WorldWideScience

Sample records for core design studies

  1. A core design study for 'zero-sodium-void-worth' cores

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Suzuki, Masao; Hill, R.N.

    1992-01-01

    Recently, a number of low sodium-void-worth metal-fueled core design concepts have been proposed; to provide for flexibility in transuranic nuclide management strategy, core designs which exhibit a wide range of breeding characteristics have been developed. Two core concepts, a flat annular (transuranic burning) core and an absorber-type parfait (transuranic self-sufficient) core, are selected for this study. In this paper, the excess reactivity management schemes applied in the two designs are investigated in detail. In addition, the transient effect of reactivity insertions on the parfait core design is assessed. The upper and lower core regions in the parfait design are neutronically decoupled; however, the common coolant channel creates thermalhydraulic coupling. This combination of neutronic and thermalhydraulic characteristics leads to unique behavior in anticipated transient overpower events. (author)

  2. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  3. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  4. Core design and fuel management studies

    International Nuclear Information System (INIS)

    Min, Byung Joo; Chan, P.

    1997-06-01

    The design target for the CANDU 9 requires a 20% increase in electrical power output from an existing 480-channel CANDU core. Assuming a net electrical output of 861 MW(e) for a natural uranium fuelled Bruce-B/Darlington reactor in a warm water site, the net electrical output of the reference CANDU 9 reactor would be 1033 MW(e). This report documents the result of the physics studies for the design of the CANDU 9 480/SEU core. The results of the core design and fuel management studies of the CANDU 9 480/SEU reactor indicated that up to 1033 MW(e) output can be achieved in a 480-channel CANDU core by using SEU core can easily be maintained indefinitely using an automated refuelling program. Fuel performance evaluation based on the data of the 500 FPDs refuelling simulation concluded that SEU fuel failure is not expected. (author). 2 tabs., 38 figs., 5 refs

  5. Design study on metal fuel FBR cores

    International Nuclear Information System (INIS)

    Yokoo, T.; Tanaka, Y.; Ogata, T.

    1991-01-01

    A design approach for metal fuel FBR core to maintain fuel integrity during transient events by limiting eutectic/liquid phase formation is proposed based on the current status of metallic fuel development. Its impact as the limitation on the core outlet temperature is assessed through its application to two of CRIEPI's core concepts, high linear power 1000 MWe homogeneous design and medium linear power 300 MWe radially heterogeneous design. SESAME/SALT code is used in this study to analyze steady state and transient fuel behavior. SE2-FA code is developed based on SUPERENERGY-2 and used to analyze core thermal-hydraulics with uncertainties. As the result, the core outlet temperatures of both designs are found to be limited to ≤500degC if it is required to prevent eutectic/liquid phase formation during operational transients in order to guarantee the fuel integrity. Additional assessment is made assuming an advanced limiting condition that allows small liquid phase formation based on the liquid phase penetration rate derived from existing experimental results. The result indicates possibility of raising core outlet temperature to ∼ 530degC. Also, it is found that core design technology improvements such as hot spot factors reduction can contribute to the core outlet temperature extension by 10 ∼ 20degC. (author)

  6. GFR fuel and core pre-conceptual design studies

    International Nuclear Information System (INIS)

    Chauvin, N.; Ravenet, A.; Lorenzo, D.; Pelletier, M.; Escleine, J.M.; Munoz, I.; Bonnerot, J.M.; Malo, J.Y.; Garnier, J.C.; Bertrand, F.; Bosq, J.C.

    2007-01-01

    The revision of the GFR core design - plate type - has been undertaken since previous core presented at Global'05. The self-breeding searched for has been achieved with an optimized design ('12/06 E'). The higher core pressure drop was a matter of concern. First of all, the core coolability in natural circulation for pressurized conditions has been studied and preliminary plant transient calculations have been performed. The design and safety criteria are met but no more margin remains. The project is also addressing the feasibility and the design of the fuel S/A. The hexagonal shape together with the principle of closed S/A (wrapper tube) is kept. Ceramic plate type fuel element combines a high enough core power density (minimization of the Pu inventory) and plutonium and minor actinides recycling capabilities. Innovative for many aspects, the fuel element is central to the GFR feasibility. It is supported already by a significant R and D effort also applicable to a pin concept that is considered as the other fuel element of interest. This combination of fuel/core feasibility and performance analysis, safety dispositions and performances analysis will compose the 'GFR preliminary feasibility' which is a project milestone at the end of the year 2007. (authors)

  7. Study on core design for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Okubo, Tsutomu

    2002-01-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  8. Study on core design for reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    The Reduced-Moderation Water Reactor (RMWR) is a water-cooled reactor with the harder neutron spectrum comparing with the LWR, resulting from low neutron moderation due to reduced water volume fraction. Based on the difference from the spectrum from the LWR, the conversion from U-238 to Pu-239 is promoted and the new cores preferable to effective utilization of uranium resource can be possible Design study of the RMWR core started in 1997 and new four core concepts (three BWR cores and one PWR core) are recently evaluated in terms of control rod worths, plutonium multiple recycle, high burnup and void coefficient. Comparative evaluations show needed incorporation of control rod programming and simplified PUREX process as well as development of new fuel cans for high burnup of 100 GW-d/t. Final choice of design specifications will be made at the next step aiming at realization of the RMWR. (T. Tanaka)

  9. Design studies for the Mark-III core of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu; Shindo, Ryuiti; Arai, Taketoshi

    1979-08-01

    The Mark-III core in the first conceptual design made in 1975 is a fundamental core for VHTR. Subsequently, further design studies were made fuel loading scheme and control rod withdrawal sequence for the core to increase its safety margin (shutdown margin, etc.) and operational margin (minimum Reynolds number, maximum fuel temperature, etc.). It was shown that the Mark-III should exhibit the performance expected of VHTR, unless changes are made in the preconditions for its nuclear, thermal-hydraulic design. Also, the needs as below were indicated: (1) reasonable core design criteria and guidelines, (2) fuel-loading-scheme requirements in fuel management, fuel misloading and reactor operation, (3) confirmation on precision of the core design method and its further refinement. (author)

  10. Design studies of back up cores for the experimental multi-purpose VHTR, (1)

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu

    1982-09-01

    For the Experimental Multi-Purpose Very High Temperature Reactor, design studies have been made of two backup cores loaded with new type fuel elements. The purpose is to improve core operational characteristics of the standard design core (Mark-III core) consisting of pin-in-block type fuel element having externally cooled hollow fuel rods. The first backup core (semi-pin fuel core) is composed of fuel elements with internally cooled fuel pins, and the second core (multihole fuel core) is composed of multihole fuel elements, which can be adopted for the experimental VHTR as the substitution of the standard Mark-III fuel element. Either of the cores has 73 fuel columns and 4 m height. The arrangement of active core and reactor internal structure is same as that in the standard design core. These backup cores meet almost all design requirements of the VHTR and increase the margins for some important design items in comparison with the standard core (Mark-III core). This report describes the overall characteristics of nuclear, thermal-hydraulic, fuel and safety, and structural consideration for these cores. (author)

  11. Feasibility study on nuclear core design for soluble boron free small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Hah, Chang Joo; Ju, Cho Sung [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  12. Increasing the neutron flux study for the TRR-II core design

    International Nuclear Information System (INIS)

    Chen, C.-H.; Yang, J.-T.; Chou, Y.-C.

    1999-01-01

    The maximum unperturbed thermal flux of the originally proposed core design, which is a 6x6 square arrangement with power level of 20 MW and has been presented at the 6th Meeting of IGORR, for the TRR-II reactor is about 2.0x10 14 n/cm 2 -sec. However, it is no longer satisfied the user's requirement, that is, it must reach at least 2.5x10 14 n/cm 2 -sec. In order to enhance the thermal neutron flux, one of the most effective ways is to increase the average power density. Therefore, two new designs with more compact cores are then proposed and studied. One is 5x6 rectangular arrangement with power of 20 MW; the other one is 5x5 square arrangement with power of 16 MW. It is for sure that both core designs can satisfy thermal hydraulic safety limits. The designed parameters related to neutronics are listed and compared fundamentally. According to our calculation, although both cores have similar average power density, the results show that the 5x6/20 MW design has the maximum unperturbed thermal flux in the D 2 O region about 2.7x10 14 n/cm 2 -sec, and the 5x5/16 MW design has 2.5x10 14 n/cm 2 -sec. The maximum thermal flux in the neighborhood of the longer side of the 5x6 core is about 7% higher than the one in the neighborhood of any side of the 5x5 core. This 'long-side effect' gives the 5x6/20 MW core design an advantage of the utilization of the thermal neutron flux in the D 2 O region. In addition, the 5x5 core is also more sensitive to the reactivity change on account of in-core irradiation test facilities. Therefore, under overall considerations the 5x6/20 MW core design is chosen for further detailed design. (author)

  13. Core design study on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Hiroshi, Akie; Yoshihiro, Nakano; Toshihisa, Shirakawa; Tsutomu, Okubo; Takamichi, Iwamura

    2002-01-01

    The conceptual core design study of reduced-moderation water reactors (RMWRs) with tight-pitched MOX-fuelled lattice has been carried out at JAERI. Several different RMWR core concepts based on both BWR and PWR have been proposed. All the core concepts meet with the aim to achieve both a conversion ratio of 1.0 or larger and negative void reactivity coefficient. As one of these RMWR concepts, the ABWR compatible core is also proposed. Although the conversion ratio of this core is 1.0 and the void coefficient is negative, the discharge burn-up of the fuel was about 25 GWd/t. By adopting a triangular fuel pin lattice for the reduction of moderator volume fraction and modifying axial Pu enrichment distribution, it was aimed to extend the discharge burn-up of ABWR compatible type RMWR. By using a triangular fuel lattice of smaller moderator volume fraction, discharge burn-up of 40 GWd/t seems achievable, keeping the high conversion ratio and the negative void coefficient. (authors)

  14. Feasibility Study of Core Design with a Monte Carlo Code for APR1400 Initial core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsun; Chang, Do Ik; Seong, Kibong [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    The Monte Carlo calculation becomes more popular and useful nowadays due to the rapid progress in computing power and parallel calculation techniques. There have been many attempts to analyze a commercial core by Monte Carlo transport code using the enhanced computer capability, recently. In this paper, Monte Carlo calculation of APR1400 initial core has been performed and the results are compared with the calculation results of conventional deterministic code to find out the feasibility of core design using Monte Carlo code. SERPENT, a 3D continuous-energy Monte Carlo reactor physics burnup calculation code is used for this purpose and the KARMA-ASTRA code system, which is used for a deterministic code of comparison. The preliminary investigation for the feasibility of commercial core design with Monte Carlo code was performed in this study. Simplified core geometry modeling was performed for the reactor core surroundings and reactor coolant model is based on two region model. The reactivity difference at HZP ARO condition between Monte Carlo code and the deterministic code is consistent with each other and the reactivity difference during the depletion could be reduced by adopting the realistic moderator temperature. The reactivity difference calculated at HFP, BOC, ARO equilibrium condition was 180 ±9 pcm, with axial moderator temperature of a deterministic code. The computing time will be a significant burden at this time for the application of Monte Carlo code to the commercial core design even with the application of parallel computing because numerous core simulations are required for actual loading pattern search. One of the remedy will be a combination of Monte Carlo code and the deterministic code to generate the physics data. The comparison of physics parameters with sophisticated moderator temperature modeling and depletion will be performed for a further study.

  15. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  16. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim Young In; Kim, Young Il; Kim, Y. G.; Kim, S. J.; Song, H.; Kim, T. K.; Kim, W. S.; Hwang, W.; Lee, B. O.; Park, C. K.; Joo, H. K.; Yoo, J. W.; Kang, H. Y.; Park, W. S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  17. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; In, Kim Young; Kim, Young Il; Kim, Y G; Kim, S J; Song, H; Kim, T K; Kim, W S; Hwang, W; Lee, B O; Park, C K; Joo, H K; Yoo, J W; Kang, H Y; Park, W S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  18. Theoretical and numerical studies of TWR based on ESFR core design

    International Nuclear Information System (INIS)

    Zhang, Dalin; Chen, Xue-Nong; Flad, Michael; Rineiski, Andrei; Maschek, Werner

    2013-01-01

    Highlights: • The traveling wave reactor (TWR) is studied based on the core design of the European Sodium-cooled Fast Reactor (ESFR). • The conventional fuel shuffling technique is used to produce a continuous radial fuel movement. • A stationary self sustainable nuclear fission power can be established asymptotically by only loading natural or depleted uranium. • The multi-group deterministic neutronic code ERANOS is applied. - Abstract: This paper deals with the so-called traveling wave reactor (TWR) based on the core design of the European Sodium-cooled Fast Reactor (ESFR). The current concept of TWR is to use the conventional radial fuel shuffling technique to produce a continuous radial fuel movement so that a stationary self sustainable nuclear fission power can be established asymptotically by only loading fertile material consisting of natural or depleted uranium. The core design of ESFR loaded with metallic uranium fuel without considering the control mechanism is used as a practical application example. The theoretical studies focus mainly on qualitative feasibility analyses, i.e. to identify out in general essential parameter dependences of such a kind of reactor. The numerical studies are carried out more specifically on a certain core design. The multi-group deterministic neutronic code ERANOS with the JEFF3.1 data library is applied as a basic tool to perform the neutronics and burn-up calculations. The calculations are performed in a 2-D R-Z geometry, which is sufficient for the current core layout. Numerical results of radial fuel shuffling indicate that the asymptotic k eff parabolically varies with the shuffling period, while the burn-up increases linearly. Typical shuffling periods investigated in this study are in the range of 300–1000 days. The important parameters, e.g. k eff , the burn-up, the power peaking factor, and safety coefficients are calculated

  19. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  20. Feasibility study on thermal-hydraulic design of reduced-moderation PWR-type core

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    2000-03-01

    At JAERI, a conceptual study on reduced-moderation water reactor (RMWR) has been performed as one of the advanced reactor system which is designed so as to realize the conversion ratio more than unity. In this reactor concept, the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated. Therefore, an evaluation of the core thermal margin becomes very important in the design of the RMWR. In this study, we have performed a feasibility evaluation on thermal-hydraulic design of RM-PWR type core (core thermal output: 2900 MWt, Rod gaps: 1 mm). In RM-PWR core, seed and blanket regions are exist. In the blanket region, power density is lower than that of the seed region. Then, evaluation was performed under setting a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because it is possible that the coolant boils in the seed region. In the feasibility evaluations, subchannel code COBRA-IV-I was used in combination with KfK DNB (departure nucleate boiling) correlation. When coolant mass flow rate to the blanket fuel assembly is reduced by 40%, and that to the seed fuel assembly is increased, coolant boiling is not occurred in the assembly region calculation. Provided that the channel boxes to the blanket fuel assembly are set up and coolant mass flow rate to the blanket fuel assembly is reduced by 40%, it is confirmed by the whole core calculation that the boiling of the coolant is not occurred and the RM-PWR core is feasible. (author)

  1. Design configuration of GCFR core assemblies

    International Nuclear Information System (INIS)

    LaBar, M.P.; Lee, G.E.; Meyer, R.J.

    1980-05-01

    The current design configurations of the core assemblies for the gas-cooled fast reactor (GCFR) demonstration plant reactor core conceptual design are described. Primary emphasis is placed upon the design innovations that have been incorporated in the design of the core assemblies since the establishment of the initial design of an upflow GCFR core. A major feature of the design configurations is that they are prototypical of core assemblies for use in commercial plants; a larger number of the same assemblies would be used in a commercial plant

  2. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  3. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  4. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  5. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  6. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  7. Core design studies on various forms of coolants and fuel materials. 2. Studies on liquid heavy metal and gas cooled cores, small cores and evaluation of 4-type cores

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Sakashita, Yoshiyuki; Naganuma, Masayuki; Takaki, Naoyuki; Mizuno, Tomoyasu; Ikegami, Tetsuo

    2001-01-01

    Alternative concepts to sodium cooled fast reactors, such as heavy metal liquid cooled reactors and gas cooled fast reactors were studied in Phase-1 of the feasibility studies, aiming at simplification of the system, high thermal efficiency and enhancing safety. Fuel and core specifications and nuclear characteristics were surveyed to meet the targets for commercialization of fast reactor cycle. Nuclear characteristics of small fast reactor cores were also surveyed from the perspective of the possibility of multi-purpose use and dispersed power stations. The key points of the design study for each concept in Phase-2 were summarized from the aspect of the screening of the candidates for FR commercialization. (author)

  8. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  9. A comparative design study of PB-BI cooled reactor cores with forced and natural convection cooling

    International Nuclear Information System (INIS)

    Mizuno, Tomoyasu; Enuma, Yasuhiro; Tanji, Mikio

    2003-01-01

    A comparative core design study is performed on Pb-Bi cooled reactors with forced and natural convection (FC and NC) cooling. Major interests of the study are core performance and core safety features. The designed core concepts with nitride fuel achieve reasonable breeding capability. The results of unprotected event analyses such as UTOP and ULOF show that both of concepts have possible features to withstand unprotected events due to negative reactivity feedback by Doppler effect, control rod drive line expansion, etc. These results lead to a conclusion that both of concepts have possible capability as one of future promising core concepts. A FC cooling core concept has more advantage if fuel recycle viewpoint is emphasized. (author)

  10. Design and safety studies on an EFIT core with CERMET fuel

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Rineiski, Andrei; Liu, Ping; Maschek, Werner; Matzerath Boccaccini, Claudia; Gabrielli, Fabrizio; Sobolev, Vitaly

    2008-01-01

    Within the EUROTRANS Programme a European Facility for Industrial Transmutation (EFIT) is under development. This paper deals with the design and safety analyses of an EFIT core with Mo-matrix based CERMET fuel. A three zone core design was developed, which satisfies the EFIT general and specific requirements. The fuel/matrix ratio in each zone is determined for a suitable subcritical level at a k eff of about 0.97 and a total form factor around 1.5. The Pu/MA ratio also determines the transmutation rate and the burn-up characteristics, ranging between 46/54 at% to 40/60 at% for optimizing the reactivity swing and the MA transmutation efficiency. Based on the preliminary core design, safety calculations are performed with SIMMER-III for three types of transient: the unprotected loss of flow (ULOF), the unprotected transient of over power (UTOP) and the unprotected blockage accident (UBA). It can be shown that in the CERMET core the fuel and clad design limits are not violated under the conditions of ULOF and UTOP. In the UBA case, pin failures will happen and lead to a local voiding and reactivity insertion, but a fuel sweep-out process leads to a power reduction and restricts the core degradation. (authors)

  11. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  12. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    Science.gov (United States)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  13. Core designs for the de-regulated market

    International Nuclear Information System (INIS)

    Almberger, J.; Bernro, R.; Pettersson, H.

    1999-01-01

    Complete text of publication follows: The electricity market deregulation in the Nordic countries encourages innovations and cost reductions for power production in the Vattenfall reactors. The competition on the electricity market is strong, electricity price reductions dramatic and uncertainties about the future power demand is large. In the fuel area this situation has given increased attention to traditional areas like flexibility in power production, improved core designs, need for margins (improved fuel designs), improved surveillance, decreased lead times. At Vattenfall new fuel designs are already being implemented following the last fuel purchase, for which flexibility and margins, were given high values in the evaluations with the multipurpose task of eliminating fuel related problems and meeting the future market situation. This strategy has given Vattenfall a flying start to meeting the demands of the de-regulated market. What has been added are broad studies undertaken to investigate the various route into the future with respect to finding the most effective strategies for fuel and core design and optimization. In the present paper the Vattenfall priorities for fuel designs and margins are presented in a schematic manner summarizing the results of the last fuel purchase and also presenting the current program for LFAs. Technical limitations, licensing and R and D aspects, with respect to improving the fuel utilization will be mentioned. The main focus in the paper is on the broad study carried out in the PWR core design area. Driven by the relatively low power demand various possibilities for higher production flexibility have been investigated specifically extended coast-down, coast-up and yearly load follow. Further to reduce the costs for fuel consumption improvements in core designs have been studied: improved low leakage loading patterns, low enriched end zones, improved Gd designs etc. Main results and conclusions of the core design studies will

  14. LMFBR design and its evolution. (2) Core design of LMFBR

    International Nuclear Information System (INIS)

    Uto, Nariaki; Mizuno, Tomoyasu

    2003-01-01

    Sodium-cooled core design studies are performed. MOX fuel core with axial blanket partial elimination subassembly due to safety consideration is studied. This type of core with high internal conversion ratio possesses capability of achieving 26 months of operation cycle length and 100 GWd/t of burnup averaged over core and blanket, which are superior characteristics in view of reducing cost of power generation. Metal fuel core is also studied, and its higher breeding capability reveals a potential of better core performance such as longer operation cycle length for the same level of electricity generation, though core outlet temperature is limited to lower level due to steel cladding-metal fuel compatibility concerns. Another metal fuel core concept using single Pu enrichment and two radial regions with individual fuel pin diameters achieves 550degC of core outlet temperature identical to that of MOX fuel core, keeping operation cycle length comparable with that of MOX fuel core. This series of study results show that sodium-cooled MOX and metal fuel cores have a high flexibility in satisfying various needs including fuel cycle cost and breeding capability, depending on the stage of introducing commercialized fast reactor cycle system. (author)

  15. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    Pickard, P.S.

    1976-01-01

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)

  16. Design Core Commonalities: A Study of the College of Design at Iowa State University

    Science.gov (United States)

    Venes, Jane

    2015-01-01

    This comprehensive study asks what a group of rather diverse disciplines have in common. It involves a cross-disciplinary examination of an entire college, the College of Design at Iowa State University. This research was intended to provide a sense of direction in developing and assessing possible core content. The reasoning was that material…

  17. Study on Reduced-Moderation Water Reactor (RMWR) core design. Joint research report (FY1998-1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Reduce-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor aiming at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. Japan Atomic Energy Research Institute (JAERI) started a joint research program for conceptual design of RMWR core in collaboration with the Japan Atomic Power Company (JAPC) since 1998. The research area includes the RMWR core conceptual designs, development of analysis methods for rector physics and thermal-hydraulics to design the RMWR cores with higher accuracy and preparation of MOX critical experiment to confirm the feasibility from the reactor physics point of view. The present report describes the results of joint research program 'RMWR core design Phase 1' performed by JAERI and JAPC in FY 1998 and 1999. The results obtained from the joint research program are as follows: Conceptual design study on the RMWR core has been performed. A core concept with a conversion ratio more than about 1 is basically feasible to multiple recycling of plutonium. Investigating core characteristics at the equilibrium, some promising core concepts to satisfy above aims have been established. As for BWR-type concepts with negative void reactivity coefficients, three types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.1, (2) one feasible to attain operation cycle of about 2 years and burn-up of about 60 GWd/t with conversion ratio more than 1 or (3) one in simple design based on the ABWR assembly and without blanket attaining conversion ratio more than 1. And as for PWR-type concepts with negative void reactivity coefficients, two types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.05 by using heavy water as a coolant and (2) one feasible to attain conversion ratio about l by using light water. In the study of nuclear calculation method, a reactor analysis code

  18. Improvement of SSR core design for ABWR-II

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Okada, Hiroyuki; Kitamura, Hideya; Sakurada, Koichi; Tanabe, Akira

    2003-01-01

    In order to enhance the spectral shift effect in the ABWR-II reactor, a novel core design to bring out better performance of spectral shift rods (SSRs) is studied. The SSR is a new type of water rod, in which the water level develops naturally during operation and changes according to the coolant flow rate through the channel. By using the SSR, the average moderator density, which is directly related to core reactivity, can be controlled over a wide range by the core flow rate. In the new SSR core design, two types of SSR bundles, in which settings for the SSR water levels are different, are utilized and loaded according to flow distribution in the core. This two-region SSR core design allows wide variation in the average SSR water level, thus improving fuel economy. Enhancement of SSR function in the two-region SSR core increases the uranium saving factor by about 25%, from the 6% of the conventional uniform SSR core to about 8%. (author)

  19. Study on core flow distribution of the reference core design Mark-III of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Satoh, Sadao; Arai, Taketoshi; Miyamoto, Yoshiaki; Hirano, Mitsumasa

    1977-01-01

    Concerning the coolant flow distribution between fuel channels and other flow paths in the core, designated as Reference Core Mark-III of the Multi-purpose Experimental Very High Temperature Reactor, thermal analysis has been made of the control rods and other steel structures around the core to find the coolant flow rates (bypass flow) necessary to cool them to their safe operating temperatures. Calculations showed that adequate cooling could be achieved in the Mark-III Core by the bypass flow of 8% of the total reactor coolant flow, 4% each for the control-rod channels and for other structures. The thermal and coolant flow design bases, including the assumption of a 10% bypass flow, were thus confirmed to first approximation. (auth.)

  20. Web-based Core Design System Development

    International Nuclear Information System (INIS)

    Moon, So Young; Kim, Hyung Jin; Yang, Sung Tae; Hong, Sun Kwan

    2011-01-01

    The selection of a loading pattern is one of core design processes in the operation of a nuclear power plant. A potential new loading pattern is identified by selecting fuels that to not exceed the major limiting factors of the design and that satisfy the core design conditions for employing fuel data from the existing loading pattern of the current operating cycle. The selection of a loading pattern is also related to the cycle plan of an operating nuclear power plant and must meet safety and economic requirements. In selecting an appropriate loading pattern, all aspects, such as input creation, code runs and result processes are processed as text forms manually by a designer, all of which may be subject to human error, such as syntax or running errors. Time-consuming results analysis and decision-making processes are the most significant inefficiencies to avoid. A web-based nuclear plant core design system was developed here to remedy the shortcomings of an existing core design system. The proposed system adopts the general methodology of OPR1000 (Korea Standard Nuclear Power Plants) and Westinghouse-type plants. Additionally, it offers a GUI (Graphic User Interface)-based core design environment with a user-friendly interface for operators. It reduces human errors related to design model creation, computation, final reload core model selection, final output confirmation, and result data validation and verification. Most significantly, it reduces the core design time by more than 75% compared to its predecessor

  1. Conceptual core design study for Japan sodium-cooled fast reactor: Review of sodium void reactivity worth evaluation

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2012-01-01

    The conceptual core design study for a large-scale Japan sodium-cooled fast reactor (JSFR) have been carried out in the framework of the FaCT project. The reference “High-internal conversion” core can satisfy the requirements for enhanced safety, as well as achieving economic competitiveness. In order to increase the design reliability, more rigorous uncertainty evaluation is important. Development of the verification and validation methodology of the core neutronic design method is currently underway. (author)

  2. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-09-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System are presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented

  3. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  4. A Minimum Shuffle Core Design Strategy for ESBWR

    International Nuclear Information System (INIS)

    Karve, A.A.; Fawcett, R.M.

    2008-01-01

    The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's next evolution of advanced BWR technology. There are 1132 fuel bundles in the core and the thermal power is 4500 MWt. Similar to conventional plants there is an outage after a specified period of operation, when the plant shuts down. During the outage a specified fraction of fuel bundles are discharged from the core, it is loaded with the same fraction of fresh fuel, and fuel is shuffled to obtain an optimum core design that meets the goals for a successful operation of the next cycle. The discharge, load, and the associated shuffles are time-consuming and expensive tasks that impact the overall outage schedule and costs. Therefore, there is an incentive to keep maneuvers to a minimum and to perform them more efficiently. The benefits for a large core, such as the ESBWR with 1132 fuel bundles, are escalated. This study focuses on a core reload design strategy to minimize the total number of shuffles during an outage. A traditional equilibrium cycle is used as a reference basis, which sets the reference number of shuffles. In the minimum shuffle core design however, a set of two equilibrium cycles (N and N+1, referred to as a 'bi- equilibrium' cycle) is envisioned where the fresh fuel of cycle N (that becomes the once-burnt fuel of cycle N+1) ideally does not move in the two cycles. The cost of fuel efficiency is determined for obtaining such a core loading by comparing it to the traditional equilibrium cycle. There are several additional degrees of freedom when designing a bi-equilibrium cycle that could be utilized, and the potential benefits of these flexibilities are assessed. In summary, the feasibility of a minimum shuffle fuel cycle and core design for an ESBWR is studied. The cost of fuel efficiency is assessed in comparison to the traditional design. (authors)

  5. Scalable Multi-core Architectures Design Methodologies and Tools

    CERN Document Server

    Jantsch, Axel

    2012-01-01

    As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallalization of the computation and 3D integration technologies lead to distributed memory architectures. This book provides a current snapshot of industrial and academic research, conducted as part of the European FP7 MOSART project, addressing urgent challenges in many-core architectures and application mapping.  It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies. Describes trends towards distributed memory architectures and distributed power management; Integrates Network on Chip with distributed, shared memory architectures; Demonstrates novel design methodologies and frameworks for multi-core design space exploration; Shows how midll...

  6. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-01-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System is presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented. (author)

  7. Nuclear design and analysis report for KALIMER breakeven core conceptual design

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Song, Hoon; Lee, Ki Bog; Chang, Jin Wook; Hong, Ser Gi; Kim, Young Gyun; Kim, Yeong Il

    2002-04-01

    During the phase 2 of LMR design technology development project, the breakeven core configuration was developed with the aim of the KALIMER self-sustaining with regard to the fissile material. The excess fissile material production is limited only to the extent of its own requirement for sustaining its planned power operation. The average breeding ratio is estimated to be 1.05 for the equilibrium core and the fissile plutonium gain per cycle is 13.9 kg. The nuclear performance characteristics as well as the reactivity coefficients have been analyzed so that the design evaluation in other activity areas can be made. In order to find out a realistic heavy metal flow evolution and investigate cycle-dependent nuclear performance parameter behaviors, the startup and transition cycle loading strategies are developed, followed by the startup core physics analysis. Driver fuel and blankets are assumed to be shuffled at the time of each reload. The startup core physics analysis has shown that the burnup reactivity swing, effective delayed neutron fraction, conversion ratio and peak linear heat generation rate at the startup core lead to an extreme of bounding physics data for safety analysis. As an outcome of this study, a whole spectrum of reactor life is first analyzed in detail for the KALIMER core. It is experienced that the startup core analysis deserves more attention than the current design practice, before the core configuration is finalized based on the equilibrium cycle analysis alone.

  8. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  9. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  10. Statistical core design

    International Nuclear Information System (INIS)

    Oelkers, E.; Heller, A.S.; Farnsworth, D.A.; Kearfott, K.J.

    1978-01-01

    The report describes the statistical analysis of DNBR thermal-hydraulic margin of a 3800 MWt, 205-FA core under design overpower conditions. The analysis used LYNX-generated data at predetermined values of the input variables whose uncertainties were to be statistically combined. LYNX data were used to construct an efficient response surface model in the region of interest; the statistical analysis was accomplished through the evaluation of core reliability; utilizing propagation of the uncertainty distributions of the inputs. The response surface model was implemented in both the analytical error propagation and Monte Carlo Techniques. The basic structural units relating to the acceptance criteria are fuel pins. Therefore, the statistical population of pins with minimum DNBR values smaller than specified values is determined. The specified values are designated relative to the most probable and maximum design DNBR values on the power limiting pin used in present design analysis, so that gains over the present design criteria could be assessed for specified probabilistic acceptance criteria. The results are equivalent to gains ranging from 1.2 to 4.8 percent of rated power dependent on the acceptance criterion. The corresponding acceptance criteria range from 95 percent confidence that no pin will be in DNB to 99.9 percent of the pins, which are expected to avoid DNB

  11. PWR core design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)

  12. SMART core protection system design

    International Nuclear Information System (INIS)

    Lee, J. K.; Park, H. Y.; Koo, I. S.; Park, H. S.; Kim, J. S.; Son, C. H.

    2003-01-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system

  13. Design Report for the core design of the first core Mark-Ia of the SNR-300

    International Nuclear Information System (INIS)

    Stanculescu, A.

    1984-05-01

    The report describes the first core Mark-Ia of the SNR-300 reactor and its different assembly types with their operational strategy. Methods, criteria and results of the neutron physical, thermal hydraulic and core mechanical design of the whole core and its assemblies are presented

  14. Core design and performance of small inherently safe LMRs

    International Nuclear Information System (INIS)

    Orechwa, Y.; Khalil, H.; Turski, R.B.; Fujita, E.K.

    1986-01-01

    Oxide and metal-fueled core designs at the 900 MWt level and constrained by a requirement for interchangeability are described. The physics parameters of the two cores studied here indicate that metal-fueled cores display attractive economic and safety features and are more flexible than are oxide cores in adapting to currently-changing deployment scenarios

  15. Preliminary core design of IRIS-50

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Franceschini, Fausto

    2009-01-01

    IRIS-50 is a small, 50 MWe, advanced PWR with integral primary system. It evolved employing the same design principles as the well known medium size (335 MWe) IRIS. These principles include the 'safety-by-design' philosophy, simple and robust design, and deployment flexibility. The 50 MWe design addresses the needs of specific applications (e.g., power generation in small regional grids, water desalination and biodiesel production at remote locations, autonomous power source for special applications, etc.). Such applications may favor or even require longer refueling cycles, or may have some other specific requirements. Impact of these requirements on the core design and refueling strategy is discussed in the paper. Trade-off between the cycle length and other relevant parameters is addressed. A preliminary core design is presented, together with the core main reactor physics performance parameters. (author)

  16. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  17. Progress of full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Izutsu, S.; Sasagawa, M.; Aoyama, M.; Maruyama, H.; Suzuki, T.

    2000-01-01

    Full MOX ABWR core design has been made, based on the MOX design concept of 8x8 bundle configuration with a large central water rod, 40 GWd/t maximum bundle exposure, and the compatibility with 9x9 high-burnup UO 2 bundles. Core performance on shutdown margin and thermal margin of the MOX-loaded core is similar to that of UO 2 cores for the range from full UO 2 core to full MOX core. Safety analyses based on its safety parameters and MOX property have shown its conformity to the design criteria in Japan. In order to confirm the applicability of the nuclear design method to full MOX cores, Tank-type Critical Assembly (TCA) experiment data have been analyzed on criticality, power distribution and β eff /l measurements. (author)

  18. A study of the advancement of a reactor core design environment

    International Nuclear Information System (INIS)

    Porsmyr, Jan; Kvilesjoe, Hans Oeyvind; Ijiri, Masanobu

    2004-01-01

    Full text: During the years from 2002 to 2004 a joint project has been performed by IFE, Halden and Yonden Engineering Corporation, Japan, to develop an advanced reactor core design environment based on a communication method for controlling a reactor core code system efficiently from PCs in a distributed network. The advanced reactor core design environment is realized by using Microsoft Visual Basic and communication software based on the IFE product SoftwareBus. The project has been carried out based on the fact that a computer-aided design system has been under development at Yonden Engineering Corporation in order to perform efficiently fuel replacement calculation by Yonden's reactor design code system. In this system, the structure is such that the physics calculation code system runs on UNIX workstations (in parallel) performing the calculations, while the Man-Machine Interface for controlling the calculation programs run on PCs in a distributed network. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general communication tool (IFE's SoftwareBus) has been used for realizing communication of the n-pair n-node between the reactor core design code system and the PC applications. Further, a method of improvement in the speed of the optimal pattern calculation has been implemented by assigning each examination pattern to two or more computers distributed in the network and assigning the next pattern calculation to the computer, where the calculation has ended or has the lowest workload. The high-speed technology of the pattern survey by network distributed processing is based on SoftwareBus. The reactor core design code system is developed in FORTRAN running on a UNIX workstation (Solaris). The PC applications have been developed by using Microsoft Visual Basic on Windows 2000 platform. The first step of the verification and validation process was carried out in March

  19. Comparative Studies of Core Thermal Hydraulic Design Methods for the Prototype Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Lim, Jae Yong; Kim, Sang Ji

    2013-01-01

    In this work, various core thermal-hydraulic design methods, which have arisen during the development of a prototype SFR, are compared to establish a proper design procedure. Comparative studies have been performed to determine the appropriate design method for the prototype SFR. The results show that the minimization method show a lower cladding midwall temperature than the fixed outlet temperature methods and superior thermal safety margin with the same coolant flow. The Korea Atomic energy Research Institute (KAERI) has performed a conceptual SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damages in SFR subassemblies are arisen from a creep induced failure. The creep limit is evaluated based on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, the core thermalhydraulic design method, which eventually determines the cladding temperature, is highly important to assure a safe and reliable operation of the reactor systems

  20. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  1. Computer-Aided Test Flow in Core-Based Design

    OpenAIRE

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of embedded cores. The CAT now is applied to a few cores within the Philips Core Test Pilot IC project

  2. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  3. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  4. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  5. Development of UCMS for Analysis of Designed and Measured Core Power Distribution

    International Nuclear Information System (INIS)

    Moon, Sang Rae; Hong, Sun Kwan; Yang, Sung Tae

    2009-01-01

    In this study, reactor core loading patterns were determined by calculating and verifying the factors affecting peak power and important core safety variables were reconciled with their design criteria using a newly designed unified core management system. Core loading patterns are designed for quadrant cores under the assumption that the power distribution of the reactor core is the same among symmetric fuel assemblies within the core. Actual core power distributions measured during core operation may differ slightly from their designed data. Reactor engineers monitor these differences between the designed and measured data by performing a surveillance procedure every month according to the technical specification requirements. It is difficult to monitor overall power distribution behavior throughout the assemblies using the current procedure because it requires the reactor engineer to compare the designed data with only the maximum value of the power peaking factor and the relative power density. It is necessary to enhance this procedure to check the primary variables such as core power distribution, because long cycle operation, high burnup, power up-rate, and improved fuel can change the environment in the core. To achieve this goal, a web-based Unified Core Management System (UCMS) was developed. To build the UCMS, a database system was established using reactor design data such as that in the Nuclear Design Report (NDR) and automated core analysis codes for all light water reactor power plants. The UCMS is designed to help reactor engineers to monitor important core variables and core safety margins by comparing the measured core power distribution with designed data for each fuel assembly during the cycle operation in nuclear power plants

  6. Core Design Concept and Core Structural Material Development for a Prototype SFR

    International Nuclear Information System (INIS)

    Chang, Jinwook

    2013-01-01

    Core design Concept: – Initial core is Uranium metal fueled core, then it will evolve into TRU core; – Tight pressure drop constraint lowers power density; – Trade-off studies with relaxed pressure drop constraint (~0.4MPa) are on-going; – Major feature will be finalized this year. • KAERI is developing advanced cladding for high burnup fuel in Ptototype SFR: – Advanced cladding materials are now developing, which shows superior high temperature mechanical property to the conventional material; – Processing technologies related to tube making process are now developed to enhance high temperature mechanical propertyl – Preliminary HT9 cladding tube was manufactured and out-of pile mechanical properties were evaluated. Advanced cladding tube is now being developed and being prepared for irradiation test

  7. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  8. Development of Core Design Technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Hong, S. G.; Jang, J. W. (and others)

    2007-06-15

    This report describes the contents of core design technology and computer code system development performed during 2005 and 2006 on the objects of nuclear proliferation resistant core and nuclear fuel basic key technology development security. Also, it is including the future application plans for the results and the developed methodology, important information and the materials acquired in this period. Two core designs with single enrichment were considered for the KALIMER-600 during the first year : 1) the first core uses the non-fuel rods such as B4C, ZrH1.8, and dummy rods, 2) the core using different cladding thickness for each core region (inner, middle, and outer cores) without non-fuel rods to flatten the power distribution. In particular, the latter design was intended to simplify the fuel assembly design by eliminating the heterogeneity. It was found that the proposed design satisfy all of the Gen IV SFR design goals on the cycle length longer than 18 EFPM, fuel discharge burnup larger than 80GWd/t, sodium void worth, conversion ratio, reactivity burnup swing and so on. For this object reactor, the structure integrity outside of reactor is confirmed for the radiation exposure during the plant life according to the result of shielding design and evaluation. The transmutation capability and the core characteristics of sodium cooled fast reactor was also evaluated according to the change of MA amount. The reactivity coefficients for the BN-600 reactor with MA fueled are calculated and the results are compared and evaluated with other participants results. Even though the discrepancies between the results of participants are somewhat large but the K-CORE results are close to the average within a standard deviation. To have the capability of 3-dimensional core dynamic analysis such as analyzing power distribution and reactivity variations according to the asymmetric insertion/withdrawal of control rods, the calculation module for core dynamic parameters was

  9. ESFR core optimization and uncertainty studies

    International Nuclear Information System (INIS)

    Rineiski, A.; Vezzoni, B.; Zhang, D.; Marchetti, M.; Gabrielli, F.; Maschek, W.; Chen, X.-N.; Buiron, L.; Krepel, J.; Sun, K.; Mikityuk, K.; Polidoro, F.; Rochman, D.; Koning, A.J.; DaCruz, D.F.; Tsige-Tamirat, H.; Sunderland, R.

