CINETHICA - Core accident analysis code
International Nuclear Information System (INIS)
Nakata, H.
1989-10-01
A computer program for nuclear accident analysis has been developed based on the point-kinetics approximation and one-dimensional heat transfer model for reactivity feedback calculation. Hansen's method/1/ were used for the kinetics equation solution and explicit Euler method were adopted for the thermohidraulic equations. The results were favorably compared to those from the GAPOTKIN Code/2/. (author) [pt
Code Coupling for Multi-Dimensional Core Transient Analysis
International Nuclear Information System (INIS)
Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il
2015-01-01
After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident
Code Coupling for Multi-Dimensional Core Transient Analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)
2015-05-15
After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.
Notes on nuclear reactor core analysis code: CITATION
International Nuclear Information System (INIS)
Cepraga, D.G.
1980-01-01
The method which has evolved over the years for making power reactor calculations is the multigroup diffusion method. The CITATION code is designed to solve multigroup neutronics problems with application of the finite-difference diffusion theory approximation to neutron transport in up to three-dimensional geometry. The first part of this paper presents information about the mathematical equations programmed along with background material and certain displays to convey the nature of some of the formulations. The results obtained with the CITATION code regarding the neutron and burnup core analysis for a typical PWR reactor are presented in the second part of this paper. (author)
The integrated code system CASCADE-3D for advanced core design and safety analysis
International Nuclear Information System (INIS)
Neufert, A.; Van de Velde, A.
1999-01-01
The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)
Monte carlo depletion analysis of SMART core by MCNAP code
International Nuclear Information System (INIS)
Jung, Jong Sung; Sim, Hyung Jin; Kim, Chang Hyo; Lee, Jung Chan; Ji, Sung Kyun
2001-01-01
Depletion an analysis of SMART, a small-sized advanced integral PWR under development by KAERI, is conducted using the Monte Carlo (MC) depletion analysis program, MCNAP. The results are compared with those of the CASMO-3/ MASTER nuclear analysis. The difference between MASTER and MCNAP on k eff prediction is observed about 600pcm at BOC, and becomes smaller as the core burnup increases. The maximum difference bet ween two predict ions on fuel assembly (FA) normalized power distribution is about 6.6% radially , and 14.5% axially but the differences are observed to lie within standard deviation of MC estimations
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao
2014-10-15
Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.
An Adaptation of the HELIOS/MASTER Code System to the Analysis of VHTR Cores
International Nuclear Information System (INIS)
Noh, Jae Man; Lee, Hyun Chul; Kim, Kang Seog; Kim, Yong Hee
2006-01-01
KAERI is developing a new computer code system for an analysis of VHTR cores based on the existing HELIOS/MASTER code system which was originally developed for a LWR core analysis. In the VHTR reactor physics, there are several unique neutronic characteristics that cannot be handled easily by the conventional computer code system applied for the LWR core analysis. Typical examples of such characteristics are a double heterogeneity problem due to the particulate fuels, the effects of a spectrum shift and a thermal up-scattering due to the graphite moderator, and a strong fuel/reflector interaction, etc. In order to facilitate an easy treatment of such characteristics, we developed some methodologies for the HELIOS/MASTER code system and tested their applicability to the VHTR core analysis
Development of three dimensional transient analysis code STTA for SCWR core
International Nuclear Information System (INIS)
Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping
2015-01-01
Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation
International Nuclear Information System (INIS)
Miki, K.
1979-01-01
The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)
Development of seismic analysis model for HTGR core on commercial FEM code
International Nuclear Information System (INIS)
Tsuji, Nobumasa; Ohashi, Kazutaka
2015-01-01
The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)
Exposure calculation code module for reactor core analysis: BURNER
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Cunningham, G.W.
1979-02-01
The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.
Exposure calculation code module for reactor core analysis: BURNER
International Nuclear Information System (INIS)
Vondy, D.R.; Cunningham, G.W.
1979-02-01
The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules
SCDAP: a light water reactor computer code for severe core damage analysis
International Nuclear Information System (INIS)
Marino, G.P.; Allison, C.M.; Majumdar, D.
1982-01-01
Development of the first code version (MODO) of the Severe Core Damage Analysis Package (SCDAP) computer code is described, and calculations made with SCDAP/MODO are presented. The objective of this computer code development program is to develop a capability for analyzing severe disruption of a light water reactor core, including fuel and cladding liquefaction, flow, and freezing; fission product release; hydrogen generation; quenched-induced fragmentation; coolability of the resulting geometry; and ultimately vessel failure due to vessel-melt interaction. SCDAP will be used to identify the phenomena which control core behavior during a severe accident, to help quantify uncertainties in risk assessment analysis, and to support planning and evaluation of severe fuel damage experiments and data. SCDAP/MODO addresses the behavior of a single fuel bundle. Future versions will be developed with capabilities for core-wide and vessel-melt interaction analysis
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
International Nuclear Information System (INIS)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries
Development of flow network analysis code for block type VHTR core by linear theory method
International Nuclear Information System (INIS)
Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.
2012-01-01
VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)
DNBR calculation in digital core protection system by a subchannel analysis code
International Nuclear Information System (INIS)
In, W. K.; Yoo, Y. J.; Hwang, T. H.; Ji, S. K.
2001-01-01
The DNBR calculation uncertainty and DNBR margin were evaluated in digital core protection system by a thermal-hydrualic subchannel analysis code MATRA. A simplified thermal-hydraulic code CETOP is used to calculate on-line DNBR in core protection system at a digital PWR. The DNBR tuning process against a best-estimate subchannel analysis code is required for CETOP to ensure accurate and conservative DNBR calculation but not necessary for MATRA. The DNBR calculations by MATRA and CETOP were performed for a large number of operating condition in Yonggwang nulcear units 3-4 where the digitial core protection system is initially implemented in Korea. MATRA resulted in a less negative mean value (i.e., reduce the overconservatism) and a somewhat larger standard deviation of the DNBR error. The uncertainty corrected minimum DNBR by MATRA was shown to be higher by 1.8% -9.9% that the CETOP DNBR
Criticality qualification of a new Monte Carlo code for reactor core analysis
International Nuclear Information System (INIS)
Catsaros, N.; Gaveau, B.; Jaekel, M.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.; Zisis, Th.
2009-01-01
In order to accurately simulate Accelerator Driven Systems (ADS), the utilization of at least two computational tools is necessary (the thermal-hydraulic problem is not considered in the frame of this work), namely: (a) A High Energy Physics (HEP) code system dealing with the 'Accelerator part' of the installation, i.e. the computation of the spectrum, intensity and spatial distribution of the neutrons source created by (p, n) reactions of a proton beam on a target and (b) a neutronics code system, handling the 'Reactor part' of the installation, i.e. criticality calculations, neutron transport, fuel burn-up and fission products evolution. In the present work, a single computational tool, aiming to analyze an ADS in its integrity and also able to perform core analysis for a conventional fission reactor, is proposed. The code is based on the well qualified HEP code GEANT (version 3), transformed to perform criticality calculations. The performance of the code is tested against two qualified neutronics code systems, the diffusion/transport SCALE-CITATION code system and the Monte Carlo TRIPOLI code, in the case of a research reactor core analysis. A satisfactory agreement was exhibited by the three codes.
Steady state thermal hydraulic analysis of LMR core using COBRA-K code
Energy Technology Data Exchange (ETDEWEB)
Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol
1997-02-01
A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.
Overview of current RFSP-code capabilities for CANDU core analysis
International Nuclear Information System (INIS)
Rouben, B.
1996-01-01
RFSP (Reactor Fuelling Simulation Program) is the major finite-reactor computer code in use at the Atomic Energy of Canada Limited for the design and analysis of CANDU reactor cores. An overview is given of the major computational capabilities available in RFSP. (author) 11 refs., 29 figs
Development of the Monju core safety analysis numerical models by super-COPD code
International Nuclear Information System (INIS)
Yamada, Fumiaki; Minami, Masaki
2010-12-01
Japan Atomic Energy Agency constructed a computational model for safety analysis of Monju reactor core to be built into a modularized plant dynamics analysis code Super-COPD code, for the purpose of heat removal capability evaluation at the in total 21 defined transients in the annex to the construction permit application. The applicability of this model to core heat removal capability evaluation has been estimated by back to back result comparisons of the constituent models with conventionally applied codes and by application of the unified model. The numerical model for core safety analysis has been built based on the best estimate model validated by the actually measured plant behavior up to 40% rated power conditions, taking over safety analysis models of conventionally applied COPD and HARHO-IN codes, to be capable of overall calculations of the entire plant with the safety protection and control systems. Among the constituents of the analytical model, neutronic-thermal model, heat transfer and hydraulic models of PHTS, SHTS, and water/steam system are individually verified by comparisons with the conventional calculations. Comparisons are also made with the actually measured plant behavior up to 40% rated power conditions to confirm the calculation adequacy and conservativeness of the input data. The unified analytical model was applied to analyses of in total 8 anomaly events; reactivity insertion, abnormal power distribution, decrease and increase of coolant flow rate in PHTS, SHTS and water/steam systems. The resulting maximum values and temporal variations of the key parameters in safety evaluation; temperatures of fuel, cladding, in core sodium coolant and RV inlet and outlet coolant have negligible discrepancies against the existing analysis result in the annex to the construction permit application, verifying the unified analytical model. These works have enabled analytical evaluation of Monju core heat removal capability by Super-COPD utilizing the
CEDNBR: a computer code for transient thermal margin analysis of a reactor core
International Nuclear Information System (INIS)
Shesler, A.T.; Lehmann, C.R.
1976-09-01
The report describes the CEDNBR computer code. This code was developed for the transient thermal analysis of a pressurized water reactor core or a critical heat flux test. Included are the code structure, conservation equations, and correlations utilized by CEDNBR. The methods of modelling a reactor core and hot channel and a CHF test are presented. Comparisons of CEDNBR calculations are made with both empirical pressure loss data and simulated loss of flow test data. The code solves the one-dimensional conservation of mass, energy, and momentum equations and the equation of state for the fluid for either steady-state or transient conditions. Tabular time dependent functions of inlet temperatures, pressure, mass velocity, axial heat flux distributions, normalized heat flux, radial peaking factors, and incremental mixing factors are required input to the code. Transient effects are included in the calculation of enthalpy rise and fluid properties. The Departure from Nucleate Boiling Ratio (DNBR) is calculated by applying a Critical Heat Flux (CHF) correlation to the computed local fluid properties. A code user's guide is provided for preparing input to the code. In addition, descriptions of the sub-routines used by CEDNBR are given
DANDE-a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1986-01-01
This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems
DANDE: a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1986-01-01
This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs
DANDE: a linked code system for core neutronics/depletion analysis
International Nuclear Information System (INIS)
LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.
1985-06-01
This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem
Development of a detailed core flow analysis code for prismatic fuel reactors
International Nuclear Information System (INIS)
Bennett, R.G.
1990-01-01
The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR
A 3D transport-based core analysis code for research reactors with unstructured geometry
International Nuclear Information System (INIS)
Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao
2013-01-01
Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results
Development of a detailed core flow analysis code for prismatic fuel reactors
International Nuclear Information System (INIS)
Bennett, R.G.
1990-01-01
The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs
The Preliminary GAMMA Code Thermal hydraulic Analysis for the Steady State of HTR-10 Initial Core
Energy Technology Data Exchange (ETDEWEB)
Jun, Ji Su; Lim, Hong Sik; Lee, Won Jae
2006-07-15
This report describes the preliminary thermalhydraulic analysis of HTR-10 steady state full power initial core to provide a benchmark calculation of VHTGR(Very High-Temperature Gas-Cooled Reactors) safety analysis code of GAMMA(GAs Multicomponent Mixture Analysis). The input data of GAMMA code are produced for the models of fluid block, wall block, radiation heat transfer and each component material properties in HTR-10 reactor. The temperature and flow distributions of HTR-10 steady state 10 MW{sub th} full power initial core are calculated by GAMMA code with boundary conditions of total reactor inlet flow rate of 4.32 kg/s, inlet temperature of 250 .deg. C, inlet pressure of 3 MPa, outlet pressure of 2.992 MPa and the fixed temperature at RCCS water cooling tube of 50 .deg C. The calculation results are compared with the measured solid material temperatures at 22 fixed instrumentation positions in HTR-10. The wall temperature distribution in pebble bed core shows that the minimum temperature of 358 .deg. C is located at upper core, a higher temperature zone than 829 .deg. C is located at the inner region of 0.45 m radius at the bottom of core centre, and the maximum wall temperature is 897 .deg. C. The wall temperatures linearly decreases at radially and axially farther side from the bottom of core centre. The maximum temperature of RPV is 230 .deg. C, and the maximum values of fuel average temperature and TRISO centreline temperature are 907 .deg. C and 929 .deg. C, respectively and they are much lower than the fuel temperature limitation of 1230 .deg. C. The comparsion between the GAMMA code predictions and the measured temperature data shows that the calculation results are very close to the measured values in top and side reflector region, but a great difference is appeared in bottom reflector region. Some measured data are abnormally high in bottom reflector region, and so the confirmation of data is necessary in future. Fifteen of twenty two data have a
Directory of Open Access Journals (Sweden)
Wonkyeong Kim
2015-01-01
Full Text Available A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.
VIPRE-01: a thermal-hydraulic analysis code for reactor cores. Volume 2. User's manual
International Nuclear Information System (INIS)
Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.
1983-04-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear energy reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 2: User's Manual) describes the input requirements of VIPRE and its auxiliary programs, SPECSET, ASP and DECCON, and lists the input instructions for each code
SACI - O: A code for the analysis of transients in a pressurized water reactor core
International Nuclear Information System (INIS)
Resende Lobo, A.A. de; Soares, P.A.
1979-03-01
The SACI-O digital computer code consists basically of a pressurized water reactor core model. It is useful in the analysis of fast reactivity transients shorter than the loop transit time. The program can also be used for evaluating the core behaviour, during other transients, when the inlet coolant conditions are known. SACI-O uses point model neutron kinetics taking into account moderator and fuel reactivity effects, and fission products decay. The neutronic and thermal-hydraulic equations are solved for an average fuel pin described by a single axial node. To perform a more detailed calculation, the modeling of another cooling channel, which can be divided into axial segments, is included in the program. The reactor trip system is also partially simulated. (Author) [pt
FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores
International Nuclear Information System (INIS)
Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.
1995-01-01
FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs
Application of RELAP5-3D code for thermal analysis of the ADS reactor core
International Nuclear Information System (INIS)
Fernandes, Gustavo Henrique Nazareno
2018-01-01
Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow
The Analysis of Surrounding Structure Effect on the Core Degradation Progress with COMPASS Code
Energy Technology Data Exchange (ETDEWEB)
Bae, Jun Ho; Son, Dong Gun; Kim, Jong Tae; Park, Rae Jun; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)
2015-05-15
In line with the importance of severe accident analysis after Fukushima accident, the development of integrated severe accident code has been launched by the collaboration of three institutes in Korea. KAERI is responsible to develop modules related to the in-vessel phenomena, while other institutes are to the containment and severe accident mitigation facility, respectively. In the first phase, the individual severe accident module has been developed and the construction of integrated analysis code is planned to perform in the second phase. The basic strategy is to extend the design basis analysis codes of SPACE and CAP, which are being validated in Korea for the severe accident analysis. In the first phase, KAERI has targeted to develop the framework of severe accident code, COMPASS (COre Meltdown Progression Accident Simulation Software), covering the severe accident progression in a vessel from a core heat-up to a vessel failure as a stand-alone fashion. In order to analyze the effect of surrounding structure, the melt progression has been compared between the central zone and the most outer zone under the condition of constant radial power peaking factor. Figure 2 and 3 shows the fuel element temperature and the clad mass at the central zone, respectively. Due to the axial power peaking factor, the axial node No.3 has the highest temperature, while the top and bottom nodes have the lowest temperature. When the clad temperature reaches to the Zr melting temperature (2129.15K), the Zr starts to melt. The axial node No.2 reaches to the fuel melting temperature about 5000 sec and the molten fuel relocates to the node No.1, which results to the blockage of flow area in node No.1. The blocked flow area becomes to open about 6100 sec due to the molten ZrO{sub 2} mass relocation to core support plate. Figure 4 and 5 shows the fuel element temperature and the clad mass at the most outer zone, respectively. It is shown that the fuel temperature increase more slowly
Analysis of the SPERT III E-core experiment using the EUREKA-2 code
International Nuclear Information System (INIS)
Harami, Taikan; Uemura, Mutsumi; Ohnishi, Nobuaki
1986-09-01
EUREKA-2, a coupled nuclear thermal hydrodynamic kinetic code, was adapted for the testing of models and methods. Code evaluations were made with the reactivity addition experiments of the SPERT III E-Core, a slightly enriched oxide core. The code was tested for non damaging power excursions including a wide range of initial operating conditions, such as cold-startup, hot-startup, hot-standby and operating-power initial conditions. Comparisons resulted in a good agreement within the experimental errors between calculated and experimental power, energy, reactivity and clad surface temperature. (author)
Analysis of Beryllium Having Irradiated at the RSG-GAS Core using ORIGEN2 Code
International Nuclear Information System (INIS)
Jaja Sukmana; Jonnie AK; S-Suwarto; Irwan
2012-01-01
Analysis of activation products generated by irradiated beryllium at the RSG-GAS core has been done using ORIGEN2 code. By assuming that irradiation is 176 days, neutron flux average of 2.30e+14 n/cm 2 s, radioisotopes rose from activated Be are tritium, lithium, beryllium, carbon, magnesium, aluminum, silicon, argon, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, and lead. The highest activity after 100 days of irradiation demonstrated by Be-10 (7.99 E-03 Curie), H-3 (2.97 E-03 Curie), Cr-51, Fe-55 and Co-60. Radioactivity generated getting smaller when irradiation time are long. From this analysis it can be conclude that radioactivity was caused by impurities present in Be such as Mn-54, Fe-59, Zn-65, and Li-6. (author)
International Nuclear Information System (INIS)
Shamasundar, B.I.; Fehrenbach, M.E.
1981-05-01
The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations
Analysis of the AP600 core makeup tank experiments using the NOTRUMP code
International Nuclear Information System (INIS)
Cunningham, J.C.; Haberstroh, R.C.; Hochreiter, L.E.; Jaroszewicz, J.
1995-01-01
The AP600 design utilizes passive methods to perform core and containment cooling functions for a postulated loss of coolant. The core makeup tank (CMT) is an important feature of the AP600 passive safety system. The NOTRUMP code has been compared to the 300-series core makeup tank experiments. It has been observed that the code will capture the correct thermal-hydraulic behavior observed in the experiments. The correlations used for wall film condensation and convective heat transfer to the heated CMT liquid appear to be appropriate for these applications. The code will predict the rapid condensation and mixing thermal-hydraulic behavior observed in the 300-series tests. The NOTRUMP predictions can be noding-dependent since the condensation is extremely dependent on the amount of cold CMT liquid that mixes with the incoming steam flow
International Nuclear Information System (INIS)
Paratte, J.M.; Grimm, P.; Hollard, J.M.
1996-02-01
ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs
FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores
International Nuclear Information System (INIS)
Raymond, P.; Allaire, G.; Boudsocq, G.
1995-01-01
FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties
Energy Technology Data Exchange (ETDEWEB)
Cho, Nam Zin; Kim, Yong Hee; Kim, Tae Hyung; Jo, Chang Keun; Park, Chang Je [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1996-07-01
The objective of this study is to develop a code system for core analysis= of the critical transmutation reactors utilizing fast neutrons. Core characteristics of the transmutation reactors were identified and four codes, HANCELL for pincell calculation, PRISM and AFEN-H3D for core calculation, and MA{sub B}URN for depletion calculation, were developed. The pincell calculation code is based on one-dimensional collision probability method and may provide homogenized/condensed parameters of a pincell and also can homogenize the control assembly via a nonlinear iterative method. The core calculation codes, PRISM and AFEN-H3D, solve the multi-group, multi-dimensional neutron diffusion equations for a hexagonal geometry and they are based on the finite difference method and analytic function expansion nodal (AFEN) method, respectively. The MA{sub B}URN code san analyze the behavior of actinides and fission products in a reactor core. Through benchmarking, we confirmed that the newly developed codes provide accurate solutions. 30 refs., 10 tabs., 8 figs. (author)
International Nuclear Information System (INIS)
Hall, P.; Hutt, P.
1994-01-01
This paper describes Nuclear Electric's (NE) development of an integrated code package in support of all its reactors including Sizewell B, designed for the provision of fuel management design, core performance studies, operational support and fault transient analysis. The package uses the NE general purpose three-dimensional transient reactor physics code PANTHER with cross-sections derived in the PWR case from the LWRWIMS LWR lattice neutronics code. The package also includes ENIGMA a generic fuel performance code and for PWR application VIPRE-01 a subchannel thermal hydraulics code, RELAP5 the system thermal hydraulics transient code and SCORPIO an on-line surveillance system. The paper describes the capabilities and validation of the elements of this package for PWR, how they are coupled within the package and the way in which they are being applied for Sizewell B to on-line surveillance and fault transient analysis. (Author)
Development and application of sub-channel analysis code based on SCWR core
International Nuclear Information System (INIS)
Fu Shengwei; Xu Zhihong; Yang Yanhua
2011-01-01
The sub-channel analysis code SABER was developed for thermal-hydraulic analysis of supercritical water-cooled reactor (SCWR) fuel assembly. The extended computational cell structure, a new boundary conditions, 3 dimensional heat conduction model and water properties package were implemented in SABER code, which could be used to simulate the thermal fuel assembly of SCWR. To evaluate the applicability of the code, a steady state calculation of the fuel assembly was performed. The results indicate good applicability of the SABER code to simulate the counter-current flow and the heat exchange between coolant and moderator channels. (authors)
International Nuclear Information System (INIS)
Pavlovitchev, A.M.
2000-01-01
The present work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactor and presents the neutronics calculations of kinetics parameters of VVER-1000 core with 3 introduced MOX LTAs. MOX LTA design has been studied in [1] for two options of MOX LTA: 100% plutonium and of ''island'' type. As a result, zoning i.e. fissile plutonium enrichments in different plutonium zones, has been defined. VVER-1000 core with 3 introduced MOX LTAs of chosen design has been calculated in [2]. In present work, the neutronics data for transient analysis codes (RELAP [3]) has been obtained using the codes chain of RRC ''Kurchatov Institute'' [5] that is to be used for exploitation neutronics calculations of VVER. Nowadays the 3D assembly-by-assembly code BIPR-7A and 2D pin-by-pin code PERMAK-A, both with the neutronics constants prepared by the cell code TVS-M, are the base elements of this chain. It should be reminded that in [6] TVS-M was used only for the constants calculations of MOX FAs. In current calculations the code TVS-M has been used both for UOX and MOX fuel constants. Besides, the volume of presented information has been increased and additional explications have been included. The results for the reference uranium core [4] are presented in Chapter 2. The results for the core with 3 MOX LTAs are presented in Chapter 3. The conservatism that is connected with neutronics parameters and that must be taken into account during transient analysis calculations, is discussed in Chapter 4. The conservative parameters values are considered to be used in 1-point core kinetics models of accident analysis codes
Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code
International Nuclear Information System (INIS)
Mur, J.; Meignin, J.C.
1997-07-01
Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.)
Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code
Energy Technology Data Exchange (ETDEWEB)
Mur, J. [Electricite de France (EDF), 78 - Chatou (France); Meignin, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)
1997-07-01
Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.) 8 refs.
Applications of the thermit code to 3D thermal hydraulic analysis of LWR cores
International Nuclear Information System (INIS)
Reed, W.H.
1979-01-01
The THERMIT code calculates the three-dimensional transient thermal hydraulic behavior of light water reactor cores. Its two-fluid dynamics equations for two-phase flow offer improved physical modelling capability needed in the context of calculation coupled to neutron kinetics for feedback. The numerical fluid dynamics method was chosen for reliability over a wider range of transients. An improved heat transfer numerical method is presented which gives better numerical stability and accuracy. A number of example calculations are discussed which give an idea of the power and flexibility of the code
International Nuclear Information System (INIS)
Johnson, H.G.
1982-01-01
The Fast Flux Test Facility (FFTF) is arranged for natural circulation emergency core cooling in the event of loss of all plant electrical power. This design feature was conclusively demonstrated in a series of four natural circulation transient tests during the plant startup testing program in 1980 and 1981. Predictions, of core performance during these tests were made using the Westinghouse Hanford Company CORA computer program. The predictions, which compared well with measured plant data, were used in the extrapolation process to demonstrate the validity of the FFTF plant safety models and codes. This paper provides a brief description of the CORA code and includes typical comparisons of predictions to measured plant test data
Analysis of a small PWR core with the PARCS/Helios and PARCS/Serpent code systems
International Nuclear Information System (INIS)
Baiocco, G.; Petruzzi, A.; Bznuni, S.; Kozlowski, T.
2017-01-01
Highlights: • The consistency between Helios and Serpent few-group cross sections is shown. • The PARCS model is validated against a Monte Carlo 3D model. • The fission and capture rates are compared. • The influence of the spacer grids on the axial power distribution is shown. - Abstract: Lattice physics codes are primarily used to generate cross-section data for nodal codes. In this work the methodology of homogenized constant generation was applied to a small Pressurized Water Reactor (PWR) core, using the deterministic code Helios and the Monte Carlo code Serpent. Subsequently, a 3D analysis of the PWR core was performed with the nodal diffusion code PARCS using the two-group cross section data sets generated by Helios and Serpent. Moreover, a full 3D model of the PWR core was developed using Serpent in order to obtain a reference solution. Several parameters, such as k eff , axial and radial power, fission and capture rates were compared and found to be in good agreement.
International Nuclear Information System (INIS)
Soares, P.A.; Sirimarco, L.F.; Veloso, M.A.F.
1979-03-01
SACI-O is a computer code which deals with the dynamics of the core of pressurized light water reactors (PWR). Its applicability is determined by the evaluation of the models used in the simulation of the several phenomena and processes which occur in the core during transients. This report presents a comparison between the results obtained with SACI-O and those presented in the Final Safety Analysis Report (FSAR) of Angra dos Reis Nuclear Station, Unit 1. Although some data used in the calculations done by Westinghouse are not known, there was a good agreement between the mentioned results. (Author) [pt
International Nuclear Information System (INIS)
Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.
1983-05-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear-reactor-core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This is Volume 3, the Programmer's Manual. It explains the codes' structures and the computer interfaces
VIPRE-01. a thermal-hydraulic analysis code for reactor cores. Volume 1. Mathematical modeling
International Nuclear Information System (INIS)
Stewart, C.W.; Cuta, J.M.; Koontz, A.S.; Kelly, J.M.; Basehore, K.L.; George, T.L.; Rowe, D.S.
1983-04-01
VIPRE (Versatile Internals and Component Program for Reactors; EPRI) has been developed for nuclear power utility thermal-hydraulic analysis applications. It is designed to help evaluate nuclear reactor core safety limits including minimum departure from nucleate boiling ratio (MDNBR), critical power ratio (CPR), fuel and clad temperatures, and coolant state in normal operation and assumed accident conditions. This volume (Volume 1: Mathematical Modeling) explains the major thermal hydraulic models and supporting correlations in detail
International Nuclear Information System (INIS)
Muramatsu, Ken; Kondo, Yasuhiko; Uchida, Masaaki; Soda, Kunihisa
1989-01-01
Fission product (EP) release during a core concrete interaction (CCI) is an important factor of the uncertainty associated with a source term estimation for an LWR severe accident. An analysis was made on the CCI Chemical Thermodynamic Benchmark Exercise organized by OECD/NEA/CSNI Group of Experts on Source Terms (GREST) for investigating the uncertainty in thermodynamic modeling for CCI. The benchmark exercise was to calculate the equilibrium FP vapor pressure for given system of temperature, pressure, and debris composition. The benchmark consisted of two parts, A and B. Part A was a simplified problem intended to test the numerical techniques. In part B, the participants were requested to use their own best estimate thermodynamic data base to examine the variability of the results due to the difference in thermodynamic data base. JAERI participated in this benchmark exercise with use of the MPEC2 code. Chemical thermodynamic data base needed for analysis of Part B was taken from the VENESA code. This report describes the computer code used, inputs to the code, and results from the calculation by JAERI. The present calculation indicates that the FP vapor pressure depends strongly on temperature and Oxygen potential in core debris and the pattern of dependency may be different for different FP elements. (author)
Qualification testing program plan for SIMMER. A computer code for LMFBR disrupted core analysis
International Nuclear Information System (INIS)
Basdekas, D.L.; Silberberg, M.; Curtis, R.T.; Kelber, C.N.
1978-07-01
The objective of SIMMER qualification testing program is to assure that the mathematical models and input parameters are derived from experimental data, which, on the basis of criteria still to be established, are representative of the phenomena and processes governing the progression of a CDA in an LMFBR. At the present time, the work to meet this objective can be classified into three general task areas as they relate to the use of SIMMER in CDA analysis: (1) The whole-core energetic disassembly accident, or the ''vessel problem'': The objective here is to predict the partition of the total energy release, by a postulated severe power excursion, between the primary containment and the energy absorbed through nondestructive dissipative processes. (2) Single subassembly accident: The objective here is to determine the pertinent phenomena and to develop the capability to assess the significance and likelihood that such accidents might propagate to involvement of larger fraction of the core. (3) The whole-core transition phase accident: The objective here is to advance the understanding of the phenomena and processes involved, so that reliable predictions can be made of the possible consequences of a CDA and the potential for further nuclear excursions through recriticality
International Nuclear Information System (INIS)
Nakagawa, M.
1984-01-01
Computer program ARKAS has been developed for the purpose of predicting core distortions and mechanical behaviour in a cluster of subassemblies under steady state conditions in LMFBR cores. This report describes the analytical models and numerical procedures employed in the code together with some typical results of the analysis made on large LMFBR cores. ARKAS is programmed in the FORTRAN-IV language and is capable of treating up to 260 assemblies in a cluster with flexible boundary conditions including mirror and rotational symmetry. The nonlinearity of the problem due to contact and separation is solved by the step iterative procedure based on the Newton-Raphson method. In each step iterative procedure, the linear matrix equation must be reconstructed and then solved directly. To save computer time and memory, the substructure method is adopted in the step of reconstructing the linear matrix equation, and in the step of solving the linear matrix equation, the block successive over-relaxation method is adopted. The program ARKAS computes, at every time step, 3-dimensional displacements and rotations of the subassemblies in the core and the interduct forces including at the nozzle tips and nozzle bases with friction effects. The code also has an ability to deal with the refueling and shuffling of subassemblies and to calculate the values of withdrawal forces. For the qualitative validation of the code, sample calculations were performed on the several bundle arrays. In these calculations, contact and separation processes under the influences of friction forces, off-center loading, duct rotations and torsion, thermal expansion and irradiation induced swelling and creep were analyzed. These results are quite reasonable in the light of the expected behaviour. This work was performed under the sponsorship of Toshiba Corporation
International Nuclear Information System (INIS)
Kaminaga, Masanori; Watanabe, Shukichi; Ando, Hiroei; Sudo, Yukio; Ikawa, Hiromasa.
1987-03-01
This report describes the results of the steady state thermohydraulic analysis of upgraded JRR-3 core under natural convective cooling mode, using COOLOD-N code. In the code, function to calculate flow-rate under natural convective cooling mode, and a heat transfer package have been newly added to the COOLOD code which has been developed in JAERI. And this report describes outline of the COOLOD-N code. The results of analysis show that the thermohydraulics of upgraded JRR-3 core, under natural convective cooling mode have enough margine to ONB temperature, DNB heat flux and occurance of blisters in fuel meats, which are design criterion of upgraded JRR-3. (author)
Analysis code of three dimensional core dynamics for high temperature gas-cooled reactors, COMIC-2
International Nuclear Information System (INIS)
Takano, Makoto
1987-04-01
The code has been improved and modified in order to speedup calculation and to make more effective since it was developed in 1985. This report is written as a user's manual of the latest version of the code (COMIC-2). Speedup of the code is performed by the improvement of program flow and vector programming. The total speedup factor depends on problem, however, is about 10 in the case of a sample ploblem. (author)
International Nuclear Information System (INIS)
Hidaka, M.; Fujii, T.; Sakai, T.
2015-01-01
A debris spreading analysis (DSA) module has been developed and improved. The module is used in the severe accident analysis code SAMPSON and it has models for 3-dimensional natural convection with simultaneous spreading, melting and solidification. The existing analysis method of the quasi-3D boundary transportation to simulate downward concrete erosion for evaluation of molten-core concrete interaction (MCCI) was improved to full-3D to solve, for instance, debris lateral erosion under concrete floors at the bottom of the sump pit. In the advanced MCCI model, buffer cells were defined in order to solve numerical problems in case of trammel formation. Mass, momentum, and the advection term of energy between the debris melt cells and the buffer cells are solved. On the other hand, only the heat transfer and thermal conduction are solved between the debris melt cells and the structure cells, and the crust cells and the structure cells. As a preliminary analysis, a validation calculation was performed for erosion that occurred in the core-concrete interaction (CCI-2) test in the OECD/MCCI program. Comparison between the calculation and the CCI-2 test results showed the analysis has the ability to simulate debris lateral erosion under concrete floors. (authors)
TRANTHAC-1: transient thermal-hydraulic analysis code for HTGR core of multi-channel model
International Nuclear Information System (INIS)
Sato, Sadao; Miyamoto, Yoshiaki
1980-08-01
The computer program TRANTHAC-1 is for predicting thermal-hydraulic transient behavior in HTGR's core of pin-in-block type fuel elements, taking into consideration of the core flow distribution. The program treats a multi-channel model, each single channel representing the respective column composed of fuel elements. The fuel columns are grouped in flow control regions; each region is provided with an orifice assembly. In the region, all channels are of the same shape except one channel. Core heat is removed by downward flow of the control through the channel. In any transients, for given time-dependent power, total core flow, inlet coolant temperature and coolant pressure, the thermal response of the core can be determined. In the respective channels, the heat conduction in radial and axial direction are represented. And the temperature distribution in each channel with the components is calculated. The model and usage of the program are described. The program is written in FORTRAN-IV for computer FACOM 230-75 and it is composed of about 4,000 cards. The required core memory is about 75 kilowords. (author)
International Nuclear Information System (INIS)
Griggs, D.P.; Kazimi, M.S.; Henry, A.F.
1984-06-01
The three-dimensional nodal neutronics code QUANDRY and the three-dimensional two-fluid thermal-hydraulics code THERMIT are combined into TITAN. Steady-state and transient coupling methodologies based upon a tandem structure were devised and implemented. Additional models for nuclear feedback, equilibrium xenon and direct moderator heating were added. TITAN was tested using a boiling water two channel problem and the coupling methodologies were shown to be effective. Simulated turbine trip transients and several control rod withdrawal transients were analyzed with good results. Sensitivity studies indicated that the time-step size can affect transient results significantly. TITAN was also applied to a quarter core PWR problem based on a real reactor geometry. The steady-state results were compared to a solution produced by MEKIN-B and poor agreement between the horizontal power shapes was found. Calculations with various mesh spacings showed that the mesh spacings in the MEKIN-B analysis were too large to produce accurate results with a finite difference method. The TITAN results were shown to be reasonable. A pair of control rod ejection accidents were also analyzed with TITAN. A comparison of the TITAN PWR control rod ejection results with results from coupled point kinetics/thermal-hydraulics analyses showed that the point kinetics method used (adiabatic method for control rod reactivities, steady-state flux shape for core-averaged reactivity feedback) underpredicted the power excursion in one case and overpredicted it in the other. It was therefore concluded that point kinetics methods should be used with caution and that three-dimensional codes like TITAN are superior for analyzing PWR control rod ejection transients
Adaptive under relaxation factor of MATRA code for the efficient whole core analysis
International Nuclear Information System (INIS)
Kwon, Hyuk; Kim, S. J.; Seo, K. W.; Hwang, D. H.
2013-01-01
Such nonlinearities are handled in MATRA code using outer iteration with Picard scheme. The Picard scheme involves successive updating of the coefficient matrix based on the previously calculated values. The scheme is a simple and effective method for the nonlinear problem but the effectiveness greatly depends on the under-relaxing capability. Accuracy and speed of calculation are very sensitively dependent on the under-relaxation factor in outer-iteration updating the axial mass flow using the continuity equation. The under-relaxation factor in MATRA is generally utilized with a fixed value that is empirically determined. Adapting the under-relaxation factor to the outer iteration is expected to improve the calculation effectiveness of MATRA code rather than calculation with the fixed under-relaxation factor. The present study describes the implementation of adaptive under-relaxation within the subchannel code MATRA. Picard iterations with adaptive under-relaxation can accelerate the convergence for mass conservation in subchannel code MATRA. The most efficient approach for adaptive under relaxation appears to be very problem dependent
Status of reactor core design code system in COSINE code package
International Nuclear Information System (INIS)
Chen, Y.; Yu, H.; Liu, Z.
2014-01-01
For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)
Status of reactor core design code system in COSINE code package
Energy Technology Data Exchange (ETDEWEB)
Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)
2014-07-01
For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)
Whole-core thermal-hydraulic transient code development and verification for LMFBR analysis
International Nuclear Information System (INIS)
Spencer, D.R.
1979-04-01
Predicted performance during both steady state and transient reactor operation determines the steady state operating limits on LMFBRs. Unnecessary conservatism in performance predictions will not contribute to safety, but will restrict the reactor to more conservative, less economical steady state operation. The most general method for reducing analytical conservatism in LMFBR's without compromising safety is to develop, validate and apply more sophisticated computer models to the limiting performance analyses. The purpose of the on-going Natural Circulation Verification Program (NCVP) is to develop and validate computer codes to analyze natural circulation transients in LMFBRs, and thus, replace unnecessary analytical conservatism with demonstrated calculational capability
International Nuclear Information System (INIS)
Carroll, D.E.; Bergeron, K.D.; Williams, D.C.; Tills, J.L.; Valdez, G.D.
1987-01-01
The CONTAIN computer code includes a versatile system of phenomenological models for analyzing the physical, chemical and radiological conditions inside the containment building during severe reactor accidents. Important contributors to these conditions are the interactions which may occur between released corium and cavity concrete. The phenomena associated with interactions between ejected corium debris and the containment atmosphere (Direct Containment Heating or DCH) also pose a potential threat to containment integrity. In this paper, we describe recent enhancements of the CONTAIN code which allow an integrated analysis of these effects in the presence of other mitigating or aggravating physical processes. In particular, the recent inclusion of the CORCON and VANESA models is described and a calculation example presented. With this capability CONTAIN can model core-concrete interactions occurring simultaneously in multiple compartments and can couple the aerosols thereby generated to the mechanistic description of all atmospheric aerosol components. Also discussed are some recent results of modeling the phenomena involved in Direct Containment Heating. (orig.)
International Nuclear Information System (INIS)
Nawaz Amjad; Yoshikawa, Hidekazu; Ming Yang
2015-01-01
AP1000 reactor is designed for 18 month of operating cycle. The core can also be used for 16/20 months of operating cycle. This study is performed to analyze and compare the neutronic parameters of typical AP1000 reactor core for 18 month and 16/20 month alternate cycle lengths. CASMO4E and SIMULATE-3 code package is used for the analysis of initial and equilibrium cores. The key reactor physics safety parameters were analyzed including power peaking factors, core radial and axial power distribution and core reactivity feedback coefficients. Moreover, the analysis of fuel depletion, fission product buildup and burnable poison behaviour with burnup is also analyzed. Full 2-D fuel assembly model in CASMO4E and full 3-D core model in SIMULATE-3 is employed to examine core performance and safety parameters. In order to evaluate the equilibrium core neutronic parameters, the equilibrium core model is attained by performing burnup analysis from initial to equilibrium cycle, where optimized transition core design is obtained so that the power peaking factors remain within designed limits. The MTC for higher concentration of critical boron concentrations is slightly positive at lower moderator temperatures. However, it remains negative at operating temperature ranges. The radial core relative power distribution indicates that low leakage capability of initial and equilibrium cores is reduced at EOC. (author)
International Nuclear Information System (INIS)
Venkat Raj, V.; Saha, D.
