WorldWideScience

Sample records for core design codes

  1. Comparison of design margin for core shroud in between design and construction code and fitness-for-service code

    International Nuclear Information System (INIS)

    Dozaki, Koji

    2007-01-01

    Structural design methods for core shroud of BWR are specified in JSME Design and Construction Code, like ASME Boiler and Pressure Vessel Code Sec. III, as a part of core support structure. Design margins are defined according to combination of the structural design method selected and service limit considered. Basically, those margins in JSME Code were determined after ASME Sec. III. Designers can select so-called twice-slope method for core shroud design among those design methods. On the other hand, flaw evaluation rules have been established for core shroud in JSME Fitness-for-Service Code. Twice-slope method is also adopted for fracture evaluation in that code even when the core shroud contains a flaw. Design margin was determined as structural factors separately from Design and Construction Code. As a natural consequence, there is a difference in those design margins between the two codes. In this paper, it is shown that the design margin in Fitness-for-Service Code is conservative by experimental evidences. Comparison of design margins between the two codes is discussed. (author)

  2. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  3. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  4. Feasibility Study of Core Design with a Monte Carlo Code for APR1400 Initial core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsun; Chang, Do Ik; Seong, Kibong [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    The Monte Carlo calculation becomes more popular and useful nowadays due to the rapid progress in computing power and parallel calculation techniques. There have been many attempts to analyze a commercial core by Monte Carlo transport code using the enhanced computer capability, recently. In this paper, Monte Carlo calculation of APR1400 initial core has been performed and the results are compared with the calculation results of conventional deterministic code to find out the feasibility of core design using Monte Carlo code. SERPENT, a 3D continuous-energy Monte Carlo reactor physics burnup calculation code is used for this purpose and the KARMA-ASTRA code system, which is used for a deterministic code of comparison. The preliminary investigation for the feasibility of commercial core design with Monte Carlo code was performed in this study. Simplified core geometry modeling was performed for the reactor core surroundings and reactor coolant model is based on two region model. The reactivity difference at HZP ARO condition between Monte Carlo code and the deterministic code is consistent with each other and the reactivity difference during the depletion could be reduced by adopting the realistic moderator temperature. The reactivity difference calculated at HFP, BOC, ARO equilibrium condition was 180 ±9 pcm, with axial moderator temperature of a deterministic code. The computing time will be a significant burden at this time for the application of Monte Carlo code to the commercial core design even with the application of parallel computing because numerous core simulations are required for actual loading pattern search. One of the remedy will be a combination of Monte Carlo code and the deterministic code to generate the physics data. The comparison of physics parameters with sophisticated moderator temperature modeling and depletion will be performed for a further study.

  5. Adaption of the PARCS Code for Core Design Audit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong Chol; Lee, Young Jin; Uhm, Jae Beop; Kim, Hyunjik [Nuclear Safety Evaluation, Daejeon (Korea, Republic of); Jeong, Hun Young; Ahn, Seunghoon; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The eigenvalue calculation also includes quasi-static core depletion analyses. PARCS has implemented variety of features and has been qualified as a regulatory audit code in conjunction with other NRC thermal-hydraulic codes such as TRACE or RELAP5. In this study, as an adaptation effort for audit applications, PARCS is applied for an audit analysis of a reload core design. The lattice physics code HELIOS is used for cross section generation. PARCS-HELIOS code system has been established as a core analysis tool. Calculation results have been compared on a wide spectrum of calculations such as power distribution, critical soluble boron concentration, and rod worth. A reasonable agreement between the audit calculation and the reference results has been found.

  6. Core design calculations of IRIS reactor using modified CORD-2 code package

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.

    2002-01-01

    Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)

  7. The integrated code system CASCADE-3D for advanced core design and safety analysis

    International Nuclear Information System (INIS)

    Neufert, A.; Van de Velde, A.

    1999-01-01

    The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)

  8. The APR1400 Core Design by Using APA Code System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Koh, Byung Marn

    2008-01-01

    The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator

  9. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  10. On-line generation of core monitoring power distribution in the SCOMS couppled with core design code

    International Nuclear Information System (INIS)

    Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.

    2002-01-01

    The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology

  11. Statistical core design methodology using the VIPRE thermal-hydraulics code

    International Nuclear Information System (INIS)

    Lloyd, M.W.; Feltus, M.A.

    1995-01-01

    An improved statistical core design methodology for developing a computational departure from nucleate boiling ratio (DNBR) correlation has been developed and applied in order to analyze the nominal 1.3 DNBR limit on Westinghouse Pressurized Water Reactor (PWR) cores. This analysis, although limited in scope, found that the DNBR limit can be reduced from 1.3 to some lower value and be accurate within an adequate confidence level of 95%, for three particular FSAR operational transients: turbine trip, complete loss of flow, and inadvertent opening of a pressurizer relief valve. The VIPRE-01 thermal-hydraulics code, the SAS/STAT statistical package, and the EPRI/Columbia University DNBR experimental data base were used in this research to develop the Pennsylvania State Statistical Core Design Methodology (PSSCDM). The VIPRE code was used to perform the necessary sensitivity studies and generate the EPRI correlation-calculated DNBR predictions. The SAS package used for these EPRI DNBR correlation predictions from VIPRE as a data set to determine the best fit for the empirical model and to perform the statistical analysis. (author)

  12. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  13. DIANA Code: Design and implementation of an analytic core calculus code by two group, two zone diffusion

    International Nuclear Information System (INIS)

    Mochi, Ignacio

    2005-01-01

    The principal parameters of nuclear reactors are determined in the conceptual design stage.For that purpose, it is necessary to have flexible calculation tools that represent the principal dependencies of such parameters.This capability is of critical importance in the design of innovative nuclear reactors.In order to have a proper tool that could assist the conceptual design of innovative nuclear reactors, we developed and implemented a neutronic core calculus code: DIANA (Diffusion Integral Analytic Neutron Analysis).To calculate the required parameters, this code generates its own cross sections using an analytic two group, two zones diffusion scheme based only on a minimal set of data (i.e. 2200 m/s and fission averaged microscopic cross sections, Wescott factors and Effective Resonance Integrals).Both to calculate cross sections and core parameters, DIANA takes into account heterogeneity effects that are included when it evaluates each zone.Among them lays the disadvantage factor of each energy group.DIANA was totally implemented through Object Oriented Programming using C++ language. This eases source code understanding and would allow a quick expansion of its capabilities if needed.The final product is a versatile and easy-to-use code that allows core calculations with a minimal amount of data.It also contains the required tools needed to perform many variational calculations such as the parameterisation of effective multiplication factors for different radii of the core.The diffusion scheme s simplicity allows an easy following of the involved phenomena, making DIANA the most suitable tool to design reactors whose physics lays beyond the parameters of present reactors.All this reasons make DIANA a good candidate for future innovative reactor analysis

  14. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  15. Development of intelligent code system to support conceptual design of nuclear reactor core

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro

    1997-01-01

    An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)

  16. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim Young In; Kim, Young Il; Kim, Y. G.; Kim, S. J.; Song, H.; Kim, T. K.; Kim, W. S.; Hwang, W.; Lee, B. O.; Park, C. K.; Joo, H. K.; Yoo, J. W.; Kang, H. Y.; Park, W. S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  17. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; In, Kim Young; Kim, Young Il; Kim, Y G; Kim, S J; Song, H; Kim, T K; Kim, W S; Hwang, W; Lee, B O; Park, C K; Joo, H K; Yoo, J W; Kang, H Y; Park, W S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  18. Melt spreading code assessment, modifications, and initial application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies

  19. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  20. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  1. About the application of MCNP4 code in nuclear reactor core design calculations

    International Nuclear Information System (INIS)

    Svarny, J.

    2000-01-01

    This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)

  2. CONSUL code package application for LMFR core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chibinyaev, A.V.; Teplov, P.S.; Frolova, M.V. [RNC ' Kurchatovskiy institute' , Kurchatov sq.1, Moscow (Russian Federation)

    2008-07-01

    CONSUL code package designed for the calculation of reactor core characteristics has been developed at the beginning of 90's. The calculation of nuclear reactor core characteristics is carried out on the basis of correlated neutron, isotope and temperature distributions. The code package has been generally used for LWR core characteristics calculations. At present CONSUL code package was adapted to calculate liquid metal fast reactors (LMFR). The comparisons with IAEA computational test 'Evaluation of benchmark calculations on a fast power reactor core with near zero sodium void effect' and BN-1800 testing calculations are presented in the paper. The IAEA benchmark core is based on the innovative core concept with sodium plenum above the core BN-800. BN-1800 core is the next development step which is foreseen for the Russian fast reactor concept. The comparison of the operational parameters has shown good agreement and confirms the possibility of CONSUL code package application for LMFR core calculation. (authors)

  3. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  4. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted

  5. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  6. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  7. Computer code validation study of PWR core design system, CASMO-3/MASTER-α

    International Nuclear Information System (INIS)

    Lee, K. H.; Kim, M. H.; Woo, S. W.

    1999-01-01

    In this paper, the feasibility of CASMO-3/MASTER-α nuclear design system was investigated for commercial PWR core. Validation calculation was performed as follows. Firstly, the accuracy of cross section generation from table set using linear feedback model was estimated. Secondly, the results of CASMO-3/MASTER-α was compared with CASMO-3/NESTLE 5.02 for a few benchmark problems. Microscopic cross sections computed from table set were almost the same with those from CASMO-3. There were small differences between calculated results of two code systems. Thirdly, the repetition of CASMO-3/MASTER-α calculation for Younggwang Unit-3, Cycle-1 core was done and their results were compared with nuclear design report(NDR) and uncertainty analysis results of KAERI. It was found that uncertainty analysis results were reliable enough because results were agreed each other. It was concluded that the use of nuclear design system CASMO-3/MASTER-α was validated for commercial PWR core

  8. Development of Regulatory Audit Core Safety Code : COREDAX

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae Yong; Jo, Jong Chull; Roh, Byung Hwan [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Jae Jun; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2005-07-01

    Korea Institute of Nuclear Safety (KINS) has developed a core neutronics simulator, COREDAX code, for verifying core safety of SMART-P reactor, which is technically supported by Korea Advanced Institute of Science and Technology (KAIST). The COREDAX code would be used for regulatory audit calculations of 3- dimendional core neutronics. The COREDAX code solves the steady-state and timedependent multi-group neutron diffusion equation in hexagonal geometry as well as rectangular geometry by analytic function expansion nodal (AFEN) method. AFEN method was developed at KAIST, and it was internationally verified that its accuracy is excellent. The COREDAX code is originally programmed based on the AFEN method. Accuracy of the code on the AFEN method was excellent for the hexagonal 2-dimensional problems, but there was a need for improvement for hexagonal-z 3-dimensional problems. Hence, several solution routines of the AFEN method are improved, and finally the advanced AFEN method is created. COREDAX code is based on the advanced AFEN method . The initial version of COREDAX code is to complete a basic framework, performing eigenvalue calculations and kinetics calculations with thermal-hydraulic feedbacks, for audit calculations of steady-state core design and reactivity-induced accidents of SMART-P reactor. This study describes the COREDAX code for hexagonal geometry.

  9. Highly parallel line-based image coding for many cores.

    Science.gov (United States)

    Peng, Xiulian; Xu, Jizheng; Zhou, You; Wu, Feng

    2012-01-01

    Computers are developing along with a new trend from the dual-core and quad-core processors to ones with tens or even hundreds of cores. Multimedia, as one of the most important applications in computers, has an urgent need to design parallel coding algorithms for compression. Taking intraframe/image coding as a start point, this paper proposes a pure line-by-line coding scheme (LBLC) to meet the need. In LBLC, an input image is processed line by line sequentially, and each line is divided into small fixed-length segments. The compression of all segments from prediction to entropy coding is completely independent and concurrent at many cores. Results on a general-purpose computer show that our scheme can get a 13.9 times speedup with 15 cores at the encoder and a 10.3 times speedup at the decoder. Ideally, such near-linear speeding relation with the number of cores can be kept for more than 100 cores. In addition to the high parallelism, the proposed scheme can perform comparatively or even better than the H.264 high profile above middle bit rates. At near-lossless coding, it outperforms H.264 more than 10 dB. At lossless coding, up to 14% bit-rate reduction is observed compared with H.264 lossless coding at the high 4:4:4 profile.

  10. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    International Nuclear Information System (INIS)

    2014-01-01

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.

  11. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry; Maldonado, Ivan

    2014-01-23

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.

  12. Verification of the CENTRM Module for Adaptation of the SCALE Code to NGNP Prismatic and PBR Core Designs

    International Nuclear Information System (INIS)

    Ganapol, Barry; Maldonodo, Ivan

    2014-01-01

    The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity

  13. Refuelling design and core calculations at NPP Paks: codes and methods

    International Nuclear Information System (INIS)

    Pos, I.; Nemes, I.; Javor, E.; Korpas, L.; Szecsenyi, Z.; Patai-Szabo, S.

    2001-01-01

    This article gives a brief review of the computer codes used in the fuel management practice at NPP Paks. The code package consist of the HELIOS neutron and gamma transport code for preparation of few-group cross section library, the CERBER code to determine the optimal core loading patterns and the C-PORCA code for detailed reactor physical analysis of different reactor states. The last two programs have been developed at the NPP Paks. HELIOS gives sturdy basis for our neutron physical calculation, CERBER and C-PORCA programs have been enhanced in great extent for last years. Methods and models have become more detailed and accurate as regards the calculated parameters and space resolution. Introduction of a more advanced data handling algorithm arbitrary move of fuel assemblies can be followed either in the reactor core or storage pool. The new interactive WINDOWS applications allow easier and more reliable use of codes. All these computer code developments made possible to handle and calculate new kind of fuels as profiled Russian and BNFL fuel with burnable poison or to support the reliable reuse of fuel assemblies stored in the storage pool. To extend thermo-hydraulic capability, with KFKI contribution the COBRA code will also be coupled to the system (Authors)

  14. Steady state thermal hydraulic analysis of LMR core using COBRA-K code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol

    1997-02-01

    A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.

  15. HTR core physics and transient analyses by the Panthermix code system

    International Nuclear Information System (INIS)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.

    2005-01-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes

  16. Development of seismic analysis model for HTGR core on commercial FEM code

    International Nuclear Information System (INIS)

    Tsuji, Nobumasa; Ohashi, Kazutaka

    2015-01-01

    The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)

  17. Thermal hydraulic design of PFBR core

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Vinayagam, P.P.; Ravichandar, S.C.

    2000-01-01

    The thermal-hydraulic design of core is important in respecting temperature limits while achieving higher outlet temperature. This paper deals with the analytical process developed and implemented for analysing steady state thermal-hydraulics of PFBR core. A computer code FLONE has been developed for optimisation of flow allocation through the subassemblies (SA). By calibrating β n (ratio between the maximum channel temperature rise and SA average temperature rise) values with SUPERENERGY code and using these values in FLONE code, prediction of average and maximum coolant temperature distribution is found to be reasonably accurate. Hence, FLONE code is very powerful design tool for core design. A computer code SAPD has been developed to calculate the pressure drop of fuel and blanket SA. Selection of spacer wire pitch depends on the pressure drop, flow-induced vibration and the mixing characteristics. A parametric study was made for optimisation of spacer wire pitch for the fuel SA. Experimental programme with 19 pin-bundle has been undertaken to find the flow-induced vibration characteristics of fuel SA. Also, experimental programme has been undertaken on a full-scale model to find the pressure drop characteristics in unorificed SA, orifices and the lifting force on the SA. (author)

  18. HTR core physics and transient analyses by the Panthermix code system

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.

  19. Design study on metal fuel FBR cores

    International Nuclear Information System (INIS)

    Yokoo, T.; Tanaka, Y.; Ogata, T.

    1991-01-01

    A design approach for metal fuel FBR core to maintain fuel integrity during transient events by limiting eutectic/liquid phase formation is proposed based on the current status of metallic fuel development. Its impact as the limitation on the core outlet temperature is assessed through its application to two of CRIEPI's core concepts, high linear power 1000 MWe homogeneous design and medium linear power 300 MWe radially heterogeneous design. SESAME/SALT code is used in this study to analyze steady state and transient fuel behavior. SE2-FA code is developed based on SUPERENERGY-2 and used to analyze core thermal-hydraulics with uncertainties. As the result, the core outlet temperatures of both designs are found to be limited to ≤500degC if it is required to prevent eutectic/liquid phase formation during operational transients in order to guarantee the fuel integrity. Additional assessment is made assuming an advanced limiting condition that allows small liquid phase formation based on the liquid phase penetration rate derived from existing experimental results. The result indicates possibility of raising core outlet temperature to ∼ 530degC. Also, it is found that core design technology improvements such as hot spot factors reduction can contribute to the core outlet temperature extension by 10 ∼ 20degC. (author)

  20. Development of Core Design Technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Hong, S. G.; Jang, J. W. (and others)

    2007-06-15

    This report describes the contents of core design technology and computer code system development performed during 2005 and 2006 on the objects of nuclear proliferation resistant core and nuclear fuel basic key technology development security. Also, it is including the future application plans for the results and the developed methodology, important information and the materials acquired in this period. Two core designs with single enrichment were considered for the KALIMER-600 during the first year : 1) the first core uses the non-fuel rods such as B4C, ZrH1.8, and dummy rods, 2) the core using different cladding thickness for each core region (inner, middle, and outer cores) without non-fuel rods to flatten the power distribution. In particular, the latter design was intended to simplify the fuel assembly design by eliminating the heterogeneity. It was found that the proposed design satisfy all of the Gen IV SFR design goals on the cycle length longer than 18 EFPM, fuel discharge burnup larger than 80GWd/t, sodium void worth, conversion ratio, reactivity burnup swing and so on. For this object reactor, the structure integrity outside of reactor is confirmed for the radiation exposure during the plant life according to the result of shielding design and evaluation. The transmutation capability and the core characteristics of sodium cooled fast reactor was also evaluated according to the change of MA amount. The reactivity coefficients for the BN-600 reactor with MA fueled are calculated and the results are compared and evaluated with other participants results. Even though the discrepancies between the results of participants are somewhat large but the K-CORE results are close to the average within a standard deviation. To have the capability of 3-dimensional core dynamic analysis such as analyzing power distribution and reactivity variations according to the asymmetric insertion/withdrawal of control rods, the calculation module for core dynamic parameters was

  1. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  2. The verification of PWR-fuel code for PWR in-core fuel management

    International Nuclear Information System (INIS)

    Surian Pinem; Tagor M Sembiring; Tukiran

    2015-01-01

    In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)

  3. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  4. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  5. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  6. The whiteStar development project: Westinghouse's next generation core design simulator and core monitoring software to power the nuclear renaissance

    International Nuclear Information System (INIS)

    Boyd, W. A.; Mayhue, L. T.; Penkrot, V. S.; Zhang, B.

    2009-01-01

    The WhiteStar project has undertaken the development of the next generation core analysis and monitoring system for Westinghouse Electric Company. This on-going project focuses on the development of the ANC core simulator, BEACON core monitoring system and NEXUS nuclear data generation system. This system contains many functional upgrades to the ANC core simulator and BEACON core monitoring products as well as the release of the NEXUS family of codes. The NEXUS family of codes is an automated once-through cross section generation system designed for use in both PWR and BWR applications. ANC is a multi-dimensional nodal code for all nuclear core design calculations at a given condition. ANC predicts core reactivity, assembly power, rod power, detector thimble flux, and other relevant core characteristics. BEACON is an advanced core monitoring and support system which uses existing instrumentation data in conjunction with an analytical methodology for on-line generation and evaluation of 3D core power distributions. This new system is needed to design and monitor the Westinghouse AP1000 PWR. This paper describes provides an overview of the software system, software development methodologies used as well some initial results. (authors)

  7. Web-based Core Design System Development

    International Nuclear Information System (INIS)

    Moon, So Young; Kim, Hyung Jin; Yang, Sung Tae; Hong, Sun Kwan

    2011-01-01

    The selection of a loading pattern is one of core design processes in the operation of a nuclear power plant. A potential new loading pattern is identified by selecting fuels that to not exceed the major limiting factors of the design and that satisfy the core design conditions for employing fuel data from the existing loading pattern of the current operating cycle. The selection of a loading pattern is also related to the cycle plan of an operating nuclear power plant and must meet safety and economic requirements. In selecting an appropriate loading pattern, all aspects, such as input creation, code runs and result processes are processed as text forms manually by a designer, all of which may be subject to human error, such as syntax or running errors. Time-consuming results analysis and decision-making processes are the most significant inefficiencies to avoid. A web-based nuclear plant core design system was developed here to remedy the shortcomings of an existing core design system. The proposed system adopts the general methodology of OPR1000 (Korea Standard Nuclear Power Plants) and Westinghouse-type plants. Additionally, it offers a GUI (Graphic User Interface)-based core design environment with a user-friendly interface for operators. It reduces human errors related to design model creation, computation, final reload core model selection, final output confirmation, and result data validation and verification. Most significantly, it reduces the core design time by more than 75% compared to its predecessor

  8. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR

  9. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  10. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  11. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  12. Fast breeder physics and nuclear core design

    International Nuclear Information System (INIS)

    Marth, W.; Schroeder, R.

    1983-07-01

    This report gathers the papers that have been presented on January 18/19, 1983 at a seminar ''Fast breeder physics and nuclear core design'' held at KfK. These papers cover the results obtained within about the last five years in the r+d program and give some indication, what still has to be done. To begin with, the ''tools'' of the core designer, i.e. nuclear data and neutronics codes are covered in a comprehensive way, the seminar emphasized the applications, however. First of all the accuracies obtained for the most important parameters are presented for the design of homogeneous and heterogeneous cores of about 1000 MWe, they are based on the results of critical experiments. This is followed by a survey on activities related to the KNK II reactor, i.e. calculations concerning a modification of the core as well as critical experiments done with respect to re-loads. Finally, work concerning reactivity worths of accident configurations is presented: the generation of reactivity worths for the input of safety-related calculations of a SNR 2 design, and critical experiments to investigate the requirements for the codes to be used for these calculations. These papers are accompanied by two contributions from the industrial partners. The first one deals with the requirements to nuclear design methods as seen by the reactor designer and then shows what has been achieved. The latter one presents state, trends, and methods of the SNR 2 design. The concluding remarks compare the state of the art reached within DeBeNe with international achievements. (orig.) [de

  13. An integrated software system for core design and safety analyses: Cascade-3D

    International Nuclear Information System (INIS)

    Wan De Velde, A.; Finnemann, H.; Hahn, T.; Merk, S.

    1999-01-01

    The new Siemens program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of the most advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management. (authors)

  14. Tools and applications for core design and shielding in fast reactors

    International Nuclear Information System (INIS)

    Rachamin, Reuven

    2013-01-01

    Outline: • Modeling of SFR cores using the Serpent-DYN3D code sequence; • Core shielding assessment for the design of FASTEF-MYRRHA; • Neutron shielding studies on an advanced Molten Salt Fast Reactor (MSFR) design

  15. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  16. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  17. DANDE-a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems

  18. Improvement of JRR-4 core management code system

    International Nuclear Information System (INIS)

    Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N.

    2000-01-01

    In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)

  19. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  20. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    International Nuclear Information System (INIS)

    Lazaro, A.; Schikorr, M.; Mikityuk, K.; Ammirabile, L.; Bandini, G.; Darmet, G.; Schmitt, D.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D.; Stempniewicz, M.

    2014-01-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs

  1. Overview of current RFSP-code capabilities for CANDU core analysis

    International Nuclear Information System (INIS)

    Rouben, B.

    1996-01-01

    RFSP (Reactor Fuelling Simulation Program) is the major finite-reactor computer code in use at the Atomic Energy of Canada Limited for the design and analysis of CANDU reactor cores. An overview is given of the major computational capabilities available in RFSP. (author) 11 refs., 29 figs

  2. Core design methodology and software for Temelin NPP

    International Nuclear Information System (INIS)

    Havluj, F; Hejzlar, J.; Klouzal, J.; Stary, V.; Vocka, R.

    2011-01-01

    In the frame of the process of fuel vendor change at Temelin NPP in the Czech Republic, where, starting since 2010, TVEL TVSA-T fuel is loaded instead of Westinghouse VVANTAGE-6 fuel, new methodologies for core design and core reload safety evaluation have been developed. These documents are based on the methodologies delivered by TVEL within the fuel contract, and they were further adapted according to Temelin NPP operational needs and according to the current practice at NPP. Along with the methodology development the 3D core analysis code ANDREA, licensed for core reload safety evaluation in 2010, have been upgraded in order to optimize the safety evaluation process. New sequences of calculations were implemented in order to simplify the evaluation of different limiting parameters and output visualization tools were developed to make the verification process user friendly. Interfaces to the fuel performance code TRANSURANUS and sub-channel analysis code SUBCAL were developed as well. (authors)

  3. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations

  4. Notes on nuclear reactor core analysis code: CITATION

    International Nuclear Information System (INIS)

    Cepraga, D.G.

    1980-01-01

    The method which has evolved over the years for making power reactor calculations is the multigroup diffusion method. The CITATION code is designed to solve multigroup neutronics problems with application of the finite-difference diffusion theory approximation to neutron transport in up to three-dimensional geometry. The first part of this paper presents information about the mathematical equations programmed along with background material and certain displays to convey the nature of some of the formulations. The results obtained with the CITATION code regarding the neutron and burnup core analysis for a typical PWR reactor are presented in the second part of this paper. (author)

  5. KALIMER-600-clad Core Fuel Assembly Calculation using MATRA-LMR (V2.0) Code

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Kim, Young Il

    2006-12-01

    Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the temperature distribution in the core and in the subassemblies to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR has been developed for SFR. The major modifications are: the sodium properties table is implemented as subprogram in the code, Heat transfer coefficients are changed for SFR, te pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This This report describes briefly code structure and equations of MATRA-LMR (Version 2.0), explains input data preparation and shows some calculation results for the KALIMER-600-clad core fuel assembly for which has been performed the conceptual design of the core in the year 2006

  6. Status of core nuclear design technology for future fuel

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Jung, Hyung Guk; Noh, Jae Man; Kim, Yeong Il; Kim, Taek Kyum; Gil, Choong Sup; Kim, Jung Do; Kim, Young Jin; Sohn, Dong Seong

    1997-01-01

    The effective utilization of nuclear resource is more important factor to be considered in the design of next generation PWR in addition to the epochal consideration on economics and safety. Assuming that MOX fuel can be considered as one of the future fuel corresponding to the above request, the establishment of basic technology for the MOX core design has been performed : : the specification of the technical problem through the preliminary core design and nuclear characteristic analysis of MOX, the development and verification of the neutron library for lattice code, and the acquisition of data to be used for verification of lattice and core analysis codes. The following further studies will be done in future: detailed verification of library E63LIB/A, development of the spectral history effect treatment module, extension of decay chain, development of new homogenization for the MOX fuel assembly. (author). 6 refs., 7 tabs., 2 figs

  7. Computer code development plant for SMART design

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H.

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  8. Computer code development plant for SMART design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoo Hwan; Choi, S.; Cho, B.H.; Kim, K.K.; Lee, J.C.; Kim, J.P.; Kim, J.H.; Chung, M.; Kang, D.J.; Chang, M.H

    1999-03-01

    In accordance with the localization plan for the nuclear reactor design driven since the middle of 1980s, various computer codes have been transferred into the korea nuclear industry through the technical transfer program from the worldwide major pressurized water reactor supplier or through the international code development program. These computer codes have been successfully utilized in reactor and reload core design works. As the results, design- related technologies have been satisfactorily accumulated. However, the activities for the native code development activities to substitute the some important computer codes of which usages are limited by the original technique owners have been carried out rather poorly. Thus, it is most preferentially required to secure the native techniques on the computer code package and analysis methodology in order to establish the capability required for the independent design of our own model of reactor. Moreover, differently from the large capacity loop-type commercial reactors, SMART (SYSTEM-integrated Modular Advanced ReacTor) design adopts a single reactor pressure vessel containing the major primary components and has peculiar design characteristics such as self-controlled gas pressurizer, helical steam generator, passive residual heat removal system, etc. Considering those peculiar design characteristics for SMART, part of design can be performed with the computer codes used for the loop-type commercial reactor design. However, most of those computer codes are not directly applicable to the design of an integral reactor such as SMART. Thus, they should be modified to deal with the peculiar design characteristics of SMART. In addition to the modification efforts, various codes should be developed in several design area. Furthermore, modified or newly developed codes should be verified their reliability through the benchmarking or the test for the object design. Thus, it is necessary to proceed the design according to the

  9. Bypass Flow and Hot Spot Analysis for PMR200 Block-Core Design with Core Restraint Mechanism

    International Nuclear Information System (INIS)

    Lim, Hong Sik; Kim, Min Hwan

    2009-01-01

    The accurate prediction of local hot spot during normal operation is important to ensure core thermal margin in a very high temperature gas-cooled reactor because of production of its high temperature output. The active cooling of the reactor core determining local hot spot is strongly affected by core bypass flows through the inter-column gaps between graphite blocks and the cross gaps between two stacked fuel blocks. The bypass gap sizes vary during core life cycle by the thermal expansion at the elevated temperature and the shrinkage/swelling by fast neutron irradiation. This study is to investigate the impacts of the variation of bypass gaps during core life cycle as well as core restraint mechanism on the amount of bypass flow and thus maximum fuel temperature. The core thermo fluid analysis is performed using the GAMMA+ code for the PMR200 block-core design. For the analysis not only are some modeling features, developed for solid conduction and bypass flow, are implemented into the GAMMA+ code but also non-uniform bypass gap distribution taken from a tool calculating the thermal expansion and the shrinkage/swell of graphite during core life cycle under the design options with and without core restraint mechanism is used

  10. CORD, PWR Core Design and Fuel Management

    International Nuclear Information System (INIS)

    Trkov, Andrej

    1996-01-01

    1 - Description of program or function: CORD-2 is intended for core design applications of pressurised water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refuelling). 2 - Method of solution: The calculations are performed at the cell level with a lattice code in the supercell approximation to generate the single cell cross sections. Fuel assembly cross section homogenization is done in the diffusion approximation. Global core calculations can be done in the full three-dimensional cartesian geometry. Thermohydraulic feedbacks can be accounted for. The Effective Diffusion Homogenization method is used for generating the homogenized cross sections. 3 - Restrictions on the complexity of the problem: The complexity of the problem is selected by the user, depending on the capacity of his computer

  11. Analysis of the AP600 core makeup tank experiments using the NOTRUMP code

    International Nuclear Information System (INIS)

    Cunningham, J.C.; Haberstroh, R.C.; Hochreiter, L.E.; Jaroszewicz, J.

    1995-01-01

    The AP600 design utilizes passive methods to perform core and containment cooling functions for a postulated loss of coolant. The core makeup tank (CMT) is an important feature of the AP600 passive safety system. The NOTRUMP code has been compared to the 300-series core makeup tank experiments. It has been observed that the code will capture the correct thermal-hydraulic behavior observed in the experiments. The correlations used for wall film condensation and convective heat transfer to the heated CMT liquid appear to be appropriate for these applications. The code will predict the rapid condensation and mixing thermal-hydraulic behavior observed in the 300-series tests. The NOTRUMP predictions can be noding-dependent since the condensation is extremely dependent on the amount of cold CMT liquid that mixes with the incoming steam flow

  12. Development of core design/analysis technology for integral reactor; verification of SMART nuclear design by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Hong, In Seob; Han, Beom Seok; Jeong, Jong Seong [Seoul National University, Seoul (Korea)

    2002-03-01

    The objective of this project is to verify neutronics characteristics of the SMART core design as to compare computational results of the MCNAP code with those of the MASTER code. To achieve this goal, we will analyze neutronics characteristics of the SMART core using the MCNAP code and compare these results with results of the MASTER code. We improved parallel computing module and developed error analysis module of the MCNAP code. We analyzed mechanism of the error propagation through depletion computation and developed a calculation module for quantifying these errors. We performed depletion analysis for fuel pins and assemblies of the SMART core. We modeled a 3-D structure of the SMART core and considered a variation of material compositions by control rods operation and performed depletion analysis for the SMART core. We computed control-rod worths of assemblies and a reactor core for operation of individual control-rod groups. We computed core reactivity coefficients-MTC, FTC and compared these results with computational results of the MASTER code. To verify error analysis module of the MCNAP code, we analyzed error propagation through depletion of the SMART B-type assembly. 18 refs., 102 figs., 36 tabs. (Author)

  13. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  14. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  15. The UK core performance code package

    International Nuclear Information System (INIS)

    Hutt, P.K.; Gaines, N.; McEllin, M.; White, R.J.; Halsall, M.J.

    1991-01-01

    Over the last few years work has been co-ordinated by Nuclear Electric, originally part of the Central Electricity Generating Board, with contributions from the United Kingdom Atomic Energy Authority and British Nuclear Fuels Limited, to produce a generic, easy-to-use and integrated package of core performance codes able to perform a comprehensive range of calculations for fuel cycle design, safety analysis and on-line operational support for Light Water Reactor and Advanced Gas Cooled Reactor plant. The package consists of modern rationalized generic codes for lattice physics (WIMS), whole reactor calculations (PANTHER), thermal hydraulics (VIPRE) and fuel performance (ENIGMA). These codes, written in FORTRAN77, are highly portable and new developments have followed modern quality assurance standards. These codes can all be run ''stand-alone'' but they are also being integrated within a new UNIX-based interactive system called the Reactor Physics Workbench (RPW). The RPW provides an interactive user interface and a sophisticated data management system. It offers quality assurance features to the user and has facilities for defining complex calculational sequences. The Paper reviews the current capabilities of these components, their integration within the package and outlines future developments underway. Finally, the Paper describes the development of an on-line version of this package which is now being commissioned on UK AGR stations. (author)

  16. CALIOP: a multichannel design code for gas-cooled fast reactors. Code description and user's guide

    International Nuclear Information System (INIS)

    Thompson, W.I.

    1980-10-01

    CALIOP is a design code for fluid-cooled reactors composed of parallel fuel tubes in hexagonal or cylindrical ducts. It may be used with gaseous or liquid coolants. It has been used chiefly for design of a helium-cooled fast breeder reactor and has built-in cross section information to permit calculations of fuel loading, breeding ratio, and doubling time. Optional cross-section input allows the code to be used with moderated cores and with other fuels

  17. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  18. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    Pickard, P.S.

    1976-01-01

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)

  19. Application of startup/core management code system to YGN 3 startup testing

    International Nuclear Information System (INIS)

    Chi, Sung Goo; Hah, Yung Joon; Doo, Jin Yong; Kim, Dae Kyum

    1995-01-01

    YGN 3 is the first nuclear power plant in Korea to use the fixed incore detector system for startup testing and core management. The startup/core management code system was developed from existing ABB-C-E codes and applied for YGN 3 startup testing, especially for physics and CPC(Core Protection Calculator)/COLSS (Core Operating Limit Supervisory System) related testing. The startup/core management code system consists of startup codes which include the CEBASE, CECOR, CEFAST and CEDOPS, and startup data reduction codes which include FLOWRATE, COREPERF, CALMET, and VARTAV. These codes were implemented on an HP/Apollo model 9000 series 400 workstation at the YGN 3 site and successfully applied to startup testing and core management. The startup codes made a great contribution in upgrading the reliability of test results and reducing the test period by taking and analyzing core data automatically. The data reduction code saved the manpower and time for test data reduction and decreased the chance for error in the analysis. It is expected that this code system will make similar contributions for reducing the startup testing duration of YGN 4 and UCN3,4

  20. Advanced BWR core component designs and the implications for SFD analysis

    International Nuclear Information System (INIS)

    Ott, L.J.

    1997-01-01

    Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B 4 C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities

  1. General features of the neutronics design code EQUICYCLE

    International Nuclear Information System (INIS)

    Jirlow, K.