    2015-01-01

    In the European Sodium Fast Reactor (ESFR) project supported by EURATOM in 2008-2012, a concept for a large 3600 MWth sodium-cooled fast reactor design was investigated. In particular, reference core designs with oxide and carbide fuel were optimized to improve their safety parameters. Uncertainties in these parameters were evaluated for the oxide option. Core modifications were performed first to reduce the sodium void reactivity effect. Introduction of a large sodium plenum with an absorber layer above the core and a lower axial fertile blanket improve the total sodium void effect appreciably, bringing it close to zero for a core with fresh fuel, in line with results obtained worldwide, while not influencing substantially other core physics parameters. Therefore an optimized configuration, CONF2, with a sodium plenum and a lower blanket was established first and used as a basis for further studies in view of deterioration of safety parameters during reactor operation. Further options to study were an inner fertile blanket, introduction of moderator pins, a smaller core height, special designs for pins, such as 'empty' pins, and subassemblies. These special designs were proposed to facilitate melted fuel relocation in order to avoid core re-criticality under severe accident conditions. In the paper further CONF2 modifications are compared in terms of safety and fuel balance. They may bring further improvements in safety, but their accurate assessment requires additional studies, including transient analyses. Uncertainty studies were performed by employing a so-called Total Monte-Carlo method, for which a large number of nuclear data files is produced for single isotopes and then used in Monte-Carlo calculations. The uncertainties for the criticality, sodium void and Doppler effects, effective delayed neutron fraction due to uncertainties in basic nuclear data were assessed for an ESFR core. They prove applicability of the available nuclear data for ESFR

  10. Thermal hydraulic design of PFBR core

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.

    2000-01-01

    The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)

  11. GCRA review and appraisal of HTGR reactor-core-design program

    International Nuclear Information System (INIS)

    1980-09-01

    The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation

  12. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  13. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  14. Neutronic Design of KALIMER-600 Core with Moderator Rods

    International Nuclear Information System (INIS)

    Ser Gi Hong; Sang Ji Kim; Hoon Song; Yeong Il Kim

    2004-01-01

    Recently, the liquid-metal reactor research team of the Korea Atomic Energy Research Institute (KAERI) designed a 600 MWe sodium-cooled, metallic fueled fast reactor meeting the goals of Generation-IV, such as economics and proliferation resistance. In this paper, the core design analysis and its performance are reported. The core is designed to have a conversion ratio slightly larger than unity with no blanket assemblies in order not to produce an excess amount of high grade plutonium and to have no need for external feeds of fissile materials. To mitigate the sodium void reactivity of the fuel-self-sufficient core with no blanket assemblies, several design changes from a reference core are tried; reduction of the active core height, annular type cores with central dummy assemblies, and the use of moderator (BeO or ZrH 2 ) rods. As a result of the analysis, it is found that of the considered designs the use of moderator rods for the softening of the core neutron spectrum is the best choice for reducing the sodium void worth with the smallest changes from the reference fuel and assembly designs. The core analysis shows that the sodium void reactivity is reduced by ∼2$ in comparison with the reference core and the core has a much more negative fuel temperature reactivity feedback in comparison with the reference core. (authors)

  15. ACT-CCREC Core Research Program: Study Questions and Design. ACT Working Paper Series. WP-2015-01

    Science.gov (United States)

    Cruce, Ty M.

    2015-01-01

    This report provides a non-technical overview of the guiding research questions and research design for the ACT-led core research program conducted on behalf of the GEAR UP College and Career Readiness Evaluation Consortium (CCREC). The core research program is a longitudinal study of the effectiveness of 14 GEAR UP state grants on the academic…

  16. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  17. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  18. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of

  19. Computer code validation study of PWR core design system, CASMO-3/MASTER-α

    International Nuclear Information System (INIS)

    Lee, K. H.; Kim, M. H.; Woo, S. W.

    1999-01-01

    In this paper, the feasibility of CASMO-3/MASTER-α nuclear design system was investigated for commercial PWR core. Validation calculation was performed as follows. Firstly, the accuracy of cross section generation from table set using linear feedback model was estimated. Secondly, the results of CASMO-3/MASTER-α was compared with CASMO-3/NESTLE 5.02 for a few benchmark problems. Microscopic cross sections computed from table set were almost the same with those from CASMO-3. There were small differences between calculated results of two code systems. Thirdly, the repetition of CASMO-3/MASTER-α calculation for Younggwang Unit-3, Cycle-1 core was done and their results were compared with nuclear design report(NDR) and uncertainty analysis results of KAERI. It was found that uncertainty analysis results were reliable enough because results were agreed each other. It was concluded that the use of nuclear design system CASMO-3/MASTER-α was validated for commercial PWR core

  20. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  1. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  2. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...

  3. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  4. LMFBR core design analysis

    International Nuclear Information System (INIS)

    Cho, M.; Yang, J.C.; Yoh, K.C.; Suk, S.D.; Soh, D.S.; Kim, Y.M.

    1980-01-01

    The design parameters of a commercial-scale fast breeder reactor which is currently under construction by regeneration of these data is preliminary analyzed. The analysis of nuclear and thermal characteristics as well as safety features of this reactor is emphasized. And the evaluation of the initial core mentioned in the system description is carried out in the areas of its kinetics and control system, and, at the same time, the flow distribution of sodium and temperature distribution of the initial FBR core system are calculated. (KAERI INIS Section)

  5. A design study of high breeding ratio sodium cooled metal fuel core without blanket fuels

    International Nuclear Information System (INIS)

    Kobayashi, Noboru; Ogawa, Takashi; Ohki, Shigeo; Mizuno, Tomoyasu; Ogata, Takanari

    2009-01-01

    The metal fuel core is superior to the mixed oxide fuel core because of its high breeding ratio and compact core size resulting from hard neutron spectrum and high heavy metal densities. Utilizing these characteristics, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void worth of less than 8 $, a core height of less than 150 cm, the maximum cladding temperature of 650degC, and the maximum fuel pin bundle pressure drop of 0.4 MPa. The breeding ratio of the resultant core was 1.34 with 6wt% zirconium content fuel. Applying 3wt% zirconium content fuel enhanced the breeding ratio up to 1.40. (author)

  6. Bypass Flow and Hot Spot Analysis for PMR200 Block-Core Design with Core Restraint Mechanism

    International Nuclear Information System (INIS)

    Lim, Hong Sik; Kim, Min Hwan

    2009-01-01

    The accurate prediction of local hot spot during normal operation is important to ensure core thermal margin in a very high temperature gas-cooled reactor because of production of its high temperature output. The active cooling of the reactor core determining local hot spot is strongly affected by core bypass flows through the inter-column gaps between graphite blocks and the cross gaps between two stacked fuel blocks. The bypass gap sizes vary during core life cycle by the thermal expansion at the elevated temperature and the shrinkage/swelling by fast neutron irradiation. This study is to investigate the impacts of the variation of bypass gaps during core life cycle as well as core restraint mechanism on the amount of bypass flow and thus maximum fuel temperature. The core thermo fluid analysis is performed using the GAMMA+ code for the PMR200 block-core design. For the analysis not only are some modeling features, developed for solid conduction and bypass flow, are implemented into the GAMMA+ code but also non-uniform bypass gap distribution taken from a tool calculating the thermal expansion and the shrinkage/swell of graphite during core life cycle under the design options with and without core restraint mechanism is used

  7. A study on the advanced statistical core thermal design methodology

    International Nuclear Information System (INIS)

    Lee, Seung Hyuk

    1992-02-01

    A statistical core thermal design methodology for generating the limit DNBR and the nominal DNBR is proposed and used in assessing the best-estimate thermal margin in a reactor core. Firstly, the Latin Hypercube Sampling Method instead of the conventional Experimental Design Technique is utilized as an input sampling method for a regression analysis to evaluate its sampling efficiency. Secondly and as a main topic, the Modified Latin Hypercube Sampling and the Hypothesis Test Statistics method is proposed as a substitute for the current statistical core thermal design method. This new methodology adopts 'a Modified Latin Hypercube Sampling Method' which uses the mean values of each interval of input variables instead of random values to avoid the extreme cases that arise in the tail areas of some parameters. Next, the independence between the input variables is verified through 'Correlation Coefficient Test' for statistical treatment of their uncertainties. And the distribution type of DNBR response is determined though 'Goodness of Fit Test'. Finally, the limit DNBR with one-sided 95% probability and 95% confidence level, DNBR 95/95 ' is estimated. The advantage of this methodology over the conventional statistical method using Response Surface and Monte Carlo simulation technique lies in its simplicity of the analysis procedure, while maintaining the same level of confidence in the limit DNBR result. This methodology is applied to the two cases of DNBR margin calculation. The first case is the application to the determination of the limit DNBR where the DNBR margin is determined by the difference between the nominal DNBR and the limit DNBR. The second case is the application to the determination of the nominal DNBR where the DNBR margin is determined by the difference between the lower limit value of the nominal DNBR and the CHF correlation limit being used. From this study, it is deduced that the proposed methodology gives a good agreement in the DNBR results

  8. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  9. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  10. Designing the colorectal cancer core dataset in Iran

    Directory of Open Access Journals (Sweden)

    Sara Dorri

    2017-01-01

    Full Text Available Background: There is no need to explain the importance of collection, recording and analyzing the information of disease in any health organization. In this regard, systematic design of standard data sets can be helpful to record uniform and consistent information. It can create interoperability between health care systems. The main purpose of this study was design the core dataset to record colorectal cancer information in Iran. Methods: For the design of the colorectal cancer core data set, a combination of literature review and expert consensus were used. In the first phase, the draft of the data set was designed based on colorectal cancer literature review and comparative studies. Then, in the second phase, this data set was evaluated by experts from different discipline such as medical informatics, oncology and surgery. Their comments and opinion were taken. In the third phase refined data set, was evaluated again by experts and eventually data set was proposed. Results: In first phase, based on the literature review, a draft set of 85 data elements was designed. In the second phase this data set was evaluated by experts and supplementary information was offered by professionals in subgroups especially in treatment part. In this phase the number of elements totally were arrived to 93 numbers. In the third phase, evaluation was conducted by experts and finally this dataset was designed in five main parts including: demographic information, diagnostic information, treatment information, clinical status assessment information, and clinical trial information. Conclusion: In this study the comprehensive core data set of colorectal cancer was designed. This dataset in the field of collecting colorectal cancer information can be useful through facilitating exchange of health information. Designing such data set for similar disease can help providers to collect standard data from patients and can accelerate retrieval from storage systems.

  11. CORD, PWR Core Design and Fuel Management

    International Nuclear Information System (INIS)

    Trkov, Andrej

    1996-01-01

    1 - Description of program or function: CORD-2 is intended for core design applications of pressurised water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refuelling). 2 - Method of solution: The calculations are performed at the cell level with a lattice code in the supercell approximation to generate the single cell cross sections. Fuel assembly cross section homogenization is done in the diffusion approximation. Global core calculations can be done in the full three-dimensional cartesian geometry. Thermohydraulic feedbacks can be accounted for. The Effective Diffusion Homogenization method is used for generating the homogenized cross sections. 3 - Restrictions on the complexity of the problem: The complexity of the problem is selected by the user, depending on the capacity of his computer

  12. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  13. [Three-dimensional computer aided design for individualized post-and-core restoration].

    Science.gov (United States)

    Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun

    2009-10-01

    To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.

  14. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  15. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Artioli, C.; Petrovich, Carlo; Grasso, Giacomo

    2010-01-01

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GW e y. (authors)

  16. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  17. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  18. Thermal hydraulic design of a hydride-fueled inverted PWR core

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Hejzlar, P.; Ferroni, P.; Bergles, A.

    2009-01-01

    An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U-ZrH 1.6 ) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U-ZrH 1.6 . The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t , which is 135% of the optimally powered standard design (5080 MW t -determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.

  19. Design and economic implications of heterogeneity in an LMFBR core

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1983-01-01

    Much emphasis is currently being placed in LMFBR design on reducing both the capital cost and the fuel cycle cost of an LMFBR to insure its economic competativeness without a rapid increase in the uranium prices. In this study the relationship between two core design options, their neutronic consequences, and their effect on fuel cycle cost are analyzed. The two design options are the selection of pin diameter and the degree of heterogeneity. In the case of a heterogeneous core, with a low sodium void reactivity worth this ratio of fertile internal blanket to driver assemblies is generally about 0.40. However, some advantages of cores with heterogeneity of 0.08 to 0.2 for a fixed pin diameter have been reported

  20. Status of core nuclear design technology for future fuel

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Jung, Hyung Guk; Noh, Jae Man; Kim, Yeong Il; Kim, Taek Kyum; Gil, Choong Sup; Kim, Jung Do; Kim, Young Jin; Sohn, Dong Seong

    1997-01-01

    The effective utilization of nuclear resource is more important factor to be considered in the design of next generation PWR in addition to the epochal consideration on economics and safety. Assuming that MOX fuel can be considered as one of the future fuel corresponding to the above request, the establishment of basic technology for the MOX core design has been performed : : the specification of the technical problem through the preliminary core design and nuclear characteristic analysis of MOX, the development and verification of the neutron library for lattice code, and the acquisition of data to be used for verification of lattice and core analysis codes. The following further studies will be done in future: detailed verification of library E63LIB/A, development of the spectral history effect treatment module, extension of decay chain, development of new homogenization for the MOX fuel assembly. (author). 6 refs., 7 tabs., 2 figs

  1. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  2. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  3. Design and analysis of EI core structured transverse flux linear reluctance actuator

    OpenAIRE

    FENERCİOĞLU, AHMET; AVŞAR, YUSUF

    2015-01-01

    In this study, an EI core linear actuator is proposed for horizontal movement systems. It is a transverse flux linear switched reluctance motor designed with an EI core structure geometrically. The actuator is configured into three phases and at a 6/4 pole ratio, and it has a stationary active stator along with a sliding passive translator. The stator consists of E cores and the translator consists of I cores. The actuator has a yokeless design because the stator and translator have no back i...

  4. Fast breeder physics and nuclear core design

    International Nuclear Information System (INIS)

    Marth, W.; Schroeder, R.

    1983-07-01

    This report gathers the papers that have been presented on January 18/19, 1983 at a seminar ''Fast breeder physics and nuclear core design'' held at KfK. These papers cover the results obtained within about the last five years in the r+d program and give some indication, what still has to be done. To begin with, the ''tools'' of the core designer, i.e. nuclear data and neutronics codes are covered in a comprehensive way, the seminar emphasized the applications, however. First of all the accuracies obtained for the most important parameters are presented for the design of homogeneous and heterogeneous cores of about 1000 MWe, they are based on the results of critical experiments. This is followed by a survey on activities related to the KNK II reactor, i.e. calculations concerning a modification of the core as well as critical experiments done with respect to re-loads. Finally, work concerning reactivity worths of accident configurations is presented: the generation of reactivity worths for the input of safety-related calculations of a SNR 2 design, and critical experiments to investigate the requirements for the codes to be used for these calculations. These papers are accompanied by two contributions from the industrial partners. The first one deals with the requirements to nuclear design methods as seen by the reactor designer and then shows what has been achieved. The latter one presents state, trends, and methods of the SNR 2 design. The concluding remarks compare the state of the art reached within DeBeNe with international achievements. (orig.) [de

  5. ASTRID core: Design objectives, design approach, and R&D in support

    International Nuclear Information System (INIS)

    Mignot, G.; Devictor, N.

    2012-01-01

    ASTRID core design is mainly guided by safety objectives: 1. Prevention of the core meltdown accident: To prevent meltdown accidents: - by a natural behavior of the core and the reactor (no actuation of the two shutdown systems); - with adding passive complementary systems if natural behavior is not sufficient for some transient cases. 2. Mitigation of the fusion accident: To garantee that core fusion accidents don’t lead to significant mechanical energy release, whatever initiator event: - by a natural core behavior; - with adding specific mitigation dispositions in case of natural behavior is not suffficient

  6. Fuel and core design study of the sodium-cooled fast reactors. Studies on metallic fuel cores in the JFY2002

    International Nuclear Information System (INIS)

    Sugino, Kazuteru; Mizuno, Tomoyasu

    2003-06-01

    Based on the results obtained in the former feasibility study, the metallic fueled core of ordinary-type, that is, 2-region homogeneous core, has been established aiming at the improvement in the core performance, and subsequent comparison has been performed with the mixed oxide fueled core. Further, the attractive concept of the metallic fueled core of high outlet temperature has been constructed which has good nuclear features as a metallic fueled core and has identical outlet temperature to mixed oxide fuelled core. Following items have been found as a result of the investigation on the ordinary-type core. The metallic fueled core whose maximum fast neutron fluence (En>0.1MeV) is set identical (5x10 23 n/cm 2 ) to the mixed oxide fueled cores with core discharge burnup 150GWd/t has sufficient core performances as a metallic fueled core, e.g. higher breeding ratio and longer operation period compared with mixed oxide fueled cores, but the core discharge burnup is limited up to 100GWd/t. However effective discharge burnup including the contribution of the blanket region is comparative to mixed oxide cores under the same breeding ratio condition. In order to enlarge the core discharge burnup to 150GWd/t keeping the core performance identical to above mentioned core's, the irradiation deformation of structural material should be reduced to that of mixed oxide fueled cores. Further the maximum fast neutron fluence reaches to 7-8x10 23 n/cm 2 (En>0.1MeV). The investigations on the core of high outlet temperature have clarified following items. Even in the change of core regions by pin-diameter form 3-region to 2-region and in the limited maximum fuel pin diameter 8.5 mm, realization of the identical outlet/inlet temperatures to the mixed oxide cores (550/395degC) is feasible under the criteria of the maximum temperature 650degC at the inner surface of the cladding. The constructed core accommodates the targets of breeding ratio from about 1.0 to 1.2 only by adjusting

  7. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  8. Reverse depletion method for PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kim, Y.J.

    1985-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. Prospects for even greater use of in-board fresh fuel loading are good as utilities seek to reduce core vessel fluence, mitigate pressurized thermal shock concerns, and extend vessel lifetime. Consequently, large numbers of burnable poison (BP) pins are being used to control the power peaking at the in-board fresh fuel positions. This has presented an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of BP pins in the fresh fuel. A procedure was developed that utilizes the well-known Haling depletion to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and BP distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provide for the maximum utility to PWR core reload design

  9. Some concept for the TRIGA core design

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1994-01-01

    There is the research reactor called TRIGA Mark-2 of 100 kW in Atomic Energy Research Laboratory, Musashi Institute of Technology. Recently, while the various calculations on the core were carried out, the author became aware of that this TRIGA core was designed at that time with excellent consideration. The reason for that is, although fuel is arranged in simple concentric circular state at a glance, it was known that in reality, this is the modification of the hexagonal core of triangular lattice. In the examination of square lattice fuel arrangement, the reactivity was calculated by using the gap between fuel rods as the parameter and by using ENDF/B-4 library and Monte Carlo code Keno-5. It is known that the design of the lattice with maximum reactivity cannot be done by the square lattice. The similar examination was carried out on triangular lattice, and it was found that the gap between fuel rods of 4 mm is the optimal design. The average neutron energy spectra in the fuel rods of the TRIGA Mark-2 core agreed considerably well with the energy spectra at 4.16 cm fuel rod pitch in triangular hexagonal core. In the reactor of about 100 kW, even if the gap between fuel rods is less than 4 mm, heat removal is sufficiently possible. (K.I.)

  10. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  11. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  12. Design study on PWR-type reduced-moderation light water core. Investigation of core adopting seed-blanket fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    As a part of the design study on PWR-type Reduced-Moderation Water Reactors (RMWRs), a light water cooled core with the seed-blanket type fuel assemblies has been investigated. An assembly with seed of 13 layers and blanket of 5 layers was selected by optimization calculations. The core was composed with the 163 assemblies. The following results were obtained by burn-up calculations with the MVP-BURN code; The cycle length is 15 months by 3-batch refueling. The discharge burn-up including the inner blanket is about 25 GWd/t. The conversion ratio is about 1.0. The void reactivity coefficient is about-26.1 pcm/%void at BOC and -21.7pcm%void at EOC. About 10% of MA makes conversion ratio decrease about 0.05 to obtain the same burn-up. The void reactivity coefficient increased significantly and it is necessary to reduce it. FP amount corresponding to about 2 % of total plutonium weight makes reactivity decrease about 0.5 %{delta}k/k and void reactivity coefficient increase, however these changes are within the design margins. Capability of multi-recycling of plutonium was confirmed, using discharged plutonium for 4 cycles, if fissile plutonium of 15.5wt% is used. The conversion ratio increases by about 0.026 with recycling. However, void reactivity coefficient increases and some effort to obtain negative void reactivity coefficient is necessary. (author)

  13. Ex-vessel core catcher design requirements and preliminary concepts evaluation

    International Nuclear Information System (INIS)

    Friedland, A.J.; Tilbrook, R.W.

    1974-01-01

    As part of the overall study of the consequences of a hypothetical failure to scram following loss of pumping power, design requirements and preliminary concepts evaluation of an ex-vessel core catcher (EVCC) were performed. EVCC is the term applied to a class of devices whose primary objective is to provide a stable subcritical and coolable configuration within containment following a postulated accident in which it is assumed that core debris has penetrated the Reactor Vessel and Guard Vessel. Under these assumed conditions a set of functional requirements were developed for an EVCC and several concepts were evaluated. The studies were specifically directed toward the FFTF design considering the restraints imposed by the physical design and construction of the FFTF plant

  14. Status of the Astrid core at the end of the pre-conceptual design phase 1

    International Nuclear Information System (INIS)

    Chenaud, Ms.; Devictor, N.; Mignot, G.; Varaine, F.; Venard, C.; Martin, L.; Phelip, M.; Lorenzo, D.; Serre, F.; Bertrand, F.; Alpy, N.; Le-Flem, M.; Gavoille, P.; Lavastre, R.; Richard, P.; Verrier, D.; Schmitt, D.

    2013-01-01

    Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase. (authors)

  15. A review of the core catcher design in LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do Hee

    2001-08-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, The core catcher design technologies and processes are presented. Finally the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized and the preliminary assessment on the core catcher installation in KALIMER is presented

  16. Materials considerations for UF6 gas-core reactor. Interim report for preliminary design study

    International Nuclear Information System (INIS)

    Wagner, P.

    1977-04-01

    The limiting materials problem in a high-temperature UF 6 core reactor is the corrosion of the core containment vessel. The UF 6 , the lower fluorides of uranium, and the fluorine that exist at the anticipated reactor operating conditions (1000 K and about one atmosphere UF 6 ) are all corrosive. Because of this, the materials evaluation effort for this reactor design study has concentrated on the identification of a viable system for the containment vessel that meets both the materials and neutronic requirements. A study of the literature has revealed that the most promising corrosion-resistant candidates are Ni or Ni-Al alloys. One of the conclusions of this work is that the containment vessel use a nickel liner or clad since the use of Ni as a structural member is precluded by its relative blackness to thermal neutrons. Estimates of corrosion rates of Ni and Ni-Al alloys, the effects of the pressure and temperature of F 2 on the corrosion rates, calculated equilibrium gas compositions at reactor core operating conditions, suggested methods of fabrication, and recommendations for future research and development are included

  17. On-line generation of core monitoring power distribution in the SCOMS couppled with core design code

    International Nuclear Information System (INIS)

    Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.

    2002-01-01

    The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology

  18. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  19. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  20. Introduction to Open Core Protocol Fastpath to System-on-Chip Design

    CERN Document Server

    Schwaderer, W David

    2012-01-01

    This book introduces Open Core Protocol (OCP), not as a conventional hardware communications protocol but as a meta-protocol: a means for describing and capturing the communications requirements of an IP core, and mapping them to a specific set of signals with known semantics.  Readers will learn the capabilities of OCP as a semiconductor hardware interface specification that allows different System-On-Chip (SoC) cores to communicate.  The OCP methodology presented enables intellectual property designers to design core interfaces in standard ways. This facilitates reusing OCP-compliant cores across multiple SoC designs which, in turn, drastically reduces design times, support costs, and overall cost for electronics/SoCs. Provides a comprehensive introduction to Open Core Protocol, which is more accessible than the full specification; Designed as a hands-on, how-to guide to semiconductor design; Includes numerous, real “usage examples” which are not available in the full specification; Integrates coverag...

  1. Design evaluation of emergency core cooling systems using Axiomatic Design

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)]. E-mail: gheo@mit.edu; Lee, Song Kyu [Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2007-01-15

    In designing nuclear power plants (NPPs), the evaluation of safety is one of the important issues. As a measure for evaluating safety, this paper proposes a methodology to examine the design process of emergency core cooling systems (ECCSs) in NPPs using Axiomatic Design (AD). This is particularly important for identifying vulnerabilities and creating solutions. Korean Advanced Power Reactor 1400 MWe (APR1400) adopted the ECCS, which was improved to meet the stronger safety regulations than that of the current Optimized Power Reactor 1000 MWe (OPR1000). To improve the performance and safety of the ECCS, the various design strategies such as independency or redundancy were implemented, and their effectiveness was confirmed by calculating core damage frequency. We suggest an alternative viewpoint of evaluating the deployment of design strategies in terms of AD methodology. AD suggests two design principles and the visualization tools for organizing design process. The important benefit of AD is that it is capable of providing suitable priorities for deploying design strategies. The reverse engineering driven by AD has been able to show that the design process of the ECCS of APR1400 was improved in comparison to that of OPR1000 from the viewpoint of the coordination of design strategies.

  2. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  3. Study of plutonium multi-recycle in high moderation LWR cores

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Yamamoto, Toru; Ueji, Masao; Hibi, Koki; Aoyama, Motoo; Sakurada, Koichi

    2000-01-01

    Nuclear Power Engineering Corporation (NUPEC) has been studying advanced cores that are dedicated to enhance the plutonium consumption per recycling for effective use of plutonium. In this study, a fissile plutonium consumption rate is adopted as an index of the effective use of plutonium, which is defined as a ratio of consumption to loading of fissile plutonium in a core. High moderation core concepts have been studied in order to increase this index based on full MOX cores in the latest designs of LWRs in Japan that are the Advanced Boiling Water Reactor (ABWR) and the Advanced Pressurized Water Reactor (APWR). As a part of this study, core performance in the case of plutonium multi-recycling has been surveyed with these higher moderation cores aiming further effective use of plutonium. The design and analyses for equilibrium cores show that nuclear and thermal hydraulics parameters satisfy design criteria, and a fissile plutonium consumption rate increases up to 20% for ABWRs and 30% for APWRs even in plutonium multi-recycling condition. It was confirmed that the high moderation cores are feasible from a viewpoint of nuclear and thermal hydraulics, safety and plutonium consumption in the condition of plutonium multi-recycling. (author)

  4. Design and analysis of PCRV core cavity closure

    International Nuclear Information System (INIS)

    Lee, T.T.; Schwartz, A.A.; Koopman, D.C.A.

    1980-05-01

    Design requirements and considerations for a core cavity closure which led to the choice of a concrete closure with a toggle hold-down as the design for the Gas-Cooled Fast Breeder Reactor (GCFR) plant are discussed. A procedure for preliminary stress analysis of the closure by means of a three-dimensional finite element method is described. A limited parametric study using this procedure indicates the adequacy of the present closure design and the significance of radial compression developed as a result of inclined support reaction

  5. Characteristics of Core Thermal-Hydraulic Design of SMART-P

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Seo, Kyong-Won; Kim, Tae-Wan; Lee, Chung-Chan

    2006-01-01

    The SMART (System-Integrated Modular Advanced ReacTor) is an integral-type advanced light water reactor which is purposed to be utilized as an energy source for sea water desalination as well as a small scale power generation. A prototype of this reactor, named SMART-P, has been studied at KAERI in order to demonstrate the relevant technologies incorporated in the SMART design. Due to the closed-channel type fuel assemblies and low mass velocity in the reactor core, the thermal hydraulic design features of SMART-P revealed fairly different characteristics in comparison with existing PWRs. The allowable operating region of the core, from the aspect of the thermal integrity of the fuel, should be primarily limited by two design parameters; critical heat flux (CHF) and fuel temperature. The occurrence of CHF may cause a sudden increase of the cladding temperature which eventually results in the fuel failure. The fuel temperature limit is relevant to a fuel failure mechanism such as a fuel centerline melting or a phase change of metallic fuels. Two phase flow instability is also an important design parameter since a flow oscillation may trigger a CHF or mechanical vibration of the channel. The characteristics of important thermal-hydraulic design parameters have been investigated for the SMART-P core with the closed-channel type fuel assemblies which contained non-square arrayed SSF (Self-sustained Square Finned) fuel rods

  6. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  7. Advance of core design method for ATR

    International Nuclear Information System (INIS)

    Maeda, Seiichirou; Ihara, Toshiteru; Iijima, Takashi; Seino, Hideaki; Kobayashi, Tetsurou; Takeuchi, Michio; Sugawara, Satoru; Matsumoto, Mitsuo.

    1995-01-01

    Core characteristics of ATR demonstration plant has been revised such as increasing the fuel burnup and the channel power, which is achieved by changing the number of fuel rod per fuel assembly from 28 to 36. The research and development concerning the core design method for ATR have been continued. The calculational errors of core analysis code have been evaluated using the operational data of FUGEN and the full scale simulated test results in DCA (Deuterium Critical Assembly) and HTL (Heat Transfer Loop) at O-arai engineering center. It is confirmed that the calculational error of power distribution is smaller than the design value of ATR demonstration plant. Critical heat flux correlation curve for 36 fuel rod cluster has been developed and the probability evaluation method based on its curve, which is more rational to evaluate the fuel dryout, has been adopted. (author)

  8. Thermal-hydraulic mixing in the split-core ANS reactor design

    International Nuclear Information System (INIS)

    Dorning, R.J.J.

    1988-01-01

    A design has been proposed for the advanced neutron source (ANS) reactor that incorporates a split core, one purpose of which is to create a mixing plenum between the upper and lower cores. It was hoped that in addition to introducing various desirable neutronics features, such as decreasing the fast neutron flux contamination of thermal and cold neutron beams located in the reactor midplane, this mixing plenum would make possible higher operating powers by lowering the maximum core temperature. This lower temperature was to be achieved as a result of the mixing, of the hot D 2 O coolant exiting the upper-core channels, and the cold D 2 O leaving the large upper core bypass. It was expected that this mixing would bring about a significantly reduced lower core maximum coolant inlet temperature. The authors have carried out large-scale computer calculations to determine the extent to which this mixing occurs in current split-core design geometry, which does not incorporate baffles, mixing devices, or other design features introduced to enhance mixing. The large-scale self-consistent calculations summarized here indicate that innovative design ideas to enhance mixing will be necessary if the split-core concept is to achieve the amount of thermal mixing needed to make possible significantly higher power operation and corresponding higher flux sources

  9. Core optimization studies at JEN-Spain

    International Nuclear Information System (INIS)

    Gomez Alonso, M.

    1983-01-01

    The JEN-1 is a 3-MW reactor which uses flat-plate fuel elements. It was originally fueled with 20%-enriched uranium but more recently with 90%-enriched fuel. It now appears that it will have to be converted back to using 20%- enriched fuel. Progress is presently being made in fuel fabrication. Plates with meat thicknesses of up to 1.5 mm have been fabricated. Plates are being tested with 40 wt % uranium in the fuel meat. Progress is also being made in reactor design in collaboration with atomic energy commissions of other countries for swimming pool reactors being designed or under construction in Chile, Ecuador, and Spain itself. The design studies address core optimization, safety analysis report updating, irradiation facilities, etc. Core optimization is specifically addressed in this paper. A common swimming-pool-type reactor such as the JEN-1 served as an example. The philosophy adopted in this study is not to try to match the high enrichment core, but rather to treat the design as new and try to optimize it using simplified neutronic/thermal hydraulic/economic models. This philosophy appears to be somewhat original. As many as possible of the fuel parameters are constrained to remain constant

  10. Uncertainty reevaluation of T/H parameters of HANARO core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Park, Cheol; Kim, Heo Nil; Chae, Hee Taek

    1999-03-01

    HANARO core was designed by statistical thermal design method which was generally applied to power plant design. However, reevaluation of core thermal margin reflecting design changes as well as experiences through commissioning and operation is necessary for safe operation of reactor. For this objective, the revision of data for T/H design parameters and the reevaluation of their uncertainties were performed. (Author). 30 refs., 7 figs.

  11. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  12. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  13. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  14. Study on methodology to estimate isotope generation and depletion for core design of HTGR

    International Nuclear Information System (INIS)

    Fukaya, Yuji; Ueta, Shohei; Goto, Minoru; Shimakawa, Satoshi

    2013-12-01

    An investigation on methodology to estimate isotope generation and depletion had been performed in order to improve the accuracy for HTGR core design. The technical problem for isotope generation and depletion can be divided into major three parts, for solving the burn-up equations, generating effective cross section and employing nuclide data. Especially for the generating effective cross section, the core burn-up calculation has a technological problem in common with point burn-up calculation. Thus, the investigation had also been performed for the core burn-up calculation to develop new code system in the future. As a result, it was found that the cross section with the extended 108 energy groups structure from the SRAC 107 groups structure to 20 MeV and the cross section collapse using the flux obtained by the deterministic code SRAC is proper for the use. In addition, it becomes clear the needs for the nuclear data from an investigation on the preparation condition for nuclear data for a safety analysis and a fuel design. (author)

  15. Design of the core support and restraint structures for FFTF and CRBRP

    International Nuclear Information System (INIS)

    Sutton, H.G.; Rylatt, J.A.

