WorldWideScience

Sample records for coronal heating rate

  1. Mechanisms of Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma

    2006-06-01

    The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar corona. Recent observations show that Magnetic Carpet is a potential candidate for solar coronal heating.

  2. Relating magnetic reconnection to coronal heating.

    Science.gov (United States)

    Longcope, D W; Tarr, L A

    2015-05-28

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related--i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, [Formula: see text], is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature.

  3. Recent advances in coronal heating

    CERN Document Server

    De Moortel, Ineke

    2015-01-01

    The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This 'coronal heating problem' requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

  4. A unified theory of electrodynamic coupling in coronal magnetic loops - The coronal heating problem

    Science.gov (United States)

    Ionson, J. A.

    1984-01-01

    The coronal heating problem is studied, and it is demonstrated that Ionson's (1982) LRC approach results in a unified theory of coronal heating which unveils a variety of new heating mechanisms and which links together previously proposed mechanisms. Ionson's LRC equation is rederived, focusing on various aspects that were not clarified in the original article and incorporating new processes that were neglected. A parameterized heating rate is obtained. It is shown that Alfvenic surface wave heating, stochastic magnetic pumping, resonant electrodynamic heating, and dynamical dissipation emerge as special cases of a much more general formalism. This generalized theory is applied to solar coronal loops and it is found that active region and large scale loops are underdamped systems. Young active region loops and (possibly) bright points are found to be overdamped systems.

  5. A Contemporary View of Coronal Heating

    CERN Document Server

    Parnell, Clare E; 10.1098/rsta.2012.0113

    2012-01-01

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades the problem has been known as the coronal heating problem, but it is now clear that `coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  6. Observational Consequences of Coronal Heating Mechanisms

    Science.gov (United States)

    Winebarger, Amy R.; Cirtain, Jonathan C.; Golub, Leon; Kobayashi, Ken

    2014-01-01

    The coronal heating problem remains unsolved today, 80 years after its discovery, despite 50 years of suborbital and orbital coronal observatories. Tens of theoretical coronal heating mechanisms have been suggested, but only a few have been able to be ruled out. In this talk, we will explore the reasons for the slow progress and discuss the measurements that will be needed for potential breakthrough, including imaging the solar corona at small spatial scales, measuring the chromospheric magnetic fields, and detecting the presence of high temperature, low emission measure plasma. We will discuss three sounding rocket instruments developed to make these measurements: the High resolution Resolution Coronal Imager (Hi-C), the Chromospheric Lyman-Alpha Spectropolarimeter (CLASP), and the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS).

  7. A unified theory of coronal heating

    Science.gov (United States)

    Ionson, J. A.

    1985-01-01

    Solar coronal heating mechanisms are analyzed within the framework of a unified theory of heating processes. The theory is based on the standing wave equation of Ionson (1982) for the global current driven by emfs from the convection Beta less than 1. The equation has the same form as a driven LRC equation in which the equivalent inductance is scaled with the coronal loop length. The theory is used to classify various heating mechanisms inside the coronal loops. It is shown that the total global current can be obtained from an integration of the local currents, the degree of coherency between local currents being the dominant factor governing the global current amplitude. Active region loops appear to be heated by electrodynamic coupling to p-mode oscillations in the convection Beta less than 1.

  8. Role of Magnetic Carpet in Coronal Heating

    Indian Academy of Sciences (India)

    S. R. Verma; Diksha Chaudhary

    2008-03-01

    One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in the solar corona. The separate kinds of coronal loops may also be heated by different mechanisms. Using data from instruments onboard the Solar and Heliospheric Observatory (SOHO) and from the more recent Transition Region and Coronal Explorer (TRACE) scientists have identified small regions of mixed polarity, termed magnetic carpet contributing to solar activity on a short time scale. Magnetic loops of all sizes rise into the solar corona, arising from regions of opposite magnetic polarity in the photosphere. Energy released when oppositely directed magnetic fields meet in the corona is one likely cause for coronal heating. There is enough energy coming up from the loops of the “magnetic carpet” to heat the corona to its known temperature.

  9. Diagnostics of Coronal Heating in Active-region Loops

    Science.gov (United States)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  10. Coronal heating in multiple magnetic threads

    CERN Document Server

    Tam, K V; Browning, P K; Cargill, P J

    2015-01-01

    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this ...

  11. Competition between shock and turbulent heating in coronal loop system

    Science.gov (United States)

    Matsumoto, Takuma

    2016-11-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfvén waves excited in the photosphere is the target of this study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfvén waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 per cent of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The importance of compressibility shown in this study would significantly impact on the prospects of successful MHD turbulence theory in the solar chromosphere.

  12. Competition between shock and turbulent heating in coronal loop system

    CERN Document Server

    Matsumoto, Takuma

    2016-01-01

    2.5-dimensional magnetohydrodynamic (MHD) simulations are performed with high spatial resolution in order to distinguish between competing models of the coronal heating problem. A single coronal loop powered by Alfv\\'{e}n waves excited in the photosphere is the target of the present study. The coronal structure is reproduced in our simulations as a natural consequence of the transportation and dissipation of Alfv\\'{e}n waves. Further, the coronal structure is maintained as the spatial resolution is changed from 25 to 3 km, although the temperature at the loop top increases with the spatial resolution. The heating mechanisms change gradually across the magnetic canopy at a height of 4 Mm. Below the magnetic canopy, both the shock and the MHD turbulence are dominant heating processes. Above the magnetic canopy, the shock heating rate reduces to less than 10 % of the total heating rate while the MHD turbulence provides significant energy to balance the radiative cooling and thermal conduction loss or gain. The i...

  13. Microflares as Possible Sources for Coronal Heating

    Indian Academy of Sciences (India)

    Meera Gupta; Rajmal Jain; Jayshree Trivedi; A. P. Mishra

    2008-03-01

    We present a preliminary study of 27 microflares observed by Solar X-ray Spectrometer (SOXS) mission during July 2003 to August 2006. We found that all 27 microflares show the Fe-line feature peaking around 6.7 keV, which is an indicator of the presence of coronal plasma temperature ≥ 9 MK. On the other hand, the spectra of microflares showhybrid model of thermal and non-thermal emission, which further supports them as possible sources of coronal heating. Our results based on the analysis show that the energy relapsed by the microflares is good enough for heating of the active corona. We discuss our results in the light of the hybrid model of microflares production.

  14. Coronal Heating Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  15. Network Coronal Bright Points: Coronal Heating Concentrations Found in the Solar Magnetic Network

    Science.gov (United States)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe xii coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells.

  16. Numerical Simulation of DC Coronal Heating

    Science.gov (United States)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  17. Turbulent coronal heating and the distribution of nanoflares

    CERN Document Server

    Dmitruk, P; Dmitruk, Pablo; Gomez, Daniel O.

    1997-01-01

    We perform direct numerical simulations of an externally driven two-dimensional magnetohydrodynamic system over extended periods of time to simulate the dynamics of a transverse section of a solar coronal loop. A stationary and large-scale magnetic forcing was imposed, to model the photospheric motions at the magnetic loop footpoints. A turbulent stationary regime is reached, which corresponds to energy dissipation rates consistent with the heating requirements of coronal loops. The temporal behavior of quantities such as the energy dissipation rate show clear indications of intermittency, which are exclusively due to the strong nonlinearity of the system. We tentatively associate these impulsive events of magnetic energy dissipation to the so-called nanoflares. A statistical analysis of these events yields a power law distribution as a function of their energies with a negative slope of 1.5, which is consistent with those obtained for flare energy distributions reported from X-ray observations.

  18. Electroweak Hall Effect of Neutrino and Coronal Heating

    CERN Document Server

    Ishikawa, Kenzo

    2015-01-01

    The inversion of temperature at the solar corona is hard to understand from classical physics, and the coronal heating mechanism remains unclear. The heating in the quiet region seems contradicting with the thermodynamics and is a keen problem for physicists. A new mechanism for the coronal heating based on the neutrino radiative transition unique in the corona region is studied. The probability is enormously amplified by an electroweak Chern-Simons form and overlapping waves, and the sufficient energy is transfered. Thus the coronal heating is understood from the quantum effects of the solar neutrino.

  19. Observing Episodic Coronal Heating Events Rooted in Chromospheric Activity

    CERN Document Server

    McIntosh, Scott W

    2009-01-01

    We present results of a multi-wavelength study of episodic plasma injection into the corona of AR 10942. We exploit long-exposure images of the Hinode and Transition Region and Coronal Explorer (TRACE) spacecraft to study the properties of faint, episodic, "blobs" of plasma that are propelled upward along coronal loops that are rooted in the AR plage. We find that the source location and characteristic velocities of these episodic upflow events match those expected from recent spectroscopic observations of faint coronal upflows that are associated with upper chromospheric activity, in the form of highly dynamic spicules. The analysis presented ties together observations from coronal and chromospheric spectrographs and imagers, providing more evidence of the connection of discrete coronal mass heating and injection events with their source, dynamic spicules, in the chromosphere.

  20. Free Magnetic Energy and Coronal Heating

    Science.gov (United States)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  1. Coronal Fourier power spectra: implications for coronal seismology and coronal heating

    CERN Document Server

    Ireland, Jack; Inglis, Andrew R

    2014-01-01

    The dynamics of regions of the solar corona are investigated using Atmospheric Imaging Assembly (AIA) 171\\AA\\ and 193\\AA\\ data. The coronal emission from the quiet Sun, coronal loop footprints, coronal moss, and from above a sunspot is studied. It is shown that the mean Fourier power spectra in these regions can be described by a power law at lower frequencies that tails to flat spectrum at higher frequencies, plus a Gaussian-shaped contribution that varies depending on the region studied. This Fourier spectral shape is in contrast to the commonly-held assumption that coronal time-series are well described by the sum of a long time-scale background trend plus Gaussian-distributed noise, with some specific locations also showing an oscillatory signal. The implications of this discovery to the field of coronal seismology and the automated detections of oscillations are discussed. The power law contribution to the shape of the Fourier power spectrum is interpreted as being due to the summation of a distribution ...

  2. Identification of coronal heating events in 3D simulations

    Science.gov (United States)

    Kanella, Charalambos; Gudiksen, Boris V.

    2017-07-01

    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (i.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events

  3. Closed-Field Coronal Heating Driven by Wave Turbulence

    CERN Document Server

    Downs, Cooper; Mikić, Zoran; Linker, Jon A; Velli, Marco

    2016-01-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditiona...

  4. Coronal heating by resonant absorption: The effects of chromospheric coupling

    NARCIS (Netherlands)

    Belien, A. J. C.; Martens, P. C. H.; Keppens, R.

    1999-01-01

    We present the first 2.5 dimensional numerical model calculations of the nonlinear wave dynamics and heating by resonant absorption in coronal loops with thermal structuring of the transition region and higher chromosphere. The numerical calculations were done with the Versatile Advection Code. The

  5. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: igorsok@umich.edu [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  6. A data driven kinetic approach to coronal heating

    CERN Document Server

    Toutountzi, A; Isliker, H; Moraitis, K; Georgoulis, M; Chintzoglou, G

    2016-01-01

    Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Several one-dimensional hydrodynamical models have been developed over the last decade, using simple approaches for the way energy is deposited and transported in the coronal plasma, namely by inserting 'nanoflares' in the form of 'hot spots' at random sites and times. Our aim in this work is to investigate the problem from a different perspective. With the help of a nonlinear force-free extrapolation method we reconstruct the coronal magnetic field of a well-studied solar active region using an observed photospheric vector magnetogram of the region as the required boundary condition. We then determine the locations, energy contents, and volumes of unstable areas within the active-region corona. These areas include strong gradients in the magnetic field and are naturally connected to three-dimensional current sheets. The statistical distributions of these volumes, their fractal structure and correspondin...

  7. Stellar Activity and Coronal Heating: an overview of recent results

    CERN Document Server

    Testa, Paola; Drake, Jeremy

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars.

  8. Nonlinear Dynamics of the Parker Scenario for Coronal Heating

    CERN Document Server

    Rappazzo, A F; Einaudi, G; Dahlburg, R B

    2007-01-01

    The Parker or field line tangling model of coronal heating is studied comprehensively via long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry within the framework of reduced magnetohydrodynamics (RMHD). Slow photospheric motions induce a Poynting flux which saturates by driving an anisotropic turbulent cascade dominated by magnetic energy. In physical space this corresponds to a magnetic topology where magnetic field lines are barely entangled, nevertheless current sheets (corresponding to the original tangential discontinuities hypothesized by Parker) are continuously formed and dissipated. Current sheets are the result of the nonlinear cascade that transfers energy from the scale of convective motions ($\\sim 1,000 km$) down to the dissipative scales, where it is finally converted to heat and/or particle acceleration. Current sheets constitute the dissipative structure of the system, and the associated magnetic reconnection gives rise to impulsive ``bursty'' heating ...

  9. Stellar activity and coronal heating: an overview of recent results

    Science.gov (United States)

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  10. The role of torsional Alfven waves in coronal heating

    CERN Document Server

    Antolin, P

    2009-01-01

    In the context of coronal heating, among the zoo of MHD waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption or turbulent cascade in order to heat the plasma. New observations with polarimetric, spectroscopic and imaging instruments such as those on board of the japanese satellite Hinode, or the SST or CoMP, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5-dimensional MHD code we carry out a paramete...

  11. Resonant Heating of Ions by Parallel Propagating Alfvén Waves in Solar Coronal Holes

    Institute of Scientific and Technical Information of China (English)

    Tian-Xi Zhang; Jing-Xiu Wang; Chi-Jie Xiao

    2005-01-01

    Resonant heating of H, O+5, and Mg+9 by parallel propagating ioncyclotron Alfven waves in solar coronal holes at a heliocentric distance is studied using the heating rate derived from the quasilinear theory. It is shown that the particle-Alfven-wave interaction is a significant microscopic process. The temperatures of the ions are rapidly increased up to the observed order in only microseconds, which implies that simply inserting the quasilinear heating rate into the fluid/MHD energy equation to calculate the radial dependence of ion temperatures may cause errors as the time scales do not match. Different species ions are heated by Alfven waves with a power law spectrum in approximately a mass order.To heat O+5 over Mg+9 as measured by the Ultraviolet Coronagraph Spectrometer (UVCS) in the solar coronal hole at a region≥ 1.9R⊙, the energy density of Alfven waves with a frequency close to the O+5-cyclotron frequency must be at least double of that at the Mg+9-cyclotron frequency. With an appropriate wave-energy spectrum, the heating of H, O+5 and Mg+9 can be consistent with the UVCS measurements in solar coronal holes at a heliocentric distance.

  12. Huge Coronal Structure and Heating Constraints Determined from Serts Observations

    Science.gov (United States)

    Falconer, D. A.; Davila, J. M.

    2001-01-01

    Intensities of the extreme-ultraviolet (EUV) spectral lines were measured as a function of radius off the solar limb by two flights of the Goddard's Solar Extreme-Ultraviolet Rocket Telescope and Spectrograph (SERTS) for three quiet-Sun regions. Density scale heights were determined for the different spectral lines. Limits on the filling factor were determined. In the one case where an upper limit was determined it was much less than unity. coronal heating above 1.15 solar radii is required for all three regions studied. For reasonable filling factors, local heating is needed.

  13. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  14. Plasma Heating Suring a Coronal Mass Ejection Observed by SOHO

    CERN Document Server

    Murphy, N A; Korreck, K E

    2011-01-01

    We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 Angstroms, and radiative pumping of the O VI 1032,1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show cumulative plasma heating comparable to or less than the kinetic energy. SOHO Michelson Doppler Imager (MDI) observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution b...

  15. An observationally-driven kinetic approach to coronal heating

    Science.gov (United States)

    Moraitis, K.; Toutountzi, A.; Isliker, H.; Georgoulis, M.; Vlahos, L.; Chintzoglou, G.

    2016-11-01

    Aims: Coronal heating through the explosive release of magnetic energy remains an open problem in solar physics. Recent hydrodynamical models attempt an investigation by placing swarms of "nanoflares" at random sites and times in modeled one-dimensional coronal loops. We investigate the problem in three dimensions, using extrapolated coronal magnetic fields of observed solar active regions. Methods: We applied a nonlinear force-free field extrapolation above an observed photospheric magnetogram of NOAA active region (AR) 11 158. We then determined the locations, energy contents, and volumes of "unstable" areas, namely areas prone to releasing magnetic energy due to locally accumulated electric current density. Statistical distributions of these volumes and their fractal dimension are inferred, investigating also their dependence on spatial resolution. Further adopting a simple resistivity model, we inferred the properties of the fractally distributed electric fields in these volumes. Next, we monitored the evolution of 105 particles (electrons and ions) obeying an initial Maxwellian distribution with a temperature of 10 eV, by following their trajectories and energization when subjected to the resulting electric fields. For computational convenience, the length element of the magnetic-field extrapolation is 1 arcsec, or 725 km, much coarser than the particles' collisional mean free path in the low corona (0.1-1 km). Results: The presence of collisions traps the bulk of the plasma around the unstable volumes, or current sheets (UCS), with only a tail of the distribution gaining substantial energy. Assuming that the distance between UCS is similar to the collisional mean free path we find that the low active-region corona is heated to 100-200 eV, corresponding to temperatures exceeding 2 MK, within tens of seconds for electrons and thousands of seconds for ions. Conclusions: Fractally distributed, nanoflare-triggening fragmented UCS in the active-region corona can

  16. Alfven Wave Solar Model: Part 1, Coronal Heating

    CERN Document Server

    van der Holst, Bart; Meng, Xing; Jin, Meng; Manchester, Ward B; Toth, Gabor; Gombosi, Tamas I

    2013-01-01

    We present the new Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. The injection of Alfven wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics includes: (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfven waves are partially reflected by the Alfven speed gradient and the vorticity along the field lines. The resulting counter-propagat...

  17. Self-Regulation of Solar Coronal Heating Process via Collisionless Reconnection Condition

    CERN Document Server

    Uzdensky, Dmitri A

    2007-01-01

    I propose a new paradigm for solar coronal heating viewed as a self-regulating process keeping the plasma marginally collisionless. The mechanism is based on the coupling between two effects. First, coronal density controls the plasma collisionality and hence the transition between the slow collisional Sweet-Parker and the fast collisionless reconnection regimes. In turn, coronal energy release leads to chromospheric evaporation, increasing the density and thus inhibiting subsequent reconnection of the newly-reconnected loops. As a result, statistically, the density fluctuates around some critical level, comparable to that observed in the corona. In the long run, coronal heating can be represented by repeating cycles of fast reconnection events (nano-flares), evaporation episodes, and long periods of slow magnetic stress build-up and radiative cooling of the coronal plasma.

  18. Can Large Time Delays Observed in Light Curves of Coronal Loops be Explained by Impulsive Heating?

    CERN Document Server

    Lionello, Roberto; Winebarger, Amy R; Linker, Jon A; Mikić, Zoran

    2015-01-01

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower. The time delays between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. Time delays between channels for an active region exhibit a wide range of values, with maxima $>$ 5,000\\,s. These large time delays make up 3-26\\% (depending on the channel pair) of the pixels where a significant, positive time delay is measured. It has been suggested that time delays can be explained by impulsive heating. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in t...

  19. Observations and Numerical Models of Solar Coronal Heating Associated with Spicules

    Science.gov (United States)

    De Pontieu, B.; De Moortel, I.; Martinez-Sykora, J.; McIntosh, S. W.

    2017-08-01

    Spicules have been proposed as significant contributors to the mass and energy balance of the corona. While previous observations have provided a glimpse of short-lived transient brightenings in the corona that are associated with spicules, these observations have been contested and are the subject of a vigorous debate both on the modeling and the observational side. Therefore, it remains unclear whether plasma is heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region (TR) with the Interface Region Imaging Spectrograph and of the corona with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to show evidence of the formation of coronal structures associated with spicular mass ejections and heating of plasma to TR and coronal temperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances. Our observations are supported by 2.5D radiative MHD simulations that show heating to coronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment.

  20. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-3933 (United States); Alexander, Caroline E.; Winebarger, Amy R., E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com, E-mail: mikicz@predsci.com, E-mail: caroline.e.alexander@nasa.gov, E-mail: amy.r.winebarger@nasa.gov [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35805 (United States)

    2016-02-20

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.

  1. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    Science.gov (United States)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  2. Evidence of Non-Thermal Particles in Coronal Loops Heated Impulsively by Nanoflares

    CERN Document Server

    Testa, Paola; Allred, Joel; Carlsson, Mats; Reale, Fabio; Daw, Adrian; Hansteen, Viggo; Martinez-Sykora, Juan; Liu, Wei; DeLuca, Ed; Golub, Leon; McKillop, Sean; Reeves, Kathy; Saar, Steve; Tian, Hui; Lemen, Jim; Title, Alan; Boerner, Paul; Hurlburt, Neal; Tarbell, Ted; Wuelser, J P; Kleint, Lucia; Kankelborg, Charles; Jaeggli, Sarah

    2014-01-01

    The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "coronal nanoflares". The accelerated electrons deposit a sizable fraction of their energy in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona.

  3. Fast Collisionless Reconnection Condition and Self-Organization of Solar Coronal Heating

    CERN Document Server

    Uzdensky, Dmitri A

    2007-01-01

    I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet--Parker regime and the fast collisionless reconnection regime. This transition takes place when the Sweet--Parker layer becomes thinner than the characteristic collisionless reconnection scale. I present a simple criterion for this transition in terms of the upstream plasma density and magnetic field and the global length of the reconnection layer. Second, coronal energy release by reconnection raises the ambient plasma density via chromospheric evaporation and this, in turn, temporarily inhibits subsequent reconnection involving the newly-reconnected loops. Over time, however, radiative cooling gradually lowers the density again below the critical value and fast reconnection again becomes possible. As a ...

  4. Global Alfven Waves in Solar Physics: Coronal Heating

    Science.gov (United States)

    de Azevedo, C. A.; de Assis, A. S.

    1990-11-01

    RESUMEN. Se ha demostrado que Ia onda discreta de Alfven puede generar por lo memos un 20% de la energia coronal requerida con densidad de flujo de lO- erg 5 . Las ondas discretas de Alfven son una nueva clase `de ondas de Alfven las cuales pueden describirse por el modelo con que incluye un i6n finito, con frecuencia ciclotr6nica ( /uci # 0) y los efectos del equilibrio de plasma mostrados por Appert, Vaclavik and Villar 1984. ABSTRACT. It has been shown that the Discrete Alfven wave can power at least 20% of the required coronal energy flux density iO- Discrete Alfven waves are a new class of Alfven waves wich can be described by the model with the inclusion of finite ion cyclotron frequency (w/wci 0) and the equilibrium plasma current effects as shown by Appert, Vaclavik and Villar 1984. o,t :, HYDROMAGNETICS - SUN-CORONA

  5. Coronal heating by the partial relaxation of twisted loops

    CERN Document Server

    Bareford, Michael; Browning, Philippa

    2012-01-01

    Context: Relaxation theory offers a straightforward method for estimating the energy that is released when a magnetic field becomes unstable, as a result of continual convective driving. Aims: We present new results obtained from nonlinear magnetohydrodynamic (MHD) simulations of idealised coronal loops. The purpose of this work is to determine whether or not the simulation results agree with Taylor relaxation, which will require a modified version of relaxation theory applicable to unbounded field configurations. Methods: A three-dimensional (3D) MHD Lagrangian-remap code is used to simulate the evolution of a line-tied cylindrical coronal loop model. This model comprises three concentric layers surrounded by a potential envelope; hence, being twisted locally, each loop configuration is distinguished by a piecewise-constant current profile. Initially, all configurations carry zero-net-current fields and are in ideally unstable equilibrium. The simulation results are compared with the predictions of helicity ...

  6. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    Science.gov (United States)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  7. Observational Signatures of Coronal Loop Heating and Cooling Driven by Footpoint Shuffling

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Ugarte-Urra, I; Warren, H P; Rappazzo, A F; Velli, M

    2016-01-01

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50000 km length and axial magnetic field intensities ranging from 0.01...

  8. Spectroscopy at the Solar Limb: II. Are Spicules Heated to Coronal Temperatures?

    Science.gov (United States)

    Beck, C.; Rezaei, R.; Puschmann, K. G.; Fabbian, D.

    2016-10-01

    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights ({≫} 6 Mm) using multiwavelength observations of limb spicules in different chromospheric spectral lines (Ca ii H, Hɛ, Hα, Ca ii IR at 854.2 nm, He i at 1083 nm) taken with slit spectrographs and imaging spectrometers. We determine the line width of spectrally resolved line profiles in individual spicules and throughout the field of view, and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular, i.e. thin and elongated, spicules reach a height of at most about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension, of up to a few Mm, than spicules. Both individual and average line profiles in all spectral lines show a decrease in their line width with height above the limb with very few exceptions. The kinetic temperature and the non-thermal velocity decrease with height above the limb. We find no indications that the spicules in our data reach coronal heights or transition-region or coronal temperatures.

  9. Acceleration of solar wind in polar coronal holes by induction heating

    Science.gov (United States)

    Chertkov, A. D.; Shkrebets, A. E.; Arkhipov, Yu. V.; Soldatov, V. A.

    1995-01-01

    The universal induction heating mechanism supplying with the energy all the processes of coronal heating and the solar wind acceleration is developed. The observed relative 'trembling' of photospheric super-large scale magnetic fields with quasi-periods of 1-4 days amounts 30-40 percent in amplitude. The inductive electric field appears in the corona. The electric currents cause the Joule dissipation. The uneven heating leads to the solar wind acceleration. A model is suggested in which high-speed streams in space are caused by the combination of the enhanced inductive energy flux from the solar coronal active regions; the work against the regular magnetic field; losses from coronal emission. The consideration is made in terms of the dissipative solar wind theory with the finite electrical conductivity of plasma. The leakage of plasma and the energy flux across the magnetic field, caused by the induction heating processes, are taken into account. The polar coronal holes (and the mid-latitude ones) are indicators of energy transfer balance but not direct sources of high-speed streams in the solar wind.

  10. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    Science.gov (United States)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  11. Plasma sloshing in pulse-heated solar and stellar coronal loops

    CERN Document Server

    Reale, F

    2016-01-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here hydrodynamic loop modeling shows that several large amplitude oscillations (~ 20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter that the sound crossing time of the flaring loop. The reason is that the plasma has not enough time to reach pressure equilibrium during the heating and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical MHD waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  12. Electric currents and coronal heating in NOAA active region 6952

    Science.gov (United States)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  13. Microflaring in Low-Lying Core Fields and Extended Coronal Heating in the Quiet Sun

    Science.gov (United States)

    Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.

    1999-01-01

    We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  14. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  15. EUV flickering of solar coronal loops: a new diagnostic of coronal heating

    CERN Document Server

    Tajfirouze, E; Peres, G; Testa, P

    2016-01-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 A and 335 A channels of the Atmospheric Imaging Assembly on-board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 A channel and, viceversa, from the top to the bottom in the 335 A channel. This prediction is confirmed by the observation of a set of aligned neighbouring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nano-flaring ...

  16. EUV FLICKERING OF SOLAR CORONAL LOOPS: A NEW DIAGNOSTIC OF CORONAL HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Tajfirouze, E.; Reale, F.; Peres, G. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 (Italy); Testa, P., E-mail: reale@astropa.unipa.it [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-02-01

    A previous work of ours found the best agreement between EUV light curves observed in an active region core (with evidence of super-hot plasma) and those predicted from a model with a random combination of many pulse-heated strands with a power-law energy distribution. We extend that work by including spatially resolved strand modeling and by studying the evolution of emission along the loops in the EUV 94 Å and 335 Å channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Using the best parameters of the previous work as the input of the present one, we find that the amplitude of the random fluctuations driven by the random heat pulses increases from the bottom to the top of the loop in the 94 Å channel and from the top to the bottom in the 335 Å channel. This prediction is confirmed by the observation of a set of aligned neighboring pixels along a bright arc of an active region core. Maps of pixel fluctuations may therefore provide easy diagnostics of nanoflaring regions.

  17. Numerical Simulations of Coronal Heating through Footpoint Braiding

    CERN Document Server

    Hansteen, Viggo; De Pontieu, Bart; Carlsson, Mats

    2015-01-01

    Advanced 3D radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated area, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop shaped structures, and moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set ...

  18. Multifractal Solar EUV Intensity Fluctuations and their Implications for Coronal Heating Models

    Science.gov (United States)

    Cadavid, A. C.; Rivera, Y. J.; Lawrence, J. K.; Christian, D. J.; Jennings, P. J.; Rappazzo, A. F.

    2016-11-01

    We investigate the scaling properties of the long-range temporal evolution and intermittency of Atmospheric Imaging Assembly/Solar Dynamics Observatory intensity observations in four solar environments: an active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Å waveband, which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range of 15-45 minutes is multifractal, and the time series are anti-persistent on average. The degree of anti-correlation in the TR time series is greater than that for coronal emission. The multifractality stems from long-term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Å waveband can be described in terms of a multifractal with added noise. The multiscaling of the extreme-ultraviolet data agrees qualitatively with the radiance from a phenomenological model of impulsive bursts plus noise, and also from ohmic dissipation in a reduced magnetohydrodynamic model for coronal loop heating. The parameter space must be further explored to seek quantitative agreement. Thus, the observational “signatures” obtained by the combined tests of the PDF of increments and the MF-DFA offer strong constraints that can systematically discriminate among models for coronal heating.

  19. What can large-scale magnetohydrodynamic numerical experiments tell us about coronal heating?

    Science.gov (United States)

    Peter, H

    2015-05-28

    The upper atmosphere of the Sun is governed by the complex structure of the magnetic field. This controls the heating of the coronal plasma to over a million kelvin. Numerical experiments in the form of three-dimensional magnetohydrodynamic simulations are used to investigate the intimate interaction between magnetic field and plasma. These models allow one to synthesize the coronal emission just as it would be observed by real solar instrumentation. Large-scale models encompassing a whole active region form evolving coronal loops with properties similar to those seen in extreme ultraviolet light from the Sun, and reproduce a number of average observed quantities. This suggests that the spatial and temporal distributions of the heating as well as the energy distribution of individual heat deposition events in the model are a good representation of the real Sun. This provides evidence that the braiding of fieldlines through magneto-convective motions in the photosphere is a good concept to heat the upper atmosphere of the Sun.

  20. Signatures of Steady Heating in Time Lag Analysis of Coronal Emission

    CERN Document Server

    Viall, Nicholeen M

    2016-01-01

    Among the many ways of investigating coronal heating, the time lag method of Viall & Klimchuk (2012) is becoming increasingly prevalent as an analysis technique complementary to those traditionally used. The time lag method cross correlates light curves at a given spatial location obtained in spectral bands that sample different temperature plasmas. It has been used most extensively with data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We have previously applied the time lag method to entire active regions and surrounding quiet Sun and create maps of the results (Viall & Klimchuk 2012; Viall & Klimchuk 2015). We find that the majority of time lags are consistent with the cooling of coronal plasma that has been impulsively heated. Additionally, a significant fraction of the map area has a time lag of zero. This does not indicate a lack of variability. Rather, strong variability must be present, and it must occur in phase in the different channels. We have shown previous...

  1. A new approach for modelling chromospheric evaporation in response to enhanced coronal heating: 1 the method

    CERN Document Server

    Johnston, C D; Cargill, P J; De Moortel, I

    2016-01-01

    We present a new computational approach that addresses the difficulty of obtaining the correct interaction between the solar corona and the transition region in response to rapid heating events. In the coupled corona, transition region and chromosphere system, an enhanced downward conductive flux results in an upflow (chromospheric evaporation). However, obtaining the correct upflow generally requires high spatial resolution in order to resolve the transition region. With an unresolved transition region, artificially low coronal densities are obtained because the downward heat flux jumps across the unresolved region to the chromosphere, underestimating the upflows. Here, we treat the lower transition region as a discontinuity that responds to changing coronal conditions through the imposition of a jump condition that is derived from an integrated form of energy conservation. To illustrate and benchmark this approach against a fully resolved one-dimensional model, we present field-aligned simulations of corona...

  2. Signatures of Steady Heating in Time Lag Analysis of Coronal Emission

    Science.gov (United States)

    Viall, Nicholeen M.; Klimchuk, James A.

    2016-01-01

    Among the multitude of methods used to investigate coronal heating, the time lag method of Viall Klimchuk is becoming increasingly prevalent as an analysis technique that is complementary to those that are traditionally used.The time lag method cross correlates light curves at a given spatial location obtained in spectral bands that sample different temperature plasmas. It has been used most extensively with data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. We have previously applied the time lag method to entire active regions and surrounding the quiet Sun and created maps of the results. We find that the majority of time lags are consistent with the cooling of coronal plasma that has been impulsively heated. Additionally, a significant fraction of the map area has a time lag of zero. This does not indicate a lack of variability. Rather, strong variability must be present, and it must occur in phase between the different channels. We have previously shown that these zero time lags are consistent with the transition region response to coronal nanoflares, although other explanations are possible. A common misconception is that the zero time lag indicates steady emission resulting from steady heating. Using simulated and observed light curves, we demonstrate here that highly correlated light curves at zero time lag are not compatible with equilibrium solutions. Such light curves can only be created by evolution

  3. Non-WKB Models of the FIP Effect: Implications for Solar Coronal Heating and the Coronal Helium and Neon Abundances

    CERN Document Server

    Laming, J Martin

    2009-01-01

    We revisit in more detail a model for element abundance fractionation in the solar chromosphere, that gives rise to the "FIP Effect" in the solar corona and wind. Elements with first ionization potential below about 10 eV, i.e. those that are predominantly ionized in the chromosphere, are enriched in the corona by a factor 3-4. We model the propagation of Alfven waves through the chromosphere using a non-WKB treatment, and evaluate the ponderomotive force associated with these waves. Under solar conditions, this is generally pointed upwards in the chromosphere, and enhances the abundance of chromospheric ions in the corona. Our new approach captures the essentials of the solar coronal abundance anomalies, including the depletion of He relative to H, and also the putative depletion of Ne, recently discussed in the literature. We also argue that the FIP effect provides the strongest evidence to date for energy fluxes of Alfven waves sufficient to heat the corona. However it appears that these waves must also be...

  4. CORONAL HEATING BY THE INTERACTION BETWEEN EMERGING ACTIVE REGIONS AND THE QUIET SUN OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun; Zhang, Bin; Li, Ting; Yang, Shuhong; Zhang, Yuzong; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, Feng; Peter, Hardi, E-mail: zjun@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: lepingli@nao.cas.cn, E-mail: chen@mps.mpg.de, E-mail: peter@mps.mpg.de [Max-Planck Institute for Solar System Research (MPS), D-37077, Göttingen (Germany)

    2015-02-01

    The question of what heats the solar corona remains one of the most important puzzles in solar physics and astrophysics. Here we report Solar Dynamics Observatory Atmospheric Imaging Assembly observations of coronal heating by the interaction between emerging active regions (EARs) and the surrounding quiet Sun (QS). The EARs continuously interact with the surrounding QS, resulting in dark ribbons which appear at the boundary of the EARs and the QS. The dark ribbons visible in extreme-ultraviolet wavelengths propagate away from the EARs with speeds of a few km s{sup −1}. The regions swept by the dark ribbons are brightening afterward, with the mean temperature increasing by one quarter. The observational findings demonstrate that uninterrupted magnetic reconnection between EARs and the QS occurs. When the EARs develop, the reconnection continues. The dark ribbons may be the track of the interface between the reconnected magnetic fields and the undisturbed QS’s fields. The propagating speed of the dark ribbons reflects the reconnection rate and is consistent with our numerical simulation. A long-term coronal heating which occurs in turn from nearby the EARs to far away from the EARs is proposed.

  5. Heating and cooling of coronal loops observed by SDO

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2015-11-01

    Context. One of the most prominent processes to have been suggested as heating the corona to well above 106 K builds on nanoflares, which are short bursts of energy dissipation. Aims: We compare observations to model predictions to test the validity of the nanoflare process. Methods: Using extreme UV data from AIA/SDO and HMI/SDO line-of-sight magnetograms, we study the spatial and temporal evolution of a set of loops in active region AR 11850. Results: We find a transient brightening of loops in emission from Fe xviii forming at about 7.2 MK, while at the same time these loops dim in emission from lower temperatures. This points to a fast heating of the loop that goes along with evaporation of material that we observe as apparent upward motions in the image sequence. After this initial phase lasting some 10 min, the loops brighten in a sequence of AIA channels that show progressively cooler plasma, indicating that this cooling of the loops lasts about one hour. A comparison to the predictions from a 1D loop model shows that this observation supports the nanoflare process in (almost) all aspects. In addition, our observations show that the loops get broader while getting brighter, which cannot be understood in a 1D model. Movie associated to Fig. 1 is available in electronic form at http://www.aanda.org

  6. Location of energy source for coronal heating on the photosphere

    Science.gov (United States)

    Hong, Zhen-Xiang; Yang, Xu; Wang, Ya; Ji, Kai-Fan; Ji, Hai-Sheng; Cao, Wen-Da

    2017-02-01

    It is reported that ultra-fine dynamic ejections along magnetic loops of an active region originate from intergranular lanes and they are associated with subsequent heating in the corona. As continuing work, we analyze the same set of data but focus on a quiet region and the overlying EUV/UV emission as observed by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). We find that there appear to be dark patches scattered across the quiet region and the dark patches always stay along intergranular lanes. Over the dark patches, the average UV/EUV emission at 131, 171, 304 and 1600 Å (middle temperature) is more intense than that of other regions and EUV brightness is negatively correlated with 10830 Å intensity, though, such a trend does not exist for high temperature lines at 94, 193, 211 and 335 Å. For the same quiet region, where both TiO 7057 Å broad band images and 10830 Å filtergrams are available, contours for the darkest lane areas on TiO images and dark patches on 10830 Å filtergrams frequently differ in space. The results suggest that the dark patches do not simply reflect the areas with the darkest lanes but are associated with a kind of enhanced absorption (EA) at 10830 Å. A strict definition for EA with narrow band 10830 Å filtergrams is found to be difficult. In this paper, we define enhanced absorption patches (EAPs) of a quiet region as the areas where emission is less than ∼90% of the mean intensity of the region. The value is equivalent to the average intensity along thin dark loops connecting two moss regions of the active region. A more strict definition for EAPs, say 88%, gives even more intense UV/EUV emission over those in the middle temperature range. The results provide further observational evidence that energy for heating the upper solar atmosphere comes from the intergranular lane area where the magnetic field is constantly brought in by convection motion in granules.