    1978-10-01

    The neutronics code EQUICYCLE has been developed and improved over a long period of time. It is expecially adapted to survey type design calculations of large fast power reactors with particular emphasis on the nuclear parameters for a realistic equilibrium fuel cycle. Thus the code is used to evaluate the breeding performance, the power distributions and the uranium and plutonium mass balance for realistic refuelling schemes. In addition reactivity coefficients can be calculated and the influence of burnup could be assessed. The code is two-dimensional and treats the reactor core in R-Z geometry. The basic ideas of the calculating scheme are successive iterative improvement of cross-section sets and flux spectra and use of the mid-cycle flux for burning the fuel according to a specified refuelling scheme. Normally given peak burn-ups and maximum power densities are used as boundary conditions. The code is capable of handling the unconventional, so called heterogeneous cores. (author)

  2. Xenon oscillation in a large PHWR core (Atucha II type): TRISIC code applicability

    International Nuclear Information System (INIS)

    Solanilla, Roberto

    2000-01-01

    A three dimensional nuclear reactor simulation code (TRISIC) was developed many years ago to design a PHWR (pressurizer heavy water reactors - Atucha type) based in the 'source-sink model' (heterogeneous theory). The limited processor computational performance available at that time was the constraint of the code when a detailed reactor description was necessary. A modern PC (pentium) code version with a full reactor core representation (461 fuel channels) including diagonal control rod banks and flux-reading detectors with theirs tube guide was used in the present paper for simulation of the Xenon transient when a local asymmetric perturbation was produced in a large core (Atucha II type). The results obtained and the computer time required for the 70 hour's simulation with an adequate time step, established the potential of the code to deal with this kind of transients. The paper shows that the method of TRISIC allows to detect and control azimuthal, radial and axial oscillation. This code is a proper way to elaborate a program of control rods movement from the flux reading detectors to damp the oscillation. TRISIC could also be a accurate tool to supervise the full core flux distribution in real time during the operation of the reactor. (author)

  3. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  4. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  5. Design of Computerized in Core Fuel Management System of Kartini Reactor

    International Nuclear Information System (INIS)

    Edi-Trijono-Budisantoso; Sardjono, Y; Edi-Purwanto; Widi-Setiawan

    2000-01-01

    The program organization for managing Kartini reactor fuel elements has been designed. This program organization work to process on-line operationdata-base and core configuration data-base to produce data-base for in-corefuer management. The in-core fuel management data-base consist of irradiationhistory card, radionuclides inventory and radiation dose for each fuelelement. The computation in this process based on the ORIGEN2, TRIGAP codesand some in-house developed codes that perform matching between output dataof many codes to output data of other code. This program organization worksunder control of a program manager by following the scheduled time table. Thedesign gives a description of the first step development of the in-core fuelmanagement that will be implemented in the internet web server. (author)

  6. ARCADIAR - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    International Nuclear Information System (INIS)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-01-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA R and concludes on customer benefits. ARCADIA R is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA R system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  7. DABIE: a data banking system of integral experiments for reactor core characteristics computer codes

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Naito, Yoshitaka; Ohkubo, Shuji; Aoyanagi, Hideo.

    1987-05-01

    A data banking system of integral experiments for reactor core characteristics computer codes, DABIE, has been developed to lighten the burden on searching so many documents to obtain experiment data required for verification of reactor core characteristics computer code. This data banking system, DABIE, has capabilities of systematic classification, registration and easy retrieval of experiment data. DABIE consists of data bank and supporting programs. Supporting programs are data registration program, data reference program and maintenance program. The system is designed so that user can easily register information of experiment systems including figures as well as geometry data and measured data or obtain those data through TSS terminal interactively. This manual describes the system structure, how-to-use and sample uses of this code system. (author)

  8. Advance of core design method for ATR

    International Nuclear Information System (INIS)

    Maeda, Seiichirou; Ihara, Toshiteru; Iijima, Takashi; Seino, Hideaki; Kobayashi, Tetsurou; Takeuchi, Michio; Sugawara, Satoru; Matsumoto, Mitsuo.

    1995-01-01

    Core characteristics of ATR demonstration plant has been revised such as increasing the fuel burnup and the channel power, which is achieved by changing the number of fuel rod per fuel assembly from 28 to 36. The research and development concerning the core design method for ATR have been continued. The calculational errors of core analysis code have been evaluated using the operational data of FUGEN and the full scale simulated test results in DCA (Deuterium Critical Assembly) and HTL (Heat Transfer Loop) at O-arai engineering center. It is confirmed that the calculational error of power distribution is smaller than the design value of ATR demonstration plant. Critical heat flux correlation curve for 36 fuel rod cluster has been developed and the probability evaluation method based on its curve, which is more rational to evaluate the fuel dryout, has been adopted. (author)

  9. Mechanical behavior of a fast reactor core: Application of the 3D codes to SUPER PHENIX 1

    International Nuclear Information System (INIS)

    Bernard, A.; Masoni, P.; Dorsselaere, J.P. van

    1983-01-01

    The series of the 3-dimensional mechanical codes of a fast reactor core was used for the first time within the framework of a design study of an industrial reactor: SUPER-PHENIX 1. These codes are the following ones: - ARGOH which calculates the behavior of an isolated subassembly. - HARMONIE which calculates the core mechanical equilibrium - TRACAR which yields a graphic visualization of HARMONIE results, and calculates the handling forces and support reactions - HARMOREA which calculates the reactivity variations between given equilibrium states (for instance: pads effect and diagrid effect); now at the end of its development. The calculations were performed on 1/3 of the SPX1 core. Their purpose is double: - on the one hand, to check design criteria, and provide the loadings for the subassembly mechanical design studies; on the other hand, to evaluate the reactivity effects, related to the horizontal core deformations, and useful for operation and safety studies. The results of these calculations showed that the design criteria were verified for the contractual lifetime of the subassemblies. (orig.)

  10. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  11. Design Procedure of Graphite Components by ASME HTR Codes

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  12. Benefits of Low Boron Core Design Concept for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2009-10-15

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in {sup 10}B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts.

  13. Benefits of Low Boron Core Design Concept for PWR

    International Nuclear Information System (INIS)

    Daing, Aung Tharn; Kim, Myung Hyun

    2009-01-01

    Nuclear design study was carried out to develop low boron core (LBC) based on one of current PWR concepts, OPR-1000. Most of design parameters were the same with those of Ulchin unit-5 except extensive utilization of burnable poison (BP) pins in order to compensate reactivity increase in LBC. For replacement of reduced soluble boron concentration, four different kinds of integral burnable absorbers (IBAs) such as gadolinia, integral fuel burnable absorber (IFBA), erbia and alumina boron carbide were considered in suppressing more excess reactivity. A parametric study was done to find the optimal core options from many design candidates for fuel assemblies and cores. Among them, the most feasible core design candidate was chosen in accordance with general design requirements. In this paper, the feasibility and design change benefits of the most favorable LBC design were investigated in more detail through the comparison of neutronic and thermal hydraulic design parameters of LBC with the reference plant (REF). As calculation tools, the HELIOS/MASTER code package and the MATRA code were utilized. The main purpose of research herein is to estimate feasibility and capability of LBC which was mainly designed to mitigate boron dilution accident (BDA), and for reduction of corrosion products. The LBC design concept using lower boron concentration with an elevated enrichment in 10 B allows a reduction in the concentration of lithium in the primary coolant required to maintain the optimum coolant pH. All in all, LBC with operation at optimum pH is expected to achieve some benefits from radiation source reduction of reduced corrosion product, the limitation of the Axial Offset Anomaly (AOA) and fuel cladding corrosion. Additionally, several merits of LBC are closely related to fluid systems and system related aspects, reduced boron and lithium costs, equipment size reduction for boric acid systems, elimination of heat tracing, and more aggressive fuel design concepts

  14. Code Coupling for Multi-Dimensional Core Transient Analysis

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il

    2015-01-01

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident

  15. Code Coupling for Multi-Dimensional Core Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-05-15

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

  16. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  17. VIPRE-01: a thermal-hydraulic code for reactor cores. Volume 3: programmer's manual (Revision 2)

    International Nuclear Information System (INIS)

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1985-07-01

    The VIPRE thermal-hydraulic computer code for PWR and BWR core analysis has undergone a detailed design review by a committee of experts. A new version of the code, incorporating the committee's recommendations, has been submitted for NRC review and issuance of a safety evaluation report. The changes in the programmers's manual are given

  18. Intelligent system for conceptural design of new reactor cores

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1995-01-01

    The software system IRDS has been developed at Japan Atomic Energy Research Institute to support the conceptual design of a new type of reactor core in the fields of neutronics, thermohydraulics, and fuel behavior. IRDS involves various analysis codes, database, and man-machine interfaces that efficiently support a whole design process on a computer. The main purpose of conceptual design is to decide an optimal set of basic design parameters. Designers usually carry out many parametric survey calculations and search a design window (DW), which is a feasible parameter range satisfying design criteria and goals. An automatic DW search function is installed to support such works. The man-machine interface based on menu windows will enable nonspecialists to use various analysis codes easily

  19. A study of the advancement of a reactor core design environment

    International Nuclear Information System (INIS)

    Porsmyr, Jan; Kvilesjoe, Hans Oeyvind; Ijiri, Masanobu

    2004-01-01

    Full text: During the years from 2002 to 2004 a joint project has been performed by IFE, Halden and Yonden Engineering Corporation, Japan, to develop an advanced reactor core design environment based on a communication method for controlling a reactor core code system efficiently from PCs in a distributed network. The advanced reactor core design environment is realized by using Microsoft Visual Basic and communication software based on the IFE product SoftwareBus. The project has been carried out based on the fact that a computer-aided design system has been under development at Yonden Engineering Corporation in order to perform efficiently fuel replacement calculation by Yonden's reactor design code system. In this system, the structure is such that the physics calculation code system runs on UNIX workstations (in parallel) performing the calculations, while the Man-Machine Interface for controlling the calculation programs run on PCs in a distributed network. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general communication tool (IFE's SoftwareBus) has been used for realizing communication of the n-pair n-node between the reactor core design code system and the PC applications. Further, a method of improvement in the speed of the optimal pattern calculation has been implemented by assigning each examination pattern to two or more computers distributed in the network and assigning the next pattern calculation to the computer, where the calculation has ended or has the lowest workload. The high-speed technology of the pattern survey by network distributed processing is based on SoftwareBus. The reactor core design code system is developed in FORTRAN running on a UNIX workstation (Solaris). The PC applications have been developed by using Microsoft Visual Basic on Windows 2000 platform. The first step of the verification and validation process was carried out in March

  20. The applicability of ALPHA/PHOENIX/ANC nuclear design code system on Korean standard PWR's

    International Nuclear Information System (INIS)

    Lee, Kookjong; Choi, Kie-Yong; Lee, Hae-Chan; Roh, Eun-Rae

    1996-01-01

    For the Korean Standard Nuclear Power Plant (KSNPP) designed based on Combustion Engineering (CE) System 80, the Westinghouse nuclear design code system ALPHA/PHOENIX/ANC was applied to the follow-up design of initial and reload core of KSNPP. The follow-up design results of Yonggwang Unit 3 Cycle 1, 2 and Yonggwang Unit 4 Cycle 1 have shown good agreements with the measured data. The assemblywise power distributions have shown less than 2% average differences and critical boron concentrations have shown less than 20 ppm differences. All the low power physics test parameters are in good agreement. Consequently, APA design code system can be applied to KNSPP cores. (author)

  1. Engineering application of in-core fuel management optimization code with CSA algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhihong; Hu, Yongming [INET, Tsinghua university, Beijing 100084 (China)

    2009-06-15

    PWR in-core loading (reloading) pattern optimization is a complex combined problem. An excellent fuel management optimization code can greatly improve the efficiency of core reloading design, and bring economic and safety benefits. Today many optimization codes with experiences or searching algorithms (such as SA, GA, ANN, ACO) have been developed, while how to improve their searching efficiency and engineering usability still needs further research. CSA (Characteristic Statistic Algorithm) is a global optimization algorithm with high efficiency developed by our team. The performance of CSA has been proved on many problems (such as Traveling Salesman Problems). The idea of CSA is to induce searching direction by the statistic distribution of characteristic values. This algorithm is quite suitable for fuel management optimization. Optimization code with CSA has been developed and was used on many core models. The research in this paper is to improve the engineering usability of CSA code according to all the actual engineering requirements. Many new improvements have been completed in this code, such as: 1. Considering the asymmetry of burn-up in one assembly, the rotation of each assembly is considered as new optimization variables in this code. 2. Worth of control rods must satisfy the given constraint, so some relative modifications are added into optimization code. 3. To deal with the combination of alternate cycles, multi-cycle optimization is considered in this code. 4. To confirm the accuracy of optimization results, many identifications of the physics calculation module in this code have been done, and the parameters of optimization schemes are checked by SCIENCE code. The improved optimization code with CSA has been used on Qinshan nuclear plant of China. The reloading of cycle 7, 8, 9 (12 months, no burnable poisons) and the 18 months equilibrium cycle (with burnable poisons) reloading are optimized. At last, many optimized schemes are found by CSA code

  2. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    International Nuclear Information System (INIS)

    Grasso, G.; Petrovich, C.; Mattioli, D.; Artioli, C.; Sciora, P.; Gugiu, D.; Bandini, G.; Bubelis, E.; Mikityuk, K.

    2014-01-01

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW th ) and of its demonstrator reactor (300 MW th ) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors

  3. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Petrovich, C., E-mail: carlo.petrovich@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Artioli, C., E-mail: carlo.artioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sciora, P., E-mail: pierre.sciora@cea.fr [CEA (Alternative Energies and Atomic Energy Commission), DEN, DER, 13108 St Paul lez Durance (France); Gugiu, D., E-mail: daniela.gugiu@nuclear.ro [RATEN-ICN (Institute for Nuclear Research), Cod 115400 Mioveni, Str. Campului, 1, Jud. Arges (Romania); Bandini, G., E-mail: giacomino.bandini@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Bubelis, E., E-mail: evaldas.bubelis@kit.edu [KIT (Karlsruhe Institute of Technology), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [PSI (Paul Scherrer Institute), OHSA/D11, 5232 Villigen PSI (Switzerland)

    2014-10-15

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW{sub th}) and of its demonstrator reactor (300 MW{sub th}) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors.

  4. Verification of MVP-II and SRAC2006 code to the core physics vera benchmark problem

    International Nuclear Information System (INIS)

    Jati Susilo

    2014-01-01

    In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT) of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by. Westinghouse, arranged from 193 unit of 17 x 17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC) and hot zero power (HZP). In this calculation, MVP-II and CITATION module of SRAC2006 computer code has been used with ENDF/B-VII.0. cross section data library. Calculation result showed that differences value of k-eff for the core at controlled and uncontrolled condition between reference with MVP-II (-0,07% and -0,014%) and SRAC2006 (0,92% and 0,99%) are very small or below 1%. Differences value of radial power peaking factor at controlled and uncontrolled of the core between reference value with MVP-II are 0,38% and 1,53%, even though with SRAC2006 are 1,13% and -2,45%. It can be said that the calculation result by both computer code showing suitability with reference value. In order to determinate of criticality of the core, the calculation result using MVP-II code is more conservative compare with SRAC2006 code. (author)

  5. Comparative Neutronics Analysis of DIMPLE S06 Criticality Benchmark with Contemporary Reactor Core Analysis Computer Code Systems

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2015-01-01

    Full Text Available A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.

  6. The MELTSPREAD Code for Modeling of Ex-Vessel Core Debris Spreading Behavior, Code Manual – Version3-beta

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input that describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of

  7. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  8. Determination of the radioactive inventory of a fuel assembly from a U3O8 design core using ORIGEN 2.1 code

    International Nuclear Information System (INIS)

    Castro, Jose; Ticona, Braulio; Madariaga, Marcelo

    2014-01-01

    This paper shows a methodology to determine the radioactive inventory of a fuel assembly of the RP-10 design core, which was proposed in 1988, using the ORIGEN 2.1 code, which allows to determine the activity of the 52 most characteristic fission products, its growth in activity during reactor operation under the terms of the design and evolution of decay of the fission products after 4 hours after the reactor shutdown, which conservatively, a fuel element represents an average fraction of the considered power in the radioactive inventory assessment. (authors).

  9. Determination of the NPP Krsko reactor core safety limits using the COBRA-III-C code

    International Nuclear Information System (INIS)

    Lajtman, S.; Feretic, D.; Debrecin, N.

    1989-01-01

    This paper presents the NPP Krsko reactor core safety limits determined by the COBRA-III-C code, along with the methodology used. The reactor core safety limits determination is a part of reactor protection limits procedure. The results obtained were compared to safety limits presented in NPP Krsko FSAR. The COBRA-III-C NPP Krsko design core steady state thermal hydraulics calculation, used as the basis for the safety limits calculation, is presented as well. (author)

  10. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  11. Utilization of MCNP code in the research and design for China advanced research reactor

    International Nuclear Information System (INIS)

    Shen Feng

    2006-01-01

    MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)

  12. Reverse depletion method for PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kim, Y.J.

    1985-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. Prospects for even greater use of in-board fresh fuel loading are good as utilities seek to reduce core vessel fluence, mitigate pressurized thermal shock concerns, and extend vessel lifetime. Consequently, large numbers of burnable poison (BP) pins are being used to control the power peaking at the in-board fresh fuel positions. This has presented an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of BP pins in the fresh fuel. A procedure was developed that utilizes the well-known Haling depletion to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and BP distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provide for the maximum utility to PWR core reload design

  13. Some concept for the TRIGA core design

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1994-01-01

    There is the research reactor called TRIGA Mark-2 of 100 kW in Atomic Energy Research Laboratory, Musashi Institute of Technology. Recently, while the various calculations on the core were carried out, the author became aware of that this TRIGA core was designed at that time with excellent consideration. The reason for that is, although fuel is arranged in simple concentric circular state at a glance, it was known that in reality, this is the modification of the hexagonal core of triangular lattice. In the examination of square lattice fuel arrangement, the reactivity was calculated by using the gap between fuel rods as the parameter and by using ENDF/B-4 library and Monte Carlo code Keno-5. It is known that the design of the lattice with maximum reactivity cannot be done by the square lattice. The similar examination was carried out on triangular lattice, and it was found that the gap between fuel rods of 4 mm is the optimal design. The average neutron energy spectra in the fuel rods of the TRIGA Mark-2 core agreed considerably well with the energy spectra at 4.16 cm fuel rod pitch in triangular hexagonal core. In the reactor of about 100 kW, even if the gap between fuel rods is less than 4 mm, heat removal is sufficiently possible. (K.I.)

  14. Calculation of the RSG-GAS core using computer code citation-3D

    International Nuclear Information System (INIS)

    Taryo, T.; Rokhmadi

    1998-01-01

    Since core reactivity is one of the reactor safety parameters, this R and D has been carried out. To carry out the R and D, the code called WIMSD4 was used respectively for generating cross section and diffusion parameters. The code CITATION was then applied to estimate core reactivity in the RSG-GAS core. To verify the result of the calculation, data and information of the RSG-GAS Typical Working Core Were used. To Prove the codes reliably used, the case of all control elements down in the reactor core and that of all control rods up in the core were applied. The result taking into account those cases showed respectively that K eff are less and greater than unity (K eff eff >1)

  15. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  16. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    International Nuclear Information System (INIS)

    Papukchiev, Angel; Schaefer, Anselm

    2008-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  17. Automated Design and Optimization of Pebble-bed Reactor Cores

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Ougouag, Abderrafi M.; Terry, William K.

    2010-01-01

    We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.

  18. Feasibility study on nuclear core design for soluble boron free small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Hah, Chang Joo; Ju, Cho Sung [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  19. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  20. Advanced PWR Core Design with Siemens High-Plutonium-Content MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Dieter Porsch; Gerhard Schlosser; Hans-Dieter Berger

    2000-01-01

    The Siemens experience with plutonium recycling dates back to the late 1960s. Over the years, extensive research and development programs were performed for the qualification of mixed-oxide (MOX) technology and design methods. Today's typical reload enrichments for uranium and MOX fuel assemblies and modern core designs have become more demanding with respect to accuracy and reliability of design codes. This paper presents the status of plutonium recycling in operating high-burnup pressurized water reactor (PWR) cores. Based on actual examples, it describes the validation status of the design methods and stresses current and future needs for fuel assembly and core design including those related to the disposition of weapons-grade plutonium

  1. In-core fuel management code package validation for BWRs

    International Nuclear Information System (INIS)

    1995-12-01

    The main goal of the present CRP (Coordinated Research Programme) was to develop benchmarks which are appropriate to check and improve the fuel management computer code packages and their procedures. Therefore, benchmark specifications were established which included a set of realistic data for running in-core fuel management codes. Secondly, the results of measurements and/or operating data were also provided to verify and compare with these parameters as calculated by the in-core fuel management codes or code packages. For the BWR it was established that the Mexican Laguna Verde 1 BWR would serve as the model for providing data on the benchmark specifications. It was decided to provide results for the first 2 cycles of Unit 1 of the Laguna Verde reactor. The analyses of the above benchmarks are performed in two stages. In the first stage, the lattice parameters are generated as a function of burnup at different voids and with and without control rod. These lattice parameters form the input for 3-dimensional diffusion theory codes for over-all reactor analysis. The lattice calculations were performed using different methods, such as, Monte Carlo, 2-D integral transport theory methods. Supercell Model and transport-diffusion model with proper correction for burnable absorber. Thus the variety of results should provide adequate information for any institute or organization to develop competence to analyze In-core fuel management codes. 15 refs, figs and tabs

  2. Simulation of the Long period Core Design for WH type of KHNP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ji-Eun; Moon, Sang-Rae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-10-15

    The current core design of the reactor and the new design of long period based on ANC code are compared here targeting the unit of WH type(Westinghouse nuclear steam supply system) operated by KHNP. The reactor core is composed of 157 fuel assemblies, consisting of a 17×17 array with 264 fuel rods, 24 guide thimbles. To investigate susceptibility of CIPS(crud-induced power shift) for long period core design, the boron mass is also calculated here. The long period core design for WH type of KHNP is simulated and evaluated the risk assessment for the result. 89 feed assemblies and 4.95w/o uranium enrichment (3.2w/o for Axial-blanket) are used for fresh fuel rods. The cycle length of long period design is increased by 6 month than the average of operated cycles satisfying the criteria of risk assessment for the core design; maximum F△h and maximum pin burnup and so on, except burndown curve.

  3. Simulation of the Long period Core Design for WH type of KHNP

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Moon, Sang-Rae

    2016-01-01

    The current core design of the reactor and the new design of long period based on ANC code are compared here targeting the unit of WH type(Westinghouse nuclear steam supply system) operated by KHNP. The reactor core is composed of 157 fuel assemblies, consisting of a 17×17 array with 264 fuel rods, 24 guide thimbles. To investigate susceptibility of CIPS(crud-induced power shift) for long period core design, the boron mass is also calculated here. The long period core design for WH type of KHNP is simulated and evaluated the risk assessment for the result. 89 feed assemblies and 4.95w/o uranium enrichment (3.2w/o for Axial-blanket) are used for fresh fuel rods. The cycle length of long period design is increased by 6 month than the average of operated cycles satisfying the criteria of risk assessment for the core design; maximum F△h and maximum pin burnup and so on, except burndown curve

  4. HELIOS/DRAGON/NESTLE codes' simulation of void reactivity in a CANDU core

    International Nuclear Information System (INIS)

    Sarsour, H.N.; Rahnema, F.; Mosher, S.; Turinsky, P.J.; Serghiuta, D.; Marleau, G.; Courau, T.

    2002-01-01

    This paper presents results of simulation of void reactivity in a CANDU core using the NESTLE core simulator, cross sections from the HELIOS lattice physics code in conjunction with incremental cross sections from the DRAGON lattice physics code. First, a sub-region of a CANDU6 core is modeled using the NESTLE core simulator and predictions are contrasted with predictions by the MCNP Monte Carlo simulation code utilizing a continuous energy model. In addition, whole core modeling results are presented using the NESTLE finite difference method (FDM), NESTLE nodal method (NM) without assembly discontinuity factors (ADF), and NESTLE NM with ADF. The work presented in this paper has been performed as part of a project sponsored by the Canadian Nuclear Safety Commission (CNSC). The purpose of the project was to gather information and assess the accuracy of best estimate methods using calculational methods and codes developed independently from the CANDU industry. (author)

  5. Kinetics Parameters of VVER-1000 Core with 3 MOX Lead Test Assemblies To Be Used for Accident Analysis Codes

    International Nuclear Information System (INIS)

    Pavlovitchev, A.M.

    2000-01-01

    The present work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactor and presents the neutronics calculations of kinetics parameters of VVER-1000 core with 3 introduced MOX LTAs. MOX LTA design has been studied in [1] for two options of MOX LTA: 100% plutonium and of ''island'' type. As a result, zoning i.e. fissile plutonium enrichments in different plutonium zones, has been defined. VVER-1000 core with 3 introduced MOX LTAs of chosen design has been calculated in [2]. In present work, the neutronics data for transient analysis codes (RELAP [3]) has been obtained using the codes chain of RRC ''Kurchatov Institute'' [5] that is to be used for exploitation neutronics calculations of VVER. Nowadays the 3D assembly-by-assembly code BIPR-7A and 2D pin-by-pin code PERMAK-A, both with the neutronics constants prepared by the cell code TVS-M, are the base elements of this chain. It should be reminded that in [6] TVS-M was used only for the constants calculations of MOX FAs. In current calculations the code TVS-M has been used both for UOX and MOX fuel constants. Besides, the volume of presented information has been increased and additional explications have been included. The results for the reference uranium core [4] are presented in Chapter 2. The results for the core with 3 MOX LTAs are presented in Chapter 3. The conservatism that is connected with neutronics parameters and that must be taken into account during transient analysis calculations, is discussed in Chapter 4. The conservative parameters values are considered to be used in 1-point core kinetics models of accident analysis codes

  6. Development of UCMS for Analysis of Designed and Measured Core Power Distribution

    International Nuclear Information System (INIS)

    Moon, Sang Rae; Hong, Sun Kwan; Yang, Sung Tae

    2009-01-01

    In this study, reactor core loading patterns were determined by calculating and verifying the factors affecting peak power and important core safety variables were reconciled with their design criteria using a newly designed unified core management system. Core loading patterns are designed for quadrant cores under the assumption that the power distribution of the reactor core is the same among symmetric fuel assemblies within the core. Actual core power distributions measured during core operation may differ slightly from their designed data. Reactor engineers monitor these differences between the designed and measured data by performing a surveillance procedure every month according to the technical specification requirements. It is difficult to monitor overall power distribution behavior throughout the assemblies using the current procedure because it requires the reactor engineer to compare the designed data with only the maximum value of the power peaking factor and the relative power density. It is necessary to enhance this procedure to check the primary variables such as core power distribution, because long cycle operation, high burnup, power up-rate, and improved fuel can change the environment in the core. To achieve this goal, a web-based Unified Core Management System (UCMS) was developed. To build the UCMS, a database system was established using reactor design data such as that in the Nuclear Design Report (NDR) and automated core analysis codes for all light water reactor power plants. The UCMS is designed to help reactor engineers to monitor important core variables and core safety margins by comparing the measured core power distribution with designed data for each fuel assembly during the cycle operation in nuclear power plants

  7. Improved core-edge tokamak transport simulations with the CORSICA 2 code

    International Nuclear Information System (INIS)

    Tarditi, A.; Cohen, R.H.; Crotinger, J.A.

    1996-01-01

    The CORSICA 2 code models the nonlinear transport between the core and the edge of a tokamak plasma. The code couples a 2D axisymmetric edge/SOL model (UEDGE) to a 1D model for the radial core transport in toroidal flux coordinates (the transport module from the CORSICA 1 code). The core density and temperature profiles are joined to the flux-surface average profiles from the 2D code sufficiently inside the magnetic separatrix, at a flux surface on which the edge profiles are approximately constant. In the present version of the code, the deuterium density and electron and ion temperatures are coupled. The electron density is determined by imposing quasi-neutrality, both in the core and in the edge. The model allows the core-edge coupling of multiple ion densities while retaining a single temperature (corresponding to the equilibration value) for the all ion species. Applications of CORSICA 2 to modeling the DIII-D tokamak are discussed. This work will focus on the simulation of the L-H transition, coupling a single ion species (deuterium) and the two (electron and ion) temperatures. These simulations will employ a new self-consistent model for the L-H transition that is being implemented in the UEDGE code. Applications to the modeling of ITER ignition scenarios are also discussed. This will involve coupling a second density species (the thermal alphas), bringing the total number of coupled variables up to four. Finally, the progress in evolving the magnetic geometry is discussed. Currently, this geometry is calculated by CORSICA's MHD equilibrium module (TEQ) at the beginning of the run and fixed thereafter. However, CORSICA 1 can evolve this geometry quasistatically, and this quasistatic treatment is being extended to include the edge/SOL geometry. Recent improvements for code speed-up are also presented

  8. Parallelization characteristics of a three-dimensional whole-core code DeCART

    International Nuclear Information System (INIS)

    Cho, J. Y.; Joo, H.K.; Kim, H. Y.; Lee, J. C.; Jang, M. H.

    2003-01-01

    Neutron transport calculation for three-dimensional amount of computing time but also huge memory. Therefore, whole-core codes such as DeCART need both also parallel computation and distributed memory capabilities. This paper is to implement such parallel capabilities based on MPI grouping and memory distribution on the DeCART code, and then to evaluate the performance by solving the C5G7 three-dimensional benchmark and a simplified three-dimensional SMART core problem. In C5G7 problem with 24 CPUs, a speedup of maximum 22 is obtained on IBM regatta machine and 21 on a LINUX cluster for the MOC kernel, which indicates good parallel performance of the DeCART code. The simplified SMART problem which need about 11 GBytes memory with one processors requires about 940 MBytes, which means that the DeCART code can now solve large core problems on affordable LINUX clusters

  9. Scaling gysela code beyond 32K-cores on bluegene/Q***

    Directory of Open Access Journals (Sweden)

    Bigot J.

    2013-12-01

    Full Text Available Gyrokinetic simulations lead to huge computational needs. Up to now, the semi- Lagrangian code Gysela performed large simulations using a few thousands cores (8k cores typically. Simulation with finer resolutions and with kinetic electrons are expected to increase those needs by a huge factor, providing a good example of applications requiring Exascale machines. This paper presents our work to improve Gysela in order to target an architecture that presents one possible way towards Exascale: the Blue Gene/Q. After analyzing the limitations of the code on this architecture, we have implemented three kinds of improvement: computational performance improvements, memory consumption improvements and disk i/o improvements. As a result, we show that the code now scales beyond 32k cores with much improved performances. This will make it possible to target the most powerful machines available and thus handle much larger physical cases.

  10. A validation report for the KALIMER core design computing system by the Monte Carlo transport theory code

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Kim, Yeong Il; Kim, Kang Seok; Kim, Sang Ji; Kim, Young Gyun; Song, Hoon; Lee, Dong Uk; Lee, Byoung Oon; Jang, Jin Wook; Lim, Hyun Jin; Kim, Hak Sung

    2004-05-01

    In this report, the results of KALIMER (Korea Advanced LIquid MEtal Reactor) core design calculated by the K-CORE computing system are compared and analyzed with those of MCDEP calculation. The effective multiplication factor, flux distribution, fission power distribution and the number densities of the important nuclides effected from the depletion calculation for the R-Z model and Hex-Z model of KALIMER core are compared. It is confirmed that the results of K-CORE system compared with those of MCDEP based on the Monte Carlo transport theory method agree well within 700 pcm for the effective multiplication factor estimation and also within 2% in the driver fuel region, within 10% in the radial blanket region for the reaction rate and the fission power density. Thus, the K-CORE system for the core design of KALIMER by treating the lumped fission product and mainly important nuclides can be used as a core design tool keeping the necessary accuracy

  11. Benchmarking and qualification of the NUFREQ-NPW code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; Lahey, R.T. Jr.; McFarlane, A.F.; Podowski, M.Z.

    1988-01-01

    The NUFREQ-NPW code was modified and set up at Westinghouse, USA for mixed fuel type multi-channel core-wide stability analysis. The resulting code, NUFREQ-NPW, allows for variable axial power profiles between channel groups and can handle mixed fuel types. Various models incorporated into NUFREQ-NPW were systematically compared against the Westinghouse channel stability analysis code MAZDA-NF, for which the mathematical model was developed, in an entirely different manner. Excellent agreement was obtained which verified the thermal-hydraulic modeling and coding aspects. Detailed comparisons were also performed against nuclear-coupled reactor core stability data. All thirteen Peach Bottom-2 EOC-2/3 low flow stability tests were simulated. A key aspect for code qualification involved the development of a physically based empirical algorithm to correct for the effect of core inlet flow development on subcooled boiling. Various other modeling assumptions were tested and sensitivity studies performed. Good agreement was obtained between NUFREQ-NPW predictions and data. Moreover, predictions were generally on the conservative side. The results of detailed direct comparisons with experimental data using the NUFREQ-NPW code; have demonstrated that BWR core stability margins are conservatively predicted, and all data trends are captured with good accuracy. The methodology is thus suitable for BWR design and licensing purposes. 11 refs., 12 figs., 2 tabs

  12. Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system

    International Nuclear Information System (INIS)

    Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de

    1997-01-01

    The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)

  13. A reverse depletion method for pressurized water reactor core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kin, Y.J.

    1986-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. The large numbers of burnable poison pins used to control the power peaking at the in-board fresh fuel positions have introduced an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of burnable poison pins in the fresh fuel. A new method for performing core design more suitable for low-leakage fuel management is reported. A procedure was developed that uses the wellknown ''Haling depletion'' to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and burnable poison distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provided for the maximum utility to PWR core reload design

  14. PC-Reactor-core transient simulation code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt

  15. Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2017-11-15

    The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.

  16. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  17. Code systems for effective and precise calculation of the basic neutron characteristics, core loading optimization, analysis and estimation of the operation regimes of WWER type reactors

    International Nuclear Information System (INIS)

    Apostolov, T.; Ivanov, K.; Prodanova, R.; Manolova, M.; Petrova, T.; Alekova, G.

    1993-01-01

    Two directions for investigations are suggested: 1) Analysis and evaluation of the real loading patterns and operational regimes for Kozloduy NPP WWER-440 and WWER-1000 in the frame of the recent safety criteria and nuclear power plant operating limits. 2) Development of modern code system for WWER type reactor core analysis with advanced features: new design and materials for fuel and control rods, increasing the fuel enrichment, using the integral and discrete burnable absorbers etc. The fuel technology design evolution maximizes the fuel utilization efficiency, improves operation performance and enhances safety margins. By the joint efforts of specialists from INRNE, Sofia (BG) and KAB, Berlin (GE), the codes NESSEL-IV-EC, PYTHIA and DERAB have been developed and verified. In the frame of the PHARE programme the joint project ASPERCA has been proposed intended for reactor physics calculations with PHYBER-WWER code for safety enhancement and operation reliability improvement. In-core fuel management benchmarks for 4 cycles of unit 2 (WWER-440) and 2 cycles of unit 5 (WWER-1000) have been performed. The coordination of burnable absorber design implementation, low leakage loadings usage, reloading enrichment increase and steel content reduction in the core have made the reactor core analysis more demanding and the definition of loading patterns - more difficult. This complexity requires routine use of three-dimensional fast accurate core model with extended and updated cross section libraries. To meet the needs of WWER advanced loading patterns and in-core fuel management improvements the HEXANES code systems is being developed and qualified. Some test calculations have been carried out by the HEXANES code system investigating the influence of Gd in the fuel on the main reactor physics parameters. For reevaluation of the core safety-related design limits forming the basis of licensing procedure, the code DYN3D/M2 is used. 16 refs., 3 figs. (author)

  18. Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code

    International Nuclear Information System (INIS)

    Mur, J.; Meignin, J.C.

    1997-07-01

    Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.)

  19. Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code

    Energy Technology Data Exchange (ETDEWEB)

    Mur, J. [Electricite de France (EDF), 78 - Chatou (France); Meignin, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-07-01

    Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.) 8 refs.

  20. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    Science.gov (United States)

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  1. CORA. A thermal and hydraulic transient analysis computer code for a cluster of reactor core assemblies

    International Nuclear Information System (INIS)

    Johnson, H.G.

    1982-01-01

    The Fast Flux Test Facility (FFTF) is arranged for natural circulation emergency core cooling in the event of loss of all plant electrical power. This design feature was conclusively demonstrated in a series of four natural circulation transient tests during the plant startup testing program in 1980 and 1981. Predictions, of core performance during these tests were made using the Westinghouse Hanford Company CORA computer program. The predictions, which compared well with measured plant data, were used in the extrapolation process to demonstrate the validity of the FFTF plant safety models and codes. This paper provides a brief description of the CORA code and includes typical comparisons of predictions to measured plant test data

  2. Review of the SCDAP/RELAP5/MOD3.1 code structure and core T/H model before core damage

    International Nuclear Information System (INIS)

    Kim, See Darl; Kim, Dong Ha

    1998-04-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code is being developed at the INEL under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. NRC. As The current time, the SCDAP/RELAP5/MOD3.1 code is the result of merging the RELAP5/MOD3 and SCDAP models. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. Major purpose of the report is to provide information about the characteristics of SCDAP/RELAP5/MOD3.1 core T/H models for an integrated severe accident computer code being developed under the mid/long-term project. This report analyzes the overall code structure which consists of the input processor, transient controller, and plot file handler. The basic governing equations to simulate the thermohydraulics of the primary system are also described. As the focus is currently concentrated in the core, core nodalization parameters of the intact geometry and the phenomenological subroutines for the damaged core are summarized for the future usage. In addition, the numerical approach for the heat conduction model is investigated along with heat convection model. These studies could provide a foundation for input preparation and model improvement. (author). 6 refs., 3 tabs., 4 figs

  3. SCDAP: a light water reactor computer code for severe core damage analysis

    International Nuclear Information System (INIS)

    Marino, G.P.; Allison, C.M.; Majumdar, D.