1976-01-01
The core of a boiling water reactor may see different power distributions during its operational life. How some of the typical power distributions affect some of the thermal hydraulic parameters such as pressure drop minimum critical heat flux ratio, void distribution etc. has been studied using computer code THABNA. The effect of an increase in the leakage flow has also been analysed. (author)
International Nuclear Information System (INIS)
Apostolov, T.; Ivanov, K.; Prodanova, R.; Manolova, M.; Petrova, T.; Alekova, G.
1993-01-01
Two directions for investigations are suggested: 1) Analysis and evaluation of the real loading patterns and operational regimes for Kozloduy NPP WWER-440 and WWER-1000 in the frame of the recent safety criteria and nuclear power plant operating limits. 2) Development of modern code system for WWER type reactor core analysis with advanced features: new design and materials for fuel and control rods, increasing the fuel enrichment, using the integral and discrete burnable absorbers etc. The fuel technology design evolution maximizes the fuel utilization efficiency, improves operation performance and enhances safety margins. By the joint efforts of specialists from INRNE, Sofia (BG) and KAB, Berlin (GE), the codes NESSEL-IV-EC, PYTHIA and DERAB have been developed and verified. In the frame of the PHARE programme the joint project ASPERCA has been proposed intended for reactor physics calculations with PHYBER-WWER code for safety enhancement and operation reliability improvement. In-core fuel management benchmarks for 4 cycles of unit 2 (WWER-440) and 2 cycles of unit 5 (WWER-1000) have been performed. The coordination of burnable absorber design implementation, low leakage loadings usage, reloading enrichment increase and steel content reduction in the core have made the reactor core analysis more demanding and the definition of loading patterns - more difficult. This complexity requires routine use of three-dimensional fast accurate core model with extended and updated cross section libraries. To meet the needs of WWER advanced loading patterns and in-core fuel management improvements the HEXANES code systems is being developed and qualified. Some test calculations have been carried out by the HEXANES code system investigating the influence of Gd in the fuel on the main reactor physics parameters. For reevaluation of the core safety-related design limits forming the basis of licensing procedure, the code DYN3D/M2 is used. 16 refs., 3 figs. (author)
The UK core performance code package
International Nuclear Information System (INIS)
Hutt, P.K.; Gaines, N.; McEllin, M.; White, R.J.; Halsall, M.J.
1991-01-01
Over the last few years work has been co-ordinated by Nuclear Electric, originally part of the Central Electricity Generating Board, with contributions from the United Kingdom Atomic Energy Authority and British Nuclear Fuels Limited, to produce a generic, easy-to-use and integrated package of core performance codes able to perform a comprehensive range of calculations for fuel cycle design, safety analysis and on-line operational support for Light Water Reactor and Advanced Gas Cooled Reactor plant. The package consists of modern rationalized generic codes for lattice physics (WIMS), whole reactor calculations (PANTHER), thermal hydraulics (VIPRE) and fuel performance (ENIGMA). These codes, written in FORTRAN77, are highly portable and new developments have followed modern quality assurance standards. These codes can all be run ''stand-alone'' but they are also being integrated within a new UNIX-based interactive system called the Reactor Physics Workbench (RPW). The RPW provides an interactive user interface and a sophisticated data management system. It offers quality assurance features to the user and has facilities for defining complex calculational sequences. The Paper reviews the current capabilities of these components, their integration within the package and outlines future developments underway. Finally, the Paper describes the development of an on-line version of this package which is now being commissioned on UK AGR stations. (author)
Directory of Open Access Journals (Sweden)
Aldawahra Saadou
2015-06-01
Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.
Energy Technology Data Exchange (ETDEWEB)
Paratte, J.M.; Grimm, P.; Hollard, J.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-02-01
ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user`s manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs.
Energy Technology Data Exchange (ETDEWEB)
Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)
2014-10-01
Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.
International Nuclear Information System (INIS)
Lazaro, A.; Schikorr, M.; Mikityuk, K.; Ammirabile, L.; Bandini, G.; Darmet, G.; Schmitt, D.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D.; Stempniewicz, M.
2014-01-01
Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs
International Nuclear Information System (INIS)
Maruyama, Soh; Sudo, Yukio; Saito, Shinzo; Kiso, Yoshihiro; Hayakawa, Hitoshi
1989-01-01
The FLOWNET/TRUMP code consists of a flow network analysis code 'FLOWNET' for calculations of coolant flow distribution and coolant temperature distribution in the core with a thermal conduction analysis code 'TRUMP' for calculation of temperature distribution in solid structures. The verification of FLOWNET/TRUMP was made by the comparison of the analytical results with the results of steady state experiments by the HENDEL multichannel test rig, T1-M, which consisted of twelve simulated fuel rods heated electrically and eleven hexagonal graphite fuel blocks. The T1-M simulated the one fuel column in the core. The analytical results agreed well with the results of the experiment in which the HTTR operating conditions were simulated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)
1996-07-01
The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)
Adaption of the PARCS Code for Core Design Audit Analyses
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyong Chol; Lee, Young Jin; Uhm, Jae Beop; Kim, Hyunjik [Nuclear Safety Evaluation, Daejeon (Korea, Republic of); Jeong, Hun Young; Ahn, Seunghoon; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2013-05-15
The eigenvalue calculation also includes quasi-static core depletion analyses. PARCS has implemented variety of features and has been qualified as a regulatory audit code in conjunction with other NRC thermal-hydraulic codes such as TRACE or RELAP5. In this study, as an adaptation effort for audit applications, PARCS is applied for an audit analysis of a reload core design. The lattice physics code HELIOS is used for cross section generation. PARCS-HELIOS code system has been established as a core analysis tool. Calculation results have been compared on a wide spectrum of calculations such as power distribution, critical soluble boron concentration, and rod worth. A reasonable agreement between the audit calculation and the reference results has been found.
International Nuclear Information System (INIS)
Royl, P.; Frizonnet, J.M.; Moran, J.
1993-02-01
A comparative analysis of the unprotected loss of flow (ULOF) accident has been performed for the LVC core (Lower Void Core) of the European Fast Reactor EFR with the FRAX5B and FRAX5C codes from the AEA-T, the PHYSURAC code from CEA and the SAS4A REF92 code system developed jointly between KfK, CEA and PNC. The accident is triggered by the run down of the coolant pumps with failure to trip the reactor by the primary and/or secondary shutdown system. Only a limited amount of mitigating reactivity from the third shutdown line was considered so that the accident can progress into boiling and core disruption. This code outlines the important modelling differences and compares the different simulations. The discussion of the rather wide spectrum of calculated accident progressions identifies the generic differences, relates them to the applied models, and summarizes the key points that are responsible for the different progressions. A comparison of the consequence spectrum from all simulations indicates zero work energies for the majority of the calculations. All simulations show up the need for a continued accident analysis into the early and late transition phase
Energy Technology Data Exchange (ETDEWEB)
Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.
2017-11-15
The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.
PC-Reactor-core transient simulation code
International Nuclear Information System (INIS)
Nakata, H.
1989-10-01
PC-REATOR, a reactor core transient simulation code has been developed for the real-time operator training on a IBM-PC microcomputer. The program presents capabilities for on-line exchange of the operating parameters during the transient simulation, by friendly keyboard instructions. The model is based on the point-kinetics approximation, with 2 delayed neutron percursors and up to 11 decay power generating groups. (author) [pt
International Nuclear Information System (INIS)
Terada, Masafumi; Ikeda, Takashi; Nakahara, Katsuhiko; Shirakawa, Noriyuki; Horie, Hideki; Katsuragi, Kazuyuki; Yamagishi, Makoto; Ito, Takahiro
2003-01-01
As one of the verification studies of SAMPSON code, PHEBUS-FPT1, which is authorized as the International Standard Problem-46, was analyzed about the in-core phenomena with four modules, the molten core relocation analysis (MCRA) module, the fuel rod heat up analysis (FRHA) module, the fission product release analysis (FPRA) module, and the analysis control module (ACM) of SAMPSON. This paper describes the analysis of thermal hydraulics and core degradation behavior in the test train. Two-dimensional version of MCRA models the whole structure of the test train in the cylindrical system, including the fuel bundle and the shroud. FRHA models eighteen irradiated fuel rods, two fresh fuel rods, and one control rod in the center of the bundle. FRHA evaluates the transient behavior of fuel rods and releases failed fuel components to MCRA. MCRA evaluates the fluid dynamics of steam and debris considering the thermal and fluid mechanical interaction between them, and at the same time the thermal interaction between gas/debris and shroud material. By the phase change model of MCRA, molten debris forms debris pool and a part of them possibly freezes on fuel rods or shroud surface, then forms crust. This combination of modules of SAMPSON was proved to be capable for modeling the PHEBUS-FPT1 in-core phenomena sufficiently. The analysis has shown sufficient agreement with test results regarding to steam flow rates at the outlet, reproducing its reduction due to hydrogen generation, steam and shroud temperature, and debris relocation behavior. (author)
International Nuclear Information System (INIS)
Al-Taweel, M.H.
2015-01-01
It is a conventional practice in the design of nuclear reactor to introduce calculation of hot points to determine spatial variation for energy generated and then determine power distribution.The study had been carried out for core of a reactor type (MTR) by the neutronic code SQUID. In this study, we replace the reflector of the reactor by H 2 O instead of D 2 O as originally the reactor designed.From the study we conclude that the reactor can operates safely, to make sure of that we calculate the multiplication factor where their values ranged from (1.0854) when all control rods are up to (1.001)when three control rods are up.Also the values of hot points were calculated and compared with French documents results with D 2 O as a reflector where the difference is (0.19%), and with light water as reflector instead of heavy water was calculated.For different cases according to control rod position , the values of hot point ranged between (0.46) to (1.64) in case all control rods are up also the values of the average power distributed on different fuel cells were calculated in case of light water as reflector firstly with three control rods are down and the maximum value (2.13*10 -2 Μw).Secondly in case offour control rods are down, the maximum value (1.925*10 -2 Μw) we notice almost coincidence between the neutron flux distribution through the core of reactor and in different positions of control rods
In-core fuel management code package validation for BWRs
International Nuclear Information System (INIS)
1995-12-01
The main goal of the present CRP (Coordinated Research Programme) was to develop benchmarks which are appropriate to check and improve the fuel management computer code packages and their procedures. Therefore, benchmark specifications were established which included a set of realistic data for running in-core fuel management codes. Secondly, the results of measurements and/or operating data were also provided to verify and compare with these parameters as calculated by the in-core fuel management codes or code packages. For the BWR it was established that the Mexican Laguna Verde 1 BWR would serve as the model for providing data on the benchmark specifications. It was decided to provide results for the first 2 cycles of Unit 1 of the Laguna Verde reactor. The analyses of the above benchmarks are performed in two stages. In the first stage, the lattice parameters are generated as a function of burnup at different voids and with and without control rod. These lattice parameters form the input for 3-dimensional diffusion theory codes for over-all reactor analysis. The lattice calculations were performed using different methods, such as, Monte Carlo, 2-D integral transport theory methods. Supercell Model and transport-diffusion model with proper correction for burnable absorber. Thus the variety of results should provide adequate information for any institute or organization to develop competence to analyze In-core fuel management codes. 15 refs, figs and tabs
International Nuclear Information System (INIS)
Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.; Chu, C.C.
1992-01-01
A transient, one dimensional, finite difference computer code (MELTSPREAD-1) has been developed to predict spreading behavior of high temperature melts flowing over concrete and/or steel surfaces submerged in water, or without the effects of water if the surface is initially dry. This paper provides a summary overview of models and correlations currently implemented in the code, code validation activities completed thus far, LWR spreading-related safety issues for which the code has been applied, and the status of documentation for the code
International Nuclear Information System (INIS)
Murata, Isao; Miyamaru, Hiroyuki
2008-01-01
Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%Δk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)
Energy Technology Data Exchange (ETDEWEB)
Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka, 565-0871 (Japan)
2008-07-01
Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%DELTAk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)
International Nuclear Information System (INIS)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples
International Nuclear Information System (INIS)
Bell, C.R.; Bleiweis, P.B.; Boudreau, J.E.; Parker, F.R.; Smith, L.L.
1976-08-01
Physical models, numerical methods, and program description are presented for SIMMER-I, a computer program which predicts the neutronic and fluid dynamic behavior of an LMFBR during a hypothetical core disruptive accident
Energy Technology Data Exchange (ETDEWEB)
Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity
International Nuclear Information System (INIS)
Kang, S. H.; Ha, K. S.
2013-01-01
The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity feedback (Doppler and
International Nuclear Information System (INIS)
1995-05-01
The Research Co-ordination Meeting held in Vienna, 16-17 November 1993, was attended by participants from France, India, Italy, Japan and the Russian Federation. The meeting was held to discuss and compare the results obtained by various organizations for the analysis of Italian tests on PEC mock-up. The background paper by A. Martelli, et al., Italy, entitled Fluid-Structure Interaction Experiments of PEC Core Mock-ups and Numerical Analysis Performed by ENEA presented details on the Italian PEC (Prova Elementi di Combustibile, i.e. Fuel Element Test Facility) test data for the benchmark. Several papers were presented on the analytical investigations of the PEC reactor core experiments. The paper by M. Morishita, Japan, entitled Seismic Response Analysis of PEC Reactor Core Mock-up, gives a brief review of the Japanese data on the Monju mock-up core experiment which had been distributed to the participating countries through the IAEA. Refs, figs and tabs
Highly parallel line-based image coding for many cores.
Peng, Xiulian; Xu, Jizheng; Zhou, You; Wu, Feng
2012-01-01
Computers are developing along with a new trend from the dual-core and quad-core processors to ones with tens or even hundreds of cores. Multimedia, as one of the most important applications in computers, has an urgent need to design parallel coding algorithms for compression. Taking intraframe/image coding as a start point, this paper proposes a pure line-by-line coding scheme (LBLC) to meet the need. In LBLC, an input image is processed line by line sequentially, and each line is divided into small fixed-length segments. The compression of all segments from prediction to entropy coding is completely independent and concurrent at many cores. Results on a general-purpose computer show that our scheme can get a 13.9 times speedup with 15 cores at the encoder and a 10.3 times speedup at the decoder. Ideally, such near-linear speeding relation with the number of cores can be kept for more than 100 cores. In addition to the high parallelism, the proposed scheme can perform comparatively or even better than the H.264 high profile above middle bit rates. At near-lossless coding, it outperforms H.264 more than 10 dB. At lossless coding, up to 14% bit-rate reduction is observed compared with H.264 lossless coding at the high 4:4:4 profile.
Validation and applicability of the 3D core kinetics and thermal hydraulics coupled code SPARKLE
International Nuclear Information System (INIS)
Miyata, Manabu; Maruyama, Manabu; Ogawa, Junto; Otake, Yukihiko; Miyake, Shuhei; Tabuse, Shigehiko; Tanaka, Hirohisa
2009-01-01
The SPARKLE code is a coupled code system based on three individual codes whose physical models have already been verified and validated. Mitsubishi Heavy Industries (MHI) confirmed the coupling calculation, including data transfer and the total reactor coolant system (RCS) behavior of the SPARKLE code. The confirmation uses the OECD/NEA MSLB benchmark problem, which is based on Three Mile Island Unit 1 (TMI-1) nuclear power plant data. This benchmark problem has been used to verify coupled codes developed and used by many organizations. Objectives of the benchmark program are as follows. Phase 1 is to compare the results of the system transient code using point kinetics. Phase 2 is to compare the results of the coupled three-dimensional (3D) core kinetics code and 3D core thermal-hydraulics (T/H) code, and Phase 3 is to compare the results of the combined coupled system transient code, 3D core kinetics code, and 3D core T/H code as a total validation of the coupled calculation. The calculation results of the SPARKLE code indicate good agreement with other benchmark participants' results. Therefore, the SPARKLE code is validated through these benchmark problems. In anticipation of applying the SPARKLE code to licensing analyses, MHI and Japanese PWR utilities have established a safety analysis method regarding the calculation conditions such as power distributions, reactivity coefficients, and event-specific features. (author)
International Nuclear Information System (INIS)
Ono, H.; Mototani, A.; Kawamura, S.; Abe, N.; Takeuchi, Y.
2004-01-01
The post-BT standard is a new fuel integrity standard or the Atomic Energy Society of Japan that allows temporary boiling transition condition in the evaluation for BWR anticipated operational occurrences. For application of the post-BT standard to BWR anticipated operational occurrences evaluation, it is important to identify which fuel assemblies and which axial, radial positions of fuel rods have temporarily experienced the post-BT condition and to evaluates how high the fuel cladding temperature rise was and how long the dryout duration continued. Therefore, whole bundle simulation, in which each fuel assembly is simulated independently by one thermal-hydraulic component, is considered to be an effective analytical method. In the present study, a best-estimate thermal-hydraulic code, TRACG02, has been modified to extend it predictive capability by implementing the post-BT evaluation model such as the post-BT heat transfer correlation and rewetting correlation and enlarging the number of components used for BWR plant simulation. Based on new evaluation methods, BWR core thermal-hydraulic behavior has been analyzed for typical anticipated operational occurrence conditions. The location where boiling transition occurs and the severity of fuel assembly in the case of boiling transition conditions such as fuel cladding temperature, which are important factors in determining whether the reuse of the fuel assembly can be permitted, were well predicted by the proposed evaluation method. In summary, a new evaluation method for a detailed BWR core thermal-hydraulic analysis based on the post-BT standard of the Atomic Energy Society of Japan has been developed and applied to the evaluation of the post-BT standard during the actual BWR plant anticipated operational occurrences. (author)
International Nuclear Information System (INIS)
Serbanel, M.; Catana, A.
2001-01-01
This report presents a comparative analysis of the behaviour of primary circuit during a LOCA 20% RIH accident for two types of reactor core, namely, normally charged, i.e., with clusters of 37 rods and charged with clusters of 43 rods, respectively. This type of accident was chosen since Canadian analyses showed that the associated transient regime stress the fuel elements. The void reactivity as a function of coolant average density was calibrated for a reference regime (LOCA 20% RIH) so that the results of the model be able to reproduce the average distribution in the reference transient regime. The computation makes use of CERBERUS and FIREBIRD codes externally coupled by files. The void reactivity of the hot pencil was obtained this way. An extremely conservative hypothesis was used, namely that the momentary power of the cluster hosting the pencil is the maximal power over the cluster for the corresponding half reactor core. To carry out this work the following steps were covered: 1. The scenario for the LOCA 20% RIH accident was worked out and the input data corresponding to the thermohydraulic and neutronic modules, for the complex model and the 37 rod clusters, were checked; 2. The input data corresponding to the thermohydraulic module for the complex model and the 43 rod cluster were checked; 3. The kinetic parameters corresponding to the 37 rod cluster were computed; 4. The kinetic parameters corresponding to the 43 rod cluster were computed and the file for the input data in the neutronic module was built; 5. A sub-routine for writing files with the thermohydraulic and neutronic quantities, in a format adequate to the other programs, was implemented; 6. The two transient regimes considered were implemented and the archives containing the quantities were built ;7. The results obtained were analyzed. The conclusion of this work is that in case of LOCA 20% RIH accident the 43 bar clusters have a better behaviour than the 37 bar clusters
International Nuclear Information System (INIS)
Gittus, J.H.
1982-04-01
A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)
Application of startup/core management code system to YGN 3 startup testing
International Nuclear Information System (INIS)
Chi, Sung Goo; Hah, Yung Joon; Doo, Jin Yong; Kim, Dae Kyum
1995-01-01
YGN 3 is the first nuclear power plant in Korea to use the fixed incore detector system for startup testing and core management. The startup/core management code system was developed from existing ABB-C-E codes and applied for YGN 3 startup testing, especially for physics and CPC(Core Protection Calculator)/COLSS (Core Operating Limit Supervisory System) related testing. The startup/core management code system consists of startup codes which include the CEBASE, CECOR, CEFAST and CEDOPS, and startup data reduction codes which include FLOWRATE, COREPERF, CALMET, and VARTAV. These codes were implemented on an HP/Apollo model 9000 series 400 workstation at the YGN 3 site and successfully applied to startup testing and core management. The startup codes made a great contribution in upgrading the reliability of test results and reducing the test period by taking and analyzing core data automatically. The data reduction code saved the manpower and time for test data reduction and decreased the chance for error in the analysis. It is expected that this code system will make similar contributions for reducing the startup testing duration of YGN 4 and UCN3,4
Energy Technology Data Exchange (ETDEWEB)
Nichols, R.A.; Smith, W.W.
1976-06-30
The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.
CONSUL code package application for LMFR core calculations
Energy Technology Data Exchange (ETDEWEB)
Chibinyaev, A.V.; Teplov, P.S.; Frolova, M.V. [RNC ' Kurchatovskiy institute' , Kurchatov sq.1, Moscow (Russian Federation)
2008-07-01
CONSUL code package designed for the calculation of reactor core characteristics has been developed at the beginning of 90's. The calculation of nuclear reactor core characteristics is carried out on the basis of correlated neutron, isotope and temperature distributions. The code package has been generally used for LWR core characteristics calculations. At present CONSUL code package was adapted to calculate liquid metal fast reactors (LMFR). The comparisons with IAEA computational test 'Evaluation of benchmark calculations on a fast power reactor core with near zero sodium void effect' and BN-1800 testing calculations are presented in the paper. The IAEA benchmark core is based on the innovative core concept with sodium plenum above the core BN-800. BN-1800 core is the next development step which is foreseen for the Russian fast reactor concept. The comparison of the operational parameters has shown good agreement and confirms the possibility of CONSUL code package application for LMFR core calculation. (authors)
An analysis of the uniform core experiment
Energy Technology Data Exchange (ETDEWEB)
Waterson, R H
1973-10-15
This report describes an analysis of the Uniform Core of HITREX using the WIMS E codes, and presents the results of theory/experiment comparisons. The overall picture is one of good agreement for core reaction rate distributions, but theory umderestimating k{sub eff} by about 1.5% {delta}k/k.
Feasibility Study of Core Design with a Monte Carlo Code for APR1400 Initial core
Energy Technology Data Exchange (ETDEWEB)
Kim, Jinsun; Chang, Do Ik; Seong, Kibong [KEPCO NF, Daejeon (Korea, Republic of)
2014-10-15
The Monte Carlo calculation becomes more popular and useful nowadays due to the rapid progress in computing power and parallel calculation techniques. There have been many attempts to analyze a commercial core by Monte Carlo transport code using the enhanced computer capability, recently. In this paper, Monte Carlo calculation of APR1400 initial core has been performed and the results are compared with the calculation results of conventional deterministic code to find out the feasibility of core design using Monte Carlo code. SERPENT, a 3D continuous-energy Monte Carlo reactor physics burnup calculation code is used for this purpose and the KARMA-ASTRA code system, which is used for a deterministic code of comparison. The preliminary investigation for the feasibility of commercial core design with Monte Carlo code was performed in this study. Simplified core geometry modeling was performed for the reactor core surroundings and reactor coolant model is based on two region model. The reactivity difference at HZP ARO condition between Monte Carlo code and the deterministic code is consistent with each other and the reactivity difference during the depletion could be reduced by adopting the realistic moderator temperature. The reactivity difference calculated at HFP, BOC, ARO equilibrium condition was 180 ±9 pcm, with axial moderator temperature of a deterministic code. The computing time will be a significant burden at this time for the application of Monte Carlo code to the commercial core design even with the application of parallel computing because numerous core simulations are required for actual loading pattern search. One of the remedy will be a combination of Monte Carlo code and the deterministic code to generate the physics data. The comparison of physics parameters with sophisticated moderator temperature modeling and depletion will be performed for a further study.
Development of Regulatory Audit Core Safety Code : COREDAX
Energy Technology Data Exchange (ETDEWEB)
Yang, Chae Yong; Jo, Jong Chull; Roh, Byung Hwan [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Jae Jun; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
2005-07-01
Korea Institute of Nuclear Safety (KINS) has developed a core neutronics simulator, COREDAX code, for verifying core safety of SMART-P reactor, which is technically supported by Korea Advanced Institute of Science and Technology (KAIST). The COREDAX code would be used for regulatory audit calculations of 3- dimendional core neutronics. The COREDAX code solves the steady-state and timedependent multi-group neutron diffusion equation in hexagonal geometry as well as rectangular geometry by analytic function expansion nodal (AFEN) method. AFEN method was developed at KAIST, and it was internationally verified that its accuracy is excellent. The COREDAX code is originally programmed based on the AFEN method. Accuracy of the code on the AFEN method was excellent for the hexagonal 2-dimensional problems, but there was a need for improvement for hexagonal-z 3-dimensional problems. Hence, several solution routines of the AFEN method are improved, and finally the advanced AFEN method is created. COREDAX code is based on the advanced AFEN method . The initial version of COREDAX code is to complete a basic framework, performing eigenvalue calculations and kinetics calculations with thermal-hydraulic feedbacks, for audit calculations of steady-state core design and reactivity-induced accidents of SMART-P reactor. This study describes the COREDAX code for hexagonal geometry.
International Nuclear Information System (INIS)
Cho, M.; Yang, J.C.; Yoh, K.C.; Suk, S.D.; Soh, D.S.; Kim, Y.M.
1980-01-01
The design parameters of a commercial-scale fast breeder reactor which is currently under construction by regeneration of these data is preliminary analyzed. The analysis of nuclear and thermal characteristics as well as safety features of this reactor is emphasized. And the evaluation of the initial core mentioned in the system description is carried out in the areas of its kinetics and control system, and, at the same time, the flow distribution of sodium and temperature distribution of the initial FBR core system are calculated. (KAERI INIS Section)
International Nuclear Information System (INIS)
1995-10-01
This report (Volume II) contains the papers summarizing the verification of and improvement to the codes on the basis of the French and Japanese data. Volume I: ''Validation of the Seismic Analysis Codes Using the Reactor Code Experiments'' (IAEA-TECDOC-798) included the Italian PEC reactor data. Refs, figs and tabs
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-10-01
This report (Volume II) contains the papers summarizing the verification of and improvement to the codes on the basis of the French and Japanese data. Volume I: ``Validation of the Seismic Analysis Codes Using the Reactor Code Experiments`` (IAEA-TECDOC-798) included the Italian PEC reactor data. Refs, figs and tabs.
VIPRE-01: a thermal-hydraulic code for reactor cores. Volume 3: programmer's manual (Revision 2)
International Nuclear Information System (INIS)
Stewart, C.W.; Koontz, A.S.; Cuta, J.M.; Montgomery, S.D.
1985-07-01
The VIPRE thermal-hydraulic computer code for PWR and BWR core analysis has undergone a detailed design review by a committee of experts. A new version of the code, incorporating the committee's recommendations, has been submitted for NRC review and issuance of a safety evaluation report. The changes in the programmers's manual are given
Improvement of JRR-4 core management code system
International Nuclear Information System (INIS)
Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N.
2000-01-01
In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)
Modelling guidelines for core exit temperature simulations with system codes
Energy Technology Data Exchange (ETDEWEB)
Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)
2015-05-15
Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.
About the application of MCNP4 code in nuclear reactor core design calculations
International Nuclear Information System (INIS)
Svarny, J.
2000-01-01
This paper provides short review about application of MCNP code for reactor physics calculations performed in SKODA JS. Problems of criticality safety analysis of spent fuel systems for storage and transport of spent fuel are discussed and relevant applications are presented. Application of standard Monte Carlo code for accelerator driven system for LWR waste destruction is shown and conclusions are reviewed. Specific heterogeneous effects in neutron balance of WWER nuclear cores are solved for adjusting standard design codes. (Authors)
SASSYS LMFBR systems analysis code
International Nuclear Information System (INIS)
Dunn, F.E.; Prohammer, F.G.
1982-01-01
The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies
International Nuclear Information System (INIS)
2013-12-01
For those Member States that have or have had significant fast reactor development programmes, it is of utmost importance that they have validated up to date codes and methods for fast reactor physics analysis in support of R and D and core design activities in the area of actinide utilization and incineration. In particular, some Member States have recently focused on fast reactor systems for minor actinide transmutation and on cores optimized for consuming rather than breeding plutonium; the physics of the breeder reactor cycle having already been widely investigated. Plutonium burning systems may have an important role in managing plutonium stocks until the time when major programmes of self-sufficient fast breeder reactors are established. For assessing the safety of these systems, it is important to determine the prediction accuracy of transient simulations and their associated reactivity coefficients. In response to Member States' expressed interest, the IAEA sponsored a coordinated research project (CRP) on Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects. The CRP started in November 1999 and, at the first meeting, the members of the CRP endorsed a benchmark on the BN-600 hybrid core for consideration in its first studies. Benchmark analyses of the BN-600 hybrid core were performed during the first three phases of the CRP, investigating different nuclear data and levels of approximation in the calculation of safety related reactivity effects and their influence on uncertainties in transient analysis prediction. In an additional phase of the benchmark studies, experimental data were used for the verification and validation of nuclear data libraries and methods in support of the previous three phases. The results of phases 1, 2, 3 and 5 of the CRP are reported in IAEA-TECDOC-1623, BN-600 Hybrid Core Benchmark Analyses, Results from a Coordinated Research Project on Updated Codes and Methods to Reduce the
International Nuclear Information System (INIS)
Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.
1998-03-01
The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [de
Computer codes for safety analysis
International Nuclear Information System (INIS)
Holland, D.F.
1986-11-01
Computer codes for fusion safety analysis have been under development in the United States for about a decade. This paper will discuss five codes that are currently under development by the Fusion Safety Program. The purpose and capability of each code will be presented, a sample given, followed by a discussion of the present status and future development plans
Computation system for nuclear reactor core analysis
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.
1977-04-01
This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals
International Nuclear Information System (INIS)
Passalacqua, R.A.
1991-01-01
A parametric analysis approach was chosen in order to study core-concrete interaction phenomena. The analysis was performed using a stand-alone version of the MAAP-DECOMP model (DOE version). This analysis covered only those parameters known to have the largest effect on thermohydraulics and fission product aerosol release. Even though the main purpose of the effort was model validation, it eventually resulted in a better understanding of the core-concrete interaction physics and to a more correct interpretation of the ACE-MCCI L5 experimental data. Unusual low heat transfer fluxes from the debris pool to the cavity (corium surrounding volume) were modeled in order to have a good benchmark with the experimental data. Therefore, higher debris pool temperatures were predicted. In case of water flooding, as a consequence of the critical heat flux through the upper crust and the increase of the crust thickness, resulting high debris pool temperatures cause an increase in the concrete ablation rate in the short term. DECOMP model predicts a quick increase of the crust thickness and as a result, causes the quenching of the molten mass. However, especially for fast transient, phenomena of crust bridge formation can occur. Thus, the upward directed heat flux is minimized and the concrete erosion rate remains conspicuous also in the long term. The model validation is based, in these calculations, on post-test predictions using the MCCI L5 test data: these data are derived from results of the 'Molten Core Concrete Interaction' (MCCI) experiments, which in turn are part of the larger Advanced Containment Experiment (ACE) program. Other calculations were also performed for the new proposed MACE (Melt Debris Attack and Coolability) experiments simulating the water flooding of the cavity. Those calculations are preliminarily compared with the recent MACE scoping test results. (author) 4 tabs., 59 figs., 5 refs
International Nuclear Information System (INIS)
Salazar C, J.H.; Nunez C, A.; Chavez M, C.
2004-01-01
The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)
The APR1400 Core Design by Using APA Code System
International Nuclear Information System (INIS)
Choi, Yu Sun; Koh, Byung Marn
2008-01-01
The nuclear design for APR1400 has been performed to prepare the core model for Automatic Load Follow Operation Simulation. APA (ALPHA/ PHOENIXP/ ANC) code system is a tool for the multi-cycle depletion calculations for APR1400. Its detail versions for ALPHA, PHOENIX-P and ANC are 8.9.3, 8.6.1 and 8.10.5, respectively. The first and equilibrium core depletion calculations for APR1400 have been performed to assure the target cycle length and confirm the safety parameters. The parameters are satisfied within limitation about nuclear design criteria. This APR1400 core models will be based on the design parameters for APR1400 Simulator
Validation study of core analysis methods for full MOX BWR
International Nuclear Information System (INIS)
2013-01-01
JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO 2 and MOX fuel rods, (3) analysis of isotopic composition data for UO 2 and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)
Validation study of core analysis methods for full MOX BWR
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-08-15
JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO{sub 2} and MOX fuel rods, (3) analysis of isotopic composition data for UO{sub 2} and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)
International Nuclear Information System (INIS)
Cook, B.A.; Carlson, E.R.
1985-01-01
One of the ongoing examination tasks for the damaged TMI-2 reactor is analysis of samples of debris obtained from the debris bed presently at the top of the core. This paper summarizes the results reported in the TMI-2 Core Debris Grab Sample Examination and Analysis Report, which will be available early in 1986. The sampling and analysis procedures are presented, and information is provided on the key results as they relate to the present core condition, peak temperatures during the transient, temperature history, chemical interactions, and core relocation. The results are then summarized
International Nuclear Information System (INIS)
Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku
1991-05-01
The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)
KALIMER-600-clad Core Fuel Assembly Calculation using MATRA-LMR (V2.0) Code
International Nuclear Information System (INIS)
Kim, Young Gyun; Kim, Young Il
2006-12-01
Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the temperature distribution in the core and in the subassemblies to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR has been developed for SFR. The major modifications are: the sodium properties table is implemented as subprogram in the code, Heat transfer coefficients are changed for SFR, te pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This This report describes briefly code structure and equations of MATRA-LMR (Version 2.0), explains input data preparation and shows some calculation results for the KALIMER-600-clad core fuel assembly for which has been performed the conceptual design of the core in the year 2006
Methodology for reactor core physics analysis - part 2
International Nuclear Information System (INIS)
Ponzoni Filho, P.; Fernandes, V.B.; Lima Bezerra, J. de; Santos, T.I.C.
1992-12-01
The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs
Computer code for simulating pressurized water reactor core
International Nuclear Information System (INIS)
Serrano, A.M.B.
1978-01-01
A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numerically. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistance added to the film coefficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (author)
Code for the core simulation in pressurized water reactors
International Nuclear Information System (INIS)
Serrano, M.A.B.
1978-08-01
A computer code was developed for the simulation of the steady-state and transient behaviour of the average channel of a Pressurizer Water Reactor core. Point kinetics equations were used with the reactivity calculated for average temperatures in the channel with the fuel and moderator temperature feedbacks. The radial heat conduction equation in the fuel was solved numericaly. For calculating the thermodynamic properties of the coolant, the fundamental equations of conservation (mass, energy and momentum) were solved. The gap and clad were treated as a resistence added to the film coeficient. The fuel system equations were decoupled from the coolant equations. The program permitted the changes in the heat transfer correlations and the flow patterns along the coolant channel. Various test were performed to determine the steady-state and transient response employing the PWR core simulator developed, obtaining results with adequate precision. (Author) [pt
VIPRE-01: A thermal-hydraulic code for reactor cores
International Nuclear Information System (INIS)
Cuta, J.M.; Koontz, A.S.; Stewart, C.W.; Montgomery, S.D.; Nomura, K.K.
1989-08-01
The VIPRE-01 thermal hydraulics code for PWR and BWR analysis has undergone significant modifications and error correction. This manual for the updated code, designated as VIPRE-01 Mod-02, describes improvements that eliminate problems of slow convergence with the drift flux model in transient simulation. To update the VIPRE-01 code and its documentation the drift flux model of two-phase flow was implemented and error corrections developed during VIPRE-01 application were included. The project team modified the existing VIPRE-01 equations into drift flux model equations by developing additional terms. They also developed and implemented corrections for the errors identified during the last four years. They then validated the modified code against standard test data using selected test cases. The project team prepared documentation revisions reflecting code improvements and corrections to replace the corresponding sections in the original VIPRE documents. The revised VIPRE code, designated VIPRE-01 Mod-02, incorporates improvements that eliminate many shortcomings of the previous version. During the validation, the code produced satisfactory output compared with test data. The revised documentation is in the form of binder pages to replace existing pages in three of the original manuals
Reactivity accident analysis in MTR cores
International Nuclear Information System (INIS)
Waldman, R.M.; Vertullo, A.C.
1987-01-01
The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)
International Nuclear Information System (INIS)
1996-05-01
This publication contains the final papers summarizing the validation of the codes on the basis of comparison of observed effects with computer simulated effects on reactor cores from seismic disturbances. Refs, figs tabs
Refuelling design and core calculations at NPP Paks: codes and methods
International Nuclear Information System (INIS)
Pos, I.; Nemes, I.; Javor, E.; Korpas, L.; Szecsenyi, Z.; Patai-Szabo, S.
2001-01-01
This article gives a brief review of the computer codes used in the fuel management practice at NPP Paks. The code package consist of the HELIOS neutron and gamma transport code for preparation of few-group cross section library, the CERBER code to determine the optimal core loading patterns and the C-PORCA code for detailed reactor physical analysis of different reactor states. The last two programs have been developed at the NPP Paks. HELIOS gives sturdy basis for our neutron physical calculation, CERBER and C-PORCA programs have been enhanced in great extent for last years. Methods and models have become more detailed and accurate as regards the calculated parameters and space resolution. Introduction of a more advanced data handling algorithm arbitrary move of fuel assemblies can be followed either in the reactor core or storage pool. The new interactive WINDOWS applications allow easier and more reliable use of codes. All these computer code developments made possible to handle and calculate new kind of fuels as profiled Russian and BNFL fuel with burnable poison or to support the reliable reuse of fuel assemblies stored in the storage pool. To extend thermo-hydraulic capability, with KFKI contribution the COBRA code will also be coupled to the system (Authors)
International Nuclear Information System (INIS)
Mochi, Ignacio
2005-01-01
The principal parameters of nuclear reactors are determined in the conceptual design stage.For that purpose, it is necessary to have flexible calculation tools that represent the principal dependencies of such parameters.This capability is of critical importance in the design of innovative nuclear reactors.In order to have a proper tool that could assist the conceptual design of innovative nuclear reactors, we developed and implemented a neutronic core calculus code: DIANA (Diffusion Integral Analytic Neutron Analysis).To calculate the required parameters, this code generates its own cross sections using an analytic two group, two zones diffusion scheme based only on a minimal set of data (i.e. 2200 m/s and fission averaged microscopic cross sections, Wescott factors and Effective Resonance Integrals).Both to calculate cross sections and core parameters, DIANA takes into account heterogeneity effects that are included when it evaluates each zone.Among them lays the disadvantage factor of each energy group.DIANA was totally implemented through Object Oriented Programming using C++ language. This eases source code understanding and would allow a quick expansion of its capabilities if needed.The final product is a versatile and easy-to-use code that allows core calculations with a minimal amount of data.It also contains the required tools needed to perform many variational calculations such as the parameterisation of effective multiplication factors for different radii of the core.The diffusion scheme s simplicity allows an easy following of the involved phenomena, making DIANA the most suitable tool to design reactors whose physics lays beyond the parameters of present reactors.All this reasons make DIANA a good candidate for future innovative reactor analysis
Systemization of burnup sensitivity analysis code
International Nuclear Information System (INIS)
Tatsumi, Masahiro; Hyoudou, Hideaki
2004-02-01
To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this
Reactivity analysis of core distortion effects in the FFTF
International Nuclear Information System (INIS)
Knutson, B.J.