  7. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    Science.gov (United States)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  8. THE INFLUENCE OF NUMERICAL RESOLUTION ON CORONAL DENSITY IN HYDRODYNAMIC MODELS OF IMPULSIVE HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Cargill, P. J., E-mail: stephen.bradshaw@rice.edu, E-mail: p.cargill@imperial.ac.uk [Space and Atmospheric Physics, Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2013-06-10

    The effect of the numerical spatial resolution in models of the solar corona and corona/chromosphere interface is examined for impulsive heating over a range of magnitudes using one-dimensional hydrodynamic simulations. It is demonstrated that the principal effect of inadequate resolution is on the coronal density. An underresolved loop typically has a peak density of at least a factor of two lower than a resolved loop subject to the same heating, with larger discrepancies in the decay phase. The temperature for underresolved loops is also lower indicating that lack of resolution does not 'bottle up' the heat flux in the corona. Energy is conserved in the models to under 1% in all cases, indicating that this is not responsible for the low density. Instead, we argue that in underresolved loops the heat flux 'jumps across' the transition region to the dense chromosphere from which it is radiated rather than heating and ablating transition region plasma. This emphasizes the point that the interaction between corona and chromosphere occurs only through the medium of the transition region. Implications for three-dimensional magnetohydrodynamic coronal models are discussed.

  9. Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures ?

    CERN Document Server

    Beck, C; Puschmann, K G; Fabbian, D

    2016-01-01

    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights (>6 Mm) using multi-wavelength observations of limb spicules in different chromospheric spectral lines (Ca II H, Hepsilon, Halpha, Ca II IR at 854.2 nm, He I at 1083 nm). We determine the line width of individual spicules and throughout the field of view and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular spicules reach a maximal height of about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension than spicules. Both individual ...

  10. Effect of a Radiation Cooling and Heating Function on Standing Longitudinal Oscillations in Coronal Loops

    Science.gov (United States)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J.

    2016-06-01

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  11. A new model for heating of the Solar North Polar Coronal Hole

    Science.gov (United States)

    Devlen, E.; Zengin Çamurdan, D.; Yardımcı, M.; Pekünlü, E. R.

    2017-05-01

    This article presents a new model of the North Polar Coronal Hole (NPCH) with the aim of revealing the dissipative/propagative characteristics of magnetohydrodynamic (MHD) waves. We investigate the effects of isotropic viscosity and anisotropic heat conduction on the propagation characteristics of MHD waves in the NPCH. We first model the NPCH by considering differences in the radial direction as well as in the direction perpendicular to the line of sight (los) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes, for the specific case of O vi ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for MHD waves in cases of the absence and presence of parallel heat conduction. In the case of the absence of parallel heat conduction, we find that MHD wave dissipation depends strongly on viscosity for modified acoustic and Alfvén waves. The energy flux densities of acoustic waves vary between 104.7 and 107 erg cm-2 s-1, while the energy flux densities of Alfvén waves turn out to be between 106 and 108.6 erg cm-2 s-1. When there is parallel heat conduction, we calculate the damping length-scales and the energy flux densities of magnetoacoustic waves. Our results suggest that modified magnetoacoustic waves may provide a significant source for the observed preferential acceleration and heating of O vi ions, thus coronal plasma heating, and an extra accelerating agent for the fast solar wind in the NPCH, depending on the values of the transport coefficients.

  12. Heat flux in a non-Maxwellian plasma. [in realistic solar coronal loop

    Science.gov (United States)

    Ljepojevic, N. N.; Macneice, P.

    1989-01-01

    A hybrid numerical scheme is applied to solve the Landau equation for the electron distribution function over all velocity space. Evidence is presented for the first time of the degree and character of the failure of the classical Spitzer-Haerm heat flux approximation in a realistic solar coronal loop structure. In the loop model used, the failure is so severe at some points that the role of the heat flux in the plasma's energy balance is completely misinterpreted. In the lower corona the Spitzer-Haerm approximation predicts that the heat flux should act as an energy source, whereas the more accurate distribution functions calculated here show this to be an energy sink.

  13. THERMAL NON-EQUILIBRIUM REVISITED: A HEATING MODEL FOR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran [Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Mok, Yung, E-mail: lionel@predsci.com, E-mail: linkerj@predsci.com, E-mail: mikicz@predsci.com, E-mail: amy.r.winebarger@nasa.gov, E-mail: ymok@uci.edu [Department of Physics and Astronomy, University of California, 4129 Reines Hall, Irvine, CA 92697 (United States)

    2013-08-20

    The location and frequency of events that heat the million-degree corona are still a matter of debate. One potential heating scenario is that the energy release is effectively steady and highly localized at the footpoints of coronal structures. Such an energy deposition drives thermal non-equilibrium solutions in the hydrodynamic equations in longer loops. This heating scenario was considered and discarded by Klimchuk et al. on the basis of their one-dimensional simulations as incapable of reproducing observational characteristics of loops. In this paper, we use three-dimensional simulations to generate synthetic emission images, from which we select and analyze six loops. The main differences between our model and that of Klimchuk et al. concern (1) dimensionality, (2) resolution, (3) geometrical properties of the loops, (4) heating function, and (5) radiative function. We find evidence, in this small set of simulated loops, that the evolution of the light curves, the variation of temperature along the loops, the density profile, and the absence of small-scale structures are compatible with the characteristics of observed loops. We conclude that quasi-steady footpoint heating that drives thermal non-equilibrium solutions cannot yet be ruled out as a viable heating scenario for EUV loops.

  14. Non-negative Matrix Factorization as a Method for Studying Coronal Heating

    Science.gov (United States)

    Barnes, Will; Bradshaw, Stephen

    2015-04-01

    Many theoretical efforts have been made to model the response of coronal loops to nanoflare heating, but the theory has long suffered from a lack of direct observations. Nanoflares, originally proposed by Parker (1988), heat the corona through short, impulsive bursts of energy. Because of their short duration and comparatively low amplitude, emission signatures from nanoflare heating events are often difficult to detect. Past algorithms (e.g. Ugarte-Urra and Warren, 2014) for measuring the frequency of transient brightenings in active region cores have provided only a lower bound for such measurements. We present the use of non-negative matrix factorization (NMF) to analyze spectral data in active region cores in order to provide more accurate determinations of nanoflare heating properties. NMF, a matrix deconvolution technique, has a variety of applications , ranging from Raman spectroscopy to face recognition, but, to our knowledge, has not been applied in the field of solar physics. The strength of NMF lies in its ability to estimate sources (heating events) from measurements (observed spectral emission) without any knowledge of the mixing process (Cichocki et al., 2009). We apply our NMF algorithm to forward-modeled emission representative of that produced by nanoflare heating events in an active region core. The heating events are modeled using a state-of-the-art hydrodynamics code (Bradshaw and Cargill, 2013) and the emission and active regions are synthesized using advanced forward modeling and visualization software (Bradshaw and Klimchuk, 2011; Reep et al., 2013). From these active region visualizations, our NMF algorithm is then able to predict the heating event frequency and amplitudes. Improved methods of nanoflare detection will help to answer fundamental questions regarding the frequency of energy release in the solar corona and how the corona responds to such impulsive heating. Additionally, development of reliable, automated nanoflare detection

  15. The Foggy EUV Corona and Coronal Heating by MHD Waves From Explosive Reconnection Events

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Falconer, D. A.

    2008-05-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, Cirtain et al (2006, Sol. Phys., 239, 295) found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete-loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e.g., the 0.1 arcsec/pixel resolution of the Hi-C sounding- rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and

  16. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    Science.gov (United States)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  17. The mystery of coronal heating%日冕反常加热之谜新解

    Institute of Scientific and Technical Information of China (English)

    谭宝林

    2016-01-01

    日冕加热之谜是当代天文学、天体物理学中的八大难题之一。自日冕高温发现七十多年以来,人们建立了许多模型试图解决这一难题,但到目前为止,现有的模型几乎都无法给出一个完整的解答。近年来,人们从观测上取得了一系列新的发现,如从光球到日冕的超精细磁通道中的快速上升热流、二型针状体、极紫外龙卷风等。这些发现给我们一个新的启示,即日冕的加热能量很可能是直接通过热物质上升并在日冕区域沉积而实现的。但是,这些上升热流又是如何形成的呢?鉴于太阳大气中普遍存在具有磁场梯度的磁通量管,作者最近提出了磁场梯度抽运机制(magnetic gradient pumping mechanism, MGP),每一磁通量管就像一个抽水机一般,将底层热分布的等离子体中的高能端粒子抽运到高层大气中沉积,并最终形成了高温的日冕大气。这一机制为我们探索日冕加热之谜提供了一个新的思路。%The problem of coronal heating is one the eight key mysteries in modern as-tronomy and astrophysics. Since the discovery of extremely hot corona more than 70 years ago, many theoretical models have attempted to explain this mystery. However, so far no model can ex-plain the coronal heating process perfectly. Recently, there have been several new discoveries, such as the observation of hot plasma ejections along the ultrafine magnetic channels from the so-lar surface upward to the corona, hot upflows of type II spicules, magnetic tornados, and EUV cy-clones, which imply that the hot corona may be heated by hot plasma upflows directly from the underlying atmosphere. But how do these hot upflows form? We notice the fact that the magnetic gradient is ubiquitous in the whole solar atmosphere, based on which we have proposed a new the-oretical model, the magnetic-gradient pumping mechanism, to explain the coronal heating pro-cess. In this

  18. A new model for heating of Solar North Polar Coronal Hole

    CERN Document Server

    Devlen, E; Yardımcı, M; Pekünlü, E R

    2015-01-01

    This paper presents a new model of North Polar Coronal Hole (NPCH) to study dissipation/propagation of MHD waves. We investigate the effects of the isotropic viscosity and heat conduction on the propagation characteristics of the MHD waves in NPCH. We first model NPCH by considering the differences in radial as well as in the direction perpendicular to the line of sight (\\textit{los}) in temperature, particle number density and non-thermal velocities between plumes and interplume lanes for the specific case of \\ion{O}{VI} ions. This model includes parallel and perpendicular (to the magnetic field) heat conduction and viscous dissipation. Next, we derive the dispersion relations for the MHD waves in the case of absence and presence of parallel heat conduction. In the case of absence of parallel heat conduction, we find that MHD wave dissipation strongly depends on the viscosity for modified acoustic and Alfven waves. The energy flux density of acoustic waves varies between $10^{4.7}$ and $10^7 \\,erg\\,cm^{-2}\\,...

  19. Modeling solar coronal bright point oscillations with multiple nanoflare heated loops

    CERN Document Server

    Chandrashekhar, K

    2015-01-01

    Intensity oscillations of coronal bright points (BPs) have been studied for past several years. It has been known for a while that these BPs are closed magnetic loop like structures. However, initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but modeling of such BPs have not been explored so far. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field line extrapolation of available data (Chandrashekhar et al. 2013), and set this as the length of our simulated loops. We produce intensity like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers di...

  20. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    Science.gov (United States)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Glesener, Lindsay; Bain, Hazel M. [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Krucker, Säm [Also at Institute of 4-D Technologies, School of Engineering, University of Applied Sciences Northwestern Switzerland, 5210 Windisch, Switzerland. (Switzerland); Lin, Robert P., E-mail: glesener@ssl.berkeley.edu [Also at Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA. (United States)

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  2. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    Science.gov (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  3. Statistical properties of coronal hole rotation rates: Are they linked to the solar interior?

    Science.gov (United States)

    Bagashvili, S. R.; Shergelashvili, B. M.; Japaridze, D. R.; Chargeishvili, B. B.; Kosovichev, A. G.; Kukhianidze, V.; Ramishvili, G.; Zaqarashvili, T. V.; Poedts, S.; Khodachenko, M. L.; De Causmaecker, P.

    2017-07-01

    Context. The present paper discusses results of a statistical study of the characteristics of coronal hole (CH) rotation in order to find connections to the internal rotation of the Sun. Aims: The goal is to measure CH rotation rates and study their distribution over latitude and their area sizes. In addition, the CH rotation rates are compared with the solar photospheric and inner layer rotational profiles. Methods: We study CHs observed within ± 60° latitude and longitude from the solar disc centre during the time span from the 1 January 2013 to 20 April 2015, which includes the extended peak of solar cycle 24. We used data created by the spatial possibilistic clustering algorithm (SPoCA), which provides the exact location and characterisation of solar coronal holes using SDO/AIA193 Å channel images. The CH rotation rates are measured with four-hour cadence data to track variable positions of the CH geometric centre. Results: North-south asymmetry was found in the distribution of coronal holes: about 60 percent were observed in the northern hemisphere and 40 percent were observed in the southern hemisphere. The smallest and largest CHs were present only at high latitudes. The average sidereal rotation rate for 540 examined CHs is 13.86( ± 0.05)°/d. Conclusions: The latitudinal characteristics of CH rotation do not match any known photospheric rotation profile. The CH angular velocities exceed the photospheric angular velocities at latitudes higher than 35-40 degrees. According to our results, the CH rotation profile perfectly coincides with tachocline and the lower layers of convection zone at around 0.71 R⊙; this indicates that CHs may be linked to the solar global magnetic field, which originates in the tachocline region.

  4. Coronal Heating Driven by Magnetic-gradient Pumping Mechanism in Solar Plasmas

    CERN Document Server

    Tan, Baolin

    2014-01-01

    The solar coronal heating is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with considerable magnetic gradient from solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism and try to explain the formation of hot plasma upflows, such as the hot type II spicules and hot plasma ejections, etc. In MGP mechanism, the magnetic gradients drive the energetic particles to move upwards from the underlying solar atmosphere and form hot upflows. These upflow energetic particles deposit in corona and make it becoming very hot. Roughly estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km/s in chromosphere and about 130 km/s in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them and deposit in the corona. The deposition of energetic particles will make the corona become...

  5. Alfvén wave solar model (AWSoM): Coronal heating

    Energy Technology Data Exchange (ETDEWEB)

    Van der Holst, B.; Sokolov, I. V.; Meng, X.; Jin, M.; Manchester, W. B. IV; Tóth, G.; Gombosi, T. I. [Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-02-20

    We present a new version of the Alfvén wave solar model, a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfvén wave turbulence. The injection of Alfvén wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics include the following. (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfvén waves are partially reflected by the Alfvén speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength extreme ultraviolet images of CR2107 with the observations from STEREO/EUVI and the Solar Dynamics Observatory/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in the proximity of active regions sufficiently intensifies the dissipation and observable emission.

  6. Diagnosing Coronal Heating in a Survey of Active Regions using the Time Lag Method

    Science.gov (United States)

    Viall, Nicholeen; Klimchuk, James A.

    2017-08-01

    In this paper we examine 15 different active regions observed with the Solar Dynamics Observatory and analyze their nanoflare properties using the time lag method. The time lag method is a diagnostic of whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyses both observationally distinct coronal loops as well as the much more prevalent diffuse emission surrounding them. Warren et al. (2012) first studied these same 15 active regions, which are all quiescent and exhibit a broad range of characteristics, including age, total unsigned magnetic flux, area, hot emission, and emission measure distribution. We find that widespread cooling is a generic property of both loop and diffuse emission from all 15 active regions. However, the range of temperatures through which the plasma cools varies between active regions and within each active region, and only occasionally is there full cooling from above 7 MK to well below 1 MK. We find that the degree of cooling is not well correlated with slopes of the emission measure distribution measured by Warren et al. (2012). We show that these apparently contradictory observations can be reconciled with the presence of a distribution of nanoflare energies and frequencies along the line of sight, with the average delay between successive nanoflare events on a single flux tube being comparable to the plasma cooling timescale. Warren, H. P., Winebarger, A. R., & Brooks, D. H. 2012, ApJ, 759, 141

  7. Modeling Solar Coronal Bright-point Oscillations with Multiple Nanoflare Heated Loops

    Science.gov (United States)

    Chandrashekhar, K.; Sarkar, Aveek

    2015-09-01

    Intensity oscillations of coronal bright points (BPs) have been studied for the past several years. It has been known for a while that these BPs are closed magnetic loop-like structures. However, the initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but so far modeling such BPs has not been explored. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field-line extrapolation of available data, and set this as the length of our simulated loops. We produce intensity-like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers different background subtractions, one can extract adiabatic standing modes from the intensity time-series data as well, both from the observed and simulated data.

  8. On the enhanced coronal mass ejection detection rate since the solar cycle 23 polar field reversal

    CERN Document Server

    Petrie, Gordon

    2015-01-01

    Coronal mass ejections (CMEs) with angular width $> 30^{\\circ}$ have been observed to occur at a higher rate during solar cycle 24 compared to cycle 23, per sunspot number. This result is supported by data from three independent databases constructed using Large Angle and Spectrometric Coronagraph Experiment (LASCO) coronagraph images, two employing automated detection techniques and one compiled manually by human observers. According to the two databases that cover a larger field of view, the enhanced CME rate actually began shortly after the cycle 23 polar field reversal, in 2004, when the polar fields returned with a 40\\% reduction in strength and interplanetary radial magnetic field became $\\approx 30\\%$ weaker. This result is consistent with the link between anomalous CME expansion and heliospheric total pressure decrease recently reported by Gopalswamy et al.

  9. SOLAR MAGNETIC ACTIVITY CYCLES, CORONAL POTENTIAL FIELD MODELS AND ERUPTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, G. J. D. [National Solar Observatory, Tucson, AZ 85719 (United States)

    2013-05-10

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the National Solar Observatory's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun vector spectro-magnetograph, the spectro-magnetograph and the 512-channel magnetograph instruments, and from Stanford University's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003 and 2006 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The tilt of the solar dipole is therefore almost entirely due to active-region fields. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking, Solar Eruptive Event Detection System, and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003 and 2012 than for those between 1997 and 2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  10. Solar magnetic activity cycles, coronal potential field models and eruption rates

    Science.gov (United States)

    Petrie, Gordon

    2013-07-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the activity cycle. All non-axisymmetric multipole strengths are well correlated with the activity cycle. The axial dipole and octupole are the largest contributors to the global field except while the polar fields are reversing. This influence of the polar fields extends to modulating eruption rates. According to the Computer Aided CME Tracking (CACTus), Solar Eruptive Event Detection System (SEEDS), and Nobeyama radioheliograph prominence eruption catalogs, the rate of solar eruptions is found to be systematically higher for active years between 2003-2012 than for those between 1997-2002. This behavior appears to be connected with the weakness of the late-cycle 23 polar fields as suggested by Luhmann. We see evidence that the process of cycle 24 field reversal is well advanced at both poles.

  11. Coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses

    CERN Document Server

    Pierrard, V; Lemaire, J F

    2012-01-01

    Coronal density, temperature and heat flux distributions for the equatorial and polar corona have been deduced by Lemaire [2012] from Saito's model of averaged coronal white light (WL) brightness and polarization observations. They are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates rather similar distributions at large radial distances (> 7 Rs) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e., conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating rate extends up into the inner corona where it maximizes at r > 1.5 Rs well above the transition region.

  12. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  13. Constraining a Model of Turbulent Coronal Heating for AU Microscopii with X-Ray, Radio, and Millimeter Observations

    CERN Document Server

    Cranmer, Steven R; MacGregor, Meredith A

    2013-01-01

    Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We also synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central em...

  14. Comments on "The Coronal Heating Paradox" by M.J. Aschwanden, A. Winebarger, D. Tsiklauri and H. Peter [2007, Astrophys J., 659, 1673

    CERN Document Server

    Mahajan, Swadesh M

    2007-01-01

    We point out the priority of our paper (Mahajan et al. 2001, Phys. Plasmas, 8, 1340) over (Aschwanden et al. 2007, Astrophys J., 659, 1673) in introducing the term "Formation and primary heating of the solar corona" working out explicit models (theory as well as simulation) for coronal structure formation and heating. On analyzing the Aschwanden et al. (2007) scenario of coronal heating process (shifted to the chromospheric heating) we stress, that for efficient loop formation, the primary upflows of plasma in chromosphere/transition region should be relatively cold and fast (as opposed to hot). It is during trapping and accumulation in closed field structures, that the flows thermalize (due to the dissipation of the short scale flow energy) leading to a bright and hot coronal structure. The formation and primary heating of a closed coronal structure (loop at the end) are simultaneous and a process like the "filling of the empty coronal loop by hot upflows" is purely speculative and totally unlikely.

  15. Radiative heating rates during AAOE and AASE

    Science.gov (United States)

    Rosenfield, Joan E.

    Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).

  16. Coronal Holes

    CERN Document Server

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  17. Multifractal Solar EUV Intensity Fluctuations and their Implications for Coronal Heating Models

    CERN Document Server

    Cadavid, Ana Cristina Cadavid; Lawrence, John K; Christian, Damian J; Jennings, Peter J; Rappazzo, A Franco

    2016-01-01

    We investigate the scaling properties of the long-range temporal evolution and intermittency of SDO/AIA intensity observations in four solar environments: active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments, and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Angstrom waveband , which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range 15-45 min is multifractal, and the time series are anti-persistent on the average. The degree of anti-correlation in the TR time series is greater than for coronal emission. The multifractality stems from long term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Angstrom waveband can be described in terms of a multifractal with ...

  18. MECHANICAL ENERGY FLUXES ASSOCIATED WITH SATURATED CORONAL HEATING IN M DWARFS: COMPARISON WITH PREDICTIONS OF A TURBULENT DYNAMO

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, D. J. [Bartol Research Institute, Dept of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); MacDonald, J., E-mail: mullan@udel.edu [Dept of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-02-20

    Empirically, the X-ray luminosity L{sub X} from M dwarfs has been found to have an upper limit of about 0.2% of the bolometric flux L{sub bol}. In the limit where magnetic fields in M dwarfs are generated in equipartition with convective motions, we use stellar models to calculate the energy flux of Alfvén waves F{sub A} as a function of depth in the sub-surface convection zone. Since Alfvén waves have the optimal opportunity for wave modes to reach the corona, we suggest that F{sub A} sets an upper limit on the mechanical flux F{sub mech} which causes coronal heating. This suggestion accounts quantitatively for the “saturated” values of L{sub X}/L{sub bol} which have been reported empirically for M dwarfs.

  19. Effects of Plasma Drag on Low Earth Orbiting Satellites due to Heating of Earth's Atmosphere by Coronal Mass Ejections

    CERN Document Server

    Nwankwo, Victor U J

    2013-01-01

    Solar events, such as coronal mass ejections (CMEs) and solar flares, heat up the upper atmosphere and near-Earth space environment. Due to this heating and expansion of the outer atmosphere by the energetic ultraviolet, X-ray and particles expelled from the sun, the low Earth-Orbiting satellites (LEOS) become vulnerable to an enhanced drag force by the ions and molecules of the expanded atmosphere. Out of various types of perturbations, Earth directed CMEs play the most significant role. They are more frequent and intense during the active (solar maximum) phase of the sun's approximately 11-year cycle. As we are approaching another solar maximum later in 2013, it may be instructive to analyse the effects of the past solar cycles on the orbiting satellites using the archival data of space environment parameters as indicators. In this paper, we compute the plasma drag on a model LEOS due to the atmospheric heating by CMEs and other solar events as a function of the solar parameters. Using the current forecast ...

  20. Coronal vs chromospheric heating through co-spatial return currents during the 19 and 20 Jan 2005 solar flare

    Science.gov (United States)

    Alaoui, Meriem; Holman, Gordon D.

    2016-05-01

    The high electron flux required to explain the bremsstrahlung X-ray emission observed from solar flares is expected to be accompanied by a neutralizing co-spatial return current. In addition to resupplying the acceleration region with electrons, this return current will both heat the coronal plasma and flatten the electron distribution at lower energies. This flattening in the electron distribution in turn flattens the X-ray spectrum. We have found that return-current collisional thick-target model (RCCTTM) of Holman (2012) provides an acceptable fit to X-ray spectra with strong breaks for 18 flares observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). This is a 1D model similar to the collisional thick-target model (CTTM) with two additional assumptions: (1) electrons lose some of their energy through return current losses along their path to the thick target, where they lose all their remaining energy through Coulomb collisions; (2) the non-thermal beam is streaming in a warm target, which means that electrons will be thermalized at a non-zero energy. We assume this energy to be equal to the analytical value derived by Kontar et al. 2015. We show that return-current heating in the corona is about an order of magnitude higher than the heating at the footpoints at times during the flare.

  1. Coronal Heating and Acceleration of the High/Low-Speed Solar Wind by Fast/Slow MHD Shock Trains

    CERN Document Server

    Suzuki, T K

    2004-01-01

    We investigate coronal heating and acceleration of the high- and low-speed solar wind in the open field region by dissipation of fast and slow magnetohydrodynamical (MHD) waves through MHD shocks. Linearly polarized \\Alfven (fast MHD) waves and acoustic (slow MHD) waves travelling upwardly along with a magnetic field line eventually form fast switch-on shock trains and hydrodynamical shock trains (N-waves) respectively to heat and accelerate the plasma. We determine one dimensional structure of the corona from the bottom of the transition region (TR) to 1AU under the steady-state condition by solving evolutionary equations for the shock amplitudes simultaneously with the momentum and proton/electron energy equations. Our model reproduces the overall trend of the high-speed wind from the polar holes and the low-speed wind from the mid- to low-latitude streamer except the observed hot corona in the streamer. The heating from the slow waves is effective in the low corona to increase the density there, and plays ...

  2. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  3. Corrosion Rate Monitoring in District Heating Systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Nielsen, Lars Vendelbo; Andersen, A.

    2005-01-01

    Quality control in district heating systems to keep uniform corrosion rates low and localized corrosion minimal is based on water quality control. Side-stream units equipped with carbon steel probes for online monitoring were mounted in district heating plants to investigate which techniques would...... be applicable, and if on-line monitoring could improve the quality control. Water quality monitoring was applied as well as corrosion rate monitoring with linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), electrical resistance (ER) technique, mass loss and a crevice corrosion...... cell for localized corrosion risk estimation. Important variations in corrosion rate due to changes in make-up water quality were detected with the continuous monitoring provided by ER and crevice cell, while LPR gave unreliable corrosion rates. The acquisition time of two-three days for EIS...

  4. Stellar Coronal Response to Differential Rotation and Flux Emergence

    CERN Document Server

    Gibb, G P S; Jardine, M M; Yeates, A R

    2016-01-01

    We perform a numerical parameter study to determine what effect varying differential rotation and flux emergence has on a star's non-potential coronal magnetic field. In particular we consider the effects on the star's surface magnetic flux, open magnetic flux, mean azimuthal field strength, coronal free magnetic energy, coronal heating and flux rope eruptions. To do this, we apply a magnetic flux transport model to describe the photospheric evolution, and couple this to the non-potential coronal evolution using a magnetofrictional technique. A flux emergence model is applied to add new magnetic flux onto the photosphere and into the corona. The parameters of this flux emergence model are derived from the solar flux emergence profile, however the rate of emergence can be increased to represent higher flux emergence rates than the Sun's. Overall we find that flux emergence has a greater effect on the non-potential coronal properties compared to differential rotation, with all the aforementioned properties incr...

  5. Coronal heating and wind acceleration by nonlinear Alfvén waves – global simulations with gravity, radiation, and conduction

    Directory of Open Access Journals (Sweden)

    T. K. Suzuki

    2008-03-01

    Full Text Available We review our recent results of global one-dimensional (1-D MHD simulations for the acceleration of solar and stellar winds. We impose transverse photospheric motions corresponding to the granulations, which generate outgoing Alfvén waves. We treat the propagation and dissipation of the Alfvén waves and consequent heating from the photosphere by dynamical simulations in a self-consistent manner. Nonlinear dissipation of Alfven waves becomes quite effective owing to the stratification of the atmosphere (the outward decrease of the density. We show that the coronal heating and the solar wind acceleration in the open magnetic field regions are natural consequence of the footpoint fluctuations of the magnetic fields at the surface (photosphere. We find that the properties of the solar wind sensitively depend on the fluctuation amplitudes at the solar surface because of the nonlinearity of the Alfvén waves, and that the wind speed at 1 AU is mainly controlled by the field strength and geometry of flux tubes. Based on these results, we point out that both fast and slow solar winds can be explained by the dissipation of nonlinear Alfvén waves in a unified manner. We also discuss winds from red giant stars driven by Alfvén waves, focusing on different aspects from the solar wind.

  6. Solar magnetic activity cycles, coronal potential field models and eruption rates

    CERN Document Server

    Petrie, G J D

    2013-01-01

    We study the evolution of the observed photospheric magnetic field and the modeled global coronal magnetic field during the past 3 1/2 solar activity cycles observed since the mid-1970s. We use synoptic magnetograms and extrapolated potential-field models based on longitudinal full-disk photospheric magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and from the U. Stanford's Wilcox Solar Observatory. The associated multipole field components are used to study the dominant length scales and symmetries of the coronal field. Polar field changes are found to be well correlated with active fields over most of the period studied, except between 2003-6 when the active fields did not produce significant polar field changes. Of the axisymmetric multipoles, only the dipole and octupole follow the poles whereas the higher orders follow the ...

  7. Coronal dynamics

    Science.gov (United States)

    Nakariakov, V. M.

    2007-07-01

    The lectures present the foundation of solar coronal physics with the main emphasis on the MHD theory and on wave and oscillatory phenomena. We discuss major challenges of the modern coronal physics; the main plasma structures observed in the corona and the conditions for their equilibrium; phenomenology of large scale long period oscillatory coronal phenomena and their theoretical modelling as MHD waves. The possibility of the remote diagnostics of coronal plasmas with the use of MHD oscillations is demonstrated.

  8. Hard X-Ray Constraints on Small-Scale Coronal Heating Events

    Science.gov (United States)

    Marsh, Andrew; Smith, David M.; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Hannah, Iain; Vievering, Juliana; Ishikawa, Shin-Nosuke; Krucker, Sam; Christe, Steven

    2017-08-01

    A large body of evidence suggests that the solar corona is heated impulsively. Small-scale heating events known as nanoflares may be ubiquitous in quiet and active regions of the Sun. Hard X-ray (HXR) observations with unprecedented sensitivity >3 keV have recently been enabled through the use of focusing optics. We analyze active region spectra from the FOXSI-2 sounding rocket and the NuSTAR satellite to constrain the physical properties of nanoflares simulated with the EBTEL field-line-averaged hydrodynamics code. We model a wide range of X-ray spectra by varying the nanoflare heating amplitude, duration, delay time, and filling factor. Additional constraints on the nanoflare parameter space are determined from energy constraints and EUV/SXR data.

  9. Periods and damping rates of fast sausage oscillations in multi-shelled coronal loops

    CERN Document Server

    Chen, Shao-Xia; Xia, Li-Dong; Yu, Hui

    2015-01-01

    Standing sausage modes are important in interpreting quasi-periodic pulsations in the lightcurves of solar flares. Their periods and damping times play an important role in seismologically diagnosing key parameters like the magnetic field strength in regions where flare energy is released. Usually such applications are based on theoretical results neglecting unresolved fine structures in magnetized loops. However, the existence of fine structuring is suggested on both theoretical and observational grounds. Adopting the framework of cold magnetohydrodynamics (MHD), we model coronal loops as magnetized cylinders with a transverse equilibrium density profile comprising a monolithic part and a modulation due to fine structuring in the form of concentric shells. The equation governing the transverse velocity perturbation is solved with an initial-value-problem approach, and the effects of fine structuring on the periods $P$ and damping times $\\tau$ of global, leaky, standing sausage modes are examined. A parameter...

  10. The role of turbulence in coronal heating and solar wind expansion.

    Science.gov (United States)

    Cranmer, Steven R; Asgari-Targhi, Mahboubeh; Miralles, Mari Paz; Raymond, John C; Strachan, Leonard; Tian, Hui; Woolsey, Lauren N

    2015-05-13

    Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic 'magnetic carpet' in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona.

  11. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  12. Generation of Electron Suprathermal Tails in the Upper Solar Atmosphere: Implications for Coronal Heating

    Science.gov (United States)

    Vinas, Adolfo F.; Wong, Hung K.; Klimas, Alexander J.

    1999-01-01

    We present a mechanism for the generation of non-Maxwellian electron distribution function in the upper regions of the solar atmosphere in the presence of collisional damping. It is suggested that finite amplitude, low frequency, obliquely propagating electromagnetic waves can carry a substantial electric field component parallel to the mean magnetic field that can be significantly larger than the Dreicer electric field. This long wavelength electric fluctuation is capable of generating high frequency electron plasma oscillations and low frequency ion acoustic-like waves. The analysis has been performed using 1-1/2D Vlasov and PIC numerical simulations in which both electrons and ions are treated kinetically and self consistently. The simulation results indicate that high frequency electron plasma oscillations and low frequency ion acoustic-like waves are generated. The high frequency electron plasma oscillation drives electron plasma turbulence, which subsequently is damped out by the background electrons. The turbulence damping results in electron acceleration and the generation of non-Maxwellian suprathermal tails on time scales short compared to collisional damping. Bulk heating also occurs if the fluctuating parallel electric field is strong enough. This study suggests that finite amplitude, low frequency, obliquely propagating, electromagnetic waves can play a significant role in the acceleration and heating of the solar corona electrons and in the coupling of medium and small-scale phenomena.

  13. High-frequency torsional Alfvén waves as an energy source for coronal heating

    Science.gov (United States)

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-03-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m‑2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m‑2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  14. High-frequency torsional Alfvén waves as an energy source for coronal heating

    Science.gov (United States)

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-01-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m−2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m−2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind. PMID:28256538

  15. Association of solar coronal loops to photospheric magnetic field

    Science.gov (United States)

    Pradeep Chitta, Lakshmi; Peter, Hardi; Solanki, Sami

    2017-08-01

    Magnetic connectivity and its evolution from the solar photosphere to the corona will play a crucial role in the energetics of the solar atmosphere. To explore this connectivity, we use high spatial resolution magnetic field observations of an active region from the balloon-borne SUNRISE telescope, in combination with the observations of coronal loops imaged in extreme ultraviolet by SDO/AIA. We show that photospheric magnetic field at the base of coronal loops is rapidly evolving through small-scale flux emergence and cancellation events with rates on the order of 10^15 Mx/s. When observed at high spatial resolution better than 0.5 arcsec, we find that basically all coronal loops considered so far are rooted in the photosphere above small-scale opposite polarity magnetic field patches. In the photosphere, the magnetic field threading coronal loops is interacting with opposite polarity parasitic magnetic concentrations leading to dynamic signatures in the upper atmosphere. Chromospheric small-scale jets aligned to coronal loops are observed at these locations. We will present preliminary results from 3D MHD simulations of coronal loops driven by realistic magneto-convection and discuss what role the magnetic interactions at coronal loop footpoints could play in the evolution of coronal loops and their heating.

  16. Periods and Damping Rates of Fast Sausage Oscillations in Multishelled Coronal Loops

    Science.gov (United States)

    Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-08-01

    Standing sausage modes are important in interpreting quasi-periodic pulsations in the light curves of solar flares. Their periods and damping times play an important role in seismologically diagnosing key parameters like the magnetic field strength in regions where flare energy is released. Usually, such applications are based on theoretical results neglecting unresolved fine structures in magnetized loops. However, the existence of fine structuring is suggested on both theoretical and observational grounds. Adopting the framework of cold magnetohydrodynamics (MHD), we model coronal loops as magnetized cylinders with a transverse equilibrium density profile comprising a monolithic part and a modulation due to fine structuring in the form of concentric shells. The equation governing the transverse velocity perturbation is solved with an initial-value-problem approach, and the effects of fine structuring on the periods P and damping times τ of global, leaky, standing sausage modes are examined. A parameter study shows that fine structuring, be it periodically or randomly distributed, brings changes of only a few percents to P and τ when there are more than about ten shells. The monolithic part, its steepness in particular, plays a far more important role in determining P and τ. We conclude that when measured values of P and τ of sausage modes are used for seismological purposes, it is justified to use theoretical results where the effects due to fine structuring are neglected.

  17. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  18. Research of heat exchange rate of the pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  19. Effect of heating rate on the pyrolysis yields of rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. [Chemical Engineering Department, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, Maslak, 34469 Istanbul (Turkey)

    2006-05-15

    The pyrolysis yields of rapeseed were investigated applying thermogravimetric analysis technique. The pyrolysis experiments were performed up to 1273K at heating rates of 5, 10, 20, 30, 40 and 50K/min in a dynamic nitrogen flow of 40cc/min. Effects of heating rate on the mass losses from the rapeseed were examined using the derivative thermogravimetric analysis profiles. This study showed that important differences on the pyrolytic behavior of rapeseed are observed when heating rate is changed. At the lower heating rates, the maximum rates of mass losses were relatively low. When the heating rate was increased, maximum rates of mass losses also increased. These variations were interpreted by the heterogeneous structure of biomass. Heating rates also concluded to affect the shape of the peaks. Increase in the heating rate shifted the main peak on the DTG profile to the lower temperatures. At low heating rates, there is probably resistance to mass or heat transfer inside the biomass particles. However, increase in heating rate overcame these restrictions, and led to higher conversion rates. The final pyrolysis temperatures were also affected from the variation of the heating rate. Activation energy values were first increased and then decreased depending on the heating rates. (author)

  20. MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Murawski, K. [Group of Astrophysics, Institute of Physics, UMCS, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Srivastava, A. K.; Dwivedi, B. N. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2015-07-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated photospheric flux tube and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and we analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube that is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal MHD equations that are numerically solved by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreover, it is likely that the existence of these twisters can be verified by high-resolution observations.

  1. Coronal Partings

    CERN Document Server

    Nikulin, Igor F

    2015-01-01

    The basic observational properties of the 'coronal partings'--the special type of the coronal magnetic structures, identified by a comparison of the coronal X-ray images and solar magnetograms--are considered. They represent channels inside the unipolar large-scale magnetic fields, formed by the rows of magnetic arcs directed to the neighboring fields of opposite polarity. The most important characteristics of the partings are revealed. It is found that--from the evolutionary and spatial point of view--the partings can transform to the coronal holes and visa versa. The classes of global, intersecting, and complex partings are identified.

  2. Assessment of heating rate and non-uniform heating in domestic microwave ovens.

    Science.gov (United States)

    Pitchai, Krishnamoorthy; Birla, Sohan L; Jones, David; Subbiah, Jeyamkondan

    2012-01-01

    Due to the inherent nature of standing wave patterns of microwaves inside a domestic microwave oven cavity and varying dielectric properties of different food components, microwave heating produces non-uniform distribution of energy inside the food. Non-uniform heating is a major food safety concern in not-ready-to-eat (NRTE) microwaveable foods. In this study, we present a method for assessing heating rate and non-uniform heating in domestic microwave ovens. In this study a custom designed container was used to assess heating rate and non-uniform heating of a range of microwave ovens using a hedgehog of 30 T-type thermocouples. The mean and standard deviation of heating rate along the radial distance and sector of the container were measured and analyzed. The effect of the location of rings and sectors was analyzed using ANOVA to identify the best location for placing food on the turntable. The study suggested that the best location to place food in a microwave oven is not at the center but near the edge of the turntable assuming uniform heating is desired. The effect of rated power and cavity size on heating rate and non-uniform heating was also studied for a range of microwave ovens. As the rated power and cavity size increases, heating rate increases while non-uniform heating decreases. Sectors in the container also influenced heating rate (p heating rate. In general, sectors close to the magnetron tend to heat slightly faster than sectors away from the magnetron. However, the variation in heating rate among sectors was only 2 degrees C/min and considered not practically important. Overall heating performance such as mean heating rate and non-uniform heating did not significantly vary between the two replications that were performed 4 h apart. However, microwave ovens were inconsistent in producing the same heating patterns between the two replications that were performed 4 h apart.