    1982-01-01

    Development of the first code version (MODO) of the Severe Core Damage Analysis Package (SCDAP) computer code is described, and calculations made with SCDAP/MODO are presented. The objective of this computer code development program is to develop a capability for analyzing severe disruption of a light water reactor core, including fuel and cladding liquefaction, flow, and freezing; fission product release; hydrogen generation; quenched-induced fragmentation; coolability of the resulting geometry; and ultimately vessel failure due to vessel-melt interaction. SCDAP will be used to identify the phenomena which control core behavior during a severe accident, to help quantify uncertainties in risk assessment analysis, and to support planning and evaluation of severe fuel damage experiments and data. SCDAP/MODO addresses the behavior of a single fuel bundle. Future versions will be developed with capabilities for core-wide and vessel-melt interaction analysis

  4. An approach for coupled-code multiphysics core simulations from a common input

    International Nuclear Information System (INIS)

    Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger; Clarno, Kevin; Simunovic, Srdjan; Slattery, Stuart; Turner, John; Palmtag, Scott

    2015-01-01

    Highlights: • We describe an approach for coupled-code multiphysics reactor core simulations. • The approach can enable tight coupling of distinct physics codes with a common input. • Multi-code multiphysics coupling and parallel data transfer issues are explained. • The common input approach and how the information is processed is described. • Capabilities are demonstrated on an eigenvalue and power distribution calculation. - Abstract: This paper describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which is built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak

  5. Development of a perturbation code, PERT-K, for hexagonal core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Kyum; Kim, Sang Ji; Song, Hoon; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    A perturbation code for hexagonal core geometry has been developed based on Nodal Expansion Method. By using relevant output files of DIF3D code, it can calculate the reactivity changes caused by perturbation in composition or/and neutron cross section libraries. The accuracy of PERT-K code has been validated by calculating the reactivity changes due to fuel composition change, the sodium void coefficients, and the sample reactivity worths of BFS-73-1 critical experiments. In the case of 10% reduction in all fuel isotopics at a assembly located in the outer core, PERT-K computation agrees with the direct computation by DIF3D within 60 pcm. The sample reactivity worths of BFS-73-1 critical experiments are predicted with PERT-K code within the experimental error bounds. For 100% sodium void occurrence at the inner core, the maximum difference of reactivity changes between PERT-K and direct DIF3D computations is less than 40 pcm. On the other hand, the same sodium void condition at the outer core leads to a difference of reactivity change greater than 400 pcm. However, as sodium voiding becomes near zero value, the difference becomes less and rapidly falls within the acceptable bound, i.e. 40 pcm. (author). 11 refs., 9 figs., 6 tabs.

  6. An Adaptation of the HELIOS/MASTER Code System to the Analysis of VHTR Cores

    International Nuclear Information System (INIS)

    Noh, Jae Man; Lee, Hyun Chul; Kim, Kang Seog; Kim, Yong Hee

    2006-01-01

    KAERI is developing a new computer code system for an analysis of VHTR cores based on the existing HELIOS/MASTER code system which was originally developed for a LWR core analysis. In the VHTR reactor physics, there are several unique neutronic characteristics that cannot be handled easily by the conventional computer code system applied for the LWR core analysis. Typical examples of such characteristics are a double heterogeneity problem due to the particulate fuels, the effects of a spectrum shift and a thermal up-scattering due to the graphite moderator, and a strong fuel/reflector interaction, etc. In order to facilitate an easy treatment of such characteristics, we developed some methodologies for the HELIOS/MASTER code system and tested their applicability to the VHTR core analysis

  7. The in-core fuel management code system for VVER reactors

    International Nuclear Information System (INIS)

    Cada, R.; Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.

    2004-01-01

    The structure and methodology of a fuel management system for NPP VVER 1000 (NPP Temelin) and VVER 440 (NPP Dukovany) is described. It is under development in SKODA JS a.s. and is followed by practical applications. The general objectives of the system are maximization of end of cycle reactivity, the minimization of fresh fuel inventory for the minimization of fed enrichment and minimization of burnable poisons (BPs) inventory. They are also safety related constraints in witch minimization of power peaking plays a dominant role. General structure of the system consists in preparation of input data for macrocode calculation, algorithms (codes) for optimization of fuel loading, calculation of fuel enrichment and BPs assignment. At present core loading can be calculated (optimized) by Tabu search algorithm (code ATHENA), genetic algorithm (code Gen1) and hybrid algorithm - simplex procedure with application of Tabu search algorithm on binary shuffling (code OPAL B ). Enrichment search is realized by the application of simplex algorithm (OPAL B code) and BPs assignment by module BPASS and simplex algorithm in OPAL B code. Calculations of the real core loadings are presented and a comparison of different optimization methods is provided. (author)

  8. Theoretical and numerical studies of TWR based on ESFR core design

    International Nuclear Information System (INIS)

    Zhang, Dalin; Chen, Xue-Nong; Flad, Michael; Rineiski, Andrei; Maschek, Werner

    2013-01-01

    Highlights: • The traveling wave reactor (TWR) is studied based on the core design of the European Sodium-cooled Fast Reactor (ESFR). • The conventional fuel shuffling technique is used to produce a continuous radial fuel movement. • A stationary self sustainable nuclear fission power can be established asymptotically by only loading natural or depleted uranium. • The multi-group deterministic neutronic code ERANOS is applied. - Abstract: This paper deals with the so-called traveling wave reactor (TWR) based on the core design of the European Sodium-cooled Fast Reactor (ESFR). The current concept of TWR is to use the conventional radial fuel shuffling technique to produce a continuous radial fuel movement so that a stationary self sustainable nuclear fission power can be established asymptotically by only loading fertile material consisting of natural or depleted uranium. The core design of ESFR loaded with metallic uranium fuel without considering the control mechanism is used as a practical application example. The theoretical studies focus mainly on qualitative feasibility analyses, i.e. to identify out in general essential parameter dependences of such a kind of reactor. The numerical studies are carried out more specifically on a certain core design. The multi-group deterministic neutronic code ERANOS with the JEFF3.1 data library is applied as a basic tool to perform the neutronics and burn-up calculations. The calculations are performed in a 2-D R-Z geometry, which is sufficient for the current core layout. Numerical results of radial fuel shuffling indicate that the asymptotic k eff parabolically varies with the shuffling period, while the burn-up increases linearly. Typical shuffling periods investigated in this study are in the range of 300–1000 days. The important parameters, e.g. k eff , the burn-up, the power peaking factor, and safety coefficients are calculated

  9. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    International Nuclear Information System (INIS)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun

    2016-01-01

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes

  10. Regulatory Audit Activities on Nuclear Design of Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chae-Yong; Lee, Gil Soo; Lee, Jaejun; Kim, Gwan-Young; Bae, Moo-Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Regulatory audit analyses are initiated on the purpose of deep knowledge, solving safety issues, being applied in the review of licensee's results. The current most important safety issue on nuclear design is to verify bias and uncertainty on reactor physics codes to examine the behaviors of high burnup fuel during rod ejection accident (REA) and LOCA, and now regulatory audits are concentrated on solving this issue. KINS develops regulatory audit tools on its own, and accepts ones verified from foreign countries. The independent audit tools are sometimes standardized through participating the international programs. New safety issues on nuclear design, reactor physics tests, advanced reactor core design are steadily raised, which are mainly drawn from the independent examination tools. It is some facing subjects for the regulators to find out the unidentified uncertainties in high burnup fuels and to systematically solve them. The safety margin on nuclear design might be clarified by precisely having independent tools and doing audit calculations by using them. SCALE-PARCS/COREDAX and the coupling with T-H code or fuel performance code would be certainly necessary for achieving these purposes.

  11. A review of MAAP4 code structure and core T/H model

    International Nuclear Information System (INIS)

    Song, Yong Mann; Park, Soo Yong

    1998-03-01

    The modular accident analysis program (MAAP) version 4 is a computer code that can simulate the response of LWR plants during severe accident sequences and includes models for all of the important phenomena which might occur during accident sequences. In this report, MAAP4 code structure and core thermal hydraulic (T/H) model which models the T/H behavior of the reactor core and the response of core components during all accident phases involving degraded cores are specifically reviewed and then reorganized. This reorganization is performed via getting the related models together under each topic whose contents and order are same with other two reports for MELCOR and SCDAP/RELAP5 to be simultaneously published. Major purpose of the report is to provide information about the characteristics of MAAP4 core T/H models for an integrated severe accident computer code development being performed under the one of on-going mid/long-term nuclear developing project. The basic characteristics of the new integrated severe accident code includes: 1) Flexible simulation capability of primary side, secondary side, and the containment under severe accident conditions, 2) Detailed plant simulation, 3) Convenient user-interfaces, 4) Highly modularization for easy maintenance/improvement, and 5) State-of-the-art model selection. In conclusion, MAAP4 code has appeared to be superior for 3) and 4) items but to be somewhat inferior for 1) and 2) items. For item 5), more efforts should be made in the future to compare separated models in detail with not only other codes but also recent world-wide work. (author). 17 refs., 1 tab., 12 figs

  12. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  13. Evaluation of the WIMS (KAERI) - VENTURE code system for peak power prediction of KMRR core using MCNP

    International Nuclear Information System (INIS)

    Park, W.S.; Lee, K.M.; Lee, C.S.; Lee, J.T.; Oh, S.K.

    1992-01-01

    In this work, the validity and quantitative uncertainty of WIMS (KAERI) - VENTURE code system for the design and analysis of KMRR core was tried to be inferred using a well known benchmark code, MCNP. WIMS (KAERI) showed an excellent agreement with MCNP code. For three different control rod positions at a simulated core which has a quarter symmetry, total peaking factors and three sub-factors (radial, axial, and local) obtained from VENTURE were compared with those of MCNP. The comparison proved the validity of VENTURE and showed better agreement in the order of radial, axial, and local factors. The uncertainty of WIMS (KAERI) - VENTURE system was inferred using the 2σ band of total peaking obtained by MCNP. The uncertainty of WIMS (KAERI) - VENTURE system were found to be 18.5 % for the operating condition. (author)

  14. Validation and applicability of the 3D core kinetics and thermal hydraulics coupled code SPARKLE

    International Nuclear Information System (INIS)

    Miyata, Manabu; Maruyama, Manabu; Ogawa, Junto; Otake, Yukihiko; Miyake, Shuhei; Tabuse, Shigehiko; Tanaka, Hirohisa

    2009-01-01

    The SPARKLE code is a coupled code system based on three individual codes whose physical models have already been verified and validated. Mitsubishi Heavy Industries (MHI) confirmed the coupling calculation, including data transfer and the total reactor coolant system (RCS) behavior of the SPARKLE code. The confirmation uses the OECD/NEA MSLB benchmark problem, which is based on Three Mile Island Unit 1 (TMI-1) nuclear power plant data. This benchmark problem has been used to verify coupled codes developed and used by many organizations. Objectives of the benchmark program are as follows. Phase 1 is to compare the results of the system transient code using point kinetics. Phase 2 is to compare the results of the coupled three-dimensional (3D) core kinetics code and 3D core thermal-hydraulics (T/H) code, and Phase 3 is to compare the results of the combined coupled system transient code, 3D core kinetics code, and 3D core T/H code as a total validation of the coupled calculation. The calculation results of the SPARKLE code indicate good agreement with other benchmark participants' results. Therefore, the SPARKLE code is validated through these benchmark problems. In anticipation of applying the SPARKLE code to licensing analyses, MHI and Japanese PWR utilities have established a safety analysis method regarding the calculation conditions such as power distributions, reactivity coefficients, and event-specific features. (author)

  15. Computer code HYDRO-ACE for analyzing thermo-hydraulic phenomena in the BWR core

    International Nuclear Information System (INIS)

    Abe, Kiyoharu; Naito, Yoshitaka

    1979-10-01

    A computer code HYDRO-ACE has been developed for analyzing thermo-hydraulic phenomena in the BWR core under forced or natural circulation of cooling water. The code is composed of two main calculation routines for single channels such as riser, separator, and downcommer and multiple channels such as the reactor core with a heated zone. Functionally the code is divided into many subroutines to be connected straightforwardly, and so that the user can choose a given course freely by simply arranging the subroutines. In the program, void fraction is calculated by Maurer's method, two-phase frictional pressure drop by Maltinelli-Nelson's, and critical heat flux ratio by Hench-Levy's. The coolant flow distributions in the JPDR-II core calculated by the code are in good agreement with those measured. (author)

  16. Thermohydraulic characteristics analysis of natural convective cooling mode on the steady state condition of upgraded JRR-3 core, using COOLOD-N code

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Watanabe, Shukichi; Ando, Hiroei; Sudo, Yukio; Ikawa, Hiromasa.

    1987-03-01

    This report describes the results of the steady state thermohydraulic analysis of upgraded JRR-3 core under natural convective cooling mode, using COOLOD-N code. In the code, function to calculate flow-rate under natural convective cooling mode, and a heat transfer package have been newly added to the COOLOD code which has been developed in JAERI. And this report describes outline of the COOLOD-N code. The results of analysis show that the thermohydraulics of upgraded JRR-3 core, under natural convective cooling mode have enough margine to ONB temperature, DNB heat flux and occurance of blisters in fuel meats, which are design criterion of upgraded JRR-3. (author)

  17. A core design study for 'zero-sodium-void-worth' cores

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Suzuki, Masao; Hill, R.N.

    1992-01-01

    Recently, a number of low sodium-void-worth metal-fueled core design concepts have been proposed; to provide for flexibility in transuranic nuclide management strategy, core designs which exhibit a wide range of breeding characteristics have been developed. Two core concepts, a flat annular (transuranic burning) core and an absorber-type parfait (transuranic self-sufficient) core, are selected for this study. In this paper, the excess reactivity management schemes applied in the two designs are investigated in detail. In addition, the transient effect of reactivity insertions on the parfait core design is assessed. The upper and lower core regions in the parfait design are neutronically decoupled; however, the common coolant channel creates thermalhydraulic coupling. This combination of neutronic and thermalhydraulic characteristics leads to unique behavior in anticipated transient overpower events. (author)

  18. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    Energy Technology Data Exchange (ETDEWEB)

    Vitruk, S.G.; Korsun, A.S. [Moscow Engineering Physics Institute (Russian Federation); Ushakov, P.A. [Institute of Physics and Power Engineering, Obninsk (R)] [and others

    1995-09-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.

  19. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    International Nuclear Information System (INIS)

    Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.

    1995-01-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors

  20. Assessment of CANDU physics codes using experimental data - II: CANDU core physics measurements

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Jeong, Chang Joon; Choi, Hang Bok

    2001-11-01

    Benchmark calculations of the advanced CANDU reactor analysis tools (WIMS-AECL, SHETAN and RFSP) and the Monte Carlo code MCNP-4B have been performed using Wolsong Units 2 and 3 Phase-B measurement data. In this study, the benchmark calculations have been done for the criticality, boron worth, reactivity device worth, reactivity coefficient, and flux scan. For the validation of the WIMS-AECL/SHETANRFSP code system, the lattice parameters of the fuel channel were generated by the WIMS-AECL code, and incremental cross sections of reactivity devices and structural material were generated by the SHETAN code. The results have shown that the criticality is under-predicted by -4 mk. The reactivity device worths are generally consistent with the measured data except for the strong absorbers such as shutoff rod and mechanical control absorber. The heat transport system temperature coefficient and flux distributions are in good agreement with the measured data. However, the moderator temperature coefficient has shown a relatively large error, which could be caused by the incremental cross-section generation methodology for the reactivity device. For the MCNP-4B benchmark calculation, cross section libraries were newly generated from ENDF/B-VI release 3 through the NJOY97.114 data processing system and a three-dimensional full core model was developed. The simulation results have shown that the criticality is estimated within 4 mk and the estimated reactivity worth of the control devices are generally consistent with the measurement data, which implies that the MCNP code is valid for CANDU core analysis. In the future, therefore, the MCNP code could be used as a reference tool to benchmark design and analysis codes for the advanced fuels for which experimental data are not available

  1. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  2. Domain Decomposition strategy for pin-wise full-core Monte Carlo depletion calculation with the reactor Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)

    2016-06-15

    Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

  3. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    Miki, K.

    1979-01-01

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  4. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  5. Kinetic parameters evaluation of PWRs using static cell and core calculation codes

    International Nuclear Information System (INIS)

    Jahanbin, Ali; Malmir, Hessam

    2012-01-01

    Highlights: ► In this study, we have calculated effective delayed neutron fraction and prompt neutron lifetime in PWRs. ► New software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. ► This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. ► The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. - Abstract: In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. Benchmarking of the results against the final safety analysis report (FSAR) of the aforementioned reactors shows very good agreements with these published documents.

  6. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  7. Parallelization of a three-dimensional whole core transport code DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Jin Young, Cho; Han Gyu, Joo; Ha Yong, Kim; Moon-Hee, Chang [Korea Atomic Energy Research Institute, Yuseong-gu, Daejon (Korea, Republic of)

    2003-07-01

    Parallelization of the DeCART (deterministic core analysis based on ray tracing) code is presented that reduces the computational burden of the tremendous computing time and memory required in three-dimensional whole core transport calculations. The parallelization employs the concept of MPI grouping and the MPI/OpenMP mixed scheme as well. Since most of the computing time and memory are used in MOC (method of characteristics) and the multi-group CMFD (coarse mesh finite difference) calculation in DeCART, variables and subroutines related to these two modules are the primary targets for parallelization. Specifically, the ray tracing module was parallelized using a planar domain decomposition scheme and an angular domain decomposition scheme. The parallel performance of the DeCART code is evaluated by solving a rodded variation of the C5G7MOX three dimensional benchmark problem and a simplified three-dimensional SMART PWR core problem. In C5G7MOX problem with 24 CPUs, a speedup of maximum 21 is obtained on an IBM Regatta machine and 22 on a LINUX Cluster in the MOC kernel, which indicates good parallel performance of the DeCART code. In the simplified SMART problem, the memory requirement of about 11 GBytes in the single processor cases reduces to 940 Mbytes with 24 processors, which means that the DeCART code can now solve large core problems with affordable LINUX clusters. (authors)

  8. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  9. The new lattice code Paragon and its qualification for PWR core applications

    International Nuclear Information System (INIS)

    Ouisloumen, M.; Huria, H.C.; Mayhue, L.T.; Smith, R.M.; Kichty, M.J.; Matsumoto, H.; Tahara, Y.

    2003-01-01

    Paragon is a new two-dimensional transport code based on collision probability with interface current method and written entirely in Fortran 90/95. The qualification of Paragon has been completed and the results are very good. This qualification included a number of critical experiments. Comparisons to the Monte Carlo code MCNP for a wide variety of PWR assembly lattice types were also performed. In addition, Paragon-based core simulator models have been compared against PWR plant startup and operational data for a large number of plants. Some results of these calculations and also comparisons against models developed with a licensed Westinghouse lattice code, Phoenix-P, are presented. The qualification described in this paper provided the basis for the qualification of Paragon both as a validated transport code and as the nuclear data source for core simulator codes

  10. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores.

  11. Specialists' meeting on design features affecting a dynamic behaviour of fast reactor cores. Summary report

    International Nuclear Information System (INIS)

    1982-01-01

    The purpose of the meeting was to review and discuss the effects induced by changes in some design characteristics on overall performances and transient behaviour of fast reactor cores. The main topics discussed in the four technical sessions were: National Review Presentations. Identification of the key issues to be considered in the following sessions; Effects of design changes on performance characteristics. Kinetics models and codes; Evaluation and interpretation of reactivity coefficients. Kinetics calculations for restrained and free-standing cores; Comparison of the dynamic behaviour of homogeneous and heterogeneous cores

  12. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    Science.gov (United States)

    Karim, Julia Abdul

    2008-05-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.

  13. Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System

    International Nuclear Information System (INIS)

    Karim, Julia Abdul

    2008-01-01

    The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained

  14. Criticality qualification of a new Monte Carlo code for reactor core analysis

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.; Zisis, Th.

    2009-01-01

    In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.

  15. Application of RELAP5-3D code for thermal analysis of the ADS reactor core

    International Nuclear Information System (INIS)

    Fernandes, Gustavo Henrique Nazareno

    2018-01-01

    Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow

  16. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  17. A NEM diffusion code for fuel management and time average core calculation

    International Nuclear Information System (INIS)

    Mishra, Surendra; Ray, Sherly; Kumar, A.N.

    2005-01-01

    A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)

  18. Development of flow network analysis code for block type VHTR core by linear theory method

    International Nuclear Information System (INIS)

    Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.

    2012-01-01

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  19. Design configuration of GCFR core assemblies

    International Nuclear Information System (INIS)

    LaBar, M.P.; Lee, G.E.; Meyer, R.J.

    1980-05-01

    The current design configurations of the core assemblies for the gas-cooled fast reactor (GCFR) demonstration plant reactor core conceptual design are described. Primary emphasis is placed upon the design innovations that have been incorporated in the design of the core assemblies since the establishment of the initial design of an upflow GCFR core. A major feature of the design configurations is that they are prototypical of core assemblies for use in commercial plants; a larger number of the same assemblies would be used in a commercial plant

  20. DNBR calculation in digital core protection system by a subchannel analysis code

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, T. H.; Ji, S. K.

    2001-01-01

    The DNBR calculation uncertainty and DNBR margin were evaluated in digital core protection system by a thermal-hydrualic subchannel analysis code MATRA. A simplified thermal-hydraulic code CETOP is used to calculate on-line DNBR in core protection system at a digital PWR. The DNBR tuning process against a best-estimate subchannel analysis code is required for CETOP to ensure accurate and conservative DNBR calculation but not necessary for MATRA. The DNBR calculations by MATRA and CETOP were performed for a large number of operating condition in Yonggwang nulcear units 3-4 where the digitial core protection system is initially implemented in Korea. MATRA resulted in a less negative mean value (i.e., reduce the overconservatism) and a somewhat larger standard deviation of the DNBR error. The uncertainty corrected minimum DNBR by MATRA was shown to be higher by 1.8% -9.9% that the CETOP DNBR

  1. Benchmark calculations on nuclear characteristics of JRR-4 HEU core by SRAC code system

    International Nuclear Information System (INIS)

    Arigane, Kenji

    1987-04-01

    The reduced enrichment program for the JRR-4 has been progressing based on JAERI's RERTR (Reduced Enrichment Research and Test Reactor) program. The SRAC (JAERI Thermal Reactor Standard Code System for Reactor Design and Analysis) is used for the neutronic design of the JRR-4 LEU Core. This report describes the benchmark calculations on the neutronic characteristics of the JRR-4 HEU Core in order to validate the calculation method. The benchmark calculations were performed on the various kind of neutronic characteristics such as excess reactivity, criticality, control rod worth, thermal neutron flux distribution, void coefficient, temperature coefficient, mass coefficient, kinetic parameters and poisoning effect by Xe-135 build up. As the result, it was confirmed that these calculated values are in satisfactory agreement with the measured values. Therefore, the calculational method by the SRAC was validated. (author)

  2. Analysis of the SPERT III E-core experiment using the EUREKA-2 code

    International Nuclear Information System (INIS)

    Harami, Taikan; Uemura, Mutsumi; Ohnishi, Nobuaki

    1986-09-01

    EUREKA-2, a coupled nuclear thermal hydrodynamic kinetic code, was adapted for the testing of models and methods. Code evaluations were made with the reactivity addition experiments of the SPERT III E-Core, a slightly enriched oxide core. The code was tested for non damaging power excursions including a wide range of initial operating conditions, such as cold-startup, hot-startup, hot-standby and operating-power initial conditions. Comparisons resulted in a good agreement within the experimental errors between calculated and experimental power, energy, reactivity and clad surface temperature. (author)

  3. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  4. The development of the Nuclear Electric core performance and fault transient analysis code package in support of Sizewell B

    International Nuclear Information System (INIS)

    Hall, P.; Hutt, P.

    1994-01-01

    This paper describes Nuclear Electric's (NE) development of an integrated code package in support of all its reactors including Sizewell B, designed for the provision of fuel management design, core performance studies, operational support and fault transient analysis. The package uses the NE general purpose three-dimensional transient reactor physics code PANTHER with cross-sections derived in the PWR case from the LWRWIMS LWR lattice neutronics code. The package also includes ENIGMA a generic fuel performance code and for PWR application VIPRE-01 a subchannel thermal hydraulics code, RELAP5 the system thermal hydraulics transient code and SCORPIO an on-line surveillance system. The paper describes the capabilities and validation of the elements of this package for PWR, how they are coupled within the package and the way in which they are being applied for Sizewell B to on-line surveillance and fault transient analysis. (Author)

  5. Design features affecting dynamic behaviour of fast reactor cores

    International Nuclear Information System (INIS)

    Kayser, G.; Gouriou, A.

    1981-06-01

    The study of dynamic response of an LMFBR to normal and accidental transients needs first of all a simulation code taking into account all the important effects. The DYN-1 code aims at this target. It represents with a sufficiently accurate meshing the core in a 20 geometry for the thermal and reactivity effects, while the kinetics of this core are calculated with a point model. The primary pool, secondary loops, steam generator are also represented, as well as the control and protective systems. We give a short description of this code. Simpler codes are sometimes good enough for parametric studies

  6. MASTER- an indigenous nuclear design code of KAERI

    International Nuclear Information System (INIS)

    Cho, Byung Oh; Lee, Chang Ho; Park, Chan Oh; Lee, Chong Chul

    1996-01-01

    KAERI has recently developed the nuclear design code MASTER for the application to reactor physics analyses for pressurized water reactors. Its neutronics model solves the space-time dependent neutron diffusion equations with the advanced nodal methods. The major calculation categories of MASTER consist of microscopic depletion, steady-state and transient solution, xenon dynamics, adjoint solution and pin power and burnup reconstruction. The MASTER validation analyses, which are in progress aiming to submit the Uncertainty Topical Report to KINS in the first half of 1996, include global reactivity calculations and detailed pin-by-pin power distributions as well as in-core detector reaction rate calculations. The objective of this paper is to give an overall description of the CASMO/MASTER code system whose verification results are in details presented in the separate papers

  7. Estimation of reactor core calculation by HELIOS/MASTER at power generating condition through DeCART, whole-core transport code

    International Nuclear Information System (INIS)

    Kim, H. Y.; Joo, H. G.; Kim, K. S.; Kim, G. Y.; Jang, M. H.

    2003-01-01

    The reactivity and power distribution errors of the HELIOS/MASTER core calculation under power generating conditions are assessed using a whole core transport code DeCART. For this work, the cross section tablesets were generated for a medium sized PWR following the standard procedure and two group nodal core calculations were performed. The test cases include the HELIOS calculations for 2-D assemblies at constant thermal conditions, MASTER 3D assembly calculations at power generating conditions, and the core calculations at HZP, HFP, and an abnormal power conditions. In all these cases, the results of the DeCART code in which pinwise thermal feedback effects are incorporated are used as the reference. The core reactivity, assemblywise power distribution, axial power distribution, peaking factor, and thermal feedback effects are then compared. The comparison shows that the error of the HELIOS/MASTER system in the core reactivity, assembly wise power distribution, pin peaking factor are only 100∼300 pcm, 3%, and 2%, respectively. As far as the detailed pinwise power distribution is concerned, however, errors greater than 15% are observed

  8. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  9. PWR core design calculations

    International Nuclear Information System (INIS)

    Trkov, A.; Ravnik, M.; Zeleznik, N.

    1992-01-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [sl

  10. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  11. Study on methodology to estimate isotope generation and depletion for core design of HTGR

    International Nuclear Information System (INIS)

    Fukaya, Yuji; Ueta, Shohei; Goto, Minoru; Shimakawa, Satoshi

    2013-12-01

    An investigation on methodology to estimate isotope generation and depletion had been performed in order to improve the accuracy for HTGR core design. The technical problem for isotope generation and depletion can be divided into major three parts, for solving the burn-up equations, generating effective cross section and employing nuclide data. Especially for the generating effective cross section, the core burn-up calculation has a technological problem in common with point burn-up calculation. Thus, the investigation had also been performed for the core burn-up calculation to develop new code system in the future. As a result, it was found that the cross section with the extended 108 energy groups structure from the SRAC 107 groups structure to 20 MeV and the cross section collapse using the flux obtained by the deterministic code SRAC is proper for the use. In addition, it becomes clear the needs for the nuclear data from an investigation on the preparation condition for nuclear data for a safety analysis and a fuel design. (author)

  12. Monte-Carlo code calculation of 3D reactor core model with usage of burnt fuel isotopic compositions, obtained by engineering codes

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2016-09-15

    A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.

  13. Introduction of SCIENCE code package

    International Nuclear Information System (INIS)

    Lu Haoliang; Li Jinggang; Zhu Ya'nan; Bai Ning

    2012-01-01

    The SCIENCE code package is a set of neutronics tools based on 2D assembly calculations and 3D core calculations. It is made up of APOLLO2F, SMART and SQUALE and used to perform the nuclear design and loading pattern analysis for the reactors on operation or under construction of China Guangdong Nuclear Power Group. The purpose of paper is to briefly present the physical and numerical models used in each computation codes of the SCIENCE code pack age, including the description of the general structure of the code package, the coupling relationship of APOLLO2-F transport lattice code and SMART core nodal code, and the SQUALE code used for processing the core maps. (authors)

  14. Implementation of refined core thermal-hydraulic calculation feature in the MARS/MASTER code

    International Nuclear Information System (INIS)

    Joo, H. K.; Jung, J. J.; Cho, B. O.; Ji, S. K.; Lee, W. J.; Jang, M. H.

    2000-01-01

    As an effort to enhance the fidelity of the core thermal/hydraulic calculation in the MARS/MASTER code, a best-estimate system/core coupled code, the COBRA-III module of MASTER is activated that enables refined core T/H calculations. Since the COBRA-III module is capable of using fuel-assembly sized nodes, the resolution of the T/H solution is high so that accurate incorporation of local T/H feedback effects becomes possible. The COBRA-III module is utilized such that the refined core T/H calculation is performed using the coarse-mesh flow boundary conditions specified by MARS at both ends of the core. The results of application to the OECD MSLB benchmark analysis indicate that the local peaking factor can be reduced by upto 15% with the refined calculation through the accurate representation of the local Doppler effect evaluation, although the prediction of the global transient behaviors such as the total core power change remain essentially unaffected

  15. Three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged inlayers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analystical study is directed towards an invesstigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathemtical model which represents a vertical arrangement of layers of blocks. This comprises a block module of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core

  16. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  17. Preparation of the TRANSURANUS code for TEMELIN NPP

    International Nuclear Information System (INIS)

    Klouzal, J.

    2011-01-01

    Since 2010 Temelin NPP started using TVSA-T fuel supplied by JSC TVEL. The transition process included implementation of several new core reload design codes. TRANSURANUS code was selected for the evaluation of the fuel rod thermomechanical performance. The adaptation and validation of the code was performed by Nuclear Research Institute Rez. TRANSURANUS code contains wide selection of alternative models for most of phenomena important for the fuel behaviour. It was therefore necessary to select, based on a comparison with experimental data, those most suitable for the modeling of TVSA-T fuel rods. In some cases, new models were implemented. Software tools and methodology for the evaluation of the proposed core reload design using TRANSURANUS code were also developed in NRI. The software tools include the interface to core physics code ANDREA and a set of scripts for an automated execution and processing of the computational runs. Independent confirmation of some of the vendor specified core reload design criteria was performed using TRANSURANUS. (authors)

  18. Determination of the decay power for a U3O8 designed core using the ORIGEN 2.1 code

    International Nuclear Information System (INIS)

    Castro, Jose; Gallardo, Alberto; Madariaga, Marcelo

    2014-01-01

    After the operation of a nuclear research reactor at a higher power (more than 300 kW), a cooling time is required to remove the residual heat from the core due to the heat produced by the energy emitted by fission products, this fact is common in reactors. There is a short time where the heat output falls to 6 % after the reactor shutdown, the importance of knowing this power is because of the accidental events that this power could cause and affect the fuel after a sudden shutdown in the cooling system of the reactor and there is any other refrigeration system, only that one surrounding the reactor core. This report shows the results of the calculation of the U 3 O 8 core residual power a for the RP-10, using the ORIGEN 2.1 calculation code, verifying the safety of the proposed core within the safety limits accepted for the reactor. (authors).

  19. Application of core structural design guidelines in conceptual fuel pin design

    International Nuclear Information System (INIS)

    Patel, M.R.; Stephen, J.D.

    1979-01-01

    The paper describes an application of the Draft RDT Standards F9-7, -8, and -9 to conceptual design of Fast Breeder Reactor (FBR) fuel pins. The Standards are being developed to provide guidelines for structural analysis and design of the FBR core components which have limited ductility at high fluences and are not addressed by the prevalent codes. The development is guided by a national working group sponsored by the Division of Reactor Researcch and Technology of the Department of Energy. The development program summarized in the paper includes establishment of design margins consistent with the test data and component performance requirements, and application of the design rules in various design activities. The application program insures that the quantities required for proper application of the design rules are available from the analysis methods and test data, and that the use of the same design rules in different analysis tools used at different stages of a component design producees consistent results. This is illustrated in the paper by application of the design rules in the analysis methods developed for conceptual and more detailed designs of an FBR fuel pin

  20. Application of neural network to multi-dimensional design window search in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    1999-01-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. The present method is applied to the neutronics and thermal hydraulics fields. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. To verify the applicability of the present method to the neutronics and the thermal hydraulics design, we have applied it to high conversion water reactors and examined effects of the structure of the neural network and the number of teaching patterns on the accuracy of the design window estimated by the neural network. From the results of the applications, a guideline to apply the present method is proposed and the present method can predict an appropriate design window in a reasonable computation time by following the guideline. (author)

  1. Study on Reduced-Moderation Water Reactor (RMWR) core design. Joint research report (FY1998-1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Reduce-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor aiming at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. Japan Atomic Energy Research Institute (JAERI) started a joint research program for conceptual design of RMWR core in collaboration with the Japan Atomic Power Company (JAPC) since 1998. The research area includes the RMWR core conceptual designs, development of analysis methods for rector physics and thermal-hydraulics to design the RMWR cores with higher accuracy and preparation of MOX critical experiment to confirm the feasibility from the reactor physics point of view. The present report describes the results of joint research program 'RMWR core design Phase 1' performed by JAERI and JAPC in FY 1998 and 1999. The results obtained from the joint research program are as follows: Conceptual design study on the RMWR core has been performed. A core concept with a conversion ratio more than about 1 is basically feasible to multiple recycling of plutonium. Investigating core characteristics at the equilibrium, some promising core concepts to satisfy above aims have been established. As for BWR-type concepts with negative void reactivity coefficients, three types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.1, (2) one feasible to attain operation cycle of about 2 years and burn-up of about 60 GWd/t with conversion ratio more than 1 or (3) one in simple design based on the ABWR assembly and without blanket attaining conversion ratio more than 1. And as for PWR-type concepts with negative void reactivity coefficients, two types of design have been obtained as follows; (1) one feasible to attain high conversion ratio about 1.05 by using heavy water as a coolant and (2) one feasible to attain conversion ratio about l by using light water. In the study of nuclear calculation method, a reactor analysis code

  2. Interaction between core analysis methodology and nuclear design: some PWR examples

    International Nuclear Information System (INIS)

    Rothleder, B.M.; Eich, W.J.

    1982-01-01

    The interaction between core analysis methodology and nuclear design is exemplified by PSEUDAX, a major improvement related to the Advanced Recycle methodology program (ARMP) computer code system, still undergoing development by the Electric Power Research Institute. The mechanism of this interaction is explored by relating several specific nulcear design changes to the demands placed by these changes on the ARMP system, and by examining the meeting of these demands, first within the standard ARMP methodology and then through augmentation of the standard methodology by development of PSEUDAX

  3. Development of the Monju core safety analysis numerical models by super-COPD code

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Minami, Masaki

    2010-12-01

    Japan Atomic Energy Agency constructed a computational model for safety analysis of Monju reactor core to be built into a modularized plant dynamics analysis code Super-COPD code, for the purpose of heat removal capability evaluation at the in total 21 defined transients in the annex to the construction permit application. The applicability of this model to core heat removal capability evaluation has been estimated by back to back result comparisons of the constituent models with conventionally applied codes and by application of the unified model. The numerical model for core safety analysis has been built based on the best estimate model validated by the actually measured plant behavior up to 40% rated power conditions, taking over safety analysis models of conventionally applied COPD and HARHO-IN codes, to be capable of overall calculations of the entire plant with the safety protection and control systems. Among the constituents of the analytical model, neutronic-thermal model, heat transfer and hydraulic models of PHTS, SHTS, and water/steam system are individually verified by comparisons with the conventional calculations. Comparisons are also made with the actually measured plant behavior up to 40% rated power conditions to confirm the calculation adequacy and conservativeness of the input data. The unified analytical model was applied to analyses of in total 8 anomaly events; reactivity insertion, abnormal power distribution, decrease and increase of coolant flow rate in PHTS, SHTS and water/steam systems. The resulting maximum values and temporal variations of the key parameters in safety evaluation; temperatures of fuel, cladding, in core sodium coolant and RV inlet and outlet coolant have negligible discrepancies against the existing analysis result in the annex to the construction permit application, verifying the unified analytical model. These works have enabled analytical evaluation of Monju core heat removal capability by Super-COPD utilizing the

  4. CEDNBR: a computer code for transient thermal margin analysis of a reactor core

    International Nuclear Information System (INIS)

    Shesler, A.T.; Lehmann, C.R.