    1977-12-01

    This paper presents and compares the design and fabrication of the FFTF and CRBRP reactor structures which support and restrain the reactor core assemblies. The fabrication of the core support structure (CSS) for the FFTF reactor was completed October 1972 and this paper discusses how the fabrication problems encountered with the FFTF were avoided in the subsequent design of the CRBR CSS. The radial core restraint structure of the FFTF was designed and fabricated such that an active system could replace the present passive system which is segmented and relies on the CSS core barrel for total structure integrity to maintain core geometry. The CRBR core restraint structure is designed for passive restraint only, and this paper discusses how the combined strengths of the restraint structure former rings and the CSS core barrel are utilized to maintain core geometry. Whereas the CSS for the FFTF interfaces directly with the reactor core assemblies, the CRBR CSS does not. A comparison is made on how intermediate structures in CRBR (inlet modules) provide the necessary design interfaces for supporting and providing flow distribution to the reactor core assemblies. A discussion is given on how the CRBR CSS satisfied the design requirements of the Equipment Specification, including thermal transient, dynamic and seismic loadings, and results of flow distribution testing that supported the CRBR design effort. The approach taken to simplify fabrication of the CRBR components, and a novel 20 inch deep narrow gap weld joint in the CSS are described

  16. Optimization study and preliminary design for Latina NPP early core retrieval and reactor dismantling

    International Nuclear Information System (INIS)

    Macci, E.; Zirpolo, S.; Imparato, A.; Cacace, A.; Parry, D.; Walkden, P.

    2002-01-01

    In June 2000, an agreement was established between Sogin and BNFL to enable the two companies to co-operate, using their specific experiences in the decommissioning field, for the benefit of projects in Italy, the United Kingdom and for third markets. A decommissioning strategy for the Latina NPP was initially developed in a Phase 1 Study which produced a conceptual design for the decommissioning of the reactor. This study was completed in June 2000. Since then, a second study has been completed, which has further developed the strategy and produced preliminary designs for the early dismantling of the core and reactor building at Latina. The engineering and safety data were produced in order to support Sogin in the preparation of a safety case for plant decommissioning. This safety case was submitted to the Italian Regulator, ANPA, in February 2002. (author)

  17. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  18. Design study of eventual core conversion for the research reactor RA

    International Nuclear Information System (INIS)

    Matausek, M. V.; Marinkovic, N.

    1998-01-01

    Main options are specified for the future status of the 6.5 MW heavy water research reactor RA. Arguments pro and contra restarting the reactor are presented. When considering the option to restart the RA reactor, possibilities to improve its neutronic parameters, such as neutron flux values and irradiation capabilities are discussed, as well as the compliance with the worldwide activities of Reduced Enrichment for Research and Test Reactors (RERTR) program. Possibility of core conversion is examined. Detailed reactor physics design calculations are performed for different fuel types and uranium loading. For different fuel management schemes results are presented for the effective, multiplication factor, power distribution, fuel burnup and consumption. It is shown that, as far as reactor core parameters are considered, conversion to lower enrichment fuel could be easily accomplished. However, conversion to the lower enrichment could only be justified if combined with improvement of some other reactor attributes. (author)

  19. Radiotoxicity study of a boiling water reactor core design based on a thorium-uranium fuel concept

    International Nuclear Information System (INIS)

    Nunez C, A.; Espinosa P, G.

    2007-01-01

    Full text: The innovative design of a Boiling Water Reactor (BWR) equilibrium core using the thorium-uranium (blanket-seed) concept in the same integrated fuel assembly is presented in this paper. The lattice design uses the thorium conversion capability to 233 U in a BWR spectrum. A core design was developed to achieve an equilibrium cycle of one effective full power year in a standard BWR. A comparison of the toxicity of the spent fuel showed that toxicity is lower in the thorium cycle than other commercial fuels as UO 2 and MOX (uranium and plutonium) in case of the one-through cycle for LWR. (Author)

  20. Improving Battery Reactor Core Design Using Optimization Method

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2011-01-01

    The Battery Omnibus Reactor Integral System (BORIS) is a small modular fast reactor being designed at Seoul National University to satisfy various energy demands, to maintain inherent safety by liquid-metal coolant lead for natural circulation heat transport, and to improve power conversion efficiency with the Modular Optimal Balance Integral System (MOBIS) using the supercritical carbon dioxide as working fluid. This study is focused on developing the Neutronics Optimized Reactor Analysis (NORA) method that can quickly generate conceptual design of a battery reactor core by means of first principle calculations, which is part of the optimization process for reactor assembly design of BORIS

  1. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  2. Automated Core Design

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-01-01

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process

  3. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  4. Comparison of design margin for core shroud in between design and construction code and fitness-for-service code

    International Nuclear Information System (INIS)

    Dozaki, Koji

    2007-01-01

    Structural design methods for core shroud of BWR are specified in JSME Design and Construction Code, like ASME Boiler and Pressure Vessel Code Sec. III, as a part of core support structure. Design margins are defined according to combination of the structural design method selected and service limit considered. Basically, those margins in JSME Code were determined after ASME Sec. III. Designers can select so-called twice-slope method for core shroud design among those design methods. On the other hand, flaw evaluation rules have been established for core shroud in JSME Fitness-for-Service Code. Twice-slope method is also adopted for fracture evaluation in that code even when the core shroud contains a flaw. Design margin was determined as structural factors separately from Design and Construction Code. As a natural consequence, there is a difference in those design margins between the two codes. In this paper, it is shown that the design margin in Fitness-for-Service Code is conservative by experimental evidences. Comparison of design margins between the two codes is discussed. (author)

  5. Overview of homogeneous versus heterogeneous core configuration trade-off studies

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1982-01-01

    The most significant development in core design trend in the U.S. LMFBR program has been the increased attention given to the heterogeneous core design concept. In recent years, numerous core configuration trade-off studies have been carried out to quantify advantages and disadvantages of the heterogeneous concept relative to the homogeneous concept, and a consensus is emerging among the U.S. core designers. It appears that the technical and economic performance differences between homogeneous and heterogeneous core designs are very small; however, the heterogeneous concept provides a definite safety/licensing advantage. he technical and economic performance comparison between homogeneous and heterogeneous core configurations is difficult to quantify. In fact, in most cases, the perceived advantages and/or disadvantages are dictated by the consistency in the comparison (optimized for one concept versus non-optimized for the other, etc.) rather than by any inherent differences. Some of the technical and economic issues relevant to the homogeneous versus heterogeneous comparison are summarized

  6. Overview of homogeneous versus heterogeneous core configuration trade-off studies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y I [Applied Physics Division, Argonne National Laboratory, Argonne, IL (United States)

    1982-01-01

    The most significant development in core design trend in the U.S. LMFBR program has been the increased attention given to the heterogeneous core design concept. In recent years, numerous core configuration trade-off studies have been carried out to quantify advantages and disadvantages of the heterogeneous concept relative to the homogeneous concept, and a consensus is emerging among the U.S. core designers. It appears that the technical and economic performance differences between homogeneous and heterogeneous core designs are very small; however, the heterogeneous concept provides a definite safety/licensing advantage. he technical and economic performance comparison between homogeneous and heterogeneous core configurations is difficult to quantify. In fact, in most cases, the perceived advantages and/or disadvantages are dictated by the consistency in the comparison (optimized for one concept versus non-optimized for the other, etc.) rather than by any inherent differences. Some of the technical and economic issues relevant to the homogeneous versus heterogeneous comparison are summarized.

  7. Core design characteristics of the hyper system

    International Nuclear Information System (INIS)

    Yonghee, Kim; Won-Seok, Park; Hill, R.N.

    2003-01-01

    In Korea, an accelerator-driven system (ADS) called HYPER (Hybrid Power Extraction Reactor) is being studied for the transmutation of the radioactive wastes. HYPER is a 1000 MWth lead-bismuth eutectic (LBE)-cooled ADS. In this paper, the neutronic design characteristics of HYPER are described and its transmutation performances are assessed for an equilibrium cycle. The core is loaded with a ductless fuel assembly containing transuranics (TRU) dispersion fuel pins. In HYPER, a relatively high core height, 160 cm, is adopted to maximize the multiplication efficiency of the external source. In the ductless fuel assembly, 13 non-fuel rods are used as tie rods to maintain the mechanical integrity of assembly. As the reflector material, pure lead is used to improve the neutron economy and to minimise the generation of radioactive materials. In HYPER, to minimise the burn-up reactivity swing, a B 4 C burnable absorber is employed. For efficient depletion of the B-10 absorber, the burnable absorber is loaded only in the axially-central part (92 cm long) of the 13 tie rods of each assembly. In the current design, the amount of the B 4 C absorber was determined such that the burn-up reactivity swing is about 3.0% Δk. The long-lived fission products (LLFPs) 99 Tc and 129 I are also transmuted in the HYPER core such that their supporting ratios are equal to that of the TRUs. A heterogeneous LLFP transmutation in the reflector zone has been analysed in this work. A unique feature of the HYPER system is that it has an auxiliary core shutdown system, independent of the accelerator shutdown system. It has been shown that a cylindrical B 4 C absorber between the target and fuel blanket can drastically reduce the fission power even without shutting off the accelerator power. (author)

  8. Conceptual design of PFBR core

    International Nuclear Information System (INIS)

    Lee, S.M.; Govindarajan, S.; Indira, R.; John, T.M.; Mohanakrishnan, P.; Shankar Singh, R.; Bhoje, S.B.

    1996-01-01

    The design options selected for the core of the 500 MWe Prototype Fast Breeder Reactor are presented. PFBR has a conventional mixed oxide fuel core of homogeneous type with two enrichment zones for power flattening and with radial and axial blankets to make the reactor self-sustaining in fissile material. Pin diameter has been selected for minimization of fissile inventory. Considerations for the choice of number of pins per subassembly, integrated versus separate axial blankets, and other pin and subassembly parameters are discussed. As the core size is moderate, no special schemes for reducing the maximum positive sodium voiding coefficient is envisages. Two independent, diverse fast acting shutdown systems working in fail-safe mode are selected. The number of absorber rods has been minimized by choosing a layout for maximum antishadow effect. Nine control and safety rods are distributed in two rods for power flattening by differential insertion. Three Diverse Safety Rods, are also provided which are normally fully withdrawn. The optimization of layout of radial and axial shielding and adequacy of flux at detector location are also discussed. (author). 2 figs

  9. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  10. Conceptual Design of the RHIC Dump Core

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1995-09-26

    Conceptually, the internal dump consists of a "core" whose purpose is to absorb the energy of the beam, and surrounding shielding whose purpose is to attenuate radiation. Design of the core for an internal dump has two problems which must be overcome. The first problem is preserving the integrity of the dump core. The bunches must be dispersed laterally an amount sufficient to keep the energy density from cracking the dump core material. Since the dump kickers in RHIC are only ~25m upstream of the entrance face of the dump, this is i a difficult problem. The second problem, not addressed in this note, is that dumping the beam should not quench downstream magnets. Preliminary calculations related to both of these problems have been presented in earlier notes.

  11. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  12. Effect of the design change of the LSSBP on core flow distribution of APR+ Reactor

    International Nuclear Information System (INIS)

    Kim, Kihwan; Euh, Dong-Jin; Choi, Hae-Seob; Kwon, Tae-Soon

    2014-01-01

    The uniform core inlet flow distribution of an Advanced Power Reactor Plus (APR+) is required to prevent the failure rate of the HIPER fuel assembly and improve the core thermal margin. KEPCO-E and C and KAERI proposed a design change of the Lower Support Structure Bottom Plate (LSSBP), since the core flow rates were intense near the outer region of the intact LSSBP in a previous study. In this study, an experiment was carried out to evaluate the effect of the design change of the LSSBP on the core flow distribution using the APR+ Core Flow and Pressure (ACOP) test facility. The results showed great improvement on the core flow distribution under a 4-pump balanced flow condition. Under the 4-pump balanced flow condition, fifteen tests were repeated using the ACOP test facility to verify the effect of the 50% blocked flow area at the outer region of the LSSBP on the core inlet flow distribution. The profiles of the core inlet mass flow rates were analyzed using ensemble averaged values, and compared with that of the intact LSSBP. The results showed great improvement for the overall core region. The change in design of the LSSBP is expected to improve the hydraulic performance of an APR+ reactor

  13. Feasibility study of the design of homogeneously mixed thorium-uranium oxide and all-uranium fueled reactor cores for civil nuclear marine propulsion - 15082

    International Nuclear Information System (INIS)

    Alam, S.B.; Lindley, B.A.; Parks, G.T.

    2015-01-01

    In this reactor physics study, we attempt to design a civil marine reactor core that can operate over a 10 effective-full-power-years life at 333 MWth using ThUO 2 and all-UO 2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements, optimizing: subassembly and core geometry; fuel enrichment; burnable and moveable poison design; and whole-core loading patterns. We compare designs with a 14% fissile loading for ThUO 2 and all-UO 2 fuel in 13*13 assemblies with ZrB 2 integral fuel burnable absorber pins for reactivity control. Taking advantage of self-shielding effects, the ThUO 2 option shows greater promise in the final burnable poison design while maintaining low, stable reactivity with minimal burnup penalty. For the final poisoning design with ZrB 2 , ThUO 2 contributes 2.5% more initial reactivity suppression, although the all-UO 2 design exhibits lower reactivity swing. All the candidate materials show greater rod worth for the ThUO 2 design. For both fuels, B 4 C has the highest reactivity worth, providing 10% higher control rod worth for ThUO 2 fuel than all-UO 2 . Finally, optimized assemblies were loaded into a 3D reactor model in PANTHER. The PANTHER results show that after 10 years, the core is on the border of criticality, confirming the fissile loading is well-designed. (authors)

  14. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  15. The APR1400 Core Design by Using APA Code System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Koh, Byung Marn

    2008-01-01

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator

  16. A reverse depletion method for pressurized water reactor core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kin, Y.J.

    1986-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. The large numbers of burnable poison pins used to control the power peaking at the in-board fresh fuel positions have introduced an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of burnable poison pins in the fresh fuel. A new method for performing core design more suitable for low-leakage fuel management is reported. A procedure was developed that uses the wellknown ''Haling depletion'' to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and burnable poison distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provided for the maximum utility to PWR core reload design

  17. Simulation of the Long period Core Design for WH type of KHNP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji-Eun; Moon, Sang-Rae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    The current core design of the reactor and the new design of long period based on ANC code are compared here targeting the unit of WH type(Westinghouse nuclear steam supply system) operated by KHNP. The reactor core is composed of 157 fuel assemblies, consisting of a 17×17 array with 264 fuel rods, 24 guide thimbles. To investigate susceptibility of CIPS(crud-induced power shift) for long period core design, the boron mass is also calculated here. The long period core design for WH type of KHNP is simulated and evaluated the risk assessment for the result. 89 feed assemblies and 4.95w/o uranium enrichment (3.2w/o for Axial-blanket) are used for fresh fuel rods. The cycle length of long period design is increased by 6 month than the average of operated cycles satisfying the criteria of risk assessment for the core design; maximum F△h and maximum pin burnup and so on, except burndown curve.

  18. Simulation of the Long period Core Design for WH type of KHNP

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Moon, Sang-Rae

    2016-01-01

    The current core design of the reactor and the new design of long period based on ANC code are compared here targeting the unit of WH type(Westinghouse nuclear steam supply system) operated by KHNP. The reactor core is composed of 157 fuel assemblies, consisting of a 17×17 array with 264 fuel rods, 24 guide thimbles. To investigate susceptibility of CIPS(crud-induced power shift) for long period core design, the boron mass is also calculated here. The long period core design for WH type of KHNP is simulated and evaluated the risk assessment for the result. 89 feed assemblies and 4.95w/o uranium enrichment (3.2w/o for Axial-blanket) are used for fresh fuel rods. The cycle length of long period design is increased by 6 month than the average of operated cycles satisfying the criteria of risk assessment for the core design; maximum F△h and maximum pin burnup and so on, except burndown curve

  19. 300 MWe Burner Core Design with two Enrichment Zoning

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang Ji; Kim, Yeong Il

    2008-01-01

    KAERI has been developing the KALIMER-600 core design with a breakeven fissile conversion ratio. The core is loaded with a ternary metallic fuel (TRU-U-10Zr), and the breakeven characteristics are achieved without any blanket assembly. As an alternative plan, a KALIMER-600 burner core design has been also performed. In the early stage of the development of a fast reactor, the main purpose is an economical use of a uranium resource but nowadays in addition to the maximum utilization of a uranium resource, the burning of a high level radioactive waste is taken as an additional interest for the harmony of the environment. In way of constructing the commercial size reactor which has the power level ranging from 800 MWe to 1600 MWe, the demonstration reactor which has the power level ranging from 200 MWe to 600 MWe was usually constructed for the midterm stage to commercial size reactor. In this paper, a 300 MWe burner core design was performed with purpose of demonstration reactor for KALIMER-600 burner of 600 MWe. As a means to flatten the power distribution, instead of a single fuel enrichment scheme adapted in design of KALIMER-600 burner, the 2 enrichment zoning approach was adapted

  20. Core design aspects of SNR 2

    International Nuclear Information System (INIS)

    Wehmann, U.K.

    1987-01-01

    The paper describes in its first part the main characteristics of the core of the SNR 2 fast breeder reactor which is being planned within the European collaboration on fast breeder reactors. In the second part some core design aspects are discussed. The fuel element management with an inwards shuffling after each cycle is illustrated which offers advantages with respect to linear rating, steel damage and average discharge burnup. For this management, the full three-dimensional power and burnup history has been calculated and some typical results are presented. The shutdown requirements and the capabilities of the two shutdown systems of SNR 2 are discussed. The necessity for a reliable surveillance of the power distribution is demonstrated by the pronounced power tilts in case of the unintentional withdrawal of an absorber rod. Finally, a short review of the main nuclear design methods and their validation with help of the evaluation of experiments in zero power facilities and power reactors is given

  1. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  2. The whiteStar development project: Westinghouse's next generation core design simulator and core monitoring software to power the nuclear renaissance

    International Nuclear Information System (INIS)

    Boyd, W. A.; Mayhue, L. T.; Penkrot, V. S.; Zhang, B.

    2009-01-01

    The WhiteStar project has undertaken the development of the next generation core analysis and monitoring system for Westinghouse Electric Company. This on-going project focuses on the development of the ANC core simulator, BEACON core monitoring system and NEXUS nuclear data generation system. This system contains many functional upgrades to the ANC core simulator and BEACON core monitoring products as well as the release of the NEXUS family of codes. The NEXUS family of codes is an automated once-through cross section generation system designed for use in both PWR and BWR applications. ANC is a multi-dimensional nodal code for all nuclear core design calculations at a given condition. ANC predicts core reactivity, assembly power, rod power, detector thimble flux, and other relevant core characteristics. BEACON is an advanced core monitoring and support system which uses existing instrumentation data in conjunction with an analytical methodology for on-line generation and evaluation of 3D core power distributions. This new system is needed to design and monitor the Westinghouse AP1000 PWR. This paper describes provides an overview of the software system, software development methodologies used as well some initial results. (authors)

  3. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    previous insert designs. A casting process for manufacturing the v.3 inserts was developed. The developed casting process, when producing more than 13 inserts, becomes more economical than machining. An exploratory study was conducted looking at the effects of dynamic loading on the v.3 insert performance. The results of this study highlighted areas for improving dynamic testing of foam-core sandwich structure inserts. Correlations were developed relating design variables such as face-sheet thickness and insert diameter to a failure load for different load cases. This was done through simulations using Computer Aided Engineering (CAE) software, and experimental testing. The resulting correlations were integrated into a computer program which outputs the required insert dimensions given a set of design parameters, and load values.

  4. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  5. Status of experimental data for the VHTR core design

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Seok; Chang, Jong Hwa; Park, Chang Kue

    2004-05-01

    The VHTR (Very High Temperature Reactor) is being emerged as a next generation nuclear reactor to demonstrate emission-free nuclear-assisted electricity and hydrogen production. The VHTR could be either a prismatic or pebble type helium cooled, graphite moderated reactor. The final decision will be made after the completion of the pre-conceptual design for each type. For the pre-conceptual design for both types, computational tools are being developed. Experimental data are required to validate the tools to be developed. Many experiments on the HTGR (High Temperature Gas-cooled Reactor) cores have been performed to confirm the design data and to validate the design tools. The applicability and availability of the existing experimental data have been investigated for the VHTR core design in this report.

  6. Preliminary Assessment of Two Alternative Core Design Concepts for the Special Purpose Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Werner, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hummel, Andrew J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kennedy, John C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, Robert C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dion, Axel M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ananth, Krishnan P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-11-01

    The Special Purpose Reactor (SPR) is a small 5 MWt, heat pipe-cooled, fast reactor based on the Los Alamos National Laboratory (LANL) Mega-Power concept. The LANL concept features a stainless steel monolithic core structure with drilled channels for UO2 pellet stacks and evaporator sections of the heat pipes. Two alternative active core designs are presented here that replace the monolithic core structure with simpler and easier to manufacture fuel elements. The two new core designs are simply referred to as Design A and Design B. In addition to ease of manufacturability, the fuel elements for both Design A and Design B can be individually fabricated, assembled, inspected, tested, and qualified prior to their installation into the reactor core leading to greater reactor system reliability and safety. Design A fuel elements will require the development of a new hexagonally-shaped UO2 fuel pellet. The Design A configuration will consist of an array of hexagonally-shaped fuel elements with each fuel element having a central heat pipe. This hexagonal fuel element configuration results in four radial gaps or thermal resistances per element. Neither the fuel element development, nor the radial gap issue are deemed to be serious and should not impact an aggressive reactor deployment schedule. Design B uses embedded arrays of heat pipes and fuel pins in a double-wall tank filled with liquid metal sodium. Sodium is used to thermally bond the heat pipes to the fuel pins, but its usage may create reactor transportation and regulatory challenges. An independent panel of U.S. manufacturing experts has preliminarily assessed the three SPR core designs and views Design A as simplest to manufacture. Herein are the results of a preliminary neutronic, thermal, mechanical, material, and manufacturing assessment of both Design A and Design B along with comparisons to the LANL concept (monolithic core structure). Despite the active core differences, all three reactor concepts behave

  7. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  8. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    International Nuclear Information System (INIS)

    LECHELT, J.A.

    2000-01-01

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System, Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix

  9. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  10. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  11. Neutronic design of the XT-ADS core

    International Nuclear Information System (INIS)

    Van den Eynde, G.

    2007-01-01

    The EUROTRANS project is an integrated project in the 6th European Framework Program in the context of Partitioning and Transmutation. The objective of this project is the step-wise approach to a European Transmutation Demonstration. This project aims to deliver an advanced design of a small-scale Accelerator Driven System (ADS), XT-ADS, as well as the conceptual design of a European Facility for Industrial Transmutation (EFIT). The partners of this project accepted to use the MYRRHA Draft-2 design file as a starting basis for the design of the short-term XT-ADS demonstration machine. Instead of starting from a blank page, this allowed optimising an existing design towards the needs of XT-ADS, and this within the accepted limits of the safety requirements. Many options have been revisited and the framework is now set up. The main two objectives of the XT-ADS machine are the following: to demonstrate the feasibility of the ADS concept and to perform as a multi-purpose irradiation facility. Special attention is paid to the possibility of testing fuel dedicated to transmutation of minor actinides and long-life fission products. During the demonstration phase, the core will be loaded with MOX fuel in a clean core configuration. Since the XT-ADS must be a representative prototype, it has to operate at a reasonable power, a minimum of 50 MWth was set in the objectives. After this phase, the core will house In-Pile-Sections of different types for irradiating material samples, new types of fuel pins. We aim to be able to provide irradiation conditions that are close to EFIT conditions so XT-ADS can be used as a test-bed for EFIT parts

  12. Conceptual design of a cassette compact toroid reactor (the zero-phase study) - Quick replacement of the reactor core

    International Nuclear Information System (INIS)

    Nishikawa, M.; Narikawa, T.; Iwamoto, M.; Watanabe, K.

    1986-01-01

    A study of a conceptual design for a ''cassette'' compact toroid reactor has been performed that emphasizes quick replacement handling. The core plasma, spheromak, is ohmically heated in a merging process between the core plasma and the gun-produced spheromak. The quick handling of replacement accomplished by using a functional material, a shape memory alloy (SMA) joint, which is proposed for release from first-wall high neutron loading in a newly devised mechanical and structural method. The SMA joint can be used for connecting or disconnecting the coupling by simply controlling the SMA temperature without the need for a robot system. Effective heat removal from the first wall and thermal and electromagnetic stress in a fusion core with very high heat flux are discussed from an engineering standpoint

  13. A Preliminary Design Study of Ultra-Long-Life SFR Cores having Heterogeneous Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jung, GeonHee; You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The PWR and CANDU reactors have provided electricity for several decades in our country but they have produced lots of spent fuels and so the safe and efficient disposal of these spent fuels is one of the main issues in nuclear industry. This type ultra-long-life cores are quite efficient in terms of the amount of spent fuel generation per electricity production and they can be used as an interim storage for PWR or CANDU spent fuel over several tens of years if they use the PWR or CANDU spent fuel as the initial fuel. Typically, the previous works have considered radially homogeneous fuel assemblies in which only blanket or driver fuel rods are employed and they considered axially or radially heterogeneous core configurations with the radially homogeneous fuel assemblies. These core configurations result in the propagation of the power distribution which can lead to the significant temperature changes for each fuel assembly over the time. In this work, the radially heterogeneous fuel assemblies are employed in new ultra-long-life SFR (Sodium-cooled Fast Reactor) cores to minimize the propagation of power distribution by allowing the power propagation in the fuel assemblies. In this work, new small ultra-long life SFR cores were designed with heterogeneous fuel assemblies having both blanket and driver fuel rods to minimize the propagation of power distribution over the core by allowing power propagation from driver rods to blanket rods in fuel assemblies. In particular, high fidelity depletion calculation coupled with heterogeneous Monte Carlo neutron transport calculation was performed to assess the neutronic feasibility of the ultralong life cores. The results of the analysis showed that the candidate core has the cycle length of 77 EFPYs, a small burnup reactivity swing of 1590 pcm and acceptably small SVRs both at BOC and EOC.

  14. Statistical core design methodology using the VIPRE thermal-hydraulics code

    International Nuclear Information System (INIS)

    Lloyd, M.W.; Feltus, M.A.

    1995-01-01

    An improved statistical core design methodology for developing a computational departure from nucleate boiling ratio (DNBR) correlation has been developed and applied in order to analyze the nominal 1.3 DNBR limit on Westinghouse Pressurized Water Reactor (PWR) cores. This analysis, although limited in scope, found that the DNBR limit can be reduced from 1.3 to some lower value and be accurate within an adequate confidence level of 95%, for three particular FSAR operational transients: turbine trip, complete loss of flow, and inadvertent opening of a pressurizer relief valve. The VIPRE-01 thermal-hydraulics code, the SAS/STAT statistical package, and the EPRI/Columbia University DNBR experimental data base were used in this research to develop the Pennsylvania State Statistical Core Design Methodology (PSSCDM). The VIPRE code was used to perform the necessary sensitivity studies and generate the EPRI correlation-calculated DNBR predictions. The SAS package used for these EPRI DNBR correlation predictions from VIPRE as a data set to determine the best fit for the empirical model and to perform the statistical analysis. (author)

  15. Validation study of core analysis methods for full MOX BWR

    International Nuclear Information System (INIS)

    2013-01-01

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO 2 and MOX fuel rods, (3) analysis of isotopic composition data for UO 2 and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  16. Validation study of core analysis methods for full MOX BWR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO{sub 2} and MOX fuel rods, (3) analysis of isotopic composition data for UO{sub 2} and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  17. Design study of nuclear power systems for deep space explorers. (2) Electricity supply capabilities of solid cores

    International Nuclear Information System (INIS)

    Yamaji, Akifumi; Takizuka, Takakazu; Nabeshima, Kunihiko; Iwamura, Takamichi; Akimoto, Hajime

    2009-01-01

    This study has been carried out in series with the other study, 'Criticality of Low Enriched Uranium Fueled Core' to explore the possibilities of a solid reactor electricity generation system for supplying propulsion power of a deep space explorer. The design ranges of two different systems are determined with respect to the electric power, the radiator mass, and the operating temperatures of the heat-pipes and thermoelectric converters. The two systems are the core surface cooling with heat-pipe system (CSHP), and the core direct cooling with heat-pipe system (CDHP). The evaluated electric powers widely cover the 1 to 100 kW range, which had long been claimed to be the range that lacked the power sources in space. Therefore, the concepts shown by this study may lead to a breakthrough of the human activities in space. The working temperature ranges of the main components, namely the heat-pipes and thermoelectric converters, are wide and covers down to relatively low temperatures. This is desirable from the viewpoints of broadening the choices, reducing the development needs, and improving the reliabilities of the devices. Hence, it is advantageous for an early establishment of the concept. (author)

  18. Neutronic and mechanical design of the reactor core of the Opus system

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X.; Pascal, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DM2S), 91 - Gif sur Yvette (France)

    2007-07-01

    Since a few years now, Cea decided to maintain a waking state in its space nuclear activities by carrying out some conceptual studies of embarked nuclear power systems in the range of 100-500 kWe. Results stemming from these ongoing studies are gathered in the project OPUS -Optimized Propulsion Unit System-. This nuclear power system relies on a fast gas-cooled reactor concept coupled either to a Brayton cycle or to a more ambitious energy conversion system using a Hirn cycle to dramatically reduce the size of the radiator. The OPUS reactor core consists of an arrangement of enriched graphite elements of hexagonal cross-section. Their length is equal to the core diameter (48 cm). Coated fuel particles containing enriched (93%) uranium are embedded in these fuel elements. Each fuel element is designed with a centered axial channel through which flows the working fluid: a mixture of helium and xenon gas. This reactor is expected to have an operating life of over 2000 days at full power. In fact the main questions remain on the fuel element manufacturing and on the mechanical design (type and size of particles, packing fraction in the matrix, final core diameter and mass). Especially, the nuclear reactor has been defined considering the possible synergies with the next generation of terrestrial nuclear reactor (International Generation IV Forum). Based on relatively short-term technologies, the same reactor is designed to cover a wide range of power: 100 to 500 kWe without core design modification. The final reactor design presented in this paper is the result of a coupled analysis between the thermomechanical and the neutronic aspects.

  19. Adaption of the PARCS Code for Core Design Audit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong Chol; Lee, Young Jin; Uhm, Jae Beop; Kim, Hyunjik [Nuclear Safety Evaluation, Daejeon (Korea, Republic of); Jeong, Hun Young; Ahn, Seunghoon; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The eigenvalue calculation also includes quasi-static core depletion analyses. PARCS has implemented variety of features and has been qualified as a regulatory audit code in conjunction with other NRC thermal-hydraulic codes such as TRACE or RELAP5. In this study, as an adaptation effort for audit applications, PARCS is applied for an audit analysis of a reload core design. The lattice physics code HELIOS is used for cross section generation. PARCS-HELIOS code system has been established as a core analysis tool. Calculation results have been compared on a wide spectrum of calculations such as power distribution, critical soluble boron concentration, and rod worth. A reasonable agreement between the audit calculation and the reference results has been found.

  20. Comparative Study on Various Geometrical Core Design of 300 MWth Gas Cooled Fast Reactor with UN-PuN Fuel Longlife without Refuelling

    Science.gov (United States)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-07-01

    Nuclear power has progressive improvement in the operating performance of exiting reactors and ensuring economic competitiveness of nuclear electricity around the world. The GFR use gas coolant and fast neutron spectrum. This research use helium coolant which has low neutron moderation, chemical inert and single phase. Comparative study on various geometrical core design for modular GFR with UN-PuN fuel long life without refuelling has been done. The calculation use SRAC2006 code both PIJ calculation and CITATION calculation. The data libraries use JENDL 4.0. The variation of fuel fraction is 40% until 65%. In this research, we varied the geometry of core reactor to find the optimum geometry design. The variation of the geometry design is balance cylinder; it means that the diameter active core (D) same with height active core (H). Second, pancake cylinder (D>H) and third, tall cylinder (Dpower is 300 MWth. First calculation, we calculate survey parameter for UN-PuN fuel with fissile contain from Plutonium waste LWR for each geometry. The minimum power density is around 72 Watt/cc, and maximum power density 114 Watt/cc. After we calculate with various geometry core, when we use the balance geometry, the k-eff value flattest and more stable than the others.

  1. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  2. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi

    2015-01-01

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  3. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  4. Design of a reactor core in the Oma Full MOX-ABWR

    International Nuclear Information System (INIS)

    Hama, Teruo

    1999-01-01

    The Electric Power Development Co., Ltd. has progressed a construction plan on an improved boiling-water reactor aiming at loading of MOX fuel in all reactor cores (full MOX-ABWR) at Oma-cho, Aomori prefecture, which is a last stage on application of approval on establishment at present. Here were described on outlines of reactor core in the full MOX-ABWR and its safety evaluation. For the full MOX-ABWR loading MOX fuel assembly into all reactor core, thermal and mechanical design analysis of fuel bars and core design analysis were conducted. As a result, it was confirmed that judgement standards in mixed core of MOX fuel and uranium fuel were also applicable as well as that in uranium fuel. (G.K.)

  5. CAREM 25: actual status of the core neutronic design. Calculation line

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    This work follows the one titled 'Criteria for the CAREM 25 reactor core design. Neutronic aspects' presented at this congress, gives in detail the typical values regarding the core defined at this point. Besides, the neutronic calculation line used for the CAREM 25 reactor design is presented. (Author) [es

  6. Reference core design Mark-I and -II of the experimental, multi-purpose, high-temperature, gas-cooled reactor

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Hirano, Mitsumasa; Aruga, Takeo; Yasukawa, Sigeru

    1977-10-01

    Reactivity worth of the control rods and power distribution in the initial hot-clean core of reference core design Mark-I and -II have been studied. The need for burnable poison was confirmed, because of the limitations in number, diameter and reactivity worth of the control rods due to structures of pressure vessel and fuel element and to safety of the core. While the initial excess reactivity is reduced by use of the burnable poison, the recovery of core reactivity with burnup of the burnable poison requires a complicated withdrawal sequence of the control rods. The radial power gradient in the core is not large, due to orifice control of the coolant helium flow, effectiveness of the reflector in the small core and continuous distribution of burnup in the core by one-batch refuelling scheme. The local peaking factor in unit orifice regions, therefore, is the most important core design. Control of the axial power distribution is necessary to reduce the maximum fuel temperature and the exponential power distribution peaked toward the inlet of the core is most suitable. However, insertion of the control rods from top of the core disturbs the axial power distribution, so this effect must be considered in design of the withdrawal sequence of control rods. Nuclear properties of the core were revealed from results of the study for the initial hot-clean core. (auth.)

  7. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  8. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  9. Core thermohydraulic design with LEU fuels for upgraded research reactor, JRR-3

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Y; Ando, H; Ikawa, H; Ohnishi, N [Department of Research Reactor Operation, Japan Atomic Energy Research Institute (JAERI), 319-11 Tokai-Mura, Ibaraki-Ken (Japan)

    1985-07-01

    This paper presents the outline of core thermohydraulic design and analysis of the research reactor, JRR-3, which is to be upgraded to a 20 MWt pool-type, light water-cooled reactor with 20% LEU plate-type fuels. The major feature of core thermohydraulics of the upgraded JRR-3 is that core flow is a downflow at the condition of normal operation, with which fuel plates are exposed to a severer condition than with an upflow in case of operational transients and accidents. The core thermo-hydraulic design was, therefore, done for the condition of normal operation so that fuel plates may have enough safety margin both against the onset of nucleate boiling not to allow the nucleate boiling anywhere in the core and against the initiation of DNB, and the safety margin for these were evaluated. The core velocity thus designed is at the optimum condition where fuel plates have the maximum margin against the onset of nucleate boiling. The core thermohydraulic characteristics were also clarified for the natural circulation cooling mode. (author)

  10. A Core Design Approach Aimed at Sustainability and Intrinsic Safety

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2013-01-01

    The comprehensive approach adopted for the core design of all LFRs investigated within the LEADER project, proved to effectively drive the design to the fulfillment of the aimed sustainability performances, and the respect of the design constraints for the robust implementation of the inherent safety principle: • the ELFR core is able to operate adiabatically, with a very narrow reactivity swing along a 2.5 y cycle; • wide margins are provided for protecting the fuel and the structures even in case of unprotected transients, allowing for very long grace times

  11. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  12. Preliminary design characteristics of the RB fast-thermal core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.

    1989-01-01

    The 'RB' is zero power heavy water critical assembly designed in 1958 in Yugoslavia. The reactor operated using natural metal uranium, 2% enriched metal uranium, and 80% enriched UO 2 fuel of Soviet origin. A study of design of fast neutron fields began in 1976 and three fast neutron fields were designed up to 1983: the external neutron converter, the experimental fuel channel and the internal neutron converter, as the first step to fast-thermal coupled system. The preliminary design characteristics of the HERBE - a new fast - thermal core at the RB reactor are shown in this paper. (author)

  13. Ideas to Design an in situ Diamond Drilling Core Splitter within Soft ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... the wireline system of core barrel assembly and the device used in splitting of core ... Keywords: Design, In situ, Diamond drilling, Core splitter, Wireline system .... This is the most complex part of the core barrel and has many.