1982-01-01
An improved technique for evaluating core distortion reactivity effects was developed using reactivity analyses of two core geometry models (R-Z and HEX). This technique is incorporated into a new processor code called CORDIS. The advantages of this technique over existing reactivity models are that is preserves core heterogeneity, provides a control rod insertion effect model, uses row-dependent axial shape functions, and provides a flexible and cost efficient core distortion reactivity analysis method
Fuel performance analysis code 'FAIR'
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.
1994-01-01
For modelling nuclear reactor fuel rod behaviour of water cooled reactors under severe power maneuvering and high burnups, a mechanistic fuel performance analysis code FAIR has been developed. The code incorporates finite element based thermomechanical module, physically based fission gas release module and relevant models for modelling fuel related phenomena, such as, pellet cracking, densification and swelling, radial flux redistribution across the pellet due to the build up of plutonium near the pellet surface, pellet clad mechanical interaction/stress corrosion cracking (PCMI/SSC) failure of sheath etc. The code follows the established principles of fuel rod analysis programmes, such as coupling of thermal and mechanical solutions along with the fission gas release calculations, analysing different axial segments of fuel rod simultaneously, providing means for performing local analysis such as clad ridging analysis etc. The modular nature of the code offers flexibility in affecting modifications easily to the code for modelling MOX fuels and thorium based fuels. For performing analysis of fuel rods subjected to very long power histories within a reasonable amount of time, the code has been parallelised and is commissioned on the ANUPAM parallel processing system developed at Bhabha Atomic Research Centre (BARC). (author). 37 refs
An approach for coupled-code multiphysics core simulations from a common input
International Nuclear Information System (INIS)
Schmidt, Rodney; Belcourt, Kenneth; Hooper, Russell; Pawlowski, Roger; Clarno, Kevin; Simunovic, Srdjan; Slattery, Stuart; Turner, John; Palmtag, Scott
2015-01-01
Highlights: • We describe an approach for coupled-code multiphysics reactor core simulations. • The approach can enable tight coupling of distinct physics codes with a common input. • Multi-code multiphysics coupling and parallel data transfer issues are explained. • The common input approach and how the information is processed is described. • Capabilities are demonstrated on an eigenvalue and power distribution calculation. - Abstract: This paper describes an approach for coupled-code multiphysics reactor core simulations that is being developed by the Virtual Environment for Reactor Applications (VERA) project in the Consortium for Advanced Simulation of Light-Water Reactors (CASL). In this approach a user creates a single problem description, called the “VERAIn” common input file, to define and setup the desired coupled-code reactor core simulation. A preprocessing step accepts the VERAIn file and generates a set of fully consistent input files for the different physics codes being coupled. The problem is then solved using a single-executable coupled-code simulation tool applicable to the problem, which is built using VERA infrastructure software tools and the set of physics codes required for the problem of interest. The approach is demonstrated by performing an eigenvalue and power distribution calculation of a typical three-dimensional 17 × 17 assembly with thermal–hydraulic and fuel temperature feedback. All neutronics aspects of the problem (cross-section calculation, neutron transport, power release) are solved using the Insilico code suite and are fully coupled to a thermal–hydraulic analysis calculated by the Cobra-TF (CTF) code. The single-executable coupled-code (Insilico-CTF) simulation tool is created using several VERA tools, including LIME (Lightweight Integrating Multiphysics Environment for coupling codes), DTK (Data Transfer Kit), Trilinos, and TriBITS. Parallel calculations are performed on the Titan supercomputer at Oak
Kinetic parameters evaluation of PWRs using static cell and core calculation codes
International Nuclear Information System (INIS)
Jahanbin, Ali; Malmir, Hessam
2012-01-01
Highlights: ► In this study, we have calculated effective delayed neutron fraction and prompt neutron lifetime in PWRs. ► New software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. ► This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. ► The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. - Abstract: In this paper, evaluation of the kinetic parameters (effective delayed neutron fraction and prompt neutron lifetime) in PWRs, using static cell and core calculation codes, is reported. A new software has been developed to link the WIMS, BORGES and CITATION codes in Visual C computer programming language. Using the WIMS cell calculation code, multigroup microscopic cross-sections and number densities of different materials can be generated in a binary file. By the use of BORGES code, these binary-form cross-sections and number densities are converted to a format readable by the CITATION core calculation code, by which the kinetic parameters can be finally obtained. This software is used for calculation of the kinetic parameters in a typical VVER-1000 and NOK Beznau reactor. The ratios ((β eff ) i )/((β eff ) core ) , which are the important input data for the reactivity accident analysis, are also calculated. Benchmarking of the results against the final safety analysis report (FSAR) of the aforementioned reactors shows very good agreements with these published documents.
A review of MAAP4 code structure and core T/H model
International Nuclear Information System (INIS)
Song, Yong Mann; Park, Soo Yong
1998-03-01
The modular accident analysis program (MAAP) version 4 is a computer code that can simulate the response of LWR plants during severe accident sequences and includes models for all of the important phenomena which might occur during accident sequences. In this report, MAAP4 code structure and core thermal hydraulic (T/H) model which models the T/H behavior of the reactor core and the response of core components during all accident phases involving degraded cores are specifically reviewed and then reorganized. This reorganization is performed via getting the related models together under each topic whose contents and order are same with other two reports for MELCOR and SCDAP/RELAP5 to be simultaneously published. Major purpose of the report is to provide information about the characteristics of MAAP4 core T/H models for an integrated severe accident computer code development being performed under the one of on-going mid/long-term nuclear developing project. The basic characteristics of the new integrated severe accident code includes: 1) Flexible simulation capability of primary side, secondary side, and the containment under severe accident conditions, 2) Detailed plant simulation, 3) Convenient user-interfaces, 4) Highly modularization for easy maintenance/improvement, and 5) State-of-the-art model selection. In conclusion, MAAP4 code has appeared to be superior for 3) and 4) items but to be somewhat inferior for 1) and 2) items. For item 5), more efforts should be made in the future to compare separated models in detail with not only other codes but also recent world-wide work. (author). 17 refs., 1 tab., 12 figs
Analysis of gamma dose for 4,8 gU/cm3 density silicide core at the RSG-GAS reactor using MCNP code
International Nuclear Information System (INIS)
Ardani
2011-01-01
Radiation safety analysis should be done following of substitution of fuel density of 2.96 gU/cc to density of 4,8 gU/cc silicide fuels for the RSG-GAS reactor. MCNP-5 code has been used to perform gamma dose calculation of the RSG-GAS reactor. Gamma radiation source at reactor consists of capture gamma rays, prompt fission gamma rays, and gamma rays of decay of fission and activation products. The strength of the prompt fission gamma rays is obtained by gamma releases of fission process of U-235 and reactor power of 30 MWt., during 46,6 days operation. Radiation dose is calculated at the experimental hall by detection point at the surface of outer of biological shielding and the operation hall by detection point at the top of the pool. The calculation is conducted at reactor on the normal operation and on the worst postulated accident causing the water level at the pool decreases. Calculation result shows that the biggest source strength of gamma rays come from the decay process. The highest calculated dose at the experiment hall is 4,07x10 -3 μSv/h, far from the maximum external dose permitted 25 μSv/h. The highest calculated dose at the operation hall is 19.98 μSv/h. Even though the calculated dose is still acceptable but this is close to the maximum permitted dose for worker. It concluded that loading of 4,8 gU/cc silicide fuel for the RSG-GAS still safe. (author)
Parallelization of a three-dimensional whole core transport code DeCART
Energy Technology Data Exchange (ETDEWEB)
Jin Young, Cho; Han Gyu, Joo; Ha Yong, Kim; Moon-Hee, Chang [Korea Atomic Energy Research Institute, Yuseong-gu, Daejon (Korea, Republic of)
2003-07-01
Parallelization of the DeCART (deterministic core analysis based on ray tracing) code is presented that reduces the computational burden of the tremendous computing time and memory required in three-dimensional whole core transport calculations. The parallelization employs the concept of MPI grouping and the MPI/OpenMP mixed scheme as well. Since most of the computing time and memory are used in MOC (method of characteristics) and the multi-group CMFD (coarse mesh finite difference) calculation in DeCART, variables and subroutines related to these two modules are the primary targets for parallelization. Specifically, the ray tracing module was parallelized using a planar domain decomposition scheme and an angular domain decomposition scheme. The parallel performance of the DeCART code is evaluated by solving a rodded variation of the C5G7MOX three dimensional benchmark problem and a simplified three-dimensional SMART PWR core problem. In C5G7MOX problem with 24 CPUs, a speedup of maximum 21 is obtained on an IBM Regatta machine and 22 on a LINUX Cluster in the MOC kernel, which indicates good parallel performance of the DeCART code. In the simplified SMART problem, the memory requirement of about 11 GBytes in the single processor cases reduces to 940 Mbytes with 24 processors, which means that the DeCART code can now solve large core problems with affordable LINUX clusters. (authors)
Multi-Core Processor Memory Contention Benchmark Analysis Case Study
Simon, Tyler; McGalliard, James
2009-01-01
Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.
Systemization of burnup sensitivity analysis code. 2
International Nuclear Information System (INIS)
Tatsumi, Masahiro; Hyoudou, Hideaki
2005-02-01
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For
Operational reactor physics analysis codes (ORPAC)
International Nuclear Information System (INIS)
Kumar, Jainendra; Singh, K.P.; Singh, Kanchhi
2007-07-01
For efficient, smooth and safe operation of a nuclear research reactor, many reactor physics evaluations are regularly required. As part of reactor core management the important activities are maintaining core reactivity status, core power distribution, xenon estimations, safety evaluation of in-pile irradiation samples and experimental assemblies and assessment of nuclear safety in fuel handling/storage. In-pile irradiation of samples requires a prior estimation of the reactivity load due to the sample, the heating rate and the activity developed in it during irradiation. For the safety of personnel handling irradiated samples the dose rate at the surface of shielded flask housing the irradiated sample should be less than 200 mR/Hr.Therefore, a proper shielding and radioactive cooling of the irradiated sample are required to meet the said requirement. Knowledge of xenon load variation with time (Startup-curve) helps in estimating Xenon override time. Monitoring of power in individual fuel channels during reactor operation is essential to know any abnormal power distribution to avoid unsafe situations. Complexities in the estimation of above mentioned reactor parameters and their frequent requirement compel one to use computer codes to avoid possible human errors. For efficient and quick evaluation of parameters related to reactor operations such as xenon load, critical moderator height and nuclear heating and reactivity load of isotope samples/experimental assembly, a computer code ORPAC (Operational Reactor Physics Analysis Codes) has been developed. This code is being used for regular assessment of reactor physics parameters in Dhruva and Cirus. The code ORPAC written in Visual Basic 6.0 environment incorporates several important operational reactor physics aspects on a single platform with graphical user interfaces (GUI) to make it more user-friendly and presentable. (author)
Implementation of refined core thermal-hydraulic calculation feature in the MARS/MASTER code
International Nuclear Information System (INIS)
Joo, H. K.; Jung, J. J.; Cho, B. O.; Ji, S. K.; Lee, W. J.; Jang, M. H.
2000-01-01
As an effort to enhance the fidelity of the core thermal/hydraulic calculation in the MARS/MASTER code, a best-estimate system/core coupled code, the COBRA-III module of MASTER is activated that enables refined core T/H calculations. Since the COBRA-III module is capable of using fuel-assembly sized nodes, the resolution of the T/H solution is high so that accurate incorporation of local T/H feedback effects becomes possible. The COBRA-III module is utilized such that the refined core T/H calculation is performed using the coarse-mesh flow boundary conditions specified by MARS at both ends of the core. The results of application to the OECD MSLB benchmark analysis indicate that the local peaking factor can be reduced by upto 15% with the refined calculation through the accurate representation of the local Doppler effect evaluation, although the prediction of the global transient behaviors such as the total core power change remain essentially unaffected
IEA-R1 reactor core simulation with RELAP5 code
International Nuclear Information System (INIS)
Rocha, Ricardo Takeshi Vieira da; Belchior Junior, Antonio; Andrade, Delvonei Alves de; Sabundjian, Gaiane; Umbehaum, Pedro Ernesto; Torres, Walmir Maximo
2005-01-01
This paper presents a preliminary RELAP5 model for the IEA-R1 core. The power distribution is supplied by the neutronic code, CITATION. The main objective is to model the IEA-R1 core and validate the model through the comparison of the results to the ones from COBRA and PARET, which were used in the Final Safety Analysis Report (FSAR) for this plant. Preliminary calculations regarding some simulations are presented. Boundary conditions are simulated through time dependent components. Results obtained are compared to those available for the IEA-R1. This study will be continued considering a model for the whole plant. Important transient and accidents will be analysed in order to verify the Emergency Core Cooling System - ECCS efficiency to hold its function as projected to preserve the integrity of the reactor core and guarantee its cooling. (author)
Energy Technology Data Exchange (ETDEWEB)
White, J.R.
1985-04-01
This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.
International Nuclear Information System (INIS)
Reinhardt, H.J.
1989-09-01
The project is embedded in the Shared Cost Action Programme (SCA) of the European Communities (CEC) on Reactor Safety, Research Area No. 4, concerning the analysis of experimental data on loss-of-coolant accidents and emergency core cooling. The PERICLES experiments, performed at CEA in Grenoble, had the objective to study multidimensional effects under well defined conditions concentrating on the inter-assembly character of reflood phenomena. The general aim of the present project is to analyse PERICLES experimental data in order to improve models in relevant system codes. Particular objectives of the project are - the critical evaluation of the experimental data of PERICLES Run 8; - the drawing of conclusions from the data with respect to physical and geometrical models for the multi-bundle reflood analysis; - the performance of one-and multi-dimensional computations with COBRA-NC; - the comparison of computational and experimental data; and - the development of conclusions and specifications of additional research needed. The analysis of the experimetal data of Run 8 was performed by a computer programme developed for postprocessing data of any PERICLES experiment. The postprocessor includes an automatic location of the quenchfront and displays it graphically with respect to time, vertical and horizontal directions. Furthermore, rod and fluid temperatures versus height, quenchtimes versus height, densities versus height, and temperatures, pressures, densities etc. versus time can be plotted. As far as computer simulations are concerned, it was one of the objectives of the present study to analyse in greater detail the multidimensional phenomena during the reflooding phase of a LOCA and to compare the numerical results with the experimental data. Such simulation may serve to adjust and improve existing computer codes as well as to validate the codes. Moreover, computer simulations are able to give information which are not available from experimental data; in the
International Nuclear Information System (INIS)
Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.
1981-02-01
This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented
Preliminary analysis of the proposed BN-600 benchmark core
International Nuclear Information System (INIS)
John, T.M.
2000-01-01
The Indira Gandhi Centre for Atomic Research is actively involved in the design of Fast Power Reactors in India. The core physics calculations are performed by the computer codes that are developed in-house or by the codes obtained from other laboratories and suitably modified to meet the computational requirements. The basic philosophy of the core physics calculations is to use the diffusion theory codes with the 25 group nuclear cross sections. The parameters that are very sensitive is the core leakage, like the power distribution at the core blanket interface etc. are calculated using transport theory codes under the DSN approximations. All these codes use the finite difference approximation as the method to treat the spatial variation of the neutron flux. Criticality problems having geometries that are irregular to be represented by the conventional codes are solved using Monte Carlo methods. These codes and methods have been validated by the analysis of various critical assemblies and calculational benchmarks. Reactor core design procedure at IGCAR consists of: two and three dimensional diffusion theory calculations (codes ALCIALMI and 3DB); auxiliary calculations, (neutron balance, power distributions, etc. are done by codes that are developed in-house); transport theory corrections from two dimensional transport calculations (DOT); irregular geometry treated by Monte Carlo method (KENO); cross section data library used CV2M (25 group)
International Nuclear Information System (INIS)
Dozaki, Koji
2007-01-01
Structural design methods for core shroud of BWR are specified in JSME Design and Construction Code, like ASME Boiler and Pressure Vessel Code Sec. III, as a part of core support structure. Design margins are defined according to combination of the structural design method selected and service limit considered. Basically, those margins in JSME Code were determined after ASME Sec. III. Designers can select so-called twice-slope method for core shroud design among those design methods. On the other hand, flaw evaluation rules have been established for core shroud in JSME Fitness-for-Service Code. Twice-slope method is also adopted for fracture evaluation in that code even when the core shroud contains a flaw. Design margin was determined as structural factors separately from Design and Construction Code. As a natural consequence, there is a difference in those design margins between the two codes. In this paper, it is shown that the design margin in Fitness-for-Service Code is conservative by experimental evidences. Comparison of design margins between the two codes is discussed. (author)
Assessment of CANDU physics codes using experimental data - II: CANDU core physics measurements
International Nuclear Information System (INIS)
Roh, Gyu Hong; Jeong, Chang Joon; Choi, Hang Bok
2001-11-01
Benchmark calculations of the advanced CANDU reactor analysis tools (WIMS-AECL, SHETAN and RFSP) and the Monte Carlo code MCNP-4B have been performed using Wolsong Units 2 and 3 Phase-B measurement data. In this study, the benchmark calculations have been done for the criticality, boron worth, reactivity device worth, reactivity coefficient, and flux scan. For the validation of the WIMS-AECL/SHETANRFSP code system, the lattice parameters of the fuel channel were generated by the WIMS-AECL code, and incremental cross sections of reactivity devices and structural material were generated by the SHETAN code. The results have shown that the criticality is under-predicted by -4 mk. The reactivity device worths are generally consistent with the measured data except for the strong absorbers such as shutoff rod and mechanical control absorber. The heat transport system temperature coefficient and flux distributions are in good agreement with the measured data. However, the moderator temperature coefficient has shown a relatively large error, which could be caused by the incremental cross-section generation methodology for the reactivity device. For the MCNP-4B benchmark calculation, cross section libraries were newly generated from ENDF/B-VI release 3 through the NJOY97.114 data processing system and a three-dimensional full core model was developed. The simulation results have shown that the criticality is estimated within 4 mk and the estimated reactivity worth of the control devices are generally consistent with the measurement data, which implies that the MCNP code is valid for CANDU core analysis. In the future, therefore, the MCNP code could be used as a reference tool to benchmark design and analysis codes for the advanced fuels for which experimental data are not available
CONTEMPT-DG containment analysis code
International Nuclear Information System (INIS)
Deem, R.E.; Rousseau, K.
1982-01-01
The assessment of hydrogen burning in a containment building during a degraded core event requires a knowledge of various system responses. These system responses (i.e. heat sinks, fan cooler units, sprays, etc.) can have a marked effect on the overall containment integrity results during a hydrogen burn. In an attempt to properly handle the various system responses and still retain the capability to perform sensitivity analysis on various parameters, the CONTEMPT-DG computer code was developed. This paper will address the historical development of the code, its various features, and the rationale for its development. Comparisons between results from the CONTEMPT-DG analyses and results from similar MARCH analyses will also be given
THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.
1984-07-01
The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.
THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code
International Nuclear Information System (INIS)
Vondy, D.R.
1984-07-01
The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations
A nodal Grean's function method of reactor core fuel management code, NGCFM2D
International Nuclear Information System (INIS)
Li Dongsheng; Yao Dong.
1987-01-01
This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes
HTR core physics and transient analyses by the Panthermix code system
Energy Technology Data Exchange (ETDEWEB)
Haas, J.B.M. de; Kuijper, J.C.; Oppe, J. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)
2005-07-01
At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes.
HTR core physics and transient analyses by the Panthermix code system
International Nuclear Information System (INIS)
Haas, J.B.M. de; Kuijper, J.C.; Oppe, J.
2005-01-01
At NRG Petten, core physics analyses on High Temperature gas-cooled Reactors (HTRs) are mainly performed by means of the PANTHERMIX code system. Since some years NRG is developing the HTR reactor physics code system WIMS/PANTHERMIX, based on the lattice code WIMS (Serco Assurance, UK), the 3-dimensional steady-state and transient core physics code PANTHER (British Energy, UK) and the 2-dimensional R-Z HTR thermal hydraulics code THERMIX-DIREKT (Research Centre FZJ Juelich, Germany). By means of the WIMS code nuclear data are being generated to suit the PANTHER code's neutronics. At NRG the PANTHER code has been interfaced with THERMIX-DIREKT to form PANTHERMIX, to enable core-follow/fuel management and transient analyses in a consistent manner on pebble bed type HTR systems. Also provisions have been made to simulate the flow of pebbles through the core of a pebble bed HTR, according to a given (R-Z) flow pattern. As examples of the versatility of the PANTHERMIX code system, calculations are presented on the PBMR, the South African pebble bed reactor design, to show the transient capabilities, and on a plutonium burning MEDUL-reactor, to demonstrate the core-follow/fuel management capabilities. For the investigated cases a good agreement is observed with the results of other HTR core physics codes
Fuel management and core design code systems for pressurized water reactor neutronic calculations
International Nuclear Information System (INIS)
Ahnert, C.; Arayones, J.M.
1985-01-01
A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions
International Nuclear Information System (INIS)
Tamitani, Masashi; Maruyama, Hiromi; Ishii, Kazuya; Izutsu, Sadayuki; Yamaguchi, Masao
2000-01-01
Critical experiments of UO 2 and full mixed oxide (MOX) fuel cores conducted at the Tank-type Critical Assembly (TCA) were analyzed using BWR design-purpose codes HINES and CERES with ENDF/B files and Monte Carlo fine analysis codes VMONT and MVP with the JENDL-3.2 library. The averaged values of the multiplication factors calculated with HINES/CERES, VMONT and MVP agreed with those of experiments within 0.3%Δk. The values by the design-purpose codes showed a small difference of 0.1%Δk between UO 2 and MOX cores. Monte Carlo code results showed that the JENDL-3.2 library had a tendency to overestimate the multiplication factors of UO 2 cores by about 0.3%Δk compared with those values of MOX cores. The root mean square errors of calculated power distributions were less than 1% for HINES/CERES and VMONT. These results showed that (1) the accuracy of these codes when applied to full MOX cores was almost the same as their accuracy for UO 2 cores, which confirmed the accuracy of present core design codes for full MOX cores; and (2) the accuracy of the 190-energy-group Monte Carlo calculation code VMONT was almost the same as that of the continuous-energy Monte Carlo calculation code MVP. (author)
Statistical core design methodology using the VIPRE thermal-hydraulics code
International Nuclear Information System (INIS)
Lloyd, M.W.; Feltus, M.A.
1995-01-01
An improved statistical core design methodology for developing a computational departure from nucleate boiling ratio (DNBR) correlation has been developed and applied in order to analyze the nominal 1.3 DNBR limit on Westinghouse Pressurized Water Reactor (PWR) cores. This analysis, although limited in scope, found that the DNBR limit can be reduced from 1.3 to some lower value and be accurate within an adequate confidence level of 95%, for three particular FSAR operational transients: turbine trip, complete loss of flow, and inadvertent opening of a pressurizer relief valve. The VIPRE-01 thermal-hydraulics code, the SAS/STAT statistical package, and the EPRI/Columbia University DNBR experimental data base were used in this research to develop the Pennsylvania State Statistical Core Design Methodology (PSSCDM). The VIPRE code was used to perform the necessary sensitivity studies and generate the EPRI correlation-calculated DNBR predictions. The SAS package used for these EPRI DNBR correlation predictions from VIPRE as a data set to determine the best fit for the empirical model and to perform the statistical analysis. (author)
International Nuclear Information System (INIS)
Taleyarkhan, R.; Lahey, R.T. Jr.; McFarlane, A.F.; Podowski, M.Z.
1988-01-01
The NUFREQ-NPW code was modified and set up at Westinghouse, USA for mixed fuel type multi-channel core-wide stability analysis. The resulting code, NUFREQ-NPW, allows for variable axial power profiles between channel groups and can handle mixed fuel types. Various models incorporated into NUFREQ-NPW were systematically compared against the Westinghouse channel stability analysis code MAZDA-NF, for which the mathematical model was developed, in an entirely different manner. Excellent agreement was obtained which verified the thermal-hydraulic modeling and coding aspects. Detailed comparisons were also performed against nuclear-coupled reactor core stability data. All thirteen Peach Bottom-2 EOC-2/3 low flow stability tests were simulated. A key aspect for code qualification involved the development of a physically based empirical algorithm to correct for the effect of core inlet flow development on subcooled boiling. Various other modeling assumptions were tested and sensitivity studies performed. Good agreement was obtained between NUFREQ-NPW predictions and data. Moreover, predictions were generally on the conservative side. The results of detailed direct comparisons with experimental data using the NUFREQ-NPW code; have demonstrated that BWR core stability margins are conservatively predicted, and all data trends are captured with good accuracy. The methodology is thus suitable for BWR design and licensing purposes. 11 refs., 12 figs., 2 tabs
A NEM diffusion code for fuel management and time average core calculation
International Nuclear Information System (INIS)
Mishra, Surendra; Ray, Sherly; Kumar, A.N.
2005-01-01
A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)
On-line generation of core monitoring power distribution in the SCOMS couppled with core design code
International Nuclear Information System (INIS)
Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.
2002-01-01
The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology
Accelerator-driven transmutation reactor analysis code system (ATRAS)
Energy Technology Data Exchange (ETDEWEB)
Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1999-03-01
JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)
International Nuclear Information System (INIS)
Grundmann, U.; Kliem, S.; Rohde, U.
2002-10-01
Benchmark calculations for the validation of the coupled neutron kinetics/thermohydraulic code complex DYN3D-ATHLET are described. Two benchmark problems concerning hypothetical accident scenarios with leaks in the steam system for a VVER-440 type reactor and the TMI-1 PWR have been solved. The first benchmark task has been defined by FZR in the frame of the international association 'Atomic Energy Research' (AER), the second exercise has been organized under the auspices of the OECD. While in the first benchmark the break of the main steam collector in the sub-critical hot zero power state of the reactor was considered, the break of one of the two main steam lines at full reactor power was assumed in the OECD benchmark. Therefore, in this exercise the mixing of the coolant from the intact and the defect loops had to be considered, while in the AER benchmark the steam collector break causes a homogeneous overcooling of the primary circuit. In the AER benchmark, each participant had to use its own macroscopic cross section libraries. In the OECD benchmark, the cross sections were given in the benchmark definition. The main task of both benchmark problems was to analyse the re-criticality of the scrammed reactor due to the overcooling. For both benchmark problems, a good agreement of the DYN3D-ATHLET solution with the results of other codes was achieved. Differences in the time of re-criticality and the height of the power peak between various solutions of the AER benchmark can be explained by the use of different cross section data. Significant differences in the thermohydraulic parameters (coolant temperature, pressure) occurred only at the late stage of the transient during the emergency injection of highly borated water. In the OECD benchmark, a broader scattering of the thermohydraulic results can be observed, while a good agreement between the various 3D reactor core calculations with given thermohydraulic boundary conditions was achieved. Reasons for the
HTGR core seismic analysis using an array processor
International Nuclear Information System (INIS)
Shatoff, H.; Charman, C.M.
1983-01-01
A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion
HELIOS/DRAGON/NESTLE codes' simulation of void reactivity in a CANDU core
International Nuclear Information System (INIS)
Sarsour, H.N.; Rahnema, F.; Mosher, S.; Turinsky, P.J.; Serghiuta, D.; Marleau, G.; Courau, T.
2002-01-01
This paper presents results of simulation of void reactivity in a CANDU core using the NESTLE core simulator, cross sections from the HELIOS lattice physics code in conjunction with incremental cross sections from the DRAGON lattice physics code. First, a sub-region of a CANDU6 core is modeled using the NESTLE core simulator and predictions are contrasted with predictions by the MCNP Monte Carlo simulation code utilizing a continuous energy model. In addition, whole core modeling results are presented using the NESTLE finite difference method (FDM), NESTLE nodal method (NM) without assembly discontinuity factors (ADF), and NESTLE NM with ADF. The work presented in this paper has been performed as part of a project sponsored by the Canadian Nuclear Safety Commission (CNSC). The purpose of the project was to gather information and assess the accuracy of best estimate methods using calculational methods and codes developed independently from the CANDU industry. (author)
HTR core physics analysis at NRG
International Nuclear Information System (INIS)
Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.
2002-01-01
Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)
PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.
Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay
2015-12-01
A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.
PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes
Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.
2015-01-01
A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591
User's manual for seismic analysis code 'SONATINA-2V'
International Nuclear Information System (INIS)
Hanawa, Satoshi; Iyoku, Tatsuo
2001-08-01
The seismic analysis code, SONATINA-2V, has been developed to analyze the behavior of the HTTR core graphite components under seismic excitation. The SONATINA-2V code is a two-dimensional computer program capable of analyzing the vertical arrangement of the HTTR graphite components, such as fuel blocks, replaceable reflector blocks, permanent reflector blocks, as well as their restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Moreover, the SONATINA-2V code is capable of analyzing the core vibration behavior under both simultaneous excitations of vertical and horizontal directions. The SONATINA-2V code is composed of the main program, pri-processor for making the input data to SONATINA-2V and post-processor for data processing and making the graphics from analytical results. Though the SONATINA-2V code was developed in order to work in the MSP computer system of Japan Atomic Energy Research Institute (JAERI), the computer system was abolished with the technical progress of computer. Therefore, improvement of this analysis code was carried out in order to operate the code under the UNIX machine, SR8000 computer system, of the JAERI. The users manual for seismic analysis code, SONATINA-2V, including pri- and post-processor is given in the present report. (author)
Calculation of the RSG-GAS core using computer code citation-3D
International Nuclear Information System (INIS)
Taryo, T.; Rokhmadi
1998-01-01
Since core reactivity is one of the reactor safety parameters, this R and D has been carried out. To carry out the R and D, the code called WIMSD4 was used respectively for generating cross section and diffusion parameters. The code CITATION was then applied to estimate core reactivity in the RSG-GAS core. To verify the result of the calculation, data and information of the RSG-GAS Typical Working Core Were used. To Prove the codes reliably used, the case of all control elements down in the reactor core and that of all control rods up in the core were applied. The result taking into account those cases showed respectively that K eff are less and greater than unity (K eff eff >1)
Light-water reactor safety analysis codes
International Nuclear Information System (INIS)
Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.
1980-01-01
A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented
Development and validation of a nodal code for core calculation
International Nuclear Information System (INIS)
Nowakowski, Pedro Mariano
2004-01-01
The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency
Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System
Karim, Julia Abdul
2008-05-01
The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained.
Core Calculation of 1 MWatt PUSPATI TRIGA Reactor (RTP) using Monte Carlo MVP Code System
International Nuclear Information System (INIS)
Karim, Julia Abdul
2008-01-01
The Monte Carlo MVP code system was adopted for the Reaktor TRIGA PUSAPTI (RTP) core calculation. The code was developed by a group of researcher of Japan Atomic Energy Agency (JAEA) first in 1994. MVP is a general multi-purpose Monte Carlo code for neutron and photon transport calculation and able to estimate an accurate simulation problems. The code calculation is based on the continuous energy method. This code is capable of adopting an accurate physics model, geometry description and variance reduction technique faster than conventional method as compared to the conventional scalar method. This code could achieve higher computational speed by several factors on the vector super-computer. In this calculation, RTP core was modeled as close as possible to the real core and results of keff flux, fission densities and others were obtained
Benchmark calculations on nuclear characteristics of JRR-4 HEU core by SRAC code system
International Nuclear Information System (INIS)
Arigane, Kenji
1987-04-01
The reduced enrichment program for the JRR-4 has been progressing based on JAERI's RERTR (Reduced Enrichment Research and Test Reactor) program. The SRAC (JAERI Thermal Reactor Standard Code System for Reactor Design and Analysis) is used for the neutronic design of the JRR-4 LEU Core. This report describes the benchmark calculations on the neutronic characteristics of the JRR-4 HEU Core in order to validate the calculation method. The benchmark calculations were performed on the various kind of neutronic characteristics such as excess reactivity, criticality, control rod worth, thermal neutron flux distribution, void coefficient, temperature coefficient, mass coefficient, kinetic parameters and poisoning effect by Xe-135 build up. As the result, it was confirmed that these calculated values are in satisfactory agreement with the measured values. Therefore, the calculational method by the SRAC was validated. (author)
Transient and fuel performance analysis with VTT's coupled code system
International Nuclear Information System (INIS)
Daavittila, A.; Hamalainen, A.; Raty, H.
2005-01-01
VTT (technical research center of Finland) maintains and further develops a comprehensive safety analysis code system ranging from the basic neutronic libraries to 3-dimensional transient analysis and fuel behaviour analysis codes. The code system is based on various types of couplings between the relevant physical phenomena. The main tools for analyses of reactor transients are presently the 3-dimensional reactor dynamics code HEXTRAN for cores with a hexagonal fuel assembly geometry and TRAB-3D for cores with a quadratic fuel assembly geometry. HEXTRAN has been applied to safety analyses of VVER type reactors since early 1990's. TRAB-3D is the latest addition to the code system, and has been applied to BWR and PWR analyses in recent years. In this paper it is shown that TRAB-3D has calculated accurately the power distribution during the Olkiluoto-1 load rejection test. The results from the 3-dimensional analysis can be used as boundary conditions for more detailed fuel rod analysis. For this purpose a general flow model GENFLO, developed at VTT, has been coupled with USNRC's FRAPTRAN fuel accident behaviour model. The example case for FRAPTRAN-GENFLO is for an ATWS at a BWR plant. The basis for the analysis is an oscillation incident in the Olkiluoto-1 BWR during reactor startup on February 22, 1987. It is shown that the new coupled code FRAPTRAN/GENFLO is quite a promising tool that can handle flow situations and give a detailed analysis of reactor transients
In-core melt progression for the MAAP 4 codes
International Nuclear Information System (INIS)
Wu, C.-D.; Paik, Chan Y.; Henry, Robert E.; Ply, Martin G.
2004-01-01
The MAAP 4 core melt progression model contains provisions for the formation of a molten debris pool surrounded by a crust during late phase core degradation. A predominantly oxidic molten pool with a predominantly metallic lower crust may naturally develop through a combination of models for real material phase diagrams, mechanistic relocation, and rules to recognize extremely low porosity and the liquid fractions of adjacent highly degraded nodes. Pool size and shape thus becomes relatively independent of core nodalization (which only governs the coarseness of the crust location). An upper pool crust is mechanistically allowed during consideration of radiative and convective heat losses from the pool top surface to surrounding core nodes, the core barrel, and upper internals. Circulation within the pool causes mass and energy exchange between participating pool nodes, and determines the heat fluxes to the boundary crusts. Side and bottom node failure is predicted based on the time, temperature, and stress. Calculations demonstrate that this concept allows simulation of the degraded core geometry observed during the TMI-2 accident. (author)
Qualification of ARROTTA code for LWR accident analysis
International Nuclear Information System (INIS)
Huang, P.-H.; Peng, K.Y.; Lin, W.-C.; Wu, J.-Y.
2004-01-01
This paper presents the qualification efforts performed by TPC and INER for the 3-D spatial kinetics code ARROTTA for LWR core transient analysis. TPC and INER started a joint 5 year project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, the ARROTTA code was chosen to perform multi-dimensional kinetics calculations such as rod ejection for PWR and rod drop for BWR. To qualify ARROTTA for analysis of FSAR licensing basis core transients, ARROTTA has been benchmarked for the static core analysis against plant measured data and SIMULATE-3 predictions, and for the kinetic analysis against available benchmark problems. The static calculations compared include critical boron concentration, core power distribution, and control rod worth. The results indicated that ARROTTA predictions match very well with plant measured data and SIMULATE-3 predictions. The kinetic benchmark problems validated include NEACRP rod ejection problem, 3-D LMW LWR rod withdrawal/insertion problem, and 3-D LRA BWR transient benchmark problem. The results indicate that ARROTTA's accuracy and stability are excellent as compared to other space-time kinetics codes. It is therefore concluded that ARROTTA provides accurate predictions for multi-dimensional core transient for LWRs. (author)
Parallelization of Subchannel Analysis Code MATRA
International Nuclear Information System (INIS)
Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk
2014-01-01
A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems
Modeling the reactor core of MNSR to simulate its dynamic behavior using the code PARET
International Nuclear Information System (INIS)
Hainoun, A.; Alhabet, F.
2004-02-01
Using the computer code PARET the core of the MNSR reactor was modelled and the neutronics and thermal hydraulic behaviour of the reactor core for the steady state and selected transients, that deal with step change of reactivity including control rod withdraw starting from steady state at various low power level, were simulated. For this purpose a PARET input model for the core of MNSR reactor has been developed enabling the simulation of neutron kinetic and thermal hydraulic of reactor core including reactivity feedback effects. The neutron kinetic model depends on the point kinetic with 15 groups delayed neutrons including photo neutrons of beryllium reflector. In this regard the effect of photo neutron on the dynamic behaviour has been analysed through two additional calculation. In the first the yield of photo neutrons was neglected completely and in the second its share was added to the sixth group of delayed neutrons. In the thermal hydraulic model the fuel elements with their cooling channels were distributed to 4 different groups with various radial power factors. The pressure lose factors for friction, flow direction change, expansion and contraction were estimated using suitable approaches. The post calculations of the relative neutron flux change and core average temperature were found to be consistent with the experimental measurements. Furthermore, the simulation has indicated the influence of photo neutrons of the Beryllium reflector on the neutron flux behaviour. For the reliability of the results sensitivity analysis was carried out to consider the uncertainty in some important parameters like temperature feedback coefficient and flow velocity. On the other hand the application of PARET in simulation of void formation in the subcooled boiling regime were tested. The calculation indicates the capability of PARET in modelling this phenomenon. However, big discrepancy between calculation results and measurement of axial void distribution were observed
Integrated severe accident containment analysis with the CONTAIN computer code
International Nuclear Information System (INIS)
Bergeron, K.D.; Williams, D.C.; Rexroth, P.E.; Tills, J.L.
1985-12-01
Analysis of physical and radiological conditions iunside the containment building during a severe (core-melt) nuclear reactor accident requires quantitative evaluation of numerous highly disparate yet coupled phenomenologies. These include two-phase thermodynamics and thermal-hydraulics, aerosol physics, fission product phenomena, core-concrete interactions, the formation and combustion of flammable gases, and performance of engineered safety features. In the past, this complexity has meant that a complete containment analysis would require application of suites of separate computer codes each of which would treat only a narrower subset of these phenomena, e.g., a thermal-hydraulics code, an aerosol code, a core-concrete interaction code, etc. In this paper, we describe the development and some recent applications of the CONTAIN code, which offers an integrated treatment of the dominant containment phenomena and the interactions among them. We describe the results of a series of containment phenomenology studies, based upon realistic accident sequence analyses in actual plants. These calculations highlight various phenomenological effects that have potentially important implications for source term and/or containment loading issues, and which are difficult or impossible to treat using a less integrated code suite
Status of SPACE Safety Analysis Code Development
International Nuclear Information System (INIS)
Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun
2009-01-01
In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development
International Nuclear Information System (INIS)
Gehre, G.
1982-01-01
First results of an analysis of flux and temperature values obtained from the in-core system in the third unit of the Greifswald nuclear power plant during the first core cycle are presented. The analysis has been performed with the aid of the computer code INCA. Possibilities and limits of this code are shown. (author)
Computer code validation study of PWR core design system, CASMO-3/MASTER-α
International Nuclear Information System (INIS)
Lee, K. H.; Kim, M. H.; Woo, S. W.