    1976-09-01

    The report describes the CEDNBR computer code. This code was developed for the transient thermal analysis of a pressurized water reactor core or a critical heat flux test. Included are the code structure, conservation equations, and correlations utilized by CEDNBR. The methods of modelling a reactor core and hot channel and a CHF test are presented. Comparisons of CEDNBR calculations are made with both empirical pressure loss data and simulated loss of flow test data. The code solves the one-dimensional conservation of mass, energy, and momentum equations and the equation of state for the fluid for either steady-state or transient conditions. Tabular time dependent functions of inlet temperatures, pressure, mass velocity, axial heat flux distributions, normalized heat flux, radial peaking factors, and incremental mixing factors are required input to the code. Transient effects are included in the calculation of enthalpy rise and fluid properties. The Departure from Nucleate Boiling Ratio (DNBR) is calculated by applying a Critical Heat Flux (CHF) correlation to the computed local fluid properties. A code user's guide is provided for preparing input to the code. In addition, descriptions of the sub-routines used by CEDNBR are given

  5. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1978-01-01

    The use of graphite as a structural element presents unusual problems both for the designer and stress analysist. When the structure happens to be a nuclear reactor core, these problems are significantly magnified both by the environment and the attendant safety requirements. In the high temperature gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. The study of this subject was undertaken under contract to the U.S. Nuclear Regulatory Commission. (Auth.)

  6. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual

    International Nuclear Information System (INIS)

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.

    1983-04-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code

  7. The database 'EDUD Base' for validation of neutron-physics codes used to analyze the WWER-440 cores

    International Nuclear Information System (INIS)

    Rocek, J.; Belac, J.; Miasnikov, A.

    2003-01-01

    The program and data system EDUDBase for validation of reactor computing codes was developed at NRI. It is designed for validation and evaluation of the precision of different computer codes used for WWER core analyses. The main goal of this database is to provide data for comparison with calculation results of tested codes and tools for statistical analysis or differences between the calculation results and the test data. The benchmark data sets are based on in-core measurements performed on WWER-440 reactors of Dukovany NPP. The initial data from NPP are verified, errors and inaccuracies are eliminated and data are transferred to a form, which is suitable for comparison with results of calculations. A special reduced operating history data set is created for each operating cycle ('Benchmark Operation History') to be used as an input data for calculation. It contains values of some integral quantities for each time point: effective time, integral thermal power, boron concentration, position of working group control assemblies (group 6) and inlet coolant temperature. At present, sets are available for all completed cycles up to: (unit/cycle) 1/17, 2/16, 3/15, 4/15. Power distribution is described for approx. 40 time steps during each operating cycle. 2D-power distributions are transferred into 60-degree core symmetry sector of reactor core. At present, such data sets are available only for later cycles starting with: (unit/cycle) 1/7, 2/6, 3/5, 4/5 (in other words last II cycles for each unit) (Authors)

  8. A three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)

  9. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  10. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  11. Development of long-lived radionuclide transmutation technology - Development of a code system for core analysis of the transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)

  12. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  13. Analysis of a small PWR core with the PARCS/Helios and PARCS/Serpent code systems

    International Nuclear Information System (INIS)

    Baiocco, G.; Petruzzi, A.; Bznuni, S.; Kozlowski, T.

    2017-01-01

    Highlights: • The consistency between Helios and Serpent few-group cross sections is shown. • The PARCS model is validated against a Monte Carlo 3D model. • The fission and capture rates are compared. • The influence of the spacer grids on the axial power distribution is shown. - Abstract: Lattice physics codes are primarily used to generate cross-section data for nodal codes. In this work the methodology of homogenized constant generation was applied to a small Pressurized Water Reactor (PWR) core, using the deterministic code Helios and the Monte Carlo code Serpent. Subsequently, a 3D analysis of the PWR core was performed with the nodal diffusion code PARCS using the two-group cross section data sets generated by Helios and Serpent. Moreover, a full 3D model of the PWR core was developed using Serpent in order to obtain a reference solution. Several parameters, such as k eff , axial and radial power, fission and capture rates were compared and found to be in good agreement.

  14. Updating of ASME Nuclear Code Case N-201 to Accommodate the Needs of Metallic Core Support Structures for High Temperature Gas Cooled Reactors Currently in Development

    International Nuclear Information System (INIS)

    Basol, Mit; Kielb, John F.; MuHooly, John F.; Smit, Kobus

    2007-01-01

    On September 29, 2005, ASME Standards Technology, LLC (ASME ST-LLC) executed a multi-year, cooperative agreement with the United States DOE for the Generation IV Reactor Materials project. The project's objective is to update and expand appropriate materials, construction, and design codes for application in future Generation IV nuclear reactor systems that operate at elevated temperatures. Task 4 was embarked upon in recognition of the large quantity of ongoing reactor designs utilizing high temperature technology. Since Code Case N-201 had not seen a significant revision (except for a minor revision in September, 2006 to change the SA-336 forging reference for 304SS and 316SS to SA-965 in Tables 1.2(a) and 1.2(b), and some minor editorial changes) since December 1994, identifying recommended updates to support the current high temperature Core Support Structure (CSS) designs and potential new designs was important. As anticipated, the Task 4 effort identified a number of Code Case N-201 issues. Items requiring further consideration range from addressing apparent inconsistencies in definitions and certain material properties between CC-N-201 and Subsection NH, to inclusion of additional materials to provide the designer more flexibility of design. Task 4 developed a design parameter survey that requested input from the CSS designers of ongoing high temperature gas cooled reactor metallic core support designs. The responses to the survey provided Task 4 valuable input to identify the design operating parameters and future needs of the CSS designers. Types of materials, metal temperature, time of exposure, design pressure, design life, and fluence levels were included in the Task 4 survey responses. The results of the survey are included in this report. This research proves that additional work must be done to update Code Case N-201. Task 4 activities provide the framework for the Code Case N-201 update and future work to provide input on materials. Candidate

  15. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Tramm, J.R.; Siegel, A.R.

    2013-01-01

    The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)

  16. Selection and benchmarking of computer codes for research reactor core conversions

    International Nuclear Information System (INIS)

    Yilmaz, E.; Jones, B.G.

    1983-01-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC 2 , COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of Illinois. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general

  17. Computer codes for designing proton linear accelerators

    International Nuclear Information System (INIS)

    Kato, Takao

    1992-01-01

    Computer codes for designing proton linear accelerators are discussed from the viewpoint of not only designing but also construction and operation of the linac. The codes are divided into three categories according to their purposes: 1) design code, 2) generation and simulation code, and 3) electric and magnetic fields calculation code. The role of each category is discussed on the basis of experience at KEK (the design of the 40-MeV proton linac and its construction and operation, and the design of the 1-GeV proton linac). We introduce our recent work relevant to three-dimensional calculation and supercomputer calculation: 1) tuning of MAFIA (three-dimensional electric and magnetic fields calculation code) for supercomputer, 2) examples of three-dimensional calculation of accelerating structures by MAFIA, 3) development of a beam transport code including space charge effects. (author)

  18. IEA-R1 reactor core simulation with RELAP5 code

    International Nuclear Information System (INIS)

    Rocha, Ricardo Takeshi Vieira da; Belchior Junior, Antonio; Andrade, Delvonei Alves de; Sabundjian, Gaiane; Umbehaum, Pedro Ernesto; Torres, Walmir Maximo

    2005-01-01

    This paper presents a preliminary RELAP5 model for the IEA-R1 core. The power distribution is supplied by the neutronic code, CITATION. The main objective is to model the IEA-R1 core and validate the model through the comparison of the results to the ones from COBRA and PARET, which were used in the Final Safety Analysis Report (FSAR) for this plant. Preliminary calculations regarding some simulations are presented. Boundary conditions are simulated through time dependent components. Results obtained are compared to those available for the IEA-R1. This study will be continued considering a model for the whole plant. Important transient and accidents will be analysed in order to verify the Emergency Core Cooling System - ECCS efficiency to hold its function as projected to preserve the integrity of the reactor core and guarantee its cooling. (author)

  19. VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 3. Programmer's manual. Final report

    International Nuclear Information System (INIS)

    Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.

    1983-05-01

    VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces

  20. Simulation of single-phase rod bundle flow. Comparison between CFD-code ESTET, PWR core code THYC and experimental results

    International Nuclear Information System (INIS)

    Mur, J.; Larrauri, D.

    1998-07-01

    Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)

  1. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  2. Design of an Object-Oriented Turbomachinery Analysis Code: Initial Results

    Science.gov (United States)

    Jones, Scott M.

    2015-01-01

    Performance prediction of turbomachines is a significant part of aircraft propulsion design. In the conceptual design stage, there is an important need to quantify compressor and turbine aerodynamic performance and develop initial geometry parameters at the 2-D level prior to more extensive Computational Fluid Dynamics (CFD) analyses. The Object-oriented Turbomachinery Analysis Code (OTAC) is being developed to perform 2-D meridional flowthrough analysis of turbomachines using an implicit formulation of the governing equations to solve for the conditions at the exit of each blade row. OTAC is designed to perform meanline or streamline calculations; for streamline analyses simple radial equilibrium is used as a governing equation to solve for spanwise property variations. While the goal for OTAC is to allow simulation of physical effects and architectural features unavailable in other existing codes, it must first prove capable of performing calculations for conventional turbomachines. OTAC is being developed using the interpreted language features available in the Numerical Propulsion System Simulation (NPSS) code described by Claus et al (1991). Using the NPSS framework came with several distinct advantages, including access to the pre-existing NPSS thermodynamic property packages and the NPSS Newton-Raphson solver. The remaining objects necessary for OTAC were written in the NPSS framework interpreted language. These new objects form the core of OTAC and are the BladeRow, BladeSegment, TransitionSection, Expander, Reducer, and OTACstart Elements. The BladeRow and BladeSegment consumed the initial bulk of the development effort and required determining the equations applicable to flow through turbomachinery blade rows given specific assumptions about the nature of that flow. Once these objects were completed, OTAC was tested and found to agree with existing solutions from other codes; these tests included various meanline and streamline comparisons of axial

  3. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    Science.gov (United States)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  4. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  5. LUCID - an optical design and raytrace code

    International Nuclear Information System (INIS)

    Nicholas, D.J.; Duffey, K.P.

    1980-11-01

    A 2D optical design and ray trace code is described. The code can operate either as a geometric optics propagation code or provide a scalar diffraction treatment. There are numerous non-standard options within the code including design and systems optimisation procedures. A number of illustrative problems relating to the design of optical components in the field of high power lasers is included. (author)

  6. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-09-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System are presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented

  7. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-UK-TR-2017-0029 Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems ...2012, “ Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems .” 2. The objective...2012 - 01/25/2015 4. TITLE AND SUBTITLE Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous

  8. Development of the computer code system for the analyses of PWR core

    International Nuclear Information System (INIS)

    Tsujimoto, Iwao; Naito, Yoshitaka.

    1992-11-01

    This report is one of the materials for the work titled 'Development of the computer code system for the analyses of PWR core phenomena', which is performed under contracts between Shikoku Electric Power Company and JAERI. In this report, the numerical method adopted in our computer code system are described, that is, 'The basic course and the summary of the analysing method', 'Numerical method for solving the Boltzmann equation', 'Numerical method for solving the thermo-hydraulic equations' and 'Description on the computer code system'. (author)

  9. Feasibility study on thermal-hydraulic design of reduced-moderation PWR-type core

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime

    2000-03-01

    At JAERI, a conceptual study on reduced-moderation water reactor (RMWR) has been performed as one of the advanced reactor system which is designed so as to realize the conversion ratio more than unity. In this reactor concept, the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated. Therefore, an evaluation of the core thermal margin becomes very important in the design of the RMWR. In this study, we have performed a feasibility evaluation on thermal-hydraulic design of RM-PWR type core (core thermal output: 2900 MWt, Rod gaps: 1 mm). In RM-PWR core, seed and blanket regions are exist. In the blanket region, power density is lower than that of the seed region. Then, evaluation was performed under setting a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because it is possible that the coolant boils in the seed region. In the feasibility evaluations, subchannel code COBRA-IV-I was used in combination with KfK DNB (departure nucleate boiling) correlation. When coolant mass flow rate to the blanket fuel assembly is reduced by 40%, and that to the seed fuel assembly is increased, coolant boiling is not occurred in the assembly region calculation. Provided that the channel boxes to the blanket fuel assembly are set up and coolant mass flow rate to the blanket fuel assembly is reduced by 40%, it is confirmed by the whole core calculation that the boiling of the coolant is not occurred and the RM-PWR core is feasible. (author)

  10. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-01-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System is presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented. (author)

  11. Computer code for simulating pressurized water reactor core

    International Nuclear Information System (INIS)

    Serrano, A.M.B.

    1978-01-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numerically. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistance added to the film coefficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (author)

  12. Validation study of core analysis methods for full MOX BWR

    International Nuclear Information System (INIS)

    2013-01-01

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO 2 and MOX fuel rods, (3) analysis of isotopic composition data for UO 2 and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  13. Validation study of core analysis methods for full MOX BWR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO{sub 2} and MOX fuel rods, (3) analysis of isotopic composition data for UO{sub 2} and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  14. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  15. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  16. Optimization of core reload design for low leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1986-01-01

    A new method was developed to optimize pressurized water reactor core reload design for low leakage fuel management, a strategy recently adopted by most utilities to extend cycle length and mitigate pressurized thermal shock concerns. The method consists of a two-stage optimization process which provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle in the absence of burnable poisons. A direct search method is employed in conjunction with a constant power, Haling depletion. In the second stage, the core control poison requirements are determined using a linear programming technique. The solution provides the fresh fuel burnable poison loading required to meet core power peaking constraints. An accurate method of explicitly modeling burnable absorbers was developed for this purpose. The design method developed here was implemented in a currently recognized fuel licensing code, SIMULATE, that was adapted to the CYBER-205 computer. This methodology was applied to core reload design of cycles 9 and 10 for the Commonwealth Edison Zion, Unit-1 Reactor. The results showed that the optimum loading pattern for cycle 9 yielded almost a 9% increase in the cycle length while reducing core vessel fluence by 30% compared with the reference design used by Commonwealth Edison

  17. Code package {open_quotes}SVECHA{close_quotes}: Modeling of core degradation phenomena at severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Kisselev, A.E.; Palagin, A.V. [Nuclear Safety Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The code package SVECHA for the modeling of in-vessel core degradation (CD) phenomena in severe accidents is being developed in the Nuclear Safety Institute, Russian Academy of Science (NSI RAS). The code package presents a detailed mechanistic description of the phenomenology of severe accidents in a reactor core. The modules of the package were developed and validated on separate effect test data. These modules were then successfully implemented in the ICARE2 code and validated against a wide range of integral tests. Validation results have shown good agreement with separate effect tests data and with the integral tests CORA-W1/W2, CORA-13, PHEBUS-B9+.

  18. VIPRE-01: A thermal-hydraulic code for reactor cores

    International Nuclear Information System (INIS)

    Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.; Nomura, K.K.

    1989-08-01

    The VIPRE-01 thermal hydraulics code for PWR and BWR analysis has undergone significant modifications and error correction. This manual for the updated code, designated as VIPRE-01 Mod-02, describes improvements that eliminate problems of slow convergence with the drift flux model in transient simulation. To update the VIPRE-01 code and its documentation the drift flux model of two-phase flow was implemented and error corrections developed during VIPRE-01 application were included. The project team modified the existing VIPRE-01 equations into drift flux model equations by developing additional terms. They also developed and implemented corrections for the errors identified during the last four years. They then validated the modified code against standard test data using selected test cases. The project team prepared documentation revisions reflecting code improvements and corrections to replace the corresponding sections in the original VIPRE documents. The revised VIPRE code, designated VIPRE-01 Mod-02, incorporates improvements that eliminate many shortcomings of the previous version. During the validation, the code produced satisfactory output compared with test data. The revised documentation is in the form of binder pages to replace existing pages in three of the original manuals

  19. A 3D transport-based core analysis code for research reactors with unstructured geometry

    International Nuclear Information System (INIS)

    Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao

    2013-01-01

    Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results

  20. Sizewell B cycle 5 core design with Framatome ANP's CASCADE-3D and British Energy's PANTHER

    International Nuclear Information System (INIS)

    Attale, F.; Koegl, J.; Knight, M.; Bryce, P.

    2001-01-01

    Sizewell B Cycle 5 is the first cycle, after 4 cycles with BNFL fuel, with a reload consisting of Framatome ANP HTP (high thermal performance) fuel assemblies. The impact of this fuel vendor change on the Nuclear Design area is that, according to British energy's (BE) practice, the Framatome ANP's nuclear design code system CASCADE-3D is used for the majority of the cycle specific safety case calculations. However, other parts of the safety submission (e.g. 3D transient analyses) are made by using the BE code PANTHER. Before using in parallel two different code systems for reload core licensing extensive comparisons of applied methodologies and obtained results were required to ensure an acceptable level of agreement. (orig.)

  1. Statistical core design

    International Nuclear Information System (INIS)

    Oelkers, E.; Heller, A.S.; Farnsworth, D.A.; Kearfott, K.J.

    1978-01-01

    The report describes the statistical analysis of DNBR thermal-hydraulic margin of a 3800 MWt, 205-FA core under design overpower conditions. The analysis used LYNX-generated data at predetermined values of the input variables whose uncertainties were to be statistically combined. LYNX data were used to construct an efficient response surface model in the region of interest; the statistical analysis was accomplished through the evaluation of core reliability; utilizing propagation of the uncertainty distributions of the inputs. The response surface model was implemented in both the analytical error propagation and Monte Carlo Techniques. The basic structural units relating to the acceptance criteria are fuel pins. Therefore, the statistical population of pins with minimum DNBR values smaller than specified values is determined. The specified values are designated relative to the most probable and maximum design DNBR values on the power limiting pin used in present design analysis, so that gains over the present design criteria could be assessed for specified probabilistic acceptance criteria. The results are equivalent to gains ranging from 1.2 to 4.8 percent of rated power dependent on the acceptance criterion. The corresponding acceptance criteria range from 95 percent confidence that no pin will be in DNB to 99.9 percent of the pins, which are expected to avoid DNB

  2. PWR core design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A; Ravnik, M; Zeleznik, N [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    Functional description of the programme package Cord-2 for PWR core design calculations is presented. Programme package is briefly described. Use of the package and calculational procedures for typical core design problems are treated. Comparison of main results with experimental values is presented as part of the verification process. (author) [Slovenian] Opisali smo programski paket CORD-2, ki se uporablja pri projektnih izracunih sredice pri upravljanju tlacnovodnega reaktorja. Prikazana je uporaba paketa in racunskih postopkov za tipicne probleme, ki nastopajo pri projektiranju sredice. Primerjava glavnih rezultatov z eksperimentalnimi vrednostmi je predstavljena kot del preveritvenega procesa. (author)

  3. Depletion methodology in the 3-D whole core transport code DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Zee, Sung Quun

    2005-02-01

    Three dimensional whole-core transport code DeCART has been developed to include a characteristics of the numerical reactor to replace partly the experiment. This code adopts the deterministic method in simulating the neutron behavior with the least assumption and approximation. This neutronic code is also coupled with the thermal hydraulic code CFD and the thermo mechanical code to simulate the combined effects. Depletion module has been implemented in DeCART code to predict the depleted composition in the fuel. The exponential matrix method of ORIGEN-2 has been used for the depletion calculation. The library of including decay constants, yield matrix and others has been used and greatly simplified for the calculation efficiency. This report summarizes the theoretical backgrounds and includes the verification of the depletion module in DeCART by performing the benchmark calculations.

  4. Development of core thermal-hydraulics module for intelligent reactor design system (IRDS)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Fujii, Sadao.

    1994-08-01

    We have developed an innovative reactor core thermal-hydraulics module where a designer can easily and efficiently evaluate his design concept of a new type reactor in the thermal-hydraulics field. The main purpose of this module is to decide a feasible range of basic design parameters of a reactor core in a conceptual design stage of a new type reactor. The module is to be implemented in Intelligent Reactor Design System (IRDS). The module has the following characteristics; 1) to deal with several reactor types, 2) four thermal hydraulics and fuel behavior analysis codes are installed to treat different type of reactors and design detail, 3) to follow flexibly modification of a reactor concept, 4) to provide analysis results in an understandable way so that a designer can easily evaluate feasibility of his concept, and so on. The module runs on an engineering workstation (EWS) and has a user-friendly man-machine interface on a pre- and post-processing. And it is equipped with a function to search a feasible range called as Design Window, for two design parameters by artificial intelligence (AI) technique and knowledge engineering. In this report, structure, guidance for users of an usage of the module and instruction of input data for analysis modules are presented. (author)

  5. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  6. SMART core protection system design

    International Nuclear Information System (INIS)

    Lee, J. K.; Park, H. Y.; Koo, I. S.; Park, H. S.; Kim, J. S.; Son, C. H.

    2003-01-01

    SMART COre Protection System(SCOPS) is designed with real-tims Digital Signal Processor(DSP) board and Network Interface Card(NIC) board. SCOPS has a Control Rod POSition (CRPOS) software module while Core Protection Calculator System(CPCS) consists of Core Protection Calculators(CPCs) and Control Element Assembly(CEA) Calculators(CEACs) in the commercial nuclear plant. It's not necessary to have a independent cabinets for SCOPS because SCOPS is physically very small. Then SCOPS is designed to share the cabinets with Plant Protection System(PPS) of SMART. Therefor it's very easy to maintain the system because CRPOS module is used instead of the computer with operating system

  7. Performance, Accuracy and Efficiency Evaluation of a Three-Dimensional Whole-Core Neutron Transport Code AGENT

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Hursin, Mathieu; Satvat, Nader; Hopkins, John; Xiao, Shanjie; Gert, Godfree

    2006-01-01

    The AGENT (Arbitrary Geometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used to couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic sub-meshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Re-balancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such

  8. Design Report for the core design of the first core Mark-Ia of the SNR-300

    International Nuclear Information System (INIS)

    Stanculescu, A.

    1984-05-01

    The report describes the first core Mark-Ia of the SNR-300 reactor and its different assembly types with their operational strategy. Methods, criteria and results of the neutron physical, thermal hydraulic and core mechanical design of the whole core and its assemblies are presented

  9. Preliminary core design of IRIS-50

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Franceschini, Fausto

    2009-01-01

    IRIS-50 is a small, 50 MWe, advanced PWR with integral primary system. It evolved employing the same design principles as the well known medium size (335 MWe) IRIS. These principles include the 'safety-by-design' philosophy, simple and robust design, and deployment flexibility. The 50 MWe design addresses the needs of specific applications (e.g., power generation in small regional grids, water desalination and biodiesel production at remote locations, autonomous power source for special applications, etc.). Such applications may favor or even require longer refueling cycles, or may have some other specific requirements. Impact of these requirements on the core design and refueling strategy is discussed in the paper. Trade-off between the cycle length and other relevant parameters is addressed. A preliminary core design is presented, together with the core main reactor physics performance parameters. (author)

  10. Core design and fuel management studies

    International Nuclear Information System (INIS)

    Min, Byung Joo; Chan, P.

    1997-06-01

    The design target for the CANDU 9 requires a 20% increase in electrical power output from an existing 480-channel CANDU core. Assuming a net electrical output of 861 MW(e) for a natural uranium fuelled Bruce-B/Darlington reactor in a warm water site, the net electrical output of the reference CANDU 9 reactor would be 1033 MW(e). This report documents the result of the physics studies for the design of the CANDU 9 480/SEU core. The results of the core design and fuel management studies of the CANDU 9 480/SEU reactor indicated that up to 1033 MW(e) output can be achieved in a 480-channel CANDU core by using SEU core can easily be maintained indefinitely using an automated refuelling program. Fuel performance evaluation based on the data of the 500 FPDs refuelling simulation concluded that SEU fuel failure is not expected. (author). 2 tabs., 38 figs., 5 refs

  11. Innovative research reactor core designed. Estimation and analysis of gamma heating distribution

    International Nuclear Information System (INIS)

    Setiyanto

    2014-01-01

    The Gamma heating value is an important factor needed for safety analysis of each experiments that will be realized on research reactor core. Gamma heat is internal heat source occurs in each irradiation facilities or any material irradiated in reactor core. This value should be determined correctly because of the safety related problems. The gamma heating value is in general depend on. reactor core characteristics, different one and other, and then each new reactor design should be completed by gamma heating data. The Innovative Research Reactor is one of the new reactor design that should be completed with any safety data, including the gamma heating value. For this reasons, calculation and analysis of gamma heating in the hole of reactor core and irradiation facilities in reflector had been done by using of modified and validated Gamset computer code. The result shown that gamma heating value of 11.75 W/g is the highest value at the center of reactor core, higher than gamma heating value of RSG-GAS. However, placement of all irradiation facilities in reflector show that safety characteristics for irradiation facilities of innovative research reactor more better than RSG-GAS reactor. Regarding the results obtained, and based on placement of irradiation facilities in reflector, can be concluded that innovative research reactor more safe for any irradiation used. (author)

  12. Neutronic simulation of a research reactor core of (232Th, 235U)O2 fuel using MCNPX2.6 code

    International Nuclear Information System (INIS)

    Feghhi, Seyed Amir Hossein; Rezazadeh, Marzieh; Kadi, Yacine; ); Tenreiro, Claudio; Aref, Morteza; Gholamzadeh, Zohreh

    2013-01-01

    The small reactor design for the remote and less developed areas of the user countries should have simple features in view of the lack of infra-structure and resources. Many researchers consider long core life with no on-site refuelling activity as a primary feature for the small reactor design. Long core life can be achieved by enhancing internal conversion rate of fertile to fissile materials. For that purpose, thorium cycle can he adopted because a high fissile production rate of 233 U converted from 232 Th can be expected in the thermal energy region. A simple nuclear reactor core arranged 19 assemblies in hexagonal structure, using thorium-based fuel and heavy water as coolant and moderator was simulated using MCNPX2.6 code, aiming an optimized critical assembly. Optimized reflector thickness and gap between assemblies were determined to achieve minimum neutron leakage and void reactivity. The result was a more compact core, where assemblies were designed having 19-fuel pins in 1.25 pitch-to-diameter ratio. Optimum reflector thickness of 15 cm resulted in minimal neutron leakage in view of economic limitations. A 0.5 cm gap between assembles achieved more safety and 2.2 % enrichment requirements. The present feasibility study suggests a thermal core of acceptable neutronic parameters to achieve a simple and safe core. (author)

  13. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  14. Development of GRIF-SM: The code for analysis of beyond design basis accidents in sodium cooled reactors

    International Nuclear Information System (INIS)

    Chvetsov, I.; Kouznetsov, I.; Volkov, A.

    2000-01-01

    GRIF-SM code was developed at the IPPE fast reactor department in 1992 for the analysis of transients in sodium cooled fast reactors under severe accident conditions. This code provides solution of transient hydrodynamics and heat transfer equations taking into account possibility of coolant boiling, fuel and steel melting, reactor kinetics and reactivity feedback due to variations of the core components temperature, density and dimensions. As a result of calculation, transient distribution of the coolant velocity and density was determined as well as temperatures of the fuel pins, reactor core and primary circuit as a whole. Development of the code during further 6 years period was aimed at the modification of the models describing thermal hydraulic characteristics of the reactor, and in particular in detailed description of the sodium boiling process. The GRIF-SM code was carefully validated against FZK experimental data on steady state sodium boiling in the electrically heated tube; transient sodium boiling in the 7-pin bundle; transient sodium boiling in the 37-pin bundle under flow redaction simulating ULOF accident. To show the code capabilities some results of code application for beyond design basis accident analysis on BN-800-type reactor are presented. (author)

  15. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  16. Core Follow Calculation for Palo Verde Unit 1 in Cycles 1 through 4 using DeCART2D/MASTER4.0 Code System

    International Nuclear Information System (INIS)

    Jeong, Hee Jeong; Choi, Yonghee; Kim, Sungmin; Lee, Kyunghoon

    2017-01-01

    To verify and validate the DeCART2D/MASTER4.0 design system, core follow calculations of Palo Verde Unit 1(PV-1) in cycles 1 through 4 are performed. The calculation results are compared with the measured data and will be used in the generation of bias and uncertainty factors in the DeCART2D/MASTER4.0 design system. The DeCART2D/MASTER codes system has been developed in KAERI for the PWR (Pressurized water reactors) core design including SMRs (Small Modular Reactors). Core follow calculations of Pale Verde Unit 1 in Cycles 1 through 4 have been performed. Reactivities, assembly powers and startup parameters such as EPC, RW, ITC and IBW are compared with the measured data. This work will be used in the generation of bias and uncertainty factors in DeCART2D/MASTER4.0 design system.

  17. Selection and benchmarking of computer codes for research reactor core conversions

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emin [School of Aerospace, Mechanical and Nuclear Engineering, University of Oklahoma, Norman, OK (United States); Jones, Barclay G [Nuclear Engineering Program, University of IL at Urbana-Champaign, Urbana, IL (United States)

    1983-09-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC{sup 2}, COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k{sub eff} is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)

  18. Selection and benchmarking of computer codes for research reactor core conversions

    International Nuclear Information System (INIS)

    Yilmaz, Emin; Jones, Barclay G.

    1983-01-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC 2 , COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k eff is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)

  19. Progress of full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Izutsu, S.; Sasagawa, M.; Aoyama, M.; Maruyama, H.; Suzuki, T.

    2000-01-01

    Full MOX ABWR core design has been made, based on the MOX design concept of 8x8 bundle configuration with a large central water rod, 40 GWd/t maximum bundle exposure, and the compatibility with 9x9 high-burnup UO 2 bundles. Core performance on shutdown margin and thermal margin of the MOX-loaded core is similar to that of UO 2 cores for the range from full UO 2 core to full MOX core. Safety analyses based on its safety parameters and MOX property have shown its conformity to the design criteria in Japan. In order to confirm the applicability of the nuclear design method to full MOX cores, Tank-type Critical Assembly (TCA) experiment data have been analyzed on criticality, power distribution and β eff /l measurements. (author)

  20. Development of the core safety regulation technology for the SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Do Sam; Lee, Kyeong Taek; Park, Young Ryoung; Lee, Gil Soo; Kim, Jong Woon; Yun, Sung Hwan; Lee, Jae Jun; Lee, Myung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2003-06-15

    As the SMART-P is different from existing general reactors, new regulation technology is required to understand and assess the SMART-P for its regulatory reviews. One of the these technologies is related to the core design analysis. Because the SMART-P used metallic fuels, this study also collects general metallic nuclear fuel data and SMART-P's metallic fuel data from the materials studied by KAERI. The core design methodologies of KWU, ABB-CE, Westinghouse, Studsvik, Scandpower, US NRC and domestic research centers were investigated. Specially, The Hellios lattice core was studied for hexagonal nuclear fuel assembly calculation. Also, the VVER-1000 benchmark problem was analyzed by the PARCS code which has been developed by U.S. NRC. In this study, a AFEN-based computing code KORDAX os developed for the regulatory review of the SMART-P. KORDAX which is a nodal code using AFEN method dose not use transverse integration and this it can give higher accuracy results. Also, Because KORDAX is useful for hexagonal core and uses a method different with the core design code of the SMART-P developed by KAERI, it is judged that KORDAX can be an independent and reliable regulation verification code. In the next year study, HELIOS will be further studied as a core lattice code, and a hexagonal kinetics code which is based on AFEN method will be developed more systematically.

  1. Preliminary analysis of the proposed BN-600 benchmark core

    International Nuclear Information System (INIS)

    John, T.M.

    2000-01-01

    The Indira Gandhi Centre for Atomic Research is actively involved in the design of Fast Power Reactors in India. The core physics calculations are performed by the computer codes that are developed in-house or by the codes obtained from other laboratories and suitably modified to meet the computational requirements. The basic philosophy of the core physics calculations is to use the diffusion theory codes with the 25 group nuclear cross sections. The parameters that are very sensitive is the core leakage, like the power distribution at the core blanket interface etc. are calculated using transport theory codes under the DSN approximations. All these codes use the finite difference approximation as the method to treat the spatial variation of the neutron flux. Criticality problems having geometries that are irregular to be represented by the conventional codes are solved using Monte Carlo methods. These codes and methods have been validated by the analysis of various critical assemblies and calculational benchmarks. Reactor core design procedure at IGCAR consists of: two and three dimensional diffusion theory calculations (codes ALCIALMI and 3DB); auxiliary calculations, (neutron balance, power distributions, etc. are done by codes that are developed in-house); transport theory corrections from two dimensional transport calculations (DOT); irregular geometry treated by Monte Carlo method (KENO); cross section data library used CV2M (25 group)

  2. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

  3. A supercomputing application for reactors core design and optimization

    International Nuclear Information System (INIS)

    Hourcade, Edouard; Gaudier, Fabrice; Arnaud, Gilles; Funtowiez, David; Ammar, Karim

    2010-01-01

    Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)

  4. Implication of irradiation effects on materials data for the design of near core components

    International Nuclear Information System (INIS)

    Dietz, W.; Breitling, H.

    1995-01-01

    For LWR's strict regulations exist for the consideration of irradiation in the design and surveillance of the reactor pressure vessel in the various codes (ASME, RCC-M, KTA) but less for near core components. For FBR's no firm rules exist either for the vessel nor the reactor internals. In this paper the German design practices for the loop type SNR-300 will be presented, and also some information from the surveillance programme of the KNK-reactor. Austenitic stainless steels have been mainly selected for the near core components. For some special applications Ni-alloys and a stabilized 2 1/4 Cr 1 Mo-alloy were specified. Considerations of the irradiation effects on material properties will be made for the various temperature and fluence levels around the core. The surveillance programmes will be described. Both, the consideration of irradiation effects in the elastic and inelastic analysis and the surveillance programmes had been a part of the licensing process for SNR-300. (author). 8 figs, 4 tabs

  5. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  6. Computer-Aided Test Flow in Core-Based Design

    OpenAIRE

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of embedded cores. The CAT now is applied to a few cores within the Philips Core Test Pilot IC project

  7. Development of the evaluation methods in reactor safety analyses and core characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to support the safety reviews by NRA on reactor safety design including the phenomena with multiple failures, the computer codes are developed and the safety evaluations with analyses are performed in the areas of thermal hydraulics and core characteristics evaluation. In the code preparation of safety analyses, the TRACE and RELAP5 code were prepared to conduct the safety analyses of LOCA and beyond design basis accidents with multiple failures. In the core physics code preparation, the functions of sensitivity and uncertainty analysis were incorporated in the lattice physics code CASMO-4. The verification of improved CASMO-4 /SIMULATE-3 was continued by using core physics data. (author)

  8. ARTEMIS: The core simulator of AREVA NP's next generation coupled neutronics/thermal-hydraulics code system ARCADIAR

    International Nuclear Information System (INIS)

    Hobson, Greg; Merk, Stephan; Bolloni, Hans-Wilhelm; Breith, Karl-Albert; Curca-Tivig, Florin; Van Geemert, Rene; Heinecke, Jochen; Hartmann, Bettina; Porsch, Dieter; Tiles, Viatcheslav; Dall'Osso, Aldo; Pothet, Baptiste

    2008-01-01

    AREVA NP has developed a next-generation coupled neutronics/thermal-hydraulics code system, ARCADIA R , to fulfil customer's current demands and even anticipate their future demands in terms of accuracy and performance. The new code system will be implemented world-wide and will replace several code systems currently used in various global regions. An extensive phase of verification and validation of the new code system is currently in progress. One of the principal components of this new system is the core simulator, ARTEMIS. Besides the stand-alone tests on the individual computational modules, integrated tests on the overall code are being performed in order to check for non-regression as well as for verification of the code. Several benchmark problems have been successfully calculated. Full-core depletion cycles of different plant types from AREVA's French, American and German regions (e.g. N4 and KONVOI types) have been performed with ARTEMIS (using APOLLO2-A cross sections) and compared directly with current production codes, e.g. with SCIENCE and CASCADE-3D, and additionally with measurements. (authors)

  9. Blahut-Arimoto algorithm and code design for action-dependent source coding problems

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Simeone, Osvaldo; Popovski, Petar

    2013-01-01

    The source coding problem with action-dependent side information at the decoder has recently been introduced to model data acquisition in resource-constrained systems. In this paper, an efficient Blahut-Arimoto-type algorithm for the numerical computation of the rate-distortion-cost function...... for this problem is proposed. Moreover, a simplified two-stage code structure based on multiplexing is put forth, whereby the first stage encodes the actions and the second stage is composed of an array of classical Wyner-Ziv codes, one for each action. Leveraging this structure, specific coding/decoding...... strategies are designed based on LDGM codes and message passing. Through numerical examples, the proposed code design is shown to achieve performance close to the rate-distortion-cost function....