  14. Advanced PWR Core Design with Siemens High-Plutonium-Content MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Dieter Porsch; Gerhard Schlosser; Hans-Dieter Berger

    2000-01-01

    The Siemens experience with plutonium recycling dates back to the late 1960s. Over the years, extensive research and development programs were performed for the qualification of mixed-oxide (MOX) technology and design methods. Today's typical reload enrichments for uranium and MOX fuel assemblies and modern core designs have become more demanding with respect to accuracy and reliability of design codes. This paper presents the status of plutonium recycling in operating high-burnup pressurized water reactor (PWR) cores. Based on actual examples, it describes the validation status of the design methods and stresses current and future needs for fuel assembly and core design including those related to the disposition of weapons-grade plutonium

  15. Reactor core design optimization of the 200 MWt Pb-Bi cooled fast reactor for hydrogen production

    International Nuclear Information System (INIS)

    Bahrum, Epung Saepul; Su'ud, Zaki; Waris, Abdul; Fitriyani, Dian; Wahjoedi, Bambang Ari

    2008-01-01

    In this study reactor core geometrical optimization of 200 MWt Pb-Bi cooled long life fast reactor for hydrogen production has been conducted. The reactor life time is 20 years and the fuel type is UN-PuN. Geometrical core configurations considered in this study are balance, pancake and tall cylindrical cores. For the hydrogen production unit we adopt steam membrane reforming hydrogen gas production. The optimum operating temperature for the catalytic reaction is 540degC. Fast reactor design optimization calculation was run by using FI-ITB-CHI software package. The design criteria were restricted by the multiplication factor that should be less than 1.002, the average outlet coolant temperature 550degC and the maximum coolant outlet temperature less than 700degC. By taking into account of the hydrogen production as well as corrosion resulting from Pb-Bi, the balance cylindrical geometrical core design with diameter and height of the active core of 157 cm each, the inlet coolant temperature of 350degC and the coolant flow rate of 7000 kg/s were preferred as the best design parameters. (author)

  16. 78 FR 32988 - Core Principles and Other Requirements for Designated Contract Markets; Correction

    Science.gov (United States)

    2013-06-03

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 38 RIN 3038-AD09 Core Principles and Other... regarding Core Principles and Other Requirements for Designated Contract Markets by inserting a missing... regarding Core Principles and Other Requirements for Designated Contract Markets (77 FR 36612, June 19, 2012...

  17. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  18. The SSC superconducting air core toroid design development

    International Nuclear Information System (INIS)

    Fields, T.; Carroll, A.; Chiang, I.H.; Frank, J.S.; Haggerty, J.; Littenberg, L.; Morse, W.; Strand, R.C.; Lau, K.; Weinstein, R.; McNeil, R.; Friedman, J.; Hafen, E.; Haridas, P.; Kendall, H.W.; Osborne, L.; Pless, I.; Rosenson, L.; Pope, B.; Jones, L.W.; Luton, J.N.; Bonanos, P.; Marx, M.; Pusateri, J.A.; Favale, A.; Gottesman, S.; Schneid, E.; Verdier, R.

    1990-01-01

    Superconducting air core toroids show great promise for use in a muon spectrometer for the SSC. Early studies by SUNY at Stony Brook funded by SSC Laboratory, have established the feasibility of building magnets of the required size. The toroid spectrometer consists of a central toroid with two end cap toroids. The configuration under development provides for muon trajectory measurement outside the magnetic volume. System level studies on support structure, assembly, cryogenic material selection, and power are performed. Resulting selected optimal design and assembly is described. 4 refs., 6 figs

  19. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  20. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  1. Design and intestinal mucus penetration mechanism of core-shell nanocomplex.

    Science.gov (United States)

    Zhang, Xin; Cheng, Hongbo; Dong, Wei; Zhang, Meixia; Liu, Qiaoyu; Wang, Xiuhua; Guan, Jian; Wu, Haiyang; Mao, Shirui

    2018-02-28

    The objective of this study was to design intestinal mucus-penetrating core-shell nanocomplex by functionally mimicking the surface of virus, which can be used as the carrier for peroral delivery of macromolecules, and further understand the influence of nanocomplex surface properties on the mucosal permeation capacity. Taking insulin as a model drug, the core was formed by the self-assembly among positively charged chitosan, insulin and negatively charged sodium tripolyphosphate, different types of alginates were used as the shell forming material. The nanocomplex was characterized by dynamic light scattering (DLS), atomic force microscopy (AFM) and FTIR. Nanocomplex movement in mucus was recorded using multiple particle tracking (MPT) method. Permeation and uptake of different nanocomplex were studied in rat intestine. It was demonstrated that alginate coating layer was successfully formed on the core and the core-shell nanocomplex showed a good physical stability and improved enzymatic degradation protection. The mucus penetration and MPT study showed that the mucus penetration capacity of the nanocomplex was surface charge and coating polymer structure dependent, nanocomplex with negative alginate coating had 1.6-2.5 times higher mucus penetration ability than that of positively charged chitosan-insulin nanocomplex. Moreover, the mucus penetration ability of the core-shell nanocomplex was alginate structure dependent, whereas alginate with lower G content and lower molecular weight showed the best permeation enhancing ability. The improvement of intestine permeation and intestinal villi uptake of the core-shell nanocomplex were further confirmed in rat intestine and multiple uptake mechanisms were involved in the transport process. In conclusion, core-shell nanocomplex composed of oppositely charged materials could provide a strategy to overcome the mucus barrier and enhance the mucosal permeability. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  3. Legal Protection on IP Cores for System-on-Chip Designs

    Science.gov (United States)

    Kinoshita, Takahiko

    The current semiconductor industry has shifted from vertical integrated model to horizontal specialization model in term of integrated circuit manufacturing. In this circumstance, IP cores as solutions for System-on-Chip (SoC) have become increasingly important for semiconductor business. This paper examines to what extent IP cores of SoC effectively can be protected by current intellectual property system including integrated circuit layout design law, patent law, design law, copyright law and unfair competition prevention act.

  4. Core-shell designed scaffolds for drug delivery and tissue engineering.

    Science.gov (United States)

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  6. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  7. Soft shell hard core concept for aircraft impact resistant design

    International Nuclear Information System (INIS)

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  8. Development of intelligent code system to support conceptual design of nuclear reactor core

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro

    1997-01-01

    An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)

  9. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  10. An approach to development of structural design criteria for highly irradiated core components

    International Nuclear Information System (INIS)

    Nelson, D.V.

    1980-01-01

    The advent of the fast breeder reactor presents novel challenges in structural design and materials engineering. For instance, the core components of these reactors experience high energy neutron irradiation at elevated temperature, which causes significant time-dependent changes in material behaviour, such as a progressive loss of ductility. New structural design criteria are needed to extend elevated temperature design-by-analysis to account for these changes. Alloys best able to cope with the demands of the core operating environment are being explored and their structural behaviour characterized. The purpose of this paper is to illustrate an approach used in the development of core component structural design criteria. To do this, several design rules, plus brief rationale, from draft RDT Standards F9-7, -8 and -9 will be presented. These recently completed standards ('Structural Design Guidelines for Breeder Reactor Core Components') were prepared for the U.S. Department of Energy and represent a consensus among most organizations participating in the U.S. breeder program. (author)

  11. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  12. PGSFR Core Thermal Design Procedure to Evaluate the Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Rock; Kim, Sang-Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The Korea Atomic Energy Research Institute (KAERI) has performed a SFR design with the final goal of constructing a prototype plant by 2028. The main objective of the SFR prototype plant is to verify the TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal design is to ensure the safe fuel performance during the whole plant operation. Compared to the critical heat flux in typical light water reactors, nuclear fuel damage in SFR subassemblies arises from a creep induced failure. The creep limit is evaluated based on the maximum cladding temperature, power, neutron flux, and uncertainties in the design parameters, as shown in Fig. 1. In this work, the core thermal design procedures are compared to verify the present PGSFR methodology based on the nuclear plant design criteria/guidelines and previous SFR thermal design methods. The PGSFR core thermal design procedure is verified based on the nuclear plant design criteria/guidelines and previous methods in LWRs and SFRs. The present method aims to directly evaluate the fuel cladding failure and to assure more safety margin. The 2 uncertainty is similar to 95% one-side tolerance limit of 1.96 in LWRs. The HCFs, ITDP, and MCM reveal similar uncertainty propagation for cladding midwall temperature for typical SFR conditions. The present HCFs are mainly employed from the CRBR except the fuel-related uncertainty such as an incorrect fuel distribution. Preliminary PGSFR specific HCFs will be developed by the end of 2015.

  13. New approach to the design of core support structures for large LMFBR plants

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-01-01

    The paper describes an innovative design concept for a LMFBR Core Support Structure. A hanging Core Support Structure is described and analyzed. The design offers inherent safety features, constructibility advantages, and potential cost reductions

  14. Refractory metal component technology for in-core sensor design

    International Nuclear Information System (INIS)

    Cannon, C.P.

    1986-02-01

    Within recent years, an increasing concern over reactor safety has prompted tests that characterize reactor core environments during transient conditions. Such tests include the Loss-of-Fluid-Tests (Idaho National Engineering Lab (INEL)), Severe Fuel Damage Tests (INEL), Core Debris Rubble Tests (Sandia National Laboratories (SNL)), and similar tests performed by foreign nations. The in-core sensors for these tests require refractory metal components to be compatible with electrical insulator materials as well as materials comprising highly corrosive service mediums. This paper presents the refractory metal technology utilized to provide basic sensor designs in the above mentioned reactor tests

  15. Core design methodology and software for Temelin NPP

    International Nuclear Information System (INIS)

    Havluj, F; Hejzlar, J.; Klouzal, J.; Stary, V.; Vocka, R.

    2011-01-01

    In the frame of the process of fuel vendor change at Temelin NPP in the Czech Republic, where, starting since 2010, TVEL TVSA-T fuel is loaded instead of Westinghouse VVANTAGE-6 fuel, new methodologies for core design and core reload safety evaluation have been developed. These documents are based on the methodologies delivered by TVEL within the fuel contract, and they were further adapted according to Temelin NPP operational needs and according to the current practice at NPP. Along with the methodology development the 3D core analysis code ANDREA, licensed for core reload safety evaluation in 2010, have been upgraded in order to optimize the safety evaluation process. New sequences of calculations were implemented in order to simplify the evaluation of different limiting parameters and output visualization tools were developed to make the verification process user friendly. Interfaces to the fuel performance code TRANSURANUS and sub-channel analysis code SUBCAL were developed as well. (authors)

  16. Comparison of the behaviour of two core designs for ASTRID in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, F., E-mail: frederic.bertrand@cea.fr [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Marie, N.; Prulhière, G.; Lecerf, J. [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Seiler, J.M. [CEA, DEN, DTN, F-38054 Grenoble (France)

    2016-02-15

    Highlights: • Low void worth CFV and SFRv2 cores are compared for ASTRID pre-conceptual design. • Severe accident behaviour is assessed with a simplified calculation approach and tools. • Mitigation to limit reactivity inserted by core compaction is easier for CFV than for SFRv2 core. • When facing arbitrary reactivity ramps, CFV core would lead to lower energy release than SFRv2 core. • Time scale for core degradation is one order of magnitude larger for CFV than for SFRv2. - Abstract: The present paper is dedicated to the studies carried out during the first stage of the pre-conceptual design of the French demonstrator of fourth generation SFR reactors (ASTRID) in order to compare the behaviour of two envisaged core concepts under severe accident transients. Among the two studied core concepts, whose powers are 1500 MWth, the first one is a classical homogeneous core (called SFRv2) with large pin diameter whose the sodium overall voiding reactivity effect is 5 $. The second concept is an axially heterogeneous core (called CFV) whose global void reactivity effect is negative (−1.2 $ at the end of cycle at the equilibrium). The comparison of the cores relies on two typical accident families: a reactivity insertion (unprotected transient overpower, UTOP) and an overall loss of core cooling (unprotected loss of flow, ULOF). In the first part of the comparison, the primary phase of an UTOP is studied in order to assess typical features of the transient behaviour: power and reactivity evolutions, material heating and melting/vaporization and mechanical energy release due to fuel vapor expansion. The second part of the comparison deals with the calculation of the reactivity potential for degraded states (molten pools) representative of the secondary phase of a mild UTOP and of a strong UTOP (strong or mild qualifies the reactivity ramp inserted). According to the reactivity potential, the amount of fuel to extract from the core and the amount of absorber

  17. Tokamak Fusion Core Experiment maintenance study

    International Nuclear Information System (INIS)

    Snyder, A.M.; Watts, K.D.

    1985-01-01

    The recently completed Tokamak Fusion Core Experiment (TFCX) design project was carried out to investigate potential next generation tokamak concepts. An important aspect of this project was the early development and incorporation of remote maintainability throughout the design process. This early coordination and incorporation of maintenance aspects to the design of the device and facilities would assure that the machine could ultimately be maintained and repaired in an efficient and cost effective manner. To meet this end, a rigorously formatted engineering trade study was performed to determine the preferred configuration for the TFCX reactor based primarily on maintenance requirements. The study indicated that the preferred design was one with an external vacuum vessel and torrodial field coils that could be removed via a simple radial motion. The trade study is presented and the preferred TFCX configuration is described

  18. High Performance Systolic Array Core Architecture Design for DNA Sequencer

    Directory of Open Access Journals (Sweden)

    Saiful Nurdin Dayana

    2018-01-01

    Full Text Available This paper presents a high performance systolic array (SA core architecture design for Deoxyribonucleic Acid (DNA sequencer. The core implements the affine gap penalty score Smith-Waterman (SW algorithm. This time-consuming local alignment algorithm guarantees optimal alignment between DNA sequences, but it requires quadratic computation time when performed on standard desktop computers. The use of linear SA decreases the time complexity from quadratic to linear. In addition, with the exponential growth of DNA databases, the SA architecture is used to overcome the timing issue. In this work, the SW algorithm has been captured using Verilog Hardware Description Language (HDL and simulated using Xilinx ISIM simulator. The proposed design has been implemented in Xilinx Virtex -6 Field Programmable Gate Array (FPGA and improved in the core area by 90% reduction.

  19. 75 FR 80571 - Core Principles and Other Requirements for Designated Contract Markets

    Science.gov (United States)

    2010-12-22

    ... Part II Commodity Futures Trading Commission 17 CFR Parts 1, 16, and 38 Core Principles and Other... CFR Parts 1, 16, and 38 RIN 3038-AD09 Core Principles and Other Requirements for Designated Contract... Principles 1. Subpart B--Designation as Contract Market 2. Subpart C--Compliance With Rules i. Proposed Sec...

  20. Embedded memory design for multi-core and systems on chip

    CERN Document Server

    Mohammad, Baker

    2014-01-01

    This book describes the various tradeoffs systems designers face when designing embedded memory.  Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test.  The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.  ·         Provides a comprehensive overview of embedded memory design and associated challenges and choices; ·         Explains tradeoffs and dependencies across different disciplines involved with multi-core and system on chip memory design; ·         Includes detailed discussion of memory hierarchy and its impact on energy and performance; ·         Uses real product examples to demonstrate embedded memory design flow from architecture, to circuit ...

  1. Core design with respect to the safety concept

    International Nuclear Information System (INIS)

    Kollmar, W.

    1981-01-01

    In the present paper the following topics are dealt with: Principles of reactor core design and optimization, fuel management and safety concept for higher cycles and results of risk analyses (e.g. rod ejection, steam line break etc.) (RW)

  2. Neutronic design of the RSG-GAS compact core without CIP

    International Nuclear Information System (INIS)

    Susilo, Jati; Kuntoro, Iman

    2002-01-01

    Improvement of the efficiency of reactor operation can be chivvied by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase highest reactivity value about 0,84 % Δk/k and longest time operation about 1,19 time in the safety criteria that is power peaking factor less then 1,4 and margin control element worth less then volume in the first design that -2,2% Δk/k

  3. Neutronic design of the RSG-GAS compact core without CIP

    International Nuclear Information System (INIS)

    Jati-Susilo; Iman-Kuntoro

    2003-01-01

    Improvement of the efficiency of reactor operation can be achieved by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase highest reactivity value about 1.06 % Δk/k and longest time operation about 1.19 time in the safety criteria that is power peaking factor less then 1.4 and margin control element worth less then value in the first design that -2.2% Δk/k

  4. Progress in design study on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Shirakawa, Toshihisa; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takeda, Renzo [Hitachi Ltd., Tokyo (Japan); Yokoyama, Tsugio [Toshiba Corp., Kawasaki, Kanagawa (Japan); Hibi, Koki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Wada, Shigeyuki [Japan Atomic Power Co., Tokyo (Japan)

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPC) in 1998, under technical cooperation with three Japanese reactor vendors. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight-lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR type core with high void fraction and super-flat core, a long operation cycle BWR type core using void tube assembly, a high conversion BWR type core without blankets, a high conversion PWR type core using heavy water as a coolant, and a PWR type core for plutonium multi-recycle using seed-blanket type fuel assemblies. Detailed feasibility studies for the RMWR have been continued on core design study. The present report summarizes the recent progress in the design study for the RMWR. (author)

  5. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  6. Core designs of modern VVER projects

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Kushmanov, S.; Vjalitsyn, V.; Vasilchenko, R.

    2015-01-01

    The presented operational experience of TVS - 2M (pilot-commercial operation started in 2006 at Balakovo NPP -1) enables to use it as reference for new projects because of similarity in designs and operational conditions. In the paper main parameters of fuel cycles, stability to impact of damaging factors, pilot operation of MG, new alloys, ADF and NTMC, upgrade of FA - 2M for the further power uprating, profiling of Gd-fuel rods for 18-month Fuel Cycle (FC) and perfection of absorber element design are the discussed issues. At the end author concluded that: 1) Core designs of new projects AES-2006 and VVER-TOI are based on extensive successful operational experience of the close prototype of TVS - 2M. 2) All improvements both of technical and economic parameters of fuel are subjected to representative examination by pilot operation at the power units with VVER-1000 being close prototypes of new designs

  7. Review on JMTR safety design for LEU core conversion

    International Nuclear Information System (INIS)

    Komori, Yoshihiro; Yokokawa, Makoto; Saruta, Toru; Inada, Seiji; Sakurai, Fumio; Yamamoto, Katsumune; Oyamada, Rokuro; Saito, Minoru

    1993-12-01

    Safety of the JMTR was fully reviewed for the core conversion to low enriched uranium fuel. Fundamental policies for the JMTR safety design were reconsidered based on the examination guide for safety design of test and research reactors, and safety of the JMTR was confirmed. This report describes the safety design of the JMTR from the viewpoint of major functions for reactor safety. (author)

  8. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  9. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  10. Core designs for new VVER reactors and operational experience of immediate prototypes

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Mokhov, V.; Ryzhov, S.

    2011-01-01

    The paper covers the recent improvements analyzed in order to implement the enhanced core performances. AES-2006 reactor core design is considered from the point of view of its application and improvement in the planned VVER-TOI project and of the possibilities of using the basic engineering solutions for the cores with spectral control. The discussion of several types of mixing grids considered in the paper involves a preliminary assessment of their efficiency and the information on their introduction into pilot operation at the VVER-1000 Units. Special attention is given to the results of the operation of immediate prototypes (TVS-2 and TVS-2M) that corroborate the reliability of the design both with regard for the core geometrical stability and fuel cladding tightness

  11. New techniques for designing the initial and reload cores with constant long cycle lengths

    International Nuclear Information System (INIS)

    Shi, Jun; Levine, Samuel; Ivanov, Kostadin

    2017-01-01

    Highlights: • New techniques for designing the initial and reload cores with constant long cycle lengths are developed. • Core loading pattern (LP) calculations and comparisons have been made on two different designs. • Results show that significant savings in fuel costs can be accrued if a non-low leakage LP design strategy is enacted. - Abstract: Several utilities have increased the output power of their nuclear power plant to increase their income and profit. Thus, the utility increases the power density of the reactor, which has other consequences. One consequence is to increase the depletion of the fuel assemblies (FAs) and reduce the end-of-cycle (EOC) sum of fissionable nuclides in each FA, ∑_E_O_C. The power density and the ∑_E_O_C remaining in the FAs at EOC must be sufficiently large in many FAs when designing the loading pattern, LP, for the first and reload cycles to maintain constant cycle lengths at minimum fuel cost. Also of importance is the cycle length as well as several other factors. In fact, the most important result of this study is to understand that the ∑_E_O_Cs in the FAs must be such that in the next cycle they can sustain the energy during depletion to prevent too much power shifting to the fresh FAs and, thus, sending the maximum peak pin power, PPP_m_a_x, above its constraint. This paper presents new methods for designing the LPs for the initial and follow on cycles to minimize the fuel costs. Studsvik’s CMS code system provides a 1000 MWe LP design in their sample inputs, which is applied in this study. The first 3 cycles of this core are analyzed to minimize fuel costs, and all three cycles have the same cycle length of ∼650 days. Cycle 1 is designed to allow many used FAs to be loaded into cycles 2 and 3 to reduce their fuel costs. This could not be achieved if cycle 1 was a low leakage LP (Shi et al., 2015). Significant fuel cost savings are achieved when the new designs are applied to the higher leakage LP designs

  12. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  13. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  14. Preliminary Core Design Analysis of a 200MWth Pebble Bed-type VHTR

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man

    2007-01-01

    This paper intends to suggest the preliminary core design analysis of a VHTR for a hydrogen production. The nuclear hydrogen system that utilizes the high temperature heat generated from the VHTR is a promising candidate for a cost effective, safe and clean supply of hydrogen in the age of hydrogen economy. Among two candidate VHTR cores, that is, a prismatic modular reactor (PMR) and a pebble bed-type reactor (PBR), we focus on the design of a 200MWth PBR (hereinafter PBR200) in this paper. Here, the 200MWth power is selected for a demonstration plant. The core configuration of the PBR200 is similar to the PBMR (Pebble Bed Modular Reactor, 400MWth) of South Africa, but the overall dimension of the reactor system is scaled-down. This paper is to suggest two candidate PBR200 cores. One is an annular core with an inner reflector (PBR200-CD1) which was presented at IWRES07, and the other is a cylindrical core without an inner reflector (PBR200-CD2)

  15. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  16. Pre-conceptual core design of SCWR with annular fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanqi [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Hongchun; Zheng, Youqi [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2014-02-15

    Highlights: • Annular fuel with both internal and external cooling is used in supercritical light water reactor (SCWR). • The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. • Based on the annular fuel assembly, an equilibrium core has been designed. • The results show that the equilibrium core has satisfied all the objectives and design criteria. - Abstract: The new design of supercritical light water reactor was proposed using annular fuel assemblies. Annular fuel consists of several concentric rings. Feed water flows through the center and outside of the fuel to give both internal and external cooling. Thanks to this feature, the fuel center temperature and the cladding temperature can be reduced and high power density can be achieved. The water flowing through the center also provides moderation, so there is no need for extra water rods in the assembly. The power distribution can be easily flattened by use of this design. The geometry of the annular fuel has been optimized to achieve better performance for the SCWR. There are 19 fuel pins in an assembly. Burnable poison is utilized to reduce the initial excess reactivity. The fuel reloading pattern and water flow scheme were optimized to achieve more uniform power distribution and lower cladding temperature. An equilibrium core has been designed and analyzed using three dimensional neutronics and thermal-hydraulics coupling calculations. The void reactivity, Doppler coefficient and cold shut down margin were calculated for safety consideration. The present results show that this concept is a promising design for the SCWR.

  17. An integrated software system for core design and safety analyses: Cascade-3D

    International Nuclear Information System (INIS)

    Wan De Velde, A.; Finnemann, H.; Hahn, T.; Merk, S.

    1999-01-01

    The new Siemens program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of the most advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management. (authors)

  18. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  19. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt

  20. Study of advanced LWR cores for effective use of plutonium and MOX physics experiments

    International Nuclear Information System (INIS)

    Yamamoto, T.; Matsu-Ura, H.; Ueji, M.; Ota, H.; Kanagawa, T.; Sakurada, K.; Maruyama, H.

    1999-01-01

    Advanced technologies of full MOX cores have been studied to obtain higher Pu consumption based on the advanced light water reactors (APWRs and ABWRs). For this aim, basic core designs of high moderation lattice (H/HM ∼5) have been studied with reduced fuel diameters in fuel assemblies for APWRs and those of high moderation lattice (H/HM ∼6) with addition of extra water rods in fuel assemblies for ABWRs. The analysis of equilibrium cores shows that nuclear and thermal hydraulic parameters satisfy the design criteria and the Pu consumption rate increases about 20 %. An experimental program has been carried out to obtain the core parameters of high moderation MOX cores in the EOLE critical facility at the Cadarache Centre as a joint study of NUPEC, CEA and CEA's industrial partners. The experiments include a uranium homogeneous core, two MOX homogeneous cores of different moderation and a PWR assembly mock up core of MOX fuel with high moderation. The program was started from 1996 and will be completed in 2000. (author)

  1. Stationary liquid fuel fast reactor SLFFR – Part I: Core design

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Yang, G.; Jung, Y.S.; Yang, W.S., E-mail: yang494@purdue.edu

    2016-12-15

    Highlights: • An innovative fast reactor concept SLFFR based on liquid metal fuel is proposed for TRU burning. • A compact core design of 1000 MWt SLFFR is developed to achieve a zero conversion ratio and passive safety. • The core size and the control requirement are significantly reduced compared to the conventional solid fuel reactor with same conversion ratio. - Abstract: For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named the stationary liquid fuel fast reactor (SLFFR) has been proposed based on a stationary molten metallic fuel. A compact core design of a 1000 MWt SLFFR has been developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches have been adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses have been performed to evaluate the steady-state performance characteristics. The analysis results indicate that the SLFFR of a zero TRU conversion ratio is feasible while satisfying the conservatively imposed thermal design constraints. A theoretical maximum TRU consumption rate of 1.01 kg/day is achieved with uranium-free fuel. Compared to the solid fuel reactors with the same TRU conversion ratio, the core size and the reactivity control requirement are reduced significantly. The primary and secondary control systems provide sufficient shutdown margins, and the calculated reactivity feedback coefficients show that the prompt fuel expansion coefficient is sufficiently negative.

  2. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  3. Undermoderated spectrum MOX core study. Pressurized water-type breeder

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi; Komano, Yasuo

    1998-01-01

    The purpose of this development is the advance of the PWR core. The conversion ratio (the breeding ratio) are examined. In the case of heavy water as the coolant, the breeding ratio can be achieved about 1.1 with using a hexagonal lattice and space about 1 mm assembly fuel. In the case of light water coolant, the breeding ratio becomes about 1.0, using a hexagonal lattice and fuel space about 0.5 mm fuel assembly. Here, it reports on the situation of the examination such as the nucleus design of core, the design of fuel assembly, the heat hydraulics design of the core, the structure design and so on. (author)

  4. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs. Final summary report

    International Nuclear Information System (INIS)

    Greenspan, E

    2006-01-01

    more proliferation resistant. Preliminary feasibility assessment indicates that by replacing some of the ZrH1.6 by ThH2 it will be possible to further improve the plutonium incineration capability of PWR's. Other possibly promising applications of hydride fuel were identified but not evaluated in this work. A number of promising oxide fueled PWR core designs were also found as spin-offs of this study: (1) The optimal oxide fueled PWR core design features smaller fuel rod diameter of D=6.5 mm and a larger pitch-to-diameter ratio of P/D=1.39 than presently practiced by industry ? 9.5mm and 1.326. This optimal design can provide a 30% increase in the power density and a 24% reduction in the cost of electricity (COE) provided the PWR could be designed to have the coolant pressure drop across the core increased from the reference 29 psia to 60 psia. (2) Using wire wrapped oxide fuel rods in hexagonal fuel assemblies it is possible to design PWR cores to operate at 54% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 60 psia coolant pressure drop across the core could be accommodated. Uprating existing PWR's to use such cores could result in 40% reduction in the COE. The optimal lattice geometry is D = 8.08 mm and P/D = 1.41. The most notable advantages of wire wraps over grid spacers are their significant lower pressure drop, higher critical heat flux and improved vibrations characteristics

  5. The materials challenge for LFR core design

    International Nuclear Information System (INIS)

    Grasso, Giacomo; Agostini, Pietro

    2013-01-01

    LFR share the main issues of all Fast Reactors, while presenting specific issues due to the use of lead as coolant. A number of constraints impairs the design of a LFR core, possibly resulting in a viability domain not exploitable for producing electricity in an efficient (hence economic) way. In particular, the most restrictive issues to be faced pend on the cladding. The selection of proper cladding materials provides the solution for the issues impairing the resistance of the cladding against stresses and irradiation effects. On the other hand, the protection of the cladding requires surface protections like oxide scales (passivation) or adherent layers (coating). Oxide scales seem not sufficient for a stable and effective protection of the base material. The application of adherent layers seems the only promising solution for protecting the cladding against corrosion. For the short term (i.e.: ALFRED), advanced 15/15Ti with coating is the reference solution for the cladding, allowing a core design complying with all the design constraints and goals. The candidate coatings are already being tested under irradiation to proceed towards qualification. In parallel, new base materials and/or coatings are presently under investigation. For the long term (i.e.: ELFR), the availability of such advanced materials/coatings might allow the extension of the viability domain towards higher and broader ranges (temperature, dpa, etc.), extending the fields of applications of LFRs and resulting in higher performances

  6. MOX - equilibrium core design and trial irradiation in KAPS - 1

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Ray, Sherly; Kumar, A.N.; Parikh, M.V.

    2006-01-01

    Option of usage of MOX fuel bundles in the equilibrium core of Indian 220 MWe PHWRs on a regular basis has been studied. The design of the MOX bundle considered is MOX -7 with inner 7 elements with uranium and plutonium oxide MOX fuel and outer 12 elements with natural uranium fuel. The composition of the plutonium isotopes corresponds to that at about 6500 MWD/TeU burnup. Burnup optimization has been done such that operation at design rated power is possible while achieving the maximum average discharge burnup. Operation with the optimized burnup pattern will result in substantial saving of natural uranium bundles. To obtain feedback on the performance of MOX bundles prior to its large scale use about 50 MOX-7 bundles have been loaded in KAPS - 1 equilibrium core. Locations have been selected such that reactor should be operating at rated power without violating any constraints on channel bundle powers and also meeting the safety requirements. Burnup of interest also should be achieved in minimum period of time. The fissile plutonium content in the 50 MOX fuel bundles loaded is about 75.6 wt % . About 38 bundles out of the 50 bundles loaded have been already discharged and remaining bundles are still in the core. The maximum discharge burnup of the MOX bundles is about 12000 MWD/TeU. The performance of the MOX bundles were excellent and as per prediction. No MOX bundle is reported to be failed. (author)

  7. Constructive and thermal design of a core fast discharge

    International Nuclear Information System (INIS)

    Schroer, H.

    1979-08-01

    The present study is concerned with the development and thermal design of a fast discharge system for balls for the PR 3000 MWsub(th) process heat reactor. The term 'fast discharge system for balls' denotes a very short-time discharge procedure of the entire core contents, i.e. the flowing out of the fuel elements due to gravity into a receiver tank underneath the prestressed-concrete vessel. From a safety-engineering point of view, the fast discharge system for balls constitutes an additional possibility of active decay heat removal, besides the multiply redundant and diversitary reactor protection system, serving to further reduce the remaining residual risk. A fast discharge system for balls, however, is to be used only in the event of all the other possibilities of active decay heat removal having failed and when the maximum permissible temperatures for particularly exposed primary circuit components have been reached. However, the application range of such a system is restricted exclusively to high-temperature reactors with spherical fuel elements; the procedure cannot be applied to other reactor systems because of the rigidly fixed position of the fuel elements inside the core and for reasons of fuel element geometry. Besides the purpose of application, the influence of in-core temperature development on the possible actuation of the fast discharge system is being described in particular detail. This is followed by a description of the structural and thermal design of three specific major components, i.e. the piping system, shut-off devices and fuel element receiver tank, which will have to be installed additionally for the implementation of a fast discharge system for balls as compared to previous plant concepts. (orig.) [de

  8. CopperCore, an Open Source IMS Learning Design Engine

    NARCIS (Netherlands)

    Vogten, Hubert

    2004-01-01

    The presentation gives an overview of the approach of the development programme of the OTEC department towards the development of Open Source. The CopperCore IMS Learning Design engine is described as an example of this approach.

  9. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  10. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  11. Melt spreading code assessment, modifications, and initial application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies

  12. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  13. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  14. Design factors affecting dynamic behaviour of fast reactor cores. UK review paper

    Energy Technology Data Exchange (ETDEWEB)

    Brindley, K W [National Nuclear Corporation Ltd., Risley, Warrington (United Kingdom); Perks, M A [United Kingdom Atomic Energy Authority, Risley, Warrington (United Kingdom)

    1982-01-01

    This paper summarises the consideration that has been given in the UK to the following factors that affect the dynamic behaviour of fast reactor cores: fuel design - Pu/u homogeneity, fuel expansion, fuel-clad gaps, uranium fraction. Structural response - CR supports, diagrid, sub-assembly bowing sodium expansion coefficients - low void cores including heterogenous cores. Calculational methods and models are outlined and some experimental results are discussed. (author)

  15. An evaluation of designed passive Core Makeup Tank (CMT) for China pressurized reactor (CPR1000)

    International Nuclear Information System (INIS)

    Wang, Mingjun; Tian, Wenxi; Qiu, Suizheng; Su, Guanghui; Zhang, Yapei

    2013-01-01

    Highlights: ► Only PRHRS is not sufficient to maintain reactor safety in case of SGTR accident. ► The Core Makeup Tank (CMT) is designed for CPR1000. ► Joint operation of PRHRS and CMT can keep reactor safety during the SGTR transient. ► CMT is a vital supplement for CPR1000 passive safety system design. - Abstract: Emergency Passive Safety System (EPSS) is an innovative design to improve reliability of nuclear power plants. In this work, the EPSS consists of secondary passive residual heat removal system (PRHRS) and the reactor Core Makeup Tank (CMT) system. The PRHRS, which has been studied in our previous paper, can effectively remove the core residual heat and passively improve the inherent safety by passive methods. The designed CMT, representing the safety improvement for CPR1000, is used to inject cool boron-containing water into the primary system during the loss of coolant accident. In this study, the behaviors of EPSS and transient characteristics of the primary loop system during the Steam Generator Tube Rupture (SGTR) accident are investigated using the nuclear reactor thermal hydraulic code RELAP5/MOD3.4. The results show that the designed CMT can protect the reactor primary loop from boiling and maintain primary loop coolant in single phase state. Both PRHRS and CMT operation ensures reactor safety during the SGTR accident. Results reported in this paper show that the designed CMT is a further safety improvement for CPR1000

  16. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S. [National Nuclear Energy Agency (Batan), PUSPIPTEK-Serpong Tangerang (Indonesia)

    2000-07-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  17. Fuel management strategy for the compact core design of RSG GAS (MPR-30)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Liem, P.H.; Tukiran, S.

    2000-01-01

    The rearrangement of the core configuration of the RSG GAS reactor to obtain a compact core is in progress. A fuel management strategy is proposed for the equilibrium compact core of this reactor by reducing the number of in-core irradiation positions. The reduced irradiation positions are based on the activities during 12 years operation. The obtained compact core gives significant extension of the operation cycle length so that the reactor availability and utilization can be enhanced. The equilibrium compact silicide core obtained met the imposed design constraints and safety requirements. (author)

  18. Feasibility study of full-reactor gas core demonstration test

    Science.gov (United States)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  19. The integrated code system CASCADE-3D for advanced core design and safety analysis

    International Nuclear Information System (INIS)

    Neufert, A.; Van de Velde, A.

    1999-01-01

    The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)

  20. Westinghouse Nuclear Core Design Training Center - a design simulator

    International Nuclear Information System (INIS)

    Altomare, S.; Pritchett, J.; Altman, D.

    1992-01-01

    The emergence of more powerful computing technology enables nuclear design calculations to be done on workstations. This shift to workstation usage has already had a profound effect in the training area. In 1991, the Westinghouse Electric Corporation's Commercial Nuclear Fuel Division (CNFD) developed and implemented a Nuclear Core Design Training Center (CDTC), a new concept in on-the-job training. The CDTC provides controlled on-the-job training in a structured classroom environment. It alllows one trainer, with the use of a specially prepared training facility, to provide full-scope, hands-on training to many trainees at one time. Also, the CDTC system reduces the overall cycle time required to complete the total training experience while also providing the flexibility of individual training in selected modules of interest. This paper provides descriptions of the CDTC and the respective experience gained in the application of this new concept

  1. Overview of PEC core design and requirements for PEC core restraint systems

    International Nuclear Information System (INIS)

    Cecchini, F.

