...

  13. Regulation loops for the ring magnet power supplies in the SSC accelerator complex

    Energy Technology Data Exchange (ETDEWEB)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    The SSC complex consists of five cascaded accelerators: The linear accelerator (linac) and four synchrotrons: The low energy booster (LEB), the medium energy booster (MEB), the high energy booster (HEB), and the collider. Twelve- or 24-pulse phase-controlled SCR power supplies are used to energize the ring magnets. Each power supply has a voltage loop designed to regulate the voltage applied to the magnets. The voltage regulation loops for these synchrotrons and the current regulation for the LEB are analyzed in this work. The digital voltage regulator is fiber-optic isolated from the power converter. It has a closed-loop bandwidth of 150 Hz with band rejections for 60-Hz and 120-Hz perturbations. The LEB has a very precise current regulation system composed of a feedforward compensator, a fast feedback regulator, and a slow synchronous regulator. The current regulation design is corroborated by computer simulations.

  14. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B0. The other antenna is an elongated loop with dipole moment parallel to B0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  15. Explaining Inverted Temperature Loops in the Quiet Solar Corona with Magnetohydrodynamic Wave Mode Conversion

    CERN Document Server

    Schiff, Avery J

    2016-01-01

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun's surface. Recent measurements that combine rotational tomography, extreme ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted temperature profiles; i.e., loops for which the apex temperature is a local minimum, not a maximum. These "down loops" appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale "up loops" by modeling coronal heating as a time-steady superposition of: (1) dissipation of incompressible Alfven-wave turbulence, and (2) dissipation of compressive waves formed by mode conversion from the initial population of Alfven waves. We found that when a large percentage (> 99%) of the Alfven waves undergo this conversion, heating is greatly concentrated at the footpoints and stable "down loops" are created. In some cases we found loops with three maxima that are also gravitationally stable. Models th...

  16. Analysis of magnetization loops of electrospun nonwoven superconducting fabrics

    Science.gov (United States)

    Zeng, Xian Lin; Karwoth, Thomas; Koblischka, Michael R.; Hartmann, Uwe; Gokhfeld, Denis; Chang, Crosby; Hauet, Thomas

    2017-09-01

    Networks of superconducting Bi2Sr2CaCu2O8 (Bi-2212) nanowires were fabricated by the electrospinning technique. The nanowires have a diameter of the order of 150-200 nm and lengths up to the micrometer range and form a nonwoven, fabric-like network with numerous interconnections enabling a current flow between the nanowires. The porosity of this nanowire network is 0.9928. Therefore, this material represents a novel class of ultraporous high-temperature superconductors. The magnetizations of the nanowire networks [M (T ) and M (H )] were recorded by SQUID magnetometry. The magnetic properties were analyzed using the extended critical state model (ECSM). It is supposed that the averaged diameter of the nanowires rules the magnetic field dependence of the critical current density of the nanowire network. Single nanowires have remarkably high values of the critical current density of 1.04 ×107A /cm2 at 5 K. The macroscopic critical current density less than ˜0.05 A /cm2 at 5 K is fine for this lightweight material. Using ECSM, several important magnetic parameters could be determined including the penetration field Hp, the irreversibility fields Hirr, the upper critical field Hc 2, and the flux pinning forces. Applications for this material class may be found in the direction of sensors, thin shielding layers, or nanoporous bulks.

  17. MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Murawski, K. [Group of Astrophysics, Institute of Physics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, A. K.; Dwivedi, B. N. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2015-07-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated photospheric flux tube and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and we analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube that is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal MHD equations that are numerically solved by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreover, it is likely that the existence of these twisters can be verified by high-resolution observations.

  18. Electric-magnetic duality and the "loop representation" in abelian gauge theories

    CERN Document Server

    Leal, L C

    1996-01-01

    Abelian Gauge Theories are quantized in a geometric representation that generalizes the Loop Representation and treates electric and magnetic operators on the same footing. The usual canonical algebra is turned into a topological algebra of non local operators that resembles the order-disorder dual algebra of 't Hooft. These dual operators provide a complete description of the physical phase space of the theories.

  19. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. III. 3D spiral nulls

    Science.gov (United States)

    Fuentes-Fernández, J.; Parnell, C. E.

    2012-08-01

    Context. The majority of studies on stressed 3D magnetic null points consider magnetic reconnection driven by an external perturbation, but the formation of a genuine current sheet equilibrium remains poorly understood. This problem has been considered more extensively in two dimensions, but lacks a generalization into 3D fields. Aims: 3D magnetic nulls are more complex than 2D nulls and the field can take a greater range of magnetic geometries local to the null. Here, we focus on one type and consider the dynamical non-resistive relaxation of 3D spiral nulls with initial spine-aligned current. We aim to provide a valid magnetohydrostatic equilibrium, and describe the electric current accumulations in various cases, involving a finite plasma pressure. Methods: A full MHD code was used, with the resistivity set to zero so that reconnection is not allowed, to run a series of experiments in which a perturbed spiral 3D null point was allowed to relax towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and other magnetic parameters were systematically investigated. Results: For the axisymmetric case, the evolution of the field and the plasma is such that it concentrates the current density into two cone-shaped regions along the spine, thus concentrating the twist of the magnetic field around the spine, leaving a radial configuration in the fan plane. The plasma pressure redistributes to maintain the current density accumulations. However, it is found that changes in the initial plasma pressure do not significantly modify the final state. In the cases where the initial magnetic field is not axisymmetric, an infinite-time singularity of current perpendicular to the fan is found at the location of the null.