  10. Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search

    International Nuclear Information System (INIS)

    Parks, G.T.

    1996-01-01

    The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends on the core simulator used; the GA itself is code independent

  11. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Mark R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Candy, Jeff [General Atomics, San Diego, CA (United States)

    2013-11-07

    This project initiated the development of TGYRO - a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two

  12. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  13. Core design and fuel rod analyses of a super fast reactor with high power density

    International Nuclear Information System (INIS)

    Ju, Haitao; Cao, Liangzhi; Lu, Haoliang; Oka, Yoshiaki; Ikejiri, Satoshi; Ishiwatari, Yuki

    2009-01-01

    A Super Fast Reactor is a pressure-vessel type, fast spectrum SuperCritical Water Reactor (SCWR) that is presently researched in a Japanese project. One of the most important advantages of the Super Fast Reactor is the higher power density compared to the thermal spectrum SCWR, which reduces the capital cost. A preliminary core has an average power density of 158.8W/cc. In this paper, the principle of improving the average power density is studied and the core design is improved. After the sensitivity analyses on the fuel rod configurations, the fuel assembly configurations and the core configurations, an improved core with an average power density of 294.8W/cc is designed by 3-D neutronic/thermal-hydraulic coupled calculations. This power density is competitive with that of typical Liquid Metal Fast Breeder Reactors (LMFBR). In order to ensure the fuel rod integrity of this core design, the fuel rod behaviors on the normal operating condition are analyzed using FEMAXI-6 code. The power histories of each fuel rod are taken from the neutronics calculation results in the core design. The cladding surface temperature histories are taken from the thermal-hydraulic calculation results in the core design. Four types of the limiting fuel rods, with the Maximum Cladding Surface Temperature (MCST), Maximum Power Peak(MPP), Maximum Discharge Burnup(MDB) and Different Coolant Flow Pattern (DCFP), are chosen to cover all the fuel rods in the core. The available design range of the fuel rod design parameters, such as initial gas plenum pressure, gas plenum position, gas plenum length, grain size and gap size, are found out in order to satisfy the following design criteria: (1) Maximum fuel centerline temperature should be less than 1900degC. (2) Maximum cladding stress in circumstance direction should be less than 100MPa. (3) Pressure difference on the cladding should be less than 1/3 of buckling collapse pressure. (4) Cumulative damage faction (CDF) of the cladding should be

  14. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  15. Assessment of SFR reactor safety issues: Part II: Analysis results of ULOF transients imposed on a variety of different innovative core designs with SAS-SFR

    Energy Technology Data Exchange (ETDEWEB)

    Kruessmann, R., E-mail: regina.kruessmann@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Ponomarev, A.; Pfrang, W.; Struwe, D. [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Champigny, J.; Carluec, B. [AREVA, 10, rue J. Récamier, 69456 Lyon Cedex 06 (France); Schmitt, D.; Verwaerde, D. [EDF R& D, 1 avenue du général de Gaulle, 92140 Clamart (France)

    2015-04-15

    Highlights: • Comparison of different core designs for a sodium-cooled fast reactor. • Safety assessment with the code system SAS-SFR. • Unprotected Loss of Flow (ULOF) scenario. • Sodium boiling and core melting cannot be avoided. • A net negative Na void effect provides more grace time prior to local SA destruction. - Abstract: In the framework of cooperation agreements between KIT-INR and AREVA SAS NP as well as between KIT-INR and EDF R&D in the years 2008–2013, the evaluation of severe transient behavior in sodium-cooled fast reactors (SFRs) was investigated. In Part I of this contribution, the efficiency of newly conceived prevention and mitigation measures was investigated for unprotected loss-of-flow (ULOF), unprotected loss-of-heat-sink (ULOHS) and the unprotected transient-overpower (UTOP) transients. In this second part, consequence analyses were performed for the initiation phase of different unprotected loss-of-flow (ULOF) scenarios imposed on a variety of different core design options of SFRs. The code system SAS-SFR was used for this purpose. Results of analyses for cases postulating unavailability of prevention measures as shut-down systems, passive and/or active additional devices show that entering into an energetic power excursion as a consequence of the initiation phase of a ULOF cannot be avoided for those core designs with a cumulative void reactivity feedback larger than zero. However, even for core designs aiming at values of the void reactivity less than zero it is difficult to find system design characteristics which prevent the transient entering into partial core destruction. Further studies of the transient core and system behavior would require codes dedicated to specific aspects of transition phase analyses and of in-vessel material relocation analyses.

  16. LTA Physics Design: Description of All MOX Pin LTA Design

    International Nuclear Information System (INIS)

    Pavlovichev, A.M.

    2001-01-01

    In this document issued according to Work Release 02.P.99-1b the results of neutronics studies of > MOX LTA design are presented. The parametric studies of infinite MOX-UOX grids, MOX-UOX core fragments and of VVER-1000 core with 3 MOX LTAs are performed. The neutronics parameters of MOX fueled core have been performed for the chosen design MOX LTA using the Russian 3D code BIPR-7A and 2D code PERMAK-A with the constants prepared by the cell spectrum code TVS-M

  17. Analysis of mixed oxide fuel critical experiments with neutronics analysis codes for boiling water reactors

    International Nuclear Information System (INIS)

    Tamitani, Masashi; Maruyama, Hiromi; Ishii, Kazuya; Izutsu, Sadayuki; Yamaguchi, Masao

    2000-01-01

    Critical experiments of UO 2 and full mixed oxide (MOX) fuel cores conducted at the Tank-type Critical Assembly (TCA) were analyzed using BWR design-purpose codes HINES and CERES with ENDF/B files and Monte Carlo fine analysis codes VMONT and MVP with the JENDL-3.2 library. The averaged values of the multiplication factors calculated with HINES/CERES, VMONT and MVP agreed with those of experiments within 0.3%Δk. The values by the design-purpose codes showed a small difference of 0.1%Δk between UO 2 and MOX cores. Monte Carlo code results showed that the JENDL-3.2 library had a tendency to overestimate the multiplication factors of UO 2 cores by about 0.3%Δk compared with those values of MOX cores. The root mean square errors of calculated power distributions were less than 1% for HINES/CERES and VMONT. These results showed that (1) the accuracy of these codes when applied to full MOX cores was almost the same as their accuracy for UO 2 cores, which confirmed the accuracy of present core design codes for full MOX cores; and (2) the accuracy of the 190-energy-group Monte Carlo calculation code VMONT was almost the same as that of the continuous-energy Monte Carlo calculation code MVP. (author)

  18. SASSYS LMFBR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies

  19. Design evaluation on sodium piping system and comparison of the design codes

    International Nuclear Information System (INIS)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon

    2015-01-01

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  20. Design evaluation on sodium piping system and comparison of the design codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Jeong, Ji Young; Lee, Yong Bum; Lee, Hyeong Yeon [KAERI, Daejeon (Korea, Republic of)

    2015-03-15

    A large-scale sodium test loop of STELLA-1 (Sodium integral effect test loop for safety simulation and assessment) with two main piping systems has been installed at KAERI. In this study, design evaluations on the main sodium piping systems in STELLA-1 have been conducted according to the DBR (design by rule) codes of the ASME B31.1 and RCC-MRx RB-3600. In addition, design evaluations according to the DBA (design by analysis) code of the ASME Section III Subsection NB-3200 have been conducted. The evaluation results for the present piping systems showed that results from the DBR codes were more conservative than those from the DBA code, and among the DBR codes, the non-nuclear code of the ASME B31.1 was more conservative than the French nuclear DBR code of the RCC-MRx RB-3600. The conservatism on the DBR codes of the ASME B31.1 and RCC-MRx RB-3600 was quantified based on the present sodium piping analyses.

  1. Interleaver Design for Turbo Coding

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Zyablov, Viktor

    1997-01-01

    By a combination of construction and random search based on a careful analysis of the low weight words and the distance properties of the component codes, it is possible to find interleavers for turbo coding with a high minimum distance. We have designed a block interleaver with permutations...

  2. Prediction of PEC core mechanical behaviour

    International Nuclear Information System (INIS)

    Cecchini, F.; Di Francesca, R.; Mcloughlin, J.; Neri, P.

    1984-01-01

    A brief description of the original PEC core restraint system is presented. Recent advanced seismic analysis studies have necessitated the introduction of anti-seismic design modifications which have increased the difficulties of fuel handling. Computer codes and numerical methods, used by ENEA to resolve core restraint and fuel handling problems are given together with an outline of mechanical tests and handling experiments in support of the anti-seismic core design. (author)

  3. 76 FR 11432 - Coding of Design Marks in Registrations

    Science.gov (United States)

    2011-03-02

    ...] Coding of Design Marks in Registrations AGENCY: United States Patent and Trademark Office, Commerce... practice of coding newly registered trademarks that include a design element with design mark codes based... notice and request for comments at 75 FR 81587, proposing to discontinue a secondary system of coding...

  4. 75 FR 81587 - Coding of Design Marks in Registrations

    Science.gov (United States)

    2010-12-28

    ... DEPARTMENT OF COMMERCE Patent and Trademark Office [Docket No. PTO-T-2010-0090] Coding of Design... discontinue its secondary design coding, the practice of coding newly registered trademarks in its searchable... temporarily retain the paper collection of registrations with design coding, while improving the accuracy of...

  5. Development of a detailed core flow analysis code for prismatic fuel reactors

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1990-01-01

    The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs

  6. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  7. GCRA review and appraisal of HTGR reactor-core-design program

    International Nuclear Information System (INIS)

    1980-09-01

    The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation

  8. Full Core Criticality Modeling of Gas-Cooled Fast Reactor Using the SCALE6.0 and MCNP5 Code Packages

    International Nuclear Information System (INIS)

    Matijevic, M.; Jecmenica, R.; Pevec, D.; Trontl, K.

    2012-01-01

    The Gas-Cooled Fast Reactor (GFR) is one of the reactor concepts selected by the Generation IV International Forum (GIF) for the next generation of innovative nuclear energy systems. It was selected among a group of more than 100 prototypes and his commercial availability is expected by 2030. GFR has common goals of the rest GIF advanced reactor types: economy, safety, proliferation resistance, availability and sustainability. Several GFR fuel design concepts such as plates, rod pins and pebbles are currently being investigated in order to meet the high temperature constraints characteristic for a GFR working enviroment. In the previous study we have compared the fuel depletion results for heterogeneous GFR fuel assembly (FA), obtained with TRITON6 sequence of SCALE6.0 code system, with the MCNPX-CINDER90 and TRIPOLI-4-D codes. Present work is a continuation of neutronic criticality analysis of heterogeneous FA and full core configurations of a GFR concept using 3-D Monte Carlo codes KENO-VI/SCALE6.0 and MCNP5. The FA is based on a hexagonal mesh of fuel rods (uranium and plutonium carbide fuel, silicon carbide clad, helium gas coolant) with axial reflector thickness being varied for the purpose of optimization. Three reflector materials were analysed: zirconium carbide (ZrC), silicon carbide (SiC) and natural uranium. ZrC has been selected as a reflector material, having the best contribution to the neutron economy and to the reactivity of the core. The core safety parameters were also analysed: a negative temperature coefficient of reactivity was verified for the heavy metal fuel and coolant density loss. Criticality calculations of different FA active heights were performed and the reflector thickness was also adjusted. Finally, GFR full core criticality calculations using different active fuel rod heights and fixed ZrC reflector height were done to find the optimal height of the core. The Shannon entropy of the GFR core fission distribution was proved to be

  9. Analysis of neutronic parameters of AP1000 core for 18 month and 16/20 month cycle schemes using CASMO4E and SIMULATE-3 codes

    International Nuclear Information System (INIS)

    Nawaz Amjad; Yoshikawa, Hidekazu; Ming Yang

    2015-01-01

    AP1000 reactor is designed for 18 month of operating cycle. The core can also be used for 16/20 months of operating cycle. This study is performed to analyze and compare the neutronic parameters of typical AP1000 reactor core for 18 month and 16/20 month alternate cycle lengths. CASMO4E and SIMULATE-3 code package is used for the analysis of initial and equilibrium cores. The key reactor physics safety parameters were analyzed including power peaking factors, core radial and axial power distribution and core reactivity feedback coefficients. Moreover, the analysis of fuel depletion, fission product buildup and burnable poison behaviour with burnup is also analyzed. Full 2-D fuel assembly model in CASMO4E and full 3-D core model in SIMULATE-3 is employed to examine core performance and safety parameters. In order to evaluate the equilibrium core neutronic parameters, the equilibrium core model is attained by performing burnup analysis from initial to equilibrium cycle, where optimized transition core design is obtained so that the power peaking factors remain within designed limits. The MTC for higher concentration of critical boron concentrations is slightly positive at lower moderator temperatures. However, it remains negative at operating temperature ranges. The radial core relative power distribution indicates that low leakage capability of initial and equilibrium cores is reduced at EOC. (author)

  10. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  11. Analysis of a basic core performance for FBR core nuclear design. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    1999-03-01

    The spatial distribution of reaction rates in the ZPPR-13A, having an axially heterogeneous core, has been analyzed. The ZPPR-13A core is treated as a 2-dimensional RZ configuration consisting of a homogeneous core. The analysis is performed by utilizing both probabilistic and deterministic treatments. The probabilistic treatment is performed with the Monte Carlo Code MVP running with continuous energy variable. By comparing the results obtained by both treatments and reviewing the calculation method of effective resonance cross sections, for deterministic treatment, utilized for the reaction rate distributions, it is revealed that the present treatment of effective resonance cross sections is not accurate, since there are observed effects due to dependence on energy group number or energy group width, and on anisotropic scattering. To utilize multi-band method for calculating effective resonance cross sections, widely used by the European researchers, the computer code GROUPIE is installed and the performance of the code is confirmed. Although, in order to improve effective resonance cross sections accuracy, the thermal neutron reactor standard code system SRAC-95 was introduced last year in which the ultra-fine group spectrum calculation module PEACO worked specially under the restriction that number of nuclei having resonance cross section, in any zone, should be less than three, because collision probabilities were obtained by an interpolation method. This year, the module is improved so that these collision probabilities are directly calculated, and by this improvement the highly accurate effective resonance cross sections below the energy of 40.868 keV can be calculated for whole geometrical configurations considered. To extend the application range of the module PEACO, the cross sections of sodium and structure material nuclei are prepared so that they are also represented as ultra-fine group cross sections. By such modifications of cross section library

  12. Neutronic Design of KALIMER-600 Core with Moderator Rods

    International Nuclear Information System (INIS)

    Ser Gi Hong; Sang Ji Kim; Hoon Song; Yeong Il Kim

    2004-01-01

    Recently, the liquid-metal reactor research team of the Korea Atomic Energy Research Institute (KAERI) designed a 600 MWe sodium-cooled, metallic fueled fast reactor meeting the goals of Generation-IV, such as economics and proliferation resistance. In this paper, the core design analysis and its performance are reported. The core is designed to have a conversion ratio slightly larger than unity with no blanket assemblies in order not to produce an excess amount of high grade plutonium and to have no need for external feeds of fissile materials. To mitigate the sodium void reactivity of the fuel-self-sufficient core with no blanket assemblies, several design changes from a reference core are tried; reduction of the active core height, annular type cores with central dummy assemblies, and the use of moderator (BeO or ZrH 2 ) rods. As a result of the analysis, it is found that of the considered designs the use of moderator rods for the softening of the core neutron spectrum is the best choice for reducing the sodium void worth with the smallest changes from the reference fuel and assembly designs. The core analysis shows that the sodium void reactivity is reduced by ∼2$ in comparison with the reference core and the core has a much more negative fuel temperature reactivity feedback in comparison with the reference core. (authors)

  13. Economic optimization of PWR cores with ROSA

    International Nuclear Information System (INIS)

    Verhagen, F.C.M.; Wakker, P.H.

    2005-01-01

    The core-loading pattern is decisive for fuel cycle economics, fuel safety parameters and economic planning for future cycles. ROSA, NRG's loading pattern optimization code system for PWRs, has proven for over a decade to be a valuable tool to reactor operators for improving their fuel management economics. ROSA uses simulated annealing as loading pattern optimization technique, in combination with an extremely fast 3-D neutronics code for loading pattern calculations. The code is continuously extended with new optimization parameters and rules. This paper outlines recent developments of the ROSA code system and discusses results of PWR specific applications of ROSA. Core designs with a large variety of challenging constraints have been realized with ROSA. As a typical example, for the 193 assembly, Vantage 5H/RFA-2 fueled TVA's Watts Bar unit 1, a cycle 4 core with 76 feed assemblies was designed. This was followed by a high-energy cycle 5 with only 77 feed assemblies and approximately 535 days of natural cycle length. Subsequently, an economical core using 72 bundles was designed for cycle 6. This resulted in considerable savings in the cost of feed assemblies for reloads. The typical accuracy of ROSA compared to results of license codes in within ±0.02 for normalized assembly powers, ±0.03 for maximum enthalpy rise hot channel factor (F ΔH ), and ±3 days for natural cycle length. (author)

  14. Improvement of SSR core design for ABWR-II

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Okada, Hiroyuki; Kitamura, Hideya; Sakurada, Koichi; Tanabe, Akira

    2003-01-01

    In order to enhance the spectral shift effect in the ABWR-II reactor, a novel core design to bring out better performance of spectral shift rods (SSRs) is studied. The SSR is a new type of water rod, in which the water level develops naturally during operation and changes according to the coolant flow rate through the channel. By using the SSR, the average moderator density, which is directly related to core reactivity, can be controlled over a wide range by the core flow rate. In the new SSR core design, two types of SSR bundles, in which settings for the SSR water levels are different, are utilized and loaded according to flow distribution in the core. This two-region SSR core design allows wide variation in the average SSR water level, thus improving fuel economy. Enhancement of SSR function in the two-region SSR core increases the uranium saving factor by about 25%, from the 6% of the conventional uniform SSR core to about 8%. (author)

  15. Code for the core simulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Serrano, M.A.B.

    1978-08-01

    A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numericaly. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistence added to the film coeficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (Author) [pt

  16. Optimal burnable poison utilization in PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.

    1986-01-01

    A method was developed for determining the optimal distribution and depletion of burnable poisons in a Pressurized Water Reactor core. The well-known Haling depletion technique is used to achieve the end-of-cycle core state where the fuel assembly arrangement is configured in the absence of all control poison. The soluble and burnable poison required to control the core reactivity and power distribution are solved for as unknown variables while step depleting the cycle in reverse with a target power distribution. The method was implemented in the NRC approved licensing code SIMULATE

  17. Improved Design of Unequal Error Protection LDPC Codes

    Directory of Open Access Journals (Sweden)

    Sandberg Sara

    2010-01-01

    Full Text Available We propose an improved method for designing unequal error protection (UEP low-density parity-check (LDPC codes. The method is based on density evolution. The degree distribution with the best UEP properties is found, under the constraint that the threshold should not exceed the threshold of a non-UEP code plus some threshold offset. For different codeword lengths and different construction algorithms, we search for good threshold offsets for the UEP code design. The choice of the threshold offset is based on the average a posteriori variable node mutual information. Simulations reveal the counter intuitive result that the short-to-medium length codes designed with a suitable threshold offset all outperform the corresponding non-UEP codes in terms of average bit-error rate. The proposed codes are also compared to other UEP-LDPC codes found in the literature.

  18. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2012-09-15

    improvements address both neutronics and thermal-hydraulics aspects. Furthermore, emphasis has been placed on not only the beginning-of-life (BOL) state of the core, but also on the beginning of closed equilibrium fuel cycle (BEC) state. An important context for the current thesis is the 7{sup th} European Framework Program's Collaborative Project for a European Sodium Fast Reactor (CP-ESFR), the reference 3600 MWth ESFR core being the starting point for the conducted research. The principally employed computational tools belong to the so-called FAST code system, viz. the fast-reactor neutronics code ERANOS, the fuel cycle simulating procedure EQL3D, the spatial kinetics code PARCS and the system thermal-hydraulics code TRACE. The research has been carried out in essentially three successive phases. The first phase has involved achieving a clearer understanding of the principal phenomena contributing to the SFR void effect. Decomposition and analysis of sodium void reactivity have been carried out, while considering different fuel cycle states for the core. Furthermore, the spatial distribution of void reactivity importance, in both axial and radial directions, is investigated. For the reactivity decomposition, two methods, based respectively on neutron balance considerations and on perturbation theory, have been applied. The sodium void reactivity of the reference ESFR core has been, accordingly, decomposed reaction-wise, cross-section-wise, isotope-wise and energy-group-wise. Effectively, the neutron balance based method allows an in-depth understanding of the ‘consequences’ of sodium voidage, while the perturbation theory based method provides a complementary understanding of the ‘causes’. The second phase of the research has addressed optimization of the reference ESFR core design from the neutronics viewpoint. Four options oriented towards either the leakage component or the spectral effect have been considered in detail, viz. introducing an upper sodium

  19. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    improvements address both neutronics and thermal-hydraulics aspects. Furthermore, emphasis has been placed on not only the beginning-of-life (BOL) state of the core, but also on the beginning of closed equilibrium fuel cycle (BEC) state. An important context for the current thesis is the 7 th European Framework Program's Collaborative Project for a European Sodium Fast Reactor (CP-ESFR), the reference 3600 MWth ESFR core being the starting point for the conducted research. The principally employed computational tools belong to the so-called FAST code system, viz. the fast-reactor neutronics code ERANOS, the fuel cycle simulating procedure EQL3D, the spatial kinetics code PARCS and the system thermal-hydraulics code TRACE. The research has been carried out in essentially three successive phases. The first phase has involved achieving a clearer understanding of the principal phenomena contributing to the SFR void effect. Decomposition and analysis of sodium void reactivity have been carried out, while considering different fuel cycle states for the core. Furthermore, the spatial distribution of void reactivity importance, in both axial and radial directions, is investigated. For the reactivity decomposition, two methods, based respectively on neutron balance considerations and on perturbation theory, have been applied. The sodium void reactivity of the reference ESFR core has been, accordingly, decomposed reaction-wise, cross-section-wise, isotope-wise and energy-group-wise. Effectively, the neutron balance based method allows an in-depth understanding of the ‘consequences’ of sodium voidage, while the perturbation theory based method provides a complementary understanding of the ‘causes’. The second phase of the research has addressed optimization of the reference ESFR core design from the neutronics viewpoint. Four options oriented towards either the leakage component or the spectral effect have been considered in detail, viz. introducing an upper sodium plenum

  20. CORE DESIGNS OF ABWR FOR PROPOSED OF THE FIRST NUCLEAR POWER PLANT IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Yohannes Sardjono

    2015-04-01

    Full Text Available Indonesia as an archipelago has been experiencing high growth industry and energy demand due to high population growth, dynamic economic activities. The total population is around 230 million people and 75 % to the total population is living in Java. The introduction of Nuclear Power Plant on Java Bali electricity grid will be possible in 2022 for 2 GWe, using proven technology reactor like ABWR or others light water reactor with nominal power 1000 MWe. In this case, the rated thermal power for the equilibrium cycles is 3926 MWt, the cycle length is 18 month and overall capacity factor is 87 %. The designs were performed for an 872-fuel bundles ABWR core using GE-11 fuel type in an 9×9 fuel rod arrays with 2 Large Central Water Rods (LCWR. The calculations were divided into two steps; the first is to generate bundle library and the other is to make the thermal and reactivity limits satisfied for the core designs. Toshiba General Electric Bundle lattice Analysis (TGBLA and PANACEA computer codes were used as designs tools. TGBLA is a General Electric proprietary computer code which is used to generate bundle lattice library for fuel designs. PANACEA is General Electric proprietary computer code which is used as thermal hydraulic and neutronic coupled BWR core simulator. This result of core designs describes reactivity and thermal margins i.e.; Maximum Linear Heat Generation rate (MLHGR is lower than 14.4 kW/ft, Minimum Critical Power Ratio (MCPR is upper than 1.25, Hot Excess Reactivity (HOTXS is upper than 1 %Dk at BOC and 0.8 %Dk at 200 MWD/ST and Cold Shutdown Margin Reactivity (CSDM is upper than 1 %Dk. It is concluded that the equilibrium core design using GE-11 fuel bundle type satisfies the core design objectives for the proposed of the firs Indonesia ABWR Nuclear Power Plant. Keywords: The first NPP in Indonesia, ABWR-1000 MWe, and core designs.   Indonesia adalah sebagai negara kepulauan yang laju pertumbuhan industri, energi, penduduk

  1. ROSA full-core and DNBR capabilities

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Verhagen, F.C.M.; Wakker, P.H.

    2013-01-01

    The latest developments of the ROSA (Reloading Optimization by Simulated Annealing) code system with an emphasis on the first full-core version and the minimum DNBR (Departure from Nucleate Boiling Ratio) as a new optimization parameter are presented. Designing the core loading pattern of nuclear power plants is becoming a more and more complex task. This task becomes even more complicated if asymmetries in the core loading pattern arise, for instance due to damaged fuel assemblies. For over almost 2 decades ROSA, NRG's (Nuclear Research and consultancy Group) loading pattern optimization code system for PWRs, has proven to be a valuable tool to reactor operators in accomplishing this task. To improve the use of ROSA for designing asymmetric loading patterns, NRG has developed a full-core version of ROSA besides the original quarter-core version which requires rotational symmetry in the computational domain. The extension of ROSA with DNBR as an optimization parameter is part of ROSA's continuous development. (orig.)

  2. ROSA full-core and DNBR capabilities

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Verhagen, F.C.M.; Wakker, P.H.

    2012-01-01

    This paper presents the latest developments of the ROSA (Reloading Optimization by Simulated Annealing) code system with an emphasis on the first full-core version and the minimum DNBR (Departure from Nucleate Boiling Ratio) as a new optimization parameter. Designing the core loading pattern of nuclear power plants is becoming a more and more complex task. This task becomes even more complicated if asymmetries in the core loading pattern arise, for instance due to damaged fuel assemblies. For over almost two decades ROSA, NRG's (Nuclear Research and consultancy Group) loading pattern optimization code system for PWRs, has proven to be a valuable tool to reactor operators in accomplishing this task. To improve the use of ROSA for designing asymmetric loading patterns, NRG has developed a full-core version of ROSA besides the original quarter-core version which requires rotational symmetry in the computational domain. The extension of ROSA with DNBR as an optimization parameter is part of ROSA's continuous development. (orig.)

  3. 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code

    Energy Technology Data Exchange (ETDEWEB)

    Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)

    2009-07-01

    Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.

  4. Evaluation of core distortion in FBR

    International Nuclear Information System (INIS)

    Ikarimoto, I.; Tanaka, M.; Okubo, Y.

    1984-01-01

    The analyses of FBR's core distortion are mainly performed in order to evaluate the following items: 1) Change of reactivity; 2) Force at pads on core assemblies; 3) Withdrawal force at refueling; 4) Loading, refueling and residual deviations of wrapper tubes (core assemblies) at the top; 5) Bowing modes of guide tubes for control rods. The analysis of core distortion are performed by using computer program for two-dimensional row deformation analysis or three-dimensional core deformation if necessary, considering these evaluated items which become design conditions. This report shows the relationship between core deformation analysis and component design, a point of view of choosing an analysis program for design considering core characteristics, and computing examples of core deformation of prototype class reactor by the above code. (author)

  5. Verification of NUREC Code Transient Calculation Capability Using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Lee, Hyung Chul; Yoo, Jae Woon

    2006-01-01

    In this report, we verified the NUREC code transient calculation capability using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem. The benchmark problem consists of Part 1, a 2-D problem with given T/H conditions, Part 2, a 3-D problem at HFP condition, Part 3, a 3-D problem at HZP condition, and Part 4, a transient state initiated by a control rod ejection at HZP condition in Part 3. In Part 1, the results of NUREC code agreed well with the reference solution obtained from DeCART calculation except for the pin power distributions at the rodded assemblies. In Part 2, the results of NUREC code agreed well with the reference DeCART solutions. In Part 3, some results of NUREC code such as critical boron concentration and core averaged delayed neutron fraction agreed well with the reference PARCS 2G solutions. But the error of the assembly power at the core center was quite large. The pin power errors of NUREC code at the rodded assemblies was much smaller the those of PARCS code. The axial power distribution also agreed well with the reference solution. In Part 4, the results of NUREC code agreed well with those of PARCS 2G code which was taken as the reference solution. From the above results we can conclude that the results of NUREC code for steady states and transient states of the MOX loaded LWR core agree well with those of the other codes

  6. Preparation of a thermal-hydraulic design method for driver core fuel pins of a new in-pile experimental reactor for FBR safety research

    International Nuclear Information System (INIS)

    Mizuno, Masahiro; Yamaguchi, Katsuhisa; Uto, Nariaki

    1999-07-01

    A design study of a new in-pile experimental reactor, SERAPH (Safety Engineering Reactor for Accident PHenomenology), for FBR safety research has progressed at JNC (Japan Nuclear Cycle Development Institute). SERAPH is intended for various in-pile experiments to be performed under quasi-steady state and various transient operation modes. In order to evaluate the driver core performance in conducting such experiments, clarify the relating design issues to be resolved and refine the experimental needs, it is indispensable to comprehend the allowable margin for the thermal-hydraulic fuel pin design since it largely affects the strategy for the driver core design. This report presents a thermal-hydraulic design method for the driver core fuel pins, which is a combination of a two-dimensional time-dependent heat transfer analysis code TAC-2D and a general non-linear finite-element structural analysis code FINAS. In TAC-2D, the allowable spatial mesh and the time step sizes are evaluated. The code is modified so as to treat time-dependent thermal properties, include an improved gap heat-transfer model and treat the change of intra-pin gap width under transient modes, for the purpose of improving the accuracy of evaluating heat transfer characteristics which gives a significant impact on the thermal-hydraulic design. As for FINAS, the number of element nodes and spatial meshes required to obtain adequate accuracy for the thermal stress characteristics of a fuel pellet during transient modes are investigated. In addition, post-processing tools are newly developed to process the calculation results obtained from these codes. The results of this work contribute to advancing the fuel pin design study for SERAPH as well with the investigation on the technique of manufacturing fuel pins. (author)

  7. The Preliminary GAMMA Code Thermal hydraulic Analysis for the Steady State of HTR-10 Initial Core

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Su; Lim, Hong Sik; Lee, Won Jae

    2006-07-15

    This report describes the preliminary thermalhydraulic analysis of HTR-10 steady state full power initial core to provide a benchmark calculation of VHTGR(Very High-Temperature Gas-Cooled Reactors) safety analysis code of GAMMA(GAs Multicomponent Mixture Analysis). The input data of GAMMA code are produced for the models of fluid block, wall block, radiation heat transfer and each component material properties in HTR-10 reactor. The temperature and flow distributions of HTR-10 steady state 10 MW{sub th} full power initial core are calculated by GAMMA code with boundary conditions of total reactor inlet flow rate of 4.32 kg/s, inlet temperature of 250 .deg. C, inlet pressure of 3 MPa, outlet pressure of 2.992 MPa and the fixed temperature at RCCS water cooling tube of 50 .deg C. The calculation results are compared with the measured solid material temperatures at 22 fixed instrumentation positions in HTR-10. The wall temperature distribution in pebble bed core shows that the minimum temperature of 358 .deg. C is located at upper core, a higher temperature zone than 829 .deg. C is located at the inner region of 0.45 m radius at the bottom of core centre, and the maximum wall temperature is 897 .deg. C. The wall temperatures linearly decreases at radially and axially farther side from the bottom of core centre. The maximum temperature of RPV is 230 .deg. C, and the maximum values of fuel average temperature and TRISO centreline temperature are 907 .deg. C and 929 .deg. C, respectively and they are much lower than the fuel temperature limitation of 1230 .deg. C. The comparsion between the GAMMA code predictions and the measured temperature data shows that the calculation results are very close to the measured values in top and side reflector region, but a great difference is appeared in bottom reflector region. Some measured data are abnormally high in bottom reflector region, and so the confirmation of data is necessary in future. Fifteen of twenty two data have a

  8. FUMACS-G, a Graphical User Interface for FUMACS Code Package

    International Nuclear Information System (INIS)

    Trontl, K.; Gergeta, K.; Smuc, T.

    2002-01-01

    The FUMACS (FUel MAnagement Code System) code package has been developed at Rudjer Boskovic Institute in year 1991 with the aim to enable in-core fuel management analysis of the NPP Krsko core for nominal conditions. Due to modernization and uprating of the NPP Krsko core in year 2000 and the original 1991 FUMACS inadequacy in simulating NPP Krsko core in these uprated conditions, in the year 2001 a new version of FUMACS code package has been developed - FUMACS/FEEC 2001. The code package upgrading procedure consisted of two main aspects: modifications of master files, libraries and codes necessary for proper modeling of the uprated NPP Krsko core and development of the code package structure suitable for Windows-32 environment. The latter included upgrading the source of the code from FORTRAN F77 to F90 level and development of a graphical, user-friendly interface with fully integrated electronic help system. Since the original FUMACS code package has been developed as a DOS based application, running of the code package on a Windows operating system proved to be rather inefficient and lacking in advantages of a standard Windows application. Therefore, FUMACS-G has been developed as a user friendly environment for handling off all project input and output files, as well as for easier overall project management. The design of FUMACS-G shell has been based on Microsoft application design guidelines. (author)

  9. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  10. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of

  11. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  12. Interface of RETRAN/MASTER Code System for APR1400

    International Nuclear Information System (INIS)

    Ku, Keuk Jong; Kang, Sang Hee; Kim, Han Gon

    2008-01-01

    MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), which was developed by KAERI, is a nuclear analysis and design code which can simulate the pressurized water reactor core or boiling water reactor core in 3-dimensional geometry. RETRAN is a best-estimate code for transient analysis of Non-LOCA. RETRAN code generates neutron number density in core using point kinetics model which includes feedback reactivities and converts the neutron number density into reactor power. It is conventional that RETRAN code for power generation is roughly to extrapolate feedback reactivities which are provided by MASTER code only one time before transient analysis. The purpose of this paper is to interface RETRAN code with MASTER code by real-time processing and to supply adequate feedback reactivities to RETRAN code. So, we develop interface code called MATRAN for real-time feedback reactivity processing. And for the application of MATRAN code, we compare the results of real-time MATRAN code with those of conventional RETRAN/MASTER code

  13. Extensions to the SCDAP/RELAP5 code for the modeling of debris oxidation and materials interactions preliminary design report

    International Nuclear Information System (INIS)

    Siefken, L.J.; Davis, K.L.

    1993-02-01

    Preliminary designs are proposed for extending the SCDAP/RELAP5 code so that it models (a) the oxidation of slumping fuel rod material and cohesive and porous debris and (b) the interaction of PWR control rod materials with the other materials in a reactor core. These extensions have the purpose of improving the code's calculation of the damage progression and hydrogen production that takes place during the early phase of a severe accident

  14. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...

  15. Heysham II/Torness AGR core integrity

    International Nuclear Information System (INIS)

    Birch, A.L.; Hampson, J.D.

    1985-01-01

    The design and construction process for the Heysham II/Torness AGR core structures is presented. The design intent utilizing all past experience in designing and building AGR core structures is described. The major aspects of the design criteria and the design conditions are outlined to demonstrate how the integrity of the Heysham II/Torness core is assured. Since no recognized codes of practice for graphite core design exist, the National Nuclear Corporation (NNC) have conceived design criteria utilizing reserve factors based on their design experience. Target reserve factors are defined for particular loading conditions including the ultimate 'safe-shutdown earthquake'. The substantial programme of computer analysis and RandD work to substantiate the design, including seismic qualification, is described. In keeping with their responsibility for the detailed core structure design and the fuel path geometry (guide tube system), NNC attach great importance to design/manufacture/construction liaison, which is demonstrated in the quality assurance section. (author)

  16. HTR core physics analysis at NRG

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.

    2002-01-01

    Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)

  17. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  18. The design, fabrication and testing of an iron-core current compensated magnetic channel for cyclotron extraction

    International Nuclear Information System (INIS)

    Laxdale, R.E.; Fong, K.; Houtman, H.