    1984-01-01

    The Italian PEC reactor is an experimental loop type fast reactor of 120 MW thermal. Its main purpose is the in-pile development of fast reactor fuel. The mechanical principles in PEC core design and current modifications to ensure a safe seismic perturbation and shutdown are discussed in this paper. These anti-seismic modifications are aimed to limit the extent of reactivity perturbation during the seismic event and to guarantee control rod entry at any time during the seismic event

  2. A safety design approach for sodium cooled fast reactor core toward commercialization in Japan

    International Nuclear Information System (INIS)

    Kubo, Shigenobu

    2012-01-01

    JAEA’s safety approach for SFR core design is based on defence‐in‐depth concept, which includes DBAs and DECs (prevention and mitigation): • The reactor core is designed to have inherent reactivity feedback characteristics with negative power coefficient. • Operation temperature range is set sufficiently below the coolant boiling temperature so as to avoid coolant boiling against anticipated operational occurrences and DBAs. • If the plant state deviates from operational states, the safe reactor shutdown is achieved by automatic insertion of control rods. 2 active reactor shutdown systems are provided. • Failure of active reactor shutdown is assumed in a design extension condition . Passive shutdown capability is provided by SASS under such condition. • As a design extension condition, core disruptive accident is assumed. In order to prevent severe mechanical energy release which might cause containment function failure, core sodium void worth is limited below 6 dollars and molten fuel discharge capability is utilized by FAIDUS. (author)

  3. Study on the reactivity behavior partially loaded reactor cores using SIMULATE-3

    International Nuclear Information System (INIS)

    Holzer, Robert; Zeitz, Andreas; Grimminger, Werner; Lubczyk, Tobias

    2009-01-01

    The reactor core design for the NPP Gundremmingen unit B and C is performed since several years using the validated 3D reactor core calculation program SIMULATE-3. The authors describe a special application of the program to study the reactivity for different partial core loadings. Based on the comparison with results of the program CASMO-4 the program SIMULATE-3 was validated for the calculation of partially loaded reactor cores. For the planned reactor operation in NPP Gundremmingen using new MOX fuel elements the reactivity behavior was studied with respect to the KTA-Code requirements.

  4. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  5. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    Science.gov (United States)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  6. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  7. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    International Nuclear Information System (INIS)

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  8. Intelligent system for conceptural design of new reactor cores

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1995-01-01

    The software system IRDS has been developed at Japan Atomic Energy Research Institute to support the conceptual design of a new type of reactor core in the fields of neutronics, thermohydraulics, and fuel behavior. IRDS involves various analysis codes, database, and man-machine interfaces that efficiently support a whole design process on a computer. The main purpose of conceptual design is to decide an optimal set of basic design parameters. Designers usually carry out many parametric survey calculations and search a design window (DW), which is a feasible parameter range satisfying design criteria and goals. An automatic DW search function is installed to support such works. The man-machine interface based on menu windows will enable nonspecialists to use various analysis codes easily

  9. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  10. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  11. BWR power oscillation evaluation methodologies in core design

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    1995-01-01

    At the initial stage of BWR development, the power oscillation due to the nuclear-thermal interaction originated in random boiling phenomena and nuclear void feedback was feared. But it was shown that under the high pressure condition in the normal operation of recent commercial BWRs, the core is in very stable state. However, power oscillation events have been observed in actual machines, and it is necessary to do the stability evaluation that sufficiently reflects the detailed operation conditions of actual plants. As the cause of power oscillation events, the instability of control system and nuclear-thermal coupling instability are important, and their mechanisms are explained. As the model for analyzing the stability of BWR core, the nuclear-thermal coupling model in frequency domain is the central existence. As the information for the design, the parameters of fuel assemblies, and the nuclear parameters and the thermohydraulic parameters of cores are enumerated. LAPUR-TSI is a nuclear-thermal coupling model. The analysis system in the software of Tokyo Electric Power Co. is outlined, and the analysis model was verified. (K.I.)

  12. High Level Analysis, Design and Validation of Distributed Mobile Systems with CoreASM

    Science.gov (United States)

    Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.

    System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.

  13. Design/Operations review of core sampling trucks and associated equipment

    International Nuclear Information System (INIS)

    Shrivastava, H.P.

    1996-01-01

    A systematic review of the design and operations of the core sampling trucks was commissioned by Characterization Equipment Engineering of the Westinghouse Hanford Company in October 1995. The review team reviewed the design documents, specifications, operating procedure, training manuals and safety analysis reports. The review process, findings and corrective actions are summarized in this supporting document

  14. Characteristic features of the core design of high-temperature reactors

    International Nuclear Information System (INIS)

    Brandes, S.; Lohnert, G.

    1975-01-01

    Following a survey on the possible applications of the HTGR depending on the height of the gas exiting temperatures, the core design for both of the fuel element concepts 'sphere' and 'block' is dealt with. The particularities arising from the multiple refueling and the one-way fueling in the design for spherical fuel elements are discussed. (UA/LH) [de

  15. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  16. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  17. The ARIES-RS power core - recent development in Li/V designs

    International Nuclear Information System (INIS)

    Sze Dai-Kai; Billone, M.C.; Hua, T.Q.; Tillack, M.; Najmabadi, F.; Wang Xueren; Malang, S.; El-Guebaly, L.A.; Sviatoslavsky, I.N.; Blanchard, J.P.; Crowell, J.A.; Khater, H.Y.; Mogahed, E.A.; Waganer, L.M.; Lee, D.; Cole, D.

    1998-01-01

    The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design. This paper summarizes the power core design of the ARIES-RS power plant study. (orig.)

  18. Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine.

    Science.gov (United States)

    Chandran, Parwathy; Gupta, Neha; Retnakumari, Archana Payickattu; Malarvizhi, Giridharan Loghanathan; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2013-11-01

    Simultaneous inhibition of deregulated cancer kinome using rationally designed nanomedicine is an advanced therapeutic approach. Herein, we have developed a polymer-protein core-shell nanomedicine to inhibit critically aberrant pro-survival kinases (mTOR, MAPK and STAT5) in primitive (CD34(+)/CD38(-)) Acute Myeloid Leukemia (AML) cells. The nanomedicine consists of poly-lactide-co-glycolide core (~250 nm) loaded with mTOR inhibitor, everolimus, and albumin shell (~25 nm thick) loaded with MAPK/STAT5 inhibitor, sorafenib and the whole construct was surface conjugated with monoclonal antibody against CD33 receptor overexpressed in AML. Electron microscopy confirmed formation of core-shell nanostructure (~290 nm) and flow cytometry and confocal studies showed enhanced cellular uptake of targeted nanomedicine. Simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells, was demonstrated using immunoblotting, cytotoxicity and apoptosis assays. This cell receptor plus multi-kinase targeted core-shell nanomedicine was found better specific and tolerable compared to current clinical regime of cytarabine and daunorubicin. These authors demonstrate simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells by using rationally designed polymer-protein core-shell nanomedicine, provoding an advanced method to eliminate cancer cells, with the hope of future therapeutic use. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  20. Reactor core design calculations and fuel management in PWR; Izracun projekta sredice in upravljanja z forivom tlacnovodnega reaktorja

    Energy Technology Data Exchange (ETDEWEB)

    Ravnik, M [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1987-07-01

    Computer programs and methods developed at J. Stefan Institute for nuclear core design of Krsko NPP are treated. development, scope, verification and organisation of core design procedure are presented. The core design procedure is applicable to any NPP of PWR type. (author)

  1. Fuel and Core Design Verification for Extended Power Up-rate in Ringhals Unit 3

    International Nuclear Information System (INIS)

    Gabrielsson, Petter; Stepniewski, Marek; Almberger, Jan

    2006-01-01

    Vattenfall's Westinghouse 3-loop PWR Ringhals 3 at the western coast of Sweden is scheduled for an extended power up-rate from 2783 to 3160 MWt in 2007, in the frame of the so called GREAT-project. The project will realize an up-rating initially planned and analysed back in 1995, but with a number of significant improvements outlined in this paper. For the licensing of the up-rated power level, a complete revision of the safety analyses, radiological analyses and systems verifications in FSAR is being performed by Westinghouse Electrics Belgium. The work is performed in close cooperation with Vattenfall in the areas of core calculations and input data. For more than a decade, Vattenfall has performed all core design and reload safety evaluations (RSE) for Ringhals, independent of fuel vendors and safety analysts. In GREAT all core parameters in the safety analysis checklist (SAC) used for the safety analyses are determined based upon a set of nine reference loading patterns designed by Vattenfall covering a wide range of fuel and core designs and extreme cycle-to-cycle variations. To facilitate the calculation of SAC parameters Westinghouse has provided a Reload Safety Evaluation Procedure report (RSEP) with detailed specifications for the calculation of all core parameters used in the analyses. The procedure has been automatized by Vattenfall in a set of scripts executing 3D core simulator calculations and extracting the key results. The same tools will be used in Vattenfall's future RSE for Ringhals 3. This approach is taken to obtain consistency between core designs and core calculations for the safety analyses and the cycle specific calculations, to minimize the risk for future violations of the safety analyses. (authors)

  2. Designing Class Activities to Meet Specific Core Training Competencies: A Developmental Approach

    Science.gov (United States)

    Guth, Lorraine J.; McDonnell, Kelly A.

    2004-01-01

    This article presents a developmental model for designing and utilizing class activities to meet specific Association for Specialists in Group Work (ASGW) core training competencies for group workers. A review of the relevant literature about teaching group work and meeting core training standards is provided. The authors suggest a process by…

  3. Study of the neutronic performances of cores with mixed nitride fuel [(U,Pu)N] for fast neutron reactors

    International Nuclear Information System (INIS)

    Merzouk, Hamid

    1992-01-01

    This paper proposes a core design of fast reactor using mixed nitride fuel [(U,Pu)N], having small loss of reactivity and reaching a maximum thermal burn-up rate from 150 GWd/t, while being managed in single batch (renewal of the fuel in only one time for all the subassemblies of the core). This work was completed with aid of the studies of sensibilities of the fast reactors cores to principal parameters: general design of the core, volumetric percentages of the various mixture of materials composing the core, initial enrichments of the fuel. A detailed optimization study on the selected core was conducted complying with safety criteria taking into consideration of consequences of nitride material presence on fuel assembly design rules. (author) [fr

  4. Design Basis of Core Components and their Realization in the frame of the EPR'sTM Core Component Development

    International Nuclear Information System (INIS)

    Schebitz, Florian; Mekmouche, Abdelhalim

    2008-01-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI TM RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR TM , the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR TM . (authors)

  5. Hyper-heuristic applied to nuclear reactor core design

    International Nuclear Information System (INIS)

    Domingos, R P; Platt, G M

    2013-01-01

    The design of nuclear reactors gives rises to a series of optimization problems because of the need for high efficiency, availability and maintenance of security levels. Gradient-based techniques and linear programming have been applied, as well as genetic algorithms and particle swarm optimization. The nonlinearity, multimodality and lack of knowledge about the problem domain makes de choice of suitable meta-heuristic models particularly challenging. In this work we solve the optimization problem of a nuclear reactor core design through the application of an optimal sequence of meta-heuritics created automatically. This combinatorial optimization model is known as hyper-heuristic.

  6. Application of neural network to multi-dimensional design window search in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1999-01-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. The present method is applied to the neutronics and thermal hydraulics fields. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. To verify the applicability of the present method to the neutronics and the thermal hydraulics design, we have applied it to high conversion water reactors and examined effects of the structure of the neural network and the number of teaching patterns on the accuracy of the design window estimated by the neural network. From the results of the applications, a guideline to apply the present method is proposed and the present method can predict an appropriate design window in a reasonable computation time by following the guideline. (author)

  7. Design of Multi-core Fiber Patch Panel for Space Division Multiplexing Implementations

    DEFF Research Database (Denmark)

    Gonzalez, Luz E.; Morales, Alvaro; Rommel, Simon

    2018-01-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 d...

  8. Design of multi-core fiber patch panel for space division multiplexing implementations

    NARCIS (Netherlands)

    González, Luz E.; Morales, Alvaro; Rommel, Simon; Jørgensen, Bo F.; Porras-Montenegro, N.; Tafur Monroy, Idelfonso

    2018-01-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 dB

  9. New design on air-core resistive NMR imaging magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Mingwu, Fan; Yixin, Miao

    1984-08-01

    A new type of NMR imaging air-core resistive magnet is designed. Based on the BIM Magnetostatic calculation the resultant four equiradial coils structure with optimized shapes of cross section possesses a larger spherical working volume obviously, comparing with the common four-coils imaging magnet. The manufacturing tolerance is also calculated.

  10. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  11. The effect of core design changes on the doubling time and the fuel cycle cost of a 1,000 MWe LMFBR

    International Nuclear Information System (INIS)

    Otake, I.; Inoue, T.; Tomabechi, K.; Osada, H.; Aoki, K.

    1978-01-01

    Core design studies were performed to improve the doubling time and to minimize the fuel cycle cost of a 1,000 MWe Fast Demonstration Reactor. A core was designed mainly based on the technology being used for the design of a prototype fast reactor MONJU, because much valuable experience will be forthcoming from this reactor. Design parameters with a wide variable range were used to clarify the relations between breeding characteristics, fuel economics and various designs. (author)

  12. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    International Nuclear Information System (INIS)

    Grasso, G.; Petrovich, C.; Mattioli, D.; Artioli, C.; Sciora, P.; Gugiu, D.; Bandini, G.; Bubelis, E.; Mikityuk, K.

    2014-01-01

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW th ) and of its demonstrator reactor (300 MW th ) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors

  13. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Petrovich, C., E-mail: carlo.petrovich@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Artioli, C., E-mail: carlo.artioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sciora, P., E-mail: pierre.sciora@cea.fr [CEA (Alternative Energies and Atomic Energy Commission), DEN, DER, 13108 St Paul lez Durance (France); Gugiu, D., E-mail: daniela.gugiu@nuclear.ro [RATEN-ICN (Institute for Nuclear Research), Cod 115400 Mioveni, Str. Campului, 1, Jud. Arges (Romania); Bandini, G., E-mail: giacomino.bandini@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Bubelis, E., E-mail: evaldas.bubelis@kit.edu [KIT (Karlsruhe Institute of Technology), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [PSI (Paul Scherrer Institute), OHSA/D11, 5232 Villigen PSI (Switzerland)

    2014-10-15

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW{sub th}) and of its demonstrator reactor (300 MW{sub th}) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors.

  14. Evaluation of the trial design studies for an advanced marine reactor, (3)

    International Nuclear Information System (INIS)

    Ambo, Noriaki; Yokomura, Takeyoshi.

    1988-03-01

    JAERI have carried out four core designs for three different type reactors (Semi-Integrated, Integrated and Integrated (self-pressured) type reactors), as the trial designs of an Advanced Marine Reactor for three years (1983 ∼ 1985). This report describes the result of comparison and studies of the core specific characteristics of these four cores, which include core concept, specifications, core life, specific power density, burn-up, reactivity control and etc. In conclusion, it was found that the Integrated type reactor core and the Semi-Integrated type reactor core designs satisfy the conditions of long core life (four years), high specific power density (50 ∼ 61 kw/l) and high burn-up (30,000 ∼ 32,000 MWD/t), so these two cores will be optimum designs based on the present technologies. (author)

  15. Multimedia foundations core concepts for digital design

    CERN Document Server

    Costello, Vic; Youngblood, Susan

    2012-01-01

    Understand the core concepts and skills of multimedia production and digital storytelling using text, graphics, photographs, sound, motion, and video. Then, put it all together using the skills that you have developed for effective project planning, collaboration, visual communication, and graphic design. Presented in full color with hundreds of vibrant illustrations, Multimedia Foundations trains you in the principles and skill sets common to all forms of digital media production, enabling you to create successful, engaging content, no matter what tools you are using. Companion website

  16. Optimization of core reload design for low leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1986-01-01

    A new method was developed to optimize pressurized water reactor core reload design for low leakage fuel management, a strategy recently adopted by most utilities to extend cycle length and mitigate pressurized thermal shock concerns. The method consists of a two-stage optimization process which provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle in the absence of burnable poisons. A direct search method is employed in conjunction with a constant power, Haling depletion. In the second stage, the core control poison requirements are determined using a linear programming technique. The solution provides the fresh fuel burnable poison loading required to meet core power peaking constraints. An accurate method of explicitly modeling burnable absorbers was developed for this purpose. The design method developed here was implemented in a currently recognized fuel licensing code, SIMULATE, that was adapted to the CYBER-205 computer. This methodology was applied to core reload design of cycles 9 and 10 for the Commonwealth Edison Zion, Unit-1 Reactor. The results showed that the optimum loading pattern for cycle 9 yielded almost a 9% increase in the cycle length while reducing core vessel fluence by 30% compared with the reference design used by Commonwealth Edison

  17. Is it possible to use 'twin cores' as a unique sedimentary record? An experimental design based on sediment color

    International Nuclear Information System (INIS)

    Veiga-Pires, C; Mestre, N C

    2009-01-01

    Sedimentary cores are widely used for studying Quaternary records. However, the amount of sediment that is available is proportional to the diameter of the core, which is rarely bigger than 15 cm. One way to obtain more sediment is to use two cores retrieved from almost the same location and use them as if they represent a unique sedimentary record. In the present work, an experimental design has been applied to verify if 'twin cores' from an estuary can be considered as representing the same sedimentary record with twice the amount of sediment to study. Because sediment can be characterized based on its color, the variables used as replicates in the experimental design are the three Lab CIE colors acquired with a X-Rite Colortron spectrophotometer. Sediment cores were retrieved from the upper saltmarsh of Gilao River's estuary, southern Portugal. Twin cores, with in between distances of 50 cm, 100 cm and 200 cm, from two different sites were analysed. Results from a nested ANOVA show that even for the closest twin cores (50 cm apart) there is at least one color variable that shows significant variations between the profiles of both cores. These results clearly show that 'twin cores' cannot be used as a unique sedimentary record without any previous testing, at least in such transitional regions.

  18. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  19. Automated Integration of Dedicated Hardwired IP Cores in Heterogeneous MPSoCs Designed with ESPAM

    Directory of Open Access Journals (Sweden)

    Ed Deprettere

    2008-06-01

    Full Text Available This paper presents a methodology and techniques for automated integration of dedicated hardwired (HW IP cores into heterogeneous multiprocessor systems. We propose an IP core integration approach based on an HW module generation that consists of a wrapper around a predefined IP core. This approach has been implemented in a tool called ESPAM for automated multiprocessor system design, programming, and implementation. In order to keep high performance of the integrated IP cores, the structure of the IP core wrapper is devised in a way that adequately represents and efficiently implements the main characteristics of the formal model of computation, namely, Kahn process networks, we use as an underlying programming model in ESPAM. We present details about the structure of the HW module, the supported types of IP cores, and the minimum interfaces these IP cores have to provide in order to allow automated integration in heterogeneous multiprocessor systems generated by ESPAM. The ESPAM design flow, the multiprocessor platforms we consider, and the underlying programming (KPN model are introduced as well. Furthermore, we present the efficiency of our approach by applying our methodology and ESPAM tool to automatically generate, implement, and program heterogeneous multiprocessor systems that integrate dedicated IP cores and execute real-life applications.

  20. Monte Carlo neutronics analysis of the ANS reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.

    1995-01-01

    The advanced neutron source (ANS) is a world-class research reactor and experimental center for neutron research, currently being designed at the Oak Ridge National Laboratory (ORNL). The reactor consists of a 330-MW(fission) highly enriched uranium core, which is cooled, moderated, and reflected with heavy water. It was designed to be the preeminent ultrahigh neutron flux reactor in the world, with facilities for research programs in biology, materials science, chemistry, fundamental and nuclear physics, and analytical chemistry. Irradiation facilities are provided for a variety of isotope production capabilities, as well as materials irradiation. This paper summarizes the neutronics efforts at the Idaho National Engineering Laboratory in support of the development and analysis of the three-element core for the advanced conceptual design phase

  1. Design assumptions and bases for small D-T-fueled Sperical Tokamak (ST) fusion core

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Galambos, J.D.; Fogarty, P.J.

    1996-01-01

    Recent progress in defining the assumptions and clarifying the bases for a small D-T-fueled ST fusion core are presented. The paper covers several issues in the physics of ST plasmas, the technology of neutral beam injection, the engineering design configuration, and the center leg material under intense neutron irradiation. This progress was driven by the exciting data from pioneering ST experiments, a heightened interest in proof-of-principle experiments at the MA level in plasma current, and the initiation of the first conceptual design study of the small ST fusion core. The needs recently identified for a restructured fusion energy sciences program have provided a timely impetus for examining the subject of this paper. Our results, though preliminary in nature, strengthen the case for the potential realism and attractiveness of the ST approach

  2. A supercomputing application for reactors core design and optimization

    International Nuclear Information System (INIS)

    Hourcade, Edouard; Gaudier, Fabrice; Arnaud, Gilles; Funtowiez, David; Ammar, Karim

    2010-01-01

    Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)

  3. The Tokamak Fusion Core Experiment studies

    International Nuclear Information System (INIS)

    Schmidt, J.A.; Sheffield, G.V.; Bushnell, C.

    1985-01-01

    The basic objective of the next major step in the US fusion programme has been defined as the achievement of ignition and long pulse equilibrium burn of a fusion plasma in the Tokamak Fusion Core Experiment (TFCX) device. Preconceptual design studies have seen completion of four candidate versions to provide the comparative information needed to narrow down the range of TFCX options before proceeding to the conceptual design phase. All four designs share the same objective and conform to common physics, engineering and costing criteria. The four base options considered differed mainly in the toroidal field coil design, two employing superconducting coils and the other two copper coils. In each case (copper and superconducting), one relatively conventional version was carried as well as a version employing more exotic toroidal field coil design assumptions. Sizes range from R=2.6 m for the smaller of the two copper versions to R=4.08 m for the larger superconducting option. In all cases, the plasma current was about 10 MA and the toroidal field about 4 T. (author)

  4. Mechanical design of core components for a high performance light water reactor with a three pass core

    International Nuclear Information System (INIS)

    Fischer, Kai; Schneider, Tobias; Redon, Thomas; Schulenberg, Thomas; Starflinger, Joerg

    2007-01-01

    Nuclear reactors using supercritical water as coolant can achieve more than 500 deg. C core outlet temperature, if the coolant is heated up in three steps with intermediate mixing to avoid hot streaks. This method reduces the peak cladding temperatures significantly compared with a single heat up. The paper presents an innovative mechanical design which has been developed recently for such a High Performance Light Water Reactor. The core is built with square assemblies of 40 fuel pins each, using wire wraps as grid spacers. Nine of these assemblies are combined to a cluster having a common head piece and a common foot piece. A downward flow of additional moderator water, separated from the coolant, is provided in gaps between the assemblies and in a water box inside each assembly. The cluster head and foot pieces and mixing chambers, which are key components for this design, are explained in detail. (authors)

  5. Exploring Many-Core Design Templates for FPGAs and ASICs

    Directory of Open Access Journals (Sweden)

    Ilia Lebedev

    2012-01-01

    Full Text Available We present a highly productive approach to hardware design based on a many-core microarchitectural template used to implement compute-bound applications expressed in a high-level data-parallel language such as OpenCL. The template is customized on a per-application basis via a range of high-level parameters such as the interconnect topology or processing element architecture. The key benefits of this approach are that it (i allows programmers to express parallelism through an API defined in a high-level programming language, (ii supports coarse-grained multithreading and fine-grained threading while permitting bit-level resource control, and (iii reduces the effort required to repurpose the system for different algorithms or different applications. We compare template-driven design to both full-custom and programmable approaches by studying implementations of a compute-bound data-parallel Bayesian graph inference algorithm across several candidate platforms. Specifically, we examine a range of template-based implementations on both FPGA and ASIC platforms and compare each against full custom designs. Throughout this study, we use a general-purpose graphics processing unit (GPGPU implementation as a performance and area baseline. We show that our approach, similar in productivity to programmable approaches such as GPGPU applications, yields implementations with performance approaching that of full-custom designs on both FPGA and ASIC platforms.

  6. A core performance study on an actinide recycling 'zero-sodium-void worth' core

    International Nuclear Information System (INIS)

    Kawashima, M.; Nakagawa, M.; Yamaoka, M.; Kasahara, F.

    1994-01-01

    A core performance study was made for an absorber-type parfait core (A-APC) as one of 'Zero-sodium-void-worth' core concepts. This evaluation study pursued different two aspects; one for transuranic (TRU) management strategy, and another for a loss-of-coolant anticipated transient behavior considering the unique core configuration. The results indicated that this core has a large flexibility for actinide recycling in terms of self-sufficiency and minor actinide burning. The result also showed that this core has kept a large mitigation potential for ULOF events as well as a simple flat core concept, reflecting detailed three dimensional core bowing behavior for the A-APC configuration. (author)

  7. A validation report for the KALIMER core design computing system by the Monte Carlo transport theory code

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung

    2004-05-01

    In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy

  8. Control rod repositioning considerations in core design analysis

    International Nuclear Information System (INIS)

    Armstrong, B.C.; Buechel, R.J.

    1990-01-01

    Control rod repositioning is a method for minimizing rod cluster control assembly (RCCA) wear in the upper internals area where the guide cards interface with the rodlets of the RCCAs. A number of utilities have implemented strategies for rod repositioning, which often has no impact on the nuclear analysis for cases where the control rods are never repositioned into the active fuel. Other strategies involve repositioning the control rods several steps into the active fuel. The impact of this type of repositioning on the axial power shape and consequently the total peaking factor F Q T varies, depending on the method in which the repositioning is implemented at the plant. Operating for long periods with all the control and shutdown rods inserted several steps in the active fuel followed by withdrawing them fully from the core results in a shifting of the power distribution toward the top of the core and must be accounted for in the design analysis. On the other hand, an optional plan for control rod repositioning that considers margins available in related design parameters can be devised that minimizes the effects of the repositioning for the reload. This paper summarizes a rod repositioning strategy implemented for a recent reload and some calculated power shape results for this strategy and other scenarios

  9. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  10. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  11. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    Science.gov (United States)

    Shirvan, Koroush

    Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR capital cost. Generally, the core power density in BWRs is limited by the thermal Critical Power of its assemblies, below which heat removal can be accomplished with low fuel and cladding temperatures. The present study investigates both increases in the heat transfer area between ~he fuel and coolant and changes in operating parameters to achieve higher power levels while meeting the appropriate thermal as well as materials and neutronic constraints. A scoping study is conducted under the constraints of using fuel with cylindrical geometry, traditional materials and enrichments below 5% to enhance its licensability. The reactor vessel diameter is limited to the largest proposed thus far. The BWR with High power Density (BWR-HD) is found to have a power level of 5000 MWth, equivalent to 26% uprated ABWR, resulting into 20% cheaper O&M and Capital costs. This is achieved by utilizing the same number of assemblies, but with wider 16x16 assemblies and 50% shorter active fuel than that of the ABWR. The fuel rod diameter and pitch are reduced to just over 45% of the ABWR values. Traditional cruciform form control rods are used, which restricts the assembly span to less than 1.2 times the current GE14 design due to limitation on shutdown margin. Thus, it is possible to increase the power density and specific power by 65%, while maintaining the nominal ABWR Minimum Critical Power Ratio (MCPR) margin. The plant systems outside the vessel are assumed to be the same as the ABWR-Il design, utilizing a combination of active and passive safety systems. Safety analyses applied a void reactivity coefficient calculated by SIMULA TE-3 for an equilibrium cycle core that showed a 15% less negative coefficient for the BWR-HD compared to the ABWR. The feedwater

  12. Fuel with advanced burnable absorbers design for the IRIS reactor core: Combined Erbia and IFBA

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto [Westinghouse Electric Company LLC, Science and Technology Department, Pittsburgh, PA 15235 (United States)], E-mail: FranceF@westinghouse.com; Petrovic, Bojan [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School, Atlanta, GA 30332-0405 (United States)

    2009-08-15

    IRIS is an advanced medium-size (1000 MW) PWR with integral primary system targeting deployment already around 2015-2017. Consistent with its aggressive development and deployment schedule, the 'first IRIS' core design assumes current, licensed fuel technology, i.e., UO{sub 2} fuel with less than 5% {sup 235}U enrichment. The core consists of 89 fuel assemblies employing the 17x17 Westinghouse Robust Fuel Assembly (RFA) design and Standard Fuel dimensions. The adopted design enables to meet all the objectives of the first IRIS core, including over 3-year cycle length with low soluble boron concentration, within the envelope of licensed, readily available fuel technology. Alternative fuel designs are investigated for the subsequent waves of IRIS reactors in pursuit of further improving the fuel utilization and/or extending the cycle length. In particular, an increase in the lattice pitch from the current 0.496 in. for the Standard Fuel to 0.523 in. is among the objectives of this study. The larger fuel pitch and increased moderator-to-fuel volume ratio that it entails fosters better neutron thermalization in an altogether under-moderated lattice thereby offering the potential for considerable increase of fuel utilization and cycle length, up to 5% in the two-batch fuel management scheme considered for IRIS. However, the improved moderation also favors higher values of the Moderator Temperature Coefficient, MTC, which must be properly counteracted to avoid undesired repercussions on the plant safety parameters or controllability during transient operations. This paper investigates counterbalancing the increase in the MTC caused by the enhanced moderation lattice by adopting a suitable choice of fuel burnable absorber (BA). In particular, a fuel design combining erbia, which benefits MTC due to its resonant behavior but leads to residual reactivity penalty, and IFBA, which maximizes cycle length, is pursued. In the proposed approach, IFBA provides the bulk

  13. Simulated annealing algorithm for reactor in-core design optimizations

    International Nuclear Information System (INIS)

    Zhong Wenfa; Zhou Quan; Zhong Zhaopeng

    2001-01-01

    A nuclear reactor must be optimized for in core fuel management to make full use of the fuel, to reduce the operation cost and to flatten the power distribution reasonably. The author presents a simulated annealing algorithm. The optimized objective function and the punishment function were provided for optimizing the reactor physics design. The punishment function was used to practice the simulated annealing algorithm. The practical design of the NHR-200 was calculated. The results show that the K eff can be increased by 2.5% and the power distribution can be flattened

  14. Multiobjective optimization for design of multifunctional sandwich panel heat pipes with micro-architected truss cores

    International Nuclear Information System (INIS)

    Roper, Christopher S.

    2011-01-01

    A micro-architected multifunctional structure, a sandwich panel heat pipe with a micro-scale truss core and arterial wick, is modeled and optimized. To characterize multiple functionalities, objective equations are formulated for density, compressive modulus, compressive strength, and maximum heat flux. Multiobjective optimization is used to determine the Pareto-optimal design surfaces, which consist of hundreds of individually optimized designs. The Pareto-optimal surfaces for different working fluids (water, ethanol, and perfluoro(methylcyclohexane)) as well as different micro-scale truss core materials (metal, ceramic, and polymer) are determined and compared. Examination of the Pareto fronts allows comparison of the trade-offs between density, compressive stiffness, compressive strength, and maximum heat flux in the design of multifunctional sandwich panel heat pipes with micro-scale truss cores. Heat fluxes up to 3.0 MW/m 2 are predicted for silicon carbide truss core heat pipes with water as the working fluid.

  15. Innovative research reactor core designed. Estimation and analysis of gamma heating distribution

    International Nuclear Information System (INIS)

    Setiyanto

    2014-01-01

    The Gamma heating value is an important factor needed for safety analysis of each experiments that will be realized on research reactor core. Gamma heat is internal heat source occurs in each irradiation facilities or any material irradiated in reactor core. This value should be determined correctly because of the safety related problems. The gamma heating value is in general depend on. reactor core characteristics, different one and other, and then each new reactor design should be completed by gamma heating data. The Innovative Research Reactor is one of the new reactor design that should be completed with any safety data, including the gamma heating value. For this reasons, calculation and analysis of gamma heating in the hole of reactor core and irradiation facilities in reflector had been done by using of modified and validated Gamset computer code. The result shown that gamma heating value of 11.75 W/g is the highest value at the center of reactor core, higher than gamma heating value of RSG-GAS. However, placement of all irradiation facilities in reflector show that safety characteristics for irradiation facilities of innovative research reactor more better than RSG-GAS reactor. Regarding the results obtained, and based on placement of irradiation facilities in reflector, can be concluded that innovative research reactor more safe for any irradiation used. (author)

  16. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure

    Science.gov (United States)

    Kumar, Dablu; Ranjan, Rakesh

    2018-03-01

    12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.

  17. Neutronics design study on a minor actinide burner for transmuting spent fuel

    International Nuclear Information System (INIS)

    Choi, Hang Bok

    1998-08-01

    A liquid metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors. The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the doppler coefficient, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200 MWth core is able to transmute the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics. (author). 34 refs., 22 tabs., 14 figs

  18. Experimental study of the core grid by-pass orifices inlet pressure drop of the new core of the R A 6 reactor

    International Nuclear Information System (INIS)

    Masson, V. P; Garcia, J. C; Delmastro, D. F

    2006-01-01

    In this work the core grid by-pass orifices inlet pressure drop of the new core of the R A6 reactor are experimentally studied.The experiments are performed using a 1:1 scale mock-up of an external fuel element cell.Different gaps between fuel elements are considered in order to take into account the design allowances. Different flows are considered to take into account the normal operation flow range.Measurement uncertainties are included.The results will be used to calculate the core flow distribution [es

  19. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  20. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores.

  1. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    International Nuclear Information System (INIS)

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores

  2. Core design calculations of IRIS reactor using modified CORD-2 code package

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.

    2002-01-01

    Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)

  3. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  4. Study on design and cutting parameters of rotating needles for core biopsy.

    Science.gov (United States)

    Giovannini, Marco; Ren, Huaqing; Cao, Jian; Ehmann, Kornel

    2018-06-15

    Core needle biopsies are widely adopted medical procedures that consist in the removal of biological tissue to better identify a lesion or an abnormality observed through a physical exam or a radiology scan. These procedures can provide significantly more information than most medical tests and they are usually performed on bone lesions, breast masses, lymph nodes and the prostate. The quality of the samples mainly depends on the forces exerted by the needle during the cutting process. The reduction of these forces is critical to extract high-quality tissue samples. The most critical factors that affect the cutting forces are the geometry of the needle tip and its motion while it is penetrating the tissue. However, optimal needle tip configurations and cutting parameters are not well established for rotating insertions. In this paper, the geometry and cutting forces of hollow needles are investigated. The fundamental goal of this study is to provide a series of guidelines for clinicians and surgeons to properly select the optimal tip geometries and speeds. Analytical models related to the cutting angles of several needle tip designs are presented and compared. Several needle tip geometries were manufactured from a 14-gauge cannula, commonly adopted during breast biopsies. The needles were then tested at different speeds and on different phantom tissues. According to these experimental measurements recommendations were formulated for rotating needle insertions. The findings of this study can be applied and extended to several biopsy procedures in which a cannula is used to extract tissue samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A system for obtaining an optimized pre design of nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.

    1989-01-01

    This work proposes a method for obtaing a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one-energy-group, unidimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, refletor thickness, enrichement and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for futures works. (author) [pt

  6. LFR core design for prevention & mitigation of severe accidents

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2012-01-01

    Conclusions: • Aiming at fully complying Gen-IV safety requirements – even in case of Fukushima-like events –, prevention and mitigation strategies must be stressed in FR design. • The safety of Lead-cooled Fast Reactors can rely on intrinsic features due to the coolant, such as: • the practical impossibility of Lead boiling, hence the unreliability of core (only) voiding for wide safety margins, and the retention of corium; • the high density of lead, for the buoyancy of Control Rods (allowing their safe positioning below the core), and the dispersion of molten core up to the setting up of a “cold melting pot”. • the possibility to adopt wide coolant channels for encouraging natural circulation, without affecting the hardness of the neutron spectrum; • the hard neutron spectrum allows the adiabatic operation of LFRs (which implies minimal criticality swings even through long cycles) with small amounts of Mas (hence with a negligible detriment to the safety features); • an effective reduction of the coolant density effect simply through the shortening of the active height

  7. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  8. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi

    2016-01-01

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible

  9. Nuclear Design Study for Reduced Boron Concentration Operation

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2008-01-01

    In PWR, Boron Dilution Accident (BDA) which is an inadvertent reduction of the soluble boron concentration in the primary coolant, can lead to a positive reactivity insertion and a power increase. In this study, an optimal Low Boron Concentration (LBC) core design will be developed by reducing an excess reactivity so as to possess passive inherently safety features as well as one of attentively preventive measures of BDA scenarios. The scope of the research project concerning the change of operational procedure in chemical shim system, will involve three main parts namely, nuclear design for LBC core, feasibility check on the proposed core in safety and costs, and PSA approach on design change benefits. In addition, successful system analysis of the reactivity effects due to boron dilution transients, require a full coupling between core thermal hydraulic, reactor dynamics, and the use of Computational Fluid Dynamics (CFD) codes

  10. Nuclear Design Study for Reduced Boron Concentration Operation

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2008-10-15

    In PWR, Boron Dilution Accident (BDA) which is an inadvertent reduction of the soluble boron concentration in the primary coolant, can lead to a positive reactivity insertion and a power increase. In this study, an optimal Low Boron Concentration (LBC) core design will be developed by reducing an excess reactivity so as to possess passive inherently safety features as well as one of attentively preventive measures of BDA scenarios. The scope of the research project concerning the change of operational procedure in chemical shim system, will involve three main parts namely, nuclear design for LBC core, feasibility check on the proposed core in safety and costs, and PSA approach on design change benefits. In addition, successful system analysis of the reactivity effects due to boron dilution transients, require a full coupling between core thermal hydraulic, reactor dynamics, and the use of Computational Fluid Dynamics (CFD) codes.