  20. Coronal Magnetic Field Strength from Decameter Zebra-Pattern Observations: Complementarity with Band-Splitting Measurements of an Associated Type II Burst

    Science.gov (United States)

    Stanislavsky, A. A.; Konovalenko, A. A.; Koval, A. A.; Dorovskyy, V. V.; Zarka, P.; Rucker, H. O.

    2015-01-01

    A zebra pattern and a type II burst with band splitting were analyzed to study the coronal magnetic field in the height range of 1.9 - 2 solar radii. To this aim we used an extremely sensitive telescope (the Ukrainian decameter radio telescope, UTR-2) with a low-noise, high-dynamic-range spectrometer for the observations below 32 MHz. Based on the analysis of the spectral structures, the field strength obtained is 0.43 G. The value was found by fitting two different field indicators together under the assumptions that the shock wave front was perpendicular to the radial direction, and the radio emission of the type II burst was in the fundamental frequency. The result is compared to and agrees with coronal magnetic-field models.

  1. Fast Collisionless Reconnection Condition and Self-Organization of Solar Coronal Heating

    CERN Document Server

    Uzdensky, Dmitri A

    2007-01-01

    I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet--Parker regime and the fast collisionless reconnection regime. This transition takes place when the Sweet--Parker layer becomes thinner than the characteristic collisionless reconnection scale. I present a simple criterion for this transition in terms of the upstream plasma density and magnetic field and the global length of the reconnection layer. Second, coronal energy release by reconnection raises the ambient plasma density via chromospheric evaporation and this, in turn, temporarily inhibits subsequent reconnection involving the newly-reconnected loops. Over time, however, radiative cooling gradually lowers the density again below the critical value and fast reconnection again becomes possible. As a ...

  2. Stochastic Fermi Energization of Coronal Plasma during Explosive Magnetic Energy Release

    Science.gov (United States)

    Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2017-02-01

    The aim of this study is to analyze the interaction of charged particles (ions and electrons) with randomly formed particle scatterers (e.g., large-scale local “magnetic fluctuations” or “coherent magnetic irregularities”) using the setup proposed initially by Fermi. These scatterers are formed by the explosive magnetic energy release and propagate with the Alfvén speed along the irregular magnetic fields. They are large-scale local fluctuations (δB/B ≈ 1) randomly distributed inside the unstable magnetic topology and will here be called Alfvénic Scatterers (AS). We constructed a 3D grid on which a small fraction of randomly chosen grid points are acting as AS. In particular, we study how a large number of test particles evolves inside a collection of AS, analyzing the evolution of their energy distribution and their escape-time distribution. We use a well-established method to estimate the transport coefficients directly from the trajectories of the particles. Using the estimated transport coefficients and solving the Fokker–Planck equation numerically, we can recover the energy distribution of the particles. We have shown that the stochastic Fermi energization of mildly relativistic and relativistic plasma can heat and accelerate the tail of the ambient particle distribution as predicted by Parker & Tidman and Ramaty. The temperature of the hot plasma and the tail of the energetic particles depend on the mean free path (λsc) of the particles between the scatterers inside the energization volume.

  3. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    Science.gov (United States)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a

  4. Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: two-loop renormalization group result.

    Science.gov (United States)

    Jurčišinová, E; Jurčišin, M; Remecký, R; Zalom, P

    2013-04-01

    Using the field theoretic renormalization group technique, the influence of helicity (spatial parity violation) on the turbulent magnetic Prandtl number in the kinematic magnetohydrodynamic turbulence is investigated in the two-loop approximation. It is shown that the presence of helicity decreases the value of the turbulent magnetic Prandtl number and, at the same time, the two-loop helical contribution to the turbulent magnetic Prandtl number is at most 4.2% (in the case with the maximal helicity) of its nonhelical value. These results demonstrate, on one hand, the potential importance of the presence of asymmetries in processes in turbulent environments and, on the other hand, the rather strong stability of the properties of diffusion processes of the magnetic field in the conductive turbulent environment with the spatial parity violation in comparison to the corresponding systems without the spatial parity violation. In addition, obtained results are compared to the corresponding results found for the two-loop turbulent Prandtl number in the model of passively advected scalar field. It is shown that the turbulent Prandtl number and the turbulent magnetic Prandtl number, which are the same in fully symmetric isotropic turbulent systems, are essentially different when one considers the spatial parity violation. It means that the properties of the diffusion processes in the turbulent systems with a given symmetry breaking can considerably depend on the internal tensor structure of advected quantities.

  5. Dynamical Relaxation of Coronal Magnetic Fields. III. 3D Spiral Nulls

    CERN Document Server

    Fuentes-Fernandez, Jorge

    2012-01-01

    Context: The majority of studies on stressed 3D magnetic null points consider magnetic reconnection driven by an external perturbation, but the formation of a genuine current sheet equilibrium remains poorly understood. This problem has been considered more extensively in two-dimensions, but lacks a generalization into 3D fields. Aims: 3D magnetic nulls are more complex than 2D nulls and the field can take a greater range of magnetic geometries local to the null. Here, we focus on one type and consider the dynamical non-resistive relaxation of 3D spiral nulls with initial spine-aligned current. We aim to provide a valid magnetohydrostatic equilibrium, and describe the electric current accumulations in various cases, involving a finite plasma pressure. Methods: A full MHD code is used, with the resistivity set to zero so that reconnection is not allowed, to run a series of experiments in which a perturbed spiral 3D null point is allowed to relax towards an equilibrium, via real, viscous damping forces. Changes...