  3. Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology

    CERN Document Server

    Wang, Tongjiang

    2010-01-01

    Strongly damped Doppler shift oscillations are observed frequently associated with flarelike events in hot coronal loops. In this paper, a review of the observed properties and the theoretical modeling is presented. Statistical measurements of physical parameters (period, decay time, and amplitude) have been obtained based on a large number of events observed by SOHO/SUMER and Yohkoh/BCS. Several pieces of evidence are found to support their interpretation in terms of the fundamental standing longitudinal slow mode. The high excitation rate of these oscillations in small- or micro-flares suggest that the slow mode waves are a natural response of the coronal plasma to impulsive heating in closed magnetic structure. The strong damping and the rapid excitation of the observed waves are two major aspects of the waves that are poorly understood, and are the main subject of theoretical modeling. The slow waves are found mainly damped by thermal conduction and viscosity in hot coronal loops. The mode coupling seems ...

  4. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  5. HIGH HEATING RATES AFFECTS GREATLY THE INACTIVATION RATE OF ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Juan Pablo Huertas

    2016-08-01

    Full Text Available Heat resistance of microorganisms can be affected by different influencing factors. Although the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20ºC/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50ºC/min were achieved in the heat exchanger, which were much slower than those around 20ºC/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimates about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than ten times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7ºC/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  6. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  7. Characteristic thermal constant and dimensionless heating rate. The links to optimum heating rate in GC

    Science.gov (United States)

    Blumberg; Klee

    2000-09-01

    An initial step in the quest of deriving a generalized approach to optimization of a temperature program in gas chromatography is presented. Central to this is the introduction of a dimensionless heating rate, r. As a first step to defining r, a characteristic thermal constant, thetachar, defined as thetachar = -dT/dk at k = 1, where T and k are, respectively, column temperature and solute retention factor, is introduced and evaluated for our own experimental data and for thermodynamic data from the literature. It was determined that, for silicone stationary phases with a phase ratio of 250, thetachar ranged from about 23 degrees C for low molecular weight hydrocarbons such as dimethylpropane to about 45 degrees C for high molecular weight pesticides such as mirex. It was also found that, for a particular solute and a stationary phase type, a 2 orders of magnitude increase in the film thickness caused only about a 2-fold increase in the characteristic thermal constant. Using thetachar as a fundamental temperature unit in GC and void time as a fundamental time unit, a dimensionless heating rate is introduced and its potential utility for the evaluation of the separation-speed tradeoffs in a temperature-programmed GC is demonstrated.

  8. A Two-Fluid, MHD Coronal Model

    Science.gov (United States)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Poletto, G.; McComas, D. J.

    1999-01-01

    We describe first results from a numerical two-fluid MHD model of the global structure of the solar Corona. The model is two-fluid in the sense that it accounts for the collisional energy exchange between protons and electrons. As in our single-fluid model, volumetric heat and Momentum sources are required to produce high speed wind from Corona] holes, low speed wind above streamers, and mass fluxes similar to the empirical solar wind. By specifying different proton and electron heating functions we obtain a high proton temperature in the coronal hole and a relatively low proton temperature above the streamer (in comparison with the electron temperature). This is consistent with inferences from SOHO/UltraViolet Coronagraph Spectrometer instrument (UVCS), and with the Ulysses/Solar Wind Observations Over the Poles of the Sun instrument (SWOOPS) proton and electron temperature measurements which we show from the fast latitude scan. The density in the coronal hole between 2 and 5 solar radii (2 and 5 R(sub S)) is similar to the density reported from SPARTAN 201.-01 measurements by Fisher and Guhathakurta [19941. The proton mass flux scaled to 1 AU is 2.4 x 10(exp 8)/sq cm s, which is consistent with Ulysses observations. Inside the closed field region, the density is sufficiently high so that the simulation gives equal proton and electron temperatures due to the high collision rate. In open field regions (in the coronal hole and above the streamer) the proton and electron temperatures differ by varying amounts. In the streamer the temperature and density are similar to those reported empirically by Li et al. [1998], and the plasma beta is larger than unity everywhere above approx. 1.5 R(sub S), as it is in all other MHD coronal streamer models [e.g., Steinolfson et al., 1982; also G. A. Gary and D. Alexander, Constructing the coronal magnetic field, submitted to Solar Physics, 1998].

  9. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  10. MHD modeling of coronal loops: the transition region throat

    CERN Document Server

    Guarrasi, M; Orlando, S; Mignone, A; Klimchuk, J A

    2014-01-01

    The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. We study the area response with a time-dependent 2D MHD loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. We find that the area can change substantially with the quasi-steady heating rate, e.g. by ~40% at 0.5 MK as the loop temperature varies between 1 and 4 MK, and, therefore, affects the interpretation of DEM(T) curves.

  11. Solar coronal jets

    Science.gov (United States)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  12. Studies on Microwave Heated Drying-rate Equations of Foods

    OpenAIRE

    1990-01-01

    In order to design various microwave heated drying apparatuses, we must take drying-rate equations which are based on simple drying-rate models. In a previous paper (KUBOTA, et al., 1990), we have studied a convenient microwave heated drying instrument, and studied the simple drying-rate equations of potato and so on by using the simple empirical rate equations that have been reported in previous papers (KUBOTA, 1979-1, 1979-2). In this paper, we studied the microwave drying rate of the const...

  13. Coronal Plumes in the Fast Solar Wind

    Science.gov (United States)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  14. Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma

    Indian Academy of Sciences (India)

    Nagendra Kumar; Pradeep Kumar; Shiv Singh; Anil Kumar

    2008-03-01

    We study the propagation and dissipation of slow magnetoacoustic waves in an inhomogeneous viscous coronal loop plasma permeated by uniform magnetic field. Only viscosity and thermal conductivity are taken into account as dissipative processes in the coronal loop. The damping length of slow-mode waves exhibit varying behaviour depending upon the physical parameters of the loop in an active region AR8270 observed by TRACE. The wave energy flux associated with slow magnetoacoustic waves turns out to be of the order of 106 erg cm-2 s-1 which is high enough to replace the energy lost through optically thin coronal emission and the thermal conduction belowto the transition region. It is also found that only those slow-mode waves which have periods more than 240 s provide the required heating rate to balance the energy losses in the solar corona. Our calculated wave periods for slow-mode waves nearly match with the oscillation periods of loop observed by TRACE.

  15. Critical heat removal rate through a hemispherical narrow gap

    Energy Technology Data Exchange (ETDEWEB)

    Park, R.J.; Ha, K.S.; Kang, K.H.; Kim, S.B.; Kim, H.D. [Severe Accident Research Project, Korea Atomic Energy Research Institute Yusong, P.O. Box 105, Daejeon (Korea); Jeong, J.H. [Chonan College of Foreign Studies, An-seo-Wong 150, Chun-an (Korea)

    2003-02-01

    An experimental study has been performed to investigate boiling mechanism and to estimate critical heat removal rate from a critical power through a hemispherical narrow gap using distilled water and Freon R-113. The distilled water data on the critical heat removal rate were compared with the R-113 data. The experimental results on the critical heat removal rate were also compared with the existing correlations, developed in flat plate, annuli, and spherical gaps. The test results have shown that a CCFL (Counter Current Flow Limitation) brings about local dryout and finally global dryout in the hemispherical gap thickness of 0.5, 1.0, and 2.0 mm. The boiling mechanism in a hemispherical gap thickness of 5.0 mm is the combination of the CCFL and the pool boiling condition. An increase in gap thickness of 10.0 mm leads to the pool boiling condition rather than the CCFL. Increases in the gap thickness and pressure lead to increase in critical heat removal rate, but the pressure effect on the critical heat removal rate was found to be much milder than the predictions by flat plate and annuli gaps. The measured critical heat removal rate using the R-113 in hemispherical narrow gap thickness of 1.0 and 2.0 mm are 51.5%, 44.5% lower than that using the distilled water due to the lower boiling point and the bubble size, which is different from the pool boiling condition of approximately 14.8%. The measured critical heat removal rate using the R-113 in a gap thickness of 5 mm is 21.6% lower than that using distilled water, which approaches to the pool boiling condition. (orig.)

  16. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  17. A new approach to analyzing solar coronal spectra and updated collisional ionization equilibrium calculations. II. Additional recombination rate coefficients

    CERN Document Server

    Bryans, P; Savin, D W

    2008-01-01

    We have reanalyzed SUMER observations of a parcel of coronal gas using new collisional ionization equilibrium (CIE) calculations. These improved CIE fractional abundances were calculated using state-of-the-art electron-ion recombination data for K-shell, L-shell, Na-like, and Mg-like ions of all elements from H through Zn and, additionally, Al- through Ar-like ions of Fe. Improved CIE calculations based on these data are presented here. We have also developed a new systematic method for determining the average emission measure (EM) and electron temperature (T_e) of an emitting plasma. With our new CIE data and our new approach for determining the average EM and T_e we have reanalyzed SUMER observations of the solar corona. We have compared our results with those of previous studies and found some significant differences for the derived EM and T_e. We have also calculated the enhancement of coronal elemental abundances compared to their photospheric abundances, using the SUMER observations themselves to determ...

  18. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Dey, R. [D-203, Samruddhi Residency, Motera, Ahmedabad-380009, Gujarat (India); Roy, A. C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

    2013-07-15

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Z{sub i} = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×10{sup 8} V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  19. Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger

    Science.gov (United States)

    SIVA ESWARA RAO, M.; SREERAMULU, DOWLURU; ASIRI NAIDU, D.

    2016-09-01

    Nano fluids are used for increasing thermal properties in heat transfer equipment like heat exchangers, radiators etc. This paper investigates the heat transfer rate of Nano fluids using a shell and tube heat exchanger in single and multi tubes under turbulent flow condition by a forced convection mode. Alumina Nanoparticles are prepared by using Sol-Gel method. Heat transfer rate increases with decreasing particle size. In this experiment Alumina Nano particles of about 22 nm diameter used. Alumina Nano fluids are prepared with different concentrations of Alumina particles (0.13%, 0.27%, 0.4%, and 0.53%) with water as a base fluid using ultra-sonicator. Experiment have been conducted on shell and tube heat exchanger for the above concentrations on parallel and counter flow conditions by keeping constant inlet temperatures and mass flow rate. The result shows that the heat transfer rate is good compared to conventional fluids. The properties of Nano fluids and non-dimensional numbers have been calculated.

  20. EFFECT OF AIRFLOW AND HEAT INPUT RATES ON DUCT EFFICIENCY.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    2003-05-28

    Reducing the airflow and heat input rates of a furnace that is connected to a duct system in thermal contact with unconditioned spaces can significantly reduce thermal distribution efficiency. This is a straightforward theoretical calculation based on the increased residence time of the air in the duct at the lower flow rate, which results in greater conduction losses. Experimental tests in an instrumented residential-size duct system have confirmed this prediction. Results are compared with the heat-loss algorithm in ASHRAE Standid 152P. The paper concludes with a discussion of possible remedies for this loss of efficiency in existing systems and optional design strategies in new construction.

  1. HEATING RATE SCALING OF TURBULENCE IN THE PROTON KINETIC REGIME

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Bernard J., E-mail: bernie.vasquez@unh.edu [Physics Department and Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2015-06-10

    Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing, fluid electrons are conducted for a freely decaying turbulence. The main results are obtained from a series of runs as a function of the initial total rms fluctuation amplitude. In the turbulent phase and at a corresponding nonlinear time dependent on the amplitude, the scaling of the proton perpendicular heating rate is examined as a function of the spectral value of the electron bulk perpendicular speed integrated in wavenumbers about the inverse thermal proton gyroradius. The perpendicular direction is relative to the background magnetic field. The obtained spectral value is normalized to the proton thermal speed and ranges from 0.06 to 0.16. The scaling of the perpendicular heating rate with this spectral value is fitted with a power law, which has an index of −3.3 ± 0.2. The fit is consistent with the scaling of the total heating rate as a function of total rms amplitude, which has an index of −3.06 ± 0.12. The power-law index is near the turbulent hydrodynamic-like prediction for the energy cascade rate as a function of amplitude. The heating rate, then, obeys a power law with amplitude or spectral value regardless of whether that quantity is evaluated at large scales or at the proton gyroradius scales.

  2. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  3. Heating rate dependence of anatase to rutile transformation

    Directory of Open Access Journals (Sweden)

    Pietro Galizia

    2016-12-01

    Full Text Available Commercial titania powders were calcined in order to investigate the influence of the heating history on the thermally stable phase (rutile. Temperatures from 620 to 700 °C and heating rates from 50 to 300 °C/h were used in order to evaluate their influence on the kinetics of transformation and microstructure evolution. The quantitative analysis of anatase-rutile mixtures based on X-ray diffraction intensities was performed. The results were plotted as cumulative transformation rate vs. cumulative coarsening rate in order to address the heating history of the anatase to rutile transformation. As the main result it was found that the amount of anatase transformed into rutile increases with increasing heating rate at fixed soaking time and temperature of calcination. Through linear extrapolation of experimental data obtained from the calcined commercial titania Degussa P25, it was found that 83 nm for the rutile crystallite size is the lowest limit needed for getting 100% of rutile powders. A substantial improvement in the anatase to rutile kinetic transformation was achieved after pressing the starting powders in order to exploit the interface nucleation.

  4. Flash Heating of Crustal Rocks at Seismic Slip Rates

    Science.gov (United States)

    Goldsby, D. L.; Spagnuolo, E.; Smith, S. A.; Beeler, N. M.; Tullis, T. E.; Di Toro, G.; Nielsen, S. B.

    2012-12-01

    Recent experiments have demonstrated that rocks undergo extreme frictional weakening at near-earthquake slip rates due to the thermal degradation of the strength, or even melting, of microscopic asperity contacts on their sliding surfaces (Goldsby and Tullis, 2012). These previous experiments, conducted at constant normal stress and slip rates of up to ~0.4 m/s, revealed a 1/V dependence of friction on slip rate above a characteristic weakening velocity, Vw, in accord with theories of flash heating (e.g., Rice, 2006). The weakening velocity obtains values of ~0.1 m/s for many crustal silicate rocks (Goldsby and Tullis, 2012). Here we test two further predictions of flash-heating theory - that the degree of weakening saturates at slip rates approaching 1 m/s, and that the weakening behavior due to flash heating is independent of normal stress - by testing samples at slip rates of up to 1 m/s at different normal stresses. Experiments were conducted in a 1-atm, high-velocity friction apparatus at the Istituto Nazionale di Geofisica e Vulcanologia in Rome. A sample consisted of a pair of hollow cylinders of Westerly granite or Frederick diabase subjected to a nominally constant normal stress of from 1 to 30 MPa and subjected to a variety of rate-stepping sequences. Data were acquired at rates of up to 1 MHz. As predicted, the experiments demonstrate that the degree of weakening due to flash heating saturates at slip rates approaching 1 m/s; in a few cases, friction even increases slightly with increasing slip rate near 1 m/s. The experiments also demonstrate that, within the scatter of the data, the value of Vw and the friction coefficient in the weakened state is independent of normal stress, the expected result if average contact sizes and contact stresses are independent of normal stress. The data thus further corroborate existing theories and experimental data for flash heating, allowing for a more reliable determination of the conditions under which flash heating

  5. Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe

    Directory of Open Access Journals (Sweden)

    S Boothaisong

    2015-02-01

    Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.

  6. r-Process Lanthanide Production and Heating Rates in Kilonovae

    CERN Document Server

    Lippuner, Jonas

    2015-01-01

    r-Process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the material after nuclear burning ceases, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. (2013, ApJ, 774, 25) and Tanaka & Hotokezaka (2013, ApJ, 775, 113) pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions $Y_e$, initial specific entropies $s$, and expansion timescales $\\tau$. We find that the ejecta is lanthanide-free for $Y_e \\gtrsim 0.22 - 0.30$, depending on $s$ and $\\tau$. The heating rate is insensitive to $s$ and $\\tau$, but certain, larger values of $Y_e$ lead to reduced heating rates, due to individual nuclides dominating the heating. With a...

  7. Standby Rates for Combined Heat and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, Richard [Regulatory Assistance Partnership; Selecky, James [Brubaker & Associates, Inc.; Iverson, Kathryn [Brubaker & Associates, Inc.; Al-Jabir, Ali [Brubaker & Associates, Inc.

    2014-02-01

    Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

  8. Kappa-distributions and coronal heating. (Slovak Title: Kappa-distribúcie a ohrev koróny)

    Science.gov (United States)

    Dudík, J.; Dzifčáková, E.; Kulinová, A.; Karlický, M.

    2010-12-01

    Particle energy kappa-distributions (distributions with non-thermal tails) have been diagnosed in plasma of the transition region and also in solar flares. Theoretical models suggest a link between kappa-distributions and dynamic heating of the corona. Since the presence of non-thermal distributions leads to changes in intensities of emission lines, we have examined their effect on the total radiation losses of the corona as well as responses of the EUV and X-ray filters. Temperature responses of the filters are wider for kappa-distributions than in the case of the Maxwell distribution, and their respective maxima are shifted towards higher temperatures. On the other hand, the total radiation losses of the corona are lower compared to the Maxwell distribution except for the extreme non-thermal case. This means that lower heating energy is needed to reach the same corona temperature in case of kappa-distributions. In this work we discuss the effect of element abundances and specific ions on the total radiation losses of the corona.

  9. Resistive Wall Heating of the Undulator in High Repetition Rate

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, J; Corlett, J; Emma, P; Wu, J

    2012-05-20

    In next generation high repetition rate FELs, beam energy loss due to resistive wall wakefields will produce significant amount of heat. The heat load for a superconducting undulator (operating at low temperature), must be removed and will be expensive to remove. In this paper, we study this effect in an undulator proposed for a Next Generation Light Source (NGLS) at LBNL. We benchmark our calculations with measurements at the LCLS and carry out detailed parameter studies using beam from a start-to-end simulation. Our preliminarym results suggest that the heat load in the undulator is about 2 W/m or lower with an aperture size of 6 mm for nominal NGLS preliminary design parameters.

  10. Heat transfer and heating rate of food stuffs in commercial shop ovens

    Indian Academy of Sciences (India)

    P Navaneethakrishnan; P S S Srinivasan; S Dhandapani

    2007-10-01

    The CFD analysis of flow and temperature distribution in heating ovens used in bakery shop, to keep the foodstuffs warm, is attempted using finite element technique. The oven is modelled as a two-dimensional steady state natural convection heat transfer problem. Effects of heater location and total heat input on temperature uniformity of foodstuffs are studied. Placing the heater at the bottom of the oven improves the air circulation rate by 17 times and 10 times than that at the top and side of the oven. But the top location provides better uniformity in foodstuff temperature than the other cases. Side location is not preferable. In the present ovens, the heating elements are located at the top. The analysis shows that if heaters are located at the bottom along with additional flow guidance arrangements, energy efficient oven configuration can be obtained.

  11. Pyrolysis kinetics of bagasse at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Stubington, J.F.; Aiman, S. (University of New South Wales, Kensington, NSW (Australia). Dept. of Fuel Technology)

    The rate of pyrolysis of bagasse was studied at high heating rates (200-10,000 [degree]C/s) to obtain engineering data for incorporation into computational fluid dynamic models of bagasse ignition and combustion in suspension-fired and swirl burners. Experiments were performed using an electrically-heated grid under a nitrogen atmosphere at atmosphere pressure. Yields of char, tar, individual gas components, and water were measured as a function of peak temperature, for ranges of heating rate, residence time at peak temperature, and particle size. At higher peak temperatures, significant tar cracking occurred so that tar yields passed through a maximum as peak temperature increased. For dry bagasse, this tar cracking produced gases with no change in char yield, suggesting that it occurred external to the particle. Moisture in the atmosphere increased the tar cracking in the vapor phase outside the bagasse particle producing more gases but did not affect the char yield. However, moisture in the bagasse reduced the char yield and further enhanced the tar cracking reactions, producing even more gases (predominantly carbon monoxide). These results suggested an interaction between water vapor and the tar cracking reactions. For the short residence times appropriate to such burners, a single, first-order reaction model gave the best fit to the total weight loss for the ranges of heating rate and particle sizes studied. However, the first-order kinetic parameters fitted to primary tar production were recommended for modeling purposes because the total weight loss included significant yields of noncombustible water and carbon dioxide. Different ultimate primary tar yields were recommended to fit the dry and wet bagasse pyrolysis results. No chemical significance should be attributed to the kinetic parameters, which were determined to provide the simplest and best fit to the pyrolysis data. 19 refs., 15 figs., 5 tabs.

  12. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  13. Slipping magnetic reconnection in coronal loops.

    Science.gov (United States)

    Aulanier, Guillaume; Golub, Leon; Deluca, Edward E; Cirtain, Jonathan W; Kano, Ryouhei; Lundquist, Loraine L; Narukage, Noriyuki; Sakao, Taro; Weber, Mark A

    2007-12-07

    Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments.

  14. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.

  15. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  16. Maximum orbit plane change with heat-transfer-rate considerations

    Science.gov (United States)

    Lee, J. Y.; Hull, D. G.

    1990-01-01

    Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.

  17. The pyrolysis kinetics of bagasse at low heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, S.; Stubington, J.F. (New South Wales Univ., Kensington, NSW (Australia))

    1993-01-01

    Thermogravimetric Analysis (TGA) was used to study the thermal degradation of wet and dry bagasse at low heating rates (5 to 50[sup o]C min[sup -1]) under a nitrogen atmosphere. For engineering purposes, it was found that a single first-order reaction gave the simplest and best fit to the rapid pyrolysis zone between 195 and 395[sup o]C, with an activation energy of 93.2 kJ mol[sup -1] and pre-exponential factor of 4.33 x 10[sup 4]s[sup -1]. These values have no chemical significance, but have been derived for use in modelling studies of the ignition and combustion of bagasse. Sample moisture content up to 18% by weight had no effect on the degradation, because moisture evaporation was complete before pyrolysis commenced at these low heating rates. The choice of the final mass from the TGA curve significantly affected the deduced kinetic parameters. The final sample mass at the end of the rapid pyrolysis zone was 26.2% of the dry sample mass. (author)

  18. Integration and software for thermal test of heat rate sensors

    Science.gov (United States)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-04-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  19. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  20. The Optimum Plate to Plate Spacing for Maximum Heat Transfer Rate from a Flat Plate Type Heat Exchanger

    Science.gov (United States)

    Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah

    The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.

  1. Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit

    Directory of Open Access Journals (Sweden)

    Jankovskiy Stanislav

    2015-01-01

    Full Text Available Experimental research of heating rate influence on coal samples gasification process of Krasnogorsky and Borodinsky coal deposit ranks A and 2B was done to define optimal heating mode in high intensification of dispersal of inflammable gases conditions. Abundance ratio of carbon monoxide and nitrogen monoxide, water vapor, carbon dioxide at four values of heating rate within the range of 5 to 30 K/min. with further definition of optimal heating rate of coals was stated.

  2. Coronal influence on dynamos

    CERN Document Server

    Warnecke, Jörn

    2013-01-01

    We report on turbulent dynamo simulations in a spherical wedge with an outer coronal layer. We apply a two-layer model where the lower layer represents the convection zone and the upper layer the solar corona. This setup is used to study the coronal influence on the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three times the solar radius and changing the magnetic Reynolds number, we find that dynamo action benefits from the additional coronal extent in terms of higher magnetic energy in the saturated stage. The flux of magnetic helicity can play an important role in this context.

  3. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  4. 40 CFR 75.36 - Missing data procedures for heat input rate determinations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for heat input... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate...

  5. The temporal evolution of coronal loops observed by GOES-SXI

    CERN Document Server

    Fuentes, M C L; Mandrini, C H

    2006-01-01

    We study the temporal evolution of coronal loops using data from the Solar X-ray Imager (SXI) on board of GOES-12. This instrument allows us to follow in detail the full lifetime of coronal loops. The observed light curves suggest three somewhat distinct evolutionary phases: rise, main, and decay. The durations and characteristic timescales of these phases are much longer than a cooling time and indicate that the loop-averaged heating rate increases slowly, reaches a maintenance level, and then decreases slowly. This suggests that a single heating mechanism operates for the entire lifetime of the loop. For monolithic loops, the loop-averaged heating rate is the intrinsic energy release rate of the heating mechanism. For loops that are bundles of impulsively heated strands, it is an indication of the frequency of occurrence of individual heating events, or nanoflares. We show that the timescale of the loop-averaged heating rate is proportional to the timescale of the observed intensity variation. The ratios of...

  6. Observational features of equatorial coronal hole jets

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    2010-03-01

    Full Text Available Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s−1, while the deceleration rate appears to be about 0.11 km s−2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.

  7. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  8. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  9. Heat transfer intensification by increasing vapor flow rate in flat heat pipes

    Science.gov (United States)

    Sprinceana, Silviu; Mihai, Ioan; Beniuga, Marius; Suciu, Cornel

    2015-02-01

    Flat heat pipes have various technical applications, one of the most important being the cooling of electronic components[9]. Their continuous development is due to the fact that these devices permit heat transfer without external energetic contribution. The practical exploitation of flat heat pipes however is limited by the fact that dissipated power can only reach a few hundred watts. The present paper aims to advance a new method for the intensification of convective heat transfer. A centrifugal mini impeller, driven by a turntable which incorporates four permanent magnets was designed. These magnets are put in motion by another rotor, which in its turn includes two permanent magnets and is driven by a mini electrical motor. Rotation of the centrifugal blades generates speed and pressure increase of the cooling agent brought to vapor state within the flat micro heat pipe. It's well known that the liquid suffers biphasic transformations during heat transfer inside the heat pipe. Over the hotspot (the heat source being the electronic component) generated at one end of the heat pipe, convective heat transfer occurs, leading to sudden vaporization of the liquid. Pressures generated by newly formed vapors push them towards the opposite end of the flat heat pipe, where a finned mini heat sink is usually placed. The mini-heat exchanger is air-cooled, thus creating a cold spot, where vapors condensate. The proposed method contributes to vapor flow intensification by increasing their transport speed and thus leading to more intense cooling of the heat pipe.

  10. An algorithm for the kinetics of tire pyrolysis under different heating rates.

    Science.gov (United States)

    Quek, Augustine; Balasubramanian, Rajashekhar

    2009-07-15

    Tires exhibit different kinetic behaviors when pyrolyzed under different heating rates. A new algorithm has been developed to investigate pyrolysis behavior of scrap tires. The algorithm includes heat and mass transfer equations to account for the different extents of thermal lag as the tire is heated at different heating rates. The algorithm uses an iterative approach to fit model equations to experimental data to obtain quantitative values of kinetic parameters. These parameters describe the pyrolysis process well, with good agreement (r(2)>0.96) between the model and experimental data when the model is applied to three different brands of automobile tires heated under five different heating rates in a pure nitrogen atmosphere. The model agrees with other researchers' results that frequencies factors increased and time constants decreased with increasing heating rates. The model also shows the change in the behavior of individual tire components when the heating rates are increased above 30 K min(-1). This result indicates that heating rates, rather than temperature, can significantly affect pyrolysis reactions. This algorithm is simple in structure and yet accurate in describing tire pyrolysis under a wide range of heating rates (10-50 K min(-1)). It improves our understanding of the tire pyrolysis process by showing the relationship between the heating rate and the many components in a tire that depolymerize as parallel reactions.

  11. Effect of Heating Rate on Glass Foaming: Transition to Bulk Foam

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.

    2009-02-15

    Foaming of glass is an undesirable side effect of glass fining. According to a recent experimental study, the gas-phase volume in the melt heated at a constant rate dramatically increased with an increased rate of heating. This observation indicates that an increased rate of heating (a natural consequence of the increased processing rate experienced as a result of transition to oxy-fuel firing) may exert a substantial influence on glass foaming in advanced glass-melting furnaces. This paper attributes this effect to the change of mode of foam formation in response to an increased rate of heating.

  12. Heat storage rate and acute fatigue in rats

    Directory of Open Access Journals (Sweden)

    L.O.C. Rodrigues

    2003-01-01

    Full Text Available Thermal environmental stress can anticipate acute fatigue during exercise at a fixed intensity (%VO2max. Controversy exists about whether this anticipation is caused by the absolute internal temperature (Tint, ºC, by the heat storage rate (HSR, cal/min or by both mechanisms. The aim of the present study was to study acute fatigue (total exercise time, TET during thermal stress by determining Tint and HSR from abdominal temperature. Thermal environmental stress was controlled in an environmental chamber and determined as wet bulb globe temperature (ºC, with three environmental temperatures being studied: cold (18ºC, thermoneutral (23.1ºC or hot (29.4ºC. Six untrained male Wistar rats weighing 260-360 g were used. The animals were submitted to exercise at the same time of day in the three environments and at two treadmill velocities (21 and 24 m/min until exhaustion. After implantation of a temperature sensor and treadmill adaptation, the animals were submitted to a Latin square experimental design using a 2 x 3 factorial scheme (velocity and environment, with the level of significance set at P<0.05. The results showed that the higher the velocity and the ambient temperature, the lower was the TET, with these two factors being independent. This result indicated that fatigue was independently affected by both the increase in exercise intensity and the thermal environmental stress. Fatigue developed at different Tint and HSR showed the best inverse relationship with TET. We conclude that HSR was the main anticipating factor of fatigue.

  13. Prediction of Heat Transfer Rates for Shell-and-Tube Heat Exchangers by Artificial Neural Networks Approach

    Institute of Scientific and Technical Information of China (English)

    Qiuwang WANG; Gongnan XIE; Ming ZENG; Laiqin LUO

    2006-01-01

    This work used artificial neural network (ANN) to predict the heat transfer rates of shell-and-tube heat exchangers with segmental baffles or continuous helical baffles, based on limited experimental data. The Back Propagation (BP) algorithm was used in training the networks. Different network configurations were also studied. The deviation between the predicted results and experimental data was less than 2%. Comparison with correlation for prediction shows ANN superiority. It is recommended that ANN can be easily used to predict the performances of thermal systems in engineering applications, especially to model heat exchangers for heat transfer analysis.

  14. Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, Mexico D.F. 04510 (Mexico); Gonzalez, P.R., E-mail: pedro.gonzalez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, C.P. 52750, Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Division of Touro College New York, Circne Gianicolense 15-17, 00153 Rome (Italy)

    2011-10-15

    The influence of heating rate on the thermoluminescence (TL) property of LiF:Mg,Cu,P+PTFE was analyzed. The activation energy and the frequency factor as a function of the heating rate were determined. The kinetic parameters and their dependence on the heating rate were evaluated using the sequential quadratic programming glow curve deconvolution (SQPGCD). The results showed that as the heating rate increases, the peak intensity at the maximum (I{sub M}) decreases and shifts to higher temperature; similar behavior of the kinetics parameters was observed. - Highlights: >Heating rate influence on the thermoluminescence (TL) property of LiF:Mg,Cu,P was analyzed. > The kinetic parameters, activation energy and frequency factor were evaluated using the sequential quadratic programming glow curve deconvolution. > The peak intensity at the maximum (I{sub M}) of the glow curves decreases. > Shifts to higher temperature were observed as the heating rate increased. > Similar behavior of the kinetics parameters was noticed.

  15. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    Science.gov (United States)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  16. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    Science.gov (United States)

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  17. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded

  18. Direct measurement of heat transfer rates and coefficients in freezing processes by the use of heat flux sensors

    Energy Technology Data Exchange (ETDEWEB)

    Amarante, A.; Lanoiselle, J.L.; Ramirez, A.

    2003-10-01

    Heat exchange is often complex to assess in freezing equipment. Either the extensive calculation procedures based on product time-temperature data, or the lack of accurate thermophysical properties, or even the non-uniform processing conditions in industrial equipment, results in increased difficulty in calculating accurate heat exchange parameters. The present study aims to solve this kind of problem by introducing the use of heat flux sensors (or fluxmeters) for an online measurement of heat exchange parameters during freezing processes. Since food products often have irregular, moist and greasy surfaces, bad attachment of the sensors can lead to low accuracy in heat flux measurement. First, a technique was improved in this particular and a numerical procedure based on matching the experimental and simulated temperature histories was used to calibrate the sensors attached to Tylose gels submitted to freezing and thawing cycles. Following this, the sensors were applied directly to a vegetable product undergoing freezing in a static freezer to measure the instantaneous product heat release rate and the local heat transfer coefficient. A fluxmeter-plastic transducer was also developed and used, coupled to an anemometer to map axially and transversally the local effective heat transfer coefficient and air speed profiles in a Super-Contact freezing tunnel. Results were compared with numerical simulations and showed good agreement. Irregular air speed distribution and low efficiency heat transfer zones were accurately detected, providing information for equipment optimization. (author)

  19. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    Energy Technology Data Exchange (ETDEWEB)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark [Smithsonian Astrophysical Observatory, 60 Garden street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Kuzin, Sergey [P. N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt, 53, 119991 Moscow (Russian Federation); Walsh, Robert [University of Central Lancashire, Lancashire, Preston PR1 2HE (United Kingdom); DeForest, Craig, E-mail: ptesta@cfa.harvard.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  20. Coronal Mass Ejections

    Science.gov (United States)

    Crooker, Nancy; Joselyn, Jo Ann; Feynman, Joan

    The early 1970's can be said to mark the beginning of The Enlightenment in the history of the Space Age, literally as well as by analogy to European history. Instruments blinded by Earth's atmosphere were lifted above and, for the first time, saw clearly and continuously the ethereal white light and sparkling x-rays from the solar corona. From these two bands of the light spectrum came images of coronal mass ejections and coronal holes, respectively. But whereas coronal holes were immediately identified as the source of high-speed solar wind streams, at first coronal mass ejections were greeted only by a sense of wonder. It took years of research to identify their signatures in the solar wind before the fastest ones could be identified with the well-known shock disturbances that cause the most violent space storms.

  1. Dielectric properties and heating rate of broccoli powder as related to radio-frequency heating

    Science.gov (United States)

    Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....

  2. The Fundamental Structure of Coronal Loops

    Science.gov (United States)

    Winebarger, Amy; Warren, Harry; Cirtain, Jonathan; Kobayashi, Ken; Korreck, Kelly; Golub, Leon; Kuzin, Sergey; Walsh, Robert; DePontieu, Bart; Title, Alan; Weber, Mark

    2012-01-01

    During the past ten years, solar physicists have attempted to infer the coronal heating mechanism by comparing observations of coronal loops with hydrodynamic model predictions. These comparisons often used the addition of sub ]resolution strands to explain the observed loop properties. On July 11, 2012, the High Resolution Coronal Imager (Hi ]C) was launched on a sounding rocket. This instrument obtained images of the solar corona was 0.2 ]0.3'' resolution in a narrowband EUV filter centered around 193 Angstroms. In this talk, we will compare these high resolution images to simultaneous density measurements obtained with the Extreme Ultraviolet Imaging Spectrograph (EIS) on Hinode to determine whether the structures observed with Hi ]C are resolved.

  3. Observational features of equatorial coronal hole jets

    CERN Document Server

    Nistico', G; Patsourakos, S; Zimbardo, G

    2010-01-01

    Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km/s, while the deceleration rate appears to be about 0.11 km/s2, less than solar gravity. The average jet visibility time is about 30 minutes, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and eq...

  4. THE POSSIBILITIES OF CO2 EMISSION REDUCTION IN THE PROCESS OF STEEL CHARGE HEATING THROUGH THE SELECTION OF HEATING RATE

    Directory of Open Access Journals (Sweden)

    Barbara Halusiak

    2015-08-01

    Full Text Available The reduction of carbon dioxide emission is an important aspect of the economic policy of each country. Institutions promoting environmental protection seek to reduce the level of greenhouse gas emissions. One of the main emitters of harmful gases to the atmosphere is the steelmaking sector. The heating technology used in metallurgical works contributes to the amount of emitted carbon dioxide that forms as a result of the loss of steel and the combustion of fuel, whose thermal energy is used during the course of the charge heating process in the heating furnace. Achieving the imposed ecological targets by not exceeding the specified emission level is possible by implementing appropriate pollutant emission reducing technologies in the metallurgical industry. Based on numerical computation results, the effect of heating rate on the emission of carbon dioxide has been determined in the paper. This study demonstrates that by selecting the appropriate steel charge heating technology the emissions of greenhouse gases can be substantially reduced.

  5. Convective Heat Transfer Scaling of Ignition Delay and Burning Rate with Heat Flux and Stretch Rate in the Equivalent Low Stretch Apparatus

    Science.gov (United States)

    Olson, Sandra

    2011-01-01

    To better evaluate the buoyant contributions to the convective cooling (or heating) inherent in normal-gravity material flammability test methods, we derive a convective heat transfer correlation that can be used to account for the forced convective stretch effects on the net radiant heat flux for both ignition delay time and burning rate. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone heater to minimize buoyant effects while at the same time providing a forced stagnation flow on the sample, which ignites and burns as a ceiling fire. Ignition delay and burning rate data is correlated with incident heat flux and convective heat transfer and compared to results from other test methods and fuel geometries using similarity to determine the equivalent stretch rates and thus convective cooling (or heating) rates for those geometries. With this correlation methodology, buoyant effects inherent in normal gravity material flammability test methods can be estimated, to better apply the test results to low stretch environments relevant to spacecraft material selection.

  6. Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate

    Directory of Open Access Journals (Sweden)

    Rakesh Hari

    2016-01-01

    Full Text Available Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.

  7. Retrofits for improved heat rate and availability: Low-level heat recovery economizer retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Rubow, L.N.; Borden, M.; Boulay, R.B.; Buchanan, T.L.; Granger, J.F.; Horazak, D.A.; Phillips, N.A. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1992-06-01

    The subject of this report, involves the recovery of heat from the flue gas to preheat combustion air and protect the air heater. Flue gas is a large potential source of heat, but this mode of heat recovery has seen limited application due to the corrosive environment created in plant tail-end systems by condensation in sulfur-laden flue gases. Several installations of low-level economizers'' (LLEs) have experienced varied degrees of success using cast iron-type heat exchangers. Alternate materials that may be suitable for this application were investigated in this project. The cost of various types of installations with regard to equipment arrangement, remaining plant life, plant capacity factor, plant operating modes, ambient temperature characteristics, fuel costs, utility cost evaluation methods, and external economic factors were investigated.

  8. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring

    Science.gov (United States)

    Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.

    2017-06-01

    Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.

  9. An Ab Initio approach to Solar Coronal Loops

    CERN Document Server

    Gudiksen, B V

    2004-01-01

    Data from recent numerical simulations of the solar corona and transition region are analysed and the magnetic field connection between the low corona and the photosphere is found to be close to that of a potential field. The fieldline to fieldline displacements follow a power law distribution with typical displacements of just a few Mm. Three loops visible in emulated Transition Region And Coronal Explorer (TRACE) filters are analysed in detail and found to have significantly different heating rates and distributions thereof, one of them showing a small scale heating event. The dynamical structure is complicated even though all the loops are visible in a single filter along most of their lengths. None of the loops are static, but are in the process of evolving into loops with very different characteristics. Differential Emission Measure (DEM) curves along one of the loops illustrate that DEM curves have to be treated carefully if physical characteristics are to be extracted.