  11. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  12. IP cores design from specifications to production modeling, verification, optimization, and protection

    CERN Document Server

    Mohamed, Khaled Salah

    2016-01-01

    This book describes the life cycle process of IP cores, from specification to production, including IP modeling, verification, optimization, and protection. Various trade-offs in the design process are discussed, including  those associated with many of the most common memory cores, controller IPs  and system-on-chip (SoC) buses. Readers will also benefit from the author’s practical coverage of new verification methodologies. such as bug localization, UVM, and scan-chain.  A SoC case study is presented to compare traditional verification with the new verification methodologies. ·         Discusses the entire life cycle process of IP cores, from specification to production, including IP modeling, verification, optimization, and protection; ·         Introduce a deep introduction for Verilog for both implementation and verification point of view.  ·         Demonstrates how to use IP in applications such as memory controllers and SoC buses. ·         Describes a new ver...

  13. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  14. Design of Computerized in Core Fuel Management System of Kartini Reactor

    International Nuclear Information System (INIS)

    Edi-Trijono-Budisantoso; Sardjono, Y; Edi-Purwanto; Widi-Setiawan

    2000-01-01

    The program organization for managing Kartini reactor fuel elements has been designed. This program organization work to process on-line operationdata-base and core configuration data-base to produce data-base for in-corefuer management. The in-core fuel management data-base consist of irradiationhistory card, radionuclides inventory and radiation dose for each fuelelement. The computation in this process based on the ORIGEN2, TRIGAP codesand some in-house developed codes that perform matching between output dataof many codes to output data of other code. This program organization worksunder control of a program manager by following the scheduled time table. Thedesign gives a description of the first step development of the in-core fuelmanagement that will be implemented in the internet web server. (author)

  15. Effective Domain Partitioning for Multi-Clock Domain IP Core Wrapper Design under Power Constraints

    Science.gov (United States)

    Yu, Thomas Edison; Yoneda, Tomokazu; Zhao, Danella; Fujiwara, Hideo

    The rapid advancement of VLSI technology has made it possible for chip designers and manufacturers to embed the components of a whole system onto a single chip, called System-on-Chip or SoC. SoCs make use of pre-designed modules, called IP-cores, which provide faster design time and quicker time-to-market. Furthermore, SoCs that operate at multiple clock domains and very low power requirements are being utilized in the latest communications, networking and signal processing devices. As a result, the testing of SoCs and multi-clock domain embedded cores under power constraints has been rapidly gaining importance. In this research, a novel method for designing power-aware test wrappers for embedded cores with multiple clock domains is presented. By effectively partitioning the various clock domains, we are able to increase the solution space of possible test schedules for the core. Since previous methods were limited to concurrently testing all the clock domains, we effectively remove this limitation by making use of bandwidth conversion, multiple shift frequencies and properly gating the clock signals to control the shift activity of various core logic elements. The combination of the above techniques gains us greater flexibility when determining an optimal test schedule under very tight power constraints. Furthermore, since it is computationally intensive to search the entire expanded solution space for the possible test schedules, we propose a heuristic 3-D bin packing algorithm to determine the optimal wrapper architecture and test schedule while minimizing the test time under power and bandwidth constraints.

  16. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  17. Design Basis of Core Components and their Realization in the frame of the EPR's{sup TM} Core Component Development

    Energy Technology Data Exchange (ETDEWEB)

    Schebitz, Florian [AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Mekmouche, Abdelhalim [AREVA NP SAS, 10 rue Juliette Recamier, 69456 Lyon Cedex 06 (France)

    2008-07-01

    Rod Cluster Control Assemblies (RCCAs), Thimble Plug Assemblies (TPAs), Primary Neutron Sources (PNS) and Secondary Neutron Sources (SNS) are essential for the operation of a Nuclear Power Plant. Different functional requirements ask for different components and geometries. Therefore three different core components are used within the primary circuit: - The RCCA, which contains the absorber materials, is used to regulate and shut down the nuclear chain reaction. Under these demanding conditions different effects are determining the lifetime of the RCCA and in particular of the control rods. Several improvements like ion-nitriding of the cladding, lengthening of the bottom end plug, helium backfilling and reduction of the absorber diameter in the bottom part, which have already been introduced with the HARMONI{sup TM} RCCA, show a real improvement in terms of lifetime. - The TPAs are used at positions without RCCAs and neutron sources to limit the by-pass flow-rate in the fuel assembly guide tubes. The advanced TPA design results from a perfect combination of French and German design experience feedback. Benefits like homogenized hydraulic flow and improved manageability in terms of handling tools show the joined experience. - The neutron sources are used to enhance the flux level when the core is sub-critical so as to facilitate the core start-up control by the neutron flux detectors. Primary and secondary neutron sources are designed in a common way with reviewed and improved methodology. As there are different ways and conditions to operate core components, several designs are available. For the EPR{sup TM}, the best methods and products have been chosen. All chosen components contribute to an optimized and safe operation of the EPR{sup TM}. (authors)

  18. Design/licensing of on-site package for core component

    International Nuclear Information System (INIS)

    Ogasawara, K.; Chohzuka, T.; Shimura, T.; Kikuchi, T.; Fujiwara, R.; Karigome, S.; Takani, M.

    1993-01-01

    For storage of used core components which are produced from reactors, Tohoku EPCO decided to construct a site bunker at Onagawa site. It was also decided to develop and fabricate one packaging to transport core components from the reactor buildings to the site bunker. The packaging will be used within the power station; therefore, it shall comply with 'The Law for the Business of Electric Power' and relevant Notification. The main requirements of the packaging are as follows: 1) The number of contents, such as channel boxes and control rods, shall be as large as possible. 2) The weight and the outer dimensions of the packaging shall be within the limitation of the reactor building and the site bunker. 3) Materials shall be selected from those which have been already applied for existing packagings and utilized without any problems. 4) It shall be considered during design of trunnions that handling equipment, such as lifting beam, can be used for not only this packaging but also for existing spent fuel packagings. The design of the packaging is completed and has been licensed. The packaging is scheduled to be utilized from November, 1993. (J.P.N.)

  19. Core optimization studies for a small heating reactor

    International Nuclear Information System (INIS)

    Galperin, A.

    1986-11-01

    Small heating reactor cores are characterized by a high contribution of the leakage to the neutron balance and by a large power density variation in the axial direction. A limited number of positions is available for the control rods, which are necessary to satisfy overall reactivity requirements subject to a safety related constraint on the maximum worth of each rod. Design approaches aimed to improve safety and fuel utilization performance of the core include separation of the cooling and moderating functions of the water with the core in order to reduce hot-to-cold reactivity shift and judicious application of the axial Gd zoning aimed to improve the discharge burnup distribution. Several design options are analyzed indicating a satisfactory solution of the axial burnup distribution problem. The feasibility of the control rod system including zircaloy, stainless steel, natural boron and possibly enriched boron rods is demonstrated. A preliminary analysis indicates directions for further improvements of the core performance by an additional reduction of the hot-to-cold reactivity shift and by a reduction of the depletion reactivity swing adopting a higher gadolinium concentration in the fuel or a two-batch fuel management scheme. (author)

  20. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Energy Technology Data Exchange (ETDEWEB)

    Alatawneh, Natheer, E-mail: natheer80@yahoo.com [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada); Rahman, Tanvir; Lowther, David A. [Department of Electrical and Computer Engineering, McGill University, QC H3A 0E9 (Canada); Chromik, Richard [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada)

    2017-06-15

    Highlights: • Develop a toroidal tester for magnetic measurements under compressive axial stress. • The shape of the toroidal ring has been verified using 3D stress analysis. • The developed design has been prototyped, and measurements were carried out. • Physical explanations for the core loss trend due to stress are provided. - Abstract: Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  1. DESIGN AND CONTROL OF SOAP-FREE HYDROPHILIC-HYDROPHOBIC CORE-SHELL LATEX PARTICLES WITH HIGH CARBOXYL CONTENT IN THE CORE OF THE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Wen-jiao Ji; Yi-ming Jiang; Bo-tian Li; Wei Deng; Cheng-you Kan

    2012-01-01

    Soap-free hydrophilic-hydrophobic core-shell latex particles with high carboxyl content in the core of the particles were synthesized via the seeded emulsion polymerization using methyl methacrylate (MMA),butyl acrylate (BA),methacrylic acid (MAA),styrene (St) and ethylene glycol dimethacrylate (EGDMA) as monomers,and the influences of MMA content used in the core preparation on polymerization,particle size and morphology were investigated by transmission electron microscopy,dynamic light scattering and conductometric titration.The results showed that the seeded emulsion polymerization could be carried out smoothly using "starved monomer feeding process" when MAA content in the core preparation was equal to or less than 24 wt%,and the encapsulating efficiency of the hydrophilic P(MMA-BA-MAA-EGDMA) core with the hydrophobic PSt shell decreased with the increase in MAA content.When an interlayer of P(MMA-MAA-St) with moderate polarity was inserted between the P(MMA-BA-MAA-EGDMA) core and the PSt shell,well designed soap-free hydrophilic-hydrophobic core-shell latex particles with 24 wt% MAA content in the core preparation were obtained.

  2. The design of an asynchronous Tiny RISC TM/TR4101 microprocessor core

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Jensen, P.; Korger, P.

    1998-01-01

    This paper presents the design of an asynchronous version of the TR4101 embedded microprocessor core developed by LSI Logic Inc. The asynchronous processor, called ARISC, was designed using the same CAD tools and the same standard cell library that was used to implement the TR4101. The paper repo...

  3. Development of core design/analysis technology for integral reactor; verification of SMART nuclear design by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Hong, In Seob; Han, Beom Seok; Jeong, Jong Seong [Seoul National University, Seoul (Korea)

    2002-03-01

    The objective of this project is to verify neutronics characteristics of the SMART core design as to compare computational results of the MCNAP code with those of the MASTER code. To achieve this goal, we will analyze neutronics characteristics of the SMART core using the MCNAP code and compare these results with results of the MASTER code. We improved parallel computing module and developed error analysis module of the MCNAP code. We analyzed mechanism of the error propagation through depletion computation and developed a calculation module for quantifying these errors. We performed depletion analysis for fuel pins and assemblies of the SMART core. We modeled a 3-D structure of the SMART core and considered a variation of material compositions by control rods operation and performed depletion analysis for the SMART core. We computed control-rod worths of assemblies and a reactor core for operation of individual control-rod groups. We computed core reactivity coefficients-MTC, FTC and compared these results with computational results of the MASTER code. To verify error analysis module of the MCNAP code, we analyzed error propagation through depletion of the SMART B-type assembly. 18 refs., 102 figs., 36 tabs. (Author)

  4. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  5. Comparative study of heterogeneous and homogeneous LMFBR cores in some accident conditions

    International Nuclear Information System (INIS)

    Renard, A.; Evrard, G.

    1978-01-01

    An heterogeneous design and a homogeneous one of a LMFBR core with the same power and similar dimensions are compared from the safety point-of-view. The comparison is performed for several accident conditions, such as Loss-of-Flow and Transient Overpower, with the same failure criteria and model assumptions for both cores. Qualitative trends are deduced from the behaviour of the core designs in the investigated transient conditions. (author)

  6. Analysis and study on core power capability with margin method

    International Nuclear Information System (INIS)

    Liu Tongxian; Wu Lei; Yu Yingrui; Zhou Jinman

    2015-01-01

    Core power capability analysis focuses on the power distribution control of reactor within the given mode of operation, for the purpose of defining the allowed normal operating space so that Condition Ⅰ maneuvering flexibility is maintained and Condition Ⅱ occurrences are adequately protected by the reactor protection system. For the traditional core power capability analysis methods, such as synthesis method or advanced three dimension method, usually calculate the key safety parameters of the power distribution, and then verify that these parameters meet the design criteria. For PWR with on-line power distribution monitoring system, core power capability analysis calculates the most power level which just meets the design criteria. On the base of 3D FAC method of Westinghouse, the calculation model of core power capability analysis with margin method is introduced to provide reference for engineers. The core power capability analysis of specific burnup of Sanmen NPP is performed with the margin method. The results demonstrate the rationality of the margin method. The calculation model of the margin method not only helps engineers to master the core power capability analysis for AP1000, but also provides reference for engineers for core power capability analysis of other PWR with on-line power distribution monitoring system. (authors)

  7. On the failure modes of alternative containment designs following postulated core meltdown

    International Nuclear Information System (INIS)

    Chan, C.K.; Knee, H.E.; Okrent, D.

    1977-01-01

    The containment response to a postulated core meltdown accident in a PWR ice condenser containment, a BWR Mark III containment and a BWR non-inerted Mark I containment has been examined to see if the WASH-1400 containment failure mode judgement for the Surry large, dry containment and the Peach Bottom Mark I inerted-containment are likely to be appropriate for these alternative containment plant designs. For the PWR, the representative accident chosen for the analysis is a large cold leg break accompanied by a loss of all electric power while the BWR respresentative event chosen is a recirculation line break without adequate core cooling function. Two containment event paths are studied for each of these two cases, depending on whether or not containment vapor suppression function is assumed to be available. Both the core and the containment pressure and temperature response to the accident events are computed for the four time intervals which characterize (a) blowdown of the pipe break, (b) core melt, (c) vessel melt-through, and (d) containment foundation penetration. The calculations are based on a best esimate of the most probable sequence, but certain phenomena and events were followed down multiple tracks. It appears that the non-inerted Mark I containment is not so vulnerable to overpressurization from hydrogen burning as the Mark III; however, acceptable temperatures may be exceeded. (Auth.)

  8. Optimal Design and Analysis of the Stepped Core for Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2016-01-01

    Full Text Available The key of wireless power transfer technology rests on finding the most suitable means to improve the efficiency of the system. The wireless power transfer system applied in implantable medical devices can reduce the patients’ physical and economic burden because it will achieve charging in vitro. For a deep brain stimulator, in this paper, the transmitter coil is designed and optimized. According to the previous research results, the coils with ferrite core can improve the performance of the wireless power transfer system. Compared with the normal ferrite core, the stepped core can produce more uniform magnetic flux density. In this paper, the finite element method (FEM is used to analyze the system. The simulation results indicate that the core loss generated in the optimal stepped ferrite core can reduce about 10% compared with the normal ferrite core, and the efficiency of the wireless power transfer system can be increased significantly.

  9. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  10. RELAP5 model for advanced neutron source reactor thermal-hydraulic transients, three-element-core design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. However, the total flow rate through the core is greater and the pressure drop across the core is less so that the primary coolant pumps and heat exchangers are operating at a different point in their performance curves. This report describes the new RELAP5 input for the core components.

  11. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Grotz, S.; Cheng, E.T.; Sharafat, S.; Cooke, P.I.H.

    1988-03-01

    TITAN-II is a compact, high power density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MWm/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a passive safety assurance design. 13 refs., 3 figs., 1 tab.

  12. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Cheng, E.T. (General Atomic Co., San Diego, CA (USA)); Grotz, S.P.; Sharafat, S.; Cooke, P.I.H. (California Univ., Los Angeles (USA). Dept. of Mechanical, Aerospace and Nuclear Engineering; California Univ., Los Angeles, CA (USA). Inst. for Plasma and Fusion Research); TITAN Research Group

    1989-04-01

    TITAN-II is a compact, high-power-density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MW/m/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a level 2 of passive safety assurance design. (orig.).

  13. Degraded core studies at INEL

    International Nuclear Information System (INIS)

    Buescher, B.J.; Howe, T.M.; Miller, R.W.

    1982-01-01

    During 1980, planning of prototypical severe fuel damage tests to be conducted in the Power Burst Facility (PBF) to investigate fuel behavior in severe accidents up to temperatures of 2400 0 K was initiated. This first series of tests is designated Phase I. Also, a code development effort was initiated to provide a reliable predictive tool for core behavior during severe accidents. During 1981, an assessment of capabilities and preliminary planning were begun for an in-pile experimental program to investigate the behavior of larger arrays of previously irradiated fuel rods at temperatures through UO 2 melting. This latter series of tests is designated Phase II

  14. The application of mechanical desktop in the design of the reactor core structure of China advanced research reactor

    International Nuclear Information System (INIS)

    Lang Ruifeng

    2002-01-01

    The three-dimensional parameterization design method is introduced to the design of reactor core structure for China advanced research reactor. Based on the modeling and dimension variable driving of the main parts as well as the modification of dimension variable, the preliminary design and modification of reactor core is carried out with high design efficiency and quality as well as short periods

  15. A system to obtain an optimized first design of a nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, L.A.

    1988-01-01

    This work proposes a method for obtaining a first design of nuclear reactor cores. It takes into consideration the objectives of the project, physical limits, economical limits and the reactor safety. For this purpose, some simplifications were made in the reactor model: one energy-group, one-dimensional and homogeneous core. The adopted model represents a typical PWR core and the optimized parameters are the fuel thickness, reflector thickness, enrichment and moderating ratio. The objective is to gain a larger residual reactivity at the end of the cycle. This work also presents results for a PWR core. From the results, many conclusions are established: system efficiency, limitations and problems. Also some suggestions are proposed to improve the system performance for future works. (autor)

  16. Design and performance of a pulse transformer based on Fe-based nanocrystalline core.

    Science.gov (United States)

    Yi, Liu; Xibo, Feng; Lin, Fuchang

    2011-08-01

    A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.

  17. Experimental Study for Effects of the Stud shape of the Core Catcher System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Seo, Gwang Hyeok; Shin, Doyoung; Jeun, Gyoodong; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    analysis, it was found that installation of studs affects the streamline by partially blocking the channel. In addition, it was observed that stagnant flow exists at the back of the studs. Such disturbances were expected to differ with the shape of the studs. Thus various stud shapes of rectangular, cylinder, and ellipse were investigated. With this preliminary CFD study, flow boiling experiments were designed and conducted to investigate the effects of the different stud shape on the critical heat flux (CHF). The occurrence of the CHF is anticipated at the back side of the stud due to the possible existence of the hot spot driven by the accumulation of the vapors. Final objective is, therefore, to confirm the effect of the core catcher stud on the performance of boiling heat transfer and to assure that the designed core catcher system may work as intended. In this study, CFD simulations for the different stud shapes of the core catcher system were carried out using ANSYS FLUENNT. With this preliminary CFD study, flow boiling experiments were designed. Final objective is to confirm the effect of the core catcher stud on the performance of boiling heat transfer and to assure that the designed core catcher system may work.

  18. Core mechanics and configuration behavior of advanced LMFBR core restraint concepts

    International Nuclear Information System (INIS)

    Fox, J.N.; Wei, B.C.

    1978-02-01

    Core restraint systems in LMFBRs maintain control of core mechanics and configuration behavior. Core restraint design is complex due to the close spacing between adjacent components, flux and temperature gradients, and irradiation-induced material property effects. Since the core assemblies interact with each other and transmit loads directly to the core restraint structural members, the core assemblies themselves are an integral part of the core restraint system. This paper presents an assessment of several advanced core restraint system and core assembly concepts relative to the expected performance of currently accepted designs. A recommended order for the development of the advanced concepts is also presented

  19. Comparison of Chamfer and Deep Chamfer Preparation Designs on the Fracture Resistance of Zirconia Core Restorations

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2011-06-01

    Full Text Available Background and aims. One of the major problems of all-ceramic restorations is their probable fracture under occlusal force. The aim of the present in vitro study was to compare the effect of two marginal designs (chamfer and deep chamfer on the fracture resistance of all-ceramic restorations, CERCON. Materials and methods. This in vitro study was carried out with single-blind experimental technique. One stainless steel die with 50’ chamfer finish line design (0.8 mm deep was prepared using a milling machine. Ten epoxy resin dies were prepared. The same die was retrieved and 50' chamfer was converted into a deep chamfer design (1 mm. Again ten epoxy resin dies were prepared from the deep chamfer die. Zirconia cores with 0.4 mm thickness and 35 µm cement space were fabricated on the epoxy resin dies (10 chamfer and 10 deep chamfer samples. The zirconia cores were cemented on the epoxy resin dies and underwent a fracture test with a universal testing machine and the samples were investigated from the point of view of the origin of the failure. Results. The mean values of fracture resistance for deep chamfer and chamfer samples were 1426.10±182.60 and 991.75±112.00 N, respectively. Student’s t-test revealed statistically significant differences between the groups. Conclusion. The results indicated a relationship between the marginal design of zirconia cores and their fracture resistance. A deep chamfer margin improved the biomechanical performance of posterior single zirconia crown restorations, which might be attributed to greater thickness and rounded internal angles in deep chamfer margins.

  20. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  1. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  2. Prediction of PEC core mechanical behaviour

    International Nuclear Information System (INIS)

    Cecchini, F.; Di Francesca, R.; Mcloughlin, J.; Neri, P.

    1984-01-01

    A brief description of the original PEC core restraint system is presented. Recent advanced seismic analysis studies have necessitated the introduction of anti-seismic design modifications which have increased the difficulties of fuel handling. Computer codes and numerical methods, used by ENEA to resolve core restraint and fuel handling problems are given together with an outline of mechanical tests and handling experiments in support of the anti-seismic core design. (author)

  3. Uncertainty Evaluation of Reactivity Coefficients for a large advanced SFR Core Design

    International Nuclear Information System (INIS)

    Khamakhem, Wassim; Rimpault, Gerald

    2008-01-01

    Sodium Cooled Fast Reactors are currently being reshaped in order to meet Generation IV goals on economics, safety and reliability, sustainability and proliferation resistance. Recent studies have led to large SFR cores for a 3600 MWth power plants, cores which exhibit interesting features. The designs have had to balance between competing aspects such as sustainability and safety characteristics. Sustainability in neutronic terms is translated into positive breeding gain and safety into rather low Na void reactivity effects. The studies have been done on two SFR concepts using oxide and carbide fuels. The use of the sensitivity theory in the ERANOS determinist code system has been used. Calculations have been performed with different sodium evaluations: JEF2.2, ERALIB-1 and the most recent JEFF3.1 and ENDF/B-VII in order to make a broad comparison. Values for the Na void reactivity effect exhibit differences as large as 14% when using the different sodium libraries. Uncertainties due to nuclear data on the reactivity coefficients were performed with BOLNA variances-covariances data, the Na Void Effect uncertainties are near to 12% at 1σ. Since, the uncertainties are far beyond the target accuracy for a design achieving high performance, two directions are envisaged: the first one is to perform new differential measurements or in a second attempt use integral experiments to improve effectively the nuclear data set and its uncertainties such as performed in the past with ERALIB1. (authors)

  4. Design, construction and operating experience of demonstration LMFBRs. The application of core and fuel performance experience in British reactors to commercial fast reactor design

    International Nuclear Information System (INIS)

    Bagley, K.Q.

    1978-01-01

    The Prototype Fast Reactor (PFR) sub-assembly design is described with particular emphasis on the choice of factors that are important in determining satisfactory performance. Reasons for the adoption of specific clad and fuel design details are given in their historical context, and irradiation experience - mostly from the Dounreay Fast Reactor (DFR) - in support of the choices is described. The implications of factors that are now better understood than when the PFR fuel was designed, notably neutron-induced void swelling and irradiation creep, are then considered. It is shown that the 'free-standing' core design used in PFR, in which the sub-assembly is unsupported above the level of the lower axial breeder, relies on the availability of low-swelling, preferably irradiation-creep-resistant alloys as sub-assembly structural materials in order to achieve the prescribed burn-up target. The advantages of a 'restrained core', which makes use of irradiation creep to redress the effects of material swelling, are noted briefly, and the application of this concept to the Commercial Demonstration Fast Reactor (CDFR) core design is described. Probable future trends in pin and sub-assembly design are reviewed and the scope of associated irradiation testing programmes defined. Arrangements for monitoring and evaluating fuel performance, both in reactor and post-irradiation, are outlined and the provisions for endorsement of CDFR pin, sub-assembly and core design details in PFR are indicated. (author)

  5. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  6. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  7. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  8. Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search

    International Nuclear Information System (INIS)

    Parks, G.T.

    1996-01-01

    The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends on the core simulator used; the GA itself is code independent

  9. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Science.gov (United States)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  10. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  11. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    International Nuclear Information System (INIS)

    Lazaro, A.; Schikorr, M.; Mikityuk, K.; Ammirabile, L.; Bandini, G.; Darmet, G.; Schmitt, D.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D.; Stempniewicz, M.

    2014-01-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs

  12. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  13. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    International Nuclear Information System (INIS)

    Huang Jinhua; Feng Kaiming; Deng Baiquan; Deng, P.Zh.; Zhang Guoshu; Hu Gang; He Kaihui; Wu Yican; Qiu Lijian; Huang Qunying; Xiao Bingjia; Liu Xiaoping; Chen Yixue; Kong, M.H.

    2002-01-01

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented

  14. Understanding the selection of core head design features to match precisely challenging well applications

    Energy Technology Data Exchange (ETDEWEB)

    Zambrana, Roberto; Sousa, J. Tadeu V. de; Antunes, Ricardo [Halliburton Servicos Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Reliable rock mechanical information is very important for optimum reservoir development. This information can help specialists to accurately estimate reserves, reservoir compaction, sand production, stress field orientation, etc. In all cases, the solutions to problems involving rock mechanics lead to significant cost savings. Consequently, it is important that the decisions be based on the most accurate information possible. For the describing rock mechanics, cores represent the major source of data and therefore should be of good quality. However, there are several well conditions that cause coring and core recovery to be difficult, for example: unconsolidated formations; laminated and fractured rocks; critical mud losses, etc. The problem becomes even worse in high-inclination wells with long horizontal sections. In such situations, the optimum selections of core heads become critical. This paper will discuss the most important design features that enable core heads to be matched precisely to various challenging applications. Cases histories will be used to illustrate the superior performance of selected core heads. They include coring in horizontal wells and in harsh well conditions with critical mud losses. (author)

  15. Review of advanced core designs for LMFBRs

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1986-01-01

    It is a matter of great importance for the development of LMFBR to reduce its power cost to the level of the other power generating means. For this purpose, some ideas that use advanced core concepts to reduce LMFBR's power cost by improving its fuel cycle economics have recently been proposed. In this report, two hopeful ideas that use advanced core concepts: (1) Ultra Long Life Core (ULLC) - non-refueling over LMFBR power plant life; (2) Integral Fast Reactor (IFR) concept - metal fueled core and pyrometallurgical reprocessing; are picked up and their economical effect and technical probrems are investigated. (author)

  16. Book Review. Inger Marie Lid: Universal design. Core values​​, knowledge, and practices

    Directory of Open Access Journals (Sweden)

    Sigmund Asmervik

    2013-12-01

    Full Text Available Sigmund Asmervik, dr.ing. Professor emeritus, Norwegian University of Life Sciences (UMB, has reviewed Inger Marie Lid’s book Universell utforming: Verdigrunnlag, kunnskap og praksis (Universal design: Core values​​, knowledge, and practices. He states that this book provides very good suggestions about topics relating to issues such as how people should be able to develop in the community with others and how to look after issues relating to dignity and bodily vulnerability. This expands and challenges the discourse around the concept of universal design, and is the book's most important contribution. As a textbook aimed at students of architecture and engineering, occupational therapy and physiotherapy studies, and otherwise to anyone who is engaged in universal design in practice, as it says on the publisher's website, it has some significant challenges.

  17. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  18. Interaction between core analysis methodology and nuclear design: some PWR examples

    International Nuclear Information System (INIS)

    Rothleder, B.M.; Eich, W.J.

    1982-01-01

    The interaction between core analysis methodology and nuclear design is exemplified by PSEUDAX, a major improvement related to the Advanced Recycle methodology program (ARMP) computer code system, still undergoing development by the Electric Power Research Institute. The mechanism of this interaction is explored by relating several specific nulcear design changes to the demands placed by these changes on the ARMP system, and by examining the meeting of these demands, first within the standard ARMP methodology and then through augmentation of the standard methodology by development of PSEUDAX

  19. Optimization of core reload design for low-leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.; Downar, T.J.; Sesonske, A.

    1987-01-01

    A method was developed to optimize pressurized water reactor low-leakage core reload designs that features the decoupling and sequential optimization of the fuel arrangement and control problems. The two-stage optimization process provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle (EOC) in the absence of all control poisons by employing a direct search method. The constant power, Haling depletion is used to provide the cycle length and EOC power peaking for each candidate core fuel arrangement. In the second stage, the core control poison requirements to meet the core peaking constraints throughout the cycle are determined using an approximate nonlinear programming technique

  20. Surrogates based multi-criteria predesign methodology of Sodium-cooled Fast Reactor cores – Application to CFV-like cores

    Energy Technology Data Exchange (ETDEWEB)

    Fabbris, Olivier [CEA DEN/DER/SESI, 13108 Saint-Paul-Lez-Durance (France); Dardour, Saied, E-mail: saied.dardour@cea.fr [CEA DEN/DER/SESI, 13108 Saint-Paul-Lez-Durance (France); Blaise, Patrick [CEA DEN/DER/SPEX, 13108 Saint-Paul-Lez-Durance (France); Ferrasse, Jean-Henry [Aix-Marseille Université, CNRS, ECM, M2P2 UMR 7340, 13451 Marseille (France); Saez, Manuel [CEA DEN/DER/SESI, 13108 Saint-Paul-Lez-Durance (France)

    2016-08-15

    Highlights: • We developed an ERANOS calculation scheme to evaluate the neutronics of CFV cores. • We used this scheme to simulate a number if cores within a predefined study space. • Simulation results were used to build surrogate models describing CFV neutronics. • These models were used to carry on global sensitivity analyses. • The methodology helped identify the most important core design parameters. - Abstract: The Sodium-cooled Fast Reactor (SFR) core predesign process is commonly realized on the basis of expert advices and local parametric studies. As such, in-deep knowledge of physical phenomena avoids an important number of expensive simulations. However, the study space is explored only partially. To ease the computational burden metamodels, or surrogate models, can be used, to quickly evaluate the performances of a wide set of different cores, individually defined by a set of parameters (pellet diameter, fissile height…), in the study space. This paper presents the development of a simplified neutronics ERANOS reference core calculation scheme that is then implemented in the construction of the Design of Experiment (DOE) database. The surrogate models for SFR CFV-like cores performances are developed, biases and uncertainties are quantified against the CFV-v1 version. Global Sensitivity Analysis also allowed highlighting antagonist performances for the design and to propose two alternative core configurations. A broadened application of the method with an optimization of a CFV-like core is also detailed. The Pareto front of the seven selected performance parameters has been studied using eleven surrogate models, based on Artificial Neural Network (ANN). The optimization demonstrates that the CFV-v1, designed using Best Estimate codes, under given performance constraints, is Pareto optimal: no other configuration is highlighted from the Multi-Objective Optimization (MOO) study. Further MOO analysis, including a specific study on impact of new

  1. Surrogates based multi-criteria predesign methodology of Sodium-cooled Fast Reactor cores – Application to CFV-like cores

    International Nuclear Information System (INIS)

    Fabbris, Olivier; Dardour, Saied; Blaise, Patrick; Ferrasse, Jean-Henry; Saez, Manuel

    2016-01-01

    Highlights: • We developed an ERANOS calculation scheme to evaluate the neutronics of CFV cores. • We used this scheme to simulate a number if cores within a predefined study space. • Simulation results were used to build surrogate models describing CFV neutronics. • These models were used to carry on global sensitivity analyses. • The methodology helped identify the most important core design parameters. - Abstract: The Sodium-cooled Fast Reactor (SFR) core predesign process is commonly realized on the basis of expert advices and local parametric studies. As such, in-deep knowledge of physical phenomena avoids an important number of expensive simulations. However, the study space is explored only partially. To ease the computational burden metamodels, or surrogate models, can be used, to quickly evaluate the performances of a wide set of different cores, individually defined by a set of parameters (pellet diameter, fissile height…), in the study space. This paper presents the development of a simplified neutronics ERANOS reference core calculation scheme that is then implemented in the construction of the Design of Experiment (DOE) database. The surrogate models for SFR CFV-like cores performances are developed, biases and uncertainties are quantified against the CFV-v1 version. Global Sensitivity Analysis also allowed highlighting antagonist performances for the design and to propose two alternative core configurations. A broadened application of the method with an optimization of a CFV-like core is also detailed. The Pareto front of the seven selected performance parameters has been studied using eleven surrogate models, based on Artificial Neural Network (ANN). The optimization demonstrates that the CFV-v1, designed using Best Estimate codes, under given performance constraints, is Pareto optimal: no other configuration is highlighted from the Multi-Objective Optimization (MOO) study. Further MOO analysis, including a specific study on impact of new

  2. Reference core design Mark-III of the experimental multi-purpose, high-temperature, gas-cooled reactor

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Watanabe, Takashi; Ishiguro, Okikazu; Kuroki, Syuzi

    1977-10-01

    The reactivity control system is one of the important items in reactor design, but it is much restricted by structural design of fuel element and pressure vessel in the experimental multi-purpose, high-temperature reactor. Preceding the first conceptual design of the reactor, therefore, the reactivity control system composed of control rod, burnable poison and reserve shutdown system in Mark-II design was re-studied, and several improvements were indicated. (1) The diameter of control rods must be as large as possible because it is impossible to increase the number of control rods. (2) The accuracy in estimation of the reactivity to be compensated with control rods is important because of the mutual interference of pair control rods with the twin configuration in a fuel element. (3) The improvement of core performance in burnup is accompanied by the reduction of design margin for control rods. (4) Increase of the reactivity to be compensated with the burnable poison leads to increase of the core reactivity recovery with burnup, and the assertion of the decrease for recovery of reactivity leads to increase of the temperature dependency of reactivity compensated with control rods. (5) Reduction of reactivity to be compensated with control rods is thus limited by cancellation of the effects in the reactivity recovery and the reactivity temperature dependency. (6) The reserve shutdown system can be designed with margin under the condition of excluding the reactivity of burnup from that to be compensated. (auth.)

  3. Implication of irradiation effects on materials data for the design of near core components

    International Nuclear Information System (INIS)

    Dietz, W.; Breitling, H.

    1995-01-01

    For LWR's strict regulations exist for the consideration of irradiation in the design and surveillance of the reactor pressure vessel in the various codes (ASME, RCC-M, KTA) but less for near core components. For FBR's no firm rules exist either for the vessel nor the reactor internals. In this paper the German design practices for the loop type SNR-300 will be presented, and also some information from the surveillance programme of the KNK-reactor. Austenitic stainless steels have been mainly selected for the near core components. For some special applications Ni-alloys and a stabilized 2 1/4 Cr 1 Mo-alloy were specified. Considerations of the irradiation effects on material properties will be made for the various temperature and fluence levels around the core. The surveillance programmes will be described. Both, the consideration of irradiation effects in the elastic and inelastic analysis and the surveillance programmes had been a part of the licensing process for SNR-300. (author). 8 figs, 4 tabs

  4. Design of Multi-core Fiber Patch Panel for Space Division Multiplexing Implementations

    Science.gov (United States)

    González, Luz E.; Morales, Alvaro; Rommel, Simon; Jørgensen, Bo F.; Porras-Montenegro, N.; Tafur Monroy, Idelfonso

    2018-03-01

    A multi-core fiber (MCF) patch panel was designed, allowing easy coupling of individual signals to and from a 7-core MCF. The device was characterized, measuring insertion loss and cross talk, finding highest insertion loss and lowest crosstalk at 1300 nm with values of 9.7 dB and -36.5 dB respectively, while at 1600 nm insertion loss drops to 4.8 dB and crosstalk increases to -24.1 dB. Two MCF splices between the fan-in module, the MCF, and the fan-out module are included in the characterization, and splicing parameters are discussed.

  5. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  6. Design of homogeneous trench-assisted multi-core fibers based on analytical model

    DEFF Research Database (Denmark)

    Ye, Feihong; Tu, Jiajing; Saitoh, Kunimasa

    2016-01-01

    We present a design method of homogeneous trench-assisted multicore fibers (TA-MCFs) based on an analytical model utilizing an analytical expression for the mode coupling coefficient between two adjacent cores. The analytical model can also be used for crosstalk (XT) properties analysis, such as ...

  7. Optimization design of toroidal core for magnetic energy harvesting near power line by considering saturation effect

    Science.gov (United States)

    Park, Bumjin; Kim, Dongwook; Park, Jaehyoung; Kim, Kibeom; Koo, Jay; Park, HyunHo; Ahn, Seungyoung

    2018-05-01

    Recently, magnetic energy harvesting technologies have been studied actively for self-sustainable operation of applications around power line. However, magnetic energy harvesting around power lines has the problem of magnetic saturation, which can cause power performance degradation of the harvester. In this paper, optimal design of a toroidal core for magnetic energy harvesters has been proposed with consideration of magnetic saturation near power lines. Using Permeability-H curve and Ampere's circuital law, the optimum dimensional parameters needed to generate induced voltage were analyzed via calculation and simulation. To reflect a real environment, we consider the nonlinear characteristic of the magnetic core material and supply current through a 3-phase distribution panel used in the industry. The effectiveness of the proposed design methodology is verified by experiments in a power distribution panel and takes 60.9 V from power line current of 60 A at 60 Hz.