  6. Forecast of Solar Energetic Particles Depending on Magnetic Connectivity and Coronal Mass Ejection Properties Using Multi-Spacecraft Observations

    Science.gov (United States)

    Park, Jinhye; Moon, Yong-Jae; Lee, Harim; Kahler, Stephen W.

    2017-08-01

    For the forecast of solar energetic particles (SEPs), we study the relationships between the peak fluxes of 18 SEP events and associated coronal mass ejection (CME) 3D parameters (speed, angular width and separation angle) obtained from SOHO, STEREO-A and/or B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angle between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of Parker spiral field. The main results are as follows. 1) We find the dependence of the SEP peak fluxes on CME 3D speed and 3D angular width from multi-spacecraft. 2) There is a noticeable anti-correlation (r=-0.62) between SEP peak flux and separation angle. 3) We predict the SEP peak fluxes using a multiple regression method considering longitudinal separation angle, CME 3D speed and 3D angular width. It shows that the separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  7. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Gary, D. E. [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Bastian, T. S., E-mail: bin.chen@cfa.harvard.edu [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  8. Acceleration, magnetic fluctuations and cross-field transport of energetic electrons in a solar flare loop

    CERN Document Server

    Kontar, E P; Bian, N H

    2011-01-01

    Plasma turbulence is thought to be associated with various physical processes involved in solar flares, including magnetic reconnection, particle acceleration and transport. Using Ramaty High Energy Solar Spectroscopic Imager ({\\it RHESSI}) observations and the X-ray visibility analysis, we determine the spatial and spectral distributions of energetic electrons for a flare (GOES M3.7 class, April 14, 2002 23$:$55 UT), which was previously found to be consistent with a reconnection scenario. It is demonstrated that because of the high density plasma in the loop, electrons have to be continuously accelerated about the loop apex of length $\\sim 2\\times 10^9$cm and width $\\sim 7\\times 10^8$cm. Energy dependent transport of tens of keV electrons is observed to occur both along and across the guiding magnetic field of the loop. We show that the cross-field transport is consistent with the presence of magnetic turbulence in the loop, where electrons are accelerated, and estimate the magnitude of the field line diffu...

  9. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    Science.gov (United States)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  10. TRANSITION-REGION/CORONAL SIGNATURES AND MAGNETIC SETTING OF SUNSPOT PENUMBRAL JETS: HINODE (SOT/FG), Hi-C, AND SDO/AIA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ZP 13, Huntsville, AL 35812 (United States); Alpert, Shane E., E-mail: sanjiv.k.tiwari@nasa.gov [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2016-01-10

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field.

  11. Scaling Behavior of Barkhausen Avalanches along the Hysteresis loop in Nucleation-Mediated Magnetization Reversal Process

    Energy Technology Data Exchange (ETDEWEB)

    Im, Mi-Young; Fischer, Peter; Kim, D.-H.; Shin, S.-C.

    2008-10-14

    We report the scaling behavior of Barkhausen avalanches for every small field step along the hysteresis loop in CoCrPt alloy film having perpendicular magnetic anisotropy. Individual Barkhausen avalanche is directly observed utilizing a high-resolution soft X-ray microscopy that provides real space images with a spatial resolution of 15 nm. Barkhausen avalanches are found to exhibit power-law scaling behavior at all field steps along the hysteresis loop, despite their different patterns for each field step. Surprisingly, the scaling exponent of the power-law distribution of Barkhausen avalanches is abruptly altered from 1 {+-} 0.04 to 1.47 {+-} 0.03 as the field step is close to the coercive field. The contribution of coupling among adjacent domains to Barkhausen avalanche process affects the sudden change of the scaling behavior observed at the coercivity-field region on the hysteresis loop of CoCrPt alloy film.

  12. Determination of magnetic-field components from inner-corona closed-loop propagation and IPS analysis

    Science.gov (United States)

    Jackson, Bernard; Tokumaru, Munetoshi; Gonzalez-Esparza, Americo; Hick, P.; Buffington, Andrew; Hong, Sunhak; Bisi, Mario M.; Kim, Jaehun; Yu, Hsiu-Shan

    2016-07-01

    We find that a portion of the interplanetary magnetic field measured in situ near Earth is present from a direct outward mapping of closed fields from the low solar corona. The Current-Sheet Source Surface (CSSS) model (Zhao & Hoeksema, 1995 JGR 100, 19), extrapolate magnetogram-derived fields upward from near the solar surface. Global velocities and densities inferred from a combination of observations of interplanetary scintillation (IPS), matched to in-situ velocities and densities measured by spacecraft instrumentation, then provide an accurate outward timing to 1 AU using the UCSD tomography model that assumes conservation of mass and mass flux. All three field components at 1 AU are present including the north-south (or Bn) component field, and are compared with the appropriate ACE magnetometer in-situ (RTN) field coordinate. A significant positive daily correlation variation sometimes as high as 0.8 exists between these closed loop components and those determined by in-situ measurement over the last ten years for individual Carrington rotations. We determine that a consistent small fraction of the static low-coronal component flux (˜2%), that includes the Bn component, regularly escapes from closed-field regions. However, this percentage of closed projected fields relative to those measured in situ at Earth varies somewhat, indicating that a more efficient process for this flux propagation exists at the peak of the solar cycle than at its minimum. Since the Bn field provides the major portion of the Geocentric Solar Magnetospheric (GSM) Bz field component that couples most closely to the Earth's geomagnetic field, the prospects of using this technique for space weather predictions are being actively developed.