  10. Insensitivity of Ion Motional Heating Rate to Trap Material over a Large Temperature Range

    CERN Document Server

    Chiaverini, J

    2014-01-01

    We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K up to room temperature (295 K) in a single apparatus. Using the sideband-ratio technique after resolved-sideband cooling of single ions to the motional ground state, we find low-temperature heating rates more than two orders of magnitude below the room-temperature values and approximately equal to the lowest measured heating rates in similarly-sized cryogenic traps. We find similar behavior in the two very different electrode materials, suggesting that the anomalous heating process is dominated by non-material-specific surface contaminants. Through precise control of the temperature of cryopumping surfaces, we also identify conditions under which elastic collisions with the background gas can lead to an apparent steady heating rate, despite rare collisions.

  11. Observing coronal nanoflares in active region moss

    CERN Document Server

    Testa, Paola; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by SDO/AIA in the 94A channel, and by Hinode/XRT. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few $10^{23}rg, also supporting the nanoflare scenario. These Hi-C...

  12. Prediction of the Scale Removal Rate in Heat Exchanger Piping

    Directory of Open Access Journals (Sweden)

    Najwa S. Majeed

    2010-01-01

    Full Text Available The possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate (as it is the controlling process are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.Correlation for the variation of Sherwood number ( or mass transfer rate with Reynolds’s number have been obtained .

  13. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)

    2009-12-15

    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  14. Computer simulation of metal wire explosion under high rate heating

    Science.gov (United States)

    Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.

    2017-05-01

    Synchronous electric explosion of metal wires and synthesis of bicomponent nanoparticles were investigated on the base of molecular dynamics method. Copper and nickel nanosized crystallites of cylindrical shape were chosen as conductors for explosion. The embedded atom approximation was used for calculation of the interatomic interactions. The agglomeration process after explosion metal wires was the main mechanism for particle synthesis. The distribution of chemical elements was non-uniform over the cross section of the bicomponent particles. The copper concentration in the surface region was higher than in the bulk of the synthesized particle. By varying the loading parameters (heating temperature, the distance between the wires) one can control the size and internal structure of the synthesized bicomponent nanoparticles. The obtained results showed that the method of molecular dynamics can be effectively used to determine the optimal technological mode of nanoparticle synthesis on the base of electric explosion of metal wires.

  15. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate.

  16. Heat Conduction in a Functionally Graded Plate Subjected to Finite Cooling/Heating Rates: An Asymptotic Solution

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2011-12-01

    Full Text Available This work investigates transient heat conduction in a functionally graded plate (FGM plate subjected to gradual cooling/heating at its boundaries. The thermal properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate in the plate thickness direction. A linear ramp function describes the cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace transform are employed to obtain the transformed temperatures at the interfaces between the layers. An asymptotic analysis and an integration technique are then used to obtain a closed form asymptotic solution of the temperature field in the FGM plate for short times. The thermal stress intensity factor (TSIF for an edge crack in the FGM plate calculated based on the asymptotic temperature solution shows that the asymptotic solution can capture the peak TSIFs under the finite cooling rate conditions.

  17. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  18. Global Coronal Waves

    CERN Document Server

    Chen, P F

    2016-01-01

    After the {\\em Solar and Heliospheric Observatory} ({\\em SOHO}) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named "EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the {\\em Solar Dynamics Observatory} ({\\em SDO}) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal...

  19. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  20. Can reptile embryos influence their own rates of heating and cooling?

    Science.gov (United States)

    Du, Wei-Guo; Tu, Ming-Chung; Radder, Rajkumar S; Shine, Richard

    2013-01-01

    Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars) cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo's effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.

  1. Can reptile embryos influence their own rates of heating and cooling?

    Directory of Open Access Journals (Sweden)

    Wei-Guo Du

    Full Text Available Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo's effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.

  2. Tailoring the characteristics of carbonized wood charcoal by using different heating rates

    Science.gov (United States)

    Kwon, Gu-Joong; Kim, Dae-Young; Oh, Choong-Hyeon; Park, Byung-Ho; Kang, Joo-Hyon

    2014-05-01

    This study examined the characteristics of charcoals generated from White Lauan ( Pentacmecontorta) and Punah ( Tetrameristaglabra) by using different carbonization temperatures and heating rates. The scanning electron micrographs showed vestured pits in the White Lauan and raphide crystals in Punah as their respective anatomical characteristics. A slower heating rate resulted in a lower temperature to obtain the same amount of weight loss, regardless of the species being tested. A greater charcoal yield was obtained at a higher heating rate. The specific surface area was smaller in the charcoal produced at a higher carbonization temperature, but the heating rate had little effected. For both wood species, the axial compressive strength of the charcoal increased as the carbonization temperature was increased. The X-ray diffractograms of White Lauan and Punah woods heated at 1200°C indicated thermal decomposition of the crystal structure of cellulose, but no appreciable structural changes occurred under the tested heating rate conditions. Overall, the heating rate affected the charcoal yield but not the specific surface area, compressive strength, and crystal structure.

  3. R&D on Resistive Heat Exchangers for HTS High Rated Current Leads%R&D on Resistive Heat Exchangers for HTS High Rated Current Leads

    Institute of Scientific and Technical Information of China (English)

    毕延芳

    2011-01-01

    The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4%

  4. Thermogravimetric characteristics of char obtained at high heat rate

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2010-05-01

    700°C, 800°C and 900°C to obtain their combustion profiles. Characteristic temperatures (ignition, peak and final tempe- ratures were determined by non-isothermal thermogravimetry; it was found that chars from La Yolanda coal gave the highest figures for the characteristic temperatures. Isothermal thermogravimetry revealed that the combustion rate for the three coals decreased with increased devolatilisation time and combustion temperature.

  5. Observing the formation of flare-driven coronal rain

    OpenAIRE

    Scullion, E.; Rouppe van der Voort, L.; Antolin, P.; Wedemeyer, S.; Vissers, G.; E. P. Kontar; Gallagher, P

    2016-01-01

    PA. GV are funded by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 291058 Flare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop-tops in thermally unstable post-flare arcades. We detect 5 phases that characterise the post-flare decay:heating, evaporation, conductive cooling dominance for ~120 s, radiative/ enthalpy cooling dominance for ~4700 s and finally catastrophic ...

  6. Are Spicules the Primary Source of Hot Coronal Plasma?

    Science.gov (United States)

    Klimchuk, James A.

    2011-01-01

    The recent discovery of Type II spicules has generated considerable excitement. It has even been suggested that these ejections can account for a majority of the hot plasma observed in the corona, thus obviating the need for "coronal" heating. If this is the case, however, then there should be observational consequences. We have begun to examine some of these consequences and find reason to question the idea that spicules are the primary source of hot coronal plasma.

  7. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  8. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.J. [Argonne National Lab., IL (United States)

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  9. Average Rate of Heat-Related Hospitalizations in 23 States, 2001-2010

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the 2001–2010 average rate of hospitalizations classified as “heat-related” by medical professionals in 23 states that participate in CDC’s...

  10. Heat transfer in a microvascular network: the effect of heart rate on heating and cooling in reptiles (Pogona barbata and Varanus varius).

    Science.gov (United States)

    Seebacher, F

    2000-03-21

    Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.

  11. An analysis of representative heating load lines for residential HSPF ratings

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  12. The relationship between the magnetic field and the coronal activities in the polar region

    Science.gov (United States)

    Shimojo, Masumi

    The image of the polar region of the sun is changing based on the observations taken by the three telescopes aboard the Hinode satellite. Based on the data of Solar Optical Telescope (SOT) aboard Hinode, Tsuneta et al. (2007) reported that there are many localized magnetic poles in the polar region, and the magnetic strength of the magnetic poles is over thousand Gauss. They called the strong magnetic pole in the polar region "kG-pathce". And, Cirtain, et al. (2007) and Savcheva, et al. (2007) presented that the occurrence rate of X-ray jets in the polar region is very high and 10 events/hour. Their result was obtained by the high resolution observations by X-ray Telescope (XRT) aboard Hinode. These results are very important for understanding the fast solar wind that blows from the polar region. On the other hand, in order to understand the activities in the polar region, it is very important to investigate the relationship between the magnetic environments and the coronal structures/activities. In the paper, for the purpose, we aligned the photospheric images (G-band, Stoke-IQUV of FeI), the chromospheric images (Ca II H line, Stokes-V of Na) and coronal images (X-ray) obtained by Hinode, and investigate the relationship. Basically, the co-alignment process was done based on the alignment information of the telescopes reported by Shimizu et al. (2007). And, we aligned the images using the curve of the solar limb, finally. As the result of the co-alignments, we found the following things. 1) On most kG-patches in the polar coronal hole, there is any coronal structure. 2) X-ray jets in the polar coronal hole are not always associated with the kG-patches. Some X-ray jets are associated with very weak magnetic field. And, the jets are strongly associated with the emerging/cancelling magnetic flux. The first one suggests that the coronal heating is not effective only in the magnetic field strong, such as the center of the sunspot. The second result indicates that the

  13. Investigating the performance of simplified neutral-ion collisional heating rate in a global IT model

    Science.gov (United States)

    Zhu, Jie; Ridley, Aaron J.

    2016-01-01

    The Joule heating rate has usually been used as an approximate form of the neutral-ion collisional heating rate in the thermospheric energy equation in global thermosphere-ionosphere models. This means that the energy coupling has ignored the energy gained by the ions from collisions with electrons. It was found that the globally averaged thermospheric temperature (Tn) was underestimated in simulations using the Joule heating rate, by about 11% when F10.7=110 solar flux unit (sfu, 1 sfu = 10-22 W m-2 Hz-1) in a quiet geomagnetic condition. The underestimation of Tn was higher at low latitudes than high latitudes, and higher at F region altitudes than at E region altitudes. It was found that adding additional neutral photoelectron heating in a global IT model compensated for the underestimation of Tn using the Joule heating approximation. Adding direct photoelectron heating to the neutrals compensated for the indirect path for the energy that flows from the electrons to the ions then to the neutrals naturally and therefore was an adequate compensation over the dayside. There was a slight dependence of the underestimation of Tn on F10.7, such that larger activity levels resulted in a need for more compensation in direct photoelectron heating to the neutrals to make up for the neglected indirect heating through ions and electrons.

  14. Effect of Heating Rates on the Formable Oxide Scale on a C-Steel Surface

    Institute of Scientific and Technical Information of China (English)

    A.A.El-Meligi

    2004-01-01

    Oxide scale formation on a C-steel surface has been investigated using linear heating rates ranging from 0.1℃/min to 10℃/min at high temperatures. The studies on the oxide scale formation at high temperature (650℃) at slower heating rate (0.1℃/min) shows that the kinetic regime is linear. X-ray diffraction measurements revealed that the scale constituents are significantly influenced by the heating rate. The adherence of the scale was improved by using slower heating rate (0.1℃/min-≤650℃),while above such degree the scale was susceptible to cracking and flaking out of the alloy surface. In fact, the development of oxide growth stresses can cause considerable scale cracking. As well, variation of the crystallite sizes under the aforementioned conditions might affect the scale stacking to the alloy surface. The secondary electron detector images of the oxide scale shows that the scale was imperfectly smooth and there were a number of voids and defects in the scale skin, especially at fast heating rate. This observation could be attributed to defects of the as-received alloy. In general, slower heating rate reduced the defects of the scale and improved its adherence.

  15. Heat accumulation during high repetition rate ultrafast laser interaction: Waveguide writing in borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, ON, M5S 3G4 (Canada)

    2007-04-15

    During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials.

  16. Dilatometric and hardness analysis of C45 steel tempering with different heating-up rates

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2012-01-01

    Full Text Available Modelling of technological processes of heat treatment or welding, involving multiple heat source transitions, requires considering the phenomenon of tempering. In work have been presented results of dilatometric research of hardened C45 steel subjected to tempering. The analysis of the influence of heating rate at the kinetic determined from dilatometric curves has been made. There have also been estimated quantities of transformation expansions and thermal expansion coefficients of hardening and tempering structures (austenite, ferrite, pearlite, martensite and sorbite. The analysis of tempering time influence on the hardness of tempered steel has been made. Functions associating hardness with tempering time (rate of heating-up in technological processes based on short-timed action of a heat source (eg. laser treatment have been suggested.

  17. Experimental test of the heating and cooling rate effect on blocking temperatures

    Science.gov (United States)

    Berndt, Thomas; Paterson, Greig A.; Cao, Changqian; Muxworthy, Adrian R.

    2017-07-01

    The cooling rates at which rocks acquire thermoremanent magnetizations (TRMs), affect their unblocking temperatures in thermal demagnetization experiments; similarly the heating rates at which the thermal demagnetization experiments are done also affect the unblocking temperature. We have tested the effects of variable cooling and heating rates on the unblocking temperatures of two natural non-interacting, magnetically uniform (single-domain, SD) (titano)magnetite samples and a synthetic SD magnetoferritin sample. While previous studies have only considered unblocking temperatures for stepwise thermal demagnetization data (i.e. the room-temperature magnetization after incremental heating), in this work we derive an expression for continuous thermal demagnetization of both TRMs and viscous remanent magnetizations (VRMs) and relate the heating rate to an effective equivalent hold time of a stepwise thermal demagnetization experiment. Through our analysis we reach four main conclusions: First, the theoretical expressions for the heating/cooling rate effect do not accurately predict experimentally observed blocking temperatures. Empirically, the relation can be modified incorporating a factor that amplifies both the temperature and the heating rate dependence of the heating/cooling rate effect. Using these correction factors, Pullaiah nomograms can accurately predict blocking temperatures of both TRMs and VRMs for continuous heating/cooling. Second, demagnetization temperatures are approximately predicted by published 'Pullaiah nomograms', but blocking occurs gradually over temperature intervals of 5-40 K. Third, the theoretically predicted temperatures correspond to ∼54-82 per cent blocking, depending on the sample. Fourth, the blocking temperatures can be used to obtain estimates of the atomic attempt time τ0, which were found to be 3 × 10-10 s for large grained (titano)magnetite, 1 × 10-13 s for small grained (titano)magnetite below the Verwey transition and 9

  18. Coronal bright points associated with minifilament eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Yang, Bo; Yang, Dan, E-mail: hjcsolar@ynao.ac.cn [Also at Graduate School of Chinese Academy of Sciences, Beijing, China. (China)

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  19. Effect of heating rate on structure of VT23 and VT6 quenched alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Oshkaderov, S.P. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1982-01-01

    The grain and intergrain structures of two-phase VT23 and VT6 titanium alloys with an initial fine-grain structure quenched after heating with different rates in (..cap alpha..+..beta..) and ..beta..-regions were studied. The heating rate increase from 0.2 up to 200 deg/s is shown to result in the monotonic growth of a polymorphic transformation temperature, the decrease of grain size at a constant quenching temperature, the appearance of a grain size change jump, and the martensite grain refinement during heating up to ..beta..-region temperatures. The high-rate heating of VT23 and VT6 quenched alloys permits to build up dispersion intergranular structure and to control their properties.

  20. Measurement of Ion Motional Heating Rates over a Range of Trap Frequencies and Temperatures

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J

    2014-01-01

    We present measurements of the motional heating rate of a trapped ion at different trap frequencies and temperatures between $\\sim$0.6 and 1.5 MHz and $\\sim$4 and 295 K. Additionally, we examine the possible effect of adsorbed surface contaminants with boiling points below $\\sim$105$^{\\circ}$C by measuring the ion heating rate before and after locally baking our ion trap chip under ultrahigh vacuum conditions. We compare the heating rates presented here to those calculated from available electric-field noise models. We can tightly constrain a subset of these models based on their expected frequency and temperature scaling interdependence. Discrepancies between the measured results and predicted values point to the need for refinement of theoretical noise models in order to more fully understand the mechanisms behind motional trapped-ion heating.

  1. Effect of Heating Rate on the Pressureless Sintering Densification of a Nickel-Based Superalloy

    Science.gov (United States)

    Levasseur, David; Brochu, Mathieu

    2016-05-01

    Pressureless sintering of Inconel 718 has important technological applications for the densification of metal injection molding or additive manufacturing of parts with powder/binder systems. The effect of heating rates ranging from 15 to 200 K/minute on the sintering behavior of fine (-325 mesh) Inconel 718 powders was studied using the master sintering curve (MSC) concept. A pressureless pulsed electric current sintering setup was used to heat samples. The temperature at the onset of sintering increased as the heating rate increased. The formation of a supersolidus liquid fraction was shifted toward higher temperatures for increased heating rates. The apparent activation energy of sintering was obtained by least squares fitting of the sintering data to the MSC and was in good agreement with the lattice diffusion activation energy of the alloying elements present in Inconel 718. The MSC followed different kinetics for low heating rates (≤50 K/minute) and high heating rates (≥75 K/minute), and these differences were related to liquation kinetics.

  2. The heating rate in the tropical tropopause region; Die Erwaermungsrate in der tropischen Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Ulrich

    2010-07-01

    The major part of the movement of air masses from the troposphere to the stratosphere takes place in the tropics. The conveyed air mass is transported with the Brewer-Dobson circulation poleward and therefore influences the global stratospheric composition. An important cause variable for the transport of air through the tropical tropopause layer (TTL) is the radiative heating, which is investigated in this work. The influence of trace gases, temperature, and cloudiness on the heating rate is quantified, especially the effect of the overlap of several cloud layers is discussed. The heating rate in the tropics is simulated for one year. Regional differences of the heating rate profile appear between convective and stably stratified regions. By means of trace gas concentrations, temperature, and heating rates it is determined that an enhanced transport of air through the TTL took place between January and April 2007. The comparison with previous works shows that accurate input data sets of trace gases, temperature, and cloudiness and exact methods for the simulation of the radiative transfer are indispensable for modeling of the heating rate with the required accuracy. (orig.)

  3. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    Science.gov (United States)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  4. The Evolution and Space Weather Effects of Solar Coronal Holes

    Science.gov (United States)

    Krista, Larisza; Gallagher, P.

    2011-05-01

    As solar activity is the foremost important aspect of space weather, the forecasting of flare and CME related transient geomagnetic storms has become a primary initiative. Minor magnetic storms caused by coronal holes (CHs) have also proven to be important due to their long-lasting and recurrent geomagnetic effects. In order to forecast CH related geomagnetic storms, the author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm to replace the user-dependent CH detection methods commonly used. CHARM uses an intensity thresholding method to identify low intensity regions in EUV or X-ray images. Since CHs are regions of "open” magnetic field and predominant polarity, magnetograms were used to differentiate CHs from other low intensity regions. The Coronal Hole Evolution (CHEVOL) algorithm was developed and used in conjunction with CHARM to study the boundary evolution of CHs. It is widely accepted that the short-term changes in CH boundaries are due to the interchange reconnection between the CH open field lines and small loops. We determined the magnetic reconnection rate and the diffusion coefficient at CH boundaries in order to test the interchange reconnection model. The author also developed the Minor Storm (MIST) package to link CHs to high-speed solar wind (HSSW) periods detected at Earth. Using the algorithm the relationship between CHs, the corresponding HSSW properties, and geomagnetic indices were studied between 2000-2009. The results showed a strong correlation between the velocity and HSSW proton plasma temperature, which indicates that the heating and acceleration of the solar wind plasma in CHs are closely related, and perhaps caused by the same mechanism. The research presented here includes analysis of CHs on small and large spatial/temporal scales, allowing us to further our understanding of CHs as a whole.

  5. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  6. Modeling the influence of potassium content and heating rate on biomass pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Surup, Gerrit; Shapiro, Alexander

    2017-01-01

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrink......This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing....... The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (>200 K s−1) using a wire mesh reactor, a single particle...... burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium content have significant effects on the char yield. The importance of shrinkage on the devolatilization time becomes greater with increasing particle size, but showed little influence on the char yields....

  7. Coronal loops above an Active Region - observation versus model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2014-01-01

    We conducted a high-resolution numerical simulation of the solar corona above a stable active region. The aim is to test the field-line braiding mechanism for a sufficient coronal energy input. We also check the applicability of scaling laws for coronal loop properties like the temperature and density. Our 3D-MHD model is driven from below by Hinode observations of the photosphere, in particular a high-cadence time series of line-of-sight magnetograms and horizontal velocities derived from the magnetograms. This driving applies stress to the magnetic field and thereby delivers magnetic energy into the corona, where currents are induced that heat the coronal plasma by Ohmic dissipation. We compute synthetic coronal emission that we directly compare to coronal observations of the same active region taken by Hinode. In the model, coronal loops form at the same places as they are found in coronal observations. Even the shapes of the synthetic loops in 3D space match those found from a stereoscopic reconstruction ...

  8. Thermomagnetic behavior of magnetic susceptibility – heating rate and sample size effects

    Directory of Open Access Journals (Sweden)

    Diana eJordanova

    2016-01-01

    Full Text Available Thermomagnetic analysis of magnetic susceptibility k(T was carried out for a number of natural powder materials from soils, baked clay and anthropogenic dust samples using fast (11oC/min and slow (6.5oC/min heating rates available in the furnace of Kappabridge KLY2 (Agico. Based on the additional data for mineralogy, grain size and magnetic properties of the studied samples, behaviour of k(T cycles and the observed differences in the curves for fast and slow heating rate are interpreted in terms of mineralogical transformations and Curie temperatures (Tc. The effect of different sample size is also explored, using large volume and small volume of powder material. It is found that soil samples show enhanced information on mineralogical transformations and appearance of new strongly magnetic phases when using fast heating rate and large sample size. This approach moves the transformation at higher temperature, but enhances the amplitude of the signal of newly created phase. Large sample size gives prevalence of the local micro- environment, created by evolving gases, released during transformations. The example from archeological brick reveals the effect of different sample sizes on the observed Curie temperatures on heating and cooling curves, when the magnetic carrier is substituted magnetite (Mn0.2Fe2.70O4. Large sample size leads to bigger differences in Tcs on heating and cooling, while small sample size results in similar Tcs for both heating rates.

  9. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    Science.gov (United States)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  10. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  11. Observing the formation of flare-driven coronal rain

    CERN Document Server

    Scullion, E; Antolin, P; Wedemeyer, S; Vissers, G; Kontar, E P; Gallagher, P

    2016-01-01

    Flare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop-tops in thermally unstable post-flare arcades. We detect 5 phases that characterise the post-flare decay: heating, evaporation, conductive cooling dominance for ~120 s, radiative / enthalpy cooling dominance for ~4700 s and finally catastrophic cooling occurring within 35-124 s leading to rain strands with s periodicity of 55-70 s. We find an excellent agreement between the observations and model predictions of the dominant cooling timescales and the onset of catastrophic cooling. At the rain formation site we detect co-moving, multi-thermal rain clumps that undergo catastrophic cooling from ~1 MK to ~22000 K. During catastrophic cooling the plasma cools at a maximum rate of 22700 K s-1 in multiple loop-top sources. We calculated the density of the EUV plasma from the DEM of the multi-thermal source employing regularised inversion. Assuming a pressure balance, we estimate the density of the chromospheric componen...

  12. Direct observations of magnetic flux rope formation during a solar coronal mass ejection

    OpenAIRE

    Song, Hongqiang; Zhang, Jie; Chen, Yao; Cheng, Xin

    2014-01-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, \\textit{e.g.}, filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which suppor...

  13. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    Science.gov (United States)

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of heating rate on the thermoluminescence and thermal properties of natural ulexite.

    Science.gov (United States)

    Topaksu, M; Correcher, V; Garcia-Guinea, J; Yüksel, M

    2014-10-31

    Boron-rich compounds are of interest in the nuclear industry because they exhibit a high neutron absorption cross section. The manufacture of these materials involves the application of thermal and chemical treatments. This paper focuses on the study of the effect of the heating rate (HR) in two thermal techniques, differential thermal analysis (DTA) and thermoluminescence (TL), performed on natural ulexite from Bigadiç-Balıkesir (Turkey). The TL measurements were performed at six different heating rates in the range of 25-240°Cmin(-1). The UV-blue TL emission of natural ulexite shifted toward higher temperatures with increasing heating rate, whereas the intensity decreased. The kinetic parameters of the ulexite (Ea=0.65(9) eV and s=1.22×10(12)s(-1)) were calculated using the variable heating rate method. DTA measurements performed in the range of 0.5-10°Cmin(-1) displayed similar behavior to that of the TL response, despite the differences in technique and HR values. The DTA results indicated that natural ulexite exhibits two endothermic peaks originating from different processes: (i) a phase transition between the pentahydrated ulexite phase and a triple-hydrated phase and (ii) dehydration, dehydroxylation and alkali and earth-alkali self-diffusion processes in the ulexite lattice. The main endothermic peak shifted from 160°C to 250°C as the heating rate was increased.

  15. Determination of Kinetic Parameters for Thermal Decomposition of Phenolic Ablative Materials by Multiple Heating Rate Method

    Science.gov (United States)

    1980-07-01

    the ratio method to analyze thermogravimetric data obtained for a urethane polymer. Baer, Hedges, Seader , Jayakar, and Wojcik6 heated samples of...reinforced polymers at heating rates up to 4200°C/min. The data were correlated by a numerical technique developed by Burningham and Seader .7 Friedman...Decomposition Through Thermogravimetric Analysis," Thermochimica Acta, No, 1, (1970), pp. 147-158. 6. A. D. Baer, J. H. Hedges, J. D. Seader , K. M. Jayakar

  16. Tuning of Heat Transfer Rate of Cobalt Manganese Ferrite Based Magnetic Fluids in Varying Magnetic Field

    Directory of Open Access Journals (Sweden)

    Margabandhu MARIMUTHU

    2017-08-01

    Full Text Available Magnetic fluids are the colloidal solutions containing suspended magnetic nanoparticles in carrier fluids. The present work analyzed the heat transfer characteristics of de-ionized water and transformer oil (base fluids based cobalt manganese ferrite (Co1-xMnxFe2O4 coated with oleic acid synthesized via co-precipitation technique magnetic fluids in  varying magnetic field. Experimental investigations were carried out to analyze the heat transfer property of synthesized magnetic fluids (MNF in varying magnetic field applied in perpendicular direction to the thermal gradient of magnetic fluids. The experimental results indicate that the magnetic fluids show enhancement in heat transfer rate than carrier fluids in absence of magnetic field and it shows decrement in heat transfer rate in presence of varying magnetic field. Thus, the results reveal that the heat transfer characteristics of cobalt manganese ferrite based magnetic fluids was tunable by controlling the direction and influence of magnetic field strength. This tunable heat transfer property of cobalt manganese ferrite based magnetic fluids could be applicable in heat transport phenomena of transformers and in microelectronic devices.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16662

  17. Standard Test Method for Measuring Heat Transfer Rate Using a Thin-Skin Calorimeter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the design and use of a thin metallic calorimeter for measuring heat transfer rate (also called heat flux). Thermocouples are attached to the unexposed surface of the calorimeter. A one-dimensional heat flow analysis is used for calculating the heat transfer rate from the temperature measurements. Applications include aerodynamic heating, laser and radiation power measurements, and fire safety testing. 1.2 Advantages 1.2.1 Simplicity of ConstructionThe calorimeter may be constructed from a number of materials. The size and shape can often be made to match the actual application. Thermocouples may be attached to the metal by spot, electron beam, or laser welding. 1.2.2 Heat transfer rate distributions may be obtained if metals with low thermal conductivity, such as some stainless steels, are used. 1.2.3 The calorimeters can be fabricated with smooth surfaces, without insulators or plugs and the attendant temperature discontinuities, to provide more realistic flow conditions for ...

  18. Solar Coronal Jets: Observations, Theory, and Modeling

    CERN Document Server

    Raouafi, N E; Pariat, E; Young, P R; Sterling, A C; Savcheva, A; Shimojo, M; Moreno-Insertis, F; DeVore, C R; Archontis, V; Török, T; Mason, H; Curdt, W; Meyer, K; Dalmasse, K; Matsui, Y

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  19. Solar coronal observations at high frequencies

    CERN Document Server

    Katsiyannis, A C; Phillips, K J H; Williams, D R; Keenan, F P

    2001-01-01

    The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage system. Each optical channel has a different filter allowing observations of the same events in both white light and in the green line (Fe XIV at 5303 A). Wavelet analysis of the stabilized images has revealed high frequency oscillations which may make a significant contribution on the coronal heating process. In this presentation we give an outline of the instrument and its future development.

  20. Heat rate curve approximation for power plants without data measuring devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (CY

    2012-07-01

    In this work, a numerical method, based on the one-dimensional finite difference technique, is proposed for the approximation of the heat rate curve, which can be applied for power plants in which no data acquisition is available. Unlike other methods in which three or more data points are required for the approximation of the heat rate curve, the proposed method can be applied when the heat rate curve data is available only at the maximum and minimum operating capacities of the power plant. The method is applied on a given power system, in which we calculate the electricity cost using the CAPSE (computer aided power economics) algorithm. Comparisons are made when the least squares method is used. The results indicate that the proposed method give accurate results.

  1. Heat rate curve approximation for power plants without data measuring devices

    Directory of Open Access Journals (Sweden)

    Andreas Poullikkas

    2012-01-01

    Full Text Available In this work, a numerical method, based on the one-dimensional finite difference technique, is proposed for the approximation of the heat rate curve, which can be applied for power plants in which no data acquisition is available. Unlike other methods in which three or more data points are required for the approximation of the heat rate curve, the proposed method can be applied when the heat rate curve data is available only at the maximum and minimum operating capacities of the power plant. The method is applied on a given power system, in which we calculate the electricity cost using the CAPSE (computer aided power economics algorithm. Comparisons are made when the least squares method is used. The results indicate that the proposed method give accurate results.

  2. Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates

    Science.gov (United States)

    Li, Qibin; Wang, Meng; Liang, Yunpei; Lin, Liyang; Fu, Tao; Wei, Peitang; Peng, Tiefeng

    2017-06-01

    Molecular dynamics simulations were employed to investigate the heating rates' effect on aggregation of two copper nanoparticles. The aggregation can be distinguished into three distinct regimes by the contacting and melting of nanoparticles. The nanoparticles contacting at a lower temperature during the sintering with lower heating rate, meanwhile, some temporary stacking fault exists at the contacting neck. The aggregation properties of the system, i.e. neck diameter, shrinkage ratio, potential energy, mean square displacement (MSD) and relative gyration radius, experience drastic changes due to the free surface annihilation. After the nanoparticles coalesced for a stable period, the shrinkage ratio, MSD, relative gyration radius and neck diameter of the system are dramatically changed during the melting process. It is shown that the shrinkage ratio and MSD have relative larger increasing ratio for a lower heating rate. While the evolution of the relative gyration radius and neck diameter is only sensitive to the temperature.

  3. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study

    Science.gov (United States)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René

    2010-05-01

    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  4. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough.

  5. Self-Consistent MHD Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-Shaped Arcade Formation

    CERN Document Server

    Shiota, D; Chen, P F; Yamamoto, T T; Sakajiri, T; Shibata, K; Shiota, Daikou; Isobe, Hiroaki; Yamamoto, Tetsuya T.; Sakajiri, Takuma; Shibata, Kazunari

    2005-01-01

    We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs) and associated giant arcade formations, and the results suggested new interpretations of observations of CMEs. We performed two cases of the simulation: with and without heat conduction. Comparing between the results of the two cases, we found that reconnection rate in the conductive case is a little higher than that in the adiabatic case and the temperature of the loop top is consistent with the theoretical value predicted by the Yokoyama-Shibata scaling law. The dynamical properties such as velocity and magnetic fields are similar in the two cases, whereas thermal properties such as temperature and density are very different.In both cases, slow shocks associated with magnetic reconnectionpropagate from the reconnection region along the magnetic field lines around the flux rope, and the shock fronts form spiral patterns. Just outside the slow shocks, the plasma density decreased a great deal. The soft X-ray images synthesized from t...

  6. Heat and water rate transfer processes in the human respiratory tract at various altitudes.

    Science.gov (United States)

    Kandjov, I M

    2001-02-01

    The process of the respiratory air conditioning as a process of heat and mass exchange at the interface inspired air-airways surface was studied. Using a model of airways (Olson et al., 1970) where the segments of the respiratory tract are like cylinders with a fixed length and diameter, the corresponding heat transfer equations, in the paper are founded basic rate exchange parameters-convective heat transfer coefficient h(c)(W m(-2) degrees C(-1)) and evaporative heat transfer coefficient h(e)(W m(-2)hPa(-1)). The rate transfer parameters assumed as sources with known heat power are connected to airflow rate in different airways segments. Relationships expressing warming rate of inspired air due to convection, warming rate of inspired air due to evaporation, water diffused in the inspired air from the airways wall, i.e. a system of air conditioning parameters, was composed. The altitude dynamics of the relations is studied. Every rate conditioning parameter is an increasing function of altitude. The process of diffusion in the peripheral bronchial generations as a basic transfer process is analysed. The following phenomenon is in effect: the diffusion coefficient increases with altitude and causes a compensation of simultaneous decreasing of O(2)and CO(2)densities in atmospheric air. Due to this compensation, the diffusion in the peripheral generations with altitude is approximately constant. The elements of the human anatomy optimality as well as the established dynamics are discussed and assumed. The square form of the airways after the trachea expressed in terms of transfer supposes (in view of maximum contact surface), that a maximum heat and water exchange is achieved, i.e. high degree of air condition at fixed environmental parameters and respiration regime.

  7. Rate of heat transfer in polypropylene tubes in solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, J.; Mahmoodi, M. [Sharif University of Technology, Tehran (Iran). Chemical Engineering Dept.; Riazi, M.R. [Kuwait Univ., Safat (Kuwait). Chemical Engineering Dept.

    2003-06-01

    A heat transfer rate was determined for polypropylene tubes in solar water heaters for the Reynolds number range 800-5600. Experiments were conducted in ambient temperatures of 34 to 37 {sup o}C. Data were correlated in the form of Nusselt numbers as: Nu=0.0015 Re{sup 0.75}Pr{sup 1/3} with correlation coefficient of 0.95. Such data can be used to predict heat transfer rates in a polypropylene solar heater in Tehran where the experiments were performed. An application of the results is shown in an example. (author)

  8. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates

    OpenAIRE

    2015-01-01

    The high-temperature pyrolysis behaviour of a sample of refuse derived fuel (RDF) as a model of municipal solid waste (MSW) was investigated in a horizontal tubular reactor between 700 and 900 °C, at varying heating rates, and at an extended vapour residence time. Experiments were designed to evaluate the influence of process conditions on gas yields as well as gas and oil compositions. Pyrolysis of RDF at 800 °C and at rapid heating rate resulted in the gas yield with the highest CV of 24.8 ...

  9. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  10. Analysis of Coronal Rain Observed by IRIS, HINODE/SOT, and SDO/AIA: Transverse Oscillations, Kinematics, and Thermal Evolution

    Science.gov (United States)

    Kohutova, P.; Verwichte, E.

    2016-08-01

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS), the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s-1 up to 180 km s-1 and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO/AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO/AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  11. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    Science.gov (United States)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  12. Measurement of the heating rate of strongly coupled ^9Be^+ ions in a Penning trap

    Science.gov (United States)

    Jensen, M. J.; Hasegawa, T.; Bollinger, J. J.; Dubin, D. H. E.

    2003-10-01

    We have measured the temperature and heating rate of laser-cooled ^9Be^+ ions stored in a 4.5 T Penning trap. Up to ˜10^6 ^9Be^+ ions were laser cooled to mK temperatures where they form a crystal with a ˜20 μm interparticle spacing. We measured the ion temperature by Doppler laser spectroscopy on a single-photon transition. Immediately after turning off the cooling laser (t=0) we measured T ˜1 mK, which is close to the Doppler cooling limit. A slow heating rate of less than 100 mK/s is observed for t<200 ms, where t is the length of time the cooling laser is off. This is followed by a sudden, rapid heating on the order of 2 K in 0.1 s. The onset of the rapid heating occurs at the Coulomb coupling parameter of the solid-liquid phase transition, Γ ˜170. We therefore believe the rapid heating is a manifestation of the phase transition and will discuss our investigations into possible causes of this heating.

  13. A real-time heat strain risk classifier using heart rate and skin temperature.

    Science.gov (United States)

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-12-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system.

  14. Effect of the heating rate on the morphology of the pyrolytic char from hazelnut shell

    Energy Technology Data Exchange (ETDEWEB)

    Hanzade, H.A.; Serdar, Y. [Istanbul Technical Univ., Istanbul (Turkey). Faculty of Chemical and Metallurgical Engineering

    2008-07-01

    Although biomass chars have a high potential for use in various applications, their performance is directly related to the chemical and the physical properties of the chars. The surface area, porosity, pore size distribution, and density are the physical properties that determine the suitability of the chars to be used. Hazelnut shells are touted as being an extremely appropriate feedstock for high quality pyrolytic char, but the working conditions under which char is obtained have significant influence on the char structure and its properties, such as the thermal reactivity. Therefore, effects of the various parameters on the char structure must be considered. In this context, the present study focused on the physical changes that occur in char as a result of different heating rates during the pyrolysis of hazelnut shells. The effects of the heating rate on the structure of the pyrolytic char obtained from ground hazelnut shells under six different heating rate conditions were investigated. The hazelnut shell was burned in a thermogravimetric analyzer (TGA) under nitrogen flow. Non-isothermal heating was performed from ambient to 900 degrees C and held at this temperature until no further mass loss occurred. The changes in char morphology were studied with respect to the heating rate during charring. Scanning electron microscopy (SEM) was used with each char sample to determine the effect of heating rate. The dominant inorganic phases found in hazelnut shells were found to survive in the char. It was concluded that the high lignin content found in the char played a critical role in the decomposition mechanism. 3 refs., 2 tabs., 2 figs.

  15. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available We have analyzed the heat stress response in the yeast Saccharomyces cerevisiae by determining mRNA levels and transcription rates for the whole transcriptome after a shift from 25 °C to 37 °C. Using an established mathematical algorithm, theoretical mRNA decay rates have also been calculated from the experimental data. We have verified the mathematical predictions for selected genes by determining their mRNA decay rates at different times during heat stress response using the regulatable tetO promoter. This study indicates that the yeast response to heat shock is not only due to changes in transcription rates, but also to changes in the mRNA stabilities. mRNA stability is affected in 62% of the yeast genes and it is particularly important in shaping the mRNA profile of the genes belonging to the environmental stress response. In most cases, changes in transcription rates and mRNA stabilities are homodirectional for both parameters, although some interesting cases of antagonist behavior are found. The statistical analysis of gene targets and sequence motifs within the clusters of genes with similar behaviors shows that both transcriptional and post-transcriptional regulons apparently contribute to the general heat stress response by means of transcriptional factors and RNA binding proteins.