    1994-06-01

    An iron-core current compensated magnetic channel has been built ss part of the TRIUMF 450 MeV H - extraction feasibility project. The channel would operate in the 0.5 T cyclotron field and was designed using the two-dimensional code POISSON. Recent beam tests with the channel installed in the TRIUMF cyclotron confirmed that the electro-mechanical design is reliable and that the effect on the circulating beam is in agreement with calculation. The design and hardware details will be described and the beam test results reported. (author)

  19. LMFBR core design analysis

    International Nuclear Information System (INIS)

    Cho, M.; Yang, J.C.; Yoh, K.C.; Suk, S.D.; Soh, D.S.; Kim, Y.M.

    1980-01-01

    The design parameters of a commercial-scale fast breeder reactor which is currently under construction by regeneration of these data is preliminary analyzed. The analysis of nuclear and thermal characteristics as well as safety features of this reactor is emphasized. And the evaluation of the initial core mentioned in the system description is carried out in the areas of its kinetics and control system, and, at the same time, the flow distribution of sodium and temperature distribution of the initial FBR core system are calculated. (KAERI INIS Section)

  20. Deconstruction of archaeal genome depict strategic consensus in core pathways coding sequence assembly.

    Directory of Open Access Journals (Sweden)

    Ayon Pal

    Full Text Available A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding

  1. Deconstruction of archaeal genome depict strategic consensus in core pathways coding sequence assembly.

    Science.gov (United States)

    Pal, Ayon; Banerjee, Rachana; Mondal, Uttam K; Mukhopadhyay, Subhasis; Bothra, Asim K

    2015-01-01

    A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding frequency signature.

  2. In-vessel core degradation code validation matrix update 1996-1999. Report by an OECD/NEA group of experts

    International Nuclear Information System (INIS)

    2001-02-01

    In 1991 the Committee on the Safety of Nuclear Installations (CSNI) issued a State-of-the-Art Report (SOAR) on In-Vessel Core Degradation in Light Water Reactor (LWR) Severe Accidents. Based on the recommendations of this report a Validation Matrix for severe accident modelling codes was produced. Experiments performed up to the end of 1993 were considered for this validation matrix. To include recent experiments and to enlarge the scope, an update was formally inaugurated in January 1999 by the Task Group on Degraded Core Cooling, a sub-group of Principal Working Group 2 (PWG-2) on Coolant System Behaviour, and a selection of writing group members was commissioned. The present report documents the results of this study. The objective of the Validation Matrix is to define a basic set of experiments, for which comparison of the measured and calculated parameters forms a basis for establishing the accuracy of test predictions, covering the full range of in-vessel core degradation phenomena expected in light water reactor severe accident transients. The emphasis is on integral experiments, where interactions amongst key phenomena as well as the phenomena themselves are explored; however separate-effects experiments are also considered especially where these extend the parameter ranges to cover those expected in postulated LWR severe accident transients. As well as covering PWR and BWR designs of Western origin, the scope of the review has been extended to Eastern European (VVER) types. Similarly, the coverage of phenomena has been extended, starting as before from the initial heat-up but now proceeding through the in-core stage to include introduction of melt into the lower plenum and further to core coolability and retention to the lower plenum, with possible external cooling. Items of a purely thermal hydraulic nature involving no core degradation are excluded, having been covered in other validation matrix studies. Concerning fission product behaviour, the effect

  3. The Analysis of Surrounding Structure Effect on the Core Degradation Progress with COMPASS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Ho; Son, Dong Gun; Kim, Jong Tae; Park, Rae Jun; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In line with the importance of severe accident analysis after Fukushima accident, the development of integrated severe accident code has been launched by the collaboration of three institutes in Korea. KAERI is responsible to develop modules related to the in-vessel phenomena, while other institutes are to the containment and severe accident mitigation facility, respectively. In the first phase, the individual severe accident module has been developed and the construction of integrated analysis code is planned to perform in the second phase. The basic strategy is to extend the design basis analysis codes of SPACE and CAP, which are being validated in Korea for the severe accident analysis. In the first phase, KAERI has targeted to develop the framework of severe accident code, COMPASS (COre Meltdown Progression Accident Simulation Software), covering the severe accident progression in a vessel from a core heat-up to a vessel failure as a stand-alone fashion. In order to analyze the effect of surrounding structure, the melt progression has been compared between the central zone and the most outer zone under the condition of constant radial power peaking factor. Figure 2 and 3 shows the fuel element temperature and the clad mass at the central zone, respectively. Due to the axial power peaking factor, the axial node No.3 has the highest temperature, while the top and bottom nodes have the lowest temperature. When the clad temperature reaches to the Zr melting temperature (2129.15K), the Zr starts to melt. The axial node No.2 reaches to the fuel melting temperature about 5000 sec and the molten fuel relocates to the node No.1, which results to the blockage of flow area in node No.1. The blocked flow area becomes to open about 6100 sec due to the molten ZrO{sub 2} mass relocation to core support plate. Figure 4 and 5 shows the fuel element temperature and the clad mass at the most outer zone, respectively. It is shown that the fuel temperature increase more slowly

  4. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  5. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  6. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    International Nuclear Information System (INIS)

    Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.

    2010-01-01

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  7. Back up core designs for the experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Aochi, Tetsuo; Yasuno, Takehiko; Miyamoto, Yoshiaki; Shindo, Ryuichi; Ikushima, Takeshi

    1979-02-01

    For the Experimental Multi-Purpose Very High Temperature Reactor (thermal power 50 MW and reactor outlet helium temperature 1000 0 C), design studies have been made of two backup cores loaded with new-type fuel elements. The purpose is to improve core operational characteristics, especially in thermohydraulics, of the reference design core consisting of pin-in-block type fuel elements having externally cooled hollow fuel rods. In this report are described the design principles and the analyses made of nuclear, thermal and hydraulic, fuel, and safety performances to determine the backup fuel and core design parameters. The first backup core (SP fuel core) is composed of fuel elements with internally cooled fuel rods (semi-pin), 36 rods in each standard element and 18 rods in each control element. The second backup core (MH fuel core) is composed of multihole fuel elements. 102 fuel and 54 coolant holes in each standard element and 30 fuel and 18 coolant holes in each control element. Either of the cores has 73 fuel columns 4 m high; the arrangement of active core and reactor internal structures is the same as that in the reference design. The backup cores meet nearly all design requirements of the VHTR, permitting the rated power operation with coolant Reynolds number of over 10,000 in the SP core and over 6,000 in the MH core. (author)

  8. System Design Description for the TMAD Code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System

  9. ELCOS: the PSI code system for LWR core analysis. Part II: user's manual for the fuel assembly code BOXER

    International Nuclear Information System (INIS)

    Paratte, J.M.; Grimm, P.; Hollard, J.M.

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs

  10. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  11. New features in the design code TLIE

    International Nuclear Information System (INIS)

    van Zeijts, J.

    1993-01-01

    We present features recently installed in the arbitrary-order accelerator design code TLIE. The code uses the MAD input language, and implements programmable extensions modeled after the C language that make it a powerful tool in a wide range of applications: from basic beamline design to high precision-high order design and even control room applications. The basic quantities important in accelerator design are easily accessible from inside the control language. Entities like parameters in elements (strength, current), transfer maps (either in Taylor series or in Lie algebraic form), lines, and beams (either as sets of particles or as distributions) are among the type of variables available. These variables can be set, used as arguments in subroutines, or just typed out. The code is easily extensible with new datatypes

  12. Nuclear design and analysis report for KALIMER breakeven core conceptual design

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Song, Hoon; Lee, Ki Bog; Chang, Jin Wook; Hong, Ser Gi; Kim, Young Gyun; Kim, Yeong Il

    2002-04-01

    During the phase 2 of LMR design technology development project, the breakeven core configuration was developed with the aim of the KALIMER self-sustaining with regard to the fissile material. The excess fissile material production is limited only to the extent of its own requirement for sustaining its planned power operation. The average breeding ratio is estimated to be 1.05 for the equilibrium core and the fissile plutonium gain per cycle is 13.9 kg. The nuclear performance characteristics as well as the reactivity coefficients have been analyzed so that the design evaluation in other activity areas can be made. In order to find out a realistic heavy metal flow evolution and investigate cycle-dependent nuclear performance parameter behaviors, the startup and transition cycle loading strategies are developed, followed by the startup core physics analysis. Driver fuel and blankets are assumed to be shuffled at the time of each reload. The startup core physics analysis has shown that the burnup reactivity swing, effective delayed neutron fraction, conversion ratio and peak linear heat generation rate at the startup core lead to an extreme of bounding physics data for safety analysis. As an outcome of this study, a whole spectrum of reactor life is first analyzed in detail for the KALIMER core. It is experienced that the startup core analysis deserves more attention than the current design practice, before the core configuration is finalized based on the equilibrium cycle analysis alone.

  13. Benchmarking of FA2D/PARCS Code Package

    International Nuclear Information System (INIS)

    Grgic, D.; Jecmenica, R.; Pevec, D.

    2006-01-01

    FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)

  14. Dynamic behavior of homogeneous and heterogeneous LMFBR core-design concepts

    International Nuclear Information System (INIS)

    Chang, Y.I.; Henryson, H. II; Orechwa, Y.; Su, S.F.; Greenman, G.; Blomquist, R.

    1981-01-01

    The emphasis is placed on obtaining an understanding of the inherent difference between homogeneous and heterogeneous core configurations regarding neutronic characteristics related to the dynamic behavior. The space-time neutronic and thermal-hydraulic behavior was analyzed in detail for various core configurations by using the FX2-TH, a two-dimensional kinetics code with thermal-hydraulic feedback. In addition, the relationship between the flux tilt and the fundamental-to-first harmonic eigenvalue separation, and the sodium void reactivity in heterogeneous cores were also sutdied

  15. The symbol coding language for the BUTs processor of in-core reactor control systems

    International Nuclear Information System (INIS)

    Vorob'ev, D.M.; Golovanov, M.N.; Levin, G.L.; Parfenova, T.K.; Filatov, V.P.

    1978-01-01

    A symbolic coding language is described; it has been developed for automation of making up programs for in-core control systems. The systems use the ideology of the CAMAC-VECTOR system and include the BUTs-20 processor. The symbolic coding language has been developed as a programming language of the ASSEMBLER type. Operators of instructions and pseudo-instructions, the rules of reading in the text of the source program, and operator record formats are considered

  16. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Artioli, C.; Petrovich, Carlo; Grasso, Giacomo

    2010-01-01

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GW e y. (authors)

  17. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  18. Core designs for the de-regulated market

    International Nuclear Information System (INIS)

    Almberger, J.; Bernro, R.; Pettersson, H.

    1999-01-01

    Complete text of publication follows: The electricity market deregulation in the Nordic countries encourages innovations and cost reductions for power production in the Vattenfall reactors. The competition on the electricity market is strong, electricity price reductions dramatic and uncertainties about the future power demand is large. In the fuel area this situation has given increased attention to traditional areas like flexibility in power production, improved core designs, need for margins (improved fuel designs), improved surveillance, decreased lead times. At Vattenfall new fuel designs are already being implemented following the last fuel purchase, for which flexibility and margins, were given high values in the evaluations with the multipurpose task of eliminating fuel related problems and meeting the future market situation. This strategy has given Vattenfall a flying start to meeting the demands of the de-regulated market. What has been added are broad studies undertaken to investigate the various route into the future with respect to finding the most effective strategies for fuel and core design and optimization. In the present paper the Vattenfall priorities for fuel designs and margins are presented in a schematic manner summarizing the results of the last fuel purchase and also presenting the current program for LFAs. Technical limitations, licensing and R and D aspects, with respect to improving the fuel utilization will be mentioned. The main focus in the paper is on the broad study carried out in the PWR core design area. Driven by the relatively low power demand various possibilities for higher production flexibility have been investigated specifically extended coast-down, coast-up and yearly load follow. Further to reduce the costs for fuel consumption improvements in core designs have been studied: improved low leakage loading patterns, low enriched end zones, improved Gd designs etc. Main results and conclusions of the core design studies will

  19. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K. [Cray Inc., St. Paul, MN 55101 (United States); Porter, D. [Minnesota Supercomputing Institute for Advanced Computational Research, Minneapolis, MN USA (United States); O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, P., E-mail: pjm@cray.com, E-mail: nradclif@cray.com, E-mail: kkandalla@cray.com, E-mail: oneill@astro.umn.edu, E-mail: nolt0040@umn.edu, E-mail: donnert@ira.inaf.it, E-mail: twj@umn.edu, E-mail: dhp@umn.edu, E-mail: pedmon@cfa.harvard.edu [Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  20. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    International Nuclear Information System (INIS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W.; Edmon, P.

    2017-01-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  1. Fundamentals of information theory and coding design

    CERN Document Server

    Togneri, Roberto

    2003-01-01

    In a clear, concise, and modular format, this book introduces the fundamental concepts and mathematics of information and coding theory. The authors emphasize how a code is designed and discuss the main properties and characteristics of different coding algorithms along with strategies for selecting the appropriate codes to meet specific requirements. They provide comprehensive coverage of source and channel coding, address arithmetic, BCH, and Reed-Solomon codes and explore some more advanced topics such as PPM compression and turbo codes. Worked examples and sets of basic and advanced exercises in each chapter reinforce the text's clear explanations of all concepts and methodologies.

  2. Space-Time Code Designs for Broadband Wireless Communications

    National Research Council Canada - National Science Library

    Xia, Xiang-Gen

    2005-01-01

    The goal of this research is to design new space AND time codes, such as complex orthogonal space AND time block codes with rate above 1/2 from complex orthogonal designs for QAM, PSK, and CPM signals...

  3. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  4. Calculation of local flow conditions in the lower core of a PWR with code-Saturne

    International Nuclear Information System (INIS)

    Fournier, Y.

    2003-01-01

    In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit

  5. Thermal hydraulic design of a hydride-fueled inverted PWR core

    International Nuclear Information System (INIS)

    Malen, J.A.; Todreas, N.E.; Hejzlar, P.; Ferroni, P.; Bergles, A.

    2009-01-01

    An inverted PWR core design utilizing U(45%, w/o)ZrH 1.6 fuel (here referred to as U-ZrH 1.6 ) is proposed and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled with U-ZrH 1.6 . The inverted design features circular cooling channels surrounded by prisms of fuel. Hence the relative position of coolant and fuel is inverted with respect to the standard rod bundle design. Inverted core designs with and without twisted tape inserts, used to enhance critical heat flux, were analyzed. It was found that higher power and longer cycle length can be concurrently achieved by the inverted core with twisted tape relative to the optimal standard core, provided that higher core pressure drop can be accommodated. The optimal power of the inverted design with twisted tape is 6869 MW t , which is 135% of the optimally powered standard design (5080 MW t -determined herein). Uncertainties in this design regarding fuel and clad dimensions needed to accommodate mechanical loads and fuel swelling are presented. If mechanical and neutronic feasibility of these designs can be confirmed, these thermal assessments imply significant economic advantages for inverted core designs.

  6. The modeling of core melting and in-vessel corium relocation in the APRIL code

    Energy Technology Data Exchange (ETDEWEB)

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  7. Sizewell B cycle 5 core design with Framatome ANP's CASCADE-3D and British Energy's PANTHER

    Energy Technology Data Exchange (ETDEWEB)

    Attale, F.; Koegl, J. [Framatome ANP GmbH, Nuclear Fuel Cycle, Erlangen (Germany); Knight, M.; Bryce, P. [British Energy, Nuclear Technology Branch, Gloucester (United Kingdom)

    2001-07-01

    Sizewell B Cycle 5 is the first cycle, after 4 cycles with BNFL fuel, with a reload consisting of Framatome ANP HTP (high thermal performance) fuel assemblies. The impact of this fuel vendor change on the Nuclear Design area is that, according to British energy's (BE) practice, the Framatome ANP's nuclear design code system CASCADE-3D is used for the majority of the cycle specific safety case calculations. However, other parts of the safety submission (e.g. 3D transient analyses) are made by using the BE code PANTHER. Before using in parallel two different code systems for reload core licensing extensive comparisons of applied methodologies and obtained results were required to ensure an acceptable level of agreement. (orig.)

  8. Preliminary Analysis of a Steam Line Break Accident with the MARS-KS code for the SMART Design with Passive Safety Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Doohyuk; Ko, Yungjoo; Suh, Jaeseung [Hannam Univ., Daejeon (Korea, Republic of); Bae, Hwang; Ryu, Sunguk; Yi, Sungjae; Park, Hyunsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    SMART has been developed by KAERI, and SMART-Standard Design Approval (SDA) was recently granted in 2012. A SMART design with Passive Safety System (PSS) features (called SMART-PSS) is being developed and added to the standard design of SMART by KAERI to improve its safety system. Active safety systems such as safety injection pumps will be replaced by a passive safety system, which is actuated only by the gravity force caused by the height difference. All tanks for the passive safety systems are higher than the injection nozzle, which is located around the reactor coolant pumps (RCPs). In this study, a preliminary analysis of the main steam line break accident (MSLB) was performed using the MARS-KS code to understand the general behavior of the SMART-PSS design and to prepare its validation test with the SMART-ITL (FESTA) facility. An anticipated accident for the main steam line break (MSLB) was performed using the MARS-KS code to understand the thermal-hydraulic behaviors of the SMART-PSS design. The preliminary analysis provides good insight into the passive safety system design features of the SMART-PSS and the thermal-hydraulic characteristics of the SMART design. The analysis results of the MSLB showed that the core water collapsed level inside the core support barrel was maintained high over the active core top level during the transient period. Therefore, the SMART-PSS design has satisfied the requirements to maintain the plant at a safe shutdown condition during 72 hours without AC power or operator action after an anticipated accident.

  9. Scalable Multi-core Architectures Design Methodologies and Tools

    CERN Document Server

    Jantsch, Axel

    2012-01-01

    As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallalization of the computation and 3D integration technologies lead to distributed memory architectures. This book provides a current snapshot of industrial and academic research, conducted as part of the European FP7 MOSART project, addressing urgent challenges in many-core architectures and application mapping.  It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies. Describes trends towards distributed memory architectures and distributed power management; Integrates Network on Chip with distributed, shared memory architectures; Demonstrates novel design methodologies and frameworks for multi-core design space exploration; Shows how midll...

  10. GFR fuel and core pre-conceptual design studies

    International Nuclear Information System (INIS)

    Chauvin, N.; Ravenet, A.; Lorenzo, D.; Pelletier, M.; Escleine, J.M.; Munoz, I.; Bonnerot, J.M.; Malo, J.Y.; Garnier, J.C.; Bertrand, F.; Bosq, J.C.

    2007-01-01

    The revision of the GFR core design - plate type - has been undertaken since previous core presented at Global'05. The self-breeding searched for has been achieved with an optimized design ('12/06 E'). The higher core pressure drop was a matter of concern. First of all, the core coolability in natural circulation for pressurized conditions has been studied and preliminary plant transient calculations have been performed. The design and safety criteria are met but no more margin remains. The project is also addressing the feasibility and the design of the fuel S/A. The hexagonal shape together with the principle of closed S/A (wrapper tube) is kept. Ceramic plate type fuel element combines a high enough core power density (minimization of the Pu inventory) and plutonium and minor actinides recycling capabilities. Innovative for many aspects, the fuel element is central to the GFR feasibility. It is supported already by a significant R and D effort also applicable to a pin concept that is considered as the other fuel element of interest. This combination of fuel/core feasibility and performance analysis, safety dispositions and performances analysis will compose the 'GFR preliminary feasibility' which is a project milestone at the end of the year 2007. (authors)

  11. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  12. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  13. An evaluation of designed passive Core Makeup Tank (CMT) for China pressurized reactor (CPR1000)

    International Nuclear Information System (INIS)

    Wang, Mingjun; Tian, Wenxi; Qiu, Suizheng; Su, Guanghui; Zhang, Yapei

    2013-01-01

    Highlights: ► Only PRHRS is not sufficient to maintain reactor safety in case of SGTR accident. ► The Core Makeup Tank (CMT) is designed for CPR1000. ► Joint operation of PRHRS and CMT can keep reactor safety during the SGTR transient. ► CMT is a vital supplement for CPR1000 passive safety system design. - Abstract: Emergency Passive Safety System (EPSS) is an innovative design to improve reliability of nuclear power plants. In this work, the EPSS consists of secondary passive residual heat removal system (PRHRS) and the reactor Core Makeup Tank (CMT) system. The PRHRS, which has been studied in our previous paper, can effectively remove the core residual heat and passively improve the inherent safety by passive methods. The designed CMT, representing the safety improvement for CPR1000, is used to inject cool boron-containing water into the primary system during the loss of coolant accident. In this study, the behaviors of EPSS and transient characteristics of the primary loop system during the Steam Generator Tube Rupture (SGTR) accident are investigated using the nuclear reactor thermal hydraulic code RELAP5/MOD3.4. The results show that the designed CMT can protect the reactor primary loop from boiling and maintain primary loop coolant in single phase state. Both PRHRS and CMT operation ensures reactor safety during the SGTR accident. Results reported in this paper show that the designed CMT is a further safety improvement for CPR1000

  14. The DIT nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    Jonsson, A.

    1988-01-01

    The DIT code is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, that may be characterized by the spectrum and spatial calculations being performed in two dimensions and in a single job step for the entire assembly. The forerunner of this class of codes is the United Kingdom Atomic Energy Authority WIMS code, the first version of which was completed 25 yr ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added that significantly influence the accuracy and performance of the resulting computational tool. Those features, which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers, are described and discussed

  15. Reliable core thermal design

    International Nuclear Information System (INIS)

    Amendola, A.

    1974-01-01

    The hot spot analysis is no longer limited to the calculation of a simple safety factor against overtemperature, but is now integrated in the overall design philosophy. This paper describes the development of a probabilistic method of analysis and compares it with other advanced calculation methods. Feedbacks from the analysis act: - on the nominal temperature distribution in order to satisfy the maximum temperature limit and in the same time to optimize the coolant temperature for maximum plant efficiency, and - on the specifications of manufacturing tolerances and experimental investigations in order to identify and to reduce the most important design uncertainties. Moreover the computer codes SHOSPA and THEDRA are briefly discussed. Both codes deliver the zero hot spot probability as a function of the geometrical size assumed for a ''spot''. THEDRA delivers also the expected hot spot distribution. By means of THEDRA it is possible to evaluate the pins failure expectation if the distribution of pin failures versus operating temperature is known. (author)

  16. A Minimum Shuffle Core Design Strategy for ESBWR

    International Nuclear Information System (INIS)

    Karve, A.A.; Fawcett, R.M.

    2008-01-01

    The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's next evolution of advanced BWR technology. There are 1132 fuel bundles in the core and the thermal power is 4500 MWt. Similar to conventional plants there is an outage after a specified period of operation, when the plant shuts down. During the outage a specified fraction of fuel bundles are discharged from the core, it is loaded with the same fraction of fresh fuel, and fuel is shuffled to obtain an optimum core design that meets the goals for a successful operation of the next cycle. The discharge, load, and the associated shuffles are time-consuming and expensive tasks that impact the overall outage schedule and costs. Therefore, there is an incentive to keep maneuvers to a minimum and to perform them more efficiently. The benefits for a large core, such as the ESBWR with 1132 fuel bundles, are escalated. This study focuses on a core reload design strategy to minimize the total number of shuffles during an outage. A traditional equilibrium cycle is used as a reference basis, which sets the reference number of shuffles. In the minimum shuffle core design however, a set of two equilibrium cycles (N and N+1, referred to as a 'bi- equilibrium' cycle) is envisioned where the fresh fuel of cycle N (that becomes the once-burnt fuel of cycle N+1) ideally does not move in the two cycles. The cost of fuel efficiency is determined for obtaining such a core loading by comparing it to the traditional equilibrium cycle. There are several additional degrees of freedom when designing a bi-equilibrium cycle that could be utilized, and the potential benefits of these flexibilities are assessed. In summary, the feasibility of a minimum shuffle fuel cycle and core design for an ESBWR is studied. The cost of fuel efficiency is assessed in comparison to the traditional design. (authors)

  17. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  18. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. ELCOS: the PSI code system for LWR core analysis. Part II: user`s manual for the fuel assembly code BOXER

    Energy Technology Data Exchange (ETDEWEB)

    Paratte, J.M.; Grimm, P.; Hollard, J.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user`s manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs.

  20. LMFBR design and its evolution. (2) Core design of LMFBR

    International Nuclear Information System (INIS)

    Uto, Nariaki; Mizuno, Tomoyasu

    2003-01-01

    Sodium-cooled core design studies are performed. MOX fuel core with axial blanket partial elimination subassembly due to safety consideration is studied. This type of core with high internal conversion ratio possesses capability of achieving 26 months of operation cycle length and 100 GWd/t of burnup averaged over core and blanket, which are superior characteristics in view of reducing cost of power generation. Metal fuel core is also studied, and its higher breeding capability reveals a potential of better core performance such as longer operation cycle length for the same level of electricity generation, though core outlet temperature is limited to lower level due to steel cladding-metal fuel compatibility concerns. Another metal fuel core concept using single Pu enrichment and two radial regions with individual fuel pin diameters achieves 550degC of core outlet temperature identical to that of MOX fuel core, keeping operation cycle length comparable with that of MOX fuel core. This series of study results show that sodium-cooled MOX and metal fuel cores have a high flexibility in satisfying various needs including fuel cycle cost and breeding capability, depending on the stage of introducing commercialized fast reactor cycle system. (author)

  1. Multidimensional, multiphysics simulations of core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R; Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States)

    2008-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code's architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.

  2. ZZ-PBMR-400, OECD/NEA PBMR Coupled Neutronics/Thermal Hydraulics Transient Benchmark - The PBMR-400 Core Design

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2007-01-01

    Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle

  3. ASTRID core: Design objectives, design approach, and R&D in support

    International Nuclear Information System (INIS)

    Mignot, G.; Devictor, N.

    2012-01-01

    ASTRID core design is mainly guided by safety objectives: 1. Prevention of the core meltdown accident: To prevent meltdown accidents: - by a natural behavior of the core and the reactor (no actuation of the two shutdown systems); - with adding passive complementary systems if natural behavior is not sufficient for some transient cases. 2. Mitigation of the fusion accident: To garantee that core fusion accidents don’t lead to significant mechanical energy release, whatever initiator event: - by a natural core behavior; - with adding specific mitigation dispositions in case of natural behavior is not suffficient

  4. The Influence of Building Codes on Recreation Facility Design.

    Science.gov (United States)

    Morrison, Thomas A.

    1989-01-01

    Implications of building codes upon design and construction of recreation facilities are investigated (national building codes, recreation facility standards, and misperceptions of design requirements). Recreation professionals can influence architectural designers to correct past deficiencies, but they must understand architectural and…

  5. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Ilow Jacek

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  6. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-08-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity toning and matching problems

  7. THREE-DIMENSIONAL BOLTZMANN HYDRO CODE FOR CORE COLLAPSE IN MASSIVE STARS. I. SPECIAL RELATIVISTIC TREATMENTS

    International Nuclear Information System (INIS)

    Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2014-01-01

    We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann equations for neutrinos coupled with hydrodynamics equations. This method is meant to be applied to simulations of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of all orders of v/c. Consistent treatment of the advection and collision terms in the Boltzmann equations has been a challenge, which we overcome by employing two different energy grids: Lagrangian remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional simulation of core-collapse, bounce, and shock-stall for a 15 M ☉ progenitor model with a minimum but essential set of microphysics. We demonstrate in the latter simulation that our new code is capable of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also conducted with the same code, and we show that they produce qualitatively wrong results in neutrino transfer. Finally, we discuss a possible incorporation of general relativistic effects into our method

  8. Preliminary design studies for the DESCARTES and CIDER codes

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.

    1992-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) project is developing several computer codes to model the release and transport of radionuclides into the environment. This preliminary design addresses two of these codes: Dynamic Estimates of Concentrations and Radionuclides in Terrestrial Environments (DESCARTES) and Calculation of Individual Doses from Environmental Radionuclides (CIDER). The DESCARTES code will be used to estimate the concentration of radionuclides in environmental pathways, given the output of the air transport code HATCHET. The CIDER code will use information provided by DESCARTES to estimate the dose received by an individual. This document reports on preliminary design work performed by the code development team to determine if the requirements could be met for Descartes and CIDER. The document contains three major sections: (i) a data flow diagram and discussion for DESCARTES, (ii) a data flow diagram and discussion for CIDER, and (iii) a series of brief statements regarding the design approach required to address each code requirement

  9. Comparison and validation of the results of the AZNHEX v.1.0 code with the MCNP code simulating the core of a fast reactor cooled with sodium

    International Nuclear Information System (INIS)

    Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Esquivel E, J.

    2016-09-01

    The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)

  10. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    International Nuclear Information System (INIS)

    Shin, Andong; Choi, Yong Won

    2016-01-01

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  11. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  12. The Dit nuclear fuel assembly physics design code

    International Nuclear Information System (INIS)

    Jonsson, A.

    1987-01-01

    DIT is the Combustion Engineering, Inc. (C-E) nuclear fuel assembly design code. It belongs to a class of codes, all similar in structure and strategy, which may be characterized by the spectrum and spatial calculations being performed in 2D and in a single job step for the entire assembly. The forerunner of this class of codes is the U.K.A.E.A. WIMS code, the first version of which was completed 25 years ago. The structure and strategy of assembly spectrum codes have remained remarkably similar to the original concept thus proving its usefulness. As other organizations, including C-E, have developed their own versions of the concept, many important variations have been added which significantly influence the accuracy and performance of the resulting computational tool. This paper describes and discusses those features which are unique to the DIT code and which might be of interest to the community of fuel assembly physics design code users and developers

  13. Structural reliability codes for probabilistic design

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    probabilistic code format has not only strong influence on the formal reliability measure, but also on the formal cost of failure to be associated if a design made to the target reliability level is considered to be optimal. In fact, the formal cost of failure can be different by several orders of size for two...... different, but by and large equally justifiable probabilistic code formats. Thus, the consequence is that a code format based on decision theoretical concepts and formulated as an extension of a probabilistic code format must specify formal values to be used as costs of failure. A principle of prudence...... is suggested for guiding the choice of the reference probabilistic code format for constant reliability. In the author's opinion there is an urgent need for establishing a standard probabilistic reliability code. This paper presents some considerations that may be debatable, but nevertheless point...

  14. LEGO: A modular accelerator design code

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Irwin, J.; Yan, Y.

    1997-08-01

    An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, the code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning

  15. SEJITS: embedded specializers to turn patterns-based designs into optimized parallel code

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    All software should be parallel software. This is natural result of the transition to a many core world. For a small fraction of the world's programmers (efficiency programmers), this is not a problem. They enjoy mapping algorithms onto the details of a particular system and are well served by low level languages and OpenMP, MPI, or OpenCL. Most programmers, however, are "domain specialists" who write code. They are too busy working in their domain of choice (such as physics) to master the intricacies of each computer they use. How do we make these programmers productive without giving up performance? We have been working with a team at UC Berkeley's ParLab to address this problem. The key is a clear software architecture expressed in terms of design patterns that exposes the concurrency in a problem. The resulting code is written using a patterns-based framework within a high level, productivity language (such as Python). Then a separate system is used by a small group o...

  16. Computer codes for RF cavity design

    International Nuclear Information System (INIS)

    Ko, K.

    1992-01-01

    In RF cavity design, numerical modeling is assuming an increasingly important role with the help of sophisticated computer codes and powerful yet affordable computers. A description of the cavity codes in use in the accelerator community has been given previously. The present paper will address the latest developments and discuss their applications to cavity tuning and matching problems. (Author) 8 refs., 10 figs

  17. Benchmark of physics design of a proposed 30 MW Multi Purpose Research Reactor using a Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Sharma, Archana; Singh, Kanchhi; Raina, V.K.; Srinivasan, P.

    2009-01-01

    At present Dhruva and Cirus reactors provide majority of research reactor based experimental/irradiation facilities to cater to various needs of the vast pool of researchers in the field of sciences research and development work for nuclear power plants and production of radioisotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 30 MWt Multi Purpose Research Reactor is proposed to be constructed. This paper describes some of the physics design features of this reactor using MCNP code to validate the deterministic methods. The criticality calculations for 100 material testing reactor (JHR) of France and 610 MW SAVANNAH thermal reactor were performed using MCNP computer codes to boost the confidence level in designing the physics design of reactor core. (author)

  18. Evaluation of the DRAGON code for VHTR design analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  19. Evaluation of the DRAGON code for VHTR design analysis

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-01

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR

  20. Simulation of the thermalhydraulic behavior of a molten core within a structure, with the three dimensions three components TOLBIAC code

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, B.; Moreau, G.M.; Pigny S. [Centre d`Etudes Nucleaires de Grenoble (France)

    1995-09-01

    The TOLBIAC code is devoted to the simulation of the behavior of a molten core within a structure (pressure vessel of core catcher), taking into account the relative position of the core components, the wall ablation and the crust formation. The code is briefly described: 3D model, physical properties and constitutive laws. wall ablation and crust model. Two results are presented: the simulation of the COPO experiment (natural convection with water in a 1/2 scale elliptic pressure vessel), and the simulation of the behavior of a corium in a PWR pressure vessel, with ablation and crust formation.

  1. Assessment of the MARS Code Using the Two-Phase Natural Circulation Experiments at a Core Catcher Test Facility

    Directory of Open Access Journals (Sweden)

    Dong Hun Lee

    2017-01-01

    Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.

  2. The arbitrary order design code Tlie 1.0

    International Nuclear Information System (INIS)

    Zeijts, J. van; Neri, Filippo

    1993-01-01

    We describe the arbitrary order charged particle transfer map code TLIE. This code is a general 6D relativistic design code with a MAD compatible input language and among others implements user defined functions and subroutines and nested fitting and optimization. First we describe the mathematics and physics in the code. Aside from generating maps for all the standard accelerator elements we describe an efficient method for generating nonlinear transfer maps for realistic magnet models. We have implemented the method to arbitrary order in our accelerator design code for cylindrical current sheet magnets. We also have implemented a self-consistent space-charge approach as in CHARLIE. Subsequently we give a description of the input language and finally, we give several examples from productions run, such as cases with stacked multipoles with overlapping fringe fields. (Author)

  3. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Jacek Ilow

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n=k+r received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  4. Adventure Code Camp: Library Mobile Design in the Backcountry

    OpenAIRE

    Ward, David; Hahn, James; Mestre, Lori

    2014-01-01

    This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate li...

  5. Design study on PWR-type reduced-moderation light water core. Investigation of core adopting seed-blanket fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    As a part of the design study on PWR-type Reduced-Moderation Water Reactors (RMWRs), a light water cooled core with the seed-blanket type fuel assemblies has been investigated. An assembly with seed of 13 layers and blanket of 5 layers was selected by optimization calculations. The core was composed with the 163 assemblies. The following results were obtained by burn-up calculations with the MVP-BURN code; The cycle length is 15 months by 3-batch refueling. The discharge burn-up including the inner blanket is about 25 GWd/t. The conversion ratio is about 1.0. The void reactivity coefficient is about-26.1 pcm/%void at BOC and -21.7pcm%void at EOC. About 10% of MA makes conversion ratio decrease about 0.05 to obtain the same burn-up. The void reactivity coefficient increased significantly and it is necessary to reduce it. FP amount corresponding to about 2 % of total plutonium weight makes reactivity decrease about 0.5 %{delta}k/k and void reactivity coefficient increase, however these changes are within the design margins. Capability of multi-recycling of plutonium was confirmed, using discharged plutonium for 4 cycles, if fissile plutonium of 15.5wt% is used. The conversion ratio increases by about 0.026 with recycling. However, void reactivity coefficient increases and some effort to obtain negative void reactivity coefficient is necessary. (author)

  6. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  7. Adventure Code Camp: Library Mobile Design in the Backcountry

    Directory of Open Access Journals (Sweden)

    David Ward

    2014-09-01

    Full Text Available This article presents a case study exploring the use of a student Coding Camp as a bottom-up mobile design process to generate library mobile apps. A code camp sources student programmer talent and ideas for designing software services and features.  This case study reviews process, outcomes, and next steps in mobile web app coding camps. It concludes by offering implications for services design beyond the local camp presented in this study. By understanding how patrons expect to integrate library services and resources into their use of mobile devices, librarians can better design the user experience for this environment.