1999-01-01
In this paper, the feasibility of CASMO-3/MASTER-α nuclear design system was investigated for commercial PWR core. Validation calculation was performed as follows. Firstly, the accuracy of cross section generation from table set using linear feedback model was estimated. Secondly, the results of CASMO-3/MASTER-α was compared with CASMO-3/NESTLE 5.02 for a few benchmark problems. Microscopic cross sections computed from table set were almost the same with those from CASMO-3. There were small differences between calculated results of two code systems. Thirdly, the repetition of CASMO-3/MASTER-α calculation for Younggwang Unit-3, Cycle-1 core was done and their results were compared with nuclear design report(NDR) and uncertainty analysis results of KAERI. It was found that uncertainty analysis results were reliable enough because results were agreed each other. It was concluded that the use of nuclear design system CASMO-3/MASTER-α was validated for commercial PWR core
Development of realistic thermal hydraulic system analysis code
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, B. D; Kim, K. D. [and others
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.
Development of realistic thermal hydraulic system analysis code
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, B. D; Kim, K. D.
2002-05-01
The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others
Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes
International Nuclear Information System (INIS)
Tramm, J.R.; Siegel, A.R.
2013-01-01
The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)
Computation system for nuclear reactor core analysis. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.
1977-04-01
This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.
Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.
2011-01-01
We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of
Determination of the NPP Krsko reactor core safety limits using the COBRA-III-C code
International Nuclear Information System (INIS)
Lajtman, S.; Feretic, D.; Debrecin, N.
1989-01-01
This paper presents the NPP Krsko reactor core safety limits determined by the COBRA-III-C code, along with the methodology used. The reactor core safety limits determination is a part of reactor protection limits procedure. The results obtained were compared to safety limits presented in NPP Krsko FSAR. The COBRA-III-C NPP Krsko design core steady state thermal hydraulics calculation, used as the basis for the safety limits calculation, is presented as well. (author)
Stability analysis by ERATO code
International Nuclear Information System (INIS)
Tsunematsu, Toshihide; Takeda, Tatsuoki; Matsuura, Toshihiko; Azumi, Masafumi; Kurita, Gen-ichi
1979-12-01
Problems in MHD stability calculations by ERATO code are described; which concern convergence property of results, equilibrium codes, and machine optimization of ERATO code. It is concluded that irregularity on a convergence curve is not due to a fault of the ERATO code itself but due to inappropriate choice of the equilibrium calculation meshes. Also described are a code to calculate an equilibrium as a quasi-inverse problem and a code to calculate an equilibrium as a result of a transport process. Optimization of the code with respect to I/O operations reduced both CPU time and I/O time considerably. With the FACOM230-75 APU/CPU multiprocessor system, the performance is about 6 times as high as with the FACOM230-75 CPU, showing the effectiveness of a vector processing computer for the kind of MHD computations. This report is a summary of the material presented at the ERATO workshop 1979(ORNL), supplemented with some details. (author)
Core analysis: new features and applications
International Nuclear Information System (INIS)
Edenius, M.; Kurcyusz, E.; Molina, D.; Wiksell, G.
1995-01-01
Today, core analysis may be performed with sophisticated software capable of both steady state and transient analysis using a common methodology for BWRs and PWRs. General trends in core analysis software development are: improved accuracy, automated engineering functions; three-dimensional transient capability; graphical user interfaces. As a demonstration of such software, new features of Studsvik-CMS (Core management system) and examples of applications are discussed in this article. 2 figs., 8 refs
Uncertainty analysis of the FRAP code
International Nuclear Information System (INIS)
Peck, S.O.
1978-01-01
A user oriented, automated uncertainty analysis capability has been built into the FRAP code (Fuel Rod Analysis Program) and applied to a PWR fuel rod undergoing a LOCA. The method of uncertainty analysis is the Response Surface Method (RSM). (author)
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Energy Technology Data Exchange (ETDEWEB)
Veshchunov, M.S.; Kisselev, A.E.; Palagin, A.V. [Nuclear Safety Institute, Moscow (Russian Federation)] [and others
1995-09-01
The code package SVECHA for the modeling of in-vessel core degradation (CD) phenomena in severe accidents is being developed in the Nuclear Safety Institute, Russian Academy of Science (NSI RAS). The code package presents a detailed mechanistic description of the phenomenology of severe accidents in a reactor core. The modules of the package were developed and validated on separate effect test data. These modules were then successfully implemented in the ICARE2 code and validated against a wide range of integral tests. Validation results have shown good agreement with separate effect tests data and with the integral tests CORA-W1/W2, CORA-13, PHEBUS-B9+.
PWR core follow calculations using the ELCOS code system
International Nuclear Information System (INIS)
Grimm, P.; Paratte, J.M.
1990-01-01
The ELCOS code system developed at PSI is used to simulate a cycle of a PWR in which one fifth of the assemblies are MOX fuel. The reactor and the calculational methods are briefly described. The calculated critical boron concentrations and power distributions are compared with the measurements at the plant. Although the critical boron concentration is somewhat overpredicted and the computed power distributions are slightly flatter than the measured ones the results of the calculations agree generally well with the measured data. (author) 1 tab., 8 figs., 6 refs
Computer code HYDRO-ACE for analyzing thermo-hydraulic phenomena in the BWR core
International Nuclear Information System (INIS)
Abe, Kiyoharu; Naito, Yoshitaka
1979-10-01
A computer code HYDRO-ACE has been developed for analyzing thermo-hydraulic phenomena in the BWR core under forced or natural circulation of cooling water. The code is composed of two main calculation routines for single channels such as riser, separator, and downcommer and multiple channels such as the reactor core with a heated zone. Functionally the code is divided into many subroutines to be connected straightforwardly, and so that the user can choose a given course freely by simply arranging the subroutines. In the program, void fraction is calculated by Maurer's method, two-phase frictional pressure drop by Maltinelli-Nelson's, and critical heat flux ratio by Hench-Levy's. The coolant flow distributions in the JPDR-II core calculated by the code are in good agreement with those measured. (author)
Parallelization characteristics of a three-dimensional whole-core code DeCART
International Nuclear Information System (INIS)
Cho, J. Y.; Joo, H.K.; Kim, H. Y.; Lee, J. C.; Jang, M. H.
2003-01-01
Neutron transport calculation for three-dimensional amount of computing time but also huge memory. Therefore, whole-core codes such as DeCART need both also parallel computation and distributed memory capabilities. This paper is to implement such parallel capabilities based on MPI grouping and memory distribution on the DeCART code, and then to evaluate the performance by solving the C5G7 three-dimensional benchmark and a simplified three-dimensional SMART core problem. In C5G7 problem with 24 CPUs, a speedup of maximum 22 is obtained on IBM regatta machine and 21 on a LINUX cluster for the MOC kernel, which indicates good parallel performance of the DeCART code. The simplified SMART problem which need about 11 GBytes memory with one processors requires about 940 MBytes, which means that the DeCART code can now solve large core problems on affordable LINUX clusters
International Nuclear Information System (INIS)
Mur, J.; Larrauri, D.
1998-07-01
Computer simulation of flow in configurations close to pressurized water reactor (PWR) geometry is of great interest for Electricite de France (EDF). Although simulation of the flow through a whole PWR core with an all purpose CFD-code is not yet achievable, such a tool cna be quite useful to perform numerical experiments in order to try and improve the modeling introduced in computer codes devoted to reactor core thermal-hydraulic analysis. Further to simulation in small bare rod bundle configurations, the present study is focused on the simulation, with CFD-code ESTET and PWR core code THYC, of the flow in the experimental configuration VATICAN-1. ESTET simulation results are compared on the one hand to local velocity and concentration measurements, on the other hand with subchannel averaged values calculated by THYC. As far as the comparison with measurements is concerned, ESTET results are quite satisfactory relatively to available experimental data and their uncertainties. The effect of spacer grids and the prediction of the evolution of an unbalanced velocity profile seem to be correctly treated. As far as the comparison with THYC subchannel averaged values is concerned, the difficulty of a direct comparison between subchannel averaged and local values is pointed out. ESTET calculated local values are close to experimental local values. ESTET subchannel averaged values are also close to THYC calculation results. Thus, THYC results are satisfactory whereas their direct comparison to local measurements could show some disagreement. (author)
In-vessel core degradation code validation matrix
International Nuclear Information System (INIS)
Haste, T.J.; Adroguer, B.; Gauntt, R.O.; Martinez, J.A.; Ott, L.J.; Sugimoto, J.; Trambauer, K.
1996-01-01
The objective of the current Validation Matrix is to define a basic set of experiments, for which comparison of the measured and calculated parameters forms a basis for establishing the accuracy of test predictions, covering the full range of in-vessel core degradation phenomena expected in light water reactor severe accident transients. The scope of the review covers PWR and BWR designs of Western origin: the coverage of phenomena extends from the initial heat-up through to the introduction of melt into the lower plenum. Concerning fission product behaviour, the effect of core degradation on fission product release is considered. The report provides brief overviews of the main LWR severe accident sequences and of the dominant phenomena involved. The experimental database is summarised. These data are cross-referenced against a condensed set of the phenomena and test condition headings presented earlier, judging the results against a set of selection criteria and identifying key tests of particular value. The main conclusions and recommendations are listed. (K.A.)
Performance of the MTR core with MOX fuel using the MCNP4C2 code
International Nuclear Information System (INIS)
Shaaban, Ismail; Albarhoum, Mohamad
2016-01-01
The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.
International Nuclear Information System (INIS)
Park, W.S.; Lee, K.M.; Lee, C.S.; Lee, J.T.; Oh, S.K.
1992-01-01
In this work, the validity and quantitative uncertainty of WIMS (KAERI) - VENTURE code system for the design and analysis of KMRR core was tried to be inferred using a well known benchmark code, MCNP. WIMS (KAERI) showed an excellent agreement with MCNP code. For three different control rod positions at a simulated core which has a quarter symmetry, total peaking factors and three sub-factors (radial, axial, and local) obtained from VENTURE were compared with those of MCNP. The comparison proved the validity of VENTURE and showed better agreement in the order of radial, axial, and local factors. The uncertainty of WIMS (KAERI) - VENTURE system was inferred using the 2σ band of total peaking obtained by MCNP. The uncertainty of WIMS (KAERI) - VENTURE system were found to be 18.5 % for the operating condition. (author)
International Nuclear Information System (INIS)
Taleyarkhan, R.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.
1988-01-01
The work described in this paper is focused on the development, verification and benchmarking of the NUFREQ-NPW code at Westinghouse, USA for best estimate prediction of multi-channel core stability margins in US BWRs. Various models incorporated into NUFREQ-NPW are systematically compared against the Westinghouse channel stability analysis code MAZDA, which the Mathematical Model was developed in an entirely different manner. The NUFREQ-NPW code is extensively benchmarked against experimental stability data with and without nuclear reactivity feedback. Detailed comparisons are next performed against nuclear-coupled core stability data. A physically based algorithm is developed to correct for the effect of flow development on subcooled boiling. Use of this algorithm (to be described in the full paper) captures the peak magnitude as well as the resonance frequency with good accuracy
BEAVRS full core burnup calculation in hot full power condition by RMC code
International Nuclear Information System (INIS)
Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan
2017-01-01
Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.
The verification of PWR-fuel code for PWR in-core fuel management
International Nuclear Information System (INIS)
Surian Pinem; Tagor M Sembiring; Tukiran
2015-01-01
In-core fuel management for PWR is not easy because of the number of fuel assemblies in the core as much as 192 assemblies so many possibilities for placement of the fuel in the core. Configuration of fuel assemblies in the core must be precise and accurate so that the reactor operates safely and economically. It is necessary for verification of PWR-FUEL code that will be used in-core fuel management for PWR. PWR-FUEL code based on neutron transport theory and solved with the approach of multi-dimensional nodal diffusion method many groups and diffusion finite difference method (FDM). The goal is to check whether the program works fine, especially for the design and in-core fuel management for PWR. Verification is done with equilibrium core search model at three conditions that boron free, 1000 ppm boron concentration and critical boron concentration. The result of the average burn up fuel assemblies distribution and power distribution at BOC and EOC showed a consistent trend where the fuel with high power at BOC will produce a high burn up in the EOC. On the core without boron is obtained a high multiplication factor because absence of boron in the core and the effect of fission products on the core around 3.8 %. Reactivity effect at 1000 ppm boron solution of BOC and EOC is 6.44 % and 1.703 % respectively. Distribution neutron flux and power density using NODAL and FDM methods have the same result. The results show that the verification PWR-FUEL code work properly, especially for core design and in-core fuel management for PWR. (author)
The new lattice code Paragon and its qualification for PWR core applications
International Nuclear Information System (INIS)
Ouisloumen, M.; Huria, H.C.; Mayhue, L.T.; Smith, R.M.; Kichty, M.J.; Matsumoto, H.; Tahara, Y.
2003-01-01
Paragon is a new two-dimensional transport code based on collision probability with interface current method and written entirely in Fortran 90/95. The qualification of Paragon has been completed and the results are very good. This qualification included a number of critical experiments. Comparisons to the Monte Carlo code MCNP for a wide variety of PWR assembly lattice types were also performed. In addition, Paragon-based core simulator models have been compared against PWR plant startup and operational data for a large number of plants. Some results of these calculations and also comparisons against models developed with a licensed Westinghouse lattice code, Phoenix-P, are presented. The qualification described in this paper provided the basis for the qualification of Paragon both as a validated transport code and as the nuclear data source for core simulator codes
FAST: An advanced code system for fast reactor transient analysis
International Nuclear Information System (INIS)
Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh
2005-01-01
One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems
FARO base case post-test analysis by COMETA code
Energy Technology Data Exchange (ETDEWEB)
Annunziato, A.; Addabbo, C. [Joint Research Centre, Ispra (Italy)
1995-09-01
The paper analyzes the COMETA (Core Melt Thermal-Hydraulic Analysis) post test calculations of FARO Test L-11, the so-called Base Case Test. The FARO Facility, located at JRC Ispra, is used to simulate the consequences of Severe Accidents in Nuclear Power Plants under a variety of conditions. The COMETA Code has a 6 equations two phase flow field and a 3 phases corium field: the jet, the droplets and the fused-debris bed. The analysis shown that the code is able to pick-up all the major phenomena occurring during the fuel-coolant interaction pre-mixing phase.
First experimental validation on the core equilibrium code: HARMONIE
International Nuclear Information System (INIS)
Van Dorsselaere, J.; Cozzani, M.; Gnuffi, M.
1981-08-01
The code HARMONIE calculates the mechanical equilibrium of a fast reactor. An experimental program of deformation, in air, of groups of subassemblies, was performed on a mock-up, in the Super Phenix 1- geometry. This program included three kinds of tests, all performed without and then with grease: on groups of 2 or 3 rings of subassemblies, subjected to a force acting upon flats or angles; on groups of 35 and 41 subassemblies, subjected to a force acting on the first row, then with 1 or 2 empty cells; and on groups with 1 or 2 bowed subassemblies or 1 enlarged one over flats. A preliminary test on the friction coefficient in air between two pads showed some dependance upon the pad surface condition with a scattering factor of 8. Two basic code hypotheses were validated: the rotation of the subassemblies around their axis was negligible after deformation of the group, and the choice of a mean Maxwell coefficient, between those of 1st and 2nd slope, led to very similar results to experimental. The agreement between tests and HARMONIE calculations was suitable, qualitatively for all the groups and quantitatively for regular groups of 3 rings at most. But the difference increased for larger groups of 35 or 41 subassemblies: friction between pads, neglected by HARMONIE, seems to be the main reason. Other reasons for these differences are: the influence of the loading order on the mock-up, and the initial contacts issued from the gap between foot and diagrid-insert, and from manufacture bowings
Melt spreading code assessment, modifications, and application to the EPR core catcher design
International Nuclear Information System (INIS)
Farmer, M.T.
2009-01-01
of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core
Thermal-hydraulic analysis of PWR cores in transient condition
International Nuclear Information System (INIS)
Silva Galetti, M.R. da.
1984-01-01
A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author) [pt
International Nuclear Information System (INIS)
Dimov, D.
2011-01-01
The ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out since 2004. The purpose of this analysis is to assess ASTEC code modelling of main phenomena arising during hypothetical severe accidents and particularly in-vessel degradation in 2D geometry. The investigation covers both early and late phase of degradation of reactor core as well as determination of corium which will enter the reactor cavity. The initial event is station back-out. In order to receive severe accident condition, failure of all active component of emergency core cooling system is apply. The analysis is focus on ICARE module of ASTEC code and particularly on so call MAGMA model. The aim of study is to determine the capability of the integral code to simulate core degradation and to determine the corium composition entering the reactor cavity. (author)
A three-dimensional computer code for the nonlinear dynamic response of an HTGR core
International Nuclear Information System (INIS)
Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.
1979-01-01
A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)
Three-dimensional computer code for the nonlinear dynamic response of an HTGR core
International Nuclear Information System (INIS)
Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.
1979-01-01
A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged inlayers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analystical study is directed towards an invesstigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathemtical model which represents a vertical arrangement of layers of blocks. This comprises a block module of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core
Parallel processing of structural integrity analysis codes
International Nuclear Information System (INIS)
Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.
1996-01-01
Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Ponzoni Filho, P; Fernandes, V B; Lima Bezerra, J de; Santos, T I.C.
1992-12-01
The computer codes used for reactor core physics analysis are described. The modifications introduced in the public codes and the technical basis for the codes developed by the FURNAS utility are justified. An evaluation of the impact of these modifications on the parameter involved in qualifying the methodology is included. (F.E.). 5 ref, 7 figs, 5 tabs.
Scaling gysela code beyond 32K-cores on bluegene/Q***
Directory of Open Access Journals (Sweden)
Bigot J.
2013-12-01
Full Text Available Gyrokinetic simulations lead to huge computational needs. Up to now, the semi- Lagrangian code Gysela performed large simulations using a few thousands cores (8k cores typically. Simulation with finer resolutions and with kinetic electrons are expected to increase those needs by a huge factor, providing a good example of applications requiring Exascale machines. This paper presents our work to improve Gysela in order to target an architecture that presents one possible way towards Exascale: the Blue Gene/Q. After analyzing the limitations of the code on this architecture, we have implemented three kinds of improvement: computational performance improvements, memory consumption improvements and disk i/o improvements. As a result, we show that the code now scales beyond 32k cores with much improved performances. This will make it possible to target the most powerful machines available and thus handle much larger physical cases.
Depletion methodology in the 3-D whole core transport code DeCART
Energy Technology Data Exchange (ETDEWEB)
Kim, Kang Seog; Cho, Jin Young; Zee, Sung Quun
2005-02-01
Three dimensional whole-core transport code DeCART has been developed to include a characteristics of the numerical reactor to replace partly the experiment. This code adopts the deterministic method in simulating the neutron behavior with the least assumption and approximation. This neutronic code is also coupled with the thermal hydraulic code CFD and the thermo mechanical code to simulate the combined effects. Depletion module has been implemented in DeCART code to predict the depleted composition in the fuel. The exponential matrix method of ORIGEN-2 has been used for the depletion calculation. The library of including decay constants, yield matrix and others has been used and greatly simplified for the calculation efficiency. This report summarizes the theoretical backgrounds and includes the verification of the depletion module in DeCART by performing the benchmark calculations.
Bypass Flow and Hot Spot Analysis for PMR200 Block-Core Design with Core Restraint Mechanism
International Nuclear Information System (INIS)
Lim, Hong Sik; Kim, Min Hwan
2009-01-01
The accurate prediction of local hot spot during normal operation is important to ensure core thermal margin in a very high temperature gas-cooled reactor because of production of its high temperature output. The active cooling of the reactor core determining local hot spot is strongly affected by core bypass flows through the inter-column gaps between graphite blocks and the cross gaps between two stacked fuel blocks. The bypass gap sizes vary during core life cycle by the thermal expansion at the elevated temperature and the shrinkage/swelling by fast neutron irradiation. This study is to investigate the impacts of the variation of bypass gaps during core life cycle as well as core restraint mechanism on the amount of bypass flow and thus maximum fuel temperature. The core thermo fluid analysis is performed using the GAMMA+ code for the PMR200 block-core design. For the analysis not only are some modeling features, developed for solid conduction and bypass flow, are implemented into the GAMMA+ code but also non-uniform bypass gap distribution taken from a tool calculating the thermal expansion and the shrinkage/swell of graphite during core life cycle under the design options with and without core restraint mechanism is used
Improved core-edge tokamak transport simulations with the CORSICA 2 code
International Nuclear Information System (INIS)
Tarditi, A.; Cohen, R.H.; Crotinger, J.A.
1996-01-01
The CORSICA 2 code models the nonlinear transport between the core and the edge of a tokamak plasma. The code couples a 2D axisymmetric edge/SOL model (UEDGE) to a 1D model for the radial core transport in toroidal flux coordinates (the transport module from the CORSICA 1 code). The core density and temperature profiles are joined to the flux-surface average profiles from the 2D code sufficiently inside the magnetic separatrix, at a flux surface on which the edge profiles are approximately constant. In the present version of the code, the deuterium density and electron and ion temperatures are coupled. The electron density is determined by imposing quasi-neutrality, both in the core and in the edge. The model allows the core-edge coupling of multiple ion densities while retaining a single temperature (corresponding to the equilibration value) for the all ion species. Applications of CORSICA 2 to modeling the DIII-D tokamak are discussed. This work will focus on the simulation of the L-H transition, coupling a single ion species (deuterium) and the two (electron and ion) temperatures. These simulations will employ a new self-consistent model for the L-H transition that is being implemented in the UEDGE code. Applications to the modeling of ITER ignition scenarios are also discussed. This will involve coupling a second density species (the thermal alphas), bringing the total number of coupled variables up to four. Finally, the progress in evolving the magnetic geometry is discussed. Currently, this geometry is calculated by CORSICA's MHD equilibrium module (TEQ) at the beginning of the run and fixed thereafter. However, CORSICA 1 can evolve this geometry quasistatically, and this quasistatic treatment is being extended to include the edge/SOL geometry. Recent improvements for code speed-up are also presented
Core design calculations of IRIS reactor using modified CORD-2 code package
International Nuclear Information System (INIS)
Pevec, D.; Grgic, D.; Jecmenica, R.; Petrovic, B.
2002-01-01
Core design calculations, with thermal-hydraulic feedback, for the first cycle of the IRIS reactor were performed using the modified CORD-2 code package. WIMSD-5B code is applied for cell and cluster calculations with two different 69-group data libraries (ENDF/BVI rev. 5 and JEF-2.2), while the nodal code GNOMER is used for diffusion calculations. The objective of the calculation was to address basic core design problems for innovative reactors with long fuel cycle. The results were compared to our results obtained with CORD-2 before the modification and to preliminary results obtained with CASMO code for a similar problem without thermal-hydraulic feedback.(author)
Event course analysis of core disruptive accidents
International Nuclear Information System (INIS)
Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.
1995-01-01
The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)
Development of a BWR core burn-up calculation code COREBN-BWR
International Nuclear Information System (INIS)
Morimoto, Yuichi; Okumura, Keisuke
1992-05-01
In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)
The symbol coding language for the BUTs processor of in-core reactor control systems
International Nuclear Information System (INIS)
Vorob'ev, D.M.; Golovanov, M.N.; Levin, G.L.; Parfenova, T.K.; Filatov, V.P.
1978-01-01
A symbolic coding language is described; it has been developed for automation of making up programs for in-core control systems. The systems use the ideology of the CAMAC-VECTOR system and include the BUTs-20 processor. The symbolic coding language has been developed as a programming language of the ASSEMBLER type. Operators of instructions and pseudo-instructions, the rules of reading in the text of the source program, and operator record formats are considered
The modeling of core melting and in-vessel corium relocation in the APRIL code
Energy Technology Data Exchange (ETDEWEB)
Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others
1995-09-01
This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.
Energy Technology Data Exchange (ETDEWEB)
Vitruk, S.G.; Korsun, A.S. [Moscow Engineering Physics Institute (Russian Federation); Ushakov, P.A. [Institute of Physics and Power Engineering, Obninsk (R)] [and others
1995-09-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.
International Nuclear Information System (INIS)
Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.
1995-01-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors
Directory of Open Access Journals (Sweden)
Dong Hun Lee
2017-01-01
Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.
Calculation of mixed HEU-LEU cores for the HOR research reactor with the scale code system
International Nuclear Information System (INIS)
Leege, P.F.A. de; Gibcus, H.P.M.; Hoogenboom, J.E.; Vries, J.W. de
1997-01-01
The HOR reactor of Interfaculty Reactor Institute (IRI), Delft, The Netherlands, will be converted to use low enriched fuel (LEU) assemblies. As there are still many usable high enriched (HEU) fuel assemblies present, there will be a considerable reactor operation time with mixed cores with both HEU and LEU fuel assemblies. At IRI a comprehensive reactor physics code system and evaluated nuclear data is implemented for detailed core calculations. One of the backbones of the IRI code system is the well-known SCALE code system package. Full core calculations are performed with the diffusion theory code BOLD VENTURE, the nodal code SILWER, and the Monte Carlo code KENO Va. Results are displayed of a strategy from a HEU core to a mixed HEU-LEU core and eventually a LEU core. (author)
ENSDF analysis codes. IBM version, August 1982
International Nuclear Information System (INIS)
Lorenz, A.
1982-01-01
The nuclear structure analysis programme tape consists of physics computer processing codes used in the evaluation of mass-chain structure data. This tape was generated by the National Nuclear Data Centre, Brookhaven National Laboratory in the USA. (author)
ENSDF analysis codes: IBM version. August 1982
International Nuclear Information System (INIS)
Lorenz, A.
1982-09-01
The nuclear structure analysis programme tape consists of physics computer processing codes used in the evaluation of mass-chain structure data. This tape was generated by the National Nuclear Data Centre, Brookhaven National Laboratory in the USA. (author)
Development of the computer code system for the analyses of PWR core
International Nuclear Information System (INIS)
Tsujimoto, Iwao; Naito, Yoshitaka.
1992-11-01
This report is one of the materials for the work titled 'Development of the computer code system for the analyses of PWR core phenomena', which is performed under contracts between Shikoku Electric Power Company and JAERI. In this report, the numerical method adopted in our computer code system are described, that is, 'The basic course and the summary of the analysing method', 'Numerical method for solving the Boltzmann equation', 'Numerical method for solving the thermo-hydraulic equations' and 'Description on the computer code system'. (author)
Energy Technology Data Exchange (ETDEWEB)
Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-09-01
MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input that describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of
Directory of Open Access Journals (Sweden)
Ayon Pal
Full Text Available A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding
Pal, Ayon; Banerjee, Rachana; Mondal, Uttam K; Mukhopadhyay, Subhasis; Bothra, Asim K
2015-01-01
A comprehensive in silico analysis of 71 species representing the different taxonomic classes and physiological genre of the domain Archaea was performed. These organisms differed in their physiological attributes, particularly oxygen tolerance and energy metabolism. We explored the diversity and similarity in the codon usage pattern in the genes and genomes of these organisms, emphasizing on their core cellular pathways. Our thrust was to figure out whether there is any underlying similarity in the design of core pathways within these organisms. Analyses of codon utilization pattern, construction of hierarchical linear models of codon usage, expression pattern and codon pair preference pointed to the fact that, in the archaea there is a trend towards biased use of synonymous codons in the core cellular pathways and the Nc-plots appeared to display the physiological variations present within the different species. Our analyses revealed that aerobic species of archaea possessed a larger degree of freedom in regulating expression levels than could be accounted for by codon usage bias alone. This feature might be a consequence of their enhanced metabolic activities as a result of their adaptation to the relatively O2-rich environment. Species of archaea, which are related from the taxonomical viewpoint, were found to have striking similarities in their ORF structuring pattern. In the anaerobic species of archaea, codon bias was found to be a major determinant of gene expression. We have also detected a significant difference in the codon pair usage pattern between the whole genome and the genes related to vital cellular pathways, and it was not only species-specific but pathway specific too. This hints towards the structuring of ORFs with better decoding accuracy during translation. Finally, a codon-pathway interaction in shaping the codon design of pathways was observed where the transcription pathway exhibited a significantly different coding frequency signature.
Development of the SCHAMBETA code for scoping analysis of HCDA
Energy Technology Data Exchange (ETDEWEB)
Suk, Soo Dong; Hahn, D. H
2000-06-01
A computer code, SCHAMBETA(Scoping Code for HCDA Analysis using Modified Bethe-Tait Method), is developed to investigate the core disassembly process following a meltdown accident in the framework of a mofified Bethe-Tait method as part of the scoping analysis work to demonstrate the inherent safety of conceptual designs of Korea Advanced Liquid Metal Reactor(KALIMER), A 150 Mwe pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. The methodologies adopted in the code ared particularly useful to perform various parametric studies for better understanding of core disassembly process of liquid metal fast reactors as well as to estimate upper-limit values of the energy release resulting from a power excursion. In the SCHAMBETA code, the core kinetics and hydraulic behavior of the KALIMER is followed over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion, starting at the time that the sodium-voided core reaches the melting temperature of the metallic fuels. For this purpose, the equations of state of pressure-energy density relationship are derived for the saturated-vapor as well as the solid liquid of metallic uranium fuel, and implemenmted into the formulations of the disassembly reactivity. Mathematical formulations are then developed, in the framework of Modified Bethe-Tait method, in a form relevant to utilize the improved equations of state as well as to consider Doppler effects, for scoping analysis of the super-prompt-critical power excursions driven by a specified rate of reactivity insertion.
TRACE analysis of Phenix core response to an increase of the core inlet sodium temperature
Energy Technology Data Exchange (ETDEWEB)
Chenu, A., E-mail: aurelia.chenu@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Ecole Polytechnique Federale (Switzerland); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Adams, R., E-mail: robert.adams@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Eidgenossische Technische Hochschule, Zurich (Switzerland); Chawla, R., E-mail: rakesh.chawla@epfl.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Ecole Polytechnique Federale (Switzerland)
2011-07-01
This work presents the analysis, using the TRACE code, of the Phenix core response to an inlet sodium temperature increase. The considered experiment was performed in the frame of the Phenix End-Of-Life (EOL) test program of the CEA, prior to the final shutdown of the reactor. It corresponds to a transient following a 40°C increase of the core inlet temperature, which leads to a power decrease of 60%. This work focuses on the first phase of the transient, prior to the reactor scram and pump trip. First, the thermal-hydraulic TRACE model of the core developed for the present analysis is described. The kinetic parameters and feedback coefficients for the point kinetic model were first derived from a 3D static neutronic ERANOS model developed in a former study. The calculated kinetic parameters were then optimized, before use, on the basis of the experimental reactivity in order to minimize the error on the power calculation. The different reactivity feedbacks taken into account include various expansion mechanisms that have been specifically implemented in TRACE for analysis of fast-neutron spectrum systems. The point kinetic model has been used to study the sensitivity of the core response to the different feedback effects. The comparison of the calculated results with the experimental data reveals the need to accurately calculate the reactivity feedback coefficients. This is because the reactor response is very sensitive to small reactivity changes. This study has enabled us to study the sensitivity of the power change to the different reactivity feedbacks and define the most important parameters. As such, it furthers the validation of the FAST code system, which is being used to gain a more in-depth understanding of SFR core behavior during accidental transients. (author)
Calculation of local flow conditions in the lower core of a PWR with code-Saturne
International Nuclear Information System (INIS)
Fournier, Y.
2003-01-01
In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit
Development of a perturbation code, PERT-K, for hexagonal core geometry
Energy Technology Data Exchange (ETDEWEB)
Kim, Taek Kyum; Kim, Sang Ji; Song, Hoon; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-01-01
A perturbation code for hexagonal core geometry has been developed based on Nodal Expansion Method. By using relevant output files of DIF3D code, it can calculate the reactivity changes caused by perturbation in composition or/and neutron cross section libraries. The accuracy of PERT-K code has been validated by calculating the reactivity changes due to fuel composition change, the sodium void coefficients, and the sample reactivity worths of BFS-73-1 critical experiments. In the case of 10% reduction in all fuel isotopics at a assembly located in the outer core, PERT-K computation agrees with the direct computation by DIF3D within 60 pcm. The sample reactivity worths of BFS-73-1 critical experiments are predicted with PERT-K code within the experimental error bounds. For 100% sodium void occurrence at the inner core, the maximum difference of reactivity changes between PERT-K and direct DIF3D computations is less than 40 pcm. On the other hand, the same sodium void condition at the outer core leads to a difference of reactivity change greater than 400 pcm. However, as sodium voiding becomes near zero value, the difference becomes less and rapidly falls within the acceptable bound, i.e. 40 pcm. (author). 11 refs., 9 figs., 6 tabs.
Engineering application of in-core fuel management optimization code with CSA algorithm
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhihong; Hu, Yongming [INET, Tsinghua university, Beijing 100084 (China)
2009-06-15
PWR in-core loading (reloading) pattern optimization is a complex combined problem. An excellent fuel management optimization code can greatly improve the efficiency of core reloading design, and bring economic and safety benefits. Today many optimization codes with experiences or searching algorithms (such as SA, GA, ANN, ACO) have been developed, while how to improve their searching efficiency and engineering usability still needs further research. CSA (Characteristic Statistic Algorithm) is a global optimization algorithm with high efficiency developed by our team. The performance of CSA has been proved on many problems (such as Traveling Salesman Problems). The idea of CSA is to induce searching direction by the statistic distribution of characteristic values. This algorithm is quite suitable for fuel management optimization. Optimization code with CSA has been developed and was used on many core models. The research in this paper is to improve the engineering usability of CSA code according to all the actual engineering requirements. Many new improvements have been completed in this code, such as: 1. Considering the asymmetry of burn-up in one assembly, the rotation of each assembly is considered as new optimization variables in this code. 2. Worth of control rods must satisfy the given constraint, so some relative modifications are added into optimization code. 3. To deal with the combination of alternate cycles, multi-cycle optimization is considered in this code. 4. To confirm the accuracy of optimization results, many identifications of the physics calculation module in this code have been done, and the parameters of optimization schemes are checked by SCIENCE code. The improved optimization code with CSA has been used on Qinshan nuclear plant of China. The reloading of cycle 7, 8, 9 (12 months, no burnable poisons) and the 18 months equilibrium cycle (with burnable poisons) reloading are optimized. At last, many optimized schemes are found by CSA code
Energy Technology Data Exchange (ETDEWEB)
Kasselmann, Stefan, E-mail: s.kasselmann@fz-juelich.de [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Druska, Claudia [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Herber, Stefan [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Jühe, Stephan [Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Keller, Florian; Lambertz, Daniela; Li, Jingjing; Scholthaus, Sarah; Shi, Dunfu [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Xhonneux, Andre; Allelein, Hans-Josef [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany)
2014-05-01
The HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach.
Xenon oscillation in a large PHWR core (Atucha II type): TRISIC code applicability
International Nuclear Information System (INIS)
Solanilla, Roberto
2000-01-01
A three dimensional nuclear reactor simulation code (TRISIC) was developed many years ago to design a PHWR (pressurizer heavy water reactors - Atucha type) based in the 'source-sink model' (heterogeneous theory). The limited processor computational performance available at that time was the constraint of the code when a detailed reactor description was necessary. A modern PC (pentium) code version with a full reactor core representation (461 fuel channels) including diagonal control rod banks and flux-reading detectors with theirs tube guide was used in the present paper for simulation of the Xenon transient when a local asymmetric perturbation was produced in a large core (Atucha II type). The results obtained and the computer time required for the 70 hour's simulation with an adequate time step, established the potential of the code to deal with this kind of transients. The paper shows that the method of TRISIC allows to detect and control azimuthal, radial and axial oscillation. This code is a proper way to elaborate a program of control rods movement from the flux reading detectors to damp the oscillation. TRISIC could also be a accurate tool to supervise the full core flux distribution in real time during the operation of the reactor. (author)
Thermal hydraulic analysis of the JMTR improved LEU-core
Energy Technology Data Exchange (ETDEWEB)
Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)
2003-01-01
After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)
International Nuclear Information System (INIS)
Chen Zhenpeng; Qi Huiquan
1990-01-01
A comprehensive R-matrix analysis code has been developed. It is based on the multichannel and multilevel R-matrix theory and runs in VAX computer with FORTRAN-77. With this code many kinds of experimental data for one nuclear system can be fitted simultaneously. The comparisions between code RAC and code EDA of LANL are made. The data show both codes produced the same calculation results when one set of R-matrix parameters was used. The differential cross section of 10 B (n, α) 7 Li for E n = 0.4 MeV and the polarization of 16 O (n,n) 16 O for E n = 2.56 MeV are presented
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
Energy Technology Data Exchange (ETDEWEB)
Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.
Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis
International Nuclear Information System (INIS)
Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E.; Tills, J.
1997-12-01
The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions
DABIE: a data banking system of integral experiments for reactor core characteristics computer codes
International Nuclear Information System (INIS)
Matsumoto, Kiyoshi; Naito, Yoshitaka; Ohkubo, Shuji; Aoyanagi, Hideo.
1987-05-01
A data banking system of integral experiments for reactor core characteristics computer codes, DABIE, has been developed to lighten the burden on searching so many documents to obtain experiment data required for verification of reactor core characteristics computer code. This data banking system, DABIE, has capabilities of systematic classification, registration and easy retrieval of experiment data. DABIE consists of data bank and supporting programs. Supporting programs are data registration program, data reference program and maintenance program. The system is designed so that user can easily register information of experiment systems including figures as well as geometry data and measured data or obtain those data through TSS terminal interactively. This manual describes the system structure, how-to-use and sample uses of this code system. (author)
2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code
Energy Technology Data Exchange (ETDEWEB)
Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)
2009-07-01
Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.
Verification of MVP-II and SRAC2006 code to the core physics vera benchmark problem
International Nuclear Information System (INIS)
Jati Susilo
2014-01-01
In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT) of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by. Westinghouse, arranged from 193 unit of 17 x 17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC) and hot zero power (HZP). In this calculation, MVP-II and CITATION module of SRAC2006 computer code has been used with ENDF/B-VII.0. cross section data library. Calculation result showed that differences value of k-eff for the core at controlled and uncontrolled condition between reference with MVP-II (-0,07% and -0,014%) and SRAC2006 (0,92% and 0,99%) are very small or below 1%. Differences value of radial power peaking factor at controlled and uncontrolled of the core between reference value with MVP-II are 0,38% and 1,53%, even though with SRAC2006 are 1,13% and -2,45%. It can be said that the calculation result by both computer code showing suitability with reference value. In order to determinate of criticality of the core, the calculation result using MVP-II code is more conservative compare with SRAC2006 code. (author)
International Nuclear Information System (INIS)
Taleyarkhan, R.P.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.