  16. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  17. Coronal radiation belts

    CERN Document Server

    Hudson, H S; Frewen, S F N; DeRosa, M L

    2009-01-01

    The magnetic field of the solar corona has a large-scale dipole character, which maps into the bipolar field in the solar wind. Using standard representations of the coronal field, we show that high-energy ions can be trapped stably in these large-scale closed fields. The drift shells that describe the conservation of the third adiabatic invariant may have complicated geometries. Particles trapped in these zones would resemble the Van Allen Belts and could have detectable consequences. We discuss potential sources of trapped particles.

  18. Characterization of heat waves affecting mortality rates of broilers between 29 days and market age

    Directory of Open Access Journals (Sweden)

    MM Vale

    2010-12-01

    Full Text Available Climate may affect broiler production, especially where there are heat waves, which may cause high mortality rates due to the heat stress. Heat wave prediction and characterization may allow early mitigation actions to be taken. Data Mining is one of the tools used for such a characterization, particularly when a large number of variables is involved. The objective of this study was to classify heat waves that promote broiler chicken mortality in poultry houses equipped with minimal environmental control. A single day of heat, a heat-shock day, is capable of producing high broiler mortality. In poultry houses equipped with fans and evaporative cooling, the characterization of heat waves affecting broiler mortality between 29 days of age and market age presented 89.34% Model Accuracy and 0.73 Class Precision for high mortality. There was no influence on high mortality (HM of birds between 29 and 31 days of age. Maximum temperature humidity index (THI above 30.6 ºC was the main characteristic of days when there was a heat wave, causing high mortality in broilers older than 31 days. The high mortality of broilers between 31 and 40 days of age occurred when maximum THI was above 30.6 ºC and maximum temperature of the day was above 34.4 ºC. There were two main causes of high mortality of broilers older than 40 days: 1 maximum THI above 30.6 ºC and minimum THI equal or lower than 15.5 ºC; 2 maximum THI above 30.6 ºC, minimum THI lower than 15.5 ºC, and the time of maximum temperature later than 15:00h. The heat wave influence on broiler mortality lasted an average of 2.7 days.

  19. Charge States of Solar Cosmic Rays and Constraints on Acceleration Times and Coronal Transport

    CERN Document Server

    Ruffolo, D

    1997-01-01

    We examine effects on the charge states of energetic ions associated with gradual solar flares due to shock heating and stripping at high ion velocities. Recent measurements of the mean charges of various elements after the flares of 1992 Oct 30 and 1992 Nov 2 allow one to place limits on the product of the electron density times the acceleration or coronal residence time. In particular, any residence in coronal loops must be for < 0.03 s, which rules out models of coronal transport in loops, such as the bird cage model. The results do not contradict models of shock acceleration of energetic ions from coronal plasma at various solar longitudes.

  20. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  1. Study on release rate of latent heat in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)

    REN Bingyan; YANG Jiankun; LI Yanlin; LIU Xiaoping; WANG Minhua

    2006-01-01

    The pulling rate in czochralski silicon (CZSi) growth is important for reducing the cost of solar cell.In this paper, double-heater, heat shield and composite argon duct system were introduced in the Ф450 mm hot zone of a Czochralski furnace.The pulling rate under different thermal system was recorded in experiments.Argon flow and temperature fields were simulated by finite element method(FEM).Experimental results and numerical simulation indicate that double-heater and composite argon duct system can enhance obviously the release rate of latent heat.In Φ 200 mm Czochralski silicon (CZSi) growth, average pulling rate can increase from 0.6 mm·min-1 in the conventional hot zone to 0.8 mm·min-1 in the modified hot zone.

  2. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    Science.gov (United States)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  3. Using observations of slipping velocities to test the hypothesis that reconnection heats the active region corona

    Science.gov (United States)

    Yang, Kai; Longcope, Dana; Guo, Yang; Ding, Mingde

    2017-08-01

    Numerous proposed coronal heating mechanisms have invoked magnetic reconnection in some role. Testing such a mechanism requires a method of measuring magnetic reconnection coupled with a prediction of the heat delivered by reconnection at the observed rate. In the absence of coronal reconnection, field line footpoints move at the same velocity as the plasma they find themselves in. The rate of coronal reconnection is therefore related to any discrepancy observed between footpoint motion and that of the local plasma — so-called slipping motion. We propose a novel method to measure this velocity discrepancy by combining a sequence of non-linear force-free field extrapolations with maps of photospheric velocity. We obtain both from a sequence of vector magnetograms of an active region (AR). We then propose a method of computing the coronal heating produced under the assumption the observed slipping velocity was due entirely to coronal reconnection. This heating rate is used to predict density and temperature at points along an equilibrium loop. This, in turn, is used to synthesize emission in EUV and SXR bands. We perform this analysis using a sequence of HMI vector magnetograms of a particular AR and compare synthesized images to observations of the same AR made by SDO. We also compare differential emission measure inferred from those observations to that of the modeled corona.

  4. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; R. Gupta; B. Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2005-07-01

    The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000{degree}C, and heating rates between 20 and 500{degree}C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. 22 refs., 8 figs., 2 tabs.

  5. Characterizing the effects of scale and heating rate on micro-scale explosive ignition criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Hafenrichter, Everett Shingo; Pahl, Robert J.

    2005-01-01

    Laser diode ignition experiments were conducted in an effort to characterize the effects of scale and heating rate on micro-scale explosive ignition criteria. Over forty experiments were conducted with various laser power densities and laser spot sizes. In addition, relatively simple analytical and numerical calculations were performed to assist with interpretation of the experimental data and characterization of the explosive ignition criteria.

  6. Heating Rate Effect on the Activation of Viscoelastic Relaxation in Silicate Glasses

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurèlien; Ory, Sandra; Vaills, Yann

    Here we present a direct investigation of the heating rate effect on structural relaxation of sodium silicate glass near the glass transition by means of differential scanning calorimetry, and show the sensitivity of Brillouin light spectroscopy to the dynamic of structural relaxation in the medium range order (∼100 nm).

  7. The influence of SPS heating rates on the synthesis reaction of tantalum diboride

    Directory of Open Access Journals (Sweden)

    Jolanta Laszkiewicz-Łukasik

    2016-07-01

    Full Text Available TaB2 is a material from the Ultra High Temperature Ceramics group and is rather unexplored because it is difficult to procure the raw materials and to densify TaB2. Using SPS technique to realize reactive sintering processes of powders mixture according to the reaction Ta + 2B → TaB2 makes it possible to achieve TaB2 in one technological step. The aim of the study was to determine the influence of heating rates on the synthesis reaction and on the multistage densification mechanisms during SPS processes. The mixture was sintered at constant parameters of 2200 °C, 48 MPa for 5 min with the usage of heating rates from 50 °C/min up to 400 °C/min. The densification processes were studied through analyzing the shrinkage of powder compacts during SPS (Spark Plasma Sintering processes. The comparison of the densification curves indicates that the reactions do not proceed completely at slow heating rates. Namely, too low heating rates contribute to the sintering of tantalum before the synthesis reaction and demonstrate the presence of boron in liquid state. The best material obtained in this study has Young's modulus 571 GPa, Vickers hardness 20.7 GPa (HV1 and indentation fracture toughness KIC 4.7 MPa m1/2.

  8. Respiration Rate Predictive Equation and Effective Heat Stress Relief Ways for Hanwoo Steers

    OpenAIRE

    Gutierrez, Winson-Montanez; Oh, Taek-Kuen; Kim, Dong-Hyeok; Lee, Jin-Ju; Kim, Suk; Min, Wong; Lee, Seung-Joo; Kim, Byeong-Woo; Chang, Hong-Hee; Chikushi, Jiro

    2012-01-01

    Normalizing respiration rate in heat–stress challenged cattle during summer season is very important. In this study, we investigated the contribution of different thermal factors such as skin temperature, dew–point temperature, solar radiation, dry–bulb temperature and wind speed on its influence to the respiration rate dynamics of 45 Hanwoo steers in 2010. Secondly, the heat insulation efficiencies of the three kinds of roofing materials such as sandwich panel (SP), master panel (MP), and fi...

  9. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    CERN Document Server

    Jones, Shaela I; Uritsky, Vadim M

    2015-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in space physics. It provides energy for coronal heating, controls the release of coronal mass ejections (CMEs), and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field - an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints which could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  10. The Contribution of Coronal Jets To The Solar Wind

    CERN Document Server

    Lionello, R; Titov, V S; Leake, J E; MikiĆ, Z; Linker, J A; Linton, M G

    2016-01-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e, we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here we employ these simulations to calculate the amount of mass and energy transported by coronal j...

  11. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  12. Characteristics of polar coronal hole jets

    CERN Document Server

    Chandrashekhar, K; Banerjee, D; Gupta, G R; Teriaca, L

    2013-01-01

    High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be $\\approx$ 27 km s$^{-1}$. The average outward speed of the first jet is $\\approx 171$ km s$^{-1}$, well below the escape speed, hence if simple ballistic motio...

  13. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  14. The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle

    OpenAIRE

    Oberländer, S.; Langematz, U.; Matthes, Katja; Kunze, M; A. Kubin; J. Harder; N. A. Krivova; Solanki, S. K.; J. Pagaran; Weber, M.

    2012-01-01

    Heating rate calculations with the FUBRad shortwave (SW) radiation parameterization have been performed to examine the effect of prescribed spectral solar fluxes from the NRLSSI, MPS and IUP data sets on SW heating rates over the 11 year solar cycle 22. The corresponding temperature response is derived from perpetual January General Circulation Model (GCM) simulations with prescribed ozone concentrations. The different solar flux input data sets induce clear differences in SW heating rates at...

  15. On-line corrosion monitoring in geothermal district heating systems. I. General corrosion rates

    DEFF Research Database (Denmark)

    Richter, S.; Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2006-01-01

    General corrosion rates in the geothermal district heating systems in Iceland are generally low, of the magnitude 1 mu m/y. The reason is high pH (9.5), low-conductivity (200 mu m/y) and negligible dissolved oxygen. The geothermal hot water is either used directly from source or to heat up cold...... ground water. The fluid naturally contains sulphide, which helps keeping the fluid oxygen-free but complicates the electrochemical environment. In this research on-line techniques for corrosion monitoring were tested and evaluated in this medium. Electrochemical methods worked well as long as frequency...

  16. Smoke Movement in an Atrium with a Fire with Low Rate of Heat Release

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Brohus, Henrik; Petersen, A. J.

    2008-01-01

    Results from small-scale experiments on smoke movement in an atrium are given, both with and without a vertical temperature gradient, and expressions for the smoke movement are developed on the basis of these experiments. Comparisons with a general analytical expression used for calculating...... the height to the location of the smoke layer are given. Furthermore, the paper discusses the air movement in a typical atrium exposed to different internal and external heat loads to elaborate on the use of the "flow element" expressions developed for smoke movement from a fire with a low rate of heat...

  17. The Effect of Particle Concentration on the Heating Rate of Ferrofluids for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Malaescu I.

    2015-12-01

    Full Text Available The complex magnetic susceptibility χ(f = χ′(f - i χ″(f, of a ferrofluid sample with magnetite particles dispersed in kerosene and stabilized with oleic acid, over the range 0.1 GHz to 6 GHz, was determined. The initial sample has been successively diluted with kerosene (with a dilution rate of 2/3, thus obtaining further three samples. Using the complex magnetic susceptibility measurements of each sample, the frequency field and particle concentration dependencies of the heating rate of the ferrofluid samples, were analyzed. The results show the possibility of using the heating rate of ferrofluid samples with different particle concentrations, in hyperthermia applications.

  18. Evaluation of induced activity, decay heat and dose rate distribution after shutdown in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Koichi [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.; Satoh, Satoshi; Hayashi, Katsumi; Yamada, Koubun; Takatsu, Hideyuki; Iida, Hiromasa

    1997-03-01

    Induced activity, decay heat and dose rate distributions after shutdown were estimated for 1MWa/m{sup 2} operation in ITER. The activity in the inboard blanket one day after shutdown is 1.5x10{sup 11}Bq/cm{sup 3}, and the average decay heating rate 0.01w/cm{sup 3}. The dose rate outside the 120cm thick concrete biological shield is two order higher than the design criterion of 5{mu}Sv/h. This indicates that the biological shield thickness should be enhanced by 50cm in concrete, that is, total thickness 170cm for workers to enter the reactor room and to perform maintenance. (author)

  19. Observing coronal nanoflares in active region moss

    OpenAIRE

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; DeLuca, Ed; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; Kuzin, Sergey; Walsh, Robert; DeForest, Craig; Title, Alan; Weber, Mark

    2013-01-01

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on timescales down to ~15s, significantly shorter than the minute scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss r...

  20. Heat Source Neutron Emission Rate Reduction Studies - Water Induced HF Liberation

    Science.gov (United States)

    Matonic, John; Brown, John; Foltyn, Liz; Garcia, Lawrence; Hart, Ron; Herman, David; Huling, Jeff; Pansoy-Hjelvik, M. E. Lisa; Sandoval, Fritz; Spengler, Diane

    2004-02-01

    Plutonium-238 oxide (238PuO2) is used in the fabrication of general purpose heat sources (GPHS) or light-weight radioisotope heater units (LWRHUs). The heat sources supply the thermal energy used in radioisotope thermoelectric generators to power spacecraft for deep space missions and to heat critical components in the cold environs of space. Los Alamos National Laboratory has manufactured heat sources for approximately two decades. The aqueous purification of 238PuO2 is required, due to rigorous total Pu-content, actinide and non-actinide metal impurity, and neutron emission rate specifications. The 238PuO2 aqueous purification process is a new capability at Los Alamos National Laboratory as previously, aqueous purified 238PuO2 occurred at other DOE complexes. The Pu-content and actinide and non-actinide metal impurity specifications are met well within specification in the Los Alamos process, though reduction in neutron emission rates have been challenging. High neutron emission rates are typically attributed to fluoride content in the oxide. The alpha decay from 238Pu results in α,n reactions with light elements such as 17O, 18O, and 19F resulting in high neutron emission rates in the purified 238PuO2. Simple 16O-exchange takes care of the high NER due to 17O, and 18O. A new method to reduce the NER due to 19F in the purified 238PuO2 is presented in this paper. The method involves addition of water to purified 238PuO2, followed by heating to remove the water and liberating fluoride as HF.

  1. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  2. Joule heating and anomalous resistivity in the solar corona

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2009-06-01

    Full Text Available Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as 2.5×109 Amperes (Spangler, 2007. These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al. (2007. This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of 3×105. The currents inferred from the observations of Spangler (2007 are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

  3. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    Science.gov (United States)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  4. Coronal Mass Ejections: Observations

    Directory of Open Access Journals (Sweden)

    David F. Webb

    2012-06-01

    Full Text Available Solar eruptive phenomena embrace a variety of eruptions, including flares, solar energetic particles, and radio bursts. Since the vast majority of these are associated with the eruption, development, and evolution of coronal mass ejections (CMEs, we focus on CME observations in this review. CMEs are a key aspect of coronal and interplanetary dynamics. They inject large quantities of mass and magnetic flux into the heliosphere, causing major transient disturbances. CMEs can drive interplanetary shocks, a key source of solar energetic particles and are known to be the major contributor to severe space weather at the Earth. Studies over the past decade using the data sets from (among others the SOHO, TRACE, Wind, ACE, STEREO, and SDO spacecraft, along with ground-based instruments, have improved our knowledge of the origins and development of CMEs at the Sun and how they contribute to space weather at Earth. SOHO, launched in 1995, has provided us with almost continuous coverage of the solar corona over more than a complete solar cycle, and the heliospheric imagers SMEI (2003 – 2011 and the HIs (operating since early 2007 have provided us with the capability to image and track CMEs continually across the inner heliosphere. We review some key coronal properties of CMEs, their source regions and their propagation through the solar wind. The LASCO coronagraphs routinely observe CMEs launched along the Sun-Earth line as halo-like brightenings. STEREO also permits observing Earth-directed CMEs from three different viewpoints of increasing azimuthal separation, thereby enabling the estimation of their three-dimensional properties. These are important not only for space weather prediction purposes, but also for understanding the development and internal structure of CMEs since we view their source regions on the solar disk and can measure their in-situ characteristics along their axes. Included in our discussion of the recent developments in CME

  5. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  6. Effects of Heating Rate on the Process Parameters of Superplastic Forming for Zr55Cu30Al10Ni5

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; SHI Tielin; LIAO Guanglan

    2014-01-01

    We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.

  7. EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE

    Institute of Scientific and Technical Information of China (English)

    姜楠; 王玉春; 舒玮; 王振东

    2002-01-01

    Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the nonistropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region. Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region. The scaling law of coarse-grained dissipation rate structure function is found to be independent of the mean velocity shear strain and the heating wall boundary condition. The scaling law of the dissipation rate structure function is verified to be in agreement with the hierarchical structure model that has been verified valid for isotropic and homogeneous turbulence.

  8. Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration.

    Science.gov (United States)

    Seymour, Roger S

    2010-09-01

    Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.

  9. The coronal fricative problem

    Science.gov (United States)

    Dinnsen, Daniel A.; Dow, Michael C.; Gierut, Judith A.; Morrisette, Michele L.; Green, Christopher R.

    2013-01-01

    This paper examines a range of predicted versus attested error patterns involving coronal fricatives (e.g. [s, z, θ, ð]) as targets and repairs in the early sound systems of monolingual English-acquiring children. Typological results are reported from a cross-sectional study of 234 children with phonological delays (ages 3 years; 0 months to 7;9). Our analyses revealed different instantiations of a putative developmental conspiracy within and across children. Supplemental longitudinal evidence is also presented that replicates the cross-sectional results, offering further insight into the life-cycle of the conspiracy. Several of the observed typological anomalies are argued to follow from a modified version of Optimality Theory with Candidate Chains (McCarthy, 2007). PMID:24790247

  10. Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value.

    Science.gov (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2016-06-01

    With the aim of controlling their proliferation, two invasive alien plants, Lantana camara (LC) and Mimosa pigra (MP), both widespread in Africa, were considered for torrefaction for renewable energy applications. Using thermogravimetric analysis, the influence of heating rate (HR: 2.18-19.82°Cmin(-1)) together with variable temperature and hold time on char yield and HHV (in a bomb calorimeter) were determined. Statistically significant effects of HR on HHV with optima at 10.5°Cmin(-1) for LC and 20°Cmin(-1) for MP were obtained. Increases of HHV up to 0.8MJkg(-1) or energy yield greater than 10%, together with a 3-fold reduction in torrefaction conversion time could be achieved by optimisation of HR. Analysis of the torrefaction volatiles by TG-MS showed that not only hemicelluloses, but also lignin conversion, could influence the optimum HR value.

  11. Influence of microwave heating on liquid-liquid phase inversion and temperature rates for immiscible mixtures.

    Science.gov (United States)

    Kennedy, Alvin; Tadesse, Solomon; Nunes, Janine; Reznik, Aron

    2011-01-01

    Time dependencies of component temperatures for mixtures of immiscible liquids during microwave heating were studied for acetonitrile-cyclohexane and water-toluene. For the first time, we report microwave induced liquid-liquid phase inversion for acetonitrile-cyclohexane mixture: acetonitrile layer was initially at the bottom of the mixture, after 10 sec of microwave heating its density decreased and it inverted to the top of the mixture for the remainder of the microwave heating. This phase inversion could not be achieved by conventional radiant heating. The maximum rate of temperature growth for the polar component of the mixtures was 2 - 5 times larger than for the non-polar component. This suggests that microwave energy is absorbed by polar liquids (water or acetonitrile) and heat is transferred into the non-polar liquid (toluene or cyclohexane) in the mixture by conduction (in case of cyclohexane) or conduction and convection (in case of toluene). Comparison between experimental data and semi-empirical mathematical models, proposed in [Kennedy et at., 2009] showed good correlation. Average relative error between theoretical and experimental results did not exceed 7%. These results can be used to model the temperature kinetics of components for other multiphase mixtures.

  12. An estimate of solar wind velocity profiles in an coronal hole and a coronal streamer area (6-40 solar radius)

    Science.gov (United States)

    Paetzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Using the total electron content data obtained by the Ulysses Solar Corona Experiment during the superior solar conjunction in summer 1991, we selected two data sets, one associated with a coronal hole and the other one with coronal streamer crossings. By doing this data splitting, we find two entirely different density profiles varying as r(exp -2.7) and r(exp -2.3) for the coronal hole and coronal streamers, respectively. Assuming mass flux conservation from the inner corona to one AU, an estimate for the velocity profiles or acceleration in these two different regions can be determined. The more negative exponent of the coronal hole density profile indicates a more extended heating and acceleration region or more flaring, or both. Various possible explanations will be discussed.

  13. Damped transverse oscillations of interacting coronal loops

    CERN Document Server

    Soler, Roberto

    2015-01-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...

  14. A Surface Heat Disturbance Method for Measuring Local TIssue Blood Perfusion Rate

    Institute of Scientific and Technical Information of China (English)

    PengJianshu; TianYongquan

    1996-01-01

    A non-damage method for measuring local tissue blood perfusion rate by surface heat disturbance and its two special embodiments for realizing this measurement are presented in this paper,In the derivation of mathematical model,the Pennes equation is used,and two parameters which are very diffcult to be known-the arterial blood temperature Ta and the metabolic heat generation rate qm,have been eliminated.So if has provided a feasible basis for application.In this paper,the performance and the adaptable condition of the measurement method and its structure peculiarities are discussed over a wide variety of parameters.Moreover,the effectiveness of the measurement method has been demonstrated by means of the quantitative measurement of tissue in vitro,the comparative measurement of animal under artificial perfusion and the dependence measurement in human body.

  15. Heating rate and spin flip lifetime due to near field noise in layered superconducting atom chips

    CERN Document Server

    Fermani, Rachele; Zhang, Bo; Lim, Michael J; Dumke, Rainer

    2009-01-01

    We theoretically investigate the heating rate and spin flip lifetimes due to near field noise for atoms trapped close to layered superconducting structures. In particular, we compare the case of a gold layer deposited above a superconductor with the case of a bare superconductor. We study a niobium-based and a YBCO-based chip. For both niobium and YBCO chips at a temperature of 4.2 K, we find that the deposition of the gold layer can have a significant impact on the heating rate and spin flip lifetime, as a result of the increase of the near field noise. At a chip temperature of 77 K, this effect is less pronounced for the YBCO chip.

  16. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  17. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin, P.; Villedieu, P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  18. Additive Effects of Heating and Exercise on Baroreflex Control of Heart Rate in Healthy Males.

    Science.gov (United States)

    Peçanha, Tiago; Forjaz, Claudia Lucia de Moraes; Low, David Andrew

    2017-08-31

    This study assessed the additive effects of passive heating and exercise on cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV). Twelve healthy young men (25±1 yrs, 23.8±0.5 kg/m(2)) randomly underwent two experimental sessions: heat stress (HS; whole-body heat stress using a tube-lined suit to increase core temperature by ~1°C) and normothermia (NT). Each session was composed of a: pre-intervention rest (REST1); HS or NT interventions; post-intervention rest (REST2); and 14 min of cycling exercise [7 min at 40%HRreserve (EX1) and 7 min at 60%HRreserve (EX2)]. Heart rate and finger blood pressure were continuously recorded. cBRS was assessed using the sequence (cBRSSEQ) and transfer function (cBRSTF) methods. HRV was assessed using the indices SDNN (standard deviation of RR intervals) and RMSSD (root mean square of successive RR intervals). cBRS and HRV were not different between sessions during EX1 and EX2 (i.e. matched heart rate conditions: EX1=116±3 vs. 114±3, EX2=143±4 vs. 142±3 bpm; but different workloads: EX1=50±9 vs. 114±8, EX2=106±10 vs. 165±8 Watts; for HS and NT, respectively; Pheart rates), cBRS and HRV were significantly reduced in HS (cBRSSEQ = 1.6±0.3 vs. 0.6±0.1 ms/mmHg, Pexercise does not affect cBRS and HRV. Alternatively, in workload-matched conditions, the addition of heat to exercise results in reduced cBRS and HRV compared to exercise in normothermia. Copyright © 2017, Journal of Applied Physiology.

  19. Coronal seismology waves and oscillations in stellar coronae

    CERN Document Server

    Stepanov, Alexander; Nakariakov, Valery M

    2012-01-01

    This concise and systematic account of the current state of this new branch of astrophysics presents the theoretical foundations of plasma astrophysics, magneto-hydrodynamics and coronal magnetic structures, taking into account the full range of available observation techniques -- from radio to gamma. The book discusses stellar loops during flare energy releases, MHD waves and oscillations, plasma instabilities and heating and charged particle acceleration. Current trends and developments in MHD seismology of solar and stellar coronal plasma systems are also covered, while recent p

  20. Influence of Heating Rate on Double Reversible Transformation in CuZnAlMnNi Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The influence of heating rate on double reversible transformation in CuZnA1MnNi shape memory alloy was investigated by differential scanning calorimetry. It was found that rapid heating inhibits X→M transformation but is fa vorable to the reverse martensite transformation, giving rise to the approach of the two transformation peaks. With the decrease of heating rate, the two transformation peaks separate gradually.

  1. Influence of drying temperature, water content, and heating rate on gelatinization of corn starches.

    Science.gov (United States)

    Altay, Filiz; Gunasekaran, Sundaram

    2006-06-14

    The gelatinization properties of starch extracted from corn and waxy corn dried at different temperatures were determined at various water contents and heating rates by differential scanning calorimetry. All gelatinization transition temperatures increased with drying temperature and heating rate. Onset and peak temperatures remained relatively constant, whereas end temperature decreased in the presence of excess water. The gelatinization enthalpy (deltaH(g)) of corn starch decreased with drying temperature at 50% water; however, it remained constant for waxy corn starch. The effects of water content and heating rate on deltaH(g) were dependent on each other. The minimum water levels required for gelatinization of starch extracted from corn dried at 20 and 100 degrees C are 21 and 29%, respectively. The activation energy (E(a)) was calculated using an Arrhenius-type equation and two first-order models; the degree of conversion (alpha) was predicted using a newly proposed model that produced good results for both E(a) and alpha.

  2. The influence of the magnetic field on the heat transfer rate in rotating spherical shells

    Science.gov (United States)

    Cabello, Ares; Avila, Ruben

    2016-11-01

    Studies of the relationship between natural convection and magnetic field generation in spherical annular geometries with rotation are essential to understand the internal dynamics of the terrestrial planets. In such studies it is important to calculate and analyze the heat transfer rate at the inner and the outer spheres that confine the spherical gap. Previous investigations indicate that the magnetic field has a stabilizing effect on the onset of the natural convection, reduces the intensity of convection and modifies the flow patterns. However so far it is still unclear how the magnetic field change the heat transfer rate behaviour. We investigate the heat transfer rate (Nu) in a rotating spherical gap with a self gravity field varying linearly with radius, and its relation with the intensity of the magnetic field induced by the geodynamo effect. The Boussinesq fluid equations are solved by using a spectral element method (SEM). To avoid the singularity at the poles, the cubed-sphere algorithm is used to generate the spherical mesh. Several cases are simulated in which the Rayleigh number, the magnetic Reynolds number and the Taylor number are the variable parameters. The flow patterns, the temperature distribution and the Nusselt numbers at both spheres are calculated. Special thanks to DGAPA-UNAM Project PAPIIT IN11731, sponsor of this investigation.

  3. Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Arun Kumar [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India); Raju, S. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India)], E-mail: sraju@igcar.gov.in; Jeyaganesh, B.; Mohandas, E. [Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India); Sudha, R.; Ganesan, V. [Materials Chemistry Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603 102, Tamilnadu (India)

    2009-01-01

    The kinetic aspects of allotropic phase changes in uranium are studied as a function of heating/cooling rate in the range 10{sup 0}-10{sup 2} K min{sup -1} by isochronal differential scanning calorimetry. The transformation arrest temperatures revealed a remarkable degree of sensitivity to variations of heating and cooling rate, and this is especially more so for the transformation finish (T{sub f}) temperatures. The results obtained for the {alpha} {yields} {beta} and {beta} {yields} {gamma} transformations during heating confirm to the standard Kolmogorov-Johnson-Mehl-Avrami (KJMA) model for a nucleation and growth mediated process. The apparent activation energy Q{sub eff} for the overall transformation showed a mild increase with increasing heating rate. In fact, the heating rate normalised Arrhenius rate constant, k/{beta} reveals a smooth power law decay with increasing heating rate ({beta}). For the {alpha} {yields} {beta} phase change, the observed DSC peak profile for slower heating rates contained a distinct shoulder like feature, which however is absent in the corresponding profiles found for higher heating rates. The kinetics of {gamma} {yields} {beta} phase change on the other hand, is best described by the two-parameter Koistinen-Marburger empirical relation for the martensitic transformation.

  4. 太阳光球磁亮点的基本特征研究及其对日冕加热的贡献%Studies of Magnetic Bright Points in the Photosphere and Their Contribution to the Coronal Heating

    Institute of Scientific and Technical Information of China (English)

    刘艳霄; 林隽; 吴宁

    2014-01-01

    在太阳光球表面出现的磁亮点是目前观测手段能够分辨的最小磁结构,也被认为是日冕中的磁绳在光球足点运动的可靠示踪者。磁亮点的尺度约为100∼300 km,寿命从几分钟到几十分钟。磁亮点被观测到不仅具有漩涡运动现象,还有很强的振荡现象。磁亮点是在磁通量管的对流坍缩过程中形成的,这已被观测和数值模拟所验证;磁亮点的运动导致其所在的磁通量管产生振荡,或者与其他磁通量管发生扭绞。理论上认为,这些振荡会以波的形式向色球和日冕传送能量,而磁通量管之间的扭绞会在色球和日冕中发生磁重联并释放能量,从而加热色球和日冕。为了解开日冕加热和色球加热等未解之谜,对磁亮点的研究显示出它特殊的重要性。对磁亮点的基本特征、形成原理、观测证据、光球磁亮点和太阳大气其他亮点之间的关系,以及磁亮点对日冕加热贡献等方面进行了介绍和讨论。%Magnetic bright points in the photosphere are the smallest structures that the present observational technique could resolve. They are regarded as a reliable tracer of footpoints of the coronal magnetic field in the photosphere. The energy conversion and transportation caused by the motion of these footpoints is considered as one of the most important energy source of heating the chromosphere and the corona by waves or magnetic reconnection through twist magnetic tubes. Currently, we have known some important facts about the elementary structures and the basic features of magnetic bright points. For example, magnetic bright points have sizes about 100∼300 km and their lifetimes range from several to tens of minutes. Furthermore, their velocities are around 1∼2 km·s-1 on average in the horizontal direction. Especially, some magnetic bright points whirl along a logarithm path in granulation lanes, which can trace large scales swirling down

  5. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    Directory of Open Access Journals (Sweden)

    Miguel Mellado

    2015-06-01

    Full Text Available The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services, raised under intense heat (mean annual temperature of 22°C, at highly technified farms, in the arid region of northern Mexico. In a second study, data from these large dairy operations were used to assess the effect of meteorological conditions throughout the year on the occurrence of cloudy vaginal mucus during artificial insemination (76,899 estruses. The overall rate of estruses with cloudy vaginal mucus was 21.4% (16,470/76,899; 95% confidence interval = 21.1-21.7%. The conception rate of cows with clean vaginal mucus was higher than that of cows with abnormal mucus (30.6 vs. 22%. Prevalence of estruses with cloudy vaginal mucus was strongly dependent on high ambient temperature and markedly higher in May and June. Acceptable conception rates in high milk-yielding Holstein cows can only be obtained with cows showing clear and translucid mucus at artificial insemination.

  6. In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass.

    Science.gov (United States)

    Kirtania, Kawnish; Tanner, Joanne; Kabir, Kazi Bayzid; Rajendran, Sharmen; Bhattacharya, Sankar

    2014-01-01

    Three types of woody biomass were investigated under pyrolysis condition to observe the change in the surface functional groups by Fourier transform infrared (FTIR) technique with increasing temperature under two different (5 and 150°C/min) heating rates. The experiments were carried out in situ in the infrared microscopy beamline (IRM) of the Australian Synchrotron. The capability of the beamline made it possible to focus on single particles to obtain low noise measurements without mixing with KBr. At lower heating rate, the surface functional groups were completely removed by 550°C. In case of higher heating rate, a delay was observed in losing the functional groups. Even at a high temperature, significant number of functional groups was retained after the higher heating rate experiments. This implies that at considerably high heating rates typical of industrial reactors, more functional groups will remain on the surface.

  7. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  8. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    CERN Document Server

    Dudik, Jaroslav; Mackovjak, Simon

    2016-01-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims. We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods. Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a kappa-distribution, is then switched on every period $P$ for the duration of P/2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results. Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost alway...

  9. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    Science.gov (United States)

    Dzifčáková, E.; Dudík, J.; Mackovjak, Š.

    2016-05-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org

  10. Characterizing the Properties of Coronal Magnetic Null Points

    Science.gov (United States)

    Barnes, Graham; DeRosa, Marc; Wagner, Eric

    2015-08-01

    The topology of the coronal magnetic field plays a role in a wide range of phenomena, from Coronal Mass Ejections (CMEs) through heating of the corona. One fundamental topological feature is the null point, where the magnetic field vanishes. These points are natural sites of magnetic reconnection, and hence the release of energy stored in the magnetic field. We present preliminary results of a study using data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory to characterize the properties and evolution of null points in a Potential Field Source Surface model of the coronal field. The main properties considered are the lifetime of the null points, their distribution with height, and how they form and subsequently vanish.This work is supported by NASA/LWS Grant NNX14AD45G, and by NSF/SHINE grant 1357018.

  11. Using Coronal Hole Maps to Constrain MHD Models

    Science.gov (United States)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  12. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    Science.gov (United States)

    Hasan, Mohammad Nasim; Morshed, A. K. M. Monjur; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250K/130K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×109 K/s to 8×109 K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.

  13. Effect of Heating Rate on Electromechanical Properties ofPNN–PZT Solid Solution

    Directory of Open Access Journals (Sweden)

    Virendra Singh

    2007-01-01

    Full Text Available Lead nickel niobate–lead zirconate titanate (Pb(Ni1/3Nb2/30.5 –Pb(Zr0.15Ti0.35O3, (PNN-PZTsolid solution was synthesised by columbite  process. Samples sintered at various heating ratesfor 4 h holding and their effect on electromechanical properties have been studied. When heatingrate was 8 °C/min from room temperature to 900 °C and holding for 4 h at 1280 °C, highest relativepermittivity and piezoelectric charge constant were observed, whereas heating rate of 3.5° C/min and holding for 4 h at 1280 °C have shown inferior electromechanical properties and graincoarsening. The piezoelectric charge constant (d33 ~612 pC/N and dielectric constant (e~ 5950observed in fast heating rate specimen as against to d33~ 137 pC/N and e~4294. XRD result showsthe formation of pyrochlore-free perovskite phase. Fine grains were observed  for fast heatingrate specimens.

  14. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  15. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  16. High-rate laser metal deposition of Inconel 718 component using low heat-input approach

    Science.gov (United States)

    Kong, C. Y.; Scudamore, R. J.; Allen, J.

    Currently many aircraft and aero engine components are machined from billets or oversize forgings. This involves significant cost, material wastage, lead-times and environmental impacts. Methods to add complex features to another component or net-shape surface would offer a substantial cost benefit. Laser Metal Deposition (LMD), currently being applied to the repair of worn or damaged aero engine components, was attempted in this work as an alternative process route, to build features onto a base component, because of its low heat input capability. In this work, low heat input and high-rate deposition was developed to deposit Inconel 718 powder onto thin plates. Using the optimised process parameters, a number of demonstrator components were successfully fabricated.

  17. Coronal magnetic fields from multiple type II bursts

    Science.gov (United States)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  18. Energetic characterisation and statistics of solar coronal brightenings

    CERN Document Server

    Joulin, Vincent; Solomon, Jacques; Guennou, Chloé

    2016-01-01

    To explain the high temperature of the corona, much attention has been paid to the distribution of energy in dissipation events. Indeed, if the event energy distribution is steep enough, the smallest, unobservable events could be the largest contributors to the total energy dissipation in the corona. Previous observations have shown a wide distribution of energies but remain inconclusive about the precise slope. Furthermore, these results rely on a very crude estimate of the energy. On the other hand, more detailed spectroscopic studies of structures such as coronal bright points do not provide enough statistical information to derive their total contribution to heating. We aim at getting a better estimate of the distributions of the energy dissipated in coronal heating events using high-resolution, multi-channel Extreme Ultra-Violet (EUV) data. To estimate the energies corresponding to heating events and deduce their distribution, we detect brightenings in five EUV channels of the Atmospheric Imaging Assembl...

  19. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest.

    Science.gov (United States)

    Zhang, Wei; Rudolf, Volker H W; Ma, Chun-Sen

    2015-12-01

    The frequency and duration of periods with high temperatures are expected to increase under global warming. Thus, even short-lived organisms are increasingly likely to experience periods of hot temperatures at some point of their life-cycle. Despite recent progress, it remains unclear how various temperature experiences during the life-cycle of organisms affect demographic traits. We simulated hot days (daily mean temperature of 30 °C) increasingly experienced under field conditions and investigated how the timing and duration of such hot days during the life cycle of Plutella xylostella affects adult traits. We show that hot days experienced during some life stages (but not all) altered adult lifespan, fecundity, and oviposition patterns. Importantly, the effects of hot days were contingent on which stage was affected, and these stage-specific effects were not always additive. Thus, adults that experience different temporal patterns of hot periods (i.e., changes in timing and duration) during their life-cycle often had different demographic rates and reproductive patterns. These results indicate that we cannot predict the effects of current and future climate on natural populations by simply focusing on changes in the mean temperature. Instead, we need to incorporate the temporal patterns of heat events relative to the life-cycle of organisms to describe population dynamics and how they will respond to future climate change.

  20. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  1. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  2. The influence of heating rate on superconducting characteristics of MgB{sub 2} obtained by spark plasma sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Aldica, G. [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele (Romania); Burdusel, M. [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele (Romania); Faculty of Materials Science and Engineering, University ’Politehnica’ of Bucharest, Splaiul Independentei 313, 060042 Bucharest (Romania); Popa, S.; Enculescu, M.; Pasuk, I. [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele (Romania); Badica, P., E-mail: badica2003@yahoo.com [National Institute of Materials Physics, Atomistilor 105bis, 077125 Magurele (Romania)

    2015-12-15

    Highlights: • MgB{sub 2} was obtained by ex-situ spark plasma sintering for different heating rates. • Heating rates were 20–475 °C/min: the optimum heating rate is ∼100 °C/min. • For 100 °C/min, J{sub c0}, H{sub irr} and (J{sub c0} x μ{sub 0}H{sub irr}) have maximum values. • For 100 °C/min, macro flux jumps are partially suppressed at 5 K. • Grain boundaries are modified depending on the heating rate. - Abstract: Superconducting bulks of MgB{sub 2} were obtained by the Spark Plasma Sintering (SPS) technique. Different heating rates of 20, 100, 235, 355, and 475 °C/min were used. Samples have high density, above 95%. The onset critical temperature T{sub c}, is about 38.8 K. There is an optimum heating rate of ∼100 °C/min to maximize the critical current density J{sub c0}, the irreversibility field H{sub irr}, the product (J{sub c0} x μ{sub 0}H{sub irr}), and to partially avoid formation of undesirable flux jumps at low temperatures. Significant microstructure differences were revealed for samples processed with low and high heating rates in respect to grain boundaries.