  8. Core reset system design for linear induction accelerator

    International Nuclear Information System (INIS)

    Durga Praveen Kumar, D.; Mitra, S.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    A repetitive pulsed power system based Linear Induction Accelerator (LIA-200) is being developed at BARC to get an electron beam of 200keV, 5kA, 50ns, 10-100 Hz. Amorphous core is the heart of these accelerators. It serves various functions in different subsystems viz. pulse power modulator, pulse transformer, magnetic switches and induction cavities. One of the factors that make the magnetic components compact is utilization of the total flux swing available in the core. In the present system, magnetic switches, pulse transformers, and induction cavity are designed to avail the full flux swing available in the core. For achieving this objective, flux density in the core has to be kept at the reverse saturation, before the main pulse is applied. The electrical circuit which makes it possible is called the core reset system. In this paper the details of core reset system designed for LIA-200 are described. (author)

  9. Free material stiffness design of laminated composite structures using commercial finite element analysis codes

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    In this work optimum stiffness design of laminated composite structures is performed using the commercially available programs ANSYS and MATLAB. Within these programs a Free Material Optimization algorithm is implemented based on an optimality condition and a heuristic update scheme. The heuristic...... update scheme is needed because commercially available finite element analysis software is used. When using a commercial finite element analysis code it is not straight forward to implement a computationally efficient gradient based optimization algorithm. Examples considered in this work are a clamped......, where full access to the finite element analysis core is granted. This comparison displays the possibility of using commercially available programs for stiffness design of laminated composite structures....

  10. Multilevel LDPC Codes Design for Multimedia Communication CDMA System

    Directory of Open Access Journals (Sweden)

    Hou Jia

    2004-01-01

    Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.

  11. Applications of the thermit code to 3D thermal hydraulic analysis of LWR cores

    International Nuclear Information System (INIS)

    Reed, W.H.

    1979-01-01

    The THERMIT code calculates the three-dimensional transient thermal hydraulic behavior of light water reactor cores. Its two-fluid dynamics equations for two-phase flow offer improved physical modelling capability needed in the context of calculation coupled to neutron kinetics for feedback. The numerical fluid dynamics method was chosen for reliability over a wider range of transients. An improved heat transfer numerical method is presented which gives better numerical stability and accuracy. A number of example calculations are discussed which give an idea of the power and flexibility of the code

  12. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)

    International Nuclear Information System (INIS)

    Babazadeh, Davood; Boroushaki, Mehrdad; Lucas, Caro

    2009-01-01

    The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (K eff ) in order to extract the maximum energy, and keeping the local power peaking factor (P q ) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping P q lower than a predetermined value and maximizing K eff . This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.

  13. LMFR core thermohydraulics: Status and prospects

    International Nuclear Information System (INIS)

    2000-06-01

    One of the fundamental steps for a successful reactor core thermohydraulic design is the capability to predict, reliably and accurately, the temperature distribution in the core assemblies. A detailed knowledge of the assembly and fuel pin thermohydraulic behaviour in the steady state and transient conditions is an indispensable prerequisite to safe and stable operation of the reactor. Considerable experimental and theoretical studies on various aspects of LMFR core thermohydraulics are necessary to acquire such knowledge. During the last decade, there have been substantial advances in fast reactor core thermohydraulic design and operation in several countries with fast reactor programmes (notably in France, the Russian Federation, Japan, the United Kingdom, Germany and the United States of America). Chief among these has been the demonstration of reliable operation of reactor cores at a high burnup. During the last years, some additional countries such as China, India and the Republic of Korea have launched new fast reactor programmes. International exchange of information and experience on LMFR development including core thermohydraulic design is becoming of increasing importance to these countries. It is with this focus that the IAEA convened the Technical Committee on 'Methods and Codes for Calculations of Thermohydraulic Parameters for Fuel, Absorber Pins and Assemblies of LMFR's with Traditional and Burner Cores'. This meeting, attended by participants from seven countries, brought together a group of international experts to review and discuss the thermohydraulic advances and design approaches providing a reliable, safe and robust reactor core, as well as to exchange the experience accumulated in different countries of using the codes for thermohydraulic calculations and to discuss the issues requiring further research and development. A total of thirty technical papers presented covered theoretical and computational issues as well as experiments under

  14. Optimization and Openmp Parallelization of a Discrete Element Code for Convex Polyhedra on Multi-Core Machines

    Science.gov (United States)

    Chen, Jian; Matuttis, Hans-Georg

    2013-02-01

    We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.

  15. Development of subchannel analysis code MATRA-LMR for KALIMER subassembly thermal-hydraulics

    International Nuclear Information System (INIS)

    Won-Seok Kim; Young-Gyun Kim

    2000-01-01

    In the sodium cooled liquid metal reactors, the design limit are imposed on the maximum temperatures of claddings and fuel pins. Thus an accurate prediction of core coolant/fuel temperature distribution is essential to the LMR core thermal-hydraulic design. The detailed subchannel thermal-hydraulic analysis code MATRA-LMR (Multichannel Analyzer for Steady States and Transients in Rod Arrays for Liquid Metal Reactors) is being developed for KALIMER core design and analysis, based on COBRA-IV-i and MATRA. The major modifications and improvements implemented into MATRA-LMR are as follows: a) nonuniform axial noding capability, b) sodium properties calculation subprogram, c) sodium coolant heat transfer correlations, and d) most recent pressure drop correlations, such as Novendstern, Chiu-Rohsenow-Todreas and Cheng-Todreas. To assess the development status of this code, the benchmark calculations were performed with the ORNL 19 pin tests and EBR-II seven-assembly SLTHEN calculation results. The calculation results of MATRA-LMR for ORNL 19-pin assembly tests and EBR-II 91-pin experiments were compared to the measurements, and to SABRE4 and SLTHEN code calculation results, respectively. In this comparison, the differences are found among the three codes because of the pressure drop and the thermal mixing modellings. Finally, the major technical results of the conceptual design for the KALIMER 98.03 core have been compared with the calculations of MATRA-LMR, SABRE4 and SLTHEN codes. (author)

  16. Design of the core of a breed/burn fast reactor with the deterministic code KANEXT

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2014-10-01

    The breeding fast reactors are interesting because they generate more plutonium than they consume, however, the fuel has to be reprocessed for the generated plutonium is used in another reactor. In a breed/burn reactor (BBR) the plutonium is generated and used -in situ- inside the same reactor, reducing this way costs and the proliferation possibility. In this work, the core of a BBR was designed; cooled by sodium that consists of 210 active assemblies and 7 spaces for control rods, each assembly consists of 169 pines. The design differs from other BBR it includes a blanket in the reactor center. The above-mentioned was to take advantage of the fact by geometry that the population of fast and epithermal neutrons will be high in the area, due to the fissions in adjacent fissile areas. Favorable results were obtained, although not definitive with exchange scheme of spent fuel. Efforts should be made in the future to homogenize the power generation within the reactor and replace the spent assemblies more efficiently. (Author)

  17. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  18. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  19. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J; Juncosa, R; Delgado, J; Montenegro, L [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  20. Benchmarking and qualification of the nufreq-npw code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1988-01-01

    The work described in this paper is focused on the development, verification and benchmarking of the NUFREQ-NPW code at Westinghouse, USA for best estimate prediction of multi-channel core stability margins in US BWRs. Various models incorporated into NUFREQ-NPW are systematically compared against the Westinghouse channel stability analysis code MAZDA, which the Mathematical Model was developed in an entirely different manner. The NUFREQ-NPW code is extensively benchmarked against experimental stability data with and without nuclear reactivity feedback. Detailed comparisons are next performed against nuclear-coupled core stability data. A physically based algorithm is developed to correct for the effect of flow development on subcooled boiling. Use of this algorithm (to be described in the full paper) captures the peak magnitude as well as the resonance frequency with good accuracy

  1. In-vessel core degradation code validation matrix

    International Nuclear Information System (INIS)

    Haste, T.J.; Adroguer, B.; Gauntt, R.O.; Martinez, J.A.; Ott, L.J.; Sugimoto, J.; Trambauer, K.

    1996-01-01

    The objective of the current Validation Matrix is to define a basic set of experiments, for which comparison of the measured and calculated parameters forms a basis for establishing the accuracy of test predictions, covering the full range of in-vessel core degradation phenomena expected in light water reactor severe accident transients. The scope of the review covers PWR and BWR designs of Western origin: the coverage of phenomena extends from the initial heat-up through to the introduction of melt into the lower plenum. Concerning fission product behaviour, the effect of core degradation on fission product release is considered. The report provides brief overviews of the main LWR severe accident sequences and of the dominant phenomena involved. The experimental database is summarised. These data are cross-referenced against a condensed set of the phenomena and test condition headings presented earlier, judging the results against a set of selection criteria and identifying key tests of particular value. The main conclusions and recommendations are listed. (K.A.)

  2. A review of the core catcher design in LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do Hee

    2001-08-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, The core catcher design technologies and processes are presented. Finally the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized and the preliminary assessment on the core catcher installation in KALIMER is presented

  3. Preliminary scoping safety analyses of the limiting design basis protected accidents for the Fast Flux Test Facility tritium production core

    International Nuclear Information System (INIS)

    Heard, F.J.

    1997-01-01

    The SAS4A/SASSYS-l computer code is used to perform a series of analyses for the limiting protected design basis transient events given a representative tritium and medical isotope production core design proposed for the Fast Flux Test Facility. The FFTF tritium and isotope production mission will require a different core loading which features higher enrichment fuel, tritium targets, and medical isotope production assemblies. Changes in several key core parameters, such as the Doppler coefficient and delayed neutron fraction will affect the transient response of the reactor. Both reactivity insertion and reduction of heat removal events were analyzed. The analysis methods and modeling assumptions are described. Results of the analyses and comparison against fuel pin performance criteria are presented to provide quantification that the plant protection system is adequate to maintain the necessary safety margins and assure cladding integrity

  4. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  5. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  6. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  7. Assessment of capability for modeling the core degradation in 2D geometry with ASTEC V2 integral code for VVER type of reactor

    International Nuclear Information System (INIS)

    Dimov, D.

    2011-01-01

    The ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out since 2004. The purpose of this analysis is to assess ASTEC code modelling of main phenomena arising during hypothetical severe accidents and particularly in-vessel degradation in 2D geometry. The investigation covers both early and late phase of degradation of reactor core as well as determination of corium which will enter the reactor cavity. The initial event is station back-out. In order to receive severe accident condition, failure of all active component of emergency core cooling system is apply. The analysis is focus on ICARE module of ASTEC code and particularly on so call MAGMA model. The aim of study is to determine the capability of the integral code to simulate core degradation and to determine the corium composition entering the reactor cavity. (author)

  8. Design of a Multi-Spectrum CANDU-based Reactor, MSCR, with 37-element fuel bundles using SERPENT code

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.; Chan, P.

    2015-01-01

    The burning of highly-enriched uranium and plutonium from dismantled nuclear warhead material in the new design nuclear power plants represents an important step towards nonproliferation. The blending of these highly enriched uranium and plutonium with with uranium dioxide from the spent fuel of CANDU reactors, or mixing it with depleted uranium would need a very long time to dispose of this material. Consequently, considering that more efficient transmutation of actinides occurs in fast neutron reactors, a novel Multi-Spectrum CANDU Reactor, has been designed on the basis of the CANDU6 reactor with two concentric regions. The simulations of the MSCR were carried out using the SERPENT code. The inner or fast neutron spectrum core is fuelled by different levels of enriched uranium oxides. The helium is used as a coolant in the fast neutron core. The outer or the thermal neutron spectrum core is fuelled with natural uranium with heavy water as both moderator and coolant. Both cores use 37- element fuel bundles. The size of the two cores and the percentage level of enrichment of the fresh fuel in the fast core were optimized according to the criticality safety of the whole reactor. The excess reactivity, the regeneration factor, radial and axial flux shapes of the MSCR reactor were calculated at different of the concentration of fissile isotope 235 U of uranium fuel at the fast neutron spectrum core. The effect of variation of the concentration of the fissile isotope on the fluxes in both cores at each energy bin has been studied. (author)

  9. Design of a Multi-Spectrum CANDU-based Reactor, MSCR, with 37-element fuel bundles using SERPENT code

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.; Chan, P., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca, E-mail: lewis-b@rmc.ca, E-mail: Paul.Chan@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada)

    2015-07-01

    The burning of highly-enriched uranium and plutonium from dismantled nuclear warhead material in the new design nuclear power plants represents an important step towards nonproliferation. The blending of these highly enriched uranium and plutonium with with uranium dioxide from the spent fuel of CANDU reactors, or mixing it with depleted uranium would need a very long time to dispose of this material. Consequently, considering that more efficient transmutation of actinides occurs in fast neutron reactors, a novel Multi-Spectrum CANDU Reactor, has been designed on the basis of the CANDU6 reactor with two concentric regions. The simulations of the MSCR were carried out using the SERPENT code. The inner or fast neutron spectrum core is fuelled by different levels of enriched uranium oxides. The helium is used as a coolant in the fast neutron core. The outer or the thermal neutron spectrum core is fuelled with natural uranium with heavy water as both moderator and coolant. Both cores use 37- element fuel bundles. The size of the two cores and the percentage level of enrichment of the fresh fuel in the fast core were optimized according to the criticality safety of the whole reactor. The excess reactivity, the regeneration factor, radial and axial flux shapes of the MSCR reactor were calculated at different of the concentration of fissile isotope {sup 235}U of uranium fuel at the fast neutron spectrum core. The effect of variation of the concentration of the fissile isotope on the fluxes in both cores at each energy bin has been studied. (author)

  10. HardwareSoftware Co-design for Heterogeneous Multi-core Platforms The hArtes Toolchain

    CERN Document Server

    2012-01-01

    This book describes the results and outcome of the FP6 project, known as hArtes, which focuses on the development of an integrated tool chain targeting a heterogeneous multi core platform comprising of a general purpose processor (ARM or powerPC), a DSP (the diopsis) and an FPGA. The tool chain takes existing source code and proposes transformations and mappings such that legacy code can easily be ported to a modern, multi-core platform. Benefits of the hArtes approach, described in this book, include: Uses a familiar programming paradigm: hArtes proposes a familiar programming paradigm which is compatible with the widely used programming practice, irrespective of the target platform. Enables users to view multiple cores as a single processor: the hArtes approach abstracts away the heterogeneity as well as the multi-core aspect of the underlying hardware so the developer can view the platform as consisting of a single, general purpose processor. Facilitates easy porting of existing applications: hArtes provid...

  11. Introduction to Open Core Protocol Fastpath to System-on-Chip Design

    CERN Document Server

    Schwaderer, W David

    2012-01-01

    This book introduces Open Core Protocol (OCP), not as a conventional hardware communications protocol but as a meta-protocol: a means for describing and capturing the communications requirements of an IP core, and mapping them to a specific set of signals with known semantics.  Readers will learn the capabilities of OCP as a semiconductor hardware interface specification that allows different System-On-Chip (SoC) cores to communicate.  The OCP methodology presented enables intellectual property designers to design core interfaces in standard ways. This facilitates reusing OCP-compliant cores across multiple SoC designs which, in turn, drastically reduces design times, support costs, and overall cost for electronics/SoCs. Provides a comprehensive introduction to Open Core Protocol, which is more accessible than the full specification; Designed as a hands-on, how-to guide to semiconductor design; Includes numerous, real “usage examples” which are not available in the full specification; Integrates coverag...

  12. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  13. In-core fuel management activities in China

    International Nuclear Information System (INIS)

    Ruan Keqiang; Chen Renji; Hu Chuanwen

    1990-01-01

    The development of nuclear power in China has reached such a stage that PWR in-core fuel management becomes an urgent problem. At present the main effort is concentrated on solving the Qinshan nuclear power plant and Daya Bay nuclear power plant fuel management problems. For the Qinshan PWR (300 MWe) two packages of in-core fuel management code were developed, one with simplified nodal diffusion method and the other uses advanced Green's function nodal method. Both were used in the PWR core design. With the help of the two code packages first two cycles of the Qinshan PWR core burn-up were calculated. Besides, several research works are under way in the following areas: improvement of the nodal diffusion method and other coarse mesh method in terms of computing speed and accuracy; backward diffusion technique for fuel management application; optimization technique in the fuel loading pattern searching. As for the Daya Bay PWR plant (twin 900 MWe unit), the problem about using what kind of code package for in-core fuel management is still under discussion. In principle the above mentioned code packages are also applicable to it. Besides PWR, in-core fuel management research works are also under way for research reactors, for example, heavy water research reactor and high flux research reactor in some institutes in China. China also takes active participation in international in-core fuel management activities. (author). 19 refs

  14. Evaluation of wrapper tube temperatures of fast neutron reactors using the TRANSCOEUR-2 code

    Energy Technology Data Exchange (ETDEWEB)

    Valentin, B.; Brun P. [CEA/DRN/DEC/SECA/LHC CEN, St Paul Lez Durance (France); Chaigne, G. [FRAMATOME/NOVATOME, Lyon (France)

    1995-09-01

    This paper deals with the thermal loading estimation of wrapper tubes using the TRANSCOEUR-2 code. This estimation requires a knowledge of two temperature fields: the first involves the peripheral sub-channel temperatures of each sub-assembly calculated by the design code CADET, and the second, outside the sub-assemblies, is the inter-wrapper flow temperature field calculated by the thermal-hydraulic code TRIO-VF with boundary conditions taken from CADET. Theoretical models of the three codes are presented as well as the first TRANSCOEUR-2 wrapper tube temperature calculation performed on the European Fast Reactor (EFR) Core Design 6/91 (CD 6/91) under nominal power conditions. The results show a temperature variation of 115{degrees}C between the bottom of the lower blanket and the top of the upper blanket fuel sub-assemblies in the center of the core and 95{degrees}C at the core periphery. The wrapper tube temperatures are higher in the center than in the external core.

  15. Design evaluation of emergency core cooling systems using Axiomatic Design

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)]. E-mail: gheo@mit.edu; Lee, Song Kyu [Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2007-01-15

    In designing nuclear power plants (NPPs), the evaluation of safety is one of the important issues. As a measure for evaluating safety, this paper proposes a methodology to examine the design process of emergency core cooling systems (ECCSs) in NPPs using Axiomatic Design (AD). This is particularly important for identifying vulnerabilities and creating solutions. Korean Advanced Power Reactor 1400 MWe (APR1400) adopted the ECCS, which was improved to meet the stronger safety regulations than that of the current Optimized Power Reactor 1000 MWe (OPR1000). To improve the performance and safety of the ECCS, the various design strategies such as independency or redundancy were implemented, and their effectiveness was confirmed by calculating core damage frequency. We suggest an alternative viewpoint of evaluating the deployment of design strategies in terms of AD methodology. AD suggests two design principles and the visualization tools for organizing design process. The important benefit of AD is that it is capable of providing suitable priorities for deploying design strategies. The reverse engineering driven by AD has been able to show that the design process of the ECCS of APR1400 was improved in comparison to that of OPR1000 from the viewpoint of the coordination of design strategies.

  16. 3D Field Modifications of Core Neutral Fueling In the EMC3-EIRENE Code

    Science.gov (United States)

    Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Feng, Yuehe; Kaye, Stanley; Maingi, Rajesh; Soukhanovskii, Vsevolod

    2017-10-01

    The application of 3-D magnetic field perturbations to the edge plasmas of tokamaks has long been seen as a viable way to control damaging Edge Localized Modes (ELMs). These 3-D fields have also been correlated with a density drop in the core plasmas of tokamaks; known as `pump-out'. While pump-out is typically explained as the result of enhanced outward transport, degraded fueling of the core may also play a role. By altering the temperature and density of the plasma edge, 3-D fields will impact the distribution function of high energy neutral particles produced through ion-neutral energy exchange processes. Starved of the deeply penetrating neutral source, the core density will decrease. Numerical studies carried out with the EMC3-EIRENE code on National Spherical Tokamak eXperiment-Upgrade (NSTX-U) equilibria show that this change to core fueling by high energy neutrals may be a significant contributor to the overall particle balance in the NSTX-U tokamak: deep core (Ψ funded by the US Department of Energy under Grant DE-SC0012315.

  17. New techniques for designing the initial and reload cores with constant long cycle lengths

    International Nuclear Information System (INIS)

    Shi, Jun; Levine, Samuel; Ivanov, Kostadin

    2017-01-01

    Highlights: • New techniques for designing the initial and reload cores with constant long cycle lengths are developed. • Core loading pattern (LP) calculations and comparisons have been made on two different designs. • Results show that significant savings in fuel costs can be accrued if a non-low leakage LP design strategy is enacted. - Abstract: Several utilities have increased the output power of their nuclear power plant to increase their income and profit. Thus, the utility increases the power density of the reactor, which has other consequences. One consequence is to increase the depletion of the fuel assemblies (FAs) and reduce the end-of-cycle (EOC) sum of fissionable nuclides in each FA, ∑_E_O_C. The power density and the ∑_E_O_C remaining in the FAs at EOC must be sufficiently large in many FAs when designing the loading pattern, LP, for the first and reload cycles to maintain constant cycle lengths at minimum fuel cost. Also of importance is the cycle length as well as several other factors. In fact, the most important result of this study is to understand that the ∑_E_O_Cs in the FAs must be such that in the next cycle they can sustain the energy during depletion to prevent too much power shifting to the fresh FAs and, thus, sending the maximum peak pin power, PPP_m_a_x, above its constraint. This paper presents new methods for designing the LPs for the initial and follow on cycles to minimize the fuel costs. Studsvik’s CMS code system provides a 1000 MWe LP design in their sample inputs, which is applied in this study. The first 3 cycles of this core are analyzed to minimize fuel costs, and all three cycles have the same cycle length of ∼650 days. Cycle 1 is designed to allow many used FAs to be loaded into cycles 2 and 3 to reduce their fuel costs. This could not be achieved if cycle 1 was a low leakage LP (Shi et al., 2015). Significant fuel cost savings are achieved when the new designs are applied to the higher leakage LP designs

  18. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  19. Computer codes used in particle accelerator design: First edition

    International Nuclear Information System (INIS)

    1987-01-01

    This paper contains a listing of more than 150 programs that have been used in the design and analysis of accelerators. Given on each citation are person to contact, classification of the computer code, publications describing the code, computer and language runned on, and a short description of the code. Codes are indexed by subject, person to contact, and code acronym

  20. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza

    2015-01-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)

  1. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  2. Portable LQCD Monte Carlo code using OpenACC

    Science.gov (United States)

    Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele

    2018-03-01

    Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.

  3. Low-Power Embedded DSP Core for Communication Systems

    Science.gov (United States)

    Tsao, Ya-Lan; Chen, Wei-Hao; Tan, Ming Hsuan; Lin, Maw-Ching; Jou, Shyh-Jye

    2003-12-01

    This paper proposes a parameterized digital signal processor (DSP) core for an embedded digital signal processing system designed to achieve demodulation/synchronization with better performance and flexibility. The features of this DSP core include parameterized data path, dual MAC unit, subword MAC, and optional function-specific blocks for accelerating communication system modulation operations. This DSP core also has a low-power structure, which includes the gray-code addressing mode, pipeline sharing, and advanced hardware looping. Users can select the parameters and special functional blocks based on the character of their applications and then generating a DSP core. The DSP core has been implemented via a cell-based design method using a synthesizable Verilog code with TSMC 0.35[InlineEquation not available: see fulltext.]m SPQM and 0.25[InlineEquation not available: see fulltext.]m 1P5M library. The equivalent gate count of the core area without memory is approximately 50 k. Moreover, the maximum operating frequency of a[InlineEquation not available: see fulltext.] version is 100 MHz (0.35[InlineEquation not available: see fulltext.]m) and 140 MHz (0.25[InlineEquation not available: see fulltext.]m).

  4. Development of the RSAC Automation System for Reload Core of WH NPP

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Bae, Sung Man; Koh, Byung Marn; Hong, Sun Kwan

    2006-01-01

    The Nuclear Design for Reload Core of Westinghouse Nuclear Power Plant consists of 'Reload Core Model Search', 'Safety Analysis(RSAC)', 'NDR(Nuclear Design Report) and OCAP(Operational Core Analysis Package Generation)' phases. Since scores of calculations for various accidents are required to confirm that the safety analysis assumptions are valid, the Safety Analysis(RSAC) is the most important and time and effort consuming phase of reload core design sequence. The Safety Analysis Automation System supports core designer by the automation of safety analysis calculations in 'Safety Analysis' phase(about 20 calculations). More than 10 kinds of codes, APA(ALPHA/PHOENIX/ANC), APOLLO, VENUS, PHIRE XEFIT, INCORE, etc. are being used for Safety Analysis calculations. Westinghouse code system needs numerous inputs and outputs, so the possibility of human errors could not be ignored during Safety Analysis calculations. To remove these inefficiencies, all input files for Safety Analysis calculations are automatically generated and executed by this Safety Analysis Automation System. All calculation notes are generated and the calculation results are summarized in RSAC (Reload Safety Analysis Checklist) by this system. Therefore, The Safety Analysis Automation System helps the reload core designer to perform safety analysis of the reload core model instantly and correctly

  5. ASME Code requirements for multi-canister overpack design and fabrication

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified

  6. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  7. Design of radiation shields in nuclear reactor core

    International Nuclear Information System (INIS)

    Mousavi Shirazi, A.; Daneshvar, Sh.; Aghanajafi, C.; Jahanfarnia, Gh.; Rahgoshay, M.

    2008-01-01

    This article consists of designing radiation shields in the core of nuclear reactors to control and restrain the harmful nuclear radiations in the nuclear reactor cores. The radiation shields protect the loss of energy. caused by nuclear radiation in a nuclear reactor core and consequently, they cause to increase the efficiency of the reactor and decrease the risk of being under harmful radiations for the staff. In order to design these shields, by making advantages of the O ppenheim Electrical Network m ethod, the structure of the shields are physically simulated and by obtaining a special algorithm, the amount of optimized energy caused by nuclear radiations, is calculated

  8. Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T

    1985-04-01

    This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.

  9. Core design and performance of small inherently safe LMRs

    International Nuclear Information System (INIS)

    Orechwa, Y.; Khalil, H.; Turski, R.B.; Fujita, E.K.

    1986-01-01

    Oxide and metal-fueled core designs at the 900 MWt level and constrained by a requirement for interchangeability are described. The physics parameters of the two cores studied here indicate that metal-fueled cores display attractive economic and safety features and are more flexible than are oxide cores in adapting to currently-changing deployment scenarios

  10. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  11. Comparative analysis of unprotected loss-of-flow accidents for the 1.0 m EFR-LVC core using different computer codes

    International Nuclear Information System (INIS)

    Royl, P.; Frizonnet, J.M.; Moran, J.

    1993-02-01

    A comparative analysis of the unprotected loss of flow (ULOF) accident has been performed for the LVC core (Lower Void Core) of the European Fast Reactor EFR with the FRAX5B and FRAX5C codes from the AEA-T, the PHYSURAC code from CEA and the SAS4A REF92 code system developed jointly between KfK, CEA and PNC. The accident is triggered by the run down of the coolant pumps with failure to trip the reactor by the primary and/or secondary shutdown system. Only a limited amount of mitigating reactivity from the third shutdown line was considered so that the accident can progress into boiling and core disruption. This code outlines the important modelling differences and compares the different simulations. The discussion of the rather wide spectrum of calculated accident progressions identifies the generic differences, relates them to the applied models, and summarizes the key points that are responsible for the different progressions. A comparison of the consequence spectrum from all simulations indicates zero work energies for the majority of the calculations. All simulations show up the need for a continued accident analysis into the early and late transition phase

  12. Core Design Concept and Core Structural Material Development for a Prototype SFR

    International Nuclear Information System (INIS)

    Chang, Jinwook

    2013-01-01

    Core design Concept: – Initial core is Uranium metal fueled core, then it will evolve into TRU core; – Tight pressure drop constraint lowers power density; – Trade-off studies with relaxed pressure drop constraint (~0.4MPa) are on-going; – Major feature will be finalized this year. • KAERI is developing advanced cladding for high burnup fuel in Ptototype SFR: – Advanced cladding materials are now developing, which shows superior high temperature mechanical property to the conventional material; – Processing technologies related to tube making process are now developed to enhance high temperature mechanical propertyl – Preliminary HT9 cladding tube was manufactured and out-of pile mechanical properties were evaluated. Advanced cladding tube is now being developed and being prepared for irradiation test

  13. Development status of the lattice physics code in COSINE project

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Li, S.; Liu, Z.; Yan, Y. [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software NEKLS, North Third Ring Road, Beijing 100029 (China)

    2013-07-01

    LATC is an essential part of COSINE code package, which stands for Core and System Integrated Engine for design and analysis. LATC performs 2D multi-group assembly transport calculation and generates few group constants and the required cross-section data for CORE, the core simulator code. LATC is designed to have the capability of modeling the API 000 series assemblies. The development is a continuously improved process. Currently, LATC uses well-proven technology to achieve the key functions. In the next stage, more advanced methods and modules will be implemented. At present, WIMS and WIMS improved format library could be read in LATC code. For resonance calculation, equivalent relation with rational approximations is utilized. For transport calculation, two options are available. One choice is collision probability method in cell homogenization while discrete coordinate method in assembly homogenization, the other is method of characteristics in assembly homogenization directly. For depletion calculation, an improved linear rate 'constant power' depletion method has been developed. (authors)

  14. Development status of the lattice physics code in COSINE project

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Li, S.; Liu, Z.; Yan, Y.

    2013-01-01

    LATC is an essential part of COSINE code package, which stands for Core and System Integrated Engine for design and analysis. LATC performs 2D multi-group assembly transport calculation and generates few group constants and the required cross-section data for CORE, the core simulator code. LATC is designed to have the capability of modeling the API 000 series assemblies. The development is a continuously improved process. Currently, LATC uses well-proven technology to achieve the key functions. In the next stage, more advanced methods and modules will be implemented. At present, WIMS and WIMS improved format library could be read in LATC code. For resonance calculation, equivalent relation with rational approximations is utilized. For transport calculation, two options are available. One choice is collision probability method in cell homogenization while discrete coordinate method in assembly homogenization, the other is method of characteristics in assembly homogenization directly. For depletion calculation, an improved linear rate 'constant power' depletion method has been developed. (authors)

  15. Benchmarking and qualification of the ppercase nufreq -ppercase npw code for best estimate prediction of multichannel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1994-01-01

    The ppercase nufreq - ppercase np (G.C. Park et al. NUREG/CR-3375, 1983; S.J. Peng et al. NUREG/CR-4116, 1984; S.J. Peng et al. Nucl. Sci. Eng. 88 (1988) 404-411) code was modified and set up at Westinghouse, USA, for mixed fuel type multichannel core-wide stability analysis. The resulting code, ppercase nufreq - ppercase npw , allows for variable axial power profiles between channel groups and can handle mixed fuel types.Various models incorporated into ppercase nurfreq - ppercase npw were systematically compared against the Westinghouse channel stability analysis code ppercase mazda -ppercase nf (R. Taleyarkhan et al. J. Heat Transfer 107 (February 1985) 175-181; NUREG/CR2972, 1983), for which the mathematical model was developed in an entirely different manner. Excellent agreement was obtained which verified the thermal-hydraulic modeling and coding aspects. Detailed comparisons were also performed against nuclear-coupled reactor core stability data. All 13 Peach Bottom-2 EOC-2/3 low flow stability tests (L.A. Carmichael and R.O. Neimi, EPRI NP-564, Project 1020-1, 1978; F.B. Woffinden and R.O. Neimi, EPRI, NP 0972, Project 1020-2, 1981) were simulated. A key aspect for code qualification involved the development of a physically based empirical algorithm to correct for the effect of core inlet flow development on subcooled boiling. Various other modeling assumptions were tested and sensitivity studies performed. Good agreement was obtained between ppercase nufreq-npw predictions and data. ((orig.))

  16. GrowYourIC: an open access Python code to facilitate comparison between kinematic models of inner core evolution and seismic observations

    Science.gov (United States)

    Lasbleis, M.; Day, E. A.; Waszek, L.

    2017-12-01

    The complex nature of inner core structure has been well-established from seismic studies, with heterogeneities at various length scales, both radially and laterally. Despite this, no geodynamic model has successfully explained all of the observed seismic features. To facilitate comparisons between seismic observations and geodynamic models of inner core growth we have developed a new, open access Python tool - GrowYourIC - that allows users to compare models of inner core structure. The code allows users to simulate different evolution models of the inner core, with user-defined rates of inner core growth, translation and rotation. Once the user has "grown" an inner core with their preferred parameters they can then explore the effect of "their" inner core's evolution on the relative age and growth rate in different regions of the inner core. The code will convert these parameters into seismic properties using either built-in mineral physics models, or user-supplied ones that calculate these seismic properties with users' own preferred mineralogical models. The 3D model of isotropic inner core properties can then be used to calculate the predicted seismic travel time anomalies for a random, or user-specified, set of seismic ray paths through the inner core. A real dataset of inner core body-wave differential travel times is included for the purpose of comparing user-generated models of inner core growth to actual observed travel time anomalies in the top 100km of the inner core. Here, we explore some of the possibilities of our code. We investigate the effect of the limited illumination of the inner core by seismic waves on the robustness of kinematic model interpretation. We test the impact on seismic differential travel time observations of several kinematic models of inner core growth: fast lateral translation; slow differential growth; and inner core super-rotation. We find that a model of inner core evolution incorporating both differential growth and slow

  17. Designing the KNK II-TOAST irradiation experiment with the saturn-FS code

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.; Elbel, H.; Heck, M.

    1991-01-01

    In order to study the existing specification of FBR fuel with respect to allowable fabrication tolerances with the objective to reduce the expense of fabrication and quality control, the TOAST irradiation experiment will be carried out in the 3 rd core of the KNK II. This experiment shall investigate the influence of the following fuel specification parameters on the operational behaviour: - Fuel diameter - Stoichiometry - Sintering atmosphere - Fill gas in the fuel pin. The combination of these test parameters led to a fabrication of 6 types of fuel pellets, giving together with two fill gas mixtures a total of 9 fuel pin types. Design calculations in the frame of the standard licensing procedure have been performed with the SATURN-FS fuel pin behaviour code. These calculations have been done for the steady-state behaviour as well as for some defined design transients, such as startup procedures and overpower ramps

  18. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  19. Validation of Printed Circuit Heat Exchanger Design Code KAIST{sub H}XD

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been suggested for the SFR due to the relatively mild sodium-CO{sub 2} interaction. The S-CO{sub 2} power conversion cycle can achieve not only high safety but also high efficiency with SFR core thermal condition. However, due to the dramatic property change near the critical point, the inlet pressure and temperature conditions of compressor can have significant effect on the overall cycle efficiency. To maintain the inlet condition of compressor, a sensitive precooler control system is required for stable operation. Therefore understanding the precooler performance is essential for the S-CO{sub 2} power conversion system. According to experimental result, designed PCHE showed high effectiveness in various operating regions. Comparing the experimental and the design data, heat transfer performance estimation showed less than 6% error. On the other hand, the pressure drop estimation showed large gap. The water side pressure drop showed 50-70% under estimation. Because the form losses were not included in the design code, water side pressure drop estimation result seems reliable. However, the CO{sub 2} side showed more than 70% over estimation in the pressure drop from the code. The authors suspect that the differences may have occurred by the channel corner shape. The real channel has round corners and smooth edge, but the correlation is based on the sharp edged zig-zag channel. Further studies are required to understand and interpret the results correctly in the future.

  20. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.

  1. Test model of WWER core

    International Nuclear Information System (INIS)

    Tikhomirov, A. V.; Gorokhov, A. K.

    2007-01-01

    The objective of this paper is creation of precision test model for WWER RP neutron-physics calculations. The model is considered as a tool for verification of deterministic computer codes that enables to reduce conservatism of design calculations and enhance WWER RP competitiveness. Precision calculations were performed using code MCNP5/1/ (Monte Carlo method). Engineering computer package Sapfir 9 5andRC V VER/2/ is used in comparative analysis of the results, it was certified for design calculations of WWER RU neutron-physics characteristic. The object of simulation is the first fuel loading of Volgodon NPP RP. Peculiarities of transition in calculation using MCNP5 from 2D geometry to 3D geometry are shown on the full-scale model. All core components as well as radial and face reflectors, automatic regulation in control and protection system control rod are represented in detail description according to the design. The first stage of application of the model is assessment of accuracy of calculation of the core power. At the second stage control and protection system control rod worth was assessed. Full scale RP representation in calculation using code MCNP5 is time consuming that calls for parallelization of computational problem on multiprocessing computer (Authors)

  2. Development of an integrated fission product release and transport code for spatially resolved full-core calculations of V/HTRs

    International Nuclear Information System (INIS)

    Xhonneux, Andre; Allelein, Hans-Josef

    2014-01-01

    The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR

  3. Design studies of back up cores for the experimental multi-purpose VHTR, (1)

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu

    1982-09-01

    For the Experimental Multi-Purpose Very High Temperature Reactor, design studies have been made of two backup cores loaded with new type fuel elements. The purpose is to improve core operational characteristics of the standard design core (Mark-III core) consisting of pin-in-block type fuel element having externally cooled hollow fuel rods. The first backup core (semi-pin fuel core) is composed of fuel elements with internally cooled fuel pins, and the second core (multihole fuel core) is composed of multihole fuel elements, which can be adopted for the experimental VHTR as the substitution of the standard Mark-III fuel element. Either of the cores has 73 fuel columns and 4 m height. The arrangement of active core and reactor internal structure is same as that in the standard design core. These backup cores meet almost all design requirements of the VHTR and increase the margins for some important design items in comparison with the standard core (Mark-III core). This report describes the overall characteristics of nuclear, thermal-hydraulic, fuel and safety, and structural consideration for these cores. (author)

  4. Thermal-hydraulic mixing in the split-core ANS reactor design

    International Nuclear Information System (INIS)

    Dorning, R.J.J.