  13. 3D MHD Coronal Oscillations About a Magnetic Null Point: Application of WKB Theory

    CERN Document Server

    McLaughlin, J A; Hood, A W

    2007-01-01

    This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit's Method and a Runge-Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, ${\\bf{B}}=(x,\\epsilon y -(\\epsilon +1)z)$. Under our cold plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfv\\'en waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point, and that the effect of this refraction depends upon the Alfv\\'en speed profile. The wave, and thus the wave energy, accumulates at the null point. We have found that current build up is exponential and the exponent is dependent upon $\\epsilon$. Thus, for the fast wave there is preferential heating at the null point. For the Alfv\\'en wave, we find that the wave propagates along the fieldlines. For an Alfv\\'en wave generated along the fan-plane, the wave accumulates along the spine. For an Alfv\\'en wa...

  14. Evidence for Solar Tether-cutting Magnetic Reconnection from Coronal Field Extrapolations

    CERN Document Server

    Liu, Chang; Lee, Jeongwoo; Wiegelmann, Thomas; Moore, Ronald L; Wang, Haimin

    2013-01-01

    Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of its rapid process has been of challenge. In this Letter we present, using a nonlinear force-free field (NLFFF) extrapolation technique, a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by the analysis of the field lines traced from positions of four conspicuous flare 1700 A footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of magnetic twist index. Especially, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ~1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the fl...

  15. Coronal Abundance Anomalies in Solar-Like Stars

    Science.gov (United States)

    Laming, John

    We propose to model the trend of coronal abundance anomalies observed in a sample of solar-like stars by Wood & Linsky (2010). Dwarf stars of similar spectral type to the Sun show what has become known as a FIP (First Ionization Potential) Effect, where elements with first ionization potential below about 10 eV are enhanced in abundance in the corona by a factor of about 3 - 4. Stars of later spectral type show a diminished FIP effect, with the anomaly disappearing at about K5 spectral type. Beyond this, M dwarf stars show an inverse FIP effect, with the low FIP ions becoming depleted in the stellar corona, by factors of order 2.5 - 3. The solar case of positive FIP effect has been successfully interpreted as being due to the action of the ponderomotive force associated with chromospheric Alfven waves. In conditions in which upgoing Alfven waves are transmitted into coronal loops, or in which coronally generated waves reflect at loop footpoints, the ponderomotive force is directed upwards, and accelerates chromospheric ions (the low FIP elements) into the corona. Neutral atoms are not affected. The inverse FIP effect can arise when upward propagating chromospheric Alfven waves are reflected back down again at coronal loop footpoints, due to a mismatch between the wave frequency and the loop resonance. We propose to study stars for which parameters like asteroseismic oscillation frequencies, coronal abundance anomalies, and chromospheric structure are known. As well as constraining coronal magnetic fields and loop resonances in these stars, we expect important insights into the nature of stellar dynamos since the M dwarfs in the sample (with inverse FIP effect) are at or near the fully convective limit. Finally, we will be able to assess potential fractionation in the O/Ne abundance ratio. Drake & Testa (2005) argued that Ne is depleted in the solar corona relative to O, but not in the coronae of more active stars. Our FIP models provide some support for this in the

  16. Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes

    Science.gov (United States)

    Riley, P.; Richardson, I. G.

    2012-01-01

    In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and

  17. Time dependence of hysteresis loop displacement in hard-soft magnetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, Montserrat [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)]. E-mail: rivas@uniovi.es; Garcia, Jose A. [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Angeles Cerdeira, M. [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Fal-Miyar, Vanessa [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain); Tejedor, Marcos [Departamento de Fisica de la Universidad de Oviedo, c/ Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2006-09-15

    Time dependence of the hysteresis loop asymmetry observed in partially crystallized Co{sub 66}Si{sub 16}B{sub 12}Fe{sub 4}Mo{sub 2}is here analyzed at room temperature. The results are related to a magnetic aftereffect occurring in the hard crystallites embedded in the residual soft matrix. The coercive field is found to be constant with time, which is explained in terms of the dipolar interaction theory.

  18. A Mn₁₅ single-molecule magnet consisting of a supertetrahedron incorporated in a loop.

    Science.gov (United States)

    Moushi, Eleni E; Masello, Antonio; Wernsdorfer, Wolfgang; Nastopoulos, Vassilios; Christou, George; Tasiopoulos, Anastasios J

    2010-05-28

    Two new Mn(15) clusters consisting of a supertetrahedron which is incorporated in a loop are reported. The reactions of [Mn(O(2)CEt)(2)]·2H(2)O with the diols 1,3-propanediol (H(2)pd) or 2-methyl-1,3-propanediol (H(2)mpd) in the presence of KX (X = CN(-), Cl(-), Br(-), NO(3)(-), ClO(4)(-), OCN(-), SCN(-)) afforded compounds [Mn(15)K(mu(4)-O)(4)(O(2)CEt)(11)(pd)(12)(py)(2)] (1) and [Mn(15)K(mu(4)-O)(4)(O(2)CEt)(11)(mpd)(12)(py)(2)] (2). The structural core of 1 and 2 consists of a Mn(11) loop and a Mn(9)K supertetrahedron sharing a Mn(5) triangle. To the best of our knowledge, the structural motif of a supertetrahedron incorporated in a loop appears for the first time in metal cluster chemistry. Variable-temperature, solid-state direct current (dc) magnetic susceptibility studies in the 300-5 K range showed that the chi(M)T value increases with decreasing T suggesting the existence of predominant ferromagnetic exchange interactions and a relatively large ground state spin. This was confirmed by field-variable temperature magnetization measurements which were fitted using a matrix diagonalization method to give S approximately 23/2, g = 1.92(1) and D = -0.071(2) cm(-1). In addition, compound 1 displays frequency-dependent alternating current (ac) signals suggesting single-molecule magnetism (SMM) behaviour. This was proven by magnetization vs. dc field sweeps on single-crystals of 1·0.7py·1.3MeCN, which displayed sweep rate- and temperature-dependent hysteresis loops.