  8. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core

  9. Intelligent stochastic optimization routine for in-core fuel cycle design

    International Nuclear Information System (INIS)

    Parks, G.T.

    1988-01-01

    Any reactor fuel management strategy must specify the fuel design, batch sizes, loading configurations, and operational procedures for each cycle. To permit detailed design studies, the complex core characteristics must necessarily be computer modeled. Thus, the identification of an optimal fuel cycle design represents an optimization problem with a nonlinear objective function (OF), nonlinear safety constraints, many control variables, and no direct derivative information. Most available library routines cannot tackle such problems; this paper introduces an intelligent stochastic optimization routine that can. There has been considerable interest recently in the application of stochastic methods to difficult optimization problems, based on the statistical mechanics algorithms originally attributed to Metropolis. Previous work showed that, in optimizing the performance of a British advanced gas-cooled reactor fuel stringer, a rudimentary version of the Metropolis algorithm performed as efficiently as the only suitable routine in the Numerical Algorithms Group library. Since then the performance of the Metropolis algorithm has been considerably enhanced by the introduction of self-tuning capabilities by which the routine adjusts its control parameters and search pattern as it progresses. Both features can be viewed as examples of artificial intelligence, in which the routine uses the accumulation of data, or experience, to guide its future actions

  10. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  11. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    Science.gov (United States)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  12. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2012-09-15

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  13. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  14. Core design for use with precision composite reflectors

    Science.gov (United States)

    Porter, Christopher C. (Inventor); Jacoy, Paul J. (Inventor); Schmitigal, Wesley P. (Inventor)

    1992-01-01

    A uniformly flexible core, and method for manufacturing the same, is disclosed for use between the face plates of a sandwich structure. The core is made of a plurality of thin corrugated strips, the corrugations being defined by a plurality of peaks and valleys connected to one another by a plurality of diagonal risers. The corrugated strips are orthogonally criss-crossed to form the core. The core is particularly suitable for use with high accuracy spherically curved sandwich structures because undesirable stresses in the curved face plates are minimized due to the uniform flexibility characteristics of the core in both the X and Y directions. The core is self venting because of the open geometry of the corrugations. The core can be made from any suitable composite, metal, or polymer. Thermal expansion problems in sandwich structures may be minimized by making the core from the same composite materials that are selected in the manufacture of the curved face plates because of their low coefficients of thermal expansion. Where the strips are made of a composite material, the core may be constructed by first cutting an already cured corrugated sheet into a plurality of corrugated strips and then secondarily bonding the strips to one another or, alternatively, by lying a plurality of uncured strips orthogonally over one another in a suitable jig and then curing and bonding the entire plurality of strips to one another in a single operation.

  15. CONSIDER - Core Outcome Set in IAD Research: study protocol for establishing a core set of outcomes and measurements in incontinence-associated dermatitis research.

    Science.gov (United States)

    Van den Bussche, Karen; De Meyer, Dorien; Van Damme, Nele; Kottner, Jan; Beeckman, Dimitri

    2017-10-01

    This study protocol describes the methodology for the development of a core set of outcomes and a core set of measurements for incontinence-associated dermatitis. Incontinence is a widespread disorder with an important impact on quality of life. One of the most common complications is incontinence-associated dermatitis, resulting from chemical and physical irritation of the skin barrier, triggering inflammation and skin damage. Managing incontinence-associated dermatitis is an important challenge for nurses. Several interventions have been assessed in clinical trials, but heterogeneity in study outcomes complicates the comparability and standardization. To overcome this challenge, the development of a core outcome set, a minimum set of outcomes and measurements to be assessed in clinical research, is needed. A project team, International Steering Committee and panelists will be involved to guide the development of the core outcome set. The framework of the Harmonizing Outcomes Measures for Eczema roadmap endorsed by Cochrane Skin Group Core Outcomes Set Initiative, is used to inform the project design. A systematic literature review, interviews to integrate the patients' perspective and a consensus study with healthcare researchers and providers using the Delphi procedure will be performed. The project was approved by the Ethics review Committee (April 2016). This is the first project that will identify a core outcome set of outcomes and measurements for incontinence-associated dermatitis research. A core outcome set will reduce possible reporting bias, allow results comparisons and statistical pooling across trials and strengthen evidence-based practice and decision-making. This project has been registered in the Core Outcome Measures in Effectiveness Trials (COMET) database and is part of the Cochrane Skin Group Core Outcomes Set Initiative (CSG-COUSIN). © 2016 John Wiley & Sons Ltd.

  16. Design features affecting dynamic behaviour of fast reactor cores

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1981-06-01

    The study of dynamic response of an LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 20 geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. We give a short description of this code. Simpler codes are sometimes good enough for parametric studies

  17. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  18. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  19. The Core Journal Concept in Black Studies

    Science.gov (United States)

    Weissinger, Thomas

    2010-01-01

    Black Studies scholars have shown interest in the core journal concept. Indeed, the idea of core journals for the study of the Black experience has changed several times since 1940. While Black Studies scholars are citing Black Studies journals with frequency, they also cite traditional disciplinary journals a great deal of the time. However,…

  20. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  1. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  2. Hualong One's nuclear reactor core design and relative safety issues research

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H., E-mail: yuhong_xing@126.com [Nuclear Power Inst. of China, Design and Research Sub-Inst., Chengdu, Sichuan (China)

    2015-07-01

    'Full text:' Hualong One, a third generation 1000MWe-class pressurized water reactor, is developed by China National Nuclear Cooperation (CNNC), based on the self-reliant technologies and experiences from China 40 years designing, construction, operation and maintenance of NPPs. In China, it has been approved to construct at Fuqing 5&6 and Fangchenggang 3&4. The Hualong One adopts advanced design features to dramatically enhance plant safety, economic efficiency and convenience of operation and maintenance. It consists of three loops with nominal thermal power output 3060 MWt and a 60-year design life. Its reactor core has 177 fuel assemblies, 18 month refueling interval (after initial cycle), and more than 15% thermal margin. It adopts low leakage loading pattern which can achieve better economy of the neutron, higher reactivity and lower radiation damage of pressure vessel. For the safety design, incorporating the feedback of Fukushima accident, the Hualong One has a combination of active and passive safety systems, a single station layout, double containment structure, and comprehensive implementation of defence-in-depth design principles. The new design features has been successfully evaluated to ensure that they enhance the performance and safety of Hualong One. Several experimental activates have been conducted, such as cavity injection and cooling system testing, passive containment heat removal system testing, and passive residual heat removal system of secondary side testing. The future improvements of Hualong reactor will focus on better economic core design and more reliable safety system. (author)

  3. A SCWR core design with a conceptual fuel assembly using a cruciform moderator

    International Nuclear Information System (INIS)

    Bae, Kang Mok; Joo, Hyung Kook; Lee, Hyun Chul; Noh, Jae Man; Bae, Yoon Yong

    2005-01-01

    A super critical water cooled reactor (SCWR) system has a potential to compete with the advanced fossil plant by achieving a high thermal efficiency up to 44% and a plant simplification by eliminating steam generators, steam dryers, steam separators, and recirculation pumps. Due to these advantages, a SCWR is considered as one of the most promising nuclear plants for the Generation-IV (Gen-IV) system. As a first step of a feasibility study a rectangular fuel assembly with a cruciform solid moderator was suggested as a conceptual assembly design at the Korea Atomic Energy Research Institute (KAERI) for the SCWR on a thermal neutron spectrum. In this paper, based on the system parameters proposed by the Gen-IV road map, a preliminary SCWR core design was performed using a conceptual assembly design focused on the power shape control, reactivity coefficients, and cladding temperature limit

  4. Data Acquisition System Design for Advanced Core-Cooling Mechanism Experiment

    International Nuclear Information System (INIS)

    Zhang, Ziyang; Tian, Fang; Zhang, Tao; Wang, Shen

    2011-01-01

    Data Acquisition System (DAS) design for Advanced Core-Cooling Mechanism Experiment(ACME) is studied in the paper. DAS is an important connection between test facility and result analysis. Firstly, it introduces DAS and its design requirement for ACME. Nearly one thousand data resources need record in ACME. They have different types and acquisition frequencies. In order to record these data, a large scale and high speed layered data acquisition system is developed. Secondly, it discusses the DAS design for ACME, including the analog signal adjusting circuits, clock circuit design, sampling frequencies, data storage and transmission by large database system, anti-interference and etc. Analog signal adjusting circuits are necessary to deal with different kinds of input data to gain standard data resources. Some data change slowly and others change in several seconds according to the test performed on ACME. So it is difficult to use uniform sampling frequencies, and a layered data acquisition system is introduced. A large database is built to store data for ACME test, which keeps data safer and makes subsequent data handling more convenient. A database hot backup is also applied to ensure data safety. The software of DAS is built by Labview, which can provide intuitionist result and friendly interface. Another important function of DAS is the ACME safety protection. Finally, the characteristics and improvement of DAS for ACME is analyzed compared to other test facility. Besides friendly user interface, DAS of ACME can also assure higher data precision and sampling frequency

  5. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  6. A rationally designed photo-chemo core-shell nanomedicine for inhibiting the migration of metastatic breast cancer cells followed by photodynamic killing.

    Science.gov (United States)

    Malarvizhi, Giridharan Loghanathan; Chandran, Parwathy; Retnakumari, Archana Payickattu; Ramachandran, Ranjith; Gupta, Neha; Nair, Shantikumar; Koyakutty, Manzoor

    2014-04-01

    A multifunctional core-shell nanomedicine capable of inhibiting the migratory capacity of metastatic cancer cells followed by imparting cytotoxic stress by photodynamic action is reported. Based on in silico design, we have developed a core-shell nanomedicine comprising of ~80nm size poly(lactic-co-glycolic acid) (PLGA) nano-core encapsulating photosensitizer, m-tetra(hydroxyphenyl)chlorin (mTHPC), and ~20nm size albumin nano-shell encapsulating tyrosine kinase inhibitor, Dasatinib, which impair cancer migration. This system was prepared by a sequential process involving electrospray of polymer core and coacervation of protein shell. Cell studies using metastatic breast cancer cells demonstrated disruption of Src kinase involved in the cancer migration by albumin-dasatinib nano-shell and generation of photoactivated oxidative stress by mTHPC-PLGA nano-core. This unique combinatorial photo-chemo nanotherapy resulted synergistic cytotoxicity in ~99% of the motility-impaired metastatic cells. This approach of blocking cancer migration followed by photodynamic killing using rationally designed nanomedicine is a promising new strategy against cancer metastasis. A multifunctional core-shell nanomedicine capable of inhibiting metastatic cancer cell migration, in addition to inducing photodynamic effects, is described in this paper. The authors document cytotoxicity in approximately 99% of the studied metastatic breast cancer cells. Similar approaches would be a very welcome addition to the treatment protocols of advanced metastatic breast cancer and other types of neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Fast reactor calculational route for Pu burning core design

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    This document provides a description of a calculational route, used in the Reactor Physics Research Section for sensitivity studies and initial design optimization calculations for fast reactor cores. The main purpose in producing this document was to provide a description of and user guides to the calculational methods, in English, as an aid to any future user of the calculational route who is (like the author) handicapped by a lack of literacy in Japanese. The document also provides for all users a compilation of information on the various parts of the calculational route, all in a single reference. In using the calculational route (to model Pu burning reactors) the author identified a number of areas where an improvement in the modelling of the standard calculational route was warranted. The document includes comments on and explanations of the modelling assumptions in the various calculations. Practical information on the use of the calculational route and the computer systems is also given. (J.P.N.)

  8. CORE DESIGNS OF ABWR FOR PROPOSED OF THE FIRST NUCLEAR POWER PLANT IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2015-04-01

    Full Text Available Indonesia as an archipelago has been experiencing high growth industry and energy demand due to high population growth, dynamic economic activities. The total population is around 230 million people and 75 % to the total population is living in Java. The introduction of Nuclear Power Plant on Java Bali electricity grid will be possible in 2022 for 2 GWe, using proven technology reactor like ABWR or others light water reactor with nominal power 1000 MWe. In this case, the rated thermal power for the equilibrium cycles is 3926 MWt, the cycle length is 18 month and overall capacity factor is 87 %. The designs were performed for an 872-fuel bundles ABWR core using GE-11 fuel type in an 9×9 fuel rod arrays with 2 Large Central Water Rods (LCWR. The calculations were divided into two steps; the first is to generate bundle library and the other is to make the thermal and reactivity limits satisfied for the core designs. Toshiba General Electric Bundle lattice Analysis (TGBLA and PANACEA computer codes were used as designs tools. TGBLA is a General Electric proprietary computer code which is used to generate bundle lattice library for fuel designs. PANACEA is General Electric proprietary computer code which is used as thermal hydraulic and neutronic coupled BWR core simulator. This result of core designs describes reactivity and thermal margins i.e.; Maximum Linear Heat Generation rate (MLHGR is lower than 14.4 kW/ft, Minimum Critical Power Ratio (MCPR is upper than 1.25, Hot Excess Reactivity (HOTXS is upper than 1 %Dk at BOC and 0.8 %Dk at 200 MWD/ST and Cold Shutdown Margin Reactivity (CSDM is upper than 1 %Dk. It is concluded that the equilibrium core design using GE-11 fuel bundle type satisfies the core design objectives for the proposed of the firs Indonesia ABWR Nuclear Power Plant. Keywords: The first NPP in Indonesia, ABWR-1000 MWe, and core designs.   Indonesia adalah sebagai negara kepulauan yang laju pertumbuhan industri, energi, penduduk

  9. CopperCore: a service based approach towards implementing the IMS Learning Design specification.

    NARCIS (Netherlands)

    Vogten, Hubert

    2006-01-01

    This paper presents a service developed by the Open University of the Netherlands, called CopperCore which implements an IMS Learning Design engine as service. The overall architecture is described including a detailed description of the web service application programming interfaces.

  10. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  11. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  12. Heterogeneous gas core reactor

    International Nuclear Information System (INIS)

    Han, K.I.

    1977-01-01

    Preliminary investigations of a heterogeneous gas core reactor (HGCR) concept suggest that this potential power reactor offers distinct advantages over other existing or conceptual reactor power plants. One of the most favorable features of the HGCR is the flexibility of the power producing system which allows it to be efficiently designed to conform to a desired optimum condition without major conceptual changes. The arrangement of bundles of moderator/coolant channels in a fissionable gas or mixture of gases makes a truly heterogeneous nuclear reactor core. It is this full heterogeneity for a gas-fueled reactor core which accounts for the novelty of the heterogeneous gas core reactor concept and leads to noted significant advantages over previous gas core systems with respect to neutron and fuel economy, power density, and heat transfer characteristics. The purpose of this work is to provide an insight into the design, operating characteristics, and safety of a heterogeneous gas core reactor system. The studies consist mainly of neutronic, energetic and kinetic analyses of the power producing and conversion systems as a preliminary assessment of the heterogeneous gas core reactor concept and basic design. The results of the conducted research indicate a high potential for the heterogeneous gas core reactor system as an electrical power generating unit (either large or small), with an overall efficiency as high as 40 to 45%. The HGCR system is found to be stable and safe, under the conditions imposed upon the analyses conducted in this work, due to the inherent safety of ann expanding gaseous fuel and the intrinsic feedback effects of the gas and water coolant

  13. Study on high conversion type core of innovative water reactor for flexible fuel cycle (FLWR) for minor actinide (MA) recycling

    International Nuclear Information System (INIS)

    Fukaya, Yuji; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    In order to ensure sustainable energy supplies in the future based on the well-established light water reactor (LWR) technologies, conceptual design studies have been performed on the innovative water reactor for flexible fuel cycle (FLWR) with the high conversion ratio core. For early introduction of FLWR without a serious technical gap from the LWR technologies, the conceptual design of the high conversion type one (HC-FLWR) was constructed to recycle reprocessed plutonium. Furthermore, an investigation of minor actinide (MA) recycling based on the HC-FLWR core concept has been performed and is presented in this paper. Because HC-FLWR is a near-term technology, it would be a good option in the future if HC-FLWR can recycle MAs. In order to recycle MAs in HC-FLWR, it has been found that the core design should be changed, because the loaded MA makes the void reactivity coefficient worse and decreases the discharge burn-up. To find a promising core design specification, the investigation on the core characteristics were performed using the results from parameter surveys with core burn-up calculations. The final core designs were established by coupled three dimensional neutronics and thermal-hydraulics core calculations. The major core specifications are as follows. The plutonium fissile (Puf) content is 13 wt%. The discharge burn-up is about 55 GWd/t. Around 2 wt% of Np or Am can be recycled. The MA conversion ratios are around unity. In particular, it has been found that loaded Np can be transmuted effectively in this core concept. Therefore, these concepts would be a good option to reduce environmental burdens.

  14. Design study on the helium engineering demonstration loop (HENDEL)

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Muto, Yasushi; Suzuki, Kunihiko

    1977-11-01

    Four reference studies made on Helium Engineering Demonstration Loop (HENDEL) are described. HENDEL is used in confirmation of the designs of VHTR components such as reactor structure, core structure, intermediate heat exchanger and piping. It consists of mother loop, adapter section and four test sections for fuel stack, reactor support and insulation structure, core structure and high temperature heat transfer component respectively. System and component designs of the mother and adapter section and preliminary designs of the four test sections are shown. And, the plans of operation, instrumentation, control, safety, utilities (electricity, cooling water and helium gas) and construction schedule of HENDEL and research and development of the test sections are also briefed. (auth.)

  15. Design of 50 MWe HTR-PBMR reactor core and nuclear power plant fuel using SRAC2006 programme

    International Nuclear Information System (INIS)

    Bima Caraka Putra; Yosaphat Sumardi; Yohannes Sardjono

    2014-01-01

    This research aims to assess the design of core and fuel of nuclear power plant type High Temperature Reactor-Pebble Bed Modular Reactor 50 MWe from the Beginning of Life (BOL) to Ending of life (EOL) with eight years operating life. The parameters that need to be analyzed in this research are the temperature distribution inside the core, quantity enrichment of U 235 , fuel composition, criticality, and temperature reactivity coefficient of the core. The research was conducted with a data set of core design parameters such as nuclides density, core and fuel dimensions, and the axial temperature distribution inside the core. Using SRAC2006 program package, the effective multiplication factor (k eff ) values obtained from the input data that has been prepared. The results show the value of the criticality of core is proportional to the addition of U 235 enrichment. The optimum enrichment obtained at 10.125% without the use of burnable poison with an excess reactivity of 3.1 2% at BOL. The addition Gd 2O3 obtained an optimum value of 12 ppm burnable poison with an excess reactivity 0.38 %. The use of Er 2O3 with an optimum value 290 ppm has an excess reactivity 1.24 % at BOL. The core temperature reactivity coefficient with and without the use of burnable poison has a negative values that indicates the nature of its inherent safety. (author)

  16. Study on in-core fuel management for CNP1500 nuclear power plant

    International Nuclear Information System (INIS)

    Li Dongsheng

    2005-10-01

    CNP1500 is a four-loop PWR nuclear power plant with light water as moderator and coolant. The reactor core is composed of 205 AFA-3GXL fuel assemblies. The active core height at cold is 426.4 cm and equivalent diameter is 347.0 cm. The reactor thermal output is 4250 MW, and average linear power density is 179.5 W/cm. The cycle length of equilibrium cycle core is 470 equivalent full power days. For all cycles, the moderator temperature coefficients at all conditions are negative values, the nuclear enthalpy rise factors F ΔH at hot full power, all control rods out and equilibrium xenon are less than the limit value, the maximum discharge assembly burnup is less 55000 MW·d/tU, and the shutdown margin values at the end of life meet design criteria. The low-leakage core loading reduces radiation damage on pressure vessel and is beneficial to prolong use lifetime of it. The in-core fuel management design scheme and main calculation results for CNP1500 nuclear power plant are presented. (author)

  17. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  18. A Feasibility Study on Core Cooling of Reduced-Moderation PWR for the Large Break LOCA

    International Nuclear Information System (INIS)

    Hiroyuki Yoshida; Akira Ohnuki; Hajime Akimoto

    2002-01-01

    A design study of a reduced-moderation water reactor (RMWR) with tight lattice core is being carried out at the Japan Atomic Energy Research Institute (JAERI) as one candidate for future reactors. The concept is developed to achieve a conversion ratio greater than unity using the tight lattice core (volume ratio of moderator to fuel is around 0.5 and the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated). Under such tight configuration, the core thermal margin becomes smaller and should be evaluated in a normal operation and also during the reflood phase in a large break loss-of-coolant accident (LBLOCA) for PWR type reactors. In this study, we have performed a feasibility evaluation on core cooling of reduced moderation PWR for the LBLOCA (200% break). The evaluation was performed for the primary system after the break by the REFLA/TRAC code. The core thermal output of the reduced moderation PWR is 2900 MWt, the gap between adjacent fuel rods is 1 mm, and heavy water is used as the moderator and coolant. The present design adopts seed fuel assemblies (MOX fuel) and several blanket fuel assemblies. In the blanket fuel assemblies, power density is lower than that of the seed fuel assemblies. Then, we set a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because the possibility that the coolant boils in the seed fuel assemblies is very high. The pressure vessel diameter is bigger in comparison with a current PWR and core height is smaller than the current one. The current 4-loop PWR system is used, and, however, to fit into the bigger pressure vessel volume (about 1.5 times), we set up the capacity of the accumulator (1.5 times of the current PWR). Although the maximum clad temperature reached at about 1200 K in the position of 0.6 m from the lower core support plate, it is sufficiently lower than the design criteria of the current PWR (1500 K). The core cooling of the reduced moderation

  19. Development of a standard data base for FBR core nuclear design (XIII). Analysis of small sample reactivity experiments at ZPPR-9

    International Nuclear Information System (INIS)

    Sato, Wakaei; Fukushima, Manabu; Ishikawa, Makoto

    2000-09-01

    A comprehensive study to evaluate and accumulate the abundant results of fast reactor physics is now in progress at O-arai Engineering Center to improve analytical methods and prediction accuracy of nuclear design for large fast breeder cores such as future commercial FBRs. The present report summarizes the analytical results of sample reactivity experiments at ZPPR-9 core, which has not been evaluated by the latest analytical method yet. The intention of the work is to extend and further generalize the standard data base for FBR core nuclear design. The analytical results of the sample reactivity experiments (samples: PU-30, U-6, DU-6, SS-1 and B-1) at ZPPR-9 core in JUPITER series, with the latest nuclear data library JENDL-3.2 and the analytical method which was established by the JUPITER analysis, can be concluded as follows: The region-averaged final C/E values generally agreed with unity within 5% differences at the inner core region. However, the C/E values of every sample showed the radial space-dependency increasing from center to core edge, especially the discrepancy of B-1 was the largest by 10%. Next, the influence of the present analytical results for the ZPPR-9 sample reactivity to the cross-section adjustment was evaluated. The reference case was a unified cross-section set ADJ98 based on the recent JUPITER analysis. As a conclusion, the present analytical results have sufficient physical consistency with other JUPITER data, and possess qualification as a part of the standard data base for FBR nuclear design. (author)

  20. [The relevance of core muscles in ice hockey players: a feasibility study].

    Science.gov (United States)

    Rogan, S; Blasimann, A; Nyffenegger, D; Zimmerli, N; Radlinger, L

    2013-12-01

    high correlation between SE of the ventral core muscles and sprint over 40 m (rho = 0.717, p = 0.030) could be demonstrated. This feasibility study has shown that the implementation of the selected design is adapted for future studies. Further studies are needed to better understand the relationship between the velocity rate and the MVC, and the SE respectively, as well as between the sprint and the SE. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  2. Behavior of composite sandwich panels with several core designs at different impact velocities

    Science.gov (United States)

    Jiga, Gabriel; Stamin, Ştefan; Dinu, Gabriela

    2018-02-01

    A sandwich composite represents a special class of composite materials that is manufactured by bonding two thin but stiff faces to a low density and low strength but thick core. The distance between the skins given by the core increases the flexural modulus of the panel with a low mass increase, producing an efficient structure able to resist at flexural and buckling loads. The strength of sandwich panels depends on the size of the panel, skins material and number or density of the cells within it. Sandwich composites are used widely in several industries, such as aerospace, automotive, medical and leisure industries. The behavior of composite sandwich panels with different core designs under different impact velocities are analyzed in this paper by numerical simulations performed on sandwich panels. The modeling was done in ANSYS and the analysis was performed through LS-DYNA.

  3. Modular Stellarator Reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  4. Modular stellarator reactor conceptual design study

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment

  5. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core

  6. Study of two medium size 'C' core electromagnets generating low magnetic fields

    International Nuclear Information System (INIS)

    Bhatia, M.S.; Dass, S.; Chatterjee, U.K.

    1987-01-01

    Magnetic field requirements of laboratories may impose constraints that often call for a variety of non-standard designs. The designer has to fulfil these demands without letting the design to become too inefficient. Since no ready design procedures are available he has to resort to intuition calculation and modelling. In spite of this there may be wide discrepancy between the design values and the actual results. This report describes the experience gained on two 'C' core electromagnets being used by authors. These magnets generate low magnetic fields over reasonably large volumes, a requirement that runs opposite to that of most other magnets. The study reveals the dependence of overall performance efficiency, field uniformity etc. on the design parameters. 31 figures. (author)

  7. Core damage frequency (reactor design) perspectives based on IPE results

    International Nuclear Information System (INIS)

    Camp, A.L.; Dingman, S.E.; Forester, J.A.

    1996-01-01

    This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed

  8. Design criteria for a self-actuated shutdown system to ensure limitation of core damage

    International Nuclear Information System (INIS)

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times

  9. Status of the R&D activities to the design of an ITER core CXRS diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Philippe, E-mail: ph.mertens@fz-juelich.de [Institute of Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich (FZJ), Trilateral Euregio Cluster, D-52425 Jülich (Germany); Castaño Bardawil, David A. [Institute of Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich (FZJ), Trilateral Euregio Cluster, D-52425 Jülich (Germany); Baross, Tétény [Wigner Research Centre for Physics (Wigner RCP), HU-1121 Budapest (Hungary); Biel, Wolfgang; Friese, Sebastian [Institute of Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich (FZJ), Trilateral Euregio Cluster, D-52425 Jülich (Germany); Hawkes, Nick [Culham Centre for Fusion Energy (CCFE), Culham OX14 3DB (United Kingdom); Jaspers, Roger J.E. [Eindhoven University of Technology (TU/e), PO Box 513, NL-5600 MB Eindhoven (Netherlands); Kotov, Vladislav; Krasikov, Yury; Krimmer, Andreas; Litnovsky, Andrey; Marchuk, Oleksander; Neubauer, Olaf [Institute of Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich (FZJ), Trilateral Euregio Cluster, D-52425 Jülich (Germany); Offermanns, Guido [Zentralinstitut für Engineering, Elektronik und Analytik ZEA-1 (Engineering and Technology), FZJ, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Panin, Anatoly [Institute of Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich (FZJ), Trilateral Euregio Cluster, D-52425 Jülich (Germany); and others

    2015-10-15

    Highlights: • The CXRS diagnostic for the core plasma of ITER will provide observation of the dedicated diagnostic beam (DNB) over a wide radial range, roughly r/a = 0.7 to 0. • A high performance (étendue × transmission, dynamic range) is expected for the port plug system since the beam attenuation is large and the background light omnipresent. • The design is particularly challenging in view of the ITER environment, especially with respect to the first mirror which faces the plasma. • The current status of development is presented by detailing several sub-systems before a four years design phase under an FPA between F4E and the ITER core CXRS Consortium (IC3). - Abstract: The CXRS (Charge-eXchange Recombination Spectroscopy) diagnostic for the core plasma of ITER will be designed to provide observation of the dedicated diagnostic beam (DNB) over a wide radial range, roughly from a normalised radius r/a = 0.7 to close to the plasma axis. The collected light will be transported through the Upper Port Plug #3 (UPP3) to a bundle of fibres and ultimately to a set of remote spectrometers. The design is particularly challenging in view of the ITER environment of particle, heat and neutron fluxes, temperature cycles, electromagnetic loads, vibrations, expected material degradation and fatigue, constraints against tritium penetration, integration in the plug and limited opportunities for maintenance. Moreover, a high performance (étendue × transmission, dynamic range) is expected for the port plug system since the beam attenuation is large and the background light omnipresent, especially in terms of bremsstrahlung, line radiation and reflections. The present contribution will give an overview of the current status and activities which deal with the core CXRS system, summarising the investigations which have taken place before entering the actual development and design phase.

  10. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  11. Current directions in core-shell nanoparticle design

    Science.gov (United States)

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  12. A study on criticality of coupled fast-thermal core HERBE at RB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Zavaljevski, M; Milosevic, M; Stefanovic, D; Nikolic, D; Avdic, S [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia); Popovic, D; Marinkovic, P [Faculty of Electrical Engineering, Beograd (Yugoslavia)

    1991-07-01

    The coupled fast-thermal core HERBE at the RB zero power heavy water reactor in Vinca was designed with the aim of improving the experimental possibilities in fast neutron fields. The requirements for minimum modifications in the RB construction and the use available fuel, restricted design flexibility of the coupled system. The following core is considered optimal in the light of the foregoing constraints: the central fast core of natural uranium is surrounded by a neutron filter zone (cadmium and natural uranium) and a converter zone (enriched uranium fuel, without moderator). The coupling region is heavy water. The thermal core in the form of the RB heavy water 80% enriched uranium lattice with 12 cm pitch. The criticality of the system is obtained by adjusting the moderator level. The critical heavy water levels were measured for normal reactor operation and some simulated accidental conditions. These data were analyzed by a computer code for the design of thermal and coupled fast-thermal reactor recently developed in IBK Nuclear Engineering Laboratory. Good agreement between the computations and experimental data was achieved. (author)

  13. A study on criticality of coupled fast-thermal core HERBE at RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Zavaljevski, M.; Milosevic, M.; Stefanovic, D.; Nikolic, D.; Avdic, S.; Popovic, D.; Marinkovic, P.

    1991-01-01

    The coupled fast-thermal core HERBE at the RB zero power heavy water reactor in Vinca was designed with the aim of improving the experimental possibilities in fast neutron fields. The requirements for minimum modifications in the RB construction and the use available fuel, restricted design flexibility of the coupled system. The following core is considered optimal in the light of the foregoing constraints: the central fast core of natural uranium is surrounded by a neutron filter zone (cadmium and natural uranium) and a converter zone (enriched uranium fuel, without moderator). The coupling region is heavy water. The thermal core in the form of the RB heavy water 80% enriched uranium lattice with 12 cm pitch. The criticality of the system is obtained by adjusting the moderator level. The critical heavy water levels were measured for normal reactor operation and some simulated accidental conditions. These data were analyzed by a computer code for the design of thermal and coupled fast-thermal reactor recently developed in IBK Nuclear Engineering Laboratory. Good agreement between the computations and experimental data was achieved. (author)

  14. Heysham II/Torness AGR core integrity

    International Nuclear Information System (INIS)

    Birch, A.L.; Hampson, J.D.

    1985-01-01

    The design and construction process for the Heysham II/Torness AGR core structures is presented. The design intent utilizing all past experience in designing and building AGR core structures is described. The major aspects of the design criteria and the design conditions are outlined to demonstrate how the integrity of the Heysham II/Torness core is assured. Since no recognized codes of practice for graphite core design exist, the National Nuclear Corporation (NNC) have conceived design criteria utilizing reserve factors based on their design experience. Target reserve factors are defined for particular loading conditions including the ultimate 'safe-shutdown earthquake'. The substantial programme of computer analysis and RandD work to substantiate the design, including seismic qualification, is described. In keeping with their responsibility for the detailed core structure design and the fuel path geometry (guide tube system), NNC attach great importance to design/manufacture/construction liaison, which is demonstrated in the quality assurance section. (author)

  15. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  16. Study of a Fine Grained Threaded Framework Design

    CERN Document Server

    Jones, Christopher

    2012-01-01

    Traditionally, HEP experiments exploit the multiple cores in a CPU by having each core process one event. However, future PC designs are expected to use CPUs which double the number of processing cores at the same rate as the cost of memory falls by a factor of two. This effectively means the amount of memory per processing core will remain constant. This is a major challenge for LHC processing frameworks since the LHC is expected to deliver more complex events (e.g. greater pileup events) in the coming years while the LHC experiment's frameworks are already memory constrained. Therefore in the not so distant future we may need to be able to efficiently use multiple cores to process one event. In this presentation we will discuss a design for an HEP processing framework which can allow very fine grained parallelization within one event as well as supporting processing multiple events simultaneously while minimizing the memory footprint of the job. The design is built around the libdispatch framework created ...

  17. The European strategy for fast reactor core static mechanics studies

    International Nuclear Information System (INIS)

    Jones, C.H.; Di Francesca, R.; Coors, D.; Steenberghe, T. van

    1987-01-01

    The strategy is designed to meet the needs of participating European countries by achieving the following objectives: To provide generic information and data on the static mechanics of all styles of core of interest, validate codes and optimise new designs. To endorse specific features of SPX2 and SNR2 designs. To provide the new facilities which are needed. To present the programme of work required and timescale. (orig./HP)

  18. Preliminary Study for Conceptual Design of Advanced Long Life Small Modular Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, T. K. [Argonne National Laboratory, Argonne (United States)

    2015-05-15

    As one of the non-water coolant Small-Modular Reactor (SMR) core concepts for use in the mid- to long-term, ANL has proposed a 100 MWe Advanced sodium-cooled Fast Reactor core concept (AFR-100) targeting a small grid, transportable from pre-licensed factories to the remote plant site for affordable supply. Various breed-and-burn core concepts have been proposed to extend the reactor cycle length, which includes CANDLE with a cigar-type depletion strategy, TerraPower reactors with fuel shuffling for effective breeding, et al. UNIST has also proposed an ultra-long cycle fast reactor (UCFR) core concept having the power rating of 1000 MWe. By adopting the breed-and-burn strategies, the UCFR core can maintain criticality for a targeting reactor lifetime of 60 years without refueling. The objective of this project is to develop an advanced long-life SMR core concept by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. A conceptual design of long life small modular fast reactor is under development by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. The feasibility of the long-life fast reactor concepts was reviewed to obtain the core design guidelines and the reactor design requirements of long life small modular fast reactor were proposed in this study.

  19. Optimized core design and fuel management of a pebble-bed type nuclear reactor

    NARCIS (Netherlands)

    Boer, B.

    2009-01-01

    The core design of a pebble-bed type Very High Temperature Reactor (VHTR) is optimized, aiming for an increase of the coolant outlet temperature to 1000 C, while retaining its inherent safety features. The VHTR has been selected by the international Generation IV research initiative as one of the

  20. Experimental studies of 350 Mw(e) heterogeneous LMFBR cores at ZPPR

    International Nuclear Information System (INIS)

    Collins, P.J.; McFarlane, H.F.; Beck, C.L.; Lineberry, M.J.; Carpenter, S.G.; Ducat, G.A.; Gasidlo, J.M.; Goin, R.W.

    1979-01-01

    The annular heterogeneous concept has been adopted for the Clinch River Breeder Reactor. To provide verification of design and safety analysis, fourteen core configurations were studied at ZPPR. The results and analysis of the early assemblies, ZPPR-7A, 7B, and 7C, have been previously reported and only the more significant conclusions are summarized here. Later assemblies, 7D to 7H, were designed to provide data on variations of control rod and internal blanket arrangements. Assemblies 8A to 8E provided data on the replacement of uranium by thorium in various blanket subassemblies

  1. Aseismic study of high temperature gas-cooled reactor core with block-type fuel, 3

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1985-01-01

    A two-dimensional horizontal seismic experiment with single axis and simultaneous two-axes excitations was performed to obtain the core seismic design data on the block-type high temperature gas-cooled reactor. Effects of excitation directions and core side support stiffness on characteristics of core displacements and reaction forces of support were revealed. The values of the side reaction forces are the largest in the excitation of flat-to-flat of hexagonal block. Preload from the core periphery to the core center are effective to decrease core displacements and side reaction forces. (author)

  2. Towards an Understanding of Instructional Design Heuristics: An Exploratory Delphi Study

    Science.gov (United States)

    York, Cindy S.; Ertmer, Peggy A.

    2011-01-01

    Evidence suggests that experienced instructional designers often use heuristics and adapted models when engaged in the instructional design problem-solving process. This study used the Delphi technique to identify a core set of heuristics designers reported as being important to the success of the design process. The overarching purpose of the…

  3. A liquid-metal reactor for burning minor actinides of spent light water reactor fuel. 1: Neutronics design study

    International Nuclear Information System (INIS)

    Choi, H.; Downar, T.J.

    1999-01-01

    A liquid-metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors (LWRs). The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the Doppler constant, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200-MW(thermal) core is able to consume the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics

  4. Risk reduction of core-melt accidents in advaned CAPRA burner cores

    International Nuclear Information System (INIS)

    Maschek, W.; Struwe, D.; Eigemann, M.