    1988-01-01

    A design has been proposed for the advanced neutron source (ANS) reactor that incorporates a split core, one purpose of which is to create a mixing plenum between the upper and lower cores. It was hoped that in addition to introducing various desirable neutronics features, such as decreasing the fast neutron flux contamination of thermal and cold neutron beams located in the reactor midplane, this mixing plenum would make possible higher operating powers by lowering the maximum core temperature. This lower temperature was to be achieved as a result of the mixing, of the hot D 2 O coolant exiting the upper-core channels, and the cold D 2 O leaving the large upper core bypass. It was expected that this mixing would bring about a significantly reduced lower core maximum coolant inlet temperature. The authors have carried out large-scale computer calculations to determine the extent to which this mixing occurs in current split-core design geometry, which does not incorporate baffles, mixing devices, or other design features introduced to enhance mixing. The large-scale self-consistent calculations summarized here indicate that innovative design ideas to enhance mixing will be necessary if the split-core concept is to achieve the amount of thermal mixing needed to make possible significantly higher power operation and corresponding higher flux sources

  5. On the Evaluation of Pebble Bead Reactor Critical Experiments Using the Pebbed Code

    International Nuclear Information System (INIS)

    Gougar, Hans D.; Sen, R. Sonat

    2014-01-01

    Critical experiments pose a particular but necessary challenge to validating pebble bed reactor design codes. Fuel and core heterogeneities, impurities in graphite, variable packing of pebbles, and moderately strong neutronic coupling are among the factors that inject uncertainty into the results obtained with lower fidelity core physics models. Some of these are addressed in this study. The PEBBED pebble bed reactor fuel management code under development at the Idaho National Laboratory is designed for rapid design and analysis of pebble bed high temperature reactors (PBRs). Embedded within the code are the THERMIX-KONVEK thermal fluid solver and the COMBINE-7 spectrum generation code for inline cross section homogenization. Because 1D symmetry can be found at each stage of core heterogeneity; spherical at TRISO and pebble levels, and cylindrical at the control rod and core levels, the 1-D transport capability of ANISN is assumed to be sufficient in most cases for generating flux solutions for cross section homogenization. Furthermore, it is fast enough to be executed during the analysis or the equilibrium core. Multi-group diffusion-based design codes such as PEBBED and VSOP are not expected to yield the accuracy and resolution of continuous energy Monte Carlo codes for evaluation of critical experiments. Nonetheless, if the preparation of multigroup cross sections can adequately capture the physics of the mixing of PBR fuel elements and leakage from the core, reasonable results may be obtained. In this paper, results of the application of PEBBED to two critical experiments (HTR Proteus and HTR-10) and associated computational models are presented. The embedded 1-D transport solver is shown to capture the double heterogeneity of the pebble fuel in unit cell calculations. Eigenvalue calculations of a whole core are more challenging, particularly if the boron concentration is uncertain. The sensitivity of major safety parameters to variations in modeling

  6. Increasing the neutron flux study for the TRR-II core design

    International Nuclear Information System (INIS)

    Chen, C.-H.; Yang, J.-T.; Chou, Y.-C.

    1999-01-01

    The maximum unperturbed thermal flux of the originally proposed core design, which is a 6x6 square arrangement with power level of 20 MW and has been presented at the 6th Meeting of IGORR, for the TRR-II reactor is about 2.0x10 14 n/cm 2 -sec. However, it is no longer satisfied the user's requirement, that is, it must reach at least 2.5x10 14 n/cm 2 -sec. In order to enhance the thermal neutron flux, one of the most effective ways is to increase the average power density. Therefore, two new designs with more compact cores are then proposed and studied. One is 5x6 rectangular arrangement with power of 20 MW; the other one is 5x5 square arrangement with power of 16 MW. It is for sure that both core designs can satisfy thermal hydraulic safety limits. The designed parameters related to neutronics are listed and compared fundamentally. According to our calculation, although both cores have similar average power density, the results show that the 5x6/20 MW design has the maximum unperturbed thermal flux in the D 2 O region about 2.7x10 14 n/cm 2 -sec, and the 5x5/16 MW design has 2.5x10 14 n/cm 2 -sec. The maximum thermal flux in the neighborhood of the longer side of the 5x6 core is about 7% higher than the one in the neighborhood of any side of the 5x5 core. This 'long-side effect' gives the 5x6/20 MW core design an advantage of the utilization of the thermal neutron flux in the D 2 O region. In addition, the 5x5 core is also more sensitive to the reactivity change on account of in-core irradiation test facilities. Therefore, under overall considerations the 5x6/20 MW core design is chosen for further detailed design. (author)

  7. Core physics design calculation of mini-type fast reactor based on Monte Carlo method

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2007-01-01

    An accurate physics calculation model has been set up for the mini-type sodium-cooled fast reactor (MFR) based on MCNP-4C code, then a detailed calculation of its critical physics characteristics, neutron flux distribution, power distribution and reactivity control has been carried out. The results indicate that the basic physics characteristics of MFR can satisfy the requirement and objectives of the core design. The power density and neutron flux distribution are symmetrical and reasonable. The control system is able to make a reliable reactivity balance efficiently and meets the request for long-playing operation. (authors)

  8. Large-break LOCA assessment for the highly advanced core design

    International Nuclear Information System (INIS)

    Doria, F.J.; Nath, V.I.; Hau, K.F.; Dam, R.F.; Vecchiarelli, J.

    1997-01-01

    Over the course of the years, a conceptual highly advanced core (HAC) reactor has been designed for Japan Electric Power Development Company Limited (EPDC). The HAC reactor, which is capable of generating 1326 MW of electrical power, consists of 640 CANDU-type fuel channels with each fuel channel containing twelve 61-element fuel bundles. As part of the conceptual design study, the performance of the HAC reactor during a large loss-of-coolant accident (LOCA) was assessed with the use of several computer codes. The SOPHT, CATHENA, ELOCA and ELESTRES computer codes were used to predict the thermalhydraulic behaviour of the circuit, thermalhydraulic behaviour of a single high-power channel, thermal-mechanical behaviour of the outer fuel elements contained in the high-powered channel and the steady-state fuel-element conditions respectively. The LOCAs that were analyzed include 100% reactor outlet header (ROH) break, and a survey of reactor inlet header (RIH) breaks ranging from 5% to 25%. The conceptual feasibility of the HAC design was evaluated against two criteria; namely, maximum sheath temperature less than 1200 deg C and AECL's 5% sheath straining criterion to assess failure by excessive straining. For the cases analyzed, the analysis predicted a maximum sheath temperature of 820 deg C and a maximum sheath strain of 1.5% (the maximum pressure-tube temperature was 515 deg C). Although the maximum element-burnup of the HAC design is extended beyond the CANDU 6 burnup, the maximum linear power of HAC (40 kW/m) is significantly lower than the maximum linear power of a CANDU 6 reactor (60 kW/m). The reduced element-power level in conjunction with internal design modification for the HAC design has resulted m significantly lower internal gas pressures under steady-state conditions, as compared with the CANDU 6 design. During a LOCA, the low linear powers and zero-void reactivity associated with the HAC design has increased the safety margin. In addition, the cases

  9. Uncertainty reevaluation of T/H parameters of HANARO core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Park, Cheol; Kim, Heo Nil; Chae, Hee Taek

    1999-03-01

    HANARO core was designed by statistical thermal design method which was generally applied to power plant design. However, reevaluation of core thermal margin reflecting design changes as well as experiences through commissioning and operation is necessary for safe operation of reactor. For this objective, the revision of data for T/H design parameters and the reevaluation of their uncertainties were performed. (Author). 30 refs., 7 figs.

  10. A multi-crucible core-catcher concept: Design considerations and basic results

    International Nuclear Information System (INIS)

    Szabo, I.

    1995-01-01

    A multi-crucible core-catcher concept to be implemented in new light water reactor containments has recently been proposed. This paper deals with conceptual design considerations and the various ways this type of core-catcher could be designed to meet requirements for reactor application. A systematic functional analysis of the multi-crucible core-catcher concept and the results of the preliminary design calculation are presented. Finally, the adequacy of the multi-crucible core-catcher concept for reactor application is discussed. (orig.)

  11. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  12. ARKAS: A three-dimensional finite element code for the analysis of core distortions and mechanical behaviour

    International Nuclear Information System (INIS)

    Nakagawa, M.

    1984-01-01

    Computer program ARKAS has been developed for the purpose of predicting core distortions and mechanical behaviour in a cluster of subassemblies under steady state conditions in LMFBR cores. This report describes the analytical models and numerical procedures employed in the code together with some typical results of the analysis made on large LMFBR cores. ARKAS is programmed in the FORTRAN-IV language and is capable of treating up to 260 assemblies in a cluster with flexible boundary conditions including mirror and rotational symmetry. The nonlinearity of the problem due to contact and separation is solved by the step iterative procedure based on the Newton-Raphson method. In each step iterative procedure, the linear matrix equation must be reconstructed and then solved directly. To save computer time and memory, the substructure method is adopted in the step of reconstructing the linear matrix equation, and in the step of solving the linear matrix equation, the block successive over-relaxation method is adopted. The program ARKAS computes, at every time step, 3-dimensional displacements and rotations of the subassemblies in the core and the interduct forces including at the nozzle tips and nozzle bases with friction effects. The code also has an ability to deal with the refueling and shuffling of subassemblies and to calculate the values of withdrawal forces. For the qualitative validation of the code, sample calculations were performed on the several bundle arrays. In these calculations, contact and separation processes under the influences of friction forces, off-center loading, duct rotations and torsion, thermal expansion and irradiation induced swelling and creep were analyzed. These results are quite reasonable in the light of the expected behaviour. This work was performed under the sponsorship of Toshiba Corporation

  13. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    Science.gov (United States)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  14. COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES

    International Nuclear Information System (INIS)

    Boss, Alan P.; Keiser, Sandra A.

    2013-01-01

    Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.

  15. Evaluation of the analysis models in the ASTRA nuclear design code system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Park, Chang Jea; Kim, Do Sam; Lee, Kyeong Taek; Kim, Jong Woon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-15

    In the field of nuclear reactor design, main practice was the application of the improved design code systems. During the process, a lot of basis and knowledge were accumulated in processing input data, nuclear fuel reload design, production and analysis of design data, et al. However less efforts were done in the analysis of the methodology and in the development or improvement of those code systems. Recently, KEPO Nuclear Fuel Company (KNFC) developed the ASTRA (Advanced Static and Transient Reactor Analyzer) code system for the purpose of nuclear reactor design and analysis. In the code system, two group constants were generated from the CASMO-3 code system. The objective of this research is to analyze the analysis models used in the ASTRA/CASMO-3 code system. This evaluation requires indepth comprehension of the models, which is important so much as the development of the code system itself. Currently, most of the code systems used in domestic Nuclear Power Plant were imported, so it is very difficult to maintain and treat the change of the situation in the system. Therefore, the evaluation of analysis models in the ASTRA nuclear reactor design code system in very important.

  16. Improvement of group collapsing in TRANSX code

    International Nuclear Information System (INIS)

    Jeong, Hyun Tae; Kim, Young Cheol; Kim, Young In; Kim, Young Kyun

    1996-07-01

    A cross section generating and processing computer code TRANSX version 2.15 in the K-CORE system, being developed by the KAERI LMR core design technology development team produces various cross section input files appropriated for flux calculation options from the cross section library MATXS. In this report, a group collapsing function of TRANSX has been improved to utilize the zone averaged flux file RZFLUX written in double precision as flux weighting functions. As a result, an iterative calculation system using double precision RZFLUX consisting of the cross section data library file MATXS, the effective cross section producing and processing code TRANSX, and the transport theory calculation code TWODANT has been set up and verified through a sample model calculation. 4 refs. (Author)

  17. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  18. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  19. Development Perspective of Regulatory Audit Code System for SFR Nuclear Safety Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo Hoon; Lee, Gil Soo; Shin, An Dong; Suh, Nam Duk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    A sodium-cooled fast reactor (SFR) in Korea is based on the KALIMER-600 concept developed by KAERI. Based on 'Long-term R and D Plan for Future Reactor Systems' which was approved by the Korea Atomic Energy Commission in 2008, the KAERI designer is scheduled to apply the design certification of the prototype SFR in 2017. In order to establish regulatory infrastructure for the licensing of a prototype SFR, KINS has develop the regulatory requirements for the demonstration SFR since 2010, and are scheduled to develop the regulatory audit code systems in regard to core, fuel, and system, etc. since 2012. In this study, the domestic code systems used for core design and safety evaluation of PWRs and the nuclear physics and code system for SFRs were briefly reviewed, and the development perspective of regulatory audit code system for SFR nuclear safety evaluation were derived

  20. SAFETY IN THE DESIGN OF SCIENCE LABORATORIES AND BUILDING CODES.

    Science.gov (United States)

    HOROWITZ, HAROLD

    THE DESIGN OF COLLEGE AND UNIVERSITY BUILDINGS USED FOR SCIENTIFIC RESEARCH AND EDUCATION IS DISCUSSED IN TERMS OF LABORATORY SAFETY AND BUILDING CODES AND REGULATIONS. MAJOR TOPIC AREAS ARE--(1) SAFETY RELATED DESIGN FEATURES OF SCIENCE LABORATORIES, (2) LABORATORY SAFETY AND BUILDING CODES, AND (3) EVIDENCE OF UNSAFE DESIGN. EXAMPLES EMPHASIZE…

  1. Design of the core support and restraint structures for FFTF and CRBRP

    International Nuclear Information System (INIS)

    Sutton, H.G.; Rylatt, J.A.

    1977-12-01

    This paper presents and compares the design and fabrication of the FFTF and CRBRP reactor structures which support and restrain the reactor core assemblies. The fabrication of the core support structure (CSS) for the FFTF reactor was completed October 1972 and this paper discusses how the fabrication problems encountered with the FFTF were avoided in the subsequent design of the CRBR CSS. The radial core restraint structure of the FFTF was designed and fabricated such that an active system could replace the present passive system which is segmented and relies on the CSS core barrel for total structure integrity to maintain core geometry. The CRBR core restraint structure is designed for passive restraint only, and this paper discusses how the combined strengths of the restraint structure former rings and the CSS core barrel are utilized to maintain core geometry. Whereas the CSS for the FFTF interfaces directly with the reactor core assemblies, the CRBR CSS does not. A comparison is made on how intermediate structures in CRBR (inlet modules) provide the necessary design interfaces for supporting and providing flow distribution to the reactor core assemblies. A discussion is given on how the CRBR CSS satisfied the design requirements of the Equipment Specification, including thermal transient, dynamic and seismic loadings, and results of flow distribution testing that supported the CRBR design effort. The approach taken to simplify fabrication of the CRBR components, and a novel 20 inch deep narrow gap weld joint in the CSS are described

  2. General presentation of the core mechanical behaviour approach in France

    International Nuclear Information System (INIS)

    Bernard, A.; Dorsselaere, J.P. van

    1984-01-01

    This French review paper presents the evolution along time of the FBR core mechanical behaviour approach, from RAPSODIE to SPX2, through PHENIX and SPX1: core designs, knowledge of the irradiation laws, project criterias, calculation codes, and R and D fields. (author)

  3. WWER core pattern enhancement using adaptive improved harmony search

    International Nuclear Information System (INIS)

    Nazari, T.; Aghaie, M.; Zolfaghari, A.; Minuchehr, A.; Norouzi, A.

    2013-01-01

    Highlights: ► The classical and improved harmony search algorithms are introduced. ► The advantage of IHS is demonstrated in Shekel's Foxholes. ► The CHS and IHS are compared with other Heuristic algorithms. ► The adaptive improved harmony search is applied for two cases. ► Two cases of WWER core are optimized in BOC FA pattern. - Abstract: The efficient operation and fuel management of PWRs are of utmost importance. Core performance analysis constitutes an essential phase in core fuel management optimization. Finding an optimum core arrangement for loading of fuel assemblies, FAs, in a nuclear core is a complex problem. In this paper, application of classical harmony search (HS) and adaptive improved harmony search (IHS) in loading pattern (LP) design, for pressurized water reactors, is described. In this analysis, finding the best core pattern, which attains maximum multiplication factor, k eff , by considering maximum allowable power picking factors (PPF) is the main objective. Therefore a HS based, LP optimization code is prepared and CITATION code which is a neutronic calculation code, applied to obtain effective multiplication factor, neutron fluxes and power density in desired cores. Using adaptive improved harmony search and neutronic code, generated LP optimization code, could be applicable for PWRs core with many numbers of FAs. In this work, at first step, HS and IHS efficiencies are compared with some other heuristic algorithms in Shekel's Foxholes problem and capability of the adaptive improved harmony search is demonstrated. Results show, efficient application of IHS. At second step, two WWER cases are studied and then IHS proffered improved core patterns with regard to mentioned objective functions.

  4. Thermal neutron flux distribution in the ET R R-1 reactor core as experimentally measured and theoretically calculated by the code triton

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.

  5. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  6. Verification of ONED90 code

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Lee, Ki Bog; Zee, Sung Kyun; Lee, Chang Ho

    1993-12-01

    ONED90 developed by KAERI is a 1-dimensional 2-group diffusion theory code. For nuclear design and reactor simulation, the usage of ONED90 encompasses core follow calculation, load follow calculation, plant power control simulation, xenon oscillation simulation and control rod maneuvering, etc. In order to verify the validity of ONED90 code, two well-known benchmark problems are solved by ONED90 shows very similar result to reference solution. (Author) 11 refs., 5 figs., 13 tabs

  7. LMBFR and LWR in-core thermal-hydraulic codes: the state-of-the-art and research and development needs

    International Nuclear Information System (INIS)

    Khan, E.U.; Coomes, E.P.; Rowe, D.S.; Trent, D.S.

    1981-04-01

    A review of analytical design methods used for predicting reactor core flow and temperature distributions is presented with emphasis on LMFBR's. The paper also briefly describes and contrasts the methods used for LWR's. These methods are global analysis, subchannel analysis, distributed parameter, and hybrid analysis. The evolution of the local and subchannel analysis methods is presented. Data used for code validation are also presented. Current research and development needs are identified and discussed. Areas identified for future research and development include methods and expermental data for analysis of distorted bundles and natural convection. Methods that have been developed for predicting the safety performance of LMFBR's and LWR's are not within the scope of this paper

  8. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  9. TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility

    International Nuclear Information System (INIS)

    Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.

    1988-01-01

    Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs

  10. Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)

    2007-07-15

    Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.

  11. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor

    International Nuclear Information System (INIS)

    Salazar C, J.H.; Nunez C, A.; Chavez M, C.

    2004-01-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  12. SWAAM code development, verification and application to steam generator design

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes developed by Argonne National Laboratory to analyze the effects of sodium/water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and to predict the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The theoretical foundations and numerical treatments on which the codes are based are discussed, followed by a description of code capabilities and limitations, verification of the codes by comparison with experiment, and applications to steam generator and IHTS design. (author). 25 refs, 14 figs

  13. Determination of prompt neutron decay constant of the AP-600 reactor core

    International Nuclear Information System (INIS)

    Surbakti, T.

    1998-01-01

    Determination of prompt neutron decay constant of the AP-600 reactor core has been performed using combination of two codes WIMS/D4 and Batan-2DIFF. The calculation was done at beginning of cycle and all of control rods pulled out. Cell generation from various kinds of core materials was done with 4 neutron energy group in 1-D transport code (WIMS/D4). The cell is considered for 1/4 fuel assembly in cluster model with square pitch arrange and then, the dimension of its unit cell is calculated. The unit cell consist of a fuel and moderator unit. The unit cell dimension as input data of WIMS/D4 code, called it annulus, is obtained from the equivalent unit cell. Macroscopic cross sections as output was used as input on neutron diffusion code Batan-2DIFF for core calculation as appropriate with three enrichment regions of the fuel of AP-600 core, namely 2, 2.5, and 3%. From result of diffusion code ( Batan-2DIFF) is obtained the value of delayed neutron fraction of 6.932E-03 and average prompt neutron life-time of 26.38 μs, so that the value of prompt neutron decay constant is 262.8 s-1. If it is compared the calculation result with the design value, the deviation are, for the design value of delayed neutron fraction is 7.5E-03, about 8% and the design value of average prompt neutron life time is 19.6 μs, about 34% respectively. The deviation because there are still unknown several core components of AP-600, so it didn't include in calculation yet

  14. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  15. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  16. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  17. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  18. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  19. FLP: a field line plotting code for bundle divertor design

    International Nuclear Information System (INIS)

    Ruchti, C.

    1981-01-01

    A computer code was developed to aid in the design of bundle divertors. The code can handle discrete toroidal field coils and various divertor coil configurations. All coils must be composed of straight line segments. The code runs on the PDP-10 and displays plots of the configuration, field lines, and field ripple. It automatically chooses the coil currents to connect the separatrix produced by the divertor to the outer edge of the plasma and calculates the required coil cross sections. Several divertor designs are illustrated to show how the code works

  20. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  1. Automated Core Design

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2005-01-01

    Multistate searching methods are a subfield of distributed artificial intelligence that aims to provide both principles for construction of complex systems involving multiple states and mechanisms for coordination of independent agents' actions. This paper proposes a multistate searching algorithm with reinforcement learning for the automatic core design of a boiling water reactor. The characteristics of this algorithm are that the coupling structure and the coupling operation suitable for the assigned problem are assumed and an optimal solution is obtained by mutual interference in multistate transitions using multiagents. Calculations in an actual plant confirmed that the proposed algorithm increased the convergence ability of the optimization process

  2. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    Science.gov (United States)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code

  3. A finite element code for electric motor design

    Science.gov (United States)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  4. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  5. Verification of in-core thermal and hydraulic analysis code FLOWNET/TRUMP for the high temperature engineering test reactor (HTTR) at JAERI

    International Nuclear Information System (INIS)

    Maruyama, Soh; Sudo, Yukio; Saito, Shinzo; Kiso, Yoshihiro; Hayakawa, Hitoshi

    1989-01-01

    The FLOWNET/TRUMP code consists of a flow network analysis code 'FLOWNET' for calculations of coolant flow distribution and coolant temperature distribution in the core with a thermal conduction analysis code 'TRUMP' for calculation of temperature distribution in solid structures. The verification of FLOWNET/TRUMP was made by the comparison of the analytical results with the results of steady state experiments by the HENDEL multichannel test rig, T1-M, which consisted of twelve simulated fuel rods heated electrically and eleven hexagonal graphite fuel blocks. The T1-M simulated the one fuel column in the core. The analytical results agreed well with the results of the experiment in which the HTTR operating conditions were simulated. (orig.)

  6. Design studies for the Mark-III core of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu; Shindo, Ryuiti; Arai, Taketoshi

    1979-08-01

    The Mark-III core in the first conceptual design made in 1975 is a fundamental core for VHTR. Subsequently, further design studies were made fuel loading scheme and control rod withdrawal sequence for the core to increase its safety margin (shutdown margin, etc.) and operational margin (minimum Reynolds number, maximum fuel temperature, etc.). It was shown that the Mark-III should exhibit the performance expected of VHTR, unless changes are made in the preconditions for its nuclear, thermal-hydraulic design. Also, the needs as below were indicated: (1) reasonable core design criteria and guidelines, (2) fuel-loading-scheme requirements in fuel management, fuel misloading and reactor operation, (3) confirmation on precision of the core design method and its further refinement. (author)

  7. Optimized Core Design and Fuel Management of a Pebble-Bed Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Boer, Brian

    2007-01-01

    The Very High Temperature Reactor (VHTR) has been selected by the international Generation IV research initiative as one of the six most promising nuclear reactor concepts that are expected to enter service in the second half of the 21st century. The VHTR is characterized by a high plant efficiency and a high fuel discharge burnup level. More specifically, the (pebble-bed type) High Temperature Reactor (HTR) is known for its inherently safe characteristics, coming from a negative temperature reactivity feedback, a low power density and a large thermal inertia of the core. The core of a pebble-bed reactor consists of graphite spheres (pebbles) that form a randomly packed porous bed, which is cooled by high pressure helium. The pebbles contain thousands of fuel particles, which are coated with several pyrocarbon and silicon carbon layers that are designed to contain the fission products that are formed during operation of the reactor. The inherent safety concept has been demonstrated in small pebble-bed reactors in practice, but an increase in the reactor size and power is required for cost-effective power production. An increase of the power density in order to increase the helium coolant outlet temperature is attractive with regard to the efficiency and possible process heat applications. However, this increase leads in general to higher fuel temperatures, which could lead to a consequent increase of the fuel coating failure probability. This thesis deals with the pebble-bed type VHTR that aims at an increased coolant outlet temperature of 1000 degrees C and beyond. For the simulation of the neutronic and thermal-hydraulic behavior of the reactor the DALTON-THERMIX coupled code system has been developed and has been validated against experiments performed in the AVR and HTR-10 reactors. An analysis of the 400 MWth Pebble Bed Modular Reactor (PBMR) design shows that the inherent safety concept that has been demonstrated in practice in the smaller AVR and HTR-10

  8. BEAVRS full core burnup calculation in hot full power condition by RMC code

    International Nuclear Information System (INIS)

    Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan

    2017-01-01

    Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.

  9. INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE

    Directory of Open Access Journals (Sweden)

    Sudarmono Sudarmono

    2015-03-01

    Full Text Available The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR. Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generation system, which has high energy efficiency, and has high and clean inherent safety level. The geometry and structure of the HTGR200 core are designed to produce the output of helium gas coolant temperature as high as 950 °C to be used for hydrogen production and other industrial processes in co-generative way. The output of very high temperature helium gas will cause thermal stress on the fuel pebble that threats the integrity of fission product confinement. Therefore, it is necessary to perform thermal-flow evaluation to determine the temperature distribution in the graphite and fuel pebble in the HTGR core. The evaluation was carried out by Thermix-Konvek module code that has been already integrated into VSOP'94 code. The HTGR core geometry was done using BIRGIT module code for 2-D model (RZ model with 5 channels of pebble flow in active core in the radial direction. The evaluation results showed that the highest and lowest temperatures in the reactor core are 999.3 °C and 886.5 °C, while the highest temperature of TRISO UO2 is 1510.20 °C in the position (z= 335.51 cm; r=0 cm. The analysis done based on reactor condition of 120 kg/s of coolant mass flow rate, 7 MPa of pressure and 200 MWth of power. Compared to the temperature distribution resulted between VSOP’94 code and fuel temperature limitation as high as 1600 oC, there is enough safety margin from melting or disintegrating. Keywords: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperature

  10. Neutronic evolution of SENA reactor during the first and second cycles. Comparison between the experimental power distributions obtained from the in-core instrumentation evaluation code CIRCE and the theoretical power values computed with the two-dimensional diffusion-evolution code EVOE

    International Nuclear Information System (INIS)

    Andrieux, Chantal

    1976-03-01

    The neutronic evolution of the reacteur Sena during the first and second cycles is presented. The experimental power distributions, obtained from the in-core instrumentation evaluation code CIRCE are compared with the theoretical powers calculated with the two-dimensional diffusion-evolution code EVOE. The CIRCE code allows: the study of the evolution of the principal parameters of the core, the comparison of the results of measured and theoretical estimates. Therefore this study has a great interest for the knowledge of the neutronic evolution of the core, as well as the validation of the refinement of theoretical estimation methods. The core calculation methods and requisite data for the evaluation of the measurements are presented after a brief description of the SENA core and its inner instrumentation. The principle of the in-core instrumentation evaluation code CIRCE, and calculation of the experimental power distributions and nuclear core parameters are then exposed. The results of the evaluation are discussed, with a comparison of the theoretical and experimental results. Taking account of the approximations used, these results, as far as the first and second cycles at SENA are concerned, are satisfactory, the deviations between theoretical and experimental power distributions being lower than 3% at the middle of the reactor and 9% at the periphery [fr

  11. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  12. The effects of core zoning on optimization of design analysis of molten salt reactor

    International Nuclear Information System (INIS)

    Guo, Zhangpeng; Wang, Chenglong; Zhang, Dalin; Chaudri, Khurrum Saleem; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2013-01-01

    Highlights: • 1/8 of core is simulated by MCNP and thermal-hydraulic code simultaneously. • Effects of core zoning are studied by dividing the core into two regions. • Both the neutronics and thermal-hydraulic behavior are investigated. • The flat flux distribution is achieved in the optimization analysis. • The flat flux can lead to worse thermal-hydraulic behavior occasionally. - Abstract: The molten salt reactor (MSR) is one of six advanced reactor types in the frame of the Generation 4 International Forum. In this study, a multiple-channel analysis code (MAC) is developed to analyze thermal-hydraulics behavior and MCNP4c is used to study the neutronics behavior of Molten Salt Reactor Experiment (MSRE). The MAC calculates thermal-hydraulic parameters, namely temperature distribution, flow distribution and pressure drop. The MCNP4c performs the analysis of effective multiplication factor, neutron flux, power distribution and conversion ratio. In this work, the modification of core configuration is achieved by different core zoning and various fuel channel diameters, contributing to flat flux distribution. Specifically, the core is divided into two regions and the effects of different core zoning on the both neutronics and thermal-hydraulic behavior of moderated molten salt reactor are investigated. We conclude that the flat flux distribution cannot always guarantee better performance in thermal-hydraulic perspective and can decreases the graphite lifetime significantly

  13. Developmental assessment of the SCDAP/RELAP5 code

    International Nuclear Information System (INIS)

    Harvego, E.A.; Slefken, L.J.; Coryell, E.W.

    1997-01-01

    The development and assessment of the late-phase damage progression models in the current version (designated MOD3.2) of the SCDAP/RELAP5 code are described. The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the US Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems (RCS) during severe accident conditions. Recent modeling improvements made to the MOD3.2 version of the code include (1) molten pool formation and heat up, including the transient start-up of natural circulation heat transfer, (2) in-core molten pool thermal-mechanical crust failure, (3) the melting and relocation of upper plenum structures, and (4) improvements in the modeling of lower plenum debris behavior and the potential for failure of the lower head. Finally, to eliminate abrupt transitions between core damage states and provide more realistic predictions of late phase accident progression phenomena, a transition smoothing methodology was developed and implemented that results in the calculation of a gradual transition from an intact core geometry through the different core damage states leading to molten pool formation. A wide range of experiments and modeling tools were used to assess the capabilities of MOD3.2. The results of the SCDAP/RELAP5/MOD3.2 assessment indicate that modeling improvements have significantly enhanced the code capabilities and performance in several areas compared to the earlier code version. New models for transition smoothing between core damage states, and modeling improvements/additions for cladding oxide failure, molten pool behavior, and molten pool crust failure have significantly improved the code usability for a wide range of applications and have significantly improved the prediction of hydrogen production, molten pool melt mass and core melt relocation time

  14. Conceptual design of PFBR core

    International Nuclear Information System (INIS)

    Lee, S.M.; Govindarajan, S.; Indira, R.; John, T.M.; Mohanakrishnan, P.; Shankar Singh, R.; Bhoje, S.B.

    1996-01-01

    The design options selected for the core of the 500 MWe Prototype Fast Breeder Reactor are presented. PFBR has a conventional mixed oxide fuel core of homogeneous type with two enrichment zones for power flattening and with radial and axial blankets to make the reactor self-sustaining in fissile material. Pin diameter has been selected for minimization of fissile inventory. Considerations for the choice of number of pins per subassembly, integrated versus separate axial blankets, and other pin and subassembly parameters are discussed. As the core size is moderate, no special schemes for reducing the maximum positive sodium voiding coefficient is envisages. Two independent, diverse fast acting shutdown systems working in fail-safe mode are selected. The number of absorber rods has been minimized by choosing a layout for maximum antishadow effect. Nine control and safety rods are distributed in two rods for power flattening by differential insertion. Three Diverse Safety Rods, are also provided which are normally fully withdrawn. The optimization of layout of radial and axial shielding and adequacy of flux at detector location are also discussed. (author). 2 figs

  15. Status of the development of a fully integrated code system for the simulation of high temperature reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Kasselmann, Stefan, E-mail: s.kasselmann@fz-juelich.de [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Druska, Claudia [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Herber, Stefan [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Jühe, Stephan [Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Keller, Florian; Lambertz, Daniela; Li, Jingjing; Scholthaus, Sarah; Shi, Dunfu [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Xhonneux, Andre; Allelein, Hans-Josef [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany)

    2014-05-01

    The HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach.

  16. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  17. Conceptual Design of the RHIC Dump Core

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1995-09-26

    Conceptually, the internal dump consists of a "core" whose purpose is to absorb the energy of the beam, and surrounding shielding whose purpose is to attenuate radiation. Design of the core for an internal dump has two problems which must be overcome. The first problem is preserving the integrity of the dump core. The bunches must be dispersed laterally an amount sufficient to keep the energy density from cracking the dump core material. Since the dump kickers in RHIC are only ~25m upstream of the entrance face of the dump, this is i a difficult problem. The second problem, not addressed in this note, is that dumping the beam should not quench downstream magnets. Preliminary calculations related to both of these problems have been presented in earlier notes.

  18. [Three-dimensional computer aided design for individualized post-and-core restoration].

    Science.gov (United States)

    Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun

    2009-10-01

    To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.

  19. Application of the NJOY code for unresolved resonance treatment in the MCNP utility code

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J. . E-mail addresses of corresponding authors: mmilos@vin.bg.ac.yu , vujic@nuc.berkeley.edu ,; Milosevic, M.; Vujic, J.)

    2005-01-01

    There are numerous uncertainties in the prediction of neutronic characteristics of reactor cores, particularly in the case of innovative reactor designs, arising from approximations used in the solution of the transport equation, and in nuclear data processing and cross section libraries generation. This paper describes the problems encountered in the analysis of the Encapsulated Nuclear Heat Source (ENHS) benchmark core and the new procedures and cross section libraries developed to overcome these problems. The ENHS is a new lead-bismuth or lead cooled novel reactor concept that is fuelled with metallic alloy of Pu, U and Zr, and it is designed to operate for 20 effective full power years without refuelling and with very small burnup reactivity swing. The computational tools benchmarked include: MOCUP - a coupled MCNP-4C and ORIGEN2.1 utility codes with MCNP data libraries based on the ENDF/B-VI evaluations; and KWO2 - a coupled KENO-V.a and ORIGEN2.1 code with ENDFB-V.2 based 238 group library. Calculations made for the ENHS benchmark have shown that the differences between the results obtained using different code systems and cross section libraries are significant and should be taken into account in assessing the quality of nuclear data libraries. (author)

  20. WWER core pattern enhancement using adaptive improved harmony search

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, T. [Nuclear Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Aghaie, M., E-mail: M_Aghaie@sbu.ac.ir [Nuclear Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A.; Norouzi, A. [Nuclear Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The classical and improved harmony search algorithms are introduced. Black-Right-Pointing-Pointer The advantage of IHS is demonstrated in Shekel's Foxholes. Black-Right-Pointing-Pointer The CHS and IHS are compared with other Heuristic algorithms. Black-Right-Pointing-Pointer The adaptive improved harmony search is applied for two cases. Black-Right-Pointing-Pointer Two cases of WWER core are optimized in BOC FA pattern. - Abstract: The efficient operation and fuel management of PWRs are of utmost importance. Core performance analysis constitutes an essential phase in core fuel management optimization. Finding an optimum core arrangement for loading of fuel assemblies, FAs, in a nuclear core is a complex problem. In this paper, application of classical harmony search (HS) and adaptive improved harmony search (IHS) in loading pattern (LP) design, for pressurized water reactors, is described. In this analysis, finding the best core pattern, which attains maximum multiplication factor, k{sub eff}, by considering maximum allowable power picking factors (PPF) is the main objective. Therefore a HS based, LP optimization code is prepared and CITATION code which is a neutronic calculation code, applied to obtain effective multiplication factor, neutron fluxes and power density in desired cores. Using adaptive improved harmony search and neutronic code, generated LP optimization code, could be applicable for PWRs core with many numbers of FAs. In this work, at first step, HS and IHS efficiencies are compared with some other heuristic algorithms in Shekel's Foxholes problem and capability of the adaptive improved harmony search is demonstrated. Results show, efficient application of IHS. At second step, two WWER cases are studied and then IHS proffered improved core patterns with regard to mentioned objective functions.