  3. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    Science.gov (United States)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  4. Energy Release in Driven Twisted Coronal Loops

    Science.gov (United States)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  5. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  6. Specific heat flow rate: an on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy.

    Science.gov (United States)

    Guan, Y; Evans, P M; Kemp, R B

    1998-06-05

    One of the requirements for enhanced productivity by the animal culture systems used in biotechnology is the direct assessment of the metabolic rate by on-line biosensors. Based on the fact that cell growth is associated with an enthalpy change, it is shown that the specific heat flow rate is stoichiometrically related to the net specific rates of substrates, products, and indeed to specific growth rate, and therefore a direct reflection of metabolic rate. Heat flow rate measured by conduction calorimetry has a technical advantage over estimates for many material flows which require assays at a minimum of two discrete times to give the rate. In order to make heat flow rate specific to the amount of the living cellular system, it would be advantageous to divide it by viable biomass. This requirement has been fulfilled by combining a continuous flow microcalorimeter ex situ with a dielectric spectroscope in situ, the latter measuring the viable cell mass volume fraction. The quality of the resulting biosensor for specific heat flow rate was illustrated using batch cultures of Chinese hamster ovary cells (CHO 320) producing recombinant human interferon-gamma (IFN-gamma) during growth in a stirred tank bioreactor under fully aerobic conditions. The measuring scatter of the probe was decreased significantly by applying the moving average technique to the two participant signals. It was demonstrated that the total metabolic rate of the cells, as indicated by the specific heat flow rate sensor, decreased with increasing time in batch culture, coincident with the decline in the two major substrates, glucose and glutamine, and the accumulation of the by-products, ammonia and lactate. Furthermore, the specific heat flow rate was an earlier indicator of substrate depletion than the flow rate alone. The calorimetric-respirometric ratio showed the intensive participation of anaerobic processes during growth and the related IFN-gamma production. Specific heat flow rate was

  7. High-spatial-resolution microwave and related observations as diagnostics of coronal loops

    Science.gov (United States)

    Holman, Gordon D.

    1986-01-01

    High spatial resolution microwave observations of coronal loops, together with theoretical models for the loop emission, can provide detailed information about the temperature, density, and magnetic field within the loop, as well as the environment around the loop. The capability for studying magnetic fields is particularly important, since there is no comparable method for obtaining direct information about coronal magnetic fields. Knowledge of the magnetic field strength and structure in coronal loops is important for understanding both coronal heating and flares. With arc-second-resolution microwave observations from the Very Large Array (VLA), supplemental high-spectral-resolution microwave data from a facility such as the Owens Valley frequency-agile interferometer, and the ability to obtain second-of-arc resolution EUV aor soft X ray images, the capability already exists for obtaining much more detailed information about coronal plasma and magnetic structures than is presently available. This capability is discussed.

  8. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  9. Effect of heating rate on toxicity of pyrolysis gases from some elastomers

    Science.gov (United States)

    Hilado, C. J.; Kosola, K. L.; Solis, A. N.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from six elastomers was investigated, using a screening test method. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acrylonitrile rubber exhibited the greatest toxicity under these test conditions, and carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  10. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  11. Effect of heating rate on toxicity of pyrolysis gases from some synthetic polymers

    Science.gov (United States)

    Hilado, C. J.; Soriano, J. A.; Kosola, K. L.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from some synthetic polymers was investigate, using a screening test method. The synthetic polymers were polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, ABS, polyaryl sulfone, polyether sulfone, and polyphenylene sulfide. The toxicants from the sulfur-containing polymers appeared to act more rapidly than the toxicants from the other polymers. It is not known whether this effect is due primarily to differences in concentration or in the nature of the toxicants. The carbon monoxide concentrations found do not account for the observed results.

  12. The influence of heating rate on superconducting characteristics of MgB2 obtained by spark plasma sintering technique

    Science.gov (United States)

    Aldica, G.; Burdusel, M.; Popa, S.; Enculescu, M.; Pasuk, I.; Badica, P.

    2015-12-01

    Superconducting bulks of MgB2 were obtained by the Spark Plasma Sintering (SPS) technique. Different heating rates of 20, 100, 235, 355, and 475 °C/min were used. Samples have high density, above 95%. The onset critical temperature Tc, is about 38.8 K. There is an optimum heating rate of ∼100 °C/min to maximize the critical current density Jc0, the irreversibility field Hirr, the product (Jc0 x μ0Hirr), and to partially avoid formation of undesirable flux jumps at low temperatures. Significant microstructure differences were revealed for samples processed with low and high heating rates in respect to grain boundaries.

  13. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation.

    Science.gov (United States)

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-09-22

    Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.

  14. A Bayesian Approach to Period Searching in Solar Coronal Loops

    Science.gov (United States)

    Scherrer, Bryan; McKenzie, David

    2017-03-01

    We have applied a Bayesian generalized Lomb–Scargle period searching algorithm to movies of coronal loop images obtained with the Hinode X-ray Telescope (XRT) to search for evidence of periodicities that would indicate resonant heating of the loops. The algorithm makes as its only assumption that there is a single sinusoidal signal within each light curve of the data. Both the amplitudes and noise are taken as free parameters. It is argued that this procedure should be used alongside Fourier and wavelet analyses to more accurately extract periodic intensity modulations in coronal loops. The data analyzed are from XRT Observation Program #129C: “MHD Wave Heating (Thin Filters),” which occurred during 2006 November 13 and focused on active region 10293, which included coronal loops. The first data set spans approximately 10 min with an average cadence of 2 s, 2″ per pixel resolution, and used the Al-mesh analysis filter. The second data set spans approximately 4 min with a 3 s average cadence, 1″ per pixel resolution, and used the Al-poly analysis filter. The final data set spans approximately 22 min at a 6 s average cadence, and used the Al-poly analysis filter. In total, 55 periods of sinusoidal coronal loop oscillations between 5.5 and 59.6 s are discussed, supporting proposals in the literature that resonant absorption of magnetic waves is a viable mechanism for depositing energy in the corona.

  15. Quantifying the Significance of Substructure in Coronal Loops

    Science.gov (United States)

    McKeough, K. B. D.; Kashyap, V.; McKillop, S.

    2014-12-01

    A method to infer the presence of small-scale substructure in SDO/AIA (Atmospheric Imaging Assembly on the Solar Dynamics Observatory) images of coronal loops is developed. We can classify visible loop structure based on this propensity to show substructure which puts constraints on contemporary solutions to the coronal heating problem. The method uses the Bayesian algorithm Low-count Image Reconstruction and Analysis (LIRA) to infer the multi-scale component of the loops which describes deviations from a smooth model. The increase in contrast of features in this multi-scale component is determined using a statistic that estimates the sharpness across the image. Regions with significant substructure are determined using p-value upper bounds. We are able to locate substructure visible in Hi-C (High-Resolution Coronal Imager) data that are not salient features in the corresponding AIA image. Looking at coronal loops at different regions of the Sun (e.g., low-lying structure and loops in the upper corona) we are able to map where detectable substructure exists and thus the influence of the nanoflare heating process. We acknowledge support from AIA under contract SP02H1701R from Lockheed-Martin to SAO.

  16. Coronal Seismology -- Achievements and Perspectives

    Science.gov (United States)

    Ruderman, Michael

    Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the

  17. Extension of the MURaM radiative MHD code for coronal simulations

    CERN Document Server

    Rempel, Matthias

    2016-01-01

    We present a new version of the MURaM radiative MHD code that allows for simulations spanning from the upper convection zone into the solar corona. We implemented the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction and an equilibrium ionization equation of state. We artificially limit the coronal Alfv{\\'e}n and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantify the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be...

  18. Geometry of solar coronal rays

    Science.gov (United States)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field

  19. Detection of optical coronal emission from 10^6 K gas in the core of the Centaurus cluster

    CERN Document Server

    Canning, R E A; Johnstone, R M; Sanders, J S; Crawford, C S; Hatch, N A; Ferland, G J

    2010-01-01

    We report a detection (3.5x10^37 \\pm 5.6x10^36 ergps) of the optical coronal emission line [Fe X]6374 and upper limits of four other coronal lines using high resolution VIMOS spectra centred on NGC 4696, the brightest cluster galaxy in the Centaurus cluster. Emission from these lines is indicative of gas at temperatures between 1 and 5 million K so traces the interstellar gas in NGC 4696. The rate of cooling derived from the upper limits is consistent with the cooling rate from X-ray observations (~10 solar masses per year) however we detect twice the luminosity expected for [Fe X]6374 emission, at 1 million K, our lowest temperature probe. We suggest this emission is due to the gas being heated rather than cooling out of the intracluster medium. We detect no coronal lines from [Ca XV], which are expected from the 5 million K gas seen near the centre in X-rays with Chandra. Calcium is however likely to be depleted from the gas phase onto dust grains in the central regions of NGC 4696.

  20. Characteristic Length of Energy-Containing Structures at the Base of a Coronal Hole

    CERN Document Server

    Abramenko, V I; Dosch, A; Yurchyshyn, V B; Goode, P R; Ahn, K; Cao, W

    2013-01-01

    An essential parameter for models of coronal heating and fast solar wind acceleration that rely on the dissipation of MHD turbulence is the characteristic energy-containing length $\\lambda_{\\bot}$ of the squared velocity and magnetic field fluctuations ($u^2$ and $b^2$) transverse to the mean magnetic field inside a coronal hole (CH) at the base of the corona. The characteristic length scale defines directly the heating rate. We use a time series analysis of solar granulation and magnetic field measurements inside two CHs obtained with the New Solar Telescope (NST) at Big Bear Solar Observatory. A data set for transverse magnetic fields obtained with the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard {\\it Hinode} spacecraft was utilized to analyze the squared transverse magnetic field fluctuations $b_t^2$. Local correlation tracking (LCT) was applied to derive the squared transverse velocity fluctuations $u^2$. We find that for $u^2$-structures, Batchelor integral scale $\\lambda$ varies in a rang...

  1. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate

    Science.gov (United States)

    Roberts, Dustyn; Hillstrom, Howard; Kim, Joo H.

    2016-01-01

    A subject-specific model of instantaneous cost of transport (ICOT) is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters—mass, height, (estimated) maximum oxygen uptake, and (estimated) maximum joint torques—are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90) inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326–0.348) of the experimental total COT (0.311–0.358) across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed) and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic) energy pathway similar to that of steady-state walking. PMID:28030598

  2. A simple parameterization of ozone infrared absorption for atmospheric heating rate calculations

    Science.gov (United States)

    Rosenfield, Joan E.

    1991-01-01

    A simple parameterization of ozone absorption in the 9.6-micron region which is suitable for two- and three-dimensional stratospheric and tropospheric models is presented. The band is divided into two parts, a brand center region and a band wing region, grouping together regions for which the temperature dependence of absorption is similar. Each of the two regions is modeled with a function having the form of the Goody random model, with pressure and temperature dependent band parameters chosen by empirically fitting line-by-line equivalent widths for pressures between 0.25 and 1000 mbar and ozone absorber amounts between 1.0 x 10 to the -7th and 1.0 cm atm. The model has been applied to calculations of atmospheric heating rates using an absorber amount weighted mean pressure and temperature along the inhomogeneous paths necessary for flux computations. In the stratosphere, maximum errors in the heating rates relative to line-by-line calculations are 0.1 K/d, or 5 percent of the peak cooling at the stratopause. In the troposphere the errors are at most 0.005 K/d.

  3. Effect of heating rate on temperature of titanium alloy (. cap alpha. +. beta. ). -->. beta. transformaton

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1985-01-01

    The effect of doping of two-phase titaniums alloys and morphology of initial structure on the Tsub(t) temperature shift value of (..cap alpha..+..beta..)..--> beta.. transformation depending on heating rate is investigated. It has been found that the Tsub(t) shift occurs in the strictly determined temperature range depending on chemical alloy composition. The Tsub(t) shift is directly proportional to the Ksub(..beta..) coefficient applied as a quantitative alloying characteristic as well as a dimensional factor equal either to the plate thickness or the ..cap alpha..-phase globule diameter depending on the type of initial structure. In the limits of this temperature range the (..cap alpha..+..beta..)..--> beta..-transformation occurs completely according to the diffusion mechanism. The critical heating rate at which maximum permissible Tsub(t) value is attained and above which its stabilization is observed is determined by the same parameters - the alloy doping degree characterized by the Ksub(..beta..) coefficient and the ..cap alpha..-phase crystal dimensions in the initial structure.

  4. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    Science.gov (United States)

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Heat rate improvement at Sunflower Electric`s Holcomb Station - a programmatic approach

    Energy Technology Data Exchange (ETDEWEB)

    Linville, C.; Nelson, K.E.; DesJardins, R.R.

    1996-05-01

    This paper describes the heat rate improvement program implemented at Sunflower Electric Power Corporations Holcomb Generating Station located in Holcomb, Kansas. The Holcomb Station is a large coal-fired generating plant that supplies electricity to Southwestern. Kansas and surrounding states. In 1993, Sunflower Electric (SEPC) established a continuing heat rate improvement program at the Holcomb Station which consisted of a periodic performance test program in combination with continuous on-line monitoring. This paper provides an overview of the test program and initial results and describes a unique approach to monitoring boiler feed pump performance especially suitable for on-line monitoring. implementation of a 15-user LAN-based on-line performance monitoring system is also described. In addition to technical issues, the paper addresses some of the {open_quotes}human factors{close_quotes} encountered while promoting acceptance and use of the on-line monitoring system by all levels of plant personnel. The importance of proper program planning and long term management support is stressed.

  6. Experimental investigation on heat transfer rate of Co–Mn ferrofluids in external magnetic field

    Directory of Open Access Journals (Sweden)

    Margabandhu M.

    2016-06-01

    Full Text Available Manganese substituted cobalt ferrite (Co1–xMnxFe2O4 with x = 0, 0.3, 0.5, 0.7 and 1 nanopowders were synthesized by chemical coprecipitation method. The synthesized magnetic nanoparticles were investigated by various characterization techniques, such as X-ray diffraction (XRD, vibrating sample magnetometry (VSM, scanning electron microscopy (SEM and thermogravimetric and differential thermal analysis (TG/DTA. The XRD results confirmed the presence of cubic spinel structure of the prepared powders and the average crystallite size of magnetic particles ranging from 23 to 45 nm. The VSM results showed that the magnetic properties varied with an increase in substituted manganese while SEM analysis showed the change in the morphology of obtained magnetic nanoparticles. The TG/DTA analysis indicated the formation of crystalline structure of the synthesized samples. The heat transfer rate was measured in specially prepared magnetic nanofluids (nanoparticles dispersed in carrier fluid transformer oil as a function of time and temperature in presence of external magnetic fields. The experimental analysis indicated enhanced heat transfer rate of the magnetic nanofluids which depended upon the strength of external magnetic field and chemical composition.

  7. Energetic characterisation and statistics of solar coronal brightenings

    Science.gov (United States)

    Buchlin, Eric; Solomon, Jacques; Joulin, Vincent; Guennou, Chloé

    2016-07-01

    To explain the high temperature of the corona, much attention has been paid to the distribution of energy in dissipation events, which might be caused by turbulent reconnection. Indeed, if the event energy distribution is steep enough, the smallest, unobservable events could be the largest contributors to the total energy dissipation in the corona. Previous observations have shown a wide distribution of energies but remain inconclusive about the precise slope. Furthermore, these results rely on a very crude estimate of the energy. On the other hand, more detailed spectroscopic studies of structures such as coronal bright points do not provide enough statistical information to derive their total contribution to heating. We aim at getting a better estimate of the distributions of the energy dissipated in coronal heating events using high-resolution, multi-channel Extreme Ultra-Violet (EUV) data. To estimate the energies corresponding to heating events and deduce their distribution, we detect brightenings in five EUV channels of the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO). We combine the results of these detections and we use maps of temperature and emission measure derived from the same observations to compute the energies. We obtain distributions of areas, durations, intensities, and energies (thermal, radiative, and conductive) of events. These distributions are power-laws, and we find also power-law correlations between event parameters. The energy distributions indicate that the energy from a population of events like the ones we detect represents a small contribution to the total coronal heating, even when extrapolating to smaller scales. The main explanations for this are how heating events can be extracted from observational data, and the incomplete knowledge of the thermal structure and processes in the coronal plasma attainable from available observations.

  8. The Fate of Cool Material in the Hot Corona: Solar Prominences and Coronal Rain

    Science.gov (United States)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Vial, Jean-Claude; Berger, Thomas

    2017-08-01

    As an important chain of the chromosphere-corona mass cycle, some of the million-degree hot coronal mass undergoes a radiative cooling instability and condenses into material at chromospheric or transition-region temperatures in two distinct forms - prominences and coronal rain (some of which eventually falls back to the chromosphere). A quiescent prominence usually consists of numerous long-lasting, filamentary downflow threads, while coronal rain consists of transient mass blobs falling at comparably higher speeds along well-defined paths. It remains puzzling why such material of similar temperatures exhibit contrasting morphologies and behaviors. We report recent SDO/AIA and IRIS observations that suggest different magnetic environments being responsible for such distinctions. Specifically, in a hybrid prominence-coronal rain complex structure, we found that the prominence material is formed and resides near magnetic null points that favor the radiative cooling process and provide possibly a high plasma-beta environment suitable for the existence of meandering prominence threads. As the cool material descends, it turns into coronal rain tied onto low-lying coronal loops in a likely low-beta environment. Such structures resemble to certain extent the so-called coronal spiders or cloud prominences, but the observations reported here provide critical new insights. We will discuss the broad physical implications of these observations for fundamental questions, such as coronal heating and beyond (e.g., in astrophysical and/or laboratory plasma environments).

  9. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  10. Motion magnification in coronal seismology

    CERN Document Server

    Anfinogentov, Sergey

    2016-01-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features, observed with imaging instruments. The method is based on the two-dimensional dual tree complex wavelet transform (DT$\\mathbb{C}$WT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes imitating exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes provided they are sufficiently small. Also, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/A...

  11. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  12. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  13. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.

    Science.gov (United States)

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K

    2008-06-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.

  14. Analysis of the solar coronal green line profiles from eclipse observations

    CERN Document Server

    Prabhakar, Maya; Chandrasekhar, T

    2013-01-01

    Analysis of the solar coronal green line profiles reveals information regarding the physical conditions of the solar corona like temperature, density, Doppler velocity, non-thermal velocity etc. It provides insights to the unresolved problems like the coronal heating and the acceleration of the solar winds. Recent studies have reported excess blueshifts in the coronal line profiles and are interpreted as due to nanoflare heating, type II spicules and nascent solar wind flow. We have analyzed a time series of Fabry-Perot interferograms of the solar corona obtained during the total solar eclipse of 2001 June 21 from Lusaka, Zambia. The spatial behavior of the coronal green line profiles were examined and variations in intensity, linewidth, Doppler velocity and line asymmetry were obtained. Several line profiles showed asymmetry indicating the presence of multicomponents. Such line profiles were fitted with double Gaussian curves. It has been found that 42% of the line profiles were single components, 34% were b...

  15. Thermal and non-thermal emission from reconnecting twisted coronal loops

    CERN Document Server

    Pinto, R; Browning, P K; Vilmer, N

    2016-01-01

    Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us est...

  16. The Dependence of Atmospheric Circulation and Heat Transport on the Planetary Rotation Rate

    Science.gov (United States)

    Basu, S.; Richardson, M. I.; Wilson, R. J.

    2002-12-01

    Simplified models of planetary climate require a parameterization for the equator-to-pole transport of heat and its dependence on factors, including the planetary rotation rate. Various such parameterizations exist, including ones based on the theory of baroclinic eddy mixing, and on principles of global entropy generation. However, such parameterizations are difficult to test given the limited available observational opportunities. In this study, we use a numerical model to examine heat flux dependencies, as part of a wider study of circulation regime sensitivity to rotation rates and other parameters. This study makes use of a simplified version of the Geophysical Fluid Dynamics Laboratory (GFDL) "Skyhi" General Circulation Model (GCM). All terrestrial hydrological processes have been stripped from the model, which in the form used here, is adapted from the Martian version of Skyhi. The atmosphere has the gas properties of CO2, except that it has been made uncondensible. No aerosols or surface ices are allowed. The model surface is flat, and of uniform albedo and thermal inertia. For the simulations presented in this study, the diurnal, seasonal, and eccentricity cycles have been disabled ({ i.e.} the surface and atmosphere receives constant, daily- and seasonally-averaged incident solar radiation). Radiative heating is treated with a band model for CO2 gas in the thermal and near-infrared bands. The use of a complex model to examine simplified theory of heat transport requires some justification since it is not necessarily clear that these models (GCM's) provide an accurate emulation of the real atmosphere (of any given planet). In this study, we have intentionally removed those aspects of GCM's that are of greatest concern. Especially for terrestrial GCM's, the hydrologic cycle is a major source of uncertainty due to radiative feedbacks, and cloud coupling to small-scale, convective mixing. For other planets, aerosols are important as radiatively and dynamical

  17. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  18. A Solar Coronal Jet Event Triggers A Coronal Mass Ejection

    CERN Document Server

    Liu, Jiajia; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S

    2015-01-01

    We present the multi-point and multi-wavelength observation and analysis on a solar coronal jet and coronal mass ejection (CME) event in this paper. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it propagate in a high speed over 1000 km/s . The jet erupted before and shared the same source region with the CME. The temporal and spacial relation- ship between them guide us the possibility that the jet triggered the CME and became its core. This scenario could promisingly enrich our understanding on the triggering mechanism of coronal mass ejections and their relations with coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the SDO/HMI instrument and the off- limb inverse Y-shaped configuration observed by SDO/AIA 171 A passband, together provide the first detailed observation on the three-dimensional reconnection process of large-scale jets as simulated in Pariat et al. 2009. ...

  19. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.

    Science.gov (United States)

    Zeng, Kuo; Minh, Doan Pham; Gauthier, Daniel; Weiss-Hortala, Elsa; Nzihou, Ange; Flamant, Gilles

    2015-04-01

    Char samples were produced from pyrolysis in a lab-scale solar reactor. The pyrolysis of beech wood was carried out at temperatures ranging from 600 to 2000°C, with heating rates from 5 to 450°C/s. CHNS, scanning electron microscopy analysis, X-ray diffractometry, Brunauer-Emmett-Teller adsorption were employed to investigate the effect of temperature and heating rate on char composition and structure. The results indicated that char structure was more and more ordered with temperature increase and heating rate decrease (higher than 50°C/s). The surface area and pore volume firstly increased with temperature and reached maximum at 1200°C then reduced significantly at 2000°C. Besides, they firstly increased with heating rate and then decreased slightly at heating rate of 450°C/s when final temperature was no lower than 1200°C. Char reactivity measured by TGA analysis was found to correlate with the evolution of char surface area and pore volume with temperature and heating rate.

  20. Effect of Heating Rate on Accelerated Carbide Spheroidisation (ASR in 100CrMnSi6-4 Bearing Steel

    Directory of Open Access Journals (Sweden)

    Hauserova D.

    2014-10-01

    Full Text Available Typical processing routes for bearing steels include a soft annealing stage, the purpose of which is to obtain a microstructure containing globular carbides in ferritic matrix. A newly developed process called ASR cuts the carbide spheroidisation times several fold, producing considerably finer globular carbides than conventional soft annealing. The present paper explores the effect of the heating rate and temperature on the accelerated carbide spheroidisation process and on the resulting hardness. Accelerated spheroidisation was achieved by thermal cycling for several minutes around various temperatures close to the transformation temperature at various heating rates applied by induction heating.

  1. Investigating Cooling Rates of a Controlled Lava Flow using Infrared Imaging and Three Heat Diffusion Models

    Science.gov (United States)

    Tarlow, S.; Lev, E.; Zappa, C. J.; Karson, J.; Wysocki, B.

    2011-12-01

    Observation and investigation of surface cooling rates of active lava flows can help constrain thermal parameters necessary for creating of more precise lava flow models. To understand how the lava cools, temperature data was collected using an infrared video camera. We explored three models of the release of heat from lava stream; one based on heat conduction, another based on crust thickness and radiation, and a third model based on radiative cooling and variable crust thickness. The lava flow, part of the Syracuse University Lava Project (http://lavaproject.syr.edu), was made by pouring molten basalt at 1300 Celsius from a furnace into a narrow trench of sand. Hanging roughly 2 m over the trench, the infrared camera, records the lava's surface temperature for the duration of the flow. We determine the average surface temperature of the lava flow at a fixed location downstream as the mean of the lateral cross section of each frame of the IR imagery. From the recorded IR frames, we calculate the mean cross-channel temperature for each downstream distance. We then examine how this mean temperature evolves over time, and plot cooling curves for selected down-stream positions. We then compared the observed cooling behavior to that predicted by three cooling models: a conductive cooling model, a radiative cooling model with constant crust thickness, and a radiative cooling model with variable crust thickness. All three models are solutions to the one-dimensional heat equation. To create the best fit for the conductive model, we constrained thermal diffusivity and to create the best fit for the radiative model, we constrained crust thickness. From the comparison of our data to the models we can conclude that the lava flow's cooling is primarily driven by radiation.

  2. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  3. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Directory of Open Access Journals (Sweden)

    Nabi Jameel-Un

    2017-01-01

    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ (g.cm-3 < 1011 and temperature range 107 < T (K < 3.0×1010.

  4. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    Science.gov (United States)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  5. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  6. Exploring Coronal Structures with SOHO

    Indian Academy of Sciences (India)

    Μ. Karovska; Β. Wood; J. Chen; J. Cook; R. Howard

    2000-09-01

    We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.

  7. Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses

    Science.gov (United States)

    Christy, John R.

    1991-01-01

    Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.

  8. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    Science.gov (United States)

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-03-23

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.

  9. Dependence of the width of the glass transition interval on cooling and heating rates

    Science.gov (United States)

    Schmelzer, Jürn W. P.; Tropin, Timur V.

    2013-01-01

    In a preceding paper [J. W. P. Schmelzer, J. Chem. Phys. 136, 074512 (2012), 10.1063/1.3685510], a general kinetic criterion of glass formation has been advanced allowing one to determine theoretically the dependence of the glass transition temperature on cooling and heating rates (or similarly on the rate of change of any appropriate control parameter determining the transition of a stable or metastable equilibrium system into a frozen-in, non-equilibrium state of the system, a glass). In the present paper, this criterion is employed in order to develop analytical expressions for the dependence of the upper and lower boundaries and of the width of the glass transition interval on the rate of change of the external control parameters. It is shown, in addition, that the width of the glass transition range is strongly correlated with the entropy production at the glass transition temperature. The analytical results are supplemented by numerical computations. Analytical results and numerical computations as well as existing experimental data are shown to be in good agreement.

  10. Resting metabolic rate and heat increment of feeding in juvenile South American fur seals (Arctocephalus australis).

    Science.gov (United States)

    Dassis, M; Rodríguez, D H; Ieno, E N; Denuncio, P E; Loureiro, J; Davis, R W

    2014-02-01

    Bio-energetic models used to characterize an animal's energy budget require the accurate estimate of different variables such as the resting metabolic rate (RMR) and the heat increment of feeding (HIF). In this study, we estimated the in air RMR of wild juvenile South American fur seals (SAFS; Arctocephalus australis) temporarily held in captivity by measuring oxygen consumption while at rest in a postabsorptive condition. HIF, which is an increase in metabolic rate associated with digestion, assimilation and nutrient interconversion, was estimated as the difference in resting metabolic rate between the postabsorptive condition and the first 3.5h postprandial. As data were hierarchically structured, linear mixed effect models were used to compare RMR measures under both physiological conditions. Results indicated a significant increase (61%) for the postprandial RMR compared to the postabsorptive condition, estimated at 17.93±1.84 and 11.15±1.91mL O2 min(-1)kg(-1), respectively. These values constitute the first estimation of RMR and HIF in this species, and should be considered in the energy budgets for juvenile SAFS foraging at-sea.

  11. The Nature of CME-Flare Associated Coronal Dimming

    CERN Document Server

    Cheng, J X

    2016-01-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of its eruption. In this study, we analyze the event of flare, CME, and coronal dimming on December 26, 2011. We use the data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories to obtain the height and velocity of the associated CMEs observed at the limb. We also measure magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons,...

  12. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    Science.gov (United States)

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedheatedheated. The cytotoxicity evaluation revealed that none of the alkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  13. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation☆

    OpenAIRE

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K.

    2008-01-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations (~1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 106–7 K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid ...

  14. Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data

    Science.gov (United States)

    Guhathakurta, Madhulika

    1998-01-01

    Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.

  15. Tick resistance and heat tolerance characteristics in cattle. III. Sweating rate

    Directory of Open Access Journals (Sweden)

    Cecília José Veríssimo

    2012-12-01

    Full Text Available Cattle in a sustainable tropical livestock should be heat tolerant and resistant to ticks. The relationship between Rhipicephalus (Boophilus microplus infestation and sweating rate, an important heat tolerance characteristic, was studied in six Nellore and four Holstein steers of seven-month-old. They were artificial infested (a.i. with 10,000 (Holstein and 20,000 (Nellore larvae in 16/Apr/2011. In days 20, 23 and 24 after the infestation, the 10 bigger females ticks found in whole animal were weighed and put in a chamber (27 oC and 80% RH, weighing the egg mass of each female tick fourteen days after. The sweating rate (SRskin, measured by Scheleger and Turner, 1963, method, in a shaved area of shoulder skin was evaluated in 14/Apr (2 days before the a.i. and in 05/May (19 days after a.i.. In 14/Apr the Scheleger and Turner, 1963, method was done on the coat not shaved (SRcoat. The sweating rate was measured in the afternoon (from 2 P.M., after 30 minutes of direct sunlight, on April. On May, the animals remained 60 minutes in direct sunlight because this day was colder. The experimental design was a non-probability sample restricted to the 10 available animals. Data from the steers’ sweating rate were analyzed using the General linear models of the SPSS® statistical package (version 12.0 using SRskin as dependent variable and breed and sampling date as independent variables. For SRcoat breed was the independent variable. Nellore, a tropical cattle breed, had higher SRskin (1,000.82 ± 64.59 g m-2 h-1, P< 0.001 than Holstein (620.45 ± 79.10 g m-2 h-1. SRskin was higher on May (1,187.33 ± 71.49 g m-2 h-1, P< 0.001 than on April (433.93 ± 71.49 g m-2 h-1. The correlation between the two different measurements of SR was positive and significant (r= 0,545, P<0,01, Pearson correlation. But in SRcoat the breed effect disappeared because the Holstein SRcoat increased (Holstein: 884.95 ± 472.12 g m-2 h-1 and Nellore: 1,060.72 ± 318.21 g m-2 h-1

  16. The effect of heat exposure on cortisol and catecholamine excretion rates in workers in glass manufacturing unit.

    Science.gov (United States)

    Vangelova, K; Deyanov, Ch; Velkova, D; Ivanova, M; Stanchev, V

    2002-12-01

    The aim of the investigation was to study the effect of long term repeated heat exposure on the excretion rates of stress hormones of workers in glass manufacturing unit. Sixteen operators, exposed to heat, were studied during the hot period and compared to a control group of 16 subjects, working in the same manufacturing unit. Both groups had moderate work load. The microclimate components and the Wet Bulb Globe Temperature were used for defining the heat exposure. The excretion rates of cortisol, adrenaline and noradrenaline were followed during the early morning shifts on three hour intervals using RIA and fluoriphotometric methods. Heart rate was followed, too. The psychosocial factors were measured by the "My job" questionnaire. Highly significantly higher cortisol, noradrenaline and adrenaline values were measured in the heat exposed operators compared to the control group, while significant differences of the psychosocial factors between the two groups lacked. Even if the heart rate was in the safe limits, the found alterations in the stress system are considerable and indicate heat stress. The work in conditions of overheat is associated with considerable heat stress and the possible health implications need to be clarified.

  17. Short communication: Effects of dairy calf hutch elevation on heat reduction, carbon dioxide concentration, air circulation, and respiratory rates.

    Science.gov (United States)

    Moore, D A; Duprau, J L; Wenz, J R

    2012-07-01

    Heat stress affects dairy calf welfare and can result in morbidity, mortality, and lower weight gain. The purpose of this project was to evaluate the effects of elevating the back of plastic calf hutches on measures of ventilation and heat stress. A total of 15 calves housed in individual hutches were enrolled, with each calf hutch serving as its own control. Heat, humidity, carbon dioxide, and wind speed were measured inside each hutch and the observations were compared with external measurements over two 24-h periods; 1 period without and 1 with hutch elevation. Respiratory rates were measured in the morning and afternoon as an indicator of the degree of heat stress experienced by calves with and without elevation of the hutch. When the hutch was elevated, internal hutch temperatures were cooler than external temperatures, hutch carbon dioxide levels were lower and respiratory rates were lower, particularly comparing the afternoon observation periods.

  18. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  19. Apparatus for measuring the flow rate of a heat carrier and injection wells

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, M.F.; Bar-Sliva, V.I.; Dichenko, M.A.; Nikiforov, Yu.V.; Petrov, A.I.; Turchaninov, Yu.N.

    1981-01-01

    A device is proposed for measuring the flow rate of the heat carrier in N wells, which contains a housing, turbine ( a permanent magnet is attached to the shaft eccentrically), a reed relay, a secondary converter and a power supply. In order to expand the measurement range by developing torque in the turbine it is equipped with additional reed relay, which is installed diametrically opposite the primary reed relay, and it also has a breaking unit made in the form of an additional permanent magnet placed on the turbine shaft. There was also a torodial core with a two-section winding and a winding power supply polarity switch in the frame. The primary and secondary reed relays are connected to the winding power supply polarity switch circuit. It in turn is connected to the secondary converter. In order to assure the possibility of changing the slope of the flow rate converter into a number of turbine revolutions it is equipped with a frequency to voltage converter with a setting mechanism. The frequency to voltage converter input is connected to the secondary converter, and the output is connected to the power supply source.

  20. The effect of heating rate and composition on the properties of spark plasma sintered zirconium diboride based composites

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Alexandra; Bo Zhenyu [School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States); Hodson, Stephen; Fisher, Timothy [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Stanciu, Lia, E-mail: lstanciu@purdue.edu [School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of heating rate on spark plasma sintering of ZrB{sub 2}-SiC-ZrC composites. Black-Right-Pointing-Pointer Adding SiC up to 10 wt.% had a positive effect on densification and strength. Black-Right-Pointing-Pointer Increasing heating rate promoted densification and retarded grain growth when SiC and ZrC content was above 15 wt.%, respectively. Black-Right-Pointing-Pointer Increasing heating rate had a slight negative effect on densification when SiC and ZrC content was at 10%, respectively. - Abstract: Five different compositions of ZrB{sub 2}-SiC-ZrC were prepared and then processed by spark plasma sintering (SPS) to a maximum temperature of 2000 Degree-Sign C, with heating rates of 100 Degree-Sign C/min and 200 Degree-Sign C/min. Grain size, density, Rockwell hardness, flexural strength, and thermal conductivity were evaluated for the processed composites. Adding SiC up to 10 wt.% had a positive effect on densification and strength. Increasing the heating rate promoted densification and less overall grain growth for samples with SiC and ZrC above 15 wt.% each, and had a slight negative effect on densification when these values were at 10%.

  1. Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    Science.gov (United States)

    Jin, Meng; Cheung, Mark; DeRosa, Marc L.; Nitta, Nariaki; Schrijver, Karel

    2017-08-01

    Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that the “core” dimming is mainly caused by the mass loss from the CME, while the “remote” dimming could have a different origin (e.g., plasma heating). Moreover, the interaction between the erupting flux rope with different orientations and the global solar corona could significantly influence the coronal dimming patterns. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CMEs. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs.

  2. Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates

    Directory of Open Access Journals (Sweden)

    Mohamad Ramadan

    2015-09-01

    Full Text Available In the last three decades, the world has experienced enormous increases in energy and fuel consumption as a consequence of the economic and population growth. This causes renewable energy and energy recovery to become a requirement in building designs rather than option. The present work concerns a coupling between energy recovery and Heating, Ventilating and Air Conditioning HVAC domains and aims to apply heat recovery concepts to HVAC applications working on refrigeration cycles. It particularly uses the waste energy of the condenser hot air to heat/preheat domestic water. The heat exchanger considered in the recovery system is concentric tube heat exchanger. A thermal modeling of the complete system as well as a corresponding iterative code are developed and presented. Calculations with the code are performed and give pertinent magnitude orders of energy saving and management in HVAC applications. A parametric analysis based on several water and air flow rates is carried out. It was shown that water can be heated from 25 to 70 °C depending on the mass flow rates and cooling loads of the HVAC system. The most efficient configurations are obtained by lowering the air flow rate of the condenser fan.

  3. Radiative energy balance of Venus: An approach to parameterize thermal cooling and solar heating rates

    Science.gov (United States)

    Haus, R.; Kappel, D.; Arnold, G.

    2017-03-01

    Thermal cooling rates QC and solar heating rates QH in the atmosphere of Venus at altitudes between 0 and 100 km are investigated using the radiative transfer and radiative balance simulation techniques described by Haus et al. (2015b, 2016). QC strongly responds to temperature profile and cloud parameter changes, while QH is less sensitive to these parameters. The latter mainly depends on solar insolation conditions and the unknown UV absorber distribution. A parameterization approach is developed that permits a fast and reliable calculation of temperature change rates Q for different atmospheric model parameters and that can be applied in General Circulation Models to investigate atmospheric dynamics. A separation of temperature, cloud parameter, and unknown UV absorber influences is performed. The temperature response parameterization relies on a specific altitude and latitude-dependent cloud model. It is based on an algorithm that characterizes Q responses to a broad range of temperature perturbations at each level of the atmosphere using the Venus International Reference Atmosphere (VIRA) as basis temperature model. The cloud response parameterization considers different temperature conditions and a range of individual cloud mode factors that additionally change cloud optical depths as determined by the initial latitude-dependent model. A QH response parameterization for abundance changes of the unknown UV absorber is also included. Deviations between accurate calculation and parameterization results are in the order of a few tenths of K/day at altitudes below 90 km. The parameterization approach is used to investigate atmospheric radiative equilibrium (RE) conditions. Polar mesospheric RE temperatures above the cloud top are up to 70 K lower and equatorial temperatures up to 10 K higher than observed values. This radiative forcing field is balanced by dynamical processes that maintain the observed thermal structure.