  19. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls

    Science.gov (United States)

    Fuentes-Fernández, J.; Parnell, C. E.

    2013-06-01

    Context. There are various types of reconnection that may take place at 3D magnetic null points. Each different reconnection scenario must be associated with a particular type of current layer. Aims: A range of current layers may form because the topology of 3D nulls permits currents to form by either twisting the field about the spine of the null or by folding the fan and spine into each other. Additionally, the initial geometry of the field can lead to variations in the currents that are accumulated. Here, we study current accumulations in so-called 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure. Methods: To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically. Results: An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the current perpendicular to the spine, the current concentrates along the tilt axis of the fan and in a layer about the null point with a sharp peak at the null itself. The continued growth of this peak indicates that the system is in an asymptotic regime involving an infinite time singularity at the null. When the initial tilt disturbance (current perpendicular to the spine) is combined with a spiral-type disturbance (current parallel to the

  20. Motion magnification in coronal seismology

    CERN Document Server

    Anfinogentov, Sergey

    2016-01-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features, observed with imaging instruments. The method is based on the two-dimensional dual tree complex wavelet transform (DT$\\mathbb{C}$WT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes imitating exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes provided they are sufficiently small. Also, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/A...

  1. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls

    CERN Document Server

    Fuentes-Fernandez, Jorge

    2013-01-01

    In this paper we study current accumulations in 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure.To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically.An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the ...

  2. Polarity Comparison Between the Coronal PFSS Model Field and the Heliospheric Magnetic Field at 1 AU Over Solar Cycles 21-24

    Science.gov (United States)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K.

    2015-12-01

    The solar coronal magnetic field forms an important link between the underlying source in the solar photosphere and the heliospheric magnetic field (HMF). The coronal field has traditionally been calculated from the photospheric observations using various magnetic field models between the photosphere and the corona, in particular the potential field source surface (PFSS) model. Despite its simplicity, the predictions of the PFSS model generally agree quite well with the heliospheric observations and match very well with the predictions of more elaborate models. We make here a detailed comparison between the predictions of the PFSS model with the HMF field observed at 1 AU. We use the photospheric field measured at the Wilcox Solar Observatory, SDO/HMI, SOHO/MDI and SOLIS, and the heliospheric magnetic field measurements at 1 AU collected within the OMNI 2 dataset. This database covers the solar cycles 21-24. We use different source surface distances and different numbers of harmonic components for the PFSS model. We find an optimum polarity match between the coronal field and the HMF for source surface distance of 3.5 Rs. Increasing the number of harmonic components beyond the quadrupole does not essentially improve polarity agreement, indicating that the large scale structure of the HMF at 1 AU is responsible for the agreement while the small scale structure is greatly modified between corona and 1 AU. We also discuss the solar cycle evolution of polarity match and find that the PFSS model prediction is most reliable during the declining phase of the solar cycle. We also find large differences in match percentage between northern and southern hemispheres during the times of systematic southward shift of the heliospheric current sheet (the Bashful ballerina).

  3. Measuring the Magnetic Flux Density with Flux Loops and Hall Probes in the CMS Magnet Flux Return Yoke

    CERN Document Server

    Curé, B; Ball, A; Gaddi, A; Gerwig, H; Hervé, A; Klyukhin, V I; Loveless, R; Mulders, M

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The flux return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume that was measured with the field-mapping machine. The voltages induced in the flux loops by the magnetic flux changing during the CMS magnet standard ramps down are measured with six 16-bit DAQ modules. The off-line inte...

  4. Statistical study of network jets observed in the solar transition region: A comparison between coronal holes and quiet sun regions

    CERN Document Server

    Narang, Nancy; Tian, Hui; Banerjee, Dipankar; Cranmer, Steven R; DeLuca, Ed E; McKillop, Sean

    2016-01-01

    Recent IRIS observations have revealed a prevalence of intermittent small-scale jets with apparent speeds of 80 - 250 km s$^{-1}$, emanating from small-scale bright regions inside network boundaries of coronal holes. We find that these network jets appear not only in coronal holes but also in quiet-sun regions. Using IRIS 1330A (C II) slit-jaw images, we extract several parameters of these network jets, e.g. apparent speed, length, lifetime and increase in foot-point brightness. Using several observations, we find that some properties of the jets are very similar but others are obviously different between the quiet sun and coronal holes. For example, our study shows that the coronal-hole jets appear to be faster and longer than those in the quiet sun. This can be directly attributed to a difference in the magnetic configuration of the two regions with open magnetic field lines rooted in coronal holes and magnetic loops often present in quiet sun. We have also detected compact bright loops, likely transition r...