    1997-01-01

    As part of the CAPRA Program (Consommation Accrue de Plutonium dans les RApides) the feasibility of fast reactors is investigated to burn plutonium and also to destruct minor actinides. The design of CAPRA cores shows significant differences compared to conventional cores. Especially the high Pu-enrichment has an important influence on the core melt-down behavior and the associated recriticality risk. To cope with this risk, inherent design features and special measures/devices are investigated for their potential of early fuel discharge to reduce the criticality of the reactor core. An assessment of such measures/devices is given and experimental needs are formulated. 11 refs., 5 figs

  5. Annular Core Pulse Reactor upgrade quarterly report, April--June 1976

    International Nuclear Information System (INIS)

    1976-09-01

    Information is presented concerning safety, compliance, and documentation requirements; core design; console development; containment systems; fuel element design; UO 2 -BeO fuel development; secondary fuel material studies; and driver core fuel element

  6. CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, van, P., Koper, R., (2006). CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability. Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.

  7. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    International Nuclear Information System (INIS)

    Shin, Andong; Choi, Yong Won

    2016-01-01

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  8. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  9. Assessment of SFR reactor safety issues: Part II: Analysis results of ULOF transients imposed on a variety of different innovative core designs with SAS-SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kruessmann, R., E-mail: regina.kruessmann@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Ponomarev, A.; Pfrang, W.; Struwe, D. [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Champigny, J.; Carluec, B. [AREVA, 10, rue J. Récamier, 69456 Lyon Cedex 06 (France); Schmitt, D.; Verwaerde, D. [EDF R& D, 1 avenue du général de Gaulle, 92140 Clamart (France)

    2015-04-15

    Highlights: • Comparison of different core designs for a sodium-cooled fast reactor. • Safety assessment with the code system SAS-SFR. • Unprotected Loss of Flow (ULOF) scenario. • Sodium boiling and core melting cannot be avoided. • A net negative Na void effect provides more grace time prior to local SA destruction. - Abstract: In the framework of cooperation agreements between KIT-INR and AREVA SAS NP as well as between KIT-INR and EDF R&D in the years 2008–2013, the evaluation of severe transient behavior in sodium-cooled fast reactors (SFRs) was investigated. In Part I of this contribution, the efficiency of newly conceived prevention and mitigation measures was investigated for unprotected loss-of-flow (ULOF), unprotected loss-of-heat-sink (ULOHS) and the unprotected transient-overpower (UTOP) transients. In this second part, consequence analyses were performed for the initiation phase of different unprotected loss-of-flow (ULOF) scenarios imposed on a variety of different core design options of SFRs. The code system SAS-SFR was used for this purpose. Results of analyses for cases postulating unavailability of prevention measures as shut-down systems, passive and/or active additional devices show that entering into an energetic power excursion as a consequence of the initiation phase of a ULOF cannot be avoided for those core designs with a cumulative void reactivity feedback larger than zero. However, even for core designs aiming at values of the void reactivity less than zero it is difficult to find system design characteristics which prevent the transient entering into partial core destruction. Further studies of the transient core and system behavior would require codes dedicated to specific aspects of transition phase analyses and of in-vessel material relocation analyses.

  10. Feasibility of using gadolinium as a burnable poison in PWR cores. Final report

    International Nuclear Information System (INIS)

    Rothleder, B.M.

    1981-02-01

    As an alternative to the use of lumped burnable absorbers in PWR cores, distributed burnable absorbers are being considered for generic application. These burnable absorbers take the form of Gd 2 O 3 mixed with UO 2 in selected fuel rods (as is currently done in BWR cores). The work discussed herein concerns a three-dimensional feasibility study of the use of such distributed burnable absorbers in PWR cores. This study of distributed burnable absorbers was performed for the first cycle of a typical current design PWR using the following steps: analysis of a generic reference core design; determination of gadolinium assembly designs; determination of a generic gadolinium core design; evaluation of feasibility by examining selected parameters; and redesign of the generic gadolinium core, using axial zoning

  11. Evaluation of core distortion in FBR

    International Nuclear Information System (INIS)

    Ikarimoto, I.; Tanaka, M.; Okubo, Y.

    1984-01-01

    The analyses of FBR's core distortion are mainly performed in order to evaluate the following items: 1) Change of reactivity; 2) Force at pads on core assemblies; 3) Withdrawal force at refueling; 4) Loading, refueling and residual deviations of wrapper tubes (core assemblies) at the top; 5) Bowing modes of guide tubes for control rods. The analysis of core distortion are performed by using computer program for two-dimensional row deformation analysis or three-dimensional core deformation if necessary, considering these evaluated items which become design conditions. This report shows the relationship between core deformation analysis and component design, a point of view of choosing an analysis program for design considering core characteristics, and computing examples of core deformation of prototype class reactor by the above code. (author)

  12. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    International Nuclear Information System (INIS)

    Nunez-Carrera, Alejandro; Francois, Juan Luis; Martin-del-Campo, Cecilia; Espinosa-Paredes, Gilberto

    2005-01-01

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the 233 U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235 U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly

  13. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  14. Drilling equipment for difficult coring conditions: a new type of core lifter and triple tube core barrel

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J B

    1968-08-01

    Although considerable improvements in diamond drilling equipment have been made since the early 1950's, deficiencies in existing equipment led to the development of a new type core lifter and special 20 ft triple tube core barrel designed to operate in bad coring conditions. It is claimed that although developed essentially for coal drilling, the new equipment could be adapted to other fields of diamond drilling with the cost advantage of increased life of the core lifter.

  15. Study of a Fine Grained Threaded Framework Design

    International Nuclear Information System (INIS)

    Jones, C D

    2012-01-01

    Traditionally, HEP experiments exploit the multiple cores in a CPU by having each core process one event. However, future PC designs are expected to use CPUs which double the number of processing cores at the same rate as the cost of memory falls by a factor of two. This effectively means the amount of memory per processing core will remain constant. This is a major challenge for LHC processing frameworks since the LHC is expected to deliver more complex events (e.g. greater pileup events) in the coming years while the LHC experiment's frameworks are already memory constrained. Therefore in the not so distant future we may need to be able to efficiently use multiple cores to process one event. In this presentation we will discuss a design for an HEP processing framework which can allow very fine grained parallelization within one event as well as supporting processing multiple events simultaneously while minimizing the memory footprint of the job. The design is built around the libdispatch framework created by Apple Inc. (a port for Linux is available) whose central concept is the use of task queues. This design also accommodates the reality that not all code will be thread safe and therefore allows one to easily mark modules or sub parts of modules as being thread unsafe. In addition, the design efficiently handles the requirement that events in one run must all be processed before starting to process events from a different run. After explaining the design we will provide measurements from simulating different processing scenarios where the processing times used for the simulation are drawn from processing times measured from actual CMS event processing.

  16. Study of a Fine Grained Threaded Framework Design

    Science.gov (United States)

    Jones, C. D.

    2012-12-01

    Traditionally, HEP experiments exploit the multiple cores in a CPU by having each core process one event. However, future PC designs are expected to use CPUs which double the number of processing cores at the same rate as the cost of memory falls by a factor of two. This effectively means the amount of memory per processing core will remain constant. This is a major challenge for LHC processing frameworks since the LHC is expected to deliver more complex events (e.g. greater pileup events) in the coming years while the LHC experiment's frameworks are already memory constrained. Therefore in the not so distant future we may need to be able to efficiently use multiple cores to process one event. In this presentation we will discuss a design for an HEP processing framework which can allow very fine grained parallelization within one event as well as supporting processing multiple events simultaneously while minimizing the memory footprint of the job. The design is built around the libdispatch framework created by Apple Inc. (a port for Linux is available) whose central concept is the use of task queues. This design also accommodates the reality that not all code will be thread safe and therefore allows one to easily mark modules or sub parts of modules as being thread unsafe. In addition, the design efficiently handles the requirement that events in one run must all be processed before starting to process events from a different run. After explaining the design we will provide measurements from simulating different processing scenarios where the processing times used for the simulation are drawn from processing times measured from actual CMS event processing.

  17. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  18. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  19. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  20. Development of a standard data base for FBR core nuclear design. 10. Reevaluation of atomic number density of JOYO Mk-II core

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazuyuki; Sato, Wakaei [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Ishikawa, Makoto; Arii, Yoshio [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-07-01

    The material composition of JOYO Mk-II core components in its initial core was reevaluated as a part of the effort for developing a standard data base for FBR core nuclear design. The special feature of the reevaluation is to treat the decay of Pu-241 isotope, so that the atomic number densities of Pu-241 and Am-241 in fuel assemblies can be exactly evaluated on the initial critical date, Nov. 22nd, 1982. Further, the atomic number densities of other core components were also evaluated to improve the analytical accuracy. Those include the control rods which were not so strictly evaluated in the past, and the dummy fuels and the neutron sources which were not treated in the analytical model so far. The results of the present reevaluation were as follows: (1) The changes of atomic number densities of the major nuclides such as Pu-239, U-235 and U-238 were about {+-}0.2 to 0.3%. On the other hand, the number density of Pu-241, which was the motivation of the present work, was reduced by 12%. From the fact, the number densities in the past analysis might be based on the isotope measurement of the manufacturing point of time without considering the decay of Pu-241. (2) As the other core components, the number densities of control rods and outer reflector-type A were largely improved. (author)

  1. LMFR core thermohydraulics: Status and prospects

    International Nuclear Information System (INIS)

    2000-06-01

    One of the fundamental steps for a successful reactor core thermohydraulic design is the capability to predict, reliably and accurately, the temperature distribution in the core assemblies. A detailed knowledge of the assembly and fuel pin thermohydraulic behaviour in the steady state and transient conditions is an indispensable prerequisite to safe and stable operation of the reactor. Considerable experimental and theoretical studies on various aspects of LMFR core thermohydraulics are necessary to acquire such knowledge. During the last decade, there have been substantial advances in fast reactor core thermohydraulic design and operation in several countries with fast reactor programmes (notably in France, the Russian Federation, Japan, the United Kingdom, Germany and the United States of America). Chief among these has been the demonstration of reliable operation of reactor cores at a high burnup. During the last years, some additional countries such as China, India and the Republic of Korea have launched new fast reactor programmes. International exchange of information and experience on LMFR development including core thermohydraulic design is becoming of increasing importance to these countries. It is with this focus that the IAEA convened the Technical Committee on 'Methods and Codes for Calculations of Thermohydraulic Parameters for Fuel, Absorber Pins and Assemblies of LMFR's with Traditional and Burner Cores'. This meeting, attended by participants from seven countries, brought together a group of international experts to review and discuss the thermohydraulic advances and design approaches providing a reliable, safe and robust reactor core, as well as to exchange the experience accumulated in different countries of using the codes for thermohydraulic calculations and to discuss the issues requiring further research and development. A total of thirty technical papers presented covered theoretical and computational issues as well as experiments under

  2. A two-step approach for the preliminary evaluation of the thermal-hydraulics and safety of the ELSY open square core design

    International Nuclear Information System (INIS)

    Meloni, Paride; Bandini, Giacomino; Polidori, Massimiliano; Cervone, Antonio; Manservisi, Sandro

    2009-01-01

    Several innovative solutions for a liquid metal fast reactor design have been investigated in the EURATOM Sixth Framework Programme and an open-assembly core design for the ELSY (European Lead-cooled System) reactor has been proposed by ENEA. The development of this new reactor, based on innovative neutronic and safety considerations, requires a new approach to the thermal-hydraulic (T/H) core design. In this paper a new two-step approach of the T/H analysis for this open-assembly core is presented and, in particular is used for the evaluation of the preliminary core design of a 1500 MW lead fast reactor with open square lattice and three fuel radial zones with different levels of enrichment. In the first step a preliminary thermal-hydraulic and safety evaluation of the core neutronic design is investigated by using a one-dimensional RELAP5 model for independent channel analysis. Then two and three-dimensional effects are taken into account by using a dedicated tool for the evaluation of assembly mixing effects. The RELAP5 model, based on pressure loss and heat transfer correlations available for heavy liquid metal flows in rod bundle, consists of completely independent assemblies and therefore it can be used for a conservative evaluation of the thermal-hydraulics of the core reactor. Due to the open-lattice configuration, the two and three-dimensional effects are important and they are taken into account by using a simplified three-dimensional numerical model of an open square lattice reactor core, developed with the purpose of analyzing the whole core behavior. The numerical simulation is performed at assembly length level taking into account the local fluctuations of turbulent viscosity and energy exchange coefficients at sub-channel level through transfer operators based on parametric coefficients. A preliminary evaluation of the mixing effects between assembly flows on the temperature field has been performed by using an average assembly turbulent viscosity

  3. Large-break LOCA assessment for the highly advanced core design

    International Nuclear Information System (INIS)

    Doria, F.J.; Nath, V.I.; Hau, K.F.; Dam, R.F.; Vecchiarelli, J.

    1997-01-01

    Over the course of the years, a conceptual highly advanced core (HAC) reactor has been designed for Japan Electric Power Development Company Limited (EPDC). The HAC reactor, which is capable of generating 1326 MW of electrical power, consists of 640 CANDU-type fuel channels with each fuel channel containing twelve 61-element fuel bundles. As part of the conceptual design study, the performance of the HAC reactor during a large loss-of-coolant accident (LOCA) was assessed with the use of several computer codes. The SOPHT, CATHENA, ELOCA and ELESTRES computer codes were used to predict the thermalhydraulic behaviour of the circuit, thermalhydraulic behaviour of a single high-power channel, thermal-mechanical behaviour of the outer fuel elements contained in the high-powered channel and the steady-state fuel-element conditions respectively. The LOCAs that were analyzed include 100% reactor outlet header (ROH) break, and a survey of reactor inlet header (RIH) breaks ranging from 5% to 25%. The conceptual feasibility of the HAC design was evaluated against two criteria; namely, maximum sheath temperature less than 1200 deg C and AECL's 5% sheath straining criterion to assess failure by excessive straining. For the cases analyzed, the analysis predicted a maximum sheath temperature of 820 deg C and a maximum sheath strain of 1.5% (the maximum pressure-tube temperature was 515 deg C). Although the maximum element-burnup of the HAC design is extended beyond the CANDU 6 burnup, the maximum linear power of HAC (40 kW/m) is significantly lower than the maximum linear power of a CANDU 6 reactor (60 kW/m). The reduced element-power level in conjunction with internal design modification for the HAC design has resulted m significantly lower internal gas pressures under steady-state conditions, as compared with the CANDU 6 design. During a LOCA, the low linear powers and zero-void reactivity associated with the HAC design has increased the safety margin. In addition, the cases

  4. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  5. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  6. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  7. Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.

    1991-01-01

    An analysis of metal-, oxide-, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. (author)

  8. Correlations among FBR core characteristics for various fuel compositions

    International Nuclear Information System (INIS)

    Maruyama, Shuhei; Ohki, Shigeo; Okubo, Tsutomu; Kawashima, Katsuyuki; Mizuno, Tomoyasu

    2012-01-01

    In the design of a fast breeder reactor (FBR) core for the light water reactor (LWR) to FBR transition stage, it is indispensable to grasp the effect of a wide range of fuel composition variations on the core characteristics. This study finds good correlations between burnup reactivity and safety parameters, such as the sodium void reactivity and Doppler coefficient, for various fuel compositions and determines the mechanisms behind these correlations with the aid of sensitivity analyses. It is clarified that the Doppler coefficient is actually correlated with the other core characteristics by considering the constraint imposed by the requirement of sustaining criticality on the fuel composition variations. These correlations make it easy to specify the various properties ranges for core reactivity control and core safety, which are important for core design in determining the core specifications and performance. They provide significant information for FBR core design for the transition stage. Moreover, as an application of the above-mentioned correlations, a simplified burnup reactivity index is developed for rapid and rational estimation of the core characteristic variations. With the use of this index and these correlations, the core characteristic variations can be estimated for various fuel compositions without repeating the core calculations. (author)

  9. DIANA Code: Design and implementation of an analytic core calculus code by two group, two zone diffusion

    International Nuclear Information System (INIS)

    Mochi, Ignacio

    2005-01-01

    The principal parameters of nuclear reactors are determined in the conceptual design stage.For that purpose, it is necessary to have flexible calculation tools that represent the principal dependencies of such parameters.This capability is of critical importance in the design of innovative nuclear reactors.In order to have a proper tool that could assist the conceptual design of innovative nuclear reactors, we developed and implemented a neutronic core calculus code: DIANA (Diffusion Integral Analytic Neutron Analysis).To calculate the required parameters, this code generates its own cross sections using an analytic two group, two zones diffusion scheme based only on a minimal set of data (i.e. 2200 m/s and fission averaged microscopic cross sections, Wescott factors and Effective Resonance Integrals).Both to calculate cross sections and core parameters, DIANA takes into account heterogeneity effects that are included when it evaluates each zone.Among them lays the disadvantage factor of each energy group.DIANA was totally implemented through Object Oriented Programming using C++ language. This eases source code understanding and would allow a quick expansion of its capabilities if needed.The final product is a versatile and easy-to-use code that allows core calculations with a minimal amount of data.It also contains the required tools needed to perform many variational calculations such as the parameterisation of effective multiplication factors for different radii of the core.The diffusion scheme s simplicity allows an easy following of the involved phenomena, making DIANA the most suitable tool to design reactors whose physics lays beyond the parameters of present reactors.All this reasons make DIANA a good candidate for future innovative reactor analysis

  10. MONJU experimental data analysis and its feasibility evaluation to build up the standard data base for large FBR nuclear core design

    International Nuclear Information System (INIS)

    Sugino, K.; Iwai, T.

    2006-01-01

    MONJU experimental data analysis was performed by using the detailed calculation scheme for fast reactor cores developed in Japan. Subsequently, feasibility of the MONJU integral data was evaluated by the cross-section adjustment technique for the use of FBR nuclear core design. It is concluded that the MONJU integral data is quite valuable for building up the standard data base for large FBR nuclear core design. In addition, it is found that the application of the updated data base has a possibility to considerably improve the prediction accuracy of neutronic parameters for MONJU. (authors)

  11. Preliminary neutronics design studies for a 400 MWt STAR-LM

    International Nuclear Information System (INIS)

    Aliberti, G.; Yang, W. S.; Stillman, J. A.; Hill, R. N.

    2004-01-01

    Neutronics design studies for a 400 MWt high temperature fast reactor are being performed, utilizing lead coolant, transuranic (TRU) nitride fuel, and HT-9 structural material. Under the main design constraints of long fuel lifetime, natural convection heat transport, semi-autonomous control, and small unit size, parametric studies were performed to maximize the discharge burnup and minimize the burnup reactivity swing. Based on the results of these parametric studies, two point designs were developed for a single-batch once-through fuel cycle; one is a 15 full power year cycle design with core volume of 9.5 cubic meters, and the other is a 12 full power year cycle design with core volume of 7.4 cubic meters. For these two point designs, fuel cycle analyses and reactivity feedback coefficients calculations were performed. The 9.5 cubic meter design achieved an average discharge burnup of 83 MWd/kg with a maximum reactivity change over the lifetime of 0.6%. The peak fast fluence was well within the fast fluence limit of HT9, and both average and peak power densities were well below the estimated limit for natural circulation. The performances of the 7.4 cubic meter design were slightly inferior to this design. To enhance the passive safety characteristics, however, further design improvements need to be made to reduce the coolant density coefficient and to increase the radial expansion coefficient. (authors)

  12. Scale model study of the seismic response of a nuclear reactor core

    International Nuclear Information System (INIS)

    Dove, R.C.; Dunwoody, W.E.; Rhorer, R.L.

    1983-01-01

    The use of scale models to study the dynamics of a system of graphite core blocks used in certain nuclear reactor designs is described. Scaling laws, material selecton, model instrumentation to measure collision forces, and the response of several models to simulated seismic excitation are covered. The effects of Coulomb friction between the blocks and the clearance gaps between the blocks on the system response to seismic excitation are emphasized

  13. Conceptual core model for the reactor core test

    International Nuclear Information System (INIS)

    Swenson, L.D.

    1970-01-01

    Several design options for the ZrH Flight System Reactor were investigated which involved tradeoffs of core excess reactivity, reactor control, coolant mixing and cladding thickness. A design point was selected which is to be the basis for more detailed evaluation in the preliminary design phase. The selected design utilizes 295 elements with 0.670 inch element-to-element pitch, 32 mil thick Incoloy cladding, 18.00 inches long fuel meat, hydrogen content of 6.3 x 10 22 atoms/cc fuel, 10.5 w/o uranium, and a spiraled fin configuration with alternate elements having fins with spiral to the right, spiral to the left, and no fin at all (R-L-N fin configuration). Fin height is 30 mils for the center region of the core and 15 mils for the outer region. (U.S.)

  14. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  15. [Fracture resistance of Procera Allceram depending on the framework design--an in vitro study].

    Science.gov (United States)

    Hagmann, Edgar; Marinello, Carlo P; Zitzmann, Nicola U

    2006-01-01

    Procera AllCeram is one of the all-ceramic systems with an aluminium-oxide core employing CAD/CAM technology. The aim of the current study was to investigate the fracture resistance of Procera AllCeram full-ceramic crowns with a reduced core design compared to the conventional method. In addition, a possible influence of the preparation form (molars or premolars) and the cementation material (glas-ionomer or composite) was analyzed. For both preparation forms, 30 ceramic cores with reduced margins (collarless cores, test) and 30 cores with extended cores (control) were veneered with porcelain in a standardized procedure (total 120 crowns). For the test group, Procera-AllCeram-margin ceramic material was used for the porcelain collar. 40 crowns each were cemented on stainless steel dies with either Ketac-Cem Aplicap or Panavia F. The additional 40 crowns were set on polyurethane dies without cementation and occlusally loaded until fracture occurred. Among the molar crowns, no differences were observed in fracture resistance neither for the different core designs (test or control) nor for the cementation materials. For the premolar form, fusing of a porcelain margin was associated with a reduction in fracture resistance, while the use of composite cement was accompanied with an increase. The present in vitro results indicate that for Procera AllCeram crowns with a highly undulating preparation margin, a conventional core design combined with adhesive cementation is preferable, especially in the posterior region due to higher chewing forces; this assumption needs to be proven in clinical studies.

  16. Core concept for long operating cycle simplified BWR (LSBWR)

    International Nuclear Information System (INIS)

    Kouji, Hiraiwa; Noriyuki, Yoshida; Mikihide, Nakamaru; Hideaki, Heki; Masanori, Aritomi

    2002-01-01

    An innovative core concept for a long operating cycle simplified BWR (LSBWR) is currently being developed under a Toshiba Corporation and Tokyo Institute of Technology joint study. In this core concept, the combination of enriched uranium oxide fuels and loose-pitched lattice is adopted for an easy application of natural circulation. A combination of enriched gadolinium and 0.7-times sized small bundle with peripheral-positioned gadolinium rod is also adopted as a key design concept for 15-year cycle operation. Based on three-dimensional nuclear and thermal hydraulic calculation, a nuclear design for fuel bundle has been determined. Core performance has been evaluated based on this bundle design and shows that thermal performance and reactivity characteristics meet core design criteria. Additionally, a control rod operation plan for an extension of control rod life has been successfully determined. (author)

  17. Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Please, cite this publication as: Vogten, H., Martens, H., Nadolski, R., Tattersall, C., van Rosmalen, P., & Koper, R. (2006). Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration. Proceedings of International Workshop in Learning Networks

  18. A small long-cycle PWR core design concept using fully ceramic micro-encapsulated (FCM) and UO2–ThO2 fuels for burning of TRU

    International Nuclear Information System (INIS)

    Bae, Gonghoon; Hong, Ser Gi

    2015-01-01

    In this paper, a new small pressurized water reactor (PWR) core design concept using fully ceramic micro-encapsulated (FCM) particle fuels and UO 2 –ThO 2 fuels was studied for effective burning of transuranics from a view point of core neutronics. The core of this concept rate is 100 MWe. The core designs use the current PWR-proven technologies except for a mixed use of the FCM and UO 2 –ThO 2 fuel pins of low-enriched uranium. The significant burning of TRU is achieved with tri-isotropic particle fuels of FCM fuel pins, and the ThO 2 –UO 2 fuel pins are employed to achieve long-cycle length of ∼4 EFPYs (effective full-power year). Also, the effects of several candidate materials for reflector are analyzed in terms of core neutronics because the small core size leads to high sensitivity of reflector material on the cycle length. The final cores having 10 w/o SS303 and 90 w/o graphite reflector are shown to have high TRU burning rates of 33%–35% in FCM pins and significant net burning rates of 24%–25% in the total core with negative reactivity coefficients, low power peaking factors, and sufficient shutdown margins of control rods. (author)

  19. A study on the criticality search of transuranium recycling BWR core by adjusting supplied fuel composition in equilibrium state

    International Nuclear Information System (INIS)

    Seino, Takeshi; Sekimoto, Hiroshi

    1998-01-01

    There have been some difficulties in carrying out an extensive evaluation of the equilibrium state of Light Water Reactor (LWR) recycling operations keeping their fixed criticality condition using conventional design codes because of the complexity of their calculation model for practical fuel and core design and because of a large amount of calculation time. This study presents an efficient approach to secure the criticality in an equilibrium cycle by adjusting a supplied fuel composition. The criticality search is performed by the use of fuel importance obtained from the equation adjoint to a continuously fuel supplied core burnup equation. Using this method, some numerical analyses were carried out in order to evaluate the mixed oxide (MOX) fuel composition of equilibrium Boiling Water Reactor (BWR) cores satisfying the criticality requirement. The results showed the comprehensive and quantitative characteristics on the equilibrium cores confining transuraniums for different MOX fuel loading fractions and irradiating conditions

  20. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, L.; Tsige-Tamirat, H. [European Commission, JRC, Inst. for Energy, Petten (Netherlands)

    2011-07-01

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  1. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    International Nuclear Information System (INIS)

    Ammirabile, L.; Tsige-Tamirat, H.

    2011-01-01

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  2. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    International Nuclear Information System (INIS)

    Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran

    2009-01-01

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  3. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  4. A Systematic Approach to Design Low-Power Video Codec Cores

    Directory of Open Access Journals (Sweden)

    Corporaal Henk

    2007-01-01

    Full Text Available The higher resolutions and new functionality of video applications increase their throughput and processing requirements. In contrast, the energy and heat limitations of mobile devices demand low-power video cores. We propose a memory and communication centric design methodology to reach an energy-efficient dedicated implementation. First, memory optimizations are combined with algorithmic tuning. Then, a partitioning exploration introduces parallelism using a cyclo-static dataflow model that also expresses implementation-specific aspects of communication channels. Towards hardware, these channels are implemented as a restricted set of communication primitives. They enable an automated RTL development strategy for rigorous functional verification. The FPGA/ASIC design of an MPEG-4 Simple Profile video codec demonstrates the methodology. The video pipeline exploits the inherent functional parallelism of the codec and contains a tailored memory hierarchy with burst accesses to external memory. 4CIF encoding at 30 fps, consumes 71 mW in a 180 nm, 1.62 V UMC technology.

  5. A Systematic Approach to Design Low-Power Video Codec Cores

    Directory of Open Access Journals (Sweden)

    Kristof Denolf

    2007-05-01

    Full Text Available The higher resolutions and new functionality of video applications increase their throughput and processing requirements. In contrast, the energy and heat limitations of mobile devices demand low-power video cores. We propose a memory and communication centric design methodology to reach an energy-efficient dedicated implementation. First, memory optimizations are combined with algorithmic tuning. Then, a partitioning exploration introduces parallelism using a cyclo-static dataflow model that also expresses implementation-specific aspects of communication channels. Towards hardware, these channels are implemented as a restricted set of communication primitives. They enable an automated RTL development strategy for rigorous functional verification. The FPGA/ASIC design of an MPEG-4 Simple Profile video codec demonstrates the methodology. The video pipeline exploits the inherent functional parallelism of the codec and contains a tailored memory hierarchy with burst accesses to external memory. 4CIF encoding at 30 fps, consumes 71 mW in a 180 nm, 1.62 V UMC technology.

  6. Conceptual core design of Advanced Recycling Reactor based on mature technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR systems, Tokyo 150-0001 (Japan); Stein, Kim O., E-mail: Kim.Stein@areva.com [AREVA Federal Services, Bethesda, MD 20814 (United States); Nakazato, Wataru, E-mail: wataru_nakazato@mhi.co.jp [Mitsubishi Heavy Industries, Kobe 652-8585 (Japan); Mito, Makoto, E-mail: makoto_mito@mfbr.mhi.co.jp [Mitsubishi FBR systems, Tokyo 150-0001 (Japan)

    2011-06-15

    Research highlights: > ARR is an oxide fueled sodium cooled reactor based on mature technologies to destruct TRU. > Flat core with thick wall cladding tubes are effective for ARR to reduce TRU CR and the void reactivity. > The ARR has TRU burning capability from 19 to 21 kg/TW{sub th}h and is sustainable in recycling. > The ARR can also accept TRU from LWR-MOX fuel and recycled TRU fuel, etc. > The ARR can transform from TRU conversion ratio of 0.56 to breeding ratio of 1.03 smoothly and safely. - Abstract: This paper presents about comprehensive investigations into Advanced Recycling Reactor (ARR) based on existing and/or mature technologies (called 'Early ARR'), aiming transuranics (TRU) burning and considering harmonization of TRU burning capability, technology readiness, economy and safety. The ARR is a 500 MW{sub e} (1180 MW{sub th}) oxide fueled sodium cooled fast reactor, which the low core height of 70 cm and the large structure volume fraction with 1.0 mm of cladding thickness to tube wall have been chosen among 14 candidate concepts to reduce the TRU conversion ratio (CR) and the void reactivity, taking technology readiness into account. As a result of nuclear calculation, the ARR has TRU burning capability from 19 to 21 kg/TW{sub th}h and is sustainable in recycling. And the ARR can accept several kinds of TRU; the LWR uranium oxide fuels, LWR-MOX used nuclear fuel, and TRU recycled in this fuel cycle and the ARR is also flexible in TRU management in ways that it can transform from TRU CR of 0.56 to breeding ratio (BR) of 1.03. In addition, it has been confirmed that the ARR core conforms to the set design requirements; the void reactivity, the maximum linear heat rate, and the shutdown margin of reactivity control system. It has been confirmed that the closed fuel cycle with the ARR plants of 180 GW{sub th} will not release TRU outside and generate more electricity by 65% compared with the present nuclear power system in the US, curbing the

  7. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  8. A Delphi study to identify the core components of nurse to nurse handoff.

    Science.gov (United States)

    O'Rourke, Jennifer; Abraham, Joanna; Riesenberg, Lee Ann; Matson, Jeff; Lopez, Karen Dunn

    2018-03-08

    The aim of this study was to identify the core components of nurse-nurse handoffs. Patient handoffs involve a process of passing information, responsibility and control from one caregiver to the next during care transitions. Around the globe, ineffective handoffs have serious consequences resulting in wrong treatments, delays in diagnosis, longer stays, medication errors, patient falls and patient deaths. To date, the core components of nurse-nurse handoff have not been identified. This lack of identification is a significant gap in moving towards a standardized approach for nurse-nurse handoff. Mixed methods design using the Delphi technique. From May 2016 - October 2016, using a series of iterative steps, a panel of handoff experts gave feedback on the nurse-nurse handoff core components and the content in each component to be passed from one nurse to the next during a typical unit-based shift handoff. Consensus was defined as 80% agreement or higher. After three rounds of participant review, 17 handoff experts with backgrounds in clinical nursing practice, academia and handoff research came to consensus on the core components of handoff: patient summary, action plan and nurse-nurse synthesis. This is the first study to identify the core components of nurse-nurse handoff. Subsequent testing of the core components will involve evaluating the handoff approach in a simulated and then actual patient care environment. Our long-term goal is to improve patient safety outcomes by validating an evidence-based handoff framework and handoff curriculum for pre-licensure nursing programmes that strengthen the quality of their handoff communication as they enter clinical practice. © 2018 John Wiley & Sons Ltd.

  9. Neutronic design of a traveling wave reactor core

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2010-10-01

    The traveling wave reactor is an innovative kind of fast breeder reactor, capable of operate for decades without refueling and whose operation requires only a small amount of enriched fuel for the ignition. Also, one of its advantages is its versatility; it can be designed as small modules of about 100 M We or large scale units of 1000 M We. In this paper the behaviour of the traveling wave reactor core is studied in order to determine whether the traveling breeding/burning wave moves (as theoretically predicted) or not. To achieve this, we consider a two pieces cylinder, the first one, the ignition zone, containing highly enriched fuel and the second, the breeding zone, which is the larger, containing natural or depleted uranium or thorium. We consider that both zones are homogeneous mixtures of fuel, sodium as coolant and iron as structural material. We also include a reflector material outside the cylinder to reduce the neutron leakages. Simulations were run with MCNPX version 2.6 code. We observed that the wave does move as time passes as predicted by theory, and reactor remains supercritical in the time we have simulated (3000 days). Also, we found that thorium does not perform as well as uranium for breeding in this type of reactor. Further test with different reflectors are planned for both U-Pu and Th-U fuel cycles. (Author)

  10. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    International Nuclear Information System (INIS)

    2014-01-01

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.

  11. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry; Maldonado, Ivan

    2014-01-23

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.

  12. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    International Nuclear Information System (INIS)

    Ganapol, Barry; Maldonodo, Ivan

    2014-01-01

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity

  13. Rotary core drills

    Energy Technology Data Exchange (ETDEWEB)

    1967-11-30

    The design of a rotary core drill is described. Primary consideration is given to the following component parts of the drill: the inner and outer tube, the core bit, an adapter, and the core lifter. The adapter has the form of a downward-converging sleeve and is mounted to the lower end of the inner tube. The lifter, extending from the adapter, is split along each side so that it can be held open to permit movement of a core. It is possible to grip a core by allowing the lifter to assume a closed position.

  14. Search for design intelligence: A field study on the role of emotional intelligence in architectural design studios

    OpenAIRE

    Nazidizaji, Sajjad; Tomé, Ana; Regateiro, Francisco

    2017-01-01

    The design studio is the core of the architecture curriculum. Interpersonal interactions have a key role during the processes of design and critique. The influence of emotional intelligence (EQ) on interpersonal communication skills has been widely proven. This study examines the correlation between EQ and architectural design competence. To achieve this, 78 architecture students were selected via a simple random sampling method and tested using an EQ test questionnaire developed by Bradbury ...

  15. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    Science.gov (United States)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  16. Basic criticality relations for gas core design

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1992-01-01

    Minimum critical fissile concentrations are calculated for U-233, U-235, Pu-239, and Am-242m mixed homogeneously with hydrogen at temperatures to 15,000K. Minimum critical masses of the same mixtures in a 1000 liter sphere are also calculated. It is shown that propellent efficiencies of a gas core fizzler engine using Am-242m as fuel would exceed those in a solid core engine as small as 1000L operating at 100 atmospheres pressure. The same would be true for Pu-239 and possibly U-233 at pressures of 1000 atm. or at larger volumes

  17. Evaluation of effective coolant flow rate in advanced design of the small scale VHTR core

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Suzuki, Kunihiko; Murakami, Tomoyuki.

    1988-02-01

    This report describes the evaluation of effective coolant flow rate in the advanced design of the small scale VHTR core. The analytical design study was carried out after the 2nd stage of detailed design in order to reduce the cost of construction. The summary of the analytical results are as follows: (1) Crossflow loss coefficient of flange type fuel block having 0.1 mm of sealing gap is about 100 times higher than that of dowel type block adopted in the 2nd stage of detailed design. (2) In case that coolant channel outer diameter is 52 mm and hydraulic diameter is 6 mm, the effective coolant flow rates using flange and dowel type fuel blocks are 80 % and 70 % respectively. Because the crossflow loss coefficients of dowel type are lower than that of flange type. (3) The effective coolant flow rate, when crossflow loss coefficients are distributed along with the axial direction, agrees well with that using mean value of crossflow loss coefficient i.e. 5 x 10 11 m -4 . (author)

  18. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.; Sharafat, S.; Najmabadi, F.

    1989-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections, and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated at a level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated at a level 2 of safety assurance. (orig.)

  19. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.P.; Sharafat, S.; Najmabadi, F.

    1988-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated as level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated as level 2 of safety assurance. 7 refs., 2 figs

  20. Comparative study for minor actinide transmutation in various fast reactor core concepts

    International Nuclear Information System (INIS)

    Ohki, S.

    2001-01-01

    A comparative evaluation of minor actinide (MA) transmutation property was performed for various fast reactor core concepts. The differences of MA transmutation property were classified by the variations of fuel type (oxide, nitride, metal), coolant type (sodium, lead, carbon dioxide) and design philosophy. Both nitride and metal fuels bring about 10% larger MA transmutation amount compared with oxide fuel. The MA transmutation amount is almost unchanged by the difference between sodium and lead coolants, while carbon dioxide causes a reduction by about 10% compared with those. The changes of MA transmutation property by fuel and coolant types are comparatively small. The effects caused by the difference of core design are rather significant. (author)