  4. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    Science.gov (United States)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    ratio is calculated from the geometry of core-shell particles, which depends on the mass and density of the core and shell. The size distribution parameters and refractive indices of different aerosol species are taken from OPAC database [3]. Different fractions of black carbon, water soluble and mineral dust aerosols involved in core-shell mixing emerge as the most probable mixing states over the IGP. Aerosol forcing for external mixing shows higher deviations from those for probable mixing cases during winter and pre-monsoon. The heating rate over Kanpur and Gandhi College in the lower troposphere is similar during pre-monsoon (March-May) ( 0.75 K day^{-1}) and monsoon (June-September) ( 0.5 K day^{-1}), while differences occur in other seasons [4]. Aerosol heating rate profiles exhibit primary and secondary peaks over the IGP and exhibit seasonal variations. Details on the calculations of aerosol mixing states over IGP, the impact of aerosol mixing state on aerosol forcing and heating rate will be discussed. References: [1] Intergovernmental panel on climate change (2007), Solomon S. et al. (eds.), Cambridge Univ. Press, NewYork. [2] Holben B. N., et al. (2001), J. Geophys. Res., 106(D11), 12067-12097. [3] Hess M., P. Koepke, I. Schult (1998), Bull. Am. Meteorol. Soc., 79, 831-844. [4] Srivastava R., S. Ramachandran (2012), Q. J. R. Meteorol. Soc., 138, doi:10.1002/qj.1958.

  5. Heart rate variability and heat sensation during CT coronary angiography: Low-osmolar versus iso-osmolar contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Anders; Ripsweden, Jonaz; Aspelin, Peter; Cederlund, Kerstin; Brismar, B. Torkel (Dept. of Clinical Science, Intervention and Technology, Karolinska Inst., Div. of Medical Imaging and Technology and Dept. of Radiology, Karolinska Univ. Hospital, Huddinge, Stockholm (Sweden)), e-mail: anders.svensson@karolinska.se; Rueck, Andreas (Div. of Cardiology, Dept. of Internal Medicine, Karolinska Inst., Karolinska Univ. Hospital, Stockholm (Sweden))

    2010-09-15

    Background: During computed tomography coronary angiography (CTCA) unexpected changes in heart rate while scanning may affect image quality. Purpose: To evaluate whether an iso-osmolar contrast medium (IOCM, iodixanol) and a low-osmolar contrast medium (LOCM, iomeprol) affect heart rate and experienced heat sensation differently. Material and Methods: One hundred patients scheduled for CTCA were randomized to receive either iodixanol 320 mgI/ml or iomeprol 400 mgI/ml. Depending on their heart rate, the patients were assigned to one of five scanning protocols, each optimized for different heart rate ranges. During scanning the time between each heart beat (hb) was recorded, and the corresponding heart rate was calculated. For each contrast medium (CM) the average heart rate, the variation in heart rate from individual mean heart rate, and the mean deviation from the predefined scanning protocol were calculated. Experience of heat was obtained immediately after scanning by using a visual analog scale (VAS). Examination quality was rated by two radiologists on a three-point scale. Results: The mean variation in heart rate after IOCM was 1.4 hb/min and after LOCM it was 4.4 hb/min (NS). The mean deviations in heart rate from that in the predefined scanning protocol were 2.0 hb/min and 4.7 hb/min, respectively (NS). A greater number of arrhythmic hb were observed after LOCM compared with IOCM (P<0.001). There was no statistically significant difference in image quality. The LOCM group reported a stronger heat sensation after CM injection than the IOCM group (VAS =36 mm and 18 mm, P<0.05). Conclusion: At clinically used concentrations the IOCM, iodixanol 320 mgI/ml, does not increase the heart rate during CTCA and causes less heart arrhythmia and less heat sensation than the LOCM, iomeprol 400 mgI/ml

  6. New techniques for the characterisation of dynamical phenomena in solar coronal images

    Science.gov (United States)

    Robbrecht, E.

    2007-02-01

    ) was an important step on the way to subarcsecond telescopes. It allows a spatial resolution of 1" in the EUV and UV bands and, simultaneously, a temporal resolution of the order of a few seconds. Coronal physics studies are dominated by two major and interlinked problems: coronal heating and solar wind acceleration. Above the chromosphere there is a thin transition layer in which the temperature suddenly increases and density drops. How can the temperature of the solar corona be three orders of magnitude higher than the temperature of the photosphere? In order for this huge temperature gradient to be stationary, non-thermal energy must be transported from below the photosphere towards the chromosphere and corona and converted into heat to balance the radiative and conductive losses. This puzzle of origin, transport and conversion of energy is referred to as the "coronal heating problem". Due to its fundamental role in the structuring of the corona, the magnetic field is supposed to play an important role in the heating. In this dissertation we describe two aspects of solar coronal dynamics: waves in coronal loops (Part I) and coronal mass ejections (Part II). We investigate the influence of (semi-) automated techniques on solar coronal research. This is a timely discussion since the observation of solar phenomena is transitioning from manual detection to "Solar Image Processing". Our results are mainly based on images from the Extreme UV Imaging Telescope (EIT) and the Large Angle and Spectrometric Coronagraph (LASCO), two instruments onboard the satellite SOHO (Solar and Heliospheric Observatory) of which we recently celebrated its 11th anniversary. The high quality of the images together with the long timespan created a valuable database for solar physics research. Part I reports on the first detection of slow magnetoacoustic waves in transequatorial coronal loops observed in high cadence image sequences simultaneously produced by EIT and TRACE (Transition Region

  7. Intrinsic Instability of Coronal Streamers

    CERN Document Server

    Chen, Y; Song, H Q; Shi, Q Q; Feng, S W; Xia, L D; 10.1088/0004-637X/691/2/1936

    2009-01-01

    Plasma blobs are observed to be weak density enhancements as radially stretched structures emerging from the cusps of quiescent coronal streamers. In this paper, it is suggested that the formation of blobs is a consequence of an intrinsic instability of coronal streamers occurring at a very localized region around the cusp. The evolutionary process of the instability, as revealed in our calculations, can be described as follows: (1) through the localized cusp region where the field is too weak to sustain the confinement, plasmas expand and stretch the closed field lines radially outward as a result of the freezing-in effect of plasma-magnetic field coupling; the expansion brings a strong velocity gradient into the slow wind regime providing the free energy necessary for the onset of a subsequent magnetohydrodynamic instability; (2) the instability manifests itself mainly as mixed streaming sausage-kink modes, the former results in pinches of elongated magnetic loops to provoke reconnections at one or many loc...

  8. EXPERIMENTAL STUDY ON PREMIX COMBUSTION AT ISOSCELES TRIANGLE TYPE RATE OF HEAT RELEASE FOR SQUISH TYPE COMBUSTION CHAMBER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a theory on premix fuel combustion at nearisosceles triangle type rate of heat release,describes the measures taken for the combustion system,points out its many theoretical advantages,and that it can solve effectively the problems of rough running,fuel consumption and exhaust emission.Two squish lip type combustion chambers are designed to match separately with multiple holes injector and conical spray type injector in order to achieve premix combustion at near isosceles triangle type rate of heat release.Experimental studies on two single cylinder diesel engines showed that premix combustion at isosceles triangle type rate of heat release resulted in longer ignition delay period,larger amount of fuel injected into cylinder during the ignition delay period,lower maximum pressure,better fuel economy,and better exhaust emission.

  9. Temperature and Density Measurements in a Quiet Coronal Streamer

    Science.gov (United States)

    Warren, Harry P.; Warshall, Andrew D.

    2002-06-01

    Many previous studies have used emission line or broadband filter ratios to infer the presence of temperature gradients in the quiet solar corona. Recently it has been suggested that these temperature gradients are not real, but result from the superposition of isothermal loops with different temperatures and density scale heights along the line of sight. A model describing this hydrostatic weighting bias has been developed by Aschwanden & Acton. In this paper we present the application of the Aschwanden & Acton differential emission measure model to Solar and Heliospheric Observatory Solar Ultraviolet Measurement of Emitted Radiation (SUMER) observations of a quiet coronal streamer. Simultaneous Yohkoh soft X-ray telescope (SXT) observations show increases in the filter ratios with height above the limb, indicating an increase in temperature. The application of the Aschwanden & Acton model to these SUMER data, however, show that the temperature is constant with height and that the distribution of temperatures in the corona is much too narrow for the hydrostatic weighting bias to have any effect on the SXT filter ratios. We consider the possibility that there is a tenuous hot component (~3 MK) that accounts for the SXT observations. We find that a hot plasma with an emission measure sufficient to reproduce the observed SXT fluxes would also produce significant count rates in the high-temperature emission lines in the SUMER wavelength range. These lines are not observed, and we conclude that the SUMER spectra are not consistent with the SXT filter ratio temperatures. Calculations from a hydrodynamic loop model suggest that nonuniform footpoint heating may be consistent with the temperatures and densities observed at most heights, consistent with the recent analysis of relatively cool (~1 MK) active region loops. We also find, however, that at the lowest heights the observed densities are smaller than those predicted by uniform or footpoint heating.

  10. Average Heating Rate of Hot Atmospheres in Distant Clusters by Radio AGN: Evidence for Continuous AGN Heating

    CERN Document Server

    Ma, C -J; Nulsen, P E J; Schaffer, R; Vikhlinin, A

    2011-01-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from active galactic nuclei (AGN) is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 - 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in...

  11. Influence of heat stress on arterial baroreflex control of heart rate in the baboon.

    Science.gov (United States)

    Gorman, A J; Proppe, D W

    1982-07-01

    The influence of environmental heat stress on the arterial baroreflex control of heart rate (HR) was studied in eight conscious, chronically instrumented baboons. Inflations of balloon occluders around the inferior vena cava (IVC) and thoracic descending aorta (DA) were used to produce acute, graded changes in mean arterial blood pressure (MABP) in 5 mm Hg intervals ranging from +/- 5 to +/- 25 mm Hg. After determination of the HR responses to changes in MABP in the normothermic baboon (blood temperature less than or equal to 37.6 degrees C), the animal was subjected to environmental heating to produce hyperthermia. When blood temperature reached approximately 39.5 degrees C, HR responses to graded DA and IVC occlusions were again determined. During hyperthermia, the HR sensitivity (delta HR/ delta MABP) to MABP changes was markedly diminished for reductions in MABP and significantly enhanced for increases in MABP. To determine whether these alterations in the HR response to changes in MABP were due to an alteration of the baroreflex control of HR, full, sigmoid-shaped HR-MABP curves for both the normothermic and hyperthermic states were constructed and characterized by total HR range, estimated slope of the steep portion of the curve, and MABP at the midpoint of the HR range (BP50). During hyperthermia (1) the whole HR-MABP curve shifted significantly upward by 35-40 beats/min, (2) total HR range, the estimated slope, and BP50 did not change, and (3) the control point (pre-occlusion HR-MABP value) curves were also constructed during either beta-adrenergic blockade or cholinergic (Ch)-receptor blockade in the normothermic and hyperthermic state. Similar to that seen for the unblocked heart, the whole HR-MABP curves were also shifted upward during hyperthermia in this group of baboons with no alteration in the total HR range, the estimated slope, or BP50. The upward shift in the HR-MABP curve during Ch-receptor blockade, unlike during beta-receptor blockade, was

  12. Motion Magnification in Coronal Seismology

    Science.gov (United States)

    Anfinogentov, Sergey; Nakariakov, Valery M.

    2016-11-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features that have been observed with imaging instruments. The method is based on the two-dimensional dual-tree complex wavelet transform (DTℂWT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes that imitated exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability, and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes, provided these are sufficiently small. In addition, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.

  13. Increasing the rate of heating: a potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy.

    Science.gov (United States)

    Tang, Yuan; McGoron, Anthony J

    2013-01-01

    A synergistic cancer cell killing effect of sub-lethal hyperthermia and chemotherapy has been reported extensively. In this study, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted in order to investigate the role of heating rate in achieving a synergistic effect. The mode of cell death, induction of thermal tolerance and P-glycoprotein (P-gp) mediated MDR following two different rates of heating were studied. Doxorubicin (DOX) was used as the chemotherapy drug. A rapid rate hyperthermia was achieved by near infrared laser (NIR) excited indocyanine green (ICG) dye (absorption maximum at 808 nm, ideal for tissue penetration). A slow rate hyperthermia was provided by a cell culture incubator. The potentiating effect of hyperthermia to chemotherapy can be maximised by increasing the rate of heating. When delivered at the same thermal dose, a rapid increase in temperature from 37°C to 43°C caused more cell membrane damage than gradually heating the cells from 37°C to 43°C and thus allowed for more intracellular accumulation of DOX. Meanwhile, the rapid rate laser-ICG hyperthermia at 43°C caused cell necrosis whereas the slow rate incubator hyperthermia at 43°C induced mild apoptosis. At 43°C a positive correlation between thermal tolerance and the length of hyperthermia exposure is identified. This study shows that by increasing the rate of heating, less thermal dose is needed in order to overcome P-gp mediated MDR.

  14. Can Reptile Embryos Influence Their Own Rates of Heating and Cooling?

    OpenAIRE

    Wei-Guo Du; Ming-Chung Tu; Radder, Rajkumar S.; Richard Shine

    2013-01-01

    Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars) cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. ...

  15. On the sensitivity of dimensional stability of high density polyethylene on heating rate

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Although high density polyethylene (HDPE is one of the most widely used industrial polymers, its application compared to its potential has been limited because of its low dimensional stability particularly at high temperature. Dilatometry test is considered as a method for examining thermal dimensional stability (TDS of the material. In spite of the importance of simulation of TDS of HDPE during dilatometry test it has not been paid attention by other investigators. Thus the main goal of this research is concentrated on simulation of TDS of HDPE. Also it has been tried to validate the simulation results and practical experiments. For this purpose the standard dilatometry test was done on the HDPE speci­mens. Secant coefficient of linear thermal expansion was computed from the test. Then by considering boundary conditions and material properties, dilatometry test has been simulated at different heating rates and the thermal strain versus temper­ature was calculated. The results showed that the simulation results and practical experiments were very close together.

  16. Spatial statistical point prediction guidance for heating-rate-limited aeroassisted orbital transfer

    Science.gov (United States)

    Ghosh, Pradipto; Conway, Bruce A.

    2015-06-01

    Feedback control of constrained non-linear dynamical systems satisfying a certain optimality criterion and meeting a specified transfer objective in the state space is recognized as one of the most challenging problems in control theory. One approach to computing optimal feedback policies is the dynamic programming route of numerically solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation directly. In this paper an alternate and more tractable dynamic programming approach, the optimal feedback synthesis method, is utilized. The effectiveness of this method is demonstrated through an explicit guidance scheme for the heating-rate-constrained maneuver of an Aeroassisted Transfer Vehicle (AOTV). In optimal feedback synthesis, a feedback chart is constructed from a family of open-loop extremals, thus ensuring optimality with respect to any initial condition in the family. This paper presents a solution to the AOTV optimal feedback synthesis problem using the Gaussian process spatial prediction method of universal kriging. A closed-form expression for a near-optimal guidance law is derived. Its performance is found to be very promising; initial atmospheric entry errors due to simulated thruster misfiring are seen to be accurately corrected while the algebraic state-inequality constraint is closely respected.

  17. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    Science.gov (United States)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  18. Coronal Streamers and Their Associated Solar Wind Streams

    Science.gov (United States)

    Miralles, M. P.; Landi, E.; Cranmer, S. R.; Cohen, O.; Raymond, J. C.

    2012-12-01

    We use the EUV spectrometers aboard SOHO and Hinode and white-light coronagraphs to characterize the physical properties of coronal streamers during Earth/Ulysses quadrature configurations for the previous two solar minimum periods. In addition, comparisons between coronal observations and in situ measurements of solar wind plasma properties are being used to further characterize the origins of slow wind streams. In order to investigate slow solar wind heating and acceleration, we also compare with predictions from three-dimensional MHD models. We aim to use the empirical measurements to distinguish between different proposed physical processes for slow wind acceleration (e.g., waves/turbulence versus reconnection). This work is supported by NASA grant NNX10AQ58G to the Smithsonian Astrophysical Observatory.

  19. Is Coronal X-ray Emission Energized By Electric Currents?

    Science.gov (United States)

    Ishibashi, Kazunori; Metcalf, T.; Lites, B.

    2007-05-01

    We examine the spatial correlation between coronal X-ray emission observed with the Hinode X-Ray Telescope and electric currents observed with the Hinode Solar Optical Telescope Spectro-polarimeter. We determine to what extent the X-ray brightness is correlated with electric current density and hence to what extent the hot corona is energized by electric currents which flow through the photosphere. We will also consider whether the currents reach the corona to heat the coronal plasma or whether they predominantly close below the corona. Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, development and operation of the mission.

  20. Inferring the Coronal Density Irregularity from EUV Spectra

    CERN Document Server

    Hahn, Michael

    2016-01-01

    Understanding the density structure of the solar corona is important for modeling both coronal heating and the solar wind. Direct measurements are difficult because of line-of-sight integration and possible unresolved structures. We present a new method for quantifying such structure using density-sensitive EUV line intensities to derive a density irregularity parameter, a relative measure of the amount of structure along the line of sight. We also present a simple model to relate the inferred irregularities to physical quantities, such as the filling factor and density contrast. For quiet Sun regions and interplume regions of coronal holes, we find a density contrast of at least a factor of three to ten and corresponding filling factors of about 10-20%. Our results are in rough agreement with other estimates of the density structures in these regions. The irregularity diagnostic provides a useful relative measure of unresolved structure in various regions of the corona.

  1. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate.

    Science.gov (United States)

    Fazaeli, Mahboubeh; Hojjatpanah, Ghazale; Emam-Djomeh, Zahra

    2013-02-01

    Black mulberry juice was concentrated by different heating methods, including conventional heating and microwave heating, at different operational pressures (7.3, 38.5 and 100 kPa). The effects of each method on evaporation rate, quality attributes of concentrated juice were investigated. The final juice concentration of 42° Brix was achieved in 140, 120, and 95 min at 100, 38.5, and 7.3 kPa respectively by using a rotary evaporator. Applying microwave energy decreased required times to 115, 95, and 60 min. The changes in color, anthocyanin content during the concentration processes were investigated. Hunter parameters (L, a, and b) were measured to estimate the intensity of color loss. All Hunter color parameters decreased with time. Results showed that the degradation of color and consequently anthocyanins, was more pronounced in rotary evaporation compared to microwave heating method.

  2. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  3. A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S. [CAS Key Laboratory of Geospace Environment, Earh and Space Science School, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026 (China)

    2015-11-10

    In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggering mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.

  4. Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation

    Directory of Open Access Journals (Sweden)

    Zeng Yan

    2014-12-01

    Full Text Available Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation were enhanced by employing various heating rate and different solvent. The catalytic properties were tested in syngas methanation. The result indicates that both of heating rate and solvent remarkably affect Ni particle size, which is a key factor to the catalytic activity of Ni-Al2O3 catalysts for syngas methanation. Moreover, the relationship between Ni particle size and the production rate of methane per unit mass was correlated. The optimal Ni-Al2O3 catalyst prepared in ethanol at 2°C/min, achieves a maximum production rate of methane at the mean size of 20.8 nm.

  5. The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity

    Science.gov (United States)

    Ravanelli, Nicholas M.; Gagnon, Daniel; Hodder, Simon G.; Havenith, George; Jay, Ollie

    2017-02-01

    Electric fan use in extreme heat wave conditions has been thought to be disadvantageous because it might accelerate heat gain to the body via convection. However, it has been recently shown that fan use delays increases in heart rate even at high temperatures (42 °C) in young adults. We here assess the biophysical and physiological mechanisms underlying the apparently beneficial effects of fan use. Eight males (24 ± 3 y; 80.7 ± 11.7 kg; 2.0 ± 0.1 m2) rested at either 36 °C or 42 °C, with (F) or without (NF) electric fan use (4.2 m/s) for 120 min while humidity increased every 7.5 min by 0.3 kPa from a baseline value of 1.6 kPa. Heart rate (HR), local sweat rate (LSR), cutaneous vascular conductance (CVC), core and mean skin temperatures, and the combined convective/radiative heat loss (C+R), evaporative heat balance requirements (Ereq) and maximum evaporative potential (Emax) were assessed. C+R was greater with fan use at 36 °C (F 8 ± 6, NF 2 ± 2 W/m2; P = 0.04) and more negative (greater dry heat gain) with fan use at 42 °C (F -78 ± 4, NF -27 ± 2 W/m2; P prevented by fan use but not without a fan, LSR was higher in NF at both 36 °C ( P = 0.04) and 42 °C ( P = 0.05), and skin temperature was higher in NF at 42 °C ( P = 0.05), but no differences in CVC or core temperatures were observed (all P > 0.05). These results suggest that the delayed increase in heart rate with fan use during extreme heat and humidity is associated with improved evaporative efficiency.

  6. Coronal Neutrino Emission in Hypercritical Accretion Flows

    CERN Document Server

    Kawabata, R; Kawanaka, N

    2007-01-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly considered as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz & Socrates (2005) proposed that high energy neutrinos from hot corona above the accretion disk might enhance the efficiency of energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. Th...

  7. Effect of high heating rate on thermal decomposition behaviour of titanium hydride (TiH2) powder in air

    Indian Academy of Sciences (India)

    A Rasooli; M A Boutorabi; M Divandari; A Azarniya

    2013-04-01

    DTA and TGA curves of titanium hydride powder were determined in air at different heating rates. Also the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into consideration. A great breakthrough of the practical interest in the research was the depiction of the H2-time curves of TiH2 powder at various temperatures in air. In accordance with the results, an increase in heating rate to higher degrees does not change the process of releasing hydrogen from titanium hydride powder, while switching it from internal diffusion to chemical reaction. At temperatures lower than 600 °C, following the diffusion of hydrogen and oxygen atoms in titanium lattice, thin layers TiH phase and oxides form on the powder surface, controlling the process. On the contrary, from 700 °C later on, the process is controlled by oxidation of titanium hydride powder. In fact, the powder oxidation starts around 650 °C and may escalate following an increase in the heating rate too.

  8. Couette and Poiseuille flows in a low viscosity asthenosphere: Effects of internal heating rate, Rayleigh number, and plate representation

    Science.gov (United States)

    Shiels, C.; Butler, S. L.

    2015-09-01

    Mantle convection models with a low viscosity asthenosphere and high viscosity surface plates have been shown to produce very large aspect ratio convection cells like those inferred to exist in Earth's mantle and to exhibit two asthenospheric flow regimes. When the surface plate is highly mobile, the plate velocity exceeds the flow velocities in the asthenosphere and the plate drives a Couette-type flow in the asthenospheric channel. For sluggish plates, the flow velocities in the asthenosphere exceed the plate velocity and the asthenospheric flow is more Poiseuille-like. It has been shown that under certain circumstances, flows become increasingly Couette-like as the aspect ratio of the plate is increased in numerical simulations. These models also show an increase in the average surface heat flux with aspect ratio which is counterintuitive, as one would expect that large aspect ratio models would result in older and colder oceanic lithosphere. Previous investigations have used single internal heating rates and Rayleigh numbers and a plate formulation that did not preclude significant deformation within the plate. In this paper, we investigate the conditions necessary for Couette and Poiseuille asthenospheric flows and for surface heat flux to increase with plate aspect ratio by varying the internal heating rate, the Rayleigh number and the representation of surface plates in 2D mantle convection models Plates are represented as a high viscosity layer with (1) a free-slip top surface boundary condition and (2) a force-balance boundary condition that imposes a constant surface velocity within the plate. We find that for models with a free-slip surface boundary condition, the internal heating rate and Rayleigh number do not strongly affect the dominance of Couette or Poiseuille flows in the asthenosphere but the increase in surface heat flux with model aspect ratio in the Poiseuille asthenospheric flow regime increases with internal heating rate. For models using

  9. Impulsively Generated Linear and Non-linear Alfven Waves in the Coronal Funnels

    Science.gov (United States)

    Chmielewski, P.; Srivastava, A. K.; Murawski, K.; Musielak, Z. E.

    2014-01-01

    We present simulation results of the impulsively generated linear and non-linear Alfvén waves in the weakly curved coronal magnetic flux-tubes (coronal funnels) and discuss their implications for the coronal heating and solar wind acceleration. We solve numerically the time-dependent magnetohydrodynamic equations to find the temporal signatures of the small and large-amplitude Alfvén waves in the model atmosphere of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfvén waves at different heights of the model atmosphere, and study their response in the solar corona during the time of their propagation. We infer that the pulse-driven non-linear Alfvén waves may carry sufficient wave energy fluxes to heat the coronal funnels and also to power the solar wind that originates in these funnels. Our study of linear Alfvén waves shows that they can contribute only to the plasma dynamics and heating of the funnel-like magnetic flux-tubes associated with the polar coronal holes.

  10. Aerosol Climatology at Pune, Western India: Implications to Direct Radiative Forcing and Heating Rates

    Science.gov (United States)

    Pandithurai, G.; Pinker, R. T.; Devara, P. C.; Raj, P. E.; Jayarao, Y.; Dani, K. K.; Maheskumar, R. S.; Sonbawne, S. M.; Saha, S. K.; Bhawar, R.; Shinde, U. P.

    2005-12-01

    Extensive aerosol observations were carried out at Indian Institute of Tropical Meteorology (IITM), Pune, an urban site in the western part of the country, using a Prede (Model POM-01L) sun/sky radiometer and a bi-static Argon ion lidar since December 2000 and October 1986, respectively. The sun/sky radiometer was operated daily at every 15 minute interval during day-time to derive column aerosol optical parameters such as aerosol optical depth (AOD), single scattering albedo (SSA), asymmetry parameter (ASY) while the lidar was operated weekly in the early-night period to derive vertical distributions of aerosol number density. The sun/sky radiance data collected during the above period have been analysed by using the radiative transfer model SkyRadPack version 3.0 (Nakajima et al. 1996) to retrieve AOD, SSA and ASY. AOD and SSA retrieved at 15-minutes interval were averaged to get monthly means. On every year from 2000 to 2005, monthly means of AOD show gradual increase of aerosol loading from December to April and Angstrom exponent decreases from March due to local as well as transported dust from African / Arabian regions through Arabian Sea. Monthly means of SSA show decrease from December to April and the wavelength dependence also indicate the abundance of dust from March to May. Lidar-derived vertical distributions yield minimum during the monsoon months, gradually builds up during the post-monsoon and winter months, and finally peaks during the pre-monsoon months in every year (Devara et al., 2002). The aerosol climatology of optical/radiative parameters and their vertical distribution are used for estimating aerosol radiative forcing (ARF) and atmospheric heating rates by using a discrete-ordinate radiative transfer model (Ricchiazzi et al., 1998, Pandithurai et al. 2004). Details of the experimental methods, data, results of aerosol climatology and implications to radiative forcing and associated heating rates will be presented. References Devara, P

  11. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  12. Near-infrared measurement of water temperature near a 1-mm-diameter magnetic sphere and its heat generation rate under induction heating

    Science.gov (United States)

    Kakuta, Naoto; Nishijima, Keisuke; Kondo, Katsuya; Yamada, Yukio

    2017-07-01

    This paper presents a method of measuring the temperature of water near a 1-mm-diameter magnetic sphere under induction heating. The method is based on the temperature dependence of the absorption coefficient of water at a wavelength of 1150 nm. In this study, two-dimensional images of the absorbance, which is the transverse projection of the absorption coefficient of water, were acquired by a near-infrared camera through a telecentric lens, and three-dimensional radial profiles of the temperature were then generated by applying inverse Abel transforms (IATs) to the absorbance profiles. To ensure the spherical symmetry of the temperature and the parallelity of the light rays, which are the conditions necessary to apply an IAT, the onset of free convection and the angles of deflection were evaluated. This paper also presents a method of estimating the heat generation rate in a sphere by fitting the numerical solutions of the thermal conduction equation to the measured temperatures. The temperatures and heat generation rates were observed to change consistently with the changes in the magnetic field intensity.

  13. From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    CERN Document Server

    Judge, Philip G; Landi, Enrico

    2013-01-01

    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possibl...

  14. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2013-01-01

    An efficient and space saving method for passive fire protection is the use of intumescent coatings, which swell when exposed to heat, forming an insulating char layer on top of the virgin coating. Although the temperature curves related to so-called cellulosic fires are often referred to as slow...... heating curves, special cases where the protective char is mechanically damaged and partly removed can cause extremely fast heating of the coating. This situation, for a solvent based intumescent coating, is simulated using direct insertion of free films into a muffle oven. The char formed is evaluated...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  15. Extension of the MURaM Radiative MHD Code for Coronal Simulations

    Science.gov (United States)

    Rempel, M.

    2017-01-01

    We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantify the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.

  16. Influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steels

    Science.gov (United States)

    Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng

    2017-03-01

    The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.

  17. Effects of Pressure on the Properties of Coal Char Under Gasification Conditions at High Initial Heating Rates

    Science.gov (United States)

    Shurtz, Randy Clark

    The effects of elevated pressure and high heating rates on coal pyrolysis and gasification were investigated. A high-pressure flat-flame burner (HPFFB) was designed and built to conduct these studies. The HPFFB was designed to provide an environment with laminar, dispersed entrained flow, with particle heating rates of ˜105 K/s, pressures of up to 15 atm, and gas temperatures of up to 2000 K. Residence times were varied from 30 to 700 ms in this study. Pyrolysis experiments were conducted at particle heating rates of ˜10 5 K/s and maximum gas temperatures of ˜1700 K at pressures of 1 to 15 atm. A new coal swelling correlation was developed that predicts the effects of heating rate, pressure, and coal rank on the swelling ratio at heating rates above ˜104 K/s. A coal swelling rank index system based on 13C-NMR chemical structural parameters was devised. The empirical swelling model requires user inputs of the coal ultimate and proximate analyses and the use of a transient particle energy balance to predict the maximum particle heating rate. The swelling model was used to explain differences in previously reported bituminous coal swelling ratios that were measured in facilities with different heating rates. Char gasification studies by CO2 were conducted on a subbituminous coal and 4 bituminous coals in the HPFFB. Pressures of 5, 10, and 15 atmospheres were used with gas compositions of 20, 40, and 90 mole % CO2. Gas conditions with peak temperatures of 1700 K to 2000 K were used, which resulted in char particle temperatures of 1000 K to 1800 K. Three gasification models were developed to fit and analyze the gasification data. A simple 1 st--order model was used to show that the measured gasification rates were far below the film-diffusion limit. The other two models, designated CCK and CCKN, were based on three versions of the CBK models. CCKN used an nth--order kinetic mechanism and CCK used a semi-global Langmuir-Hinshelwood kinetic mechanism. The two CCK

  18. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  19. Suicide and the Therapeutic Coroner: Inquests, Governance and the Grieving Family

    Directory of Open Access Journals (Sweden)

    Gordon Tait

    2013-11-01

    Full Text Available This study of English Coronial practice raises a number of questions about the role played by the Coroner within contemporary governance. Following observations at over 20 inquests into possible suicides and in-depth interviews with six Coroners, three preliminary issue emerged, all of which pointed to a broader and, in many ways, more significant issue. These preliminary issues are concerned with (1 the existence of considerable slippages between different Coroners over which deaths are likely to be classified as suicide; (2 the high standard of proof required and immense pressure faced by Coroners from family members at inquest to reach any verdict other than suicide, which significantly depresses likely suicide rates; and (3 Coroners feeling no professional obligation, either individually or collectively, to contribute to the production of consistent and useful social data regarding suicide, arguably rendering comparative suicide statistics relatively worthless. These concerns lead, ultimately, to the second more important question about the role expected of Coroners within social governance and within an effective, contemporary democracy. That is, are Coroners the principal officers in the public administration of death; or are they, first and foremost, a crucial part of the grieving process, one that provides important therapeutic interventions into the mental and emotional health of the community?

  20. Remaking the medico-legal scene: a social history of the late-Victorian coroner in Oxford.

    Science.gov (United States)

    Hurren, Elizabeth T

    2010-04-01

    There have been wide-ranging debates about medicine and the law encapsulated in the figure of the coroner in Victorian England. Recently the historical literature on coroners has been enriched by macro-studies. Despite this important research, the social lives of coroners and their daily interactions remain relatively neglected in standard historical accounts. This article redresses that issue by examining the working life of the coroner for Oxford during the late-Victorian era. Edward Law Hussey kept very detailed records of his time in office as coroner. New research material makes it feasible to trace his professional background, from doctor of the sick poor, to hospital house surgeon and then busy coroner. His career trajectory, personal interactions, and professional disputes, provide an important historical prism illuminating contemporary debates that occupied coroners in their working lives. Hussey tried to improve his medico-legal reach and the public image of his coroner's office by reducing infanticide rates, converting a public mortuary, and acquiring a proper coroner's court. His campaigns had limited success because the social scene in which he worked was complicated by the dominance of health and welfare agencies that resented his role as an expanding arm of the Victorian information state.

  1. Coronal energy input and dissipation in a solar active region 3D MHD model

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2015-01-01

    Context. We have conducted a 3D MHD simulation of the solar corona above an active region in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the active region (AR) core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperatur...

  2. Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    CERN Document Server

    Vashalomidze, Z; Zaqarashvili, T V; Oliver, R; Shergelashvili, B; Ramishvili, G; Poedts, S; De Causmaecker, P

    2015-01-01

    The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. We used time series of the 171 \\AA\\, and 304 \\AA\\, spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Observations show that a coronal loop disappeared in the 171 \\AA\\ channel and appeared in the 304 \\AA\\ line$\\text{}\\text{}$ more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the fo...

  3. Characteristics of EUV Coronal Jets Observed with STEREO/SECCHI

    Science.gov (United States)

    Nisticò, G.; Bothmer, V.; Patsourakos, S.; Zimbardo, G.

    2009-10-01

    In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet events, commonly interpreted as a small-scale (˜35 arc sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample

  4. Magnetic shuffling of coronal downdrafts

    Science.gov (United States)

    Petralia, A.; Reale, F.; Orlando, S.

    2017-02-01

    Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption. Aims: We study the possible back-effect of the magnetic field on the propagation of confined flows. Methods: We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker. Results: The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front. Conclusions: Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example. Movies associated to Figs. 2 and 3 are available at http://www.aanda.org

  5. Pre-flare coronal dimmings

    CERN Document Server

    Zhang, Q M; Ji, H S

    2016-01-01

    In this paper, we focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly with their intensities decreasing with time, while their apparent widths (8$-$9 Mm) nearly kept constant. During the impulsive and decay phases of flare, typical fanlike ...

  6. Professionalism in practice: the Coroner's Court.

    Science.gov (United States)

    Griffith, Richard

    2017-01-02

    A coroner recently declared a district nursing service as unfit for purpose following the death of a patient and held the care given by district nurses was unprofessional and contributed to the patient's decline and death. In this article Richard Griffith considers the coroners concerns in relation to the professional standards imposed on district nurses.

  7. Deep coronal hole associated with quiescent filament

    Science.gov (United States)

    Kesumaningrum, Rasdewita; Herdiwidjaya, Dhani

    2014-03-01

    We present a study of the morphology of quiescent filament observed by H-alpha Solar Telescope at Bosscha Observatory in association with coronal hole observed by Atmospheric Imaging Assembly (AIA) instrument in 193 Å from Solar Dynamics Observatory. H-alpha images were processed by imaging softwares, namely Iris 5.59 and ImageJ, to enhance the signal to noise ratio and to identify the filament features associated with coronal hole. For images observed on October 12, 2011, November 14, 2011 and January 2, 2012, we identified distinct features of coronal holes above the quiescent filaments. This associated coronal holes have filament-like morphology with a thick long thread as it's `spine', defined as Deep Coronal Hole. Because of strong magnetic field of sunspot, these filaments and coronal holes emerged far from active region and lasted for several days. It is interesting as for segmented filament, deep coronal holes above the filaments lasted for a quite long period of time and merged. This association between filament and deep coronal hole can be explained by filament magnetic loop.

  8. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  9. The Temperature-Dependent Nature of Coronal Dimmings

    CERN Document Server

    Robbrecht, Eva

    2010-01-01

    The opening-up of the magnetic field during solar eruptive events is often accompanied by a dimming of the local coronal emission. From observations of filament eruptions recorded with the Extreme-Ultraviolet Imager on STEREO during 2008-2009, it is evident that these dimmings are much more pronounced in 19.5 nm than in the lower-temperature line 17.1 nm, as viewed either on the disk or above the limb. We conclude that most of the cooler coronal plasma is not ejected but remains gravitationally bound when the loops open up. This result is consistent with Doppler measurements by Imada and coworkers, who found that the upflow speeds in a transient coronal hole increased dramatically above a temperature of 1 MK; it is also consistent with the quasistatic behavior of polar plumes, as compared with the hotter interplume regions that are the main source of the fast solar wind. When the open flux reconnects and closes down again, the trapped plasma is initially heated to such high temperatures that it is no longer v...

  10. Application of multivariate adaptive regression spine-assisted objective function on optimization of heat transfer rate around a cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Prasenjit; Dad, Ajoy K. [Mechanical Engineering Department, National Institute of Technology, Agartala (India)

    2016-12-15

    The present study aims to predict the heat transfer characteristics around a square cylinder with different corner radii using multivariate adaptive regression splines (MARS). Further, the MARS-generated objective function is optimized by particle swarm optimization. The data for the prediction are taken from the recently published article by the present authors [P. Dey, A. Sarkar, A.K. Das, Development of GEP and ANN model to predict the unsteady forced convection over a cylinder, Neural Comput. Appl. (2015). Further, the MARS model is compared with artificial neural network and gene expression programming. It has been found that the MARS model is very efficient in predicting the heat transfer characteristics. It has also been found that MARS is more efficient than artificial neural network and gene expression programming in predicting the forced convection data, and also particle swarm optimization can efficiently optimize the heat transfer rate.

  11. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  12. Bootstrapping the Coronal Magnetic Field with STEREO

    Science.gov (United States)

    Aschwanden, Markus J.

    2010-05-01

    The 3D coronal magnetic field obtained from stereoscopically triangulated loops has been compared with standard photospheric magnetogram extrapolations. We found a large misalignment of 20-40 deg, depending on the complexity of an AR (Sandman et al. 2009; DeRosa et al. 2009). These studies prove that the magnetic field in the photosphere is not force-free and fundamentally cannot reproduce the coronal magnetic field. Bootstrapping with coronal loop 3D geometries are required to improve modeling of the coronal field. Such coronal field bootstrapping methods are currently developed using stereoscopically triangulated loops from STEREO/EUVI and preliminary results show already a significantly reduced misalignment of 10-20 deg.

  13. Blind Stereoscopy of the Coronal Magnetic Field

    CERN Document Server

    Aschwanden, Markus J; Malanushenko, Anna

    2015-01-01

    We test the feasibility of 3D coronal-loop tracing in stereoscopic EUV image pairs, with the ultimate goal of enabling efficient 3D reconstruction of the coronal magnetic field that drives flares and coronal mass ejections (CMEs). We developed an automated code designed to perform triangulation of coronal loops in pairs (or triplets) of EUV images recorded from different perspectives. The automated (or blind) stereoscopy code includes three major tasks: (i) automated pattern recognition of coronal loops in EUV images, (ii) automated pairing of corresponding loop patterns from two different aspect angles, and (iii) stereoscopic triangulation of 3D loop coordinates. We perform tests with simulated stereoscopic EUV images and quantify the accuracy of all three procedures. In addition we test the performance of the blind stereoscopy code as a function of the spacecraft-separation angle and as a function of the spatial resolution. We also test the sensitivity to magnetic non-potentiality. The automated code develo...