  5. Discovery of a new class of coronal structures in white light eclipse images

    Energy Technology Data Exchange (ETDEWEB)

    Druckmüller, Miloslav [Faculty of Mechanical Engineering, Brno University of Technology, 616 69 Brno (Czech Republic); Habbal, Shadia Rifai; Morgan, Huw, E-mail: shadia@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-04-10

    White light images of the solar corona, taken during total solar eclipses, capture the complex dynamic relationship between the coronal plasma and the magnetic field. This relationship can be recorded on timescales of seconds to minutes, within a few solar radii above the solar surface. Rays, large-scale loops, and streamers, which are the brightest structures in these images, have shaped current models of the coronal magnetic field and solar wind flow. We show in this work how the application of novel image processing techniques to unique high-resolution white light eclipse images reveals the presence of a new class of structures, reminiscent of smoke rings, faint nested expanding loops, expanding bubbles, and twisted helical structures. These features are interpreted as snapshots of the dynamical evolution of instabilities developing at prominence-corona interfaces and propagating outward with the solar wind.

  6. Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    Science.gov (United States)

    Heidrich-Meisner, Verena; Peleikis, Thies; Kruse, Martin; Berger, Lars; Wimmer-Schweingruber, Robert F.

    2017-07-01

    Context. The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. Variability is observed both in closed and in open field line regions in the solar corona. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. Aims: During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. Methods: To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. Under the assumptions of the freeze-in scenario for charge states in the solar wind, we derive freeze-in temperatures and determine the order in which the different charge state ratios of ion pairs appear to freeze-in. We call the combination of freeze-in temperatures derived from in situ observed ion density ratios and freeze-in order a minimal electron temperature profile and investigate its variability. Results: The in situ properties and the PFSS model together probe the lateral magnetic field

  7. A Robust Method to Predict the Near-Sun and Interplanetary Magnetic Field Strength of Coronal Mass Ejections: Parametric and Case Studies

    Science.gov (United States)

    Patsourakos, Spiros; Georgoulis, Manolis K.

    2016-07-01

    Predicting the near-Sun, and particularly the Interplanetary (IP), magnetic field structure of Coronal Mass Ejections (CMEs) and interplanetary counterparts (ICMEs) is a topic of intense research activity. This is because Earth-directed CMEs with strong southward magnetic fields are responsible for the most powerful geomagnetic storms. We have recently developed a simple two-tier method to predict the magnetic field strength of CMEs in the outer corona and in the IP medium, using as input the magnetic-helicity budget of the source solar active region and stereoscopic coronagraphic observations. Near-Sun CME magnetic fields are obtained by utilizing the principle of magnetic helicity conservation of flux-rope CMEs for coronagraphic observations. Interplanetary propagation of the inferred values is achieved by employing power-law prescriptions of the radial evolution of the CME-ICME magnetic fields. We hereby present a parametric study of our method, based on the observed statistics of input parameters, to infer the anticipated range of values for the near-Sun and interplanetary CME-ICME magnetic fields. This analysis is complemented by application of our method to several well-observed major CME-ICME events.

  8. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    Science.gov (United States)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  9. Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens O.; Naylor, William R. [Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim (Norway); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger (Norway)

    2014-04-30

    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background B at finite temperature T and baryon chemical potential μ{sub B}. We investigate effects of various gluonic potentials on the deconfinement transition with and without a fermionic backreaction at finite B. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition, finding that magnetic catalysis at low μ{sub B} is present, but weakened by the Polyakov loop.

  10. Electric field controlled magnetic hysteresis loops in a Metglas/PMN-PT heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yajie; Fitchorov, Trifon; Vittoria, Carmine; Harris, V G [Center for Microwave Magnetic Materials and Integrated Circuits, and the Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Cai, Zhuhua; Ziemer, K S, E-mail: y.chen@neu.ed [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2010-04-21

    An electric field tunable magnetic hysteresis loop was studied in a multiferroic heterostructure consisting of a 25 {mu}m thick Metglas (registered) ribbon affixed to a lead magnesium niobate-lead titanate (PMN-PT) crystal. This multiferroic heterostructure exhibits a considerably strong converse magnetoelectric effect, CME = -80%, where CME = [M(E) - M(0)]/M(0), and a converse magnetoelectric coupling constant, A = 23 Oe cm kV{sup -1}, in the vicinity of the saturation electric polarization. This work systematically demonstrates the tunability of magnetic parameters including magnetization, coercivity, remanence and squareness, under the application of an electric field of 0-8 kV cm{sup -1}. Additionally, the physical mechanism of the CME is discussed. These results provide useful resources for the design of a new generation of electrically controlled devices.

  11. Evidence for shock generation in the solar corona in the absence of coronal mass ejections

    Science.gov (United States)

    Eselevich, V. G.; Eselevich, M. V.; Zimovets, I. V.; Sharykin, I. N.

    2017-09-01

    The solar event SOL2012-10-23T03:13, which was associated with a X1.8 flare without an accompanying coronal mass ejection (CME) and with a Type II radio burst, is analyzed. A method for constructing the spatial and temporal profiles of the difference brightness detected in the AIA/SDOUVand EUV channels is used together with the analysis of the Type II radio burst. The formation and propagation of a region of compression preceded by a collisional shock detected at distances R shock could be due to a transient (impulsive) action exerted on the surrounding plasma by an eruptive, high-temperature magnetic rope. The initial instability and eruption of this rope could be initiated by emerging magnetic flux, and its heating from magnetic reconnection. The cessation of the eruption of the rope could result from its interaction with surrounding magnetic structures (coronal loops).

  12. Quantum magnetic flux lines, BPS vortex zero modes, and one-loop string tension shifts

    Science.gov (United States)

    Alonso-Izquierdo, A.; Mateos Guilarte, J.; de la Torre Mayado, M.