1994-01-01
The ppercase nufreq - ppercase np (G.C. Park et al. NUREG/CR-3375, 1983; S.J. Peng et al. NUREG/CR-4116, 1984; S.J. Peng et al. Nucl. Sci. Eng. 88 (1988) 404-411) code was modified and set up at Westinghouse, USA, for mixed fuel type multichannel core-wide stability analysis. The resulting code, ppercase nufreq - ppercase npw , allows for variable axial power profiles between channel groups and can handle mixed fuel types.Various models incorporated into ppercase nurfreq - ppercase npw were systematically compared against the Westinghouse channel stability analysis code ppercase mazda -ppercase nf (R. Taleyarkhan et al. J. Heat Transfer 107 (February 1985) 175-181; NUREG/CR2972, 1983), for which the mathematical model was developed in an entirely different manner. Excellent agreement was obtained which verified the thermal-hydraulic modeling and coding aspects. Detailed comparisons were also performed against nuclear-coupled reactor core stability data. All 13 Peach Bottom-2 EOC-2/3 low flow stability tests (L.A. Carmichael and R.O. Neimi, EPRI NP-564, Project 1020-1, 1978; F.B. Woffinden and R.O. Neimi, EPRI, NP 0972, Project 1020-2, 1981) were simulated. A key aspect for code qualification involved the development of a physically based empirical algorithm to correct for the effect of core inlet flow development on subcooled boiling. Various other modeling assumptions were tested and sensitivity studies performed. Good agreement was obtained between ppercase nufreq-npw predictions and data. ((orig.))
Analysis of LMFBR containment response to an HCDA using a multifield Eulerian code
International Nuclear Information System (INIS)
Chu, H.Y.; Chang, Y.W.
1977-01-01
This paper describes a computer code, MICE (Multifield Implicit Continuous-fluid Eulerian Containment Code), which is being developed at Argonne National Laboratory (ANL) for the analysis of containment response to a hypothetical core distruptive accident (HCDA). The code is applicable to multifield flow problems where material fields are allowed to have penetrations. Reactor structures are treated as axisymmetrical shells and solved by the large-displacement and small-strain theory. Two sample problems have been performed using the MICE code. The first illustrates the relative motions of the material fields after the initiation of a core disassembly accident. Core support structure and core barrel are modelled as rigid obstacles. The second demonstrates the interactions between fluid and structures. Core expansion and reactor wall deformation at several instants are shown by the computer-generated film plots. (Auth.)
The in-core fuel management code system for VVER reactors
International Nuclear Information System (INIS)
Cada, R.; Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.
2004-01-01
The structure and methodology of a fuel management system for NPP VVER 1000 (NPP Temelin) and VVER 440 (NPP Dukovany) is described. It is under development in SKODA JS a.s. and is followed by practical applications. The general objectives of the system are maximization of end of cycle reactivity, the minimization of fresh fuel inventory for the minimization of fed enrichment and minimization of burnable poisons (BPs) inventory. They are also safety related constraints in witch minimization of power peaking plays a dominant role. General structure of the system consists in preparation of input data for macrocode calculation, algorithms (codes) for optimization of fuel loading, calculation of fuel enrichment and BPs assignment. At present core loading can be calculated (optimized) by Tabu search algorithm (code ATHENA), genetic algorithm (code Gen1) and hybrid algorithm - simplex procedure with application of Tabu search algorithm on binary shuffling (code OPAL B ). Enrichment search is realized by the application of simplex algorithm (OPAL B code) and BPs assignment by module BPASS and simplex algorithm in OPAL B code. Calculations of the real core loadings are presented and a comparison of different optimization methods is provided. (author)
Analysis of the KUCA MEU experiments using the ANL code system
Energy Technology Data Exchange (ETDEWEB)
Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.
1982-01-01
This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis.
Analysis of the KUCA MEU experiments using the ANL code system
International Nuclear Information System (INIS)
Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.
1982-01-01
This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis
ARCADIAR - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP
International Nuclear Information System (INIS)
Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien
2007-01-01
Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA R and concludes on customer benefits. ARCADIA R is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA R system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)
International Nuclear Information System (INIS)
Farmer, M.T.; Basu, S.
2009-01-01
The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies
Systemization of burnup sensitivity analysis code (2) (Contract research)
International Nuclear Information System (INIS)
Tatsumi, Masahiro; Hyoudou, Hideaki
2008-08-01
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion
Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET
International Nuclear Information System (INIS)
Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.
2013-01-01
The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)
Centrifugal Compressor Aeroelastic Analysis Code
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
NORTICA - a new code for cyclotron analysis
International Nuclear Information System (INIS)
Gorelov, D.; Johnson, D.; Marti, F.
2001-01-01
The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state
Two-dimensional core calculation research for fuel management optimization based on CPACT code
International Nuclear Information System (INIS)
Chen Xiaosong; Peng Lianghui; Gang Zhi
2013-01-01
Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)
Core physics calculation and analysis for SNRE
International Nuclear Information System (INIS)
Xie Jiachun; Zhao Shouzhi; Jia Baoshan
2010-01-01
Five different precise calculation models have been set up for Small Nuclear Rocket Engine (SNRE) core based on MCNP code, and then the effective multiplication constant, drum control worth and power distribution were calculated. The results from different models indicate that the model in which elements are homogeneous could be used in the reactivity calculation, but a detailed description of elements have to be used in the element internal power distribution calculation. The results of physics parameters show that the basic characteristics of SNRE are reasonable. The drum control worth is sufficient. The power distribution is symmetrical and reasonable. All of the parameters can satisfy the design requirement. (authors)
Development of a subchannel analysis code MATRA (Ver. α)
International Nuclear Information System (INIS)
Yoo, Y. J.; Hwang, D. H.
1998-04-01
A subchannel analysis code MATRA-α, an interim version of MATRA, has been developed to be run on an IBM PC or HP WS based on the existing CDC CYBER mainframe version of COBRA-IV-I. This MATRA code is a thermal-hydraulic analysis code based on the subchannel approach for calculating the enthalpy and flow distribution in fuel assemblies and reactor cores for both steady-state and transient conditions. MATRA-α has been provided with an improved structure, various functions, and models to give the more convenient user environment and to increase the code accuracy, various functions, and models to give the more convenient user environment and to increase the code accuracy. Among them, the pressure drop model has been improved to be applied to non-square-lattice rod arrays, and the lateral transport models between adjacent subchannels have been improved to increase the accuracy in predicting two-phase flow phenomena. Also included in this report are the detailed instructions for input data preparation and for auxiliary pre-processors to serve as a guide to those who want to use MATRA-α. In addition, we compared the predictions of MATRA-α with the experimental data on the flow and enthalpy distribution in three sample rod-bundle cases to evaluate the performance of MATRA-α. All the results revealed that the prediction of MATRA-α were better than those of COBRA-IV-I. (author). 16 refs., 1 tab., 13 figs
PWR core safety analysis with 3-dimensional methods
International Nuclear Information System (INIS)
Gensler, A.; Kühnel, K.; Kuch, S.
2015-01-01
Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation
CATHENA 4. A thermalhydraulics network analysis code
International Nuclear Information System (INIS)
Aydemir, N.U.; Hanna, B.N.
2009-01-01
Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)
The Analysis of SBWR Critical Power Bundle Using Cobrag Code
Directory of Open Access Journals (Sweden)
Yohannes Sardjono
2013-03-01
Full Text Available The coolant mechanism of SBWR is similar with the Dodewaard Nuclear Power Plant (NPP in the Netherlands that first went critical in 1968. The similarity of both NPP is cooled by natural convection system. These coolant concept is very related with same parameters on fuel bundle design especially fuel bundle length, core pressure drop and core flow rate as well as critical power bundle. The analysis was carried out by using COBRAG computer code. COBRAG computer code is GE Company proprietary. Basically COBRAG computer code is a tool to solve compressible three-dimensional, two fluid, three field equations for two phase flow. The three fields are the vapor field, the continuous liquid field, and the liquid drop field. This code has been applied to analyses model flow and heat transfer within the reactor core. This volume describes the finitevolume equations and the numerical solution methods used to solve these equations. This analysis of same parameters has been done i.e.; inlet sub cooling 20 BTU/lbm and 40 BTU/lbm, 1000 psi pressure and R-factor is 1.038, mass flux are 0.5 Mlb/hr.ft2, 0.75 Mlb/hr.ft2, 1.00 Mlb/hr.ft2 and 1.25 Mlb/hr.ft2. Those conditions based on history operation of some type of the cell fuel bundle line at GE Nuclear Energy. According to the results, it can be concluded that SBWR critical power bundle is 10.5 % less than current BWR critical power bundle with length reduction of 12 ft to 9 ft.
International Nuclear Information System (INIS)
Galicia A, J.; Francois L, J. L.; Bastida O, G. E.; Esquivel E, J.
2016-09-01
The development of the AZTLAN platform for the analysis and design of nuclear reactors is led by Instituto Nacional de Investigaciones Nucleares (ININ) and divided into four working groups, which have well-defined activities to achieve significant progress in this project individually and jointly. Within these working groups is the users group, whose main task is to use the codes that make up the AZTLAN platform to provide feedback to the developers, and in this way to make the final versions of the codes are efficient and at the same time reliable and easy to understand. In this paper we present the results provided by the AZNHEX v.1.0 code when simulating the core of a fast reactor cooled with sodium at steady state. The validation of these results is a fundamental part of the platform development and responsibility of the users group, so in this research the results obtained with AZNHEX are compared and analyzed with those provided by the Monte Carlo code MCNP-5, software worldwide used and recognized. A description of the methodology used with MCNP-5 is also presented for the calculation of the interest variables and the difference that is obtained with respect to the calculated with AZNHEX. (Author)
Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.
Palkowski, Marek; Bielecki, Wlodzimierz
2018-01-15
parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.
2017-04-13
AFRL-AFOSR-UK-TR-2017-0029 Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems ...2012, “ Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems .” 2. The objective...2012 - 01/25/2015 4. TITLE AND SUBTITLE Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous
Code system for fast reactor neutronics analysis
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.
1983-04-01
A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)
Static Code Analysis with Gitlab-CI
Datko, Szymon Tomasz
2016-01-01
Static Code Analysis is a simple but efficient way to ensure that application’s source code is free from known flaws and security vulnerabilities. Although such analysis tools are often coming with more advanced code editors, there are a lot of people who prefer less complicated environments. The easiest solution would involve education – where to get and how to use the aforementioned tools. However, counting on the manual usage of such tools still does not guarantee their actual usage. On the other hand, reducing the required effort, according to the idea “setup once, use anytime without sweat” seems like a more promising approach. In this paper, the approach to automate code scanning, within the existing CERN’s Gitlab installation, is described. For realization of that project, the Gitlab-CI service (the “CI” stands for "Continuous Integration"), with Docker assistance, was employed to provide a variety of static code analysers for different programming languages. This document covers the gene...
Energy Technology Data Exchange (ETDEWEB)
Fernandes, Gustavo Henrique Nazareno
2018-04-01
Nuclear power is essential to supply global energy demand. Therefore, in order to use nuclear fuel more efficiently, more efficient nuclear reactors technologies researches have been intensified, such as hybrid systems, composed of particle accelerators coupled into nuclear reactors. In order to add knowledge to such studies, an innovative reactor design was considered where the RELAP5-3D thermal-hydraulic analysis code was used to perform a thermal analysis of the core, either in stationary operation or in situations transitory. The addition of new kind of coolants, such as, liquid salts, among them Flibe, lead, lead-bismuth, sodium, lithium-bismuth and lithium-lead was an important advance in this version of the code, making possible to do the thermal simulation of reactors that use these types of coolants. The reactor, object of study in this work, is an innovative reactor, due to its ability to operate in association with an Accelerator Driven System (ADS), considered a predecessor system of the next generation of nuclear reactors (GEN IV). The reactor selected was the MYRRHA (Multi-purpose Hybrid Research Reactor for High tech Applications) due to the availability of data to perform the simulation. In the modeling of the reactor with the code RELAP5-3D, the core was simulated using nodules with 1, 7, 15 and 51 thermohydraulic channels and eutectic lead-bismuth (LBE) as coolant. The parameters, such as, pressure, mass flow and coolant and heat structure temperature were analyzed. In addition, the thermal behavior of the core was evaluated by varying the type of coolant (sodium) in substitution for the LBE of the original design using the model with 7 thermohydraulic channels. The results of the steady-state calculations were compared with data from the literature and the proposed models were verified certifying the ability of the RELAP5-3D code to simulate this innovative reactor. After this step, it was analysed cases of transients with loss of coolant flow
Turbo Pascal Computer Code for PIXE Analysis
International Nuclear Information System (INIS)
Darsono
2002-01-01
To optimal utilization of the 150 kV ion accelerator facilities and to govern the analysis technique using ion accelerator, the research and development of low energy PIXE technology has been done. The R and D for hardware of the low energy PIXE installation in P3TM have been carried on since year 2000. To support the R and D of PIXE accelerator facilities in harmonize with the R and D of the PIXE hardware, the development of PIXE software for analysis is also needed. The development of database of PIXE software for analysis using turbo Pascal computer code is reported in this paper. This computer code computes the ionization cross-section, the fluorescence yield, and the stopping power of elements also it computes the coefficient attenuation of X- rays energy. The computer code is named PIXEDASIS and it is part of big computer code planed for PIXE analysis that will be constructed in the near future. PIXEDASIS is designed to be communicative with the user. It has the input from the keyboard. The output shows in the PC monitor, which also can be printed. The performance test of the PIXEDASIS shows that it can be operated well and it can provide data agreement with data form other literatures. (author)
Uncertainty analysis of the FRAP code
International Nuclear Information System (INIS)
Peck, S.O.
1978-01-01
A user oriented, automated uncertainty analysis capability has been built into the Fuel Rod Analysis Program (FRAP) code and has been applied to a pressurized water reactor (PWR) fuel rod undergoing a loss-of-coolant accident (LOCA). The method of uncertainty analysis is the response surface method. The automated version significantly reduced the time required to complete the analysis and, at the same time, greatly increased the problem scope. Results of the analysis showed a significant difference in the total and relative contributions to the uncertainty of the response parameters between steady state and transient conditions
Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code
Energy Technology Data Exchange (ETDEWEB)
Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T
1985-04-01
This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.
The database 'EDUD Base' for validation of neutron-physics codes used to analyze the WWER-440 cores
International Nuclear Information System (INIS)
Rocek, J.; Belac, J.; Miasnikov, A.
2003-01-01
The program and data system EDUDBase for validation of reactor computing codes was developed at NRI. It is designed for validation and evaluation of the precision of different computer codes used for WWER core analyses. The main goal of this database is to provide data for comparison with calculation results of tested codes and tools for statistical analysis or differences between the calculation results and the test data. The benchmark data sets are based on in-core measurements performed on WWER-440 reactors of Dukovany NPP. The initial data from NPP are verified, errors and inaccuracies are eliminated and data are transferred to a form, which is suitable for comparison with results of calculations. A special reduced operating history data set is created for each operating cycle ('Benchmark Operation History') to be used as an input data for calculation. It contains values of some integral quantities for each time point: effective time, integral thermal power, boron concentration, position of working group control assemblies (group 6) and inlet coolant temperature. At present, sets are available for all completed cycles up to: (unit/cycle) 1/17, 2/16, 3/15, 4/15. Power distribution is described for approx. 40 time steps during each operating cycle. 2D-power distributions are transferred into 60-degree core symmetry sector of reactor core. At present, such data sets are available only for later cycles starting with: (unit/cycle) 1/7, 2/6, 3/5, 4/5 (in other words last II cycles for each unit) (Authors)
International Nuclear Information System (INIS)
Ohtaka, Masahiko; Ohshima, Hiroyuki
1998-10-01
A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including inter-wrapper flow under various reactor operation conditions. In this work, the core module as a main part of the ACT developed last year, which simulates thermal-hydraulics in the subassemblies and the inter-subassembly gaps, was coupled with an one dimensional plant system thermal-hydraulic analysis code LEDHER to simulate transients in the primary heat transport system and to give appropriate boundary conditions to the core model. The effective algorithm to couple these two calculation modules was developed, which required minimum modification of them. In order to couple these two calculation modules on the computing system, parallel computing technique using PVM (Parallel Virtual Machine) programming environment was applied. The code system was applied to analyze an out-of-pile sodium experiment simulating core with 7 subassemblies under transient condition for code verification. It was confirmed that the analytical results show a similar tendency of experimental results. (author)
Benchmark calculation of subchannel analysis codes
International Nuclear Information System (INIS)
1996-02-01
In order to evaluate the analysis capabilities of various subchannel codes used in thermal-hydraulic design of light water reactors, benchmark calculations were performed. The selected benchmark problems and major findings obtained by the calculations were as follows: (1)As for single-phase flow mixing experiments between two channels, the calculated results of water temperature distribution along the flow direction were agreed with experimental results by tuning turbulent mixing coefficients properly. However, the effect of gap width observed in the experiments could not be predicted by the subchannel codes. (2)As for two-phase flow mixing experiments between two channels, in high water flow rate cases, the calculated distributions of air and water flows in each channel were well agreed with the experimental results. In low water flow cases, on the other hand, the air mixing rates were underestimated. (3)As for two-phase flow mixing experiments among multi-channels, the calculated mass velocities at channel exit under steady-state condition were agreed with experimental values within about 10%. However, the predictive errors of exit qualities were as high as 30%. (4)As for critical heat flux(CHF) experiments, two different results were obtained. A code indicated that the calculated CHF's using KfK or EPRI correlations were well agreed with the experimental results, while another code suggested that the CHF's were well predicted by using WSC-2 correlation or Weisman-Pei mechanistic model. (5)As for droplets entrainment and deposition experiments, it was indicated that the predictive capability was significantly increased by improving correlations. On the other hand, a remarkable discrepancy between codes was observed. That is, a code underestimated the droplet flow rate and overestimated the liquid film flow rate in high quality cases, while another code overestimated the droplet flow rate and underestimated the liquid film flow rate in low quality cases. (J.P.N.)
Sandia National Laboratories analysis code data base
Energy Technology Data Exchange (ETDEWEB)
Peterson, C.W.
1994-11-01
Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.
Sandia National Laboratories analysis code data base
Peterson, C. W.
1994-11-01
Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.
Development of an advanced code system for fast-reactor transient analysis
International Nuclear Information System (INIS)
Konstantin Mikityuk; Sandro Pelloni; Paul Coddington
2005-01-01
FAST (Fast-spectrum Advanced Systems for power production and resource management) is a recently approved PSI activity in the area of fast spectrum core and safety analysis with emphasis on generic developments and Generation IV systems. In frames of the FAST project we will study both statics and transients core physics, reactor system behaviour and safety; related international experiments. The main current goal of the project is to develop unique analytical and code capability for core and safety analysis of critical (and sub-critical) fast spectrum systems with an initial emphasis on a gas cooled fast reactors. A structure of the code system is shown on Fig. 1. The main components of the FAST code system are 1) ERANOS code for preparation of basic x-sections and their partial derivatives; 2) PARCS transient nodal-method multi-group neutron diffusion code for simulation of spatial (3D) neutron kinetics in hexagonal and square geometries; 3) TRAC/AAA code for system thermal hydraulics; 4) FRED transient model for fuel thermal-mechanical behaviour; 5) PVM system as an interface between separate parts of the code system. The paper presents a structure of the code system (Fig. 1), organization of interfaces and data exchanges between main parts of the code system, examples of verification and application of separate codes and the system as a whole. (authors)
Development of chemical equilibrium analysis code 'CHEEQ'
International Nuclear Information System (INIS)
Nagai, Shuichiro
2006-08-01
'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)
Statistical hot spot analysis of reactor cores
International Nuclear Information System (INIS)
Schaefer, H.
1974-05-01
This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core
3D Field Modifications of Core Neutral Fueling In the EMC3-EIRENE Code
Waters, Ian; Frerichs, Heinke; Schmitz, Oliver; Ahn, Joon-Wook; Canal, Gustavo; Evans, Todd; Feng, Yuehe; Kaye, Stanley; Maingi, Rajesh; Soukhanovskii, Vsevolod
2017-10-01
The application of 3-D magnetic field perturbations to the edge plasmas of tokamaks has long been seen as a viable way to control damaging Edge Localized Modes (ELMs). These 3-D fields have also been correlated with a density drop in the core plasmas of tokamaks; known as `pump-out'. While pump-out is typically explained as the result of enhanced outward transport, degraded fueling of the core may also play a role. By altering the temperature and density of the plasma edge, 3-D fields will impact the distribution function of high energy neutral particles produced through ion-neutral energy exchange processes. Starved of the deeply penetrating neutral source, the core density will decrease. Numerical studies carried out with the EMC3-EIRENE code on National Spherical Tokamak eXperiment-Upgrade (NSTX-U) equilibria show that this change to core fueling by high energy neutrals may be a significant contributor to the overall particle balance in the NSTX-U tokamak: deep core (Ψ funded by the US Department of Energy under Grant DE-SC0012315.
Energy Technology Data Exchange (ETDEWEB)
Salazar C, J H; Nunez C, A [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)
2004-07-01
The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)
Severe accident analysis using MARCH 1.0 code
International Nuclear Information System (INIS)
Guimaraes, A.C.F.
1987-09-01
The description and utilization of the MARCH 1.0 computer code, which aim to analyse physical phenomena associated with core meltdown accidents in PWR type reactors, are presented. The primary system is modeled as a single volume which is partitioned into a gas (steam and hydrogen) region and a water region. March predicts blowdown from the primary system in single phase. Based on results of the probabilistic safety analysis for the Zion and Indian Point Nuclear Power Plants, the S 2 HFX sequence accident for Angra-1 reactor is studied. The S 2 HFX sequence means that the loss of coolant accident occurs through small break in primary system with bot total failures of the reactor safety system and containment in yours recirculation modes, leading the core melt and the containment failure due to overpressurization. The obtained results were considered reasonable if compared with the results obtained for the Zion and Indian Point nuclear power plants. (Author) [pt
TRAWA, a transient analysis code for water reactions
International Nuclear Information System (INIS)
Rajamaeki, M.
1976-06-01
TRAWA is a transient analysis code for water reactors. It solves the two-group neutron diffusion equations simultaneously with the heat conduction equations and the two-phase hydraulic equations for one or more channels. At most one-dimensional submodels are used. Neither thermal nor hydraulic mixing appear between channels. Doppler, coolant density, coolant temperature, and soluble poison density feedbacks due to the thermohydraulics of the channels are described by using polynomial expansions for the group constants. The hydraulic circuit outside the reactor core consists of by-pass channel and risers with two-phase flow and of pump lines with incompressible flow. Nontrivial implicit methods are employed in the discretization of the equations to allow for sparse spatial mesh and flexible choice of time steps. Various transients can be calculated by applying external disturbances. The code is extensively supplied by input and output capabilities. TRAWA is written in FORTRAN V for UNIVAC 1108 computer. (author)
International Nuclear Information System (INIS)
Schneidesch, C.R.; Guisset, J.P.; Zhang, J.; Bryce, P.; Parkes, M.
2001-01-01
of the heat transfer from fuel pellet to coolant problem. The analysis of the effect of mesh refinement on both flux and thermal-hydraulic mesh demonstrates that the 'coarse' one node per assembly and 24 axial layers produce a fairly well converged solution for the steady-state results as well as for the driven transient, as summarized in Table I. The discrepancy of total core power at peak is ∼2.5% in the RTP scenario (<0.5% of radial peaking factor) compared to the fine mesh (reference) solution. Finally, the coupled RELAP5/PANTHER codes are used in the third exercise to verify the overall performance. In this approach, both client codes perform their calculations in separate operating system processes while the TALINK program controls the data transfers between the two processes. During the data transfer, the client codes are requested to supply data to TALINK as required; TALINK pools all data necessary for exchange into an internal database, manipulates them with simple command interpreter (e.g., for units conversion), and supplies requested data to the client codes for further calculations. Such data transfers are performed using the industrial standard TCP/IP protocols, which can be easily changed and checked. The use of external coupling to solve this problem brings many benefits. The existing RELAP5 and PANTHER tasks and decks from exercises 1 and 2 were merely adapted to the coupling scheme, requiring limited additional quality assurance on already approved models in order to run coupled applications. In some configurations during the coupled transient simulation, the local feedback parameter values may exceed the tabulated range for the nuclear data library provided by the organizers. For those cases, an extrapolation from the nuclear data library beyond its tabulation limits naturally occurs in PANTHER, although such extrapolation was not part of the specifications. The exact behavior of the transient at the peak RTP is influenced by whether or not this
International Nuclear Information System (INIS)
Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi
2014-01-01
We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann equations for neutrinos coupled with hydrodynamics equations. This method is meant to be applied to simulations of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of all orders of v/c. Consistent treatment of the advection and collision terms in the Boltzmann equations has been a challenge, which we overcome by employing two different energy grids: Lagrangian remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional simulation of core-collapse, bounce, and shock-stall for a 15 M ☉ progenitor model with a minimum but essential set of microphysics. We demonstrate in the latter simulation that our new code is capable of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also conducted with the same code, and we show that they produce qualitatively wrong results in neutrino transfer. Finally, we discuss a possible incorporation of general relativistic effects into our method
Selection and benchmarking of computer codes for research reactor core conversions
Energy Technology Data Exchange (ETDEWEB)
Yilmaz, Emin [School of Aerospace, Mechanical and Nuclear Engineering, University of Oklahoma, Norman, OK (United States); Jones, Barclay G [Nuclear Engineering Program, University of IL at Urbana-Champaign, Urbana, IL (United States)
1983-09-01
A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC{sup 2}, COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k{sub eff} is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)
Selection and benchmarking of computer codes for research reactor core conversions
International Nuclear Information System (INIS)
Yilmaz, Emin; Jones, Barclay G.
1983-01-01
A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC 2 , COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k eff is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)
Selection and benchmarking of computer codes for research reactor core conversions
International Nuclear Information System (INIS)
Yilmaz, E.; Jones, B.G.
1983-01-01
A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC 2 , COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of Illinois. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general
Thermal-hydraulic analysis of the Three Mile Island Unit 2 reactor accident with THALES code
International Nuclear Information System (INIS)
Hashimoto, Kazuichiro; Soda, Kunihisa
1991-10-01
The OECD Nuclear Energy Agency (NEA) has established a Task Group in the Committee on the Safety of Nuclear Installations (CSNI) to perform an analysis of Three Mile Island Unit 2 (TMI-2) accident as a standard problem to benchmark severe accident computer codes and to assess the capability of the codes. The TMI-2 Analysis Exercise was performed at the Japan Atomic Energy Research Institute (JAERI) using the THALES (Thermal-Hydraulic Analysis of Loss-of-Coolant, Emergency Core Cooling and Severe Core Damage) - PM1/TMI code. The purpose of the analysis is to verify the capability of THALES-PM1/TMI code to describe accident progression in the actual plant. The present paper describes the final result of the TMI-2 Analysis Exercise performed at JAERI. (author)
Core management and performance analysis for PWR
International Nuclear Information System (INIS)
Lee, J.B.; Lee, C.K.; Kim, J.S.; Lee, S.K.; Moon, K.S.; Chun, B.J.; Chang, J.W.; Kim, Y.J.
1981-01-01
The KINS (KAERI Improved Nodal Simulation) program, a three-dimensional nodal simulation code for pressurized water reactor fuel management, has been developed and benchmarked against the cycles 1 and 2 of the Kori-1 reactor. The critical boron concentration and three-dimensional power distribution at BOL, HZP condition have been calculated and compared with the operating data. A three-dimensional depletion calculation at HFP condition has been performed for cycle 1 with an interval of 1000 MWD/MTU and compared with the operating data. Similar calculation was also performed for cycle 2 and then compared with the design data of the reactor vendor. At the same time, a prediction of in-core detectors reaction rate was made so as to be compared with the operating data. As the result of comparisons, our calculation as well as the justification of the correlations is shown to be in excellent agreement with the operating data within an allowable limit
REFLA-1D/MODE3: a computer code for reflood thermo-hydrodynamic analysis during PWR-LOCA
International Nuclear Information System (INIS)
Murao, Yoshio; Okubo, Tsutomu; Sugimoto, Jun; Iguchi, Tadashi; Sudoh, Takashi.
1985-02-01
This manual describes the REFLA-1D/MODE3 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET Phase A. This manual describes the REFLA-1D/MODE3 models and provides application information required to utilize the code. (author)
Code comparison for accelerator design and analysis
International Nuclear Information System (INIS)
Parsa, Z.
1988-01-01
We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary in these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs
Electromagnetic field and mechanical stress analysis code
International Nuclear Information System (INIS)
1978-01-01
Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem
Energy Technology Data Exchange (ETDEWEB)
Aleshin, Sergey S.; Gorodkov, Sergey S.; Shcherenko, Anna I. [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2016-09-15
A burn-up calculation of large systems by Monte-Carlo code (MCU) is complex process and it requires large computational costs. Previously prepared isotopic compositions are proposed to be used for the Monte-Carlo code calculations of different system states with burnt fuel. Isotopic compositions are calculated by an approximation method. The approximation method is based on usage of a spectral functionality and reference isotopic compositions, that are calculated by the engineering codes (TVS-M, BIPR-7A and PERMAK-A). The multiplication factors and power distributions of FAs from a 3-D reactor core are calculated in this work by the Monte-Carlo code MCU using earlier prepared isotopic compositions. The separate conditions of the burnt core are observed. The results of MCU calculations were compared with those that were obtained by engineering codes.
Fire-accident analysis code (FIRAC) verification
International Nuclear Information System (INIS)
Nichols, B.D.; Gregory, W.S.; Fenton, D.L.; Smith, P.R.
1986-01-01
The FIRAC computer code predicts fire-induced transients in nuclear fuel cycle facility ventilation systems. FIRAC calculates simultaneously the gas-dynamic, material transport, and heat transport transients that occur in any arbitrarily connected network system subjected to a fire. The network system may include ventilation components such as filters, dampers, ducts, and blowers. These components are connected to rooms and corridors to complete the network for moving air through the facility. An experimental ventilation system has been constructed to verify FIRAC and other accident analysis codes. The design emphasizes network system characteristics and includes multiple chambers, ducts, blowers, dampers, and filters. A larger industrial heater and a commercial dust feeder are used to inject thermal energy and aerosol mass. The facility is instrumented to measure volumetric flow rate, temperature, pressure, and aerosol concentration throughout the system. Aerosol release rates and mass accumulation on filters also are measured. We have performed a series of experiments in which a known rate of thermal energy is injected into the system. We then simulated this experiment with the FIRAC code. This paper compares and discusses the gas-dynamic and heat transport data obtained from the ventilation system experiments with those predicted by the FIRAC code. The numerically predicted data generally are within 10% of the experimental data
A study on Monte Carlo analysis of Pebble-type VHTR core for hydrogen production
International Nuclear Information System (INIS)
Kim, Hong Chul
2005-02-01
In order to pursue exact the core analysis for VHTR core which will be developed in future, a study on Monte Carol method was carried out. In Korea, pebble and prism type core are under investigation for VHTR core analysis. In this study, pebble-type core was investigated because it was known that it should not only maintain the nuclear fuel integrity but also have the advantage in economical efficiency and safety. The pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model. After the detailed MCNP modeling of the whole facility, calculations of nuclear characteristics were performed. The two core configurations, Core 4.3 and Core 5 (reference state no. 3), among the 10 configurations of the HTR-PROTEUS cores were chosen to be analyzed in order to treat different fuel loading pattern and modeled. The former is a random packing core and the latter deterministic packing core. Based on the experimental data and the benchmark result of other research groups for the two different cores, some nuclear characteristics were calculated. Firstly, keff was calculated for these cores. The effect for TRIO homogeneity model was investigated. Control rod and shutdown rod worths also were calculated and the sensitivity analysis on cross-section library and reflector thickness was pursued. Lastly, neutron flux profiles were investigated in reflector regions. It is noted that Monte Carlo analysis of pebble-type VHTR core was firstly carried out in Korea. Also, this study should not only provide the basic data for pebble-type VHTR core analysis for hydrogen production but also be utilized as the verified data to validate a computer code for VHTR core analysis which will be developed in future
Web interface for plasma analysis codes
Energy Technology Data Exchange (ETDEWEB)
Emoto, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)], E-mail: emo@nifs.ac.jp; Murakami, S. [Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Yoshida, M.; Funaba, H.; Nagayama, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)
2008-04-15
There are many analysis codes that analyze various aspects of plasma physics. However, most of them are FORTRAN programs that are written to be run in supercomputers. On the other hand, many scientists use GUI (graphical user interface)-based operating systems. For those who are not familiar with supercomputers, it is a difficult task to run analysis codes in supercomputers, and they often hesitate to use these programs to substantiate their ideas. Furthermore, these analysis codes are written for personal use, and the programmers do not expect these programs to be run by other users. In order to make these programs to be widely used by many users, the authors developed user-friendly interfaces using a Web interface. Since the Web browser is one of the most common applications, it is useful for both the users and developers. In order to realize interactive Web interface, AJAX technique is widely used, and the authors also adopted AJAX. To build such an AJAX based Web system, Ruby on Rails plays an important role in this system. Since this application framework, which is written in Ruby, abstracts the Web interfaces necessary to implement AJAX and database functions, it enables the programmers to efficiently develop the Web-based application. In this paper, the authors will introduce the system and demonstrate the usefulness of this approach.
Web interface for plasma analysis codes
International Nuclear Information System (INIS)
Emoto, M.; Murakami, S.; Yoshida, M.; Funaba, H.; Nagayama, Y.
2008-01-01
There are many analysis codes that analyze various aspects of plasma physics. However, most of them are FORTRAN programs that are written to be run in supercomputers. On the other hand, many scientists use GUI (graphical user interface)-based operating systems. For those who are not familiar with supercomputers, it is a difficult task to run analysis codes in supercomputers, and they often hesitate to use these programs to substantiate their ideas. Furthermore, these analysis codes are written for personal use, and the programmers do not expect these programs to be run by other users. In order to make these programs to be widely used by many users, the authors developed user-friendly interfaces using a Web interface. Since the Web browser is one of the most common applications, it is useful for both the users and developers. In order to realize interactive Web interface, AJAX technique is widely used, and the authors also adopted AJAX. To build such an AJAX based Web system, Ruby on Rails plays an important role in this system. Since this application framework, which is written in Ruby, abstracts the Web interfaces necessary to implement AJAX and database functions, it enables the programmers to efficiently develop the Web-based application. In this paper, the authors will introduce the system and demonstrate the usefulness of this approach
Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION
Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.
The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature
Development status of Severe Accident Analysis Code SAMPSON
International Nuclear Information System (INIS)
Iwashita, Tsuyoshi; Ujita, Hiroshi
2000-01-01
The Four years of the IMPACT, 'Integrated Modular Plant Analysis and Computing Technology' project Phase 1 have been completed. The verification study of Severe Accident Analysis Code SAMPSON prototype developed in Phase 1 was conducted in two steps. First, each analysis module was run independently and analysis results were compared and verified against separate-effect test data with good results. Test data are as follows: CORA-13 (FZK) for the Core Heat-up Module; VI-3 of HI/VI Test (ORNL) for the FP Release from Fuel Module; KROTOS-37 (JRC-ISPRA) for the Molten Core Relocation Module; Water Spread Test (UCSB) for the Debris Spreading Model and Benard's Melting Test for Natural Convection Model in the Debris Cooling Module; Hydrogen Burning Test (NUPEC) for the Ex-Vessel Thermal Hydraulics Module; PREMIX, PM10 (FZK) for the Steam Explosion Module; and SWISS-2 (SNL) for the Debris-Concrete Interaction Module. Second, with the Simulation Supervisory System, up to 11 analysis modules were executed concurrently in the parallel environment (currently, NUPEC uses IBM-SP2 with 72 process elements), to demonstrate the code capability and integrity. The target plant was Surry as a typical PWR and the initiation events were a 10-inch cold leg failure. The analysis is divided to two cases; one is in-vessel retention analysis when the gap cooling is effective (In-vessel scenario test), the other is analysis of phenomena event is extended to ex-vessel due to the Reactor Pressure Vessel failure when the gap cooling is not sufficient (Ex-vessel scenario test). The system verification test has confirmed that the full scope of the scenarios can be analyzed and phenomena occurred in scenarios can be simulated qualitatively reasonably considering the physical models used for the situation. The Ministry of International Trade and Industry, Japan sponsors this work. (author)
Introduction of thermal-hydraulic analysis code and system analysis code for HTGR
International Nuclear Information System (INIS)
Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi
1984-01-01
Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)
Analysis of a basic core performance for FBR core nuclear design. 3
International Nuclear Information System (INIS)
Kaneko, Kunio
1999-03-01
The spatial distribution of reaction rates in the ZPPR-13A, having an axially heterogeneous core, has been analyzed. The ZPPR-13A core is treated as a 2-dimensional RZ configuration consisting of a homogeneous core. The analysis is performed by utilizing both probabilistic and deterministic treatments. The probabilistic treatment is performed with the Monte Carlo Code MVP running with continuous energy variable. By comparing the results obtained by both treatments and reviewing the calculation method of effective resonance cross sections, for deterministic treatment, utilized for the reaction rate distributions, it is revealed that the present treatment of effective resonance cross sections is not accurate, since there are observed effects due to dependence on energy group number or energy group width, and on anisotropic scattering. To utilize multi-band method for calculating effective resonance cross sections, widely used by the European researchers, the computer code GROUPIE is installed and the performance of the code is confirmed. Although, in order to improve effective resonance cross sections accuracy, the thermal neutron reactor standard code system SRAC-95 was introduced last year in which the ultra-fine group spectrum calculation module PEACO worked specially under the restriction that number of nuclei having resonance cross section, in any zone, should be less than three, because collision probabilities were obtained by an interpolation method. This year, the module is improved so that these collision probabilities are directly calculated, and by this improvement the highly accurate effective resonance cross sections below the energy of 40.868 keV can be calculated for whole geometrical configurations considered. To extend the application range of the module PEACO, the cross sections of sodium and structure material nuclei are prepared so that they are also represented as ultra-fine group cross sections. By such modifications of cross section library
Preliminary Coupling of MATRA Code for Multi-physics Analysis
International Nuclear Information System (INIS)
Kim, Seongjin; Choi, Jinyoung; Yang, Yongsik; Kwon, Hyouk; Hwang, Daehyun
2014-01-01
The boundary conditions such as the inlet temperature, mass flux, averaged heat flux, power distributions of the rods, and core geometry is given by constant values or functions of time. These conditions are separately calculated and provided by other codes, such as a neutronics or a system codes, into the MATRA code. In addition, the coupling of several codes in the different physics field is focused and embodied. In this study, multiphysics coupling methods were developed for a subchannel code (MATRA) with neutronics codes (MASTER, DeCART) and a fuel performance code (FRAPCON-3). Preliminary evaluation results for representative sample cases are presented. The MASTER and DeCART codes provide the power distribution of the rods in the core to the MATRA code. In case of the FRAPCON-3 code, the variation of the rod diameter induced by the thermal expansion is yielded and provided. The MATRA code transfers the thermal-hydraulic conditions that each code needs. Moreover, the coupling method with each code is described
International Nuclear Information System (INIS)
Jevremovic, Tatjana; Hursin, Mathieu; Satvat, Nader; Hopkins, John; Xiao, Shanjie; Gert, Godfree
2006-01-01
The AGENT (Arbitrary Geometry Neutron Transport) an open-architecture reactor modeling tool is deterministic neutron transport code for two or three-dimensional heterogeneous neutronic design and analysis of the whole reactor cores regardless of geometry types and material configurations. The AGENT neutron transport methodology is applicable to all generations of nuclear power and research reactors. It combines three theories: (1) the theory of R-functions used to generate real three-dimensional whole-cores of square, hexagonal or triangular cross sections, (2) the planar method of characteristics used to solve isotropic neutron transport in non-homogenized 2D) reactor slices, and (3) the one-dimensional diffusion theory used to couple the planar and axial neutron tracks through the transverse leakage and angular mesh-wise flux values. The R-function-geometrical module allows a sequential building of the layers of geometry and automatic sub-meshing based on the network of domain functions. The simplicity of geometry description and selection of parameters for accurate treatment of neutron propagation is achieved through the Boolean algebraic hierarchically organized simple primitives into complex domains (both being represented with corresponding domain functions). The accuracy is comparable to Monte Carlo codes and is obtained by following neutron propagation through real geometrical domains that does not require homogenization or simplifications. The efficiency is maintained through a set of acceleration techniques introduced at all important calculation levels. The flux solution incorporates power iteration with two different acceleration techniques: Coarse Mesh Re-balancing (CMR) and Coarse Mesh Finite Difference (CMFD). The stand-alone originally developed graphical user interface of the AGENT code design environment allows the user to view and verify input data by displaying the geometry and material distribution. The user can also view the output data such
Analysis of high moderation full MOX BWR core physics experiments BASALA
International Nuclear Information System (INIS)
Ishii, Kazuya; Ando, Yoshihira; Takada, Naoyuki; Kan, Taro; Sasagawa, Masaru; Kikuchi, Tsukasa; Yamamoto, Toru; Kanda, Ryoji; Umano, Takuya
2005-01-01
Nuclear Power Engineering Corporation (NUPEC) has performed conceptual design studies of high moderation full MOX LWR cores that aim for increasing fissile Pu consumption rate and reducing residual Pu in discharged MOX fuel. As part of these studies, NUPEC, French Atomic Energy Commission (CEA) and their industrial partners implemented an experimental program BASALA following MISTRAL. They were devoted to measuring the core physics parameters of such advanced cores. The MISTRAL program consists of one reference UO 2 core, two homogeneous full MOX cores and one full MOX PWR mock-up core that have higher moderation ratio than the conventional lattice. As for MISTRAL, the analysis results have already been reported on April 2003. The BASALA program consists of two high moderation full MOX BWR mock-up cores for operating and cold stand-by conditions. NUPEC has analyzed the experimental results of BASALA with the diffusion and the transport calculations by the SRAC code system and the continuous energy Monte Carlo calculations by the MVP code with the common nuclear data file, JENDL-3.2. The calculation results well reproduce the experimental data approximately within the same range of the experimental uncertainty. The analysis results of MISTRAL and BASALA indicate that these applied analysis methods have the same accuracy for the UO 2 and MOX cores, for the different moderation MOX cores, and for the homogeneous and the mock-up MOX cores. (author)
The PARET code and the analysis of the SPERT I transients
Energy Technology Data Exchange (ETDEWEB)
Woodruff, William L [Argonne National Laboratory, Argonne (United States)
1983-09-01
The PARET code has been adapted for the testing of methods and models and for subsequent use in the analysis of transient behavior in research reactors. Comparisons with the experimental results from the SPERT-I transients are provided. The code has also been applied to the analysis of the IAEA 10 MW benchmark cores for protected and unprotected transients. The PARET code was originally developed for the analysis of the SPERT-III experiments for temperatures and pressures typical of power reactors. This code has now been modified to include a selection of flow instability, departure from nucleate boiling (DNB), single and two-phase heat transfer correlations, and a properties library considered more applicable to the low pressures, temperatures, and flow rates encountered in research reactors. The PARET code provides a coupled thermal, hydraulic, and point kinetics capability with continuous reactivity feedback, and an optional voiding model which estimates the voiding produced by subcooled boiling. The present version of the PARET code provides a convenient means of assessing the various models and correlations proposed for use in the analysis of research reactor behavior. For comparison with experiments the SPERT-I cores B-24/32, B-12/64, and D-12/25 were chosen. The B-24/32 core is similar in design to many plate type research reactors in current operation, and the D-12/25 core is of interest because the test included both nondestructive and destructive transients.