  14. The Inconvenient Truth About Coronal Dimmings

    CERN Document Server

    McIntosh, Scott W

    2008-01-01

    We investigate the occurrence of a coronal dimming using a combination of high resolution spectro-polarimetric, spectral and broadband images which span from the deep photosphere into the corona. These observations reinforce the belief that coronal dimmings, or transient coronal holes as they are also known, are indeed the locations of open magnetic flux in the corona resulting from the launch of a CME. We will see that, as open magnetic regions, they must act just as coronal holes and be sources of the fast solar wind, but only temporarily. An inescapable question therefore arises - what impact does this source of fast wind have on the propagation and in-flight characteristics of the CME that initiates the coronal dimming in the first place?

  15. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    CHEN PengFei

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  16. Drift waves in the corona: heating and acceleration of ions at frequencies far below the gyro frequency

    CERN Document Server

    Vranjes, J

    2010-01-01

    In the solar corona, several mechanisms of the drift wave instability can make the mode growing up to amplitudes at which particle acceleration and stochastic heating by the drift wave take place. The stochastic heating, well known from laboratory plasma physics where it has been confirmed in numerous experiments, has been completely ignored in past studies of coronal heating. However, in the present study and in our very recent works it has been shown that the inhomogeneous coronal plasma is, in fact, a perfect environment for fast growing drift waves. As a matter of fact, the large growth rates are typically of the same order as the plasma frequency. The consequent heating rates may exceed the required values for a sustained coronal heating by several orders of magnitude. Some aspects of these phenomena are investigated here. In particular the analysis of the particle dynamics within the growing wave is compared with the corresponding fluid analysis. While both of them predict the stochastic heating, the th...

  17. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    Science.gov (United States)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s‑1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  18. NLP modeling for the optimization of LiBr-H2O absorption refrigeration systems with exergy loss rate, heat transfer area, and cost as single objective functions

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Gernaey, Krist; Morosuk, Tatiana

    2016-01-01

    exergy loss rate, the total heat transfer area, and the total annual cost of the system. It was found that the optimal solution obtained by minimization of the total exergy loss rate provides “theoretical” upper bounds not only for the total heat transfer area of the system but also for each process unit...... and all stream temperatures, while the optimal solution obtained by minimization of the total heat transfer area provides the lower bounds for these model variables, to solve a cost optimization problem. The minimization of the total exergy loss rate by varying parametrically the available total heat...... and quantitatively with increasing available total heat transfer area. These optimization results allowed to find a “practical” value of the total heat transfer area, i.e. no benefits can be obtained by increasing the available total heat transfer area above this value since the minimal total exergy loss value...

  19. Studies on the Effects of Interphase Heat Exchange during Thermal Explosion in a Combustible Dusty Gas with General Arrhenius Reaction-Rate Laws

    OpenAIRE

    K. S. Adegbie; F. I. Alao

    2012-01-01

    A mathematical model for thermal explosion in a combustible dusty gas containing fuel droplets with general Arrhenius reaction-rate laws, convective and radiative heat losses, and interphase heat exchange between gas and inert solid particles is investigated. The objective of the study is to examine the effects of interphase heat exchange between the gas and solid particles on (i) ignition of reacting gas, (ii) accumulation of heat by the solid particles during combustion process (iii) evapor...

  20. Fast-sausage oscillations in coronal loops with smooth boundary

    Science.gov (United States)

    Lopin, I.; Nagorny, I.

    2014-12-01

    Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.

  1. Three-Dimensional Modeling of the Solar Wind: From the Coronal Base to the Outer Heliosphere

    Science.gov (United States)

    Usmanov, A. V; Goldstein, M. L.; Matthaeus, W. H.

    2011-01-01

    We have developed a global fully three-dimensional magnetohydrodynamic solar wind model for the region that extends from the coronal base to 100 AU. The simulation domain consists of tree spherical shell subdomains with computational boundaries between them placed at 20 solar radii and 0.3 AU. The location of the first boundary ensures that the flow at the boundary is both supersonic and super-Alfvenic. A steady-state solution in the innermost (coronal) region is obtained by the time-relaxation method. The solution uses a tilted dipole model or solar magnetograms as the boundary condition at the coronal base and includes a flux of Alfven waves in the WKB approximation which provide additional acceleration for the coronal outflow in the open field regions. The intermediate region solution is constructed by the integration of steady-state equations along radius using a marching scheme. The outer region solution (0.3-100 AU) is obtained again by the time relaxation and takes into account turbulence transport and heating as well as heating, flow deceleration, and other effects due to the interstellar pickup protons treated as a separate fluid. We use the model to simulate the global steady-state structure of the solar wind from the coronal base to the heliospheric boundary and compare the results with Ulysses and Voyager observations.

  2. Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006

    Directory of Open Access Journals (Sweden)

    M. Mallet

    2009-09-01

    Full Text Available The present work analyses the effect of dust aerosols on the surface and top of atmosphere radiative budget, surface temperature, sensible heat fluxes, atmospheric heating rate and convective activity over West Africa. The study is focused on the regional impact of a major dust event over the period of 7–14 March 2006 through numerical simulations performed with the mesoscale, nonhydrostatic atmospheric model MesoNH. Due to its importance on radiative budgets, a specific attention has been paid to the representation of dust single scattering albedo (SSA in MesoNH by using inversions of the AErosol RObotic NETwork (AERONET. The radiative impacts are estimated using two parallel simulations, one including radiative effects of dust and the other without them. The simulations of dust aerosol impacts on the radiative budget indicate remarkable instantaneous (at midday decrease of surface shortwave (SW radiations over land, with regional (9°–17° N, 10° W–20° E mean of −137 W/m2 during the 9 to 12 March period. The surface dimming resulting from the presence of dust is shown to cause important reduction of both surface temperature (up to 4°C and sensible heat fluxes (up to 100 W/m2, which is consistent with experimental observations. At the top of the atmosphere, the SW cooling (regional mean of −12.0 W/m2 induced by mineral dust is shown to dominate the total net (shortwave + longwave effect. The maximum SW heating occurs within the dusty layer with values comprised between 4 and 7° K by day and LW effect results in a cooling of −0.10/−0.20° K by day. Finally, the simulations suggest the decrease of the convective available potential energy (CAPE over the region in the presence of mineral dust.

  3. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  4. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  5. Subjective ratings and performance in the heat and after sleep deprivation

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ling, S. van; Tan, T.K.

    2013-01-01

    Background: It has been shown that endurance performance after one night of sleep deprivation is not compromised despite the feeling of fatigue and that, in contrast, performance in the heat deteriorates even though people may feel good. However, it is essentially unknown how the estimation of perfo

  6. Apparent activation energy for densification of -Al2O3 powder at constant heating-rate sintering

    Indian Academy of Sciences (India)

    W Q Shao; S O Chen; D Li; H S Cao; Y C Zhang; S S Zhang

    2008-11-01

    The apparent activation energy for densification is a characteristic quantity that elucidates the fundamental diffusion mechanisms during the sintering process. Based on the Arrhenius theory, the activation energy for densification of -Al2O3 at constant heating-rates sintering has been estimated. Sintering of -Al2O3 powder has been executed by the way of a push rod type dilatometer. It is shown that the apparent activation energy does not have a single value but depends directly on the relative density. The apparent activation energy corresponding to lower relative density was higher than that corresponding to higher relative density. In addition, the value of the evaluated activation energy is different at the same density level when the Arrhenius plot involves different heating rates.

  7. Effect of cooling-heating rate on sol-gel transformation of fish gelatin-gum arabic complex coacervate phase.

    Science.gov (United States)

    Anvari, Mohammad; Chung, Donghwa

    2016-10-01

    The objective of this study was to characterize influence of different cooling and heating rates on gelation of fish gelatin (FG)-gum arabic (GA) complex coacervate phase using rheological measurements. For the coacervate phase prepared at 10°C, the gelling temperature, melting temperature, gel strength, and stress relaxation decreased with increasing cooling or heating rate, however, no gelation was observed at the highest cooling rate of 0.05°C/min. Similar trends were obtained for the coacervates phase prepared at 30°C, but the gelation did not occur at a cooling rate of 0.033 or 0.05°C/min. The results indicated that rheological properties of FG-GA coacervate gels were highly dependent to the cooling process, where more thermos-stable and stronger gels formed at slower cooling. This was probably because of higher degree of molecular rearrangements, more hydrogen bindings, and formation of greater junction zones into the gel network at slower cooling rates. However, all of the FG-GA coacervate gels obtained at different cooling rates were classified as a weak physical gel.

  8. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  9. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    Science.gov (United States)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  10. Effect of heating rate and kinetic model selection on activation energy of nonisothermal crystallization of amorphous felodipine.

    Science.gov (United States)

    Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin

    2014-12-01

    The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Coronal Mass Ejections travel time

    Science.gov (United States)

    Braga, Carlos Roberto; Souza de Mendonça, Rafael Rodrigues; Dal Lago, Alisson; Echer, Ezequiel

    2017-10-01

    Coronal mass ejections (CMEs) are the main source of intense geomagnetic storms when they are earthward directed. Studying their travel time is a key-point to understand when the disturbance will be observed at Earth. In this work, we study the CME that originated the interplanetary disturbance observed on 2013/10/02. According to the observations, the CME that caused the interplanetary disturbance was ejected on 2013/09/29. We obtained the CME speed and estimate of the time of arrival at the Lagrangian Point L1 using the concept of expansion speed. We found that observed and estimated times of arrival of the shock differ between 2 and 23 hours depending on method used to estimate the radial speed.

  12. An atlas of coronal electron density at 5Rs I: Data processing and calibration

    CERN Document Server

    Morgan, Huw

    2015-01-01

    Tomography of the solar corona can provide cruicial constraints for models of the low corona, unique information on changes in coronal structure and rotation rates, and a valuable boundary condition for models of the heliospheric solar wind. This is the first of a series of three papers which aim to create a set of maps of the coronal density over an extended period (1996-present). The papers will describe the data processing and calibration (this paper), the tomography method (\\paperii) and resulting atlas of coronal electron density at a height of 5\\Rs\\ between years 1996-2014 (\\paperiii). This first paper presents a detailed description of data processing and calibration for the Large-Angle and Spectrometric Coronagraph (LASCO) C2 instrument onboard the Solar and Heliospheric Observatory (SOHO) and the COR2 instruments of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) package aboard the Solar Terrestial Relations Observatory (STEREO) A \\& B spacecraft. The methodology includes...

  13. GLOBAL EXISTENCE AND CONVERGENCE RATES OF SMOOTH SOLUTIONS FOR THE 3-D COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITHOUT HEAT CONDUCTIVITY

    Institute of Scientific and Technical Information of China (English)

    Zhensheng GAO; Zhong TAN; Guochun WU

    2014-01-01

    In this paper, we are concerned with the global existence and convergence rates of the smooth solutions for the compressible magnetohydrodynamic equations without heat conductivity, which is a hyperbolic-parabolic system. The global solutions are obtained by combining the local existence and a priori estimates if H3-norm of the initial perturbation around a constant states is small enough and its L1-norm is bounded. A priori decay-in-time estimates on the pressure, velocity and magnetic field are used to get the uniform bound of entropy. Moreover, the optimal convergence rates are also obtained.

  14. FORWARD: A toolset for multiwavelength coronal magnetometry

    Directory of Open Access Journals (Sweden)

    Sarah eGibson

    2016-03-01

    Full Text Available Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma -- i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  15. FORWARD: A toolset for multiwavelength coronal magnetometry

    Science.gov (United States)

    Gibson, Sarah; Kucera, Therese; White, Stephen; Dove, James; Fan, Yuhong; Forland, Blake; Rachmeler, Laurel; Downs, Cooper; Reeves, Katharine

    2016-03-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma -- i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  16. The effect of heat developed during high strain rate deformation on the constitutive modeling of amorphous polymers

    Science.gov (United States)

    Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.

    2016-02-01

    An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.

  17. Correlation of Heating Rates, Crystal Structures, and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics

    Science.gov (United States)

    Lu, Xuepeng; Zheng, Yong; Huang, Qi; Xiong, Weihao

    2015-11-01

    The correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics was thoroughly investigated. Ionic polarizability, atomic packing fractions, bond strengths, and octahedral distortion of Li2ZnTi3O8 ceramics were calculated on the basis of structure refinement data. The "black core" phenomenon resulting from reduction of Ti4+ ions was observed for Li2ZnTi3O8 ceramic sintered at 1°/min; reduction of Ti4+ ions could be limited by heating more rapidly. For heating rates from 1 to 7°/min, the dielectric constants ( ɛ r) of Li2ZnTi3O8 ceramics were mainly determined by ionic polarizability. The temperature coefficient of the resonant frequency ( τ f ) of Li2ZnTi3O8 ceramics was determined by bond strengths. Li2ZnTi3O8 ceramic sintered at 1°/min had the lowest quality factor ( Q × f); this was related to the high dielectric loss as a result of oxygen vacancies formed by reduction of Ti4+ ions. Q × f values of Li2ZnTi3O8 ceramics also decreased with increasing heating rate from 3 to 7°/min, owing to reduced packing fractions and average grain sizes. Li2ZnTi3O8 ceramic sintered at 3°/min had the optimum microwave dielectric properties of ɛ r = 26.6, Q × f = 83,563 GHz, and τ f = -12.4 ppm/°C.

  18. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  19. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  20. Coronal Loops: Observations and Modeling of Confined Plasma

    Directory of Open Access Journals (Sweden)

    Fabio Reale

    2014-07-01

    Full Text Available Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered and, therefore, topics such as loop oscillations and flaring loops (except for non-solar ones, which provide information on stellar loops are not specifically addressed here. The observational section discusses the classification, populations, and the morphology of coronal loops, its relationship with the magnetic field, and the loop stranded structure. The section continues with the thermal properties and diagnostics of the loop plasma, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics, hot and cool flows, and waves are illustrated. In the modeling section, some basics of loop physics are provided, supplying fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are divided into those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. More specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC and impulsive (DC heating. Large-scale models including atmosphere boxes and the magnetic field are also discussed. Finally, a brief discussion about stellar coronal loops is followed by highlights and open questions.

  1. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  2. Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the Zephyr BioHarness.

    Science.gov (United States)

    Kim, J-H; Roberge, R; Powell, J B; Shafer, A B; Jon Williams, W

    2013-06-01

    The Zephyr BioHarness was tested to determine the accuracy of heart rate (HR) and respiratory rate (RR) measurements during 2 exercise protocols in conjunction with either a laboratory metabolic cart (Vmax) or a previously validated portable metabolic system (K4b2). In one protocol, HR and RR were measured using the BioHarness and Vmax during a graded exercise up to V˙O2max (n=12). In another protocol, HR and RR were measured using the BH and K4b2 during sustained exercise (30% and 50% V˙O2max for 20 min each) in a hot environment (30 °C, 50% relative humidity) (n=6). During the graded exercise, HR but not RR, obtained from the BioHarness was higher compared to the Vmax at baseline and 30% V˙O2max (pexercise in the heat, there were no significant differences between the BioHarness and K4b2 system. Correlation coefficients between the methods were low for HR but moderately to highly correlated (0.49-0.99) for RR. In conclusion, the BioHarness is comparable to Vmax and K4b2 over a wide range of V˙O2 during graded exercise and sustained exercise in the heat.

  3. Self-heating probe instrument and method for measuring high temperature melting volume change rate of material

    Science.gov (United States)

    Wang, Junwei; Wang, Zhiping; Lu, Yang; Cheng, Bo

    2013-03-01

    The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg·m-3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.

  4. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  5. Impulsively Generated Linear and Non-linear Alfven Waves in the Coronal Funnels

    CERN Document Server

    Chmielewski, P; Murawski, K; Musielak, Z E

    2014-01-01

    We present simulation results of the impulsively generated linear and non-linear Alfven waves in the weakly curved coronal magnetic flux-tubes (coronal funnels) and discuss their implications for the coronal heating and solar wind acceleration. We solve numerically the time-dependent magnetohydrodynamic equations to find the temporal signatures of the small and large-amplitude Alfven waves in the model atmosphere of open and expanding magnetic field configuration with a realistic temperature distribution. We compute the maximum transversal velocity of both linear and non-linear Alfven waves at different heights of the model atmosphere, and study their response in the solar corona during the time of their propagation. We infer that the pulse-driven non-linear Alfven waves may carry sufficient wave energy fluxes to heat the coronal funnels and also to power the solar wind that originates in these funnels. Our study of linear Alfven waves show that they can contribute only to the plasma dynamics and heating of t...

  6. Physical properties of erupting plasma associated with coronal mass ejections

    Science.gov (United States)

    Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.

    2013-12-01

    We investigate the physical properties (temperature, density, and mass) of erupting plasma observed in X-rays and EUV, which are all associated with coronal mass ejections observed by SOHO/LASCO. The erupting plasmas are observed as absorption or emission features in the low corona. The absorption feature provides a lower limit to the cold mass while the emission feature provides an upper limit to the mass of observed plasma in X-ray and EUV. We compare the mass constraints for each temperature response and find that the mass estimates in EUV and XRT are smaller than the total mass in the coronagraph. Several events were observed by a few passbands in the X-rays, which allows us to determine the temperature of the eruptive plasma using a filter ratio method. The temperature of one event is estimated at about 8.6 MK near the top of the erupting plasma. This measurement is possibly an average temperature for higher temperature plasma because the XRT is more sensitive at higher temperatures. In addition, a few events show that the absorption features of a prominence or a loop change to emission features with the beginning of their eruptions in all EUV wavelengths of SDO/AIA, which indicates the heating of the plasma. By estimating the physical properties of the erupting plasmas, we discuss the heating of the plasmas associated with coronal mass ejections in the low corona.

  7. Soft X-ray emission in flaring coronal loops

    CERN Document Server

    Pinto, R F; Brun, A S

    2014-01-01

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  8. Microwave Enhancement in Coronal Holes: Statistical Properties

    Indian Academy of Sciences (India)

    Ν. Gopalswamy; Κ. Shibasaki; Μ. Salem

    2000-09-01

    We report on the statistical properties of the microwave enhancement (brightness temperature, area, fine structure, life time and magnetic field strength) in coronal holes observed over a period of several solar rotations.

  9. Multidimensional modeling of coronal rain dynamics

    CERN Document Server

    Fang, X; Keppens, R

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations which capture the initial formation and the long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in-situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match with modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into $V$-shaped like features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views on blobs which evaporate in situ, or get siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys o...

  10. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  11. Influence of body mass loss on changes in heart rate during exercise in the heat: a systematic review.

    Science.gov (United States)

    Adams, William M; Ferraro, Elizabeth M; Huggins, Robert A; Casa, Douglas J

    2014-08-01

    The purpose of this review was to compare the changes in heart rate (HR) for every 1% change in body mass loss (ΔBML) in individuals while exercising in the heat. PubMed, SPORTDiscus, ERIC, CINAHL, and Scopus were searched from the earliest entry to February 2013 using the search terms dehydration, heart rate, and exercise in various combinations. Original research articles that met the following criteria were included: (a) valid measure of HR, (b) exercise in the heat (>26.5° C [79.7 °F]), (c) the level of dehydration reached at least 2%, (d) a between-group comparison (a euhydrated group or a graded dehydration protocol) was evident, and (e) for rehydration protocols, only oral rehydration was considered for inclusion. Twenty articles were included in the final analysis. Mean values and SDs for HR and percentage of body mass loss immediately after exercise were used for this review. The mean change in HR for every 1% ΔBML was 3 b·min-1. In trials where subjects arrived euhydrated and hypohydrated, the mean change in HR for every 1% ΔBML was 3 and 3 b·min-1, respectively. Fixed intensity and variable intensity trials exhibited a mean HR change of 4 and 1 b·min-1, respectively. Exercising in the heat while hypohydrated (≥2%) resulted in an increased HR after exercise. This increase in HR for every 1% ΔBML exacerbates cardiovascular strain in exercising individuals, thus causing decrements in performance. It should be encouraged that individuals should maintain an adequate level of hydration to maximize performance, especially in the heat.

  12. Observational Properties of Coronal Mass Ejections

    Science.gov (United States)

    2006-01-01

    2003. Peameis, D.V., Magntetic topology of imspumlsive assd gradutal solar energetic particle Xic. H., L. Ofmran, and G. Lawvrence, Cone model for...425, 1097, 2004. Yashiro, S., N. Gopalssvamy, G. Michalek, assd R.A. Hosvard, Properties of narrow coronal Sltatstnigara~jU, A., Y.-i. Mootn, M. Dryer...G.M.,’FTit relatiomtslip hetwseen prominence ermtptions assd coronal mnass ejections.. 107(A8), 1223, doi: 10. 1029/2001 JAOO9 143, 2002. .1. Atssnn.s

  13. Investigating the reliability of coronal emission measure distribution diagnostics using 3D radiative MHD simulations

    CERN Document Server

    Testa, Paola; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats

    2012-01-01

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph onboard Hinode and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using 3D radiative MHD simulations. We produce synthetic observables from the models, and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the "true" distributions from the model we assess the limitations of the diagnostics, as a function of the plasma parameters and of the signal-to-noise of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with signif...

  14. Non-inductive current driven by Alfvén waves in solar coronal loops

    Science.gov (United States)

    Elfimov, A. G.; de Azevedo, C. A.; de Assis, A. S.

    1996-08-01

    It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10-3 erg cm-3 s-1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be ≈ 103 105 statA cm-2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B θ≈1-5 G.

  15. MAGNETIC FLUX SUPPLEMENT TO CORONAL BRIGHT POINTS

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chaozhou; Huang, Zhenghua; Xia, Lidong; Li, Bo; Fu, Hui; Jiao, Fangran; Hou, Zhenyong [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China); Madjarska, Maria S., E-mail: z.huang@sdu.edu.cn [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2016-02-10

    Coronal bright points (BPs) are associated with magnetic bipolar features (MBFs) and magnetic cancellation. Here we investigate how BP-associated MBFs form and how the consequent magnetic cancellation occurs. We analyze longitudinal magnetograms from the Helioseismic and Magnetic Imager to investigate the photospheric magnetic flux evolution of 70 BPs. From images taken in the 193 Å passband of the Atmospheric Imaging Assembly (AIA) we dermine that the BPs’ lifetimes vary from 2.7 to 58.8 hr. The formation of the BP MBFs is found to involve three processes, namely, emergence, convergence, and local coalescence of the magnetic fluxes. The formation of an MBF can involve more than one of these processes. Out of the 70 cases, flux emergence is the main process of an MBF buildup of 52 BPs, mainly convergence is seen in 28, and 14 cases are associated with local coalescence. For MBFs formed by bipolar emergence, the time difference between the flux emergence and the BP appearance in the AIA 193 Å passband varies from 0.1 to 3.2 hr with an average of 1.3 hr. While magnetic cancellation is found in all 70 BPs, it can occur in three different ways: (I) between an MBF and small weak magnetic features (in 33 BPs); (II) within an MBF with the two polarities moving toward each other from a large distance (34 BPs); (III) within an MBF whose two main polarities emerge in the same place simultaneously (3 BPs). While an MBF builds up the skeleton of a BP, we find that the magnetic activities responsible for the BP heating may involve small weak fields.

  16. An Estimate of Solar Wind Density and Velocity Profiles in a Coronal Hole and a Coronal Streamer

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1996-01-01

    Using the total electron content data obtained by the Ulysses Solar Corona Experiment (SCE) during the first solar conjunction in summer 1991, two data sets were selected, one associated with a coronal hole and the other associated with coronal streamer crossings. In order to determine coronal streamer density profiles, the electron content of the tracking passes embedded in a coronal streamer were corrected for the contributions from coronal hole densities.

  17. Characteristics of Coronal Mass Ejections

    Science.gov (United States)

    Talukder, F.; Marchese, A. K.; Tulsee, T.

    2014-12-01

    A coronal mass ejection (CME) is a release of charged particles resulting from solar activity. These charged particles can affect electronics on spacecraft, airplanes, global positioning systems, and communication satellites. The purpose of this research was to study CME data from satellites and correlate these to other properties. Solar wind data collected by STEREO A/B and ACE satellites were analyzed. The data consisted of solar wind flux for various elements (helium through iron), as well as the components of the interplanetary magnetic field. CME events are known to cause a surge in the helium flux, as well as other particles. It is hypothesized that a CME event will cause an increase in the number of lighter elements relative to heavier particles. This is because for a given input of energy, lighter elements are expected to be accelerated to a greater extent than heavier elements. A significant increase was observed in the ratio between helium to oxygen (He/O) prior to intense CMEs. A CME event on November 4, 2003 caused an eleven-fold increase in the He/O ratio, while for another event on April 2, 2001 the He/O ratio increased from 80 to 700. A significant increase in He/O ratio is not observed during weaker CMEs. Furthermore, it was also observed that not all increases in the ratio were accompanied by CMEs. The increase in He/O ratio prior to the CME arrival might be used as a way to predict future events.

  18. On the determination of the activation energy of a thermoluminescence peak by the two-heating-rates method

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, R.K.; Ingotombi, S.; Singh, Th.S.C.; Mazumdar, P.S. (Manipur Univ. (India). Dept. of Physics)

    1991-01-14

    In this paper precise estimation of the systematic error involved in the determination of the activation energy of a non-first-order thermoluminescence (TL) peak by using the two-heating-rates method (which is strictly valid for a first-order peak) has been made. A new method analogous to this method is proposed, which involves both the peak temperature and peak intensity. The systematic errors involved in both these methods are found to be within the experimental error which one generally encounters in the analysis of TL. The applicability of these findings has been tested by considering a second-order TL peak of limestone. (author).

  19. Influence of heating rate on the temperature of the (alpha+beta)-beta transformation of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Markovskii, P.E.

    1985-07-01

    Results of a systematic experimental study of the effect of the heating rate, composition, and structure on the temperature of the (alpha+beta)-beta transformation in titanium alloys VT6, VT14, VT3-1, VT23, and VT22 are presented. It is shown that the transformation temperature of the alloys increases proportionally to the coefficient k-beta, which characterizes the alloy content, and to the size of the alpha-phase grains in the original structure. All other conditions being equal, the transformation is completed sooner in alloys with a spheroidal structure. 8 references.

  20. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  1. Effect of high heating and cooling rate on interface of diffusion bonded gray cast iron to medium carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, B. [Firat University, Technical Education Faculty, Metal Department, 23119 Elazig (Turkey); Orhan, N. [Firat University, Technical Education Faculty, Metal Department, 23119 Elazig (Turkey)]. E-mail: norhan@firat.edu.tr; Hascalik, A. [Firat University, Technical Education Faculty, Department of Manufacturing, Elazig (Turkey)

    2007-07-01

    In the present study, a gray cast iron and a medium carbon steel couple were diffusion bonded at the temperatures of 850, 900, 950 and 1000 deg. C under a pressure of 8 MPa for 30 min, and the effects of temperature and high heating and cooling rate on interface formations and microstructure were investigated. After diffusion bonding, scanning electron microscopy, shear test measurements and microhardness measurement of interface region were made. The microstructure at the inside of medium carbon steel of bonded couple consisted of martensite. As a result, from the microstructural observations, a good bonding along the interface of the bonded couples and the interface is free from voids and microcracks.

  2. Modification of atomic physics rates due to nonlocal electron parallel heat transport in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Allais, F. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Matte, J.P. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada)]. E-mail: matte@inrs-emt.uquebec.ca; Alouani-Bibi, F. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Kim, C.G. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Stotler, D.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Rognlien, T.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2005-03-01

    The effect of steep temperature gradients on the rate of ionization of atomic hydrogen is studied numerically with the electron kinetic code 'FPI' [Phys. Rev. Lett. 72 (1994) 1208]. A set of cross sections ['Atomic and Plasma-Material Interaction data for fusion'. Supplement to the journal Nucl. Fusion 4 (1993)] has been used which gives the same rates of radiation, ionization and recombination as in the well known edge modeling codes 'UEDGE' and 'DEGAS' for Maxwellian electron energy distribution functions. For this purpose, 30 energy levels are included in the computation, as stepwise ionization is dominant. The enhancement of the ionization rate by non-Maxwellian effects in the colder part of the plasma is significant.

  3. Disentangling effects of potential shape in the fission rate of heated nuclei

    Science.gov (United States)

    Gontchar, I. I.; Chushnyakova, M. V.; Aktaev, N. E.; Litnevsky, A. L.; Pavlova, E. G.

    2010-12-01

    We have compared the results of dynamical modeling of the fission process with predictions of the Kramers formulas. For the case of large dissipation, there are two of them: the integral rate RI and its approximation RO. As the ratio of the fission barrier height Bf to the temperature T reaches 4, any analytical rate is expected to agree with the dynamical quasistationary rate RD within 2%. The latter has been obtained using numerical modeling with six different potentials. It has been found that the difference between RO and RD sometimes exceeds 20%. The features of the potentials used that are responsible for this disagreement are identified and studied. It is demonstrated that it is RI, not RO, that meets this expectation regardless of the potential used.

  4. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.

    Science.gov (United States)

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J

    2010-01-01

    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  5. Coronal "wave": Magnetic Footprint Of A Cme?

    Science.gov (United States)

    Attrill, Gemma; Harra, L. K.; van Driel-Gesztelyi, L.; Demoulin, P.; Wuelser, J.

    2007-05-01

    We propose a new mechanism for the generation of "EUV coronal waves". This work is based on new analysis of data from SOHO/EIT, SOHO/MDI & STEREO/EUVI. Although first observed in 1997, the interpretation of coronal waves as flare-induced or CME-driven remains a debated topic. We investigate the properties of two "classical" SOHO/EIT coronal waves in detail. The source regions of the associated CMEs possess opposite helicities & the coronal waves display rotations in opposite senses. We observe deep dimmings near the flare site & also widespread diffuse dimming, accompanying the expansion of the EIT wave. We report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions & simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behaviour is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME & quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings & widespread diffuse dimming are identified as innate characteristics of this process. In addition we present some of the first analysis of a STEREO/EUVI limb coronal wave. We show how the evolution of the diffuse bright front & dimmings can be understood in terms of the model described above. We show that an apparently stationary part of the bright front can be understood in terms of magnetic interchange reconnections between the expanding CME & the "open" magnetic field of a low-latitude coronal hole. We use both the SOHO/EIT & STEREO/EUVI events to demonstrate that through successive reconnections, this new model provides a natural mechanism via which CMEs can become large-scale in the lower corona.

  6. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A.; Brechet, Y. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1998-08-15

    The influence of the quench rate on the microstructure and the ageing response of a Zr-containing Al-Zn-Mg alloy was investigated. It is shown that Al{sub 3}Zr dispersoids are efficient nuclei for precipitation of coarse, equilibrium {eta} precipitates during the quench. Dispersoids are heterogeneously distributed in bands, resulting in bands of quenched-induced precipitates after a slow quench. The ageing response after a slow quench is characterized by various levels of heterogeneities resulting in a `composite` material. On a microscopic scale, quench-induced {eta} precipitates are surrounded by a precipitate-free zone. On a mesoscopic scale, the material is separated in unperturbed regions and regions of high density of coarse precipitates and low density of hardening precipitates. Finally, a slow quench makes the material more sensitive to the heating rate to the ageing temperature, due to slower GP zone precipitation during natural ageing because of annihilation of vacancies during quenching. (orig.) 21 refs.

  7. Aerodynamic pressure and heating-rate distributions in tile gaps around chine regions with pressure gradients at a Mach number of 6.6

    Science.gov (United States)

    Hunt, L. Roane; Notestine, Kristopher K.

    1990-06-01

    Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.

  8. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids

    Science.gov (United States)

    Bao, Luyao; Priezjev, Nikolai V.; Hu, Haibao; Luo, Kai

    2017-09-01

    Molecular dynamics simulations are used to investigate the rate and temperature dependence of the slip length in thin liquid films confined by smooth, thermal substrates. In our setup, the heat generated in a force-driven flow is removed by the thermostat applied on several wall layers away from liquid-solid interfaces. We found that for both high and low wall-fluid interaction (WFI) energies, the temperature of the fluid phase rises significantly as the shear rate increases. Surprisingly, with increasing shear rate, the slip length approaches a constant value from above for high WFI energies and from below for low WFI energies. The two distinct trends of the rate-dependent slip length are rationalized by examining S ( G1) , the height of the main peak of the in-plane structure factor of the first fluid layer (FFL) together with DWF, which is the average distance between the wall and FFL. The results of numerical simulations demonstrate that reduced values of the structure factor, S ( G1) , correlate with the enhanced slip, while smaller distances DWF indicate that fluid atoms penetrate deeper into the surface potential leading to larger friction and smaller slip. Interestingly, at the lowest WFI energy, the combined effect of the increase of S ( G1) and decrease of DWF with increasing shear rate results in a dramatic reduction of the slip length.

  9. Multiplatform analysis of the radiative effects and heating rates for an intense dust storm on 21 June 2007

    Science.gov (United States)

    Naeger, Aaron R.; Christopher, Sundar A.; Johnson, Ben T.

    2013-08-01

    Dust radiative effects and atmospheric heating rates are investigated for a Saharan dust storm on 21 June 2007 using a combination of multiple satellite data sets and ground and aircraft observations as input into a delta-four stream radiative transfer model (RTM). This combines the strengths of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and CloudSat satellites and in situ aircraft data to characterize the vertical structure of the dust layers (5 km in height with optical depths between 1.5 and 2.0) and underlying low-level water clouds. These observations were used, along with Aerosol Robotic Network retrievals of aerosol optical properties, as input to the RTM to assess the surface, atmosphere, and top of atmosphere (TOA) shortwave aerosol radiative effects (SWAREs). Our results show that the dust TOA SWARE per unit aerosol optical depth was -56 W m-2 in cloud-free conditions over ocean and +74 W m-2 where the dust overlay low-level clouds, and show heating rates greater than 10 K/d. Additional case studies also confirm the results of the 21 June case. This study shows the importance of identifying clouds beneath dust as they can have a significant impact on the radiative effects of dust, and hence assessments of the role of dust aerosol on the energy budget and climate.

  10. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  11. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  12. Influence of substrate heating on excited state generation rates and lifetime in organic solar cells studied by photoinduced absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ziehlke, Hannah; Koerner, Christian; Leo, Karl; Riede, Moritz [IAPP, TU Dresden (Germany); Fitzner, Roland; Reinold, Egon; Baeuerle, Peter [Institut fuer Organische Chemie II und Neue Materialien, Univ. Ulm (Germany)

    2011-07-01

    The performance of organic solar cells crucially depends on the separation of photogenerated excitons into free charge carriers. The dissociation process is sensitively influenced by the nanomorphology of donor (D) and acceptor (A) phases in the photoactive blend layer. Closed percolation paths have to be present such that the created charges are able to leave the blend layer, but also the crystallinity of the D- and the A-phase influence exciton dissociation on a molecular scale. Substrate heating during the vacuum deposition of the active layer is a method to influence the thin film morphology that can lead to improved device performance. We here characterize dicyanovinyl capped quinquethiophenes (D) deposited on substrates at different temperatures (30 and 80 C). Photoinduced absorption spectroscopy (PIA) is used to determine excited state lifetimes and generation rates.We find that efficient charge separation occurs in blends with C{sub 60} (A) and identify the observed excited states as donor cations and triplet excitons. Heating the substrate results in an increased lifetime of the donor cation on the one hand and a decrease in the generation rate of cations on the other hand. The PIA results are complemented by solar cell devices as well as morphological studies.

  13. Spin Dephasing as a Probe of Mode Temperature, Motional State Distributions, and Heating Rates in a 2D Ion Crystal

    CERN Document Server

    Sawyer, Brian C; Bollinger, John J

    2014-01-01

    We employ spin-dependent optical dipole forces to characterize the transverse center-of-mass (COM) motional mode of a two-dimensional Wigner crystal of hundreds of $^9$Be$^+$. By comparing the measured spin dephasing produced by the spin-dependent force with the predictions of a semiclassical dephasing model, we obtain absolute mode temperatures in excellent agreement with both the Doppler laser cooling limit and measurements obtained from a previously published technique (B. C. Sawyer et al. Phys. Rev. Lett. \\textbf{108}, 213003 (2012)). Furthermore, the structure of the dephasing histograms allows for discrimination between initial thermal and coherent states of motion. We also apply the techniques discussed here to measure, for the first time, the ambient heating rate of the COM mode of a 2D Coulomb crystal in a Penning trap. This measurement places an upper limit on the anomalous single-ion heating rate due to electric field noise from the trap electrode surfaces of $\\frac{d\\bar{n}}{dt}\\sim 5$ s$^{-1}$ fo...

  14. Effects of heating and cooling rate on transformation behaviors in weld heat affected zone of low carbon steel; Teitanso koban no yosetsu netsu eikyobu no hentai kyodo ni oyobosu kanetsu reikyaku sokudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanetsuki, Y.; Katsumata, M. [Kobe Steel, Ltd., Kobe (Japan)

    1998-01-25

    Discussions were given on effects of welding heat cycles on transformation behaviors in a weld heat affected zone (HAZ). Test pieces are low-carbon fine ferrite pearlite organization steel sheets, which have been treated with a thermomechanical control process (TMCP). The heat cycling was experimented at a maximum temperature of 1350 degC by using a high-frequency heating coil, heating rates from 0.15 to 200 degC/s, cooling rates from 10 to 80 degC/s at an elevated temperature region (higher than 900 degC), and transformation regions (lower than 900 degC) from 0.5 to 6 degC. A transformation curve in actual welding heat cycling was interpreted from these results. Shear-type inverse transformation (from ferrite to austenite) occurs in a rate region corresponding to the heating rate realized during welding. Austenite containing internal stress and a lower structure formed by this inverse transformation accelerates transformation into grain boundary ferrite (GBF) and acerous ferrite (AF). On the other hand, slow cooling in the elevated temperature region releases the internal stress, restores the lower structure, and suppresses the GBF and AF transformation. The GBF tends to precipitate pearlite in adjacent regions and deteriorates the HAZ tenacity. 17 refs., 8 figs., 1 tab.

  15. Rate of evaporation from the free surface of a heated liquid

    Science.gov (United States)

    Örvös, M.; Szabó, V.; Poós, T.

    2016-11-01

    A method and an experimental setup are developed for determining the intensity of evaporation from the free surface of water. During the measurement, the ambient air velocity and the water temperature can be varied. The mass and temperature of water, as well as the temperature, pressure, and humidity of the ambient air are measured as functions of time. The evaporation rates are calculated from the measured and recorded data in the cases of natural and forced convection.

  16. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw.

  17. Scaling laws of coronal loops compared to a 3D MHD model of an Active Region

    CERN Document Server

    Bourdin, Philippe-A; Peter, Hardi

    2016-01-01

    Context. The structure and heating of coronal loops are investigated since decades. Established scaling laws relate fundamental quantities like the loop apex temperature, pressure, length, and the coronal heating. Aims.