    2016-08-01

    Spectral heat kernel/zeta function regularization procedures are employed in this paper to control the divergences arising from vacuum fluctuations of Bogomolnyi-Prasad-Sommerfield vortices in the Abelian Higgs model. Zero modes of vortex fluctuations are the source of difficulties appearing when the standard Gilkey-de Witt expansion is the tool used in the calculations of one-loop shifts of vortex masses and string tensions. A modified GdW expansion is developed to diminish the impact of the infrared divergences due to the vortex zero modes of fluctuation. With this new technique at our disposal we compute the one-loop vortex mass shifts in the planar AHM and the quantum corrections to the string tension of the magnetic flux tubes living in three dimensions. In both cases it is observed that weak repulsive forces surge between these classically noninteracting topological defects caused by vacuum quantum fluctuations.

  13. The muon magnetic moment in the 2HDM: complete two-loop result

    Science.gov (United States)

    Cherchiglia, Adriano; Kneschke, Patrick; Stöckinger, Dominik; Stöckinger-Kim, Hyejung

    2017-01-01

    We study the 2HDM contribution to the muon anomalous magnetic moment a μ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned 2HDM, which has general Yukawa couplings and contains the type I, II, X, Y models as special cases. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document their general behavior. Taking into account constraints on parameters, we find that the full 2HDM contribution to a μ can accommodate the current experimental value, and the complete two-loop bosonic contribution can amount to (2⋯4) × 10-10, more than the future experimental uncertainty.

  14. The muon magnetic moment in the ${\\rm{2HDM}}$: complete two-loop result

    CERN Document Server

    Cherchiglia, Adriano; Stöckinger, Dominik; Stöckinger-Kim, Hyejung

    2016-01-01

    We study the ${\\rm{2HDM}}$ contribution to the muon anomalous magnetic moment $a_\\mu$ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned ${\\rm{2HDM}}$, which has general Yukawa coupling constants and is more general than the type I, II, X, Y models. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document the general behavior. Taking into account constraints on parameters, we find that the full ${\\rm{2HDM}}$ contribution to $a_\\mu$ can accommodate the current experimental value, and the complete two-loop bosonic result contribution can amount to $(2\\cdots 4)\\times 10^{-10}$, more than the future experimental uncertainty.

  15. Open-loop correction for an eddy current dominated beam-switching magnet

    Science.gov (United States)

    Koseki, K.; Nakayama, H.; Tawada, M.

    2014-04-01

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10-4 to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10-3. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10-4, which is an acceptable value, was achieved.

  16. Open-loop correction for an eddy current dominated beam-switching magnet

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, K., E-mail: kunio.koseki@kek.jp; Nakayama, H.; Tawada, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-04-15

    A beam-switching magnet and the pulsed power supply it requires have been developed for the Japan Proton Accelerator Research Complex. To switch bunched proton beams, the dipole magnetic field must reach its maximum value within 40 ms. In addition, the field flatness should be less than 5 × 10{sup −4} to guide each bunched beam to the designed orbit. From a magnetic field measurement by using a long search coil, it was found that an eddy current in the thick endplates and laminated core disturbs the rise of the magnetic field. The eddy current also deteriorates the field flatness over the required flat-top period. The measured field flatness was 5 × 10{sup −3}. By using a double-exponential equation to approximate the measured magnetic field, a compensation pattern for the eddy current was calculated. The integrated magnetic field was measured while using the newly developed open-loop compensation system. A field flatness of less than 5 × 10{sup −4}, which is an acceptable value, was achieved.

  17. Injection of solar energetic particles into both loop legs of a magnetic cloud

    CERN Document Server

    Dresing, Nina; Heber, Bernd; Hidalgo, Miguel Angel; Klassen, Andreas; Temmer, Manuela; Veronig, Astrid

    2016-01-01

    Each of the two STEREO spacecraft carries a SEPT Instrument which measures electrons and protons. Anisotropy observations are provided in four viewing directions. The SEP event on 7 Nov 2013 was observed by both STEREO spacecraft, which were longitudinally separated by 68{\\deg} at that time. While STEREO A observed the expected characteristics of an SEP event at a well-connected position, STEREO B detected a very anisotropic bi-directional distribution of near-relativistic electrons and was situated inside a magnetic-cloud-like structure during the early phase of the event. We examine the source of the bi-directional SEP distribution at STEREO B. On the one hand this distribution could be caused by a double injection into both loop legs of the MC. On the other hand, a mirroring scenario where the incident beam is reflected in the opposite loop leg could be the reason. Furthermore, the energetic electron observations are used to probe the magnetic structure inside the magnetic cloud. We show that STEREO B was ...

  18. Analysis of Coronal Rain Observed by IRIS, HINODE/SOT, and SDO/AIA: Transverse Oscillations, Kinematics, and Thermal Evolution

    Science.gov (United States)

    Kohutova, P.; Verwichte, E.

    2016-08-01

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS), the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s-1 up to 180 km s-1 and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO/AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO/AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  19. Magnetic sensing for microstructural assessment of power station steels: Magnetic Barkhausen noise and minor loop measurements

    OpenAIRE

    Wilson, JWa; Karimian, N a; Yin, W a; Liu, J. B.; Davis, CLb; Peyton, AJa

    2013-01-01

    There are currently no techniques available to monitor the microstructural condition of power station steel components in-service (at elevated temperatures). Electromagnetic (EM) inspection methods have the potential to provide a solution to this problem. Tests have been carried out on power generation steel (P9 and T22) samples with different microstructural states using major and minor B-H loop measurements and correlations established between EM properties and material properties such as V...