The PARET code and the analysis of the SPERT I transients
International Nuclear Information System (INIS)
Woodruff, William L.
1983-01-01
The PARET code has been adapted for the testing of methods and models and for subsequent use in the analysis of transient behavior in research reactors. Comparisons with the experimental results from the SPERT-I transients are provided. The code has also been applied to the analysis of the IAEA 10 MW benchmark cores for protected and unprotected transients. The PARET code was originally developed for the analysis of the SPERT-III experiments for temperatures and pressures typical of power reactors. This code has now been modified to include a selection of flow instability, departure from nucleate boiling (DNB), single and two-phase heat transfer correlations, and a properties library considered more applicable to the low pressures, temperatures, and flow rates encountered in research reactors. The PARET code provides a coupled thermal, hydraulic, and point kinetics capability with continuous reactivity feedback, and an optional voiding model which estimates the voiding produced by subcooled boiling. The present version of the PARET code provides a convenient means of assessing the various models and correlations proposed for use in the analysis of research reactor behavior. For comparison with experiments the SPERT-I cores B-24/32, B-12/64, and D-12/25 were chosen. The B-24/32 core is similar in design to many plate type research reactors in current operation, and the D-12/25 core is of interest because the test included both nondestructive and destructive transients
Development of disruption thermal analysis code DREAM
Energy Technology Data Exchange (ETDEWEB)
Yamazaki, Seiichiro; Kobayahsi, Takeshi [Kawasaki Heavy Industries Ltd., Kobe (Japan); Seki, Masahiro
1989-07-01
When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author).
Development of disruption thermal analysis code DREAM
International Nuclear Information System (INIS)
Yamazaki, Seiichiro; Kobayahsi, Takeshi; Seki, Masahiro.
1989-01-01
When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author)
Monte Carlo analysis of Musashi TRIGA mark II reactor core
International Nuclear Information System (INIS)
Matsumoto, Tetsuo
1999-01-01
The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k eff ) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k eff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)
Analysis of Homogeneous BFS-73-1 MA Benchmark Core
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeong Il; Yoo, Jae Woon; Song, Hoon; Jang, Jin Wook; Kim, Yeong Il
2007-06-15
Analysis of BFS-73-1 critical assembly for MA transmutation has been carried out by using K-CORE system mainly, DIF3D code. All of measured data are compared with the results of analysis and sensitiveness of calculation conditions, for example, number of neutron energy groups, mesh size used, and analysis method, are assessed. Effective multiplication factor was in good agreement within experimental uncertainty in both transport and diffusion calculations. Fission rate distribution of U-235 and U-238 is also fairly good agreed with experimental results within maximum 5% in core region. But large discrepancy was seen in blanket region and it tends to increase as the location closes to core boundary. Largest error of relative reaction rate ratio was seen in Am-243 fission and U-238 capture. For the case of Am-243, the error lay on appropriate range considering the measurement uncertainty of that as 4.6%. Sample reactivity worths for scattering dominant isotope was greatly differ from the experimental results, which can be explained in terms of sample heterogeneity effect, sample self shielding and finally resonance bilinear correction effect. These effects will be evaluated as future study. C/E of effective delayed neutron fraction is within 4%, which is within the measurement uncertainty.
Analysis of Homogeneous BFS-73-1 MA Benchmark Core
International Nuclear Information System (INIS)
Kim, Yeong Il; Yoo, Jae Woon; Song, Hoon; Jang, Jin Wook; Kim, Yeong Il
2007-06-01
Analysis of BFS-73-1 critical assembly for MA transmutation has been carried out by using K-CORE system mainly, DIF3D code. All of measured data are compared with the results of analysis and sensitiveness of calculation conditions, for example, number of neutron energy groups, mesh size used, and analysis method, are assessed. Effective multiplication factor was in good agreement within experimental uncertainty in both transport and diffusion calculations. Fission rate distribution of U-235 and U-238 is also fairly good agreed with experimental results within maximum 5% in core region. But large discrepancy was seen in blanket region and it tends to increase as the location closes to core boundary. Largest error of relative reaction rate ratio was seen in Am-243 fission and U-238 capture. For the case of Am-243, the error lay on appropriate range considering the measurement uncertainty of that as 4.6%. Sample reactivity worths for scattering dominant isotope was greatly differ from the experimental results, which can be explained in terms of sample heterogeneity effect, sample self shielding and finally resonance bilinear correction effect. These effects will be evaluated as future study. C/E of effective delayed neutron fraction is within 4%, which is within the measurement uncertainty
THYDE-P2 code: RCS (reactor-coolant system) analysis code
International Nuclear Information System (INIS)
Asahi, Yoshiro; Hirano, Masashi; Sato, Kazuo
1986-12-01
THYDE-P2, being characterized by the new thermal-hydraulic network model, is applicable to analysis of RCS behaviors in response to various disturbances including LB (large break)-LOCA(loss-of-coolant accident). In LB-LOCA analysis, THYDE-P2 is capable of through calculation from its initiation to complete reflooding of the core without an artificial change in the methods and models. The first half of the report is the description of the methods and models for use in the THYDE-P2 code, i.e., (1) the thermal-hydraulic network model, (2) the various RCS components models, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the user's mannual for the THYDE-P2 code (version SV04L08A) containing items; (1) the program control (2) the input requirements, (3) the execution of THYDE-P2 job, (4) the output specifications and (5) the sample problem to demonstrate capability of the thermal-hydraulic network model, among other things. (author)
Severe core damage experiments and analysis for CANDU applications
International Nuclear Information System (INIS)
Mathew, P.M.; White, A.J.; Snell, V.G.; Bonechi, M.
2003-01-01
AECL uses the MAAP CANDU code to calculate the progression of a severe core damage accident in a CANDU reactor to support Level 2 Probabilistic Safety Assessment and Severe Accident Management activities. Experimental data are required to ensure that the core damage models used in MAAP CANDU code are adequate. In SMiRT 16, details of single channel experiments were presented to elucidate the mechanisms of core debris formation. This paper presents the progress made in severe core damage experiments since then using single channels in an inert atmosphere and results of the model development work to support the experiments. The core disassembly experiments are conducted with one-fifth scale channels made of Zr-2.5wt%Nb containing twelve simulated fuel bundles in an inert atmosphere. The reference fuel channel geometry consists of a pressure tube/calandria tube composite, with the pressure tube ballooned into circumferential contact with the calandria tube. Experimental results from single channel tests showed the development of time-dependent sag when the reference channel temperature exceeded 850 degC. The test results also showed significant strain localization in the gap at the bundle junctions along the bottom side of the channel, thus suggesting creep to be the main deformation mechanism for debris formation. An ABAQUS finite element model using two-dimensional beam elements with circular cross-section was developed to explain the experimental findings. A comparison of the calculated central sag (at mid-span), the axial displacement at the free end of the channel and the post-test sag profile showed good agreement with the experiments, when strain localization was included in the model, suggesting such a simple modelling approach would be adequate to explain the test findings. The results of the tests are important not only in the context of the validation of the analytical tools and models adopted by AECL for the severe accident analysis of CANDU reactors but
OPAL- the in-core fuel management code system for WWER reactors
International Nuclear Information System (INIS)
Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.; Vlachovsky, K.
2002-01-01
Fuel management optimization is a complex problem namely for WWER reactors, which at present are utilizing burnable poisons (BP) to great extent. In this paper, first the concept and methodologies of a fuel management system for WWER 440 (NPP Dukovany) and NPP WWER 1000 (NPP Temelin) under development in Skoda JS a.s. are described and followed by some practical applications. The objective of this advanced system is to minimize fuel cost by preserving all safety constraints and margins. Future enhancements of the system will allow is it to perform fuel management optimization in the multi-cycle mode. The general objective functions of the system are the maximization of EOC reactivity, the maximization of discharge burnup, the minimization of fresh fuel inventory / or the minimization of feed enrichment, the minimization of the BP inventory. There are also safety related constraints, in which the minimization of power peaking plays a dominant role. The core part of the system requires meeting the major objective: maximizing the EOC Keff for a given fuel cycle length and consists of four coupled calculation steps. The first is the calculation of a Loading Priority Scheme (LPS). which is used to rank the core positions in terms of assembly Kinf values. In the second step the Haling power distribution is calculated and by using fuel shuffle and/or enrichment splitting algorithms and heuristic rules the core pattern is modified to meet core constraints. In this second step a directive/evolutionary algorithm with expert rules based optimization code is used. The optimal BP assignment is alternatively considered to be a separate third step of the procedure. In the fourth step the core is depleted in normal up to 3D pin wise level using the BP distribution developed in step three and meeting all constraints is checked. One of the options of this optimization system is expert friendly interactive mode (Authors)
Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor
Byun, Chansup; Kepner, Jeremy; Arcand, William; Bestor, David; Bergeron, Bill; Gadepally, Vijay; Houle, Michael; Hubbell, Matthew; Jones, Michael; Klein, Anna; Michaleas, Peter; Milechin, Lauren; Mullen, Julie; Prout, Andrew; Rosa, Antonio
2017-01-01
Knights Landing (KNL) is the code name for the second-generation Intel Xeon Phi product family. KNL has generated significant interest in the data analysis and machine learning communities because its new many-core architecture targets both of these workloads. The KNL many-core vector processor design enables it to exploit much higher levels of parallelism. At the Lincoln Laboratory Supercomputing Center (LLSC), the majority of users are running data analysis applications such as MATLAB and O...
Development of intelligent code system to support conceptual design of nuclear reactor core
International Nuclear Information System (INIS)
Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro
1997-01-01
An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)
Energy Technology Data Exchange (ETDEWEB)
Arkhipov, O.P.; Kabakchi, S.A. [OKB Gidropress, Podolsk, Moscow (Russian Federation)
2010-07-01
Code Bora for WWER coolant radiolysis calculation considering single jets boiling in the reactor core top part is developed on the basis of computer codes MOPABA-H2 (radiolysis of aqueous solutions) and SteamRad (radiolysis of vapor). Physico-chemical processes taking place in boiling core coolant are complex and diversified. Still, for the solution of certain problems their simulation can be simplified. The approach of reasonable simplification was used for development of code Bora: mathematical model assumed is purposed for simulation of phenomena only in the area of interest; the number of simulated chemical reactions and particles shall be reasonably minimum; complexity of interphase mass transfer calculation procedure shall be adequate to actually available accuracy of modeling. The analysis of new experimental initial yields of water radiolysis products data and kinetic parameters of elementary chemical reactions with their participation has been carried out. Some changes have been introduced in the mechanism of liquid water and aqueous solutions of ammonia radiolysis have been significantly revised on the basis of this analysis. Examples of the calculations provided for code Bora verification are presented. Despite of very simple simulation of interphase mass transfer, Bora allows to obtain average chemical composition of two-phase coolant at BWR core outlet with the accuracy sufficient for engineering calculations. The report also presents the results of two-phase coolant chemical composition test calculation for reactor core top part coolant boiling in pressurized water reactor. (author)
Scoping Analysis on Core Disruptive Accident in PGSFR (2015 Results)
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Won; Chang, Won-Pyo; Ha, Kwi-Seok; Ahn, Sang June; Kang, Seok Hun; Choi, Chi-Woong; Lee, Kwi Lim; Jeong, Jae-Ho; Kim, Jin Su; Jeong, Taekyeong [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In general, the severe accident is classified by three phases. The first phase is the initiation (pre-disassembly) phase that occurs the gradual core meltdown from accident initiation to the point of neutronic shutdown with an intact geometry. The second phase is the transition phase that happens the fuel transition from a solid to a liquid phase. Fuel and cladding can melt to form a molten pool and core can boil, then criticality conditions can recur. The third phase is the disassembly phase. In other words, this phase is Core Disruptive Accident (CDA). Power excursion is followed until the core is disassembled in this phase. In the early considerations of Liquid Metal Fast Breeder Reactor (LMFBR) energetics, the term Hypothetical Core Disruptive Accidents (HCDAs) was in common use. This was not only to connote the extremely low probability of initiation of such accidents, but also the tentative nature of our understanding of their behavior and resulting consequences. A numerical analysis is conducted to estimate the energy release, pressure behavior and core expansion behavior induced by CDA of PGSFR using CDA-ER and CDA-CEME codes. Conservatively, the calculated results of energy release and pressure behavior induced by CDA without Doppler effect in PGSFR when whole cores were melted (100 $/s) were 7.844 GJ and 4.845 GPa, respectively. With Doppler effect, the analyzed maximum energy release and pressure were 6.696 GJ and 3.449 GPa, respectively. The calculated results of the core expansion behavior during 0.015 seconds after the explosion without Doppler effect in PGSFR when whole cores were melted (100 $/s) were as follows: The total energy is calculated to be 1.87 GJ. At 0.01 s, the kinetic energy of the sodium is 1.85 GJ, while the expansion work and internal energy of the bubble are 19.7 MJ and 0.98 J, respectively. With Doppler effect, the total energy is calculated to be 1.33 GJ. At 0.01 s, the kinetic energy of the sodium is 1.31 GJ, while the expansion
Energy Technology Data Exchange (ETDEWEB)
Kim, Chang Hyo; Hong, In Seob; Han, Beom Seok; Jeong, Jong Seong [Seoul National University, Seoul (Korea)
2002-03-01
The objective of this project is to verify neutronics characteristics of the SMART core design as to compare computational results of the MCNAP code with those of the MASTER code. To achieve this goal, we will analyze neutronics characteristics of the SMART core using the MCNAP code and compare these results with results of the MASTER code. We improved parallel computing module and developed error analysis module of the MCNAP code. We analyzed mechanism of the error propagation through depletion computation and developed a calculation module for quantifying these errors. We performed depletion analysis for fuel pins and assemblies of the SMART core. We modeled a 3-D structure of the SMART core and considered a variation of material compositions by control rods operation and performed depletion analysis for the SMART core. We computed control-rod worths of assemblies and a reactor core for operation of individual control-rod groups. We computed core reactivity coefficients-MTC, FTC and compared these results with computational results of the MASTER code. To verify error analysis module of the MCNAP code, we analyzed error propagation through depletion of the SMART B-type assembly. 18 refs., 102 figs., 36 tabs. (Author)
Extending CANTUP code analysis to probabilistic evaluations
International Nuclear Information System (INIS)
Florea, S.
2001-01-01
The structural analysis with numerical methods based on final element method plays at present a central role in evaluations and predictions of structural systems which require safety and reliable operation in aggressive environmental conditions. This is the case too for the CANDU - 600 fuel channel, where besides the corrosive and thermal aggression upon the Zr97.5Nb2.5 pressure tubes, a lasting irradiation adds which has marked consequences upon the materials properties evolution. This results in an unavoidable spreading in the materials properties in time, affected by high uncertainties. Consequently, the deterministic evaluation with computation codes based on finite element method are supplemented by statistic and probabilistic methods of evaluation of the response of structural components. This paper reports the works on extending the thermo-mechanical evaluation of the fuel channel components in the frame of probabilistic structure mechanics based on statistical methods and developed upon deterministic CANTUP code analyses. CANTUP code was adapted from LAHEY 77 platform onto Microsoft Developer Studio - Fortran Power Station 4.0 platform. To test the statistical evaluation of the creeping behaviour of pressure tube, the value of longitudinal elasticity modulus (Young) was used, as random variable, with a normal distribution around value, as used in deterministic analyses. The influence of the random quantity upon the hog and effective stress developed in the pressure tube for to time values, specific to primary and secondary creep was studied. The results obtained after a five year creep, corresponding to the secondary creep are presented
JAERI thermal reactor standard code system for reactor design and analysis SRAC
International Nuclear Information System (INIS)
Tsuchihashi, Keichiro
1985-01-01
SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)
Energy Technology Data Exchange (ETDEWEB)
Spindler, B.; Moreau, G.M.; Pigny S. [Centre d`Etudes Nucleaires de Grenoble (France)
1995-09-01
The TOLBIAC code is devoted to the simulation of the behavior of a molten core within a structure (pressure vessel of core catcher), taking into account the relative position of the core components, the wall ablation and the crust formation. The code is briefly described: 3D model, physical properties and constitutive laws. wall ablation and crust model. Two results are presented: the simulation of the COPO experiment (natural convection with water in a 1/2 scale elliptic pressure vessel), and the simulation of the behavior of a corium in a PWR pressure vessel, with ablation and crust formation.
Use of computer codes for system reliability analysis
International Nuclear Information System (INIS)
Sabek, M.; Gaafar, M.; Poucet, A.
1988-01-01
This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared
International Nuclear Information System (INIS)
Xhonneux, Andre; Allelein, Hans-Josef
2014-01-01
The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR
Investigation of alpha experiment by severe accident analysis code SAMPSON
International Nuclear Information System (INIS)
Baglietto, Emilio; Ninokata, Hisashi; Naitoh, Masanori
2006-01-01
The severe accident analysis code SAMPSON is adopted in this work to evaluate its capability of reproducing the complex gap cooling phenomenon. The ALPHA experiment is adopted for validation, where molten aluminum oxide (Al 2 O 3 ) produced by a thermite reaction is poured into a water filled hemispherical vessel at the ambient pressure of approximately 1.3 MPa. The spreading and cooling of the debris that has relocated into the pressure vessel lower plenum are simulated, including the analysis of the RPV failure. The model included in the core to mimic the water penetration inside the gap is evaluated and improvements are proposed. The importance of the introduction of some mechanistic approach to describe the gap formation and evolution is underlined, where the results show its necessity in order to correctly reproduce the experimental trends. (author)
Application of Network Analysis Method to VHTR core
International Nuclear Information System (INIS)
Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl
2012-01-01
A Very High Temperature Reactor (VHTR) is currently envisioned as a promising future reactor concept because of its high-efficiency and capability of generating hydrogen. Prismatic Modular Reactor (PMR) is one of the main VHTR concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear grade graphite. However their shape could be changed by neutron damage during the reactor operation and the shape change can makes the gaps between the blocks inducing bypass flow. Most of reactor coolant flows through the coolant channel within the fuel block, but some portion of the reactor coolant bypasses to the interstitial gaps. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively. CFD simulation for the full core of VHTR might be possible but it requires vast computational cost and time. Therefore, fast, flexible and reliable code is required to predict the flow distribution corresponding to the various bypass gap distribution. Consequently in this study, the flow network analysis method is applied to analyze the core flow of VHTR. The applied method was validated by comparing with SNU VHTR multiblock experiment. As a result, the calculated results show good agreements with experimental data although computational time and cost of the developed code was very small
Improvement of numerical analysis method for FBR core characteristics. 3
International Nuclear Information System (INIS)
Takeda, Toshikazu; Yamamoto, Toshihisa; Kitada, Takanori; Katagi, Yousuke
1998-03-01
As the improvement of numerical analysis method for FBR core characteristics, studies on several topics have been conducted; multiband method, Monte Carlo perturbation and nodal transport method. This report is composed of the following three parts. Part 1: Improvement of Reaction Rate Calculation Method in the Blanket Region Based on the Multiband Method; A method was developed for precise evaluation of the reaction rate distribution in the blanket region using the multiband method. With the 3-band parameters obtained from the ordinary fitting method, major reaction rates such as U-238 capture, U-235 fission, Pu-239 fission and U-238 fission rate distributions were analyzed. Part 2: Improvement of Estimation Method for Reactivity Based on Monte-Carlo Perturbation Theory; Perturbation theory based on Monte-Carlo perturbation theory have been investigated and introduced into the calculational code. The Monte-Carlo perturbation code was applied to MONJU core and the calculational results were compared to the reference. Part 3: Improvement of Nodal Transport Calculation for Hexagonal Geometry; A method to evaluate the intra-subassembly power distribution from the nodal averaged neutron flux and surface fluxes at the node boundaries, was developed based on the transport theory. (J.P.N.)
Development of Advanced Suite of Deterministic Codes for VHTR Physics Analysis
Energy Technology Data Exchange (ETDEWEB)
Kim, Kang Seog; Cho, J. Y.; Lee, K. H. (and others)
2007-07-15
Advanced Suites of deterministic codes for VHTR physics analysis has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. These code suites include the conventional 2-step procedure in which a few group constants are generated by a transport lattice calculation, and the reactor physics analysis is performed by a 3-dimensional diffusion calculation, and a whole core transport code that can model local heterogeneities directly at the core level. Particular modeling issues in physics analysis of the gas-cooled VHTRs were resolved, which include a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment, temperature and burnup. And the geometry handling capability of the DeCART code were extended to deal with the hexagonal fuel elements of the VHTR core. The developed code suites were validated and verified by comparing the computational results with those of the Monte Carlo calculations for the benchmark problems.
Analysis code for large rupture accidents in ATR. SENHOR/FLOOD/HEATUP
International Nuclear Information System (INIS)
1997-08-01
In the evaluation of thermo-hydraulic transient change, the behavior of core reflooding and the transient change of fuel temperature in the events which are classified in large rupture accidents of reactor coolant loss, that is the safety evaluation event of the ATR, the analysis codes for thermo-hydraulic transient change at the time of large rupture SENHOR, for core reflooding characteristics FLOOD and for fuel temperature HEATUP are used, respectively. The analysis code system for loss of coolant accident comprises the analysis code for thermo-hydraulic transient change at the time of medium and small ruptures LOTRAC in addition to the above three codes. Based on the changes with time lapse of reactor thermal output and steam drum pressure obtained by the SENHOR, average reflooding rate is analyzed by the FLOOD, and the time of starting the turnaround of fuel cladding tube temperature and the heat transfer rate after the turnaround are determined. Based on these data, the detailed temperature change of fuel elements is analyzed by the HEATUP, and the highest temperature and the amount of oxidation of fuel cladding tubes are determined. The SENHOR code, the FLOOD code and the HEATUP code and various models for these codes are explained. The example of evaluation and the sensitivity analysis of the ATR plant are reported in the Appendix. (K.I.)
Current lead thermal analysis code 'CURRENT'
International Nuclear Information System (INIS)
Yamaguchi, Masahito; Tada, Eisuke; Shimamoto, Susumu; Hata, Kenichiro.
1985-08-01
Large gas-cooled current lead with the capacity more than 30 kA and 22 kV is required for superconducting toroidal and poloidal coils for fusion application. The current lead is used to carry electrical current from the power supply system at room temperature to the superconducting coil at 4 K. Accordingly, the thermal performance of the current lead is significantly important to determine the heat load requirements of the coil system at 4 K. Japan Atomic Energy Research Institute (JAERI) has being developed the large gas-cooled current leads with the optimum condition in which the heat load is around 1 W per 1 kA at 4 K. In order to design the current lead with the optimum thermal performances, JAERI developed thermal analysis code named as ''CURRENT'' which can theoretically calculate the optimum geometric shape and cooling conditions of the current lead. The basic equations and the instruction manual of the analysis code are described in this report. (author)
The spectral code Apollo2: from lattice to 2D core calculations
International Nuclear Information System (INIS)
Coste-Delclaux, M.; Santandrea, S.; Damian, F.; Blanc-Tranchant, P.; Zmijarevic, I.; Santamarina, A.
2005-01-01
Apollo2 is a powerful code dedicated to neutron transport, it is a highly qualified tool for a wide range of applications from research and development studies to industrial applications. Today Apollo2 is part of several advanced 3-dimensional nuclear code packages dedicated to reactor physics, fuel cycle, criticality and safety analysis. The presentations have been organized into 7 topics: -) an introduction to Apollo2, -) cross-sections, -) flux calculation, -) advanced applications, -) Apollo2 users, specialized packages, -) qualification program, and -) the future of Apollo2. This document gathers only the slides of the presentations
The spectral code Apollo2: from lattice to 2D core calculations
Energy Technology Data Exchange (ETDEWEB)
Coste-Delclaux, M.; Santandrea, S.; Damian, F.; Blanc-Tranchant, P.; Zmijarevic, I. [CEA Saclay (DEN/DANS/SERMA), 91 - Gif-sur-Yvette (France); Santamarina, A. [CEA Cadarache (CEA/DEN/DER/SPRC), 13 - Saint Paul lez Durance (France)
2005-07-01
Apollo2 is a powerful code dedicated to neutron transport, it is a highly qualified tool for a wide range of applications from research and development studies to industrial applications. Today Apollo2 is part of several advanced 3-dimensional nuclear code packages dedicated to reactor physics, fuel cycle, criticality and safety analysis. The presentations have been organized into 7 topics: -) an introduction to Apollo2, -) cross-sections, -) flux calculation, -) advanced applications, -) Apollo2 users, specialized packages, -) qualification program, and -) the future of Apollo2. This document gathers only the slides of the presentations.
European ERANOS formulaire for fast reactor core analysis
International Nuclear Information System (INIS)
Rimpault, Gerald
2003-01-01
ERANOS code scheme was developed within the European collaboration on fast reactors. It contains all the functions required to calculate a complete set of core, shielding and fuel cycle parameters for LMFR cores. Nuclear data are taken from recent evaluations (JEF2.2) and adjusted on integral experiments (ERALIB1). Calculational scheme uses the ECCO cell code to generate cross section data. Whole core calculations are carried out using the spatial modules BISTRO (Sn) and TGVNARIANT (nodal method). Validation is based on integral and power reactor experiments. Integral experiments are also used for adjustment of nuclear data
Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System
International Nuclear Information System (INIS)
Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun
2012-01-01
The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method
Review of the SCDAP/RELAP5/MOD3.1 code structure and core T/H model before core damage
International Nuclear Information System (INIS)
Kim, See Darl; Kim, Dong Ha
1998-04-01
The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code is being developed at the INEL under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. NRC. As The current time, the SCDAP/RELAP5/MOD3.1 code is the result of merging the RELAP5/MOD3 and SCDAP models. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. Major purpose of the report is to provide information about the characteristics of SCDAP/RELAP5/MOD3.1 core T/H models for an integrated severe accident computer code being developed under the mid/long-term project. This report analyzes the overall code structure which consists of the input processor, transient controller, and plot file handler. The basic governing equations to simulate the thermohydraulics of the primary system are also described. As the focus is currently concentrated in the core, core nodalization parameters of the intact geometry and the phenomenological subroutines for the damaged core are summarized for the future usage. In addition, the numerical approach for the heat conduction model is investigated along with heat convection model. These studies could provide a foundation for input preparation and model improvement. (author). 6 refs., 3 tabs., 4 figs
Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems
International Nuclear Information System (INIS)
T-M Sembiring; S-Pinem; P-H Liem
2015-01-01
The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)
International Nuclear Information System (INIS)
Nakagawa, M.; Tsuboi, Y.
1990-01-01
''ARKAS'' code verification, with the problems set in the International Working Group on Fast Reactors (IWGFR) Coordinated Research Programme (CRP) on the inter-comparison between liquid metal cooled fast breeder reactor (LMFBR) Core Mechanics Codes, is discussed. The CRP was co-ordinated by the IWGFR around problems set by Dr. R.G. Anderson (UKAEA) and arose from the IWGFR specialists' meeting on The Predictions and Experience of Core Distortion Behaviour (ref. 2). The problems for the verification (''code against code'') and validation (''code against experiment'') were set and calculated by eleven core mechanics codes from nine countries. All the problems have been completed and were solved with the core structural mechanics code ARKAS. Predictions by ARKAS agreed very well with other solutions for the well-defined verification problems. For the validation problems based on Japanese ex-reactor 2-D thermo-elastic experiments, the agreements between measured and calculated values were fairly good. This paper briefly describes the numerical model of the ARKAS code, and discusses some typical results. (author)
Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions
International Nuclear Information System (INIS)
Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei
2017-01-01
Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k_e_f_f and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.
Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions
Energy Technology Data Exchange (ETDEWEB)
Wan, Chenghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Shen, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)
2017-04-15
Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k{sub eff} and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.
ANDREA: Advanced nodal diffusion code for reactor analysis
International Nuclear Information System (INIS)
Belac, J.; Josek, R.; Klecka, L.; Stary, V.; Vocka, R.
2005-01-01
A new macro code is being developed at NRI which will allow coupling of the advanced thermal-hydraulics model with neutronics calculations as well as efficient use in core loading pattern optimization process. This paper describes the current stage of the macro code development. The core simulator is based on the nodal expansion method, Helios lattice code is used for few group libraries preparation. Standard features such as pin wise power reconstruction and feedback iterations on critical control rod position, boron concentration and reactor power are implemented. A special attention is paid to the system and code modularity in order to enable flexible and easy implementation of new features in future. Precision of the methods used in the macro code has been verified on available benchmarks. Testing against Temelin PWR operational data is under way (Authors)
Neutronic analysis of LMFBRs during severe core disruptive accidents
International Nuclear Information System (INIS)
Tomlinson, E.T.
1979-01-01
A number of numerical experiments were performed to assess the validity of diffusion theory and various perturbation methods for calculating the reactivity state of a severely disrupted liquid metal cooled fast breeder reactor (LMFBR). The disrupted configurations correspond, in general, to phases through which an LMFBR core could pass during a core disruptive accident (CDA). Two-reactor models were chosen for this study, the two zone, homogeneous Clinch River Breeder Reactor and the Large Heterogeneous Reactor Design Study Core. The various phases were chosen to approximate the CDA results predicted by the safety analysis code SAS3D. The calculational methods investigated in this study include the eigenvalue difference technique based on both discrete ordinate transport theory and diffusion theory, first-order perturbation theory, exact perturbation theory, and a new hybrid perturbation theory. Selected cases were analyzed using Monte Carlo methods. It was found that in all cases, diffusion theory and perturbation theory yielded results for the change in reactivity that significantly disagreed with both the discrete ordinate and Monte Carlo results. These differences were, in most cases, in a nonconservative direction
Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core
International Nuclear Information System (INIS)
Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park
2000-01-01
This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)
A SAS2H/KENO-V Methodology for 3D Full Core depletion analysis
International Nuclear Information System (INIS)
Milosevic, M.; Greenspan, E.; Vujic, J.; Petrovic, B.
2003-04-01
This paper describes the use of a SAS2H/KENO-V methodology for 3D full core depletion analysis and illustrates its capabilities by applying it to burnup analysis of the IRIS core benchmarks. This new SAS2H/KENO-V sequence combines a 3D Monte Carlo full core calculation of node power distribution and a 1D Wigner-Seitz equivalent cell transport method for independent depletion calculation of each of the nodes. This approach reduces by more than an order of magnitude the time required for getting comparable results using the MOCUP code system. The SAS2H/KENO-V results for the asymmetric IRIS core benchmark are in good agreement with the results of the ALPHA/PHOENIX/ANC code system. (author)
Analysis of space-time core dynamics on reactor accident at Chernobyl
International Nuclear Information System (INIS)
Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro
1987-05-01
Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)
High fidelity analysis of BWR fuel assembly with COBRA-TF/PARCS and trace codes
International Nuclear Information System (INIS)
Abarca, A.; Miro, R.; Barrachina, T.; Verdu, G.; Soler, A.
2013-01-01
The growing importance of detailed reactor core and fuel assembly description for light water reactors (LWRs) as well as the sub-channel safety analysis requires high fidelity models and coupled neutronic/thermalhydraulic codes. Hand in hand with advances in the computer technology, the nuclear safety analysis is beginning to use a more detailed thermal hydraulics and neutronics. Previously, a PWR core and a 16 by 16 fuel assembly models were developed to test and validate our COBRA-TF/PARCS v2.7 (CTF/PARCS) coupled code. In this work, a comparison of the modeling and simulation advantages and disadvantages of modern 10 by 10 BWR fuel assembly with CTF/PARCS and TRACE codes has been done. The objective of the comparison is making known the main advantages of using the sub-channel codes to perform high resolution nuclear safety analysis. The sub-channel codes, like CTF, permits obtain accurate predictions, in two flow regime, of the thermalhydraulic parameters important to safety with high local resolution. The modeled BWR fuel assembly has 91 fuel rods (81 full length and 10 partial length fuel rods) and a big square central water rod. This assembly has been modeled with high level of detail with CTF code and using the BWR modeling parameters provided by TRACE. The same neutronic PARCS's model has been used for the simulation with both codes. To compare the codes a coupled steady state has be performed. (author)
User's manual for seismic analysis code 'SONATINA-2V'
Energy Technology Data Exchange (ETDEWEB)
Hanawa, Satoshi; Iyoku, Tatsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
2001-08-01
The seismic analysis code, SONATINA-2V, has been developed to analyze the behavior of the HTTR core graphite components under seismic excitation. The SONATINA-2V code is a two-dimensional computer program capable of analyzing the vertical arrangement of the HTTR graphite components, such as fuel blocks, replaceable reflector blocks, permanent reflector blocks, as well as their restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Moreover, the SONATINA-2V code is capable of analyzing the core vibration behavior under both simultaneous excitations of vertical and horizontal directions. The SONATINA-2V code is composed of the main program, pri-processor for making the input data to SONATINA-2V and post-processor for data processing and making the graphics from analytical results. Though the SONATINA-2V code was developed in order to work in the MSP computer system of Japan Atomic Energy Research Institute (JAERI), the computer system was abolished with the technical progress of computer. Therefore, improvement of this analysis code was carried out in order to operate the code under the UNIX machine, SR8000 computer system, of the JAERI. The users manual for seismic analysis code, SONATINA-2V, including pri- and post-processor is given in the present report. (author)
PROMETHEUS - a code system for dynamic 3-D analysis of nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Khotylev, V.A.; Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.
1996-09-01
The paper presents a multidimensional, general-purpose neutronics code system. It solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three-dimensional geometry. Due to a number of specialized features such as cavity treatment, automated convergence control, burnup treatment using the full isotopic transition matrix, the code system can be applied for the analysis of fast and slow transients in small, large, and innovative reactor cores. (author)
Application of the core-concrete interaction code Wechsl to reactor case
International Nuclear Information System (INIS)
Cenerino, G.
1986-09-01
The WECHSL code, developed at Kernforschungszentrum Karlsruhe, West-Germany, is used for core melt accidents in nuclear power plants. The first calculations, considering silicate and limestone/common sand concretes of different compositions, analyze the influence of the initial mass of Zirconium in the corium and, in one case, the effect of sump water ingression on the top of the melt. Moreover, for a limestone concrete, a sensitivity study is made on the melting temperature of the concrete influencing the decomposition enthalpy. The main conclusion of that paper is that, in any case, the temperature of the melt drops rapidly from the initial temperature to a temperature level close to the solidification temperature of the metal phase in a relatively short period of time (approximately 15 minutes) and then a balance between the removed heat from the melt and heating sources inside the melt is established
Performance testing of thermal analysis codes for nuclear fuel casks
International Nuclear Information System (INIS)
Sanchez, L.C.
1987-01-01
In 1982 Sandia National Laboratories held the First Industry/Government Joint Thermal and Structural Codes Information Exchange and presented the initial stages of an investigation of thermal analysis computer codes for use in the design of nuclear fuel shipping casks. The objective of the investigation was to (1) document publicly available computer codes, (2) assess code capabilities as determined from their user's manuals, and (3) assess code performance on cask-like model problems. Computer codes are required to handle the thermal phenomena of conduction, convection and radiation. Several of the available thermal computer codes were tested on a set of model problems to assess performance on cask-like problems. Solutions obtained with the computer codes for steady-state thermal analysis were in good agreement and the solutions for transient thermal analysis differed slightly among the computer codes due to modeling differences
Error-correction coding and decoding bounds, codes, decoders, analysis and applications
Tomlinson, Martin; Ambroze, Marcel A; Ahmed, Mohammed; Jibril, Mubarak
2017-01-01
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of these codes. Part IV deals with decoders desi...
Gas Hydrate Investigations Using Pressure Core Analysis: Current Practice
Schultheiss, P.; Holland, M.; Roberts, J.; Druce, M.
2006-12-01
Recently there have been a number of major gas hydrate expeditions, both academic and commercially oriented, that have benefited from advances in the practice of pressure coring and pressure core analysis, especially using the HYACINTH pressure coring systems. We report on the now mature process of pressure core acquisition, pressure core handling and pressure core analysis and the results from the analysis of pressure cores, which have revealed important in situ properties along with some remarkable views of gas hydrate morphologies. Pressure coring success rates have improved as the tools have been modified and adapted for use on different drilling platforms. To ensure that pressure cores remain within the hydrate stability zone, tool deployment, recovery and on-deck handling procedures now mitigate against unwanted temperature rises. Core analysis has been integrated into the core transfer protocol and automated nondestructive measurements, including P-wave velocity, gamma density, and X-ray imaging, are routinely made on cores. Pressure cores can be subjected to controlled depressurization experiments while nondestructive measurements are being made, or cores can be stored at in situ conditions for further analysis and subsampling.
76 FR 64931 - Building Energy Codes Cost Analysis
2011-10-19
...-0046] Building Energy Codes Cost Analysis AGENCY: Office of Energy Efficiency and Renewable Energy... reopening of the time period for submitting comments on the request for information on Building Energy Codes... the request for information on Building Energy Code Cost Analysis and provide docket number EERE-2011...
Core Flow Distribution from Coupled Supercritical Water Reactor Analysis
Directory of Open Access Journals (Sweden)
Po Hu
2014-01-01
Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.
Energy Technology Data Exchange (ETDEWEB)
Huh, Hoon; Lee, Choong Ho; Choi, Tae Hoon; Kim, Hyun Sup; Kim, Se Ho; Kang, Woo Jong; Seo, Chong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-08-01
The study concerns the development of analysis models and computer codes for lower head failure analysis when a severe accident occurs in a nuclear reactor system. Although the lower head failure modes consists of several failure modes, the study this year was focused on the global rupture with the collapse pressure and mode by limit analysis and elastic deformation. The behavior of molten core causes elevation of temperature in the reactor vessel wall and deterioration of load-carrying capacity of a reactor vessel. The behavior of molten core and the heat transfer modes were, therefore, postulated in several types and the temperature distributions according to the assumed heat flux modes were calculated. The collapse pressure of a nuclear reactor lower head decreases rapidly with elevation of temperature as time passes. The calculation shows the safety of a nuclear reactor is enhanced with the lager collapse pressure when the hot spot is located far from the pole. 42 refs., 2 tabs., 31 figs. (author)
Transient analysis of ABWR reactor using a best estimate code
International Nuclear Information System (INIS)
Mizokami, S.; Kitamura, H.; Mototani, A.; Ono, H.
2004-01-01
Since the recirculation pumps are mounted internally within the ABWR, core flow will decrease rapidly in the event of a loss of their driving force. A rapid reduction in core flow may cause the onset of boiling transition (BT). Therefore, in order to prevent the onset of BT, a motor-generator (MG) set is added to the power supply system of the reactor internal pump (RIP). Recent studies, however, have shown that dryout within a fuel assembly over a short time period will result in only a small rise in fuel cladding temperature and thus does not pose a threat to fuel integrity. In response to this finding, the standards committee of the Atomic Energy Society of Japan (AESJ) has proposed a post-BT standard which incorporates a cladding temperature criterion. If it is assumed that the MG-set is not added to the RIP power supply system, the result of the safety analysis shows the onset of BT with a subsequent rise in fuel cladding temperature. Although BT occurs under the conservative assumptions of this safety analysis, a possibility exists that BT will not occur under actual operating conditions. The best estimate code TRACG was used to show that BT does not occur and that fuel integrity can be sufficiently maintained under actual conditions. (author)
International Nuclear Information System (INIS)
Kim, H. Y.; Joo, H. G.; Kim, K. S.; Kim, G. Y.; Jang, M. H.
2003-01-01
The reactivity and power distribution errors of the HELIOS/MASTER core calculation under power generating conditions are assessed using a whole core transport code DeCART. For this work, the cross section tablesets were generated for a medium sized PWR following the standard procedure and two group nodal core calculations were performed. The test cases include the HELIOS calculations for 2-D assemblies at constant thermal conditions, MASTER 3D assembly calculations at power generating conditions, and the core calculations at HZP, HFP, and an abnormal power conditions. In all these cases, the results of the DeCART code in which pinwise thermal feedback effects are incorporated are used as the reference. The core reactivity, assemblywise power distribution, axial power distribution, peaking factor, and thermal feedback effects are then compared. The comparison shows that the error of the HELIOS/MASTER system in the core reactivity, assembly wise power distribution, pin peaking factor are only 100∼300 pcm, 3%, and 2%, respectively. As far as the detailed pinwise power distribution is concerned, however, errors greater than 15% are observed
Electronic manual of the nuclear characteristics analysis code-set for FBR
International Nuclear Information System (INIS)
Makino, Tohru
2001-03-01
Reactor Physics Gr., System Engineering Technology Division, O-arai Engineering Center has consolidated the nuclear design database to improve analytical methods and prediction accuracy for large fast breeder cores such as demonstration or commercial FBRs from the previous research. The up-to-date information about usage of the nuclear characteristics analysis code-set was compiled as a part of the improvement of basic design data base for FBR core. The outlines of the electronic manual are as follows; (1) The electronic manual includes explanations of following codes: JOINT : Code Interface Program. SLAROM, CASUP : Effective Cross Section Calculation Code. CITATION-FBR : Diffusion Analysis Code. PERKY : Perturbative Diffusion Analysis Code. SNPERT, SNPERT-3D : Perturbative Transport Analysis Code. SAGEP, SAGEP-3D : Sensitivity Coefficient Calculation Code. NSHEX : Transport Analysis Code using Nodal Method. ABLE : Cross Section Adjustment Calculation Code. ACCEPT : Predicting Accuracy Evaluation Code. (2) The electronic manual is described using HTML file format and PDF file for easy maintenance, updating and for easy referring through JNC Intranet. User can refer manual pages by usual Web browser software without any special setup. (3) Many of manual pages include link-tags to jump to related pages. String search is available in both HTML and PDF documents. (4) User can download source code, sample input data and shell script files to carry out each analysis from download page of each code (JNC inside only). (5) Usage of the electronic manual and maintenance/updating process are described in this report and it makes possible to enroll new code or new information in the electronic manual. Since the information has been taken into account about modifications and error fixings, added to each code after the last consolidation in 1994, the electronic manual would cover most recent status of the nuclear characteristics analysis code-set. One of other advantages of use
Development of subchannel analysis code MATRA-LMR for KALIMER subassembly thermal-hydraulics
International Nuclear Information System (INIS)
Won-Seok Kim; Young-Gyun Kim
2000-01-01
In the sodium cooled liquid metal reactors, the design limit are imposed on the maximum temperatures of claddings and fuel pins. Thus an accurate prediction of core coolant/fuel temperature distribution is essential to the LMR core thermal-hydraulic design. The detailed subchannel thermal-hydraulic analysis code MATRA-LMR (Multichannel Analyzer for Steady States and Transients in Rod Arrays for Liquid Metal Reactors) is being developed for KALIMER core design and analysis, based on COBRA-IV-i and MATRA. The major modifications and improvements implemented into MATRA-LMR are as follows: a) nonuniform axial noding capability, b) sodium properties calculation subprogram, c) sodium coolant heat transfer correlations, and d) most recent pressure drop correlations, such as Novendstern, Chiu-Rohsenow-Todreas and Cheng-Todreas. To assess the development status of this code, the benchmark calculations were performed with the ORNL 19 pin tests and EBR-II seven-assembly SLTHEN calculation results. The calculation results of MATRA-LMR for ORNL 19-pin assembly tests and EBR-II 91-pin experiments were compared to the measurements, and to SABRE4 and SLTHEN code calculation results, respectively. In this comparison, the differences are found among the three codes because of the pressure drop and the thermal mixing modellings. Finally, the major technical results of the conceptual design for the KALIMER 98.03 core have been compared with the calculations of MATRA-LMR, SABRE4 and SLTHEN codes. (author)
Recriticality calculation with GENFLO code for the BWR core after steam explosion in the lower head
Energy Technology Data Exchange (ETDEWEB)
Miettinen, J. [VTT Processes (Finland)
2002-12-01
Recriticality of the partially degraded BWR core has been studied by assuming a severe accident phase during which the fuel rods are still intact but the control rods have experienced extensive damage. Previous NKS and EU projects have studied the same case assuming reflooding by the ECCS system In the present study it was assumed that coolant enters the core due to melt-coolant interaction in the lower plenum. In the first case specified the relocation and fragmentation of the molten control rod metal causes the level swell in the core but no steam explosion. In the second case a steam explosion in the lower head was assumed. I n the first case a prompt recriticality peak can occur, but after the peak no semistable power generation remains. In the second case the consequence of the slug entrance into the core is so violent that the fuel disintegration and melting during the first power peak may occur. After the large power peak water is rapidly pushed back from the core and no semistable power generation maintains. The fuel disintegration studies have been based on a coarse assumption that the acceptable local energy addition into the fresh fuel may be 170 cal/g, but with increasing burn-up it can be as low as 60-70 cal/g. In the level swell variations the maximum energy addition was between these limits, but in most of the steam explosion variations much above these limits. Additional variation of the assumptions related to the neutronics demonstrated that for the converged analysis result some interactions would be useful with respect to the boundary conditions and neutronic options.
International Nuclear Information System (INIS)
Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.
2010-01-01
The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in
analysis of reactivity accidents in MTR for various protection system parameters and core condition
International Nuclear Information System (INIS)
Mohamed, F.M.
2011-01-01
Egypt Second Research Reactor (ETRR-2) core was modified to irradiate LEU (Low Enriched Uranium) plates in two irradiation boxes for fission 99 Mo production. The old core comprising 29 fuel elements and one Co Irradiation Device (CID) and the new core comprising 27 fuel elements, CID, and two 99 Mo production boxes. The in core irradiation has the advantage of no special cooling or irradiation loop is required. The purpose of the present work is the analysis of reactivity accidents (RIA) for ETRR-2 cores. The analysis was done to evaluate the accidents from different point of view:1- Analysis of the new core for various Reactor Protection System (RPS) parameters 2- Comparison between the two cores. 3- Analysis of the 99 Mo production boxes.PARET computer code was employed to compute various parameters. Initiating events in RIA involve various modes of reactivity insertion, namely, prompt critical condition (p=1$), accidental ejection of partial and complete CID uncontrolled withdrawal of a control rod accident, and sudden cooling of the reactor core. The time histories of reactor power, energy released, and the maximum fuel, clad and coolant temperatures of fuel elements and LEU plates were calculated for each of these accidents. The results show that the maximum clad temperatures remain well below the clad melting of both fuel and uranium plates during these accidents. It is concluded that for the new core, the RIA with scram will not result in fuel or uranium plate failure.
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present
International Nuclear Information System (INIS)
Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo
2005-01-01
In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code
Energy Technology Data Exchange (ETDEWEB)
Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)
International Nuclear Information System (INIS)
Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza
2015-01-01
This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)
International Nuclear Information System (INIS)
Chvetsov, I.; Volkov, A.
2000-01-01
For advanced fast reactors (EFR, BN-600M, BN-1600, CEFR) the special complementary loop is envisaged in order to ensure the decay heat removal from the core in the case of LOF accidents. This complementary loop includes immersion coolers that are located in the hot reactor plenum. To analyze the transient process in the reactor when immersion coolers come into operation one needs to involve 3-D thermal hydraulics code. Furthermore sometimes the problem becomes more complicated due to necessity of simulation of the thermal hydraulics processes into the core interwrapper space. For example on BN-600M and CEFR reactors it is supposed to ensure the effective removal of decay heat from core subassemblies by specially arranged internal circulation circuit: 'inter-wrapper space'. For thermal hydraulics analysis of the transients in the core and in the whole reactor including hot plenum with immersion coolers and considering heat and mass exchange between the main sodium flow and sodium that moves in the inter-wrapper space the code GRIFIC (the version of GRIF code family) was developed in IPPE. GRIFIC code was tested on experimental data obtained on RAMONA rig under conditions simulating decay heat removal of a reactor with the use of immersion coolers. Comparison has been made of calculated and experimental result, such as integral characteristics (flow rate through the core and water temperature at the core inlet and outlet) and the local temperatures (at thermocouple location) as well. In order to show the capabilities of the code some results of the transient analysis of heat removal from the core of BN-600M - type reactor under loss-of-flow accident are presented. (author)
Development of UCMS for Analysis of Designed and Measured Core Power Distribution
International Nuclear Information System (INIS)
Moon, Sang Rae; Hong, Sun Kwan; Yang, Sung Tae
2009-01-01
In this study, reactor core loading patterns were determined by calculating and verifying the factors affecting peak power and important core safety variables were reconciled with their design criteria using a newly designed unified core management system. Core loading patterns are designed for quadrant cores under the assumption that the power distribution of the reactor core is the same among symmetric fuel assemblies within the core. Actual core power distributions measured during core operation may differ slightly from their designed data. Reactor engineers monitor these differences between the designed and measured data by performing a surveillance procedure every month according to the technical specification requirements. It is difficult to monitor overall power distribution behavior throughout the assemblies using the current procedure because it requires the reactor engineer to compare the designed data with only the maximum value of the power peaking factor and the relative power density. It is necessary to enhance this procedure to check the primary variables such as core power distribution, because long cycle operation, high burnup, power up-rate, and improved fuel can change the environment in the core. To achieve this goal, a web-based Unified Core Management System (UCMS) was developed. To build the UCMS, a database system was established using reactor design data such as that in the Nuclear Design Report (NDR) and automated core analysis codes for all light water reactor power plants. The UCMS is designed to help reactor engineers to monitor important core variables and core safety margins by comparing the measured core power distribution with designed data for each fuel assembly during the cycle operation in nuclear power plants
Thermal-hydraulic analysis code development and application to passive safety reactor at JAERI
International Nuclear Information System (INIS)
Araya, F.
1995-01-01
After a brief overview of safety assessment process, the author describes the LOCA analysis code system developed in JAERI. It comprises audit calculation code (WREM, WREM-J2, Japanese own code and BE codes (2D/3D, ICAP, ROSA). The codes are applied to development of Japanese passive safety reactor concept JPSR. Special attention is paid to the passive heat removal system and phenomena considered to occur under loss of heat sink event. Examples of LOCA analysis based on operation of JPSR for the cases of heat removal by upper RHR and heat removal from core to atmosphere are given. Experiments for multi-dimensional flow field in RPV and steam condensation in water pool are used for understanding the phenomena in passive safety reactors. The report is in a poster form only. 1 tab., 13 figs
Safety analysis of RSG-GAS Silicide core using one line cooling system
International Nuclear Information System (INIS)
Endiah-Puji-Hastuti
2003-01-01
In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor has been determined and to continuing this program, steady state and transient analysis were done. The analysis was done by means of a core thermal hydraulic code, COOLOD-N, and PARET. The codes solves core thermal hydraulic equation at steady state conditions and transient, respectively. By using silicide core data and coast down flow rate as the input, thermal hydraulics parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results of steady state and transient analysis, maximum permissible power for this operation was obtained as much as 17.1 MW
International Nuclear Information System (INIS)
Nikonov, S.; Pasichnyk, I.; Velkov, K.; Pautz, A.
2011-01-01
The paper describes the performed comparisons of measured and simulated local core data based on the OECD/NEA Benchmark on Kalinin-3 NPP: 'Switching off of one of the four operating main circulation pumps at nominal reactor power'. The local measurements of in core self-powered neutron detectors (SPND) in 64 fuel assemblies on 7 axial levels are used for the comparisons of the assemblies axial power distributions and the thermocouples readings at 93 fuel assembly heads are applied for the fuel assembly coolant temperature comparisons. The analyses are done on the base of benchmark transient calculations performed with the coupled system code ATHLET/BIPR-VVER. In order to describe more realistically the fluid mixing phenomena in a reactor pressure vessel a new enhanced nodalization scheme is being developed. It could take into account asymmetric flow behaviour in the reactor pressure vessel structures like downcomer, reactor core inlet and outlet, control rods' guided tubes, support grids etc. For this purpose details of the core geometry are modelled. About 58000 control volumes and junctions are applied. Cross connection are used to describe the interaction between the fluid objects. The performed comparisons are of great interest because they show some advantages by performing coupled code production pseudo-3D analysis of NPPs applying the parallel thermo-hydraulic channel methodology (or 1D thermo-hydraulic system code modeling). (Authors)
The effects of core zoning on optimization of design analysis of molten salt reactor
International Nuclear Information System (INIS)
Guo, Zhangpeng; Wang, Chenglong; Zhang, Dalin; Chaudri, Khurrum Saleem; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng
2013-01-01
Highlights: • 1/8 of core is simulated by MCNP and thermal-hydraulic code simultaneously. • Effects of core zoning are studied by dividing the core into two regions. • Both the neutronics and thermal-hydraulic behavior are investigated. • The flat flux distribution is achieved in the optimization analysis. • The flat flux can lead to worse thermal-hydraulic behavior occasionally. - Abstract: The molten salt reactor (MSR) is one of six advanced reactor types in the frame of the Generation 4 International Forum. In this study, a multiple-channel analysis code (MAC) is developed to analyze thermal-hydraulics behavior and MCNP4c is used to study the neutronics behavior of Molten Salt Reactor Experiment (MSRE). The MAC calculates thermal-hydraulic parameters, namely temperature distribution, flow distribution and pressure drop. The MCNP4c performs the analysis of effective multiplication factor, neutron flux, power distribution and conversion ratio. In this work, the modification of core configuration is achieved by different core zoning and various fuel channel diameters, contributing to flat flux distribution. Specifically, the core is divided into two regions and the effects of different core zoning on the both neutronics and thermal-hydraulic behavior of moderated molten salt reactor are investigated. We conclude that the flat flux distribution cannot always guarantee better performance in thermal-hydraulic perspective and can decreases the graphite lifetime significantly
Analysis of Phenix end-of-life natural convection test with the MARS-LMR code
International Nuclear Information System (INIS)
Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.
2012-01-01
The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)
Transient thermal-hydraulic/neutronic analysis in a VVER-1000 reactor core
International Nuclear Information System (INIS)
Seyed khalil Mousavian; Mohammad Mohsen Ertejaei; Majid Shahabfar
2005-01-01
Full text of publication follows: Nowadays, coupled thermal-hydraulic and three-dimensional neutronic codes in order to consider different feedback effects is state of the art subject in nuclear engineering researches. In this study, RELAP5/COBRA and WIMS/CITATION codes are implemented to investigate the VVER-1000 reactor core parameters during Large Break Loss of Coolant Accident (LB-LOCA). In a LB-LOCA, the primary side pressure, coolant density and fuel temperature strongly decrease but the cladding temperature experiences a strong peak. For this purpose, the RELAP5 Best Estimate (BE) system code is used to simulate the LB-LOCA analysis in VVER-1000 nuclear thermal-hydraulic loops. Also, the modified COBRA-IIIc software as a sub-channel analysis code is applied for modeling of VVER-1000 reactor core. Moreover, WIMS and CITATION as a cross section and 3-D neutron flux codes are coupled with thermal-hydraulic codes with the aim of consider the spatial effects through the reactor core. For this reason, suitable software is developed to link and speed up the coupled thermalhydraulic and three-dimensional neutronic calculations. This software utilizes of external coupling concept in order to integrate thermal-hydraulic and neutronic calculations. (authors)
Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.
2018-01-01
The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/
International Nuclear Information System (INIS)
Tourniaire, B.; Spindler, B.
2005-01-01
The frame of this work is the validation of the TOLBIAC-ICB code which is devoted to the simulation of Molten Core-Concrete Interaction (MCCI) for reactor safety analysis. Attention focuses here on the validation of TOLBIAC-ICB in configurations expected to be representative of the long term phase of MCCI i.e. during an interaction between an oxide/metal stratified corium melt and a concrete structure. Up to now the BETA tests performed at the Forschungszentrum Karlsruhe (FzK) are the only tests available to study such kind of interaction. The BETA tests are first described and the operating conditions are reminded. The TOLBIAC-ICB code is then briefly described, with emphasis on the models used for stratified configurations. The results of the simulations are discussed. A sensitivity study is also performed with the power generated in the oxide layer instead of the metal layer as in the test. This last calculation shows that the large axial ablation observed in the tests is probably due to the peculiar configuration of the test with input power in the bottom metal layer. Since in the reactor case the residual power would be mainly concentrated in the upper oxide layer, the conclusions of the BETA tests for the reactor applications, in term of axial ablation, must be derived with caution. (author)
Application of coupled codes for safety analysis and licensing issues
International Nuclear Information System (INIS)
Langenbuch, S.; Velkov, K.
2006-01-01
An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)
Analytical validation of the CACECO containment analysis code
International Nuclear Information System (INIS)
Peak, R.D.
1979-08-01
The CACECO containment analysis code was developed to predict the thermodynamic responses of LMFBR containment facilities to a variety of accidents. This report covers the verification of the CACECO code by problems that can be solved by hand calculations or by reference to textbook and literature examples. The verification concentrates on the accuracy of the material and energy balances maintained by the code and on the independence of the four cells analyzed by the code so that the user can be assured that the code analyses are numerically correct and independent of the organization of the input data submitted to the code
Users' guide to CACECO containment analysis code. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Peak, R.D.
1979-06-01
The CACECO containment analysis code was developed to predict the thermodynamic responses of LMFBR containment facilities to a variety of accidents. The code is included in the National Energy Software Center Library at Argonne National Laboratory as Program No. 762. This users' guide describes the CACECO code and its data input requirements. The code description covers the many mathematical models used and the approximations used in their solution. The descriptions are detailed to the extent that the user can modify the code to suit his unique needs, and, indeed, the reader is urged to consider code modification acceptable.
Verification of the CONPAS (CONtainment Performance Analysis System) code package
International Nuclear Information System (INIS)
Kim, See Darl; Ahn, Kwang Il; Song, Yong Man; Choi, Young; Park, Soo Yong; Kim, Dong Ha; Jin, Young Ho.
1997-09-01
CONPAS is a computer code package to integrate the numerical, graphical, and results-oriented aspects of Level 2 probabilistic safety assessment (PSA) for nuclear power plants under a PC window environment automatically. For the integrated analysis of Level 2 PSA, the code utilizes four distinct, but closely related modules: (1) ET Editor, (2) Computer, (3) Text Editor, and (4) Mechanistic Code Plotter. Compared with other existing computer codes for Level 2 PSA, and CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, sensitivity analysis and data interpretation, reporting aspects including tabling and graphic as well as user-friendly interface. The computational performance of CONPAS has been verified through a Level 2 PSA to a reference plant. The results of the CONPAS code was compared with an existing level 2 PSA code (NUCAP+) and the comparison proves that CONPAS is appropriate for Level 2 PSA. (author). 9 refs., 8 tabs., 14 figs
International Nuclear Information System (INIS)
Mantourov, Guennadi
2001-05-01
This work was fulfilled in the frame of JNC-IPPE Collaboration on Experimental Investigation of Excess of Weapon Pu Disposition in BN-600 Reactor Using BFS-2 Facility. The data processing system CONSYST/ABBN coupled with ABBN-93 nuclear data library was used in analysis of BFS and ZPPR fast reactor cores applying JNC core calculation code CITATION. FFCP cell code was used for taking into account the spatial cell heterogeneity and resonance effects based on the first flight collision probability method and subgroup approach. Especially a converting program was written to transmit the prepared effective cross sections to JNC standard PDS files. Then the CITATION code was applied for 3-D XYZ neutronics calculations of BFS and ZPPR JUPITER experiments series cores. The effects of nuclear data library have been studied by comparing the former results based on JENDL-3.2 nuclear data library. The comparison results using IPPE and JNC nuclear data libraries for k-effective parameter for ZPPR-9, ZPPR-13A and ZPPR-17A cores are presented. The calculated correction factor in all cases was less than 1.0%. So the uncertainty in C value caused by possible errors in calculation of these corrections is expected to be less than 0.3% in case of ZPPR-13A and ZPPR-17A cores, and rather less for ZPPR-9 core. The main result of this study is that the effect of applying ABBN-93 nuclear data in JNC calculation route revealed a large enough discrepancy in k-eff for ZPPR-9 (about 0.6%) and ZPPR-17A (about 0.5%) cores. For BFS-62-1 and BFS-62-2 cores such analysis is in progress. Stretch cell models for both BFS cores were formed and cell calculations using FFCP code have started. Some results of cell calculations are presented. (author)
Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dae Hyun; Seo, K. W
2006-01-15
A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.
Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems
International Nuclear Information System (INIS)
Hwang, Dae Hyun; Seo, K. W.
2006-01-01
A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC
Development of a safety analysis code for molten salt reactors
International Nuclear Information System (INIS)
Zhang Dalin; Qiu Suizheng; Su Guanghui
2009-01-01
The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.
Uranium Isotopic Analysis with the FRAM Isotopic Analysis Code
International Nuclear Information System (INIS)
Vo, D.T.; Sampson, T.E.
1999-01-01
FRAM is the acronym for Fixed-Energy Response-Function Analysis with Multiple efficiency. This software was developed at Los Alamos National Laboratory originally for plutonium isotopic analysis. Later, it was adapted for uranium isotopic analysis in addition to plutonium. It is a code based on a self-calibration using several gamma-ray peaks for determining the isotopic ratios. The versatile-parameter database structure governs all facets of the data analysis. User editing of the parameter sets allows great flexibility in handling data with different isotopic distributions, interfering isotopes, and different acquisition parameters such as energy calibration and detector type
Codeword Structure Analysis for LDPC Convolutional Codes
Directory of Open Access Journals (Sweden)
Hua Zhou
2015-12-01
Full Text Available The codewords of a low-density parity-check (LDPC convolutional code (LDPC-CC are characterised into structured and non-structured. The number of the structured codewords is dominated by the size of the polynomial syndrome former matrix H T ( D , while the number of the non-structured ones depends on the particular monomials or polynomials in H T ( D . By evaluating the relationship of the codewords between the mother code and its super codes, the low weight non-structured codewords in the super codes can be eliminated by appropriately choosing the monomials or polynomials in H T ( D , resulting in improved distance spectrum of the mother code.
Chen, Jian; Matuttis, Hans-Georg
2013-02-01
We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.
SBWR core thermal hydraulic analysis during startup
International Nuclear Information System (INIS)
Lin, J.H.; Huang, R.L.; Sawyer, C.D.
1993-01-01
This paper reports on a thermal hydraulic analysis of the SIMPLIFIED BOILING WATER REACTOR (SBWR) during startup. The potential instability during a SBWR startup has drawn the attention of designers, researchers, and engineers. It has not been a concern for a Boiling Water Reactor (BWR) with forced recirculation; however, for SBWR with natural circulation the concern exists. The concern is about the possibility of a geysering mode oscillation during SBWR startup from a cold temperature and a low system pressure with a low natural circulation flow rate. A thermal hydraulic analysis of the SBWR is performed in simulation of the startup using the TRACG computer code. The temperature, pressure, and reactor power profiles of SBWR during the startup are presented. The results are compared with the data of a natural circulation boiling water reactor, the DODEWAARD plant, in which no instabilities have been observed during many startups. It is shown that a SBWR startup which follows proper procedures, geysering and other modes of oscillations can be avoided
Aspects of cell calculations in deterministic reactor core analysis
International Nuclear Information System (INIS)
Varvayanni, M.; Savva, P.; Catsaros, N.
2011-01-01
Τhe capability of achieving optimum utilization of the deterministic neutronic codes is very important, since, although elaborate tools, they are still widely used for nuclear reactor core analyses, due to specific advantages that they present compared to Monte Carlo codes. The user of a deterministic neutronic code system has to make some significant physical assumptions if correct results are to be obtained. A decisive first step at which such assumptions are required is the one-dimensional cell calculations, which provide the neutronic properties of the homogenized core cells and collapse the cross sections into user-defined energy groups. One of the most crucial determinations required at the above stage and significantly influencing the subsequent three-dimensional calculations of reactivity, concerns the transverse leakages, associated to each one-dimensional, user-defined core cell. For the appropriate definition of the transverse leakages several parameters concerning the core configuration must be taken into account. Moreover, the suitability of the assumptions made for the transverse cell leakages, depends on earlier user decisions, such as those made for the core partition into homogeneous cells. In the present work, the sensitivity of the calculated core reactivity to the determined leakages of the individual cells constituting the core, is studied. Moreover, appropriate assumptions concerning the transverse leakages in the one-dimensional cell calculations are searched out. The study is performed examining also the influence of the core size and the reflector existence, while the effect of the decisions made for the core partition into homogenous cells is investigated. In addition, the effect of broadened moderator channels formed within the core (e.g. by removing fuel plates to create space for control rod hosting) is also examined. Since the study required a large number of conceptual core configurations, experimental data could not be available for
International Nuclear Information System (INIS)
Hobson, Greg; Merk, Stephan; Bolloni, Hans-Wilhelm; Breith, Karl-Albert; Curca-Tivig, Florin; Van Geemert, Rene; Heinecke, Jochen; Hartmann, Bettina; Porsch, Dieter; Tiles, Viatcheslav; Dall'Osso, Aldo; Pothet, Baptiste
2008-01-01
AREVA NP has developed a next-generation coupled neutronics/thermal-hydraulics code system, ARCADIA R , to fulfil customer's current demands and even anticipate their future demands in terms of accuracy and performance. The new code system will be implemented world-wide and will replace several code systems currently used in various global regions. An extensive phase of verification and validation of the new code system is currently in progress. One of the principal components of this new system is the core simulator, ARTEMIS. Besides the stand-alone tests on the individual computational modules, integrated tests on the overall code are being performed in order to check for non-regression as well as for verification of the code. Several benchmark problems have been successfully calculated. Full-core depletion cycles of different plant types from AREVA's French, American and German regions (e.g. N4 and KONVOI types) have been performed with ARTEMIS (using APOLLO2-A cross sections) and compared directly with current production codes, e.g. with SCIENCE and CASCADE-3D, and additionally with measurements. (authors)
The analysis of thermal-hydraulic models in MELCOR code
Energy Technology Data Exchange (ETDEWEB)
Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)
1996-07-15
The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.A.N.
2015-01-01
Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author).
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.A.N.
2014-01-01
Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author)
MIF-SCD computer code for thermal hydraulic calculation of supercritical water cooled reactor core
International Nuclear Information System (INIS)
Galina P Bogoslovskaia; Alexander A Karpenko; Pavel L Kirillov; Alexander P Sorokin
2005-01-01
Full text of publication follows: Supercritical pressure power plants constitute the basis of heat power engineering in many countries to day. Starting from a long-standing experience of their operation, it is proposed to develop a new type of fast breeder reactor cooled by supercritical water, which enables the economical indices of NPP to be substantially improved. In the Thermophysical Department of SSC RF-IPPE, an attempt is made to provide thermal-hydraulic validation of the reactor under discussion. The paper presents the results of analysis of the thermal-hydraulic characteristics of fuel subassemblies cooled by supercritical water based on subchannel analysis. Modification of subchannel code MIF - MIF-SCD Code - developed in the SSC RF IPPE is designed as block code and permits one to calculate the coolant temperature and velocity distributions in fuel subassembly channels, the temperature of fuel pin claddings and fuel subassembly wrapper under conditions of irregular geometry and non-uniform axial and radial power generation. The thermal hydraulics under supercritical pressure of water exhibits such peculiarities as abrupt variation of the thermal physical properties in the range of pseudo-critical temperature, the absence of such phenomenon as the critical heat flux which can lead to fuel element burnout in WWERs. As compared with subchannel code for light water, in order to take account of the variation of the coolant properties versus temperature in more detail, a block for evaluating the thermal physical properties of supercritical water versus the local coolant temperature in the fuel subassembly channels was added. The peculiarities of the geometry and power generation in the fuel subassembly of the supercritical reactor are considered as well in special blocks. The results of calculations have shown that considerable preheating of supercritical coolant (several hundreds degrees) can occur in the fuel subassembly. The test calculations according to
Module type plant system dynamics analysis code (MSG-COPD). Code manual
International Nuclear Information System (INIS)
Sakai, Takaaki
2002-11-01
MSG-COPD is a module type plant system dynamics analysis code which involves a multi-dimensional thermal-hydraulics calculation module to analyze pool type of fast breeder reactors. Explanations of each module and the methods for the input data are described in this code manual. (author)
User's manual of SECOM2: a computer code for seismic system reliability analysis
International Nuclear Information System (INIS)
Uchiyama, Tomoaki; Oikawa, Tetsukuni; Kondo, Masaaki; Tamura, Kazuo
2002-03-01
This report is the user's manual of seismic system reliability analysis code SECOM2 (Seismic Core Melt Frequency Evaluation Code Ver.2) developed at the Japan Atomic Energy Research Institute for systems reliability analysis, which is one of the tasks of seismic probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The SECOM2 code has many functions such as: Calculation of component failure probabilities based on the response factor method, Extraction of minimal cut sets (MCSs), Calculation of conditional system failure probabilities for given seismic motion levels at the site of an NPP, Calculation of accident sequence frequencies and the core damage frequency (CDF) with use of the seismic hazard curve, Importance analysis using various indicators, Uncertainty analysis, Calculation of the CDF taking into account the effect of the correlations of responses and capacities of components, and Efficient sensitivity analysis by changing parameters on responses and capacities of components. These analyses require the fault tree (FT) representing the occurrence condition of the system failures and core damage, information about response and capacity of components and seismic hazard curve for the NPP site as inputs. This report presents the models and methods applied in the SECOM2 code and how to use those functions. (author)
Core physics analysis in support of the FNR HEU-LEU demonstration experiment
International Nuclear Information System (INIS)
Losey, David C.; Brown, Forrest B.; Martin, William R.; Lee, John C.
1983-01-01
A core neutronics analysis has been undertaken to assess the impact of low-enrichment fuel on the performance and utilization of the FNR As part of this analytic effort a computer code system has been assembled which will be of general use in analyzing research reactors with MTR-type fuel. The code system has been extensively tested and verified in calculations for the present high enrichment core. The analysis presented here compares the high-and-low enrichment fuels in batch and equilibrium core configurations which model the actual FNR operating conditions. The two fuels are compared for cycle length, fuel burnup, and flux and power distributions, as well as for the reactivity effects which are important in assessing the impact of LEU fuel on reactor shutdown margin. (author)
Core physics analysis in support of the FNR HEU-LEU demonstration experiment
Energy Technology Data Exchange (ETDEWEB)
Losey, David C; Brown, Forrest B; Martin, William R; Lee, John C [Department of Nuclear Engineering, University of Michigan (United States)
1983-08-01
A core neutronics analysis has been undertaken to assess the impact of low-enrichment fuel on the performance and utilization of the FNR As part of this analytic effort a computer code system has been assembled which will be of general use in analyzing research reactors with MTR-type fuel. The code system has been extensively tested and verified in calculations for the present high enrichment core. The analysis presented here compares the high-and-low enrichment fuels in batch and equilibrium core configurations which model the actual FNR operating conditions. The two fuels are compared for cycle length, fuel burnup, and flux and power distributions, as well as for the reactivity effects which are important in assessing the impact of LEU fuel on reactor shutdown margin. (author)
ZAKI a windows-based k sub o standardization code for in-core INAA
Ojo, J O
2002-01-01
A new computer code ZAKI, for k sub o -based INAA standardization, written in Visual Basic for the WINDOWS environment is described. The parameter alpha measuring the deviation of the epithermal neutron spectrum shape from the ideal 1/E shape, and the thermal-to-epithermal flux ratio f, are monitored at each irradiation position for each irradiation using the ''triple bare monitor with k sub o '' technique. Stability of the irradiation position with respect to alpha and f is therefore assumed only for the duration of the irradiation. This now makes it possible to use k sub o standardization even for in-core reactor irradiation channels without an a priori knowledge of alpha and f values as required by existing commercial software. ZAKI is considerably versatile and contains features which allow for use of several detectors at different counting geometries, direct inputting of peak search output from GeniePc, and automatic nuclide identification of all gamma lines using an in-built library. Sample results for ...
A simulation of a pebble bed reactor core by the MCNP-4C computer code
Directory of Open Access Journals (Sweden)
Bakhshayesh Moshkbar Khalil
2009-01-01
Full Text Available Lack of energy is a major crisis of our century; the irregular increase of fossil fuel costs has forced us to search for novel, cheaper, and safer sources of energy. Pebble bed reactors - an advanced new generation of reactors with specific advantages in safety and cost - might turn out to be the desired candidate for the role. The calculation of the critical height of a pebble bed reactor at room temperature, while using the MCNP-4C computer code, is the main goal of this paper. In order to reduce the MCNP computing time compared to the previously proposed schemes, we have devised a new simulation scheme. Different arrangements of kernels in fuel pebble simulations were investigated and the best arrangement to decrease the MCNP execution time (while keeping the accuracy of the results, chosen. The neutron flux distribution and control rods worth, as well as their shadowing effects, have also been considered in this paper. All calculations done for the HTR-10 reactor core are in good agreement with experimental results.
ZAKI: a windows-based ko standardization code for in-core INAA
International Nuclear Information System (INIS)
Ojo, J.O.; Filby, R.H.
2002-01-01
A new computer code ZAKI, for k o -based INAA standardization, written in Visual Basic for the WINDOWS environment is described. The parameter α measuring the deviation of the epithermal neutron spectrum shape from the ideal 1/E shape, and the thermal-to-epithermal flux ratio f, are monitored at each irradiation position for each irradiation using the ''triple bare monitor with k o '' technique. Stability of the irradiation position with respect to α and f is therefore assumed only for the duration of the irradiation. This now makes it possible to use k o standardization even for in-core reactor irradiation channels without an a priori knowledge of α and f values as required by existing commercial software. ZAKI is considerably versatile and contains features which allow for use of several detectors at different counting geometries, direct inputting of peak search output from GeniePc, and automatic nuclide identification of all gamma lines using an in-built library. Sample results for two certified reference materials are presented
OPR1000 RCP Flow Coastdown Analysis using SPACE Code
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.
A Benchmark Study of a Seismic Analysis Program for a Single Column of a HTGR Core
Energy Technology Data Exchange (ETDEWEB)
Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)
2016-05-15
A seismic analysis program, SAPCOR (Seismic Analysis of Prismatic HTGR Core), was developed in Korea Atomic Energy Research Institute. The program is used for the evaluation of deformed shapes and forces on the graphite blocks which using point-mass rigid bodies with Kelvin-Voigt impact models. In the previous studies, the program was verified using theoretical solutions and benchmark problems. To validate the program for more complicated problems, a free vibration analysis of a single column of a HTGR core was selected and the calculation results of the SAPCOR and a commercial FEM code, Abaqus, were compared in this study.
Energy Technology Data Exchange (ETDEWEB)
Grundmann, U.; Kliem, S.; Krepper, E.; Mittag, S; Rohde, U.; Schaefer, F.; Seidel, A.
1998-03-01
The nuclear reactor core model DYN3D with 3D neutron kinetics has been coupled to the thermohydraulic system code ATHLET. In the report, activities on qualification of the coupled code complex ATHLET-DYN3D as a validated tool for the accident analysis of russian VVER type reactors are described. That includes: - Contributions to the validation of the single codes ATHLET and DYN3D by the analysis of experiments on natural circulation behaviour in thermohydraulic test facilities and solution of benchmark tasks on reactivity initiated transients, - the acquisition and evaluation of measurement data on transients in nuclear power plants, the validation of ATHLET-DYN3D by calculating an accident with delayed scram and a pump trip in VVER plants, - the complementary improvement of the code DYN3D by extension of the neutron physical data base, implementation of an improved coolant mixing model, consideration of decay heat release and xenon transients, - the analysis of steam leak scenarios for VVER-440 type reactors with failure of different safety systems, investigation of different model options. The analyses showed, that with realistic coolant mixing modelling in the downcomer and the lower plenum, recriticality of the scramed reactor due to overcooling can be reached. The application of the code complex ATHLET-DYN3D in Czech Republic, Bulgaria and the Ukraine has been started. Future work comprises the verification of ATHLET-DYN3D with a DYN3D version for the square fuel element geometry of western PWR. (orig.) [Deutsch] Das Reaktorkernmodell DYN3D mit 3D Neutronenkinetik wurde an den Thermohydraulik-Systemcode ATHLET angekoppelt. Im vorliegenden Bericht werden Arbeiten zur Qualifizierung des gekoppelten Codekomplexes zu einem validierten Hilfsmittel fuer Stoerfallablaufanalysen zu Reaktoren des russischen Typs WWER dargestellt. Diese umfassten im einzelnen: - Beitraege zur Validierung der Einzelcodes ATHLET und DYN3D anhand der Nachrechnung von Experimenten zum
Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure
Energy Technology Data Exchange (ETDEWEB)
Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)
1998-07-01
An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)
Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure
International Nuclear Information System (INIS)
Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.
1998-01-01
An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)
Reactor Core Design and Analysis for a Micronuclear Power Source
Directory of Open Access Journals (Sweden)
Hao Sun
2018-03-01
Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.
Fast neutron analysis code SAD1
International Nuclear Information System (INIS)
Jung, M.; Ott, C.
1985-01-01
A listing and an example of outputs of the M.C. code SAD1 are given here. This code has been used many times to predict responses of fast neutrons in hydrogenic materials (in our case emulsions or plastics) towards the elastic n, p scattering. It can be easily extended to other kinds of such materials and to any kind of incident fast neutron spectrum
Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2
International Nuclear Information System (INIS)
Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.
2000-01-01
Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)
Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2
Energy Technology Data Exchange (ETDEWEB)
Samper, J; Juncosa, R; Delgado, J; Montenegro, L [Universidad de A Coruna (Spain)
2000-07-01
Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)
Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2
Energy Technology Data Exchange (ETDEWEB)
Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)
2000-07-01
Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)
International Nuclear Information System (INIS)
Sheron, B.W.; Rosztoczy, Z.R.
1980-08-01
As a result of a request from Commissioner V. Gilinsky to investigate in detail the causes of an error discovered in a vendor Emergency Core Cooling System (ECCS) computer code in March, 1978, the staff undertook an extensive investigation of the vendor quality assurance practices applied to safety analysis computer code development and use. This investigation included inspections of code development and use practices of the four major Light Water Reactor Nuclear Steam Supply System vendors and a major reload fuel supplier. The conclusion reached by the staff as a result of the investigation is that vendor practices for code development and use are basically sound. A number of areas were identified, however, where improvements to existing vendor procedures should be made. In addition, the investigation also addressed the quality assurance (QA) review and inspection process for computer codes and identified areas for improvement
Benchmark Simulation for the Development of the Regulatory Audit Subchannel Analysis Code
Energy Technology Data Exchange (ETDEWEB)
Lee, G. H.; Song, C.; Woo, S. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2012-05-15
For the safe and reliable operation of a reactor, it is important to predict accurately the flow and temperature distributions in the thermal-hydraulic design of a reactor core. A subchannel approach can give the reasonable flow and temperature distributions with the short computing time. Korea Institute of Nuclear Safety (KINS) is presently reviewing new subchannel code, THALES, which will substitute for both THINC-IV and TORC code. To assess the prediction performance of THALES, KINS is developing the subchannel analysis code for the independent audit calculation. The code is based on workstation version of COBRA-IV-I. The main objective of the present study is to assess the performance of COBRA-IV-I code by comparing the simulation results with experimental ones for the sample problems
Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop
International Nuclear Information System (INIS)
Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C.; Palma, Daniel A.P.
2017-01-01
A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)
Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop
Energy Technology Data Exchange (ETDEWEB)
Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail: sabrinapral@gmail.com, E-mail: amir@cdtn.brm, E-mail: hcr@cdtn.br, E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)
2017-07-01
A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)
Analysis of impurity effect on Silicide fuels of the RSG-GAS core
International Nuclear Information System (INIS)
Tukiran-Surbakti
2003-01-01
Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)
Two dimensional dynamic analysis of sandwich plates with gradient foam cores
Energy Technology Data Exchange (ETDEWEB)
Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)
2016-09-15
Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.
Challenges on innovations of newly-developed safety analysis codes
International Nuclear Information System (INIS)
Yang, Yanhua; Zhang, Hao
2016-01-01
With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.
Challenges on innovations of newly-developed safety analysis codes
Energy Technology Data Exchange (ETDEWEB)
Yang, Yanhua [Shanghai Jiao Tong Univ. (China). School of Nuclear Science and Engineering; Zhang, Hao [State Nuclear Power Software Development Center, Beijing (China). Beijing Future Science and Technology City
2016-05-15
With the development of safety analysis method, the safety analysis codes meet more challenges. Three challenges are presented in this paper, which are mathematic model, code design and user interface. Combined with the self-reliance safety analysis code named COSINE, the ways of meeting these requirements are suggested, that is to develop multi-phases, multi-fields and multi-dimension models, to adopt object-oriented code design ideal and to improve the way of modeling, calculation control and data post-processing in the user interface.
ZERBERUS - the code for reliability analysis of crack containing structures
International Nuclear Information System (INIS)
Cizelj, L.; Riesch-Oppermann, H.
1992-04-01
Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP) [de
Manometer Behavior Analysis using CATHENA, RELAP and GOTHIC Codes
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang Hoon; Han, Kee Soo; Moon, Bok Ja; Jang, Misuk [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)
2014-05-15
In this presentation, simple thermal hydraulic behavior is analyzed using three codes to show the possibility of using alternative codes. We established three models of simple u-tube manometer using three different codes. CATHENA (Canadian Algorithm for Thermal hydraulic Network Analysis), RELAP (Reactor Excursion and Leak Analysis Program), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are used for this analysis. CATHENA and RELAP are widely used codes for the analysis of system behavior of CANDU and PWR. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. In this paper, the internal behavior of u-tube manometer was analyzed using 3 codes, CATHENA, RELAP and GOTHIC. The general transient behavior is similar among 3 codes. However, the behavior simulated using GOTHIC shows some different trend compared with the results from the other 2 codes at the end of the transient. It would be resulted from the use of different physical model in GOTHIC, which is specialized for the multi-phase thermal hydraulic behavior analysis of containment system unlike the other two codes.
Analysis of RA-8 critical facility core in some configurations
International Nuclear Information System (INIS)
Abbate, Maximo J.; Sbaffoni, Maria M.
2000-01-01
The RA-8 critical facility was designated and built to be used in the experimental plan of the 'CAREM' Project but is, in itself, very versatile and adequate to perform many types of other experiments. The present paper includes calculated estimates of some critical configurations and comparisons with experimental results obtained during its start up. Results for Core 1 with homogeneous arrangement of rods containing 1.8 % enriched uranium, showed very good agreement. In fact, an experimentally critical configuration was reached with 1.300 rods and calculated values were: 1.310 using the WIMS code and 1.148 from the CONDOR code. Moreover, it was verified that the estimated number of 3.4% enriched uranium rods to be fabricated is enough to build a heterogeneous core or even a homogeneous core with this enrichment. The replacement of 3.4 % enriched uranium by 3.6 % will not present problems related with the original plan. (author)
Analysis of closed-pool boilup using the TRANSIT-HYDRO code
International Nuclear Information System (INIS)
Graff, D.L.
1983-01-01
The benign termination of the transition phase of a hypothetical LMFBR accident rests on the avoidance of highly energetic recriticalities prior to escape of bottled molten core materials from the active core region. In scenarios where molten fuel is trapped due to axial blockages, the maintenance of subcritical configurations until radial flow paths develop requires stable boil-up of the molten fuel/steel mixture. This paper describes the analysis of an experiment investigating the behavior of closed boiling pools using the two-fluid hydrodynamics module of TRANSIT-HYDRO, a deterministic transition-phase analysis code
Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements
International Nuclear Information System (INIS)
Ravnik, M.
1988-11-01
The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs
RAP-2A Computer code for transients analysis in fast reactors
International Nuclear Information System (INIS)
Iftode, I.; Popescu, C.; Turcu, I.; Biro, L.
1975-10-01
The RAP-2A computer code is designed for analyzing thermohydraulic transients and/or steady state problems for large LMFBR cores. Physical and mathematical models, main input-output data, the flow chart of the code and a sample problem are given. RAP-2A calculates the power and the thermoydraulic transients initiated by a flow or reactivity changes, from a normal operating state of the reactor up to core disassembly. In this analysis a representative fuel pin is considered: a one-group space-independent (point) kinetics model to describe the neutron kinetics and a one-dimensional model describing the heat transfer (radial in the fuel and axial in the coolant) are used. Mechanical deformations due to temperature gradient, pressure losses, fuel melting, etc., are also calculated. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer
Content Analysis Coding Schemes for Online Asynchronous Discussion
Weltzer-Ward, Lisa
2011-01-01
Purpose: Researchers commonly utilize coding-based analysis of classroom asynchronous discussion contributions as part of studies of online learning and instruction. However, this analysis is inconsistent from study to study with over 50 coding schemes and procedures applied in the last eight years. The aim of this article is to provide a basis…
Determination of the decay power for a U3O8 designed core using the ORIGEN 2.1 code
International Nuclear Information System (INIS)
Castro, Jose; Gallardo, Alberto; Madariaga, Marcelo
2014-01-01
After the operation of a nuclear research reactor at a higher power (more than 300 kW), a cooling time is required to remove the residual heat from the core due to the heat produced by the energy emitted by fission products, this fact is common in reactors. There is a short time where the heat output falls to 6 % after the reactor shutdown, the importance of knowing this power is because of the accidental events that this power could cause and affect the fuel after a sudden shutdown in the cooling system of the reactor and there is any other refrigeration system, only that one surrounding the reactor core. This report shows the results of the calculation of the U 3 O 8 core residual power a for the RP-10, using the ORIGEN 2.1 calculation code, verifying the safety of the proposed core within the safety limits accepted for the reactor. (authors).
Energy Technology Data Exchange (ETDEWEB)
Miyazaki, T; Ito, H [Geological Survey of Japan, Tsukuba (Japan)
1996-05-01
This paper introduces examples of image data analysis on fault drilling samples. The paper describes the following matters: core samples used in the analysis are those obtained from wells drilled piercing the Nojima fault which has moved in the Hygoken-Nanbu Earthquake; the CORESCAN system made by DMT Corporation, Germany, used in acquiring the image data consists of a CCD camera, a light source and core rotation mechanism, and a personal computer, its resolution being about 5 pixels/mm in both axial and circumferential directions, and 24-bit full color; with respect to the opening fractures in core samples collected by using a constant azimuth coring, it was possible to derive values of the opening width, inclination angle, and travel from the image data by using a commercially available software for the personal computer; and comparison of this core image with the BHTV record and the hydrophone VSP record (travel and inclination obtained from the BHTV record agree well with those obtained from the core image). 4 refs., 4 figs.
A Semantic Analysis Method for Scientific and Engineering Code
Stewart, Mark E. M.
1998-01-01
This paper develops a procedure to statically analyze aspects of the meaning or semantics of scientific and engineering code. The analysis involves adding semantic declarations to a user's code and parsing this semantic knowledge with the original code using multiple expert parsers. These semantic parsers are designed to recognize formulae in different disciplines including physical and mathematical formulae and geometrical position in a numerical scheme. In practice, a user would submit code with semantic declarations of primitive variables to the analysis procedure, and its semantic parsers would automatically recognize and document some static, semantic concepts and locate some program semantic errors. A prototype implementation of this analysis procedure is demonstrated. Further, the relationship between the fundamental algebraic manipulations of equations and the parsing of expressions is explained. This ability to locate some semantic errors and document semantic concepts in scientific and engineering code should reduce the time, risk, and effort of developing and using these codes.
Analysis of a 12-Finger Rod Drop using RETRAN/MASTER Code System for APR1400
International Nuclear Information System (INIS)
Yu, Keuk Jong; You, Sung Chang; Kim, Han Gon
2009-01-01
The Optimized Power Reactor 1000 (OPR1000) has 4-finger and 12-finger Control Element Assemblies (CEAs). When the 12-finger CEA is dropped, Core Protection Calculator System (CPCS) shuts down the reactor to prevent fuel damage that could occur from the sudden reactor power peaking. By contrast, the improved CPCS of Advanced Power Reactor 1400 (APR1400), which has systems similar to those of the OPR1000, decreases reactor power rapidly using its Reactor Power Cutback System (RPCS) to avoid unwanted reactor trips caused by the CPCS during a 12- finger CEA drop event. RETRAN is a best-estimate code for transient analysis of Non-LOCA. The RETRAN control logic, which includes the function of reducing reactor power during a 12-Finger CEA drop, has been developed for the APR1400. A MATRAN program has also been developed. MATRAN is the interface program for realtime processing to connect RETRAN with MASTER code which is a nuclear analysis and design code. MATRAN supplies adequate feedback reactivities from the MASTER code to RETRAN code. The purpose of this study is to analyze the behavior of a nuclear reactor core and its primary system using conventional RETRAN analysis procedure and MATRAN program analysis procedure during a 12- finger CEA drop. In addition, the axial power distribution and Axial Shape Index (ASI) are produced by the MATRAN program and they are confirmed as within operation limits
International Nuclear Information System (INIS)
Boss, Alan P.; Keiser, Sandra A.
2013-01-01
Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.
Energy Technology Data Exchange (ETDEWEB)
Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)
2016-06-15
Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.
Analysis of excess reactivity of JOYO MK-III performance test core
International Nuclear Information System (INIS)
Maeda, Shigetaka; Yokoyama, Kenji
2003-10-01
JOYO is currently being upgraded to the high performance irradiation bed JOYO MK-III core'. The MK-III core is divided into two fuel regions with different plutonium contents. To obtain a higher neutron flux, the active core height was reduced from 55 cm to 50 cm. The reflector subassemblies were replaced by shielding subassemblies in the outer two rows. Twenty of the MK-III outer core fuel subassemblies in the performance test core were partially burned in the transition core. Four irradiation test rigs, which do not contain any fuel material, were loaded in the center of the performance test core. In order to evaluate the excess reactivity of MK-III performance test core accurately, we evaluated it by applying not only the JOYO MK-II core management code system MAGI, but also the MK-III core management code system HESTIA, the JUPITER standard analysis method and the Monte Carlo method with JFS-3-J3.2R content set. The excess reactivity evaluations obtained by the JUPITER standard analysis method were corrected to results based on transport theory with zero mesh-size in space and angle. A bias factor based on the MK-II 35th core, which sensitivity was similar to MK-III performance test core's, was also applied, except in the case where an adjusted nuclear cross-section library was used. Exact three-dimensional, pin-by-pin geometry and continuous-energy cross sections were used in the Monte Carlo calculation. The estimated error components associated with cross-sections, methods correction factors and the bias factor were combined based on Takeda's theory. Those independently calculated values agree well and range from 2.8 to 3.4%Δk/kk'. The calculation result of the MK-III core management code system HESTLA was 3.13% Δk/kk'. The estimated errors for bias method range from 0.1 to 0.2%Δk/kk'. The error in the case using adjusted cross-section was 0.3%Δk/kk'. (author)
Analysis and research status of severe core damage accidents
International Nuclear Information System (INIS)
1984-03-01
The Severe Core Damage Research and Analysis Task Force was established in Nuclear Safety Research Center, Tokai Research Establishment, JAERI, in May, 1982 to make a quantitative analysis on the issues related with the severe core damage accident and also to survey the present status of the research and provide the required research subjects on the severe core damage accident. This report summarizes the results of the works performed by the Task Force during last one and half years. The main subjects investigated are as follows; (1) Discussion on the purposes and necessities of severe core damage accident research, (2) proposal of phenomenological research subjects required in Japan, (3) analysis of severe core damage accidents and identification of risk dominant accident sequences, (4) investigation of significant physical phenomena in severe core damage accidents, and (5) survey of the research status. (author)
Subchannel analysis code development for CANDU fuel channel
International Nuclear Information System (INIS)
Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.
1998-07-01
Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs
Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code
International Nuclear Information System (INIS)
Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi
1983-01-01
In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)
Regional overpower protection system analysis for a DUPIC fuel CANDU core
International Nuclear Information System (INIS)
Jeong, Chang Joon; Choi, Hang Bok; Park, Jee Won
2003-06-01
The regional overpower protection (ROP) system was assessed a CANDU 6 reactor with the DUPIC fuel, including the validation of the WIMS/RFSP/ROVER-F code system used for the estimation of ROP trip setpoint. The validation calculation has shown that it is valid to use the WIMS/RFSP/ROVER-F code system for ROP system analysis of the CANDU 6 core. For the DUPIC core, the ROP trip setpoint was estimated to be 125.7%, which is almost the same as that of the standard natural uranium core. This study has shown that the DUPIC fuel does not hurt the current ROP trip setpoint designed for the natural uranium CANDU 6 reactor
A comparison of LOCA analysis using SMOKIN and CERBERUS codes
Energy Technology Data Exchange (ETDEWEB)
Younis, M H [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Gaboury, G [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
This paper presents the results of a comparison of the analyses of a postulated Loss of Coolant Accident (LOCA) in Pickering NGS A reactors using the two neutron kinetics codes SMOKIN and CERBERUS. Both codes have been used to simulate the space-time neutronic behaviour of CANDU-PHWR reactors. The main objective of the present study is to evaluate the accuracy with which SMOKIN can predict power transients compared to CERBERUS. The comparison shows that the two codes produce similar bulk power and reactivity transients. However, SMOKIN was found to overestimate the power transient (relative to CERBERUS) in some regions of the core, which is indicative of the spatial differences between the two codes. It was demonstrated that part of this overestimate is due to the use of reaction-rate averaged fuel properties in SMOKIN, compared to instantaneous fuel properties in CERBERUS. (author). 5 refs., 3 tabs., 6 figs.
Evaluation of the DRAGON code for VHTR design analysis.
Energy Technology Data Exchange (ETDEWEB)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.
Evaluation of the DRAGON code for VHTR design analysis
International Nuclear Information System (INIS)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-01
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR
Stability Analysis of the EBR-I Mark-II Core Meltdown Accident
Energy Technology Data Exchange (ETDEWEB)
Lim, Jae-Yong; Kang, Chang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The purpose of this paper is to analyze the stability of the EBR-I core meltdown accident using the NuSTAB code. The result of NuSTAB analysis is compared with previous stability analysis by Sandmeier using the root locus method. The Experimental Breeder Reactor I (EBR-1) at Argonne National Laboratory was designed to demonstrate fast reactor breeding and to prove the use of liquid-metal coolant for power production and reached criticality in August 1951. The EBR-I reactor was undergoing a series of physics experiments and the Mark-II core was melted accidentally on Nov. 29, 1955. The experiment was going to increase core temperature to 500C to see if the reactor loses reactivity, and scram when the power reached 1500 kW or doubling of fission rate per second. However the operator scrammed with a slow moving control and missed the shutdown by two seconds and caused the core meltdown. The NuSTAB code has an advantage of analyzing space-dependent fast reactors and predicting regional oscillations compared to the point kinetics. Also, NuSTAB can be useful when the coupled neutronic-thermal-hydraulic codes cannot be used for stability analysis. Future work includes analyses of the PGSFR for various operating conditions as well as further validation of the NuSTAB calculations against SFR stability experiments when such experiments become available.
Analysis of core uncovery time in Kuosheng station blackout transient with MELCOR
International Nuclear Information System (INIS)
Wang, S.J.; Chien, C.S.
1996-01-01
The MELCOR code, developed by the Sandia National Laboratories, is capable of simulating severe accident phenomena of nuclear power plants. Core uncovery time is an important parameter in the probabilistic risk assessment. However, many MELCOR users do not generate the initial conditions in a station blackout (SBO) transient analysis. Thus, achieving reliable core uncovery time is difficult. The core uncovery time for the Kuosheng nuclear power plant during an SBO transient is analyzed. First, full-power steady-state conditions are generated with the application of a developed self-initialization algorithm. Then the response of the SBO transient up to core uncovery is simulated. The effects of key parameters including the initialization process and the reactor feed pump (RFP) coastdown time on the core uncovery time are analyzed. The initialization process is the most important parameter that affects the core uncovery time. Because SBO transient analysis, the correct initial conditions must be generated to achieve a reliable core uncovery time. The core uncovery time is also sensitive to the RFP coastdown time. A correct time constant is required
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.
2004-01-01
Ice cores are the most direct, continuous, and high resolution archive for Late Quaternary paleoclimate reconstruction. Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate migration strategies for New Zealand. (author). 23 refs., 15 figs., 1 tab
Modeling of High pressure core spray system (HPCS) with TRAC-BF1 code
International Nuclear Information System (INIS)
Angel M, E. Del.
1993-01-01
In this work we present a model of the HPCS system of Laguna Verde Nuclear Power Plant (CNLV) which consist of a condensate storage tank (TAC) a vertical surge pipe (TOS), implemented by the Comision Federal de Electricidad (CFE), and the suppression pool (PSP), as well as the associated piping and valves for the HPCS pump suction, to study the system under transient state conditions. The analysis results show that the implemented surge pipe, allows a normal HPCS pump start without automatic inadvertented transfer of the HPCS pump suction from the condensate storage tank to the suppression pool. We briefly mention some problems found during the stimulation and their solution, further we point out some deficiencies of the code for this type of studies. The present model can be used to stimulate other transients with only minor modifications of it. (Author)
Energy Technology Data Exchange (ETDEWEB)
Müller, Bernhard [Monash Center for Astrophysics, School of Mathematical Sciences, Building 28, Monash University, Victoria 3800 (Australia); Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2014-06-10
Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-art neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.
Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core
International Nuclear Information System (INIS)
Pande Made Udiyani; Lily Suparlina; Rokhmadi
2007-01-01
As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)
Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization
International Nuclear Information System (INIS)
Eom, Shin; Oh, Seung-Jong; Diab, Aya
2018-01-01
The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.
Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization
Energy Technology Data Exchange (ETDEWEB)
Eom, Shin; Oh, Seung-Jong; Diab, Aya [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering
2018-02-15
The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.
Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model
Directory of Open Access Journals (Sweden)
Reza Akbari
2017-08-01
Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.
Status of the CONTAIN computer code for LWR containment analysis
International Nuclear Information System (INIS)
Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.
1983-01-01
The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment
Status of the CONTAIN computer code for LWR containment analysis
International Nuclear Information System (INIS)
Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.
1982-01-01
The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment
Computer code for the thermal-hydraulic analysis of ITU TRIGA Mark-II reactor
International Nuclear Information System (INIS)
Ustun, G.; Durmayaz, A.
2002-01-01
Istanbul Technical University (ITU) TRIGA Mark-II reactor core consists of ninety vertical cylindrical elements located in five rings. Sixty-nine of them are fuel elements. The reactor is operated and cooled with natural convection by pool water, which is also cooled and purified in external coolant circuits by forced convection. This characteristic leads to consider both the natural and forced convection heat transfer in a 'porous-medium analysis'. The safety analysis of the reactor requires a thermal-hydraulic model of the reactor to determine the thermal-hydraulic parameters in each mode of operation. In this study, a computer code cooled TRIGA-PM (TRIGA - Porous Medium) for the thermal-hydraulic analysis of ITU is considered. TRIGA Mark-II reactor code has been developed to obtain velocity, pressure and temperature distributions in the reactor pool as a function of core design parameters and pool configuration. The code is a transient, thermal-hydraulic code and requires geometric and physical modelling parameters. In the model, although the reactor is considered as only porous medium, the other part of the reactor pool is considered partly as continuum and partly as porous medium. COMMIX-1C code is used for the benchmark purpose of TRIGA-PM code. For the normal operating conditions of the reactor, estimations of TRIGA-PM are in good agreement with those of COMMIX-1C. After some more improvements, this code will be employed for the estimation of LOCA scenario, which can not be analyses by COMMIX-1C and the other multi-purpose codes, considering a break at one of the beam tubes of the reactor
Directory of Open Access Journals (Sweden)
Sudarmono Sudarmono
2015-03-01
Full Text Available The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR. Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology (PTRKN has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generation system, which has high energy efficiency, and has high and clean inherent safety level. The geometry and structure of the HTGR200 core are designed to produce the output of helium gas coolant temperature as high as 950 °C to be used for hydrogen production and other industrial processes in co-generative way. The output of very high temperature helium gas will cause thermal stress on the fuel pebble that threats the integrity of fission product confinement. Therefore, it is necessary to perform thermal-flow evaluation to determine the temperature distribution in the graphite and fuel pebble in the HTGR core. The evaluation was carried out by Thermix-Konvek module code that has been already integrated into VSOP'94 code. The HTGR core geometry was done using BIRGIT module code for 2-D model (RZ model with 5 channels of pebble flow in active core in the radial direction. The evaluation results showed that the highest and lowest temperatures in the reactor core are 999.3 °C and 886.5 °C, while the highest temperature of TRISO UO2 is 1510.20 °C in the position (z= 335.51 cm; r=0 cm. The analysis done based on reactor condition of 120 kg/s of coolant mass flow rate, 7 MPa of pressure and 200 MWth of power. Compared to the temperature distribution resulted between VSOP’94 code and fuel temperature limitation as high as 1600 oC, there is enough safety margin from melting or disintegrating. Keywords: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperature
s-core network decomposition: A generalization of k-core analysis to weighted networks
Eidsaa, Marius; Almaas, Eivind
2013-12-01
A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.
Development of the integrated system reliability analysis code MODULE
International Nuclear Information System (INIS)
Han, S.H.; Yoo, K.J.; Kim, T.W.
1987-01-01
The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers
Development of the next generation reactor analysis code system, MARBLE
International Nuclear Information System (INIS)
Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki
2011-03-01
A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)
Bari, Md. S.; Das, T.
2013-09-01
Tectonic framework of Bangladesh and adjoining areas indicate that Bangladesh lies well within an active seismic zone. The after effect of earthquake is more severe in an underdeveloped and a densely populated country like ours than any other developed countries. Bangladesh National Building Code (BNBC) was first established in 1993 to provide guidelines for design and construction of new structure subject to earthquake ground motions in order to minimize the risk to life for all structures. A revision of BNBC 1993 is undergoing to make this up to date with other international building codes. This paper aims at the comparison of various provisions of seismic analysis as given in building codes of different countries. This comparison will give an idea regarding where our country stands when it comes to safety against earth quake. Primarily, various seismic parameters in BNBC 2010 (draft) have been studied and compared with that of BNBC 1993. Later, both 1993 and 2010 edition of BNBC codes have been compared graphically with building codes of other countries such as National Building Code of India 2005 (NBC-India 2005), American Society of Civil Engineering 7-05 (ASCE 7-05). The base shear/weight ratios have been plotted against the height of the building. The investigation in this paper reveals that BNBC 1993 has the least base shear among all the codes. Factored Base shear values of BNBC 2010 are found to have increased significantly than that of BNBC 1993 for low rise buildings (≤20 m) around the country than its predecessor. Despite revision of the code, BNBC 2010 (draft) still suggests less base shear values when compared to the Indian and American code. Therefore, this increase in factor of safety against the earthquake imposed by the proposed BNBC 2010 code by suggesting higher values of base shear is appreciable.
International Nuclear Information System (INIS)
Thomas, J.W.; Lee, H.C.; Downar, T.J.; Sofu, T.; Weber, D.P.; Joo, H.G.; Cho, J.Y.
2003-01-01
As part of a U.S.- Korea collaborative U.S. Department of Energy INERI project, a comprehensive high-fidelity reactor-core modeling capability is being developed for detailed analysis of existing and advanced PWR reactor designs. An essential element of the project has been the development of an interface between the computational fluid dynamics (CFD) module, STAR-CD, and the neutronics module, DeCART. Since the computational mesh for CFD and neutronics calculations are generally different, the capability to average and decompose data on these different meshes has been an important part of code coupling activities. An averaging process has been developed to extract neutronics zone temperatures in the fuel and coolant and to generate appropriate multi group cross sections and densities. Similar procedures have also been established to map the power distribution from the neutronics zones to the mesh structure used in the CFD module. Since MPI is used as the parallel model in STAR-CD and conflicts arise during initiation of a second level of MPI, the interface developed here is based on using TCP/IP protocol sockets to establish communication between the CFD and neutronics modules. Preliminary coupled calculations have been performed for PWR fuel assembly size problems and converged solutions have been achieved for a series of steady-state problems ranging from a single pin to a 1/8 model of a 17 x 17 PWR fuel assembly. (authors)
Static analysis of material testing reactor cores:critical core calculations
International Nuclear Information System (INIS)
Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.
1999-01-01
A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions
Analysis of loss of coolant accident and emergency core cooling system
International Nuclear Information System (INIS)
Abe, Kiyoharu; Kobayashi, Kenji; Hayata, Kunihisa; Tasaka, Kanji; Shiba, Masayoshi
1977-01-01
In this paper, the analysis for the performance evaluation of emergency core cooling system is described, which is the safety protection device to the loss of coolant accidents due to the break of primary cooling pipings of light water reactors. In the LOCA analysis for the performance evaluation of ECCS, it must be shown that a reactor core keeps the form which can be cooled with the ECCS in case of LOCA, and the overheat of the core can be prevented. Namely, the shattering of fuel cladding tubes is never to occur, and for the purpose, the maximum temperature of Zircaloy 2 or 4 cladding tubes must be limited to 1200 deg C, and the relative thickness of oxide film must be below 15%. The calculation for determining the temperature of cladding tubes in case of the LOCA in BWRs and PWRs is explained. First, the primary cooling system, the ECCS and the related installations of BWRs and PWRs are outlined. The code systems for LOCA/ECCS analysis are divid ed into several steps, such as blowdown process, reflooding process and heatup calculation. The examples of the sensitivity analysis of the codes are shown. The LOCA experiments carried out so far in Japan and foreign countries and the LOCA analysis of a BWR with RELAP-4J code are described. The guidance for the performance evaluation of ECCS was established in 1975 by the Reactor Safety Deliberation Committee in Japan, and the contents are quoted. (Kako, I.)
Application of Looped Network Analysis Method to Core of Prismatic VHTR
International Nuclear Information System (INIS)
Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl
2016-01-01
Most of reactor coolant flows through the coolant channel within the fuel block, but some portion of the reactor coolant bypasses to the interstitial gaps. The vertical gap and horizontal gap are called bypass gap and cross gap, respectively as shown in Fig. 1. CFD simulation for the full core of VHTR might be possible but it requires vast computational cost and time. Moreover, it is hard to cover whole cases corresponding to the various bypass gap distribution in the whole VHTR core. In order to solve this problem, in this study, the flow network analysis code, FastNet (Flow Analysis for Steady-state Network), was developed using the Looped Network Analysis Method. The applied method was validated by comparing with SNU VHTR multi-block experiment. A 3-demensional network modeling was conducted representing flow paths as flow resistances. Flow network analysis code, FastNet, was developed to evaluate the core bypass flow distribution by using looped network analysis method. Complex flow network could be solved simply by converting the non-linear momentum equation to the linearized equation. The FastNet code predicted the flow distribution of the SNU multi-block experiment accurately
International Nuclear Information System (INIS)
Bernard, A.; Dorsselaere, J.P. van
1984-01-01
This paper presents the SPX1 project calculations, performed on 1/3 core with the aid of the series of 3D codes described in Session 2. The main criteria, related to contact forces, head bowings and handling forces, are fulfilled. Some parametric studies on the mechanical equilibrium are also presented. The main parameters are: the axial pad level, the subassembly stiffness and the pad local stiffness. (author)
International Nuclear Information System (INIS)
Raymond, P.; Caruge, D.; Paik, H.J.
1994-01-01
The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs
International Nuclear Information System (INIS)
Ranganath, S.
1979-01-01
Nuclear pressure vessel components are designed to meet the requirements of Section III of the ASME Boiler and Pressure Vessel Code. Specifically, the design must satisfy the limits on stress range and fatigue usage prescribed in NB-3200, Section III ASME Code for the various design and operating conditions for the component. The Code requirements assure that the component does not experience gross yielding and that in general, elastic shakedown occurs following cyclic loading. When elastic stress analysis is performed this can be shown by meeting the limits in the Code on Primary and Primary plus Secondary (P+Q) stress intensities. However, when the P+Q limits cannot be met and elastic Shakedown cannot be demonstrated, plastic analysis may be performed to meet the requirements of the Code. This paper describes the elastic-plastic stress analysis of a Boiling Water Reactor Vessel bottom head in-core penetration and illustrates how plastic analysis can be used in ASME Code evaluations to show Code compliance. Details of the thermal analysis, elastic-plastic stress analysis and fatigue evaluation are presented and it is shown that the in-core penetration satisfies the code requirements. 6 refs
Event course analysis of core disruptive accidents; Ereignisablaufanalyse kernzerstoerender Unfaelle
Energy Technology Data Exchange (ETDEWEB)
Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.
1995-08-01
The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)
Effect analysis of core barrel openings under CEFR normal condition
International Nuclear Information System (INIS)
Zhang Yabo; Yang Hongyi
2008-01-01
Openings on the bottom of core barrel are important part of the decay heat removal system of China Experimental Fast Reactor (CEFR), which are designed to discharge the decay heat from reactor under accident condition. This paper analyses the effect of the openings design on the normal operation condition using the famouse CFD code CFX. The result indicates that the decay heat can be discharged safely and at the same time the effect of core barrel openings on the normal operation condition is acceptable. (authors)
International Nuclear Information System (INIS)
Avci, H.I.; Raghuram, S.; Baybutt, P.
1985-04-01
A new computer code called MATADOR (Methods for the Analysis of Transport And Deposition Of Radionuclides) has been developed to replace the CORRAL-2 computer code which was written for the Reactor Safety Study (WASH-1400). This report is a User's Manual for MATADOR. MATADOR is intended for use in system risk studies to analyze radionuclide transport and deposition in reactor containments. The principal output of the code is information on the timing and magnitude of radionuclide releases to the environment as a result of severely degraded core accidents. MATADOR considers the transport of radionuclides through the containment and their removal by natural deposition and by engineered safety systems such as sprays. It is capable of analyzing the behavior of radionuclides existing either as vapors or aerosols in the containment. The code requires input data on the source terms into the containment, the geometry of the containment, and thermal-hydraulic conditions in the containment
A code for structural analysis of fuel assemblies
International Nuclear Information System (INIS)
Hayashi, I.M.V.; Perrotta, J.A.
1988-08-01
It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each tubular structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equilavent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt
Heat-transfer analysis of the existing HEU and proposed LEU cores of Pakistan research reactor
International Nuclear Information System (INIS)
Khan, L.A.; Nabbi, R.
1987-02-01
In connection with conversion of Pakistan Research Reactor (PARR) from the use of Highly Enriched Uranium (HEU) fuel to the use of Low Enriched Uranium (LEU) fuel, steady-state thermal hydraulic analysis of both existing HEU and proposed LEU cores has been carried out. Keeping in mind the possibility of power upgrading, the performance of proposed LEU core, under 10 MW operating conditions, has also been evaluated. Computer code HEATHYD has been used for this purpose. In order to verify the reliability of the code, IAEA benchmark 2 MW reactor was analyzed. The cooling parameters evaluated include: coolant velocity, critical velocity, pressure drop, temperature distribution in the core, heat fluxes at onset of nucleate boiling, flow instability and burnout and corresponding safety margins. From the results of the study it can be concluded that the conversion of the core to LEU fuel will result in higher safety margins, as compared to existing HEU core, mainly because the increased number of fuel plates in the proposed design will reduce the average heat flux significantly. Anyhow upgrading of the reactor power to 10 MW will need the flow rate to be adjusted between 850 to 900 m 3 /hr, to achieve reasonable safety margins, at least, comparable with the existing HEU core. (orig.)
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.
2009-01-01
Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 45 refs., 16 figs., 2 tabs.
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.
2009-01-01
Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 27 refs., 18 figs., 2 tabs
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.A.N.
2012-01-01
Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 28 refs., 20 figs., 1 tab.
Stable isotope analysis in ice core paleoclimatology
International Nuclear Information System (INIS)
Bertler, N.
2008-01-01
Ice cores from New Zealand and the Antarctic margin provide an excellent means of addressing the lack of longer-term climate observations in the Southern Hemisphere with near instrumental quality. Their study helps us to improve our understanding of regional patterns of climate behaviour in Antarctica and its influence on New Zealand, leading to more realistic regional climate models. Such models are needed to sensibly interpret current Antarctic and New Zealand climate variability and for the development of appropriate mitigation strategies for New Zealand. Ice core records provide an annual-scale, 'instrumental-quality' baseline of atmospheric temperature and circulation changes back many thousands of years. (author). 27 refs., 18 figs., 2 tabs
PAPIRUS - a computer code for FBR fuel performance analysis
International Nuclear Information System (INIS)
Kobayashi, Y.; Tsuboi, Y.; Sogame, M.
1991-01-01
The FBR fuel performance analysis code PAPIRUS has been developed to design fuels for demonstration and future commercial reactors. A pellet structural model was developed to describe the generation, depletion and transport of vacancies and atomic elements in unified fashion. PAPIRUS results in comparison with the power - to - melt test data from HEDL showed validity of the code at the initial reactor startup. (author)
76 FR 57982 - Building Energy Codes Cost Analysis
2011-09-19
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page...-23236 Filed 9-16-11; 8:45 am] BILLING CODE 1505-01-P ...
An economic analysis code used for PWR fuel cycle
International Nuclear Information System (INIS)
Liu Dingqin
1989-01-01
An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost
Analysis and study on core power capability with margin method
International Nuclear Information System (INIS)
Liu Tongxian; Wu Lei; Yu Yingrui; Zhou Jinman
2015-01-01
Core power capability analysis focuses on the power distribution control of reactor within the given mode of operation, for the purpose of defining the allowed normal operating space so that Condition Ⅰ maneuvering flexibility is maintained and Condition Ⅱ occurrences are adequately protected by the reactor protection system. For the traditional core power capability analysis methods, such as synthesis method or advanced three dimension method, usually calculate the key safety parameters of the power distribution, and then verify that these parameters meet the design criteria. For PWR with on-line power distribution monitoring system, core power capability analysis calculates the most power level which just meets the design criteria. On the base of 3D FAC method of Westinghouse, the calculation model of core power capability analysis with margin method is introduced to provide reference for engineers. The core power capability analysis of specific burnup of Sanmen NPP is performed with the margin method. The results demonstrate the rationality of the margin method. The calculation model of the margin method not only helps engineers to master the core power capability analysis for AP1000, but also provides reference for engineers for core power capability analysis of other PWR with on-line power distribution monitoring system. (authors)
International Nuclear Information System (INIS)
2014-01-01
The generation of multigroup cross sections lies at the heart of the very high temperature reactor (VHTR) core design, whether the prismatic (block) or pebble-bed type. The design process, generally performed in three steps, is quite involved and its execution is crucial to proper reactor physics analyses. The primary purpose of this project is to develop the CENTRM cross-section processing module of the SCALE code package for application to prismatic or pebble-bed core designs. The team will include a detailed outline of the entire processing procedure for application of CENTRM in a final report complete with demonstration. In addition, they will conduct a thorough verification of the CENTRM code, which has yet to be performed. The tasks for this project are to: Thoroughly test the panel algorithm for neutron slowing down; Develop the panel algorithm for multi-materials; Establish a multigroup convergence 1D transport acceleration algorithm in the panel formalism; Verify CENTRM in 1D plane geometry; Create and test the corresponding transport/panel algorithm in spherical and cylindrical geometries; and, Apply the verified CENTRM code to current VHTR core design configurations for an infinite lattice, including assessing effectiveness of Dancoff corrections to simulate TRISO particle heterogeneity.