  20. Exposure to the magnetic field from an induction loop pad for a hearing aid system.

    Science.gov (United States)

    Hansson Mild, Kjell; Friberg, Stefan; Frankel, Jennifer; Wilén, Jonna

    2017-03-01

    As a case study we have measured the magnetic field from an induction loop pad designed for hearing aid assistance. The magnitude of the field was high, although well below international guidelines. We recorded values up to 70% of the recommended standard in some instances. However, in view of the many reports indicating health effects of low-level exposure, we recommend that the precautionary principle is applied when such pads are given to people who might be especially vulnerable, such as children, pregnant women and women on breast cancer medication.

  1. Acceleration of electric current-carrying string loop near a Schwarzschild black hole immersed in an asymptotically uniform magnetic field

    CERN Document Server

    Tursunov, Arman; Stuchlík, Zdeněk; Ahmedov, Bobomurat

    2014-01-01

    We study the acceleration of an electric current-carrying and axially-symmetric string loop initially oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal energy of the oscillating strings to the energy of their translational motion along the axis given by the symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of string loop with energy high enough, when it can overcome the gravitational attraction and escape to infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the contribution of the interaction between the electric current of the string loop and the external magnetic field and we give conditions that have to be fulfilled for an efficien...

  2. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE--MHD Model

    CERN Document Server

    Jiang, Chaowei; Wu, S T; Hu, Qiang

    2012-01-01

    We apply a data-driven MHD model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element (CESE) scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma $\\beta$. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the {\\it Solar Dynamic Observatory (SDO)} around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and t...

  3. One-loop gap equations for the magnetic mass in d=3 gauge theory

    Science.gov (United States)

    Cornwall, John M.

    1998-03-01

    Recently several workers have attempted determinations of the so-called magnetic mass of d=3 non-Abelian gauge theories through a one-loop gap equation, using a free massive propagator as input. Self-consistency is attained only on-shell, because the usual Feynman-graph construction is gauge-dependent off-shell. We examine two previous studies of the pinch technique proper self-energy, which is gauge-invariant at all momenta, using a free propagator as input, and show that it leads to inconsistent and unphysical results. In one case the residue of the pole has the wrong sign (necessarily implying the presence of a tachyonic pole); in the second case the residue is positive, but two orders of magnitude larger than the input residue, which shows that the residue is on the verge of becoming ghost-like. This happens because of the infrared instability of d=3 gauge theory. A possible alternative one-loop determination via the effective action also fails. The lesson is that gap equations must be considered at least at the two-loop level.

  4. 2nd Joint Solar Dynamics Project data summary: Solar magnetic field, chromospheric and coronal observations near the time of the 11 June 1983 solar eclipse

    Science.gov (United States)

    Sime, D. G.; Fisher, R. R.; Garcia, C.; Najita, J. R.; Rock, K. A.; Seagraves, P. H.; Yasukawa, E.; McCabe, M. K.; Mickey, D. L.

    1983-07-01

    A comprehensive set of observations of the solar photosphere, chromosphere and corona is presented for one week on either side of the 11 June 1983 total solar eclipse. These observations, made at the Mauna Loa Solar Observatory and at the University of Hawaii's Mees Solar Observatory on Haleakala, include H images of the disk and the limb, off-band H sunspot and Ca-II K-line images, together with observations of the white light corona. Photospheric longitudinal magnetic field estimates made from the Fe line at 6302.5 by the Mees observatory Stokes photopolarimeter are included. The data are presented as daily observations. In the case of the k-coronal observations and the magnetic field data, synoptic maps were constructed for this interval.

  5. Joint solar dynamics project data summary (2nd): solar magnetic field, chromospheric and coronal observations near the time of the 11 June 1983 solar eclipse. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Sime, D.G.; Fisher, R.R.; Garcia, C.J.; Najita, J.R.; Rock, K.A.

    1983-07-01

    A comprehensive set of observations of the solar photosphere, chromosphere and corona is presented for one week on either side of the 11 June 1983 total solar eclipse. These observations, made at the Mauna Loa Solar Observatory and at the University of Hawaii's Mees Solar Observatory on Haleakala, include H images of the disk and the limb, off-band H sunspot and Ca-II K-line images, together with observations of the white light corona. Also included are photospheric longitudinal magnetic field estimates made from the Fe line at 6302.5, by the Mees observatory Stokes photo-polarimeter. The data are presented as daily observations. In the case of the k-coronal observations and the magnetic field data, synoptic maps have been constructed for this interval.

  6. Magnetic sensing for microstructural assessment of power station steels: Magnetic Barkhausen noise and minor loop measurements

    Science.gov (United States)

    Wilson, J. W.; Karimian, N.; Yin, W.; Liu, J.; Davis, C. L.; Peyton, A. J.

    2013-06-01

    There are currently no techniques available to monitor the microstructural condition of power station steel components in-service (at elevated temperatures). Electromagnetic (EM) inspection methods have the potential to provide a solution to this problem. Tests have been carried out on power generation steel (P9 and T22) samples with different microstructural states using major and minor B-H loop measurements and correlations established between EM properties and material properties such as Vickers hardness. These correlations will be used to develop a field deployable tool for the quantification of degradation in power station steels.

  7. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy

    Science.gov (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.

    2010-01-01

    